WO2008043777A1 - Utilisation d'anticorps monoclonaux specifiques de la forme o-acetylee du ganglioside gd2 dans le traitement de certains cancers - Google Patents

Utilisation d'anticorps monoclonaux specifiques de la forme o-acetylee du ganglioside gd2 dans le traitement de certains cancers Download PDF

Info

Publication number
WO2008043777A1
WO2008043777A1 PCT/EP2007/060750 EP2007060750W WO2008043777A1 WO 2008043777 A1 WO2008043777 A1 WO 2008043777A1 EP 2007060750 W EP2007060750 W EP 2007060750W WO 2008043777 A1 WO2008043777 A1 WO 2008043777A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
ganglioside
seq
acetylated
molecule
Prior art date
Application number
PCT/EP2007/060750
Other languages
English (en)
Other versions
WO2008043777B1 (fr
Inventor
Stéphane BIRKLE
Jean-Marie Mussini
Jacques Aubry
Jacques Barbet
Jean-François CHATAL
Original Assignee
Universite De Nantes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Nantes filed Critical Universite De Nantes
Priority to CN2007800456900A priority Critical patent/CN101616935B/zh
Priority to EP07821118A priority patent/EP2076542B1/fr
Priority to JP2009531833A priority patent/JP5519283B2/ja
Priority to US12/445,071 priority patent/US8951524B2/en
Priority to ES07821118T priority patent/ES2392631T3/es
Priority to CA2703466A priority patent/CA2703466C/fr
Priority to AU2007306384A priority patent/AU2007306384C1/en
Publication of WO2008043777A1 publication Critical patent/WO2008043777A1/fr
Publication of WO2008043777B1 publication Critical patent/WO2008043777B1/fr
Priority to US14/581,048 priority patent/US9334330B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • C07K16/3084Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]

Definitions

  • the present invention aims to provide new means for the diagnosis and therapy of cancers whose cells express the O-acetylated form of ganglioside GD2.
  • These means essentially include the use of recombinant monoclonal antibodies or fragments thereof recognizing O-acetylated GD2 and which do not recognize healthy cells and nerve fibers of the peripheral nervous system.
  • These new ways will be more specific to cancer cells and reduce the toxicity of treatments compared to the antibodies and derivatives previously used to treat these cancers.
  • Tumor cells have on their surface a number of antigenic determinants. Of these antigenic determinants, some are tumor-specific antigens. These tumor antigens are expressed mainly or even exclusively on the surface of cancer cells.
  • This specific recognition between a monoclonal antibody and its human tumor antigen is of major interest for immunotyping cancers.
  • detection agents for the purpose of diagnosis or toxic agents for the purpose of treating tumors.
  • These detection or toxic agents may be chemical or biological compounds, possibly radioactive, artificially attached to the antibodies before or after their administration.
  • agents can also be biological compounds naturally present in the patient (complement components, chemokines, cytokines, cytotoxic cells, for example T lymphocytes or NK) recruited to the tumor cells by the antibodies.
  • Gangliosides are constituents of the cell membrane and some of them have been characterized as tumor antigens.
  • ganglioside GD2 is strongly expressed in human neuroectodermal cancers such as melanomas, glioblastomas, small cell lung carcinomas and neuroblastomas. The list of tumor diseases mentioned here is not exhaustive. Retinoblastomas and osteosarcomas also express ganglioside GD2. Some ovarian cancers also express ganglioside GD2.
  • the ganglioside GD2 is an acidic glycolipid formed by a ceramide associated with an oligosaccharide whose sequence is glucose galactose N-acetyl-galactosamine. Two molecules of sialic acid are attached to the galactose molecule.
  • the terminal sialic acid can be modified by the addition of an O-acetyl group to form O-acetylated GD2.
  • O-acetylated GD2 Using GD2-specific antibodies that also recognize its O-acetylated form, it has been shown that certain types of cancer, including tumors of neuroectodermal origin, express GD2 and its O-acetylated form, GD2 O -acetylated, in variable proportion.
  • mice Several anti-GD2 monoclonal antibodies produced in mice have been described.
  • One of these negative effects is an allergic or anaphylactic reaction that can be attributed to an immune response developed by humans against mouse antibodies.
  • chimeric antibody is a genetically modified antibody in which a more or less important part of the genetic information encoding the mouse antibody by the corresponding part of a human antibody.
  • V H and V L the heavy and light chain variable regions of the murine antibody
  • V H and V L the heavy and light chain variable regions of the murine antibody
  • ch.l4G2a and ch.14.18 chimeric antibodies have reduced immunogenicity and increased serum half-life compared to the mouse monoclonal antibody from which they are derived.
  • mouse anti-GD2 monoclonal antibodies have an increased ability to recruit human effector cells when they are chimerized, whereas mouse antibodies have only a limited capacity to recruit. these human effector cells.
  • murine antibodies to human antibodies can be carried further by retaining murine antibody than the amino acids of the so-called CDR regions or "complementarity determining regions" which make up the antigen binding site and thus determine the specificity of the antibody.
  • a "humanized” antibody is a genetically modified antibody in which only the amino acids of the CDRs have been conserved, plus possibly some amino acids close to these CDR regions of the starting mouse antibody, and in which the remainder of the molecule of a human antibody.
  • One approach that would solve the problem of nervous toxicity would be to use an antibody recognizing a tumor antigen associated with cancers of neuroectodermal origin different from ganglioside GD2 and which would not recognize the nerve fibers of the peripheral system.
  • anti-GD2 antibodies A few years ago, the inventors conducted a series of mouse immunizations to produce anti-GD2 antibodies.
  • Several anti-GD2 antibodies have thus been isolated and their characterization led in particular to the identification of an antibody of the class of mouse IgG3 called 8B6 specifically recognizing a GD2 ganglioside molecule slightly modified by the presence of a group O -acetyl.
  • the monoclonal antibodies specific for GD2-0-acetylated ganglioside which do not recognize GD2 ganglioside, may have the advantage of not recognizing the nerve fibers of the peripheral system and thus not be at the origin of nerve toxicity. Such antibodies could therefore have a major advantage in the immunocurization of certain types of cancers such as human cancers of neuroectodermal origin which express ganglioside GD2 in its O-acetylated form relative to the anti-GD2 monoclonal antibodies.
  • Such antibodies may be obtained by a variety of techniques known to those skilled in the art. Part of these techniques begin with the immunization of animals, including rodents and among them mice, rats or hamsters, lagomorphs including rabbits, camels, and among them llamas.
  • the immunogen the preparation containing the antigen against which antibodies are to be obtained, may be either the glycolipid itself, purified or contained in a crude or partially purified mixture, or the glycolipid or a part thereof, in particular the glycosylated part. hydrophilic, optionally covalently coupled or not to proteins or lipids used as "carrier" to stimulate the immune response.
  • the immunogen can be prepared from antigen-expressing cells obtained by cell culture of cell lines.
  • tumor cells or primary cells obtained from tumor samples are useful lines.
  • animal cell lines such as murine thymoma EL-4, or human, such as human neuroblastoma IMR32, human glioblastoma U87MG, small cell lung carcinoma HCI-H82 and human melanoma M21.
  • These cells can then be administered whole, living or fixed, or fractionated to inject, for example, only a partially purified fraction containing the components of the cell membrane or cytoplasm.
  • immunogens may be administered to the animals by various routes, in particular subcutaneous, intraperitoneal or intramuscular, alone or in the presence of an adjuvant, in particular alum or Freund's adjuvant. Immunizations can be repeated with a frequency ranging from a few days to a few months.
  • the first is to collect the blood of the immunized animals and to extract from it, by methods known to those skilled in the art, fractions containing the more or less purified antibody (serum or plasma, total immunoglobulin).
  • the antibodies can be further purified by chromatographic or immunoadsorption techniques.
  • the second method consists in taking cells capable of synthesizing the antibodies, and in particular of the spleen or lymph node cells, and immortalizing them, in particular by viral transformation or by somatic hybridization according to methods known to those skilled in the art.
  • the third method consists in isolating the RNA from cells capable of synthesizing antibodies, especially spleen cells, lymph nodes or peripheral lymphocytes taken from animals, immunized or not, and even human beings and to form cDNA libraries from which the antibody sequences of interest will be selected by screening according to methods known to those skilled in the art and notament by expression of this bank on the surface of a bacteriophage called still phage display expression system.
  • the antibodies of the present invention may be selected from the antibodies obtained by either of the methods described above in that they recognize the GD2-O-acetylated antigen and not the GD2 non-O antigen. -acetylated property that will be called specificity required. This selection may be carried out during the method of isolating the antibodies, for example by propagating only the cells producing antibodies having the required specificity. Alternatively, one can search among already isolated antibodies, those who have this specificity. To this end, a variety of methods can be used, including indirect immunofluorescence on cells to distinguish those antibodies that recognize cells known to express O-acetylated GD2, including IMR32, from those that also recognize GD2 expressing cells. but not O-acetylated GD2, especially Neuro 2A.
  • An ELISA enzyme immunoassay can also be used on desiccated cells to select antibodies that bind only to cells expressing O-acetylated GD2 and not to those that only express GD2.
  • Antibodies having the required specificity may also be selected using thin layer chromatography on silica to separate glycolipid components from cells expressing both O-acetylated GD2 and GD2, especially IMR32, retaining only the antibodies that only mark the band corresponding to GD2-0-acetylated. This result can be confirmed by destroying the O-acetylated GD2 in the lipid extract by alkaline treatment and verifying that the labeling is well abolished. Examples of implementation of these techniques for confirming the specificity of the antibodies of the present invention are given in the detailed description of the invention, below. Other methods, aimed at the same result, may be developed by those skilled in the art.
  • the antibodies of the present invention may be modified by a variety of techniques known to those skilled in the art to suit different applications. It will thus be possible to use the known methods of the prior art to produce single chain scFv antibodies as well as a variety of fusion proteins retaining the ability to bind the antigen.
  • the so-called constant regions of the antibodies can be completely modified, for example to exchange constant murine regions against constant regions of human antibodies, without losing the recognition of the antigen.
  • the construction of a chimeric antibody comprises isolating the DNA encoding the VH region and the VL region of a mouse monoclonal antibody and binding it to the DNA encoding the H and L constant regions of a human immunoglobulin.
  • Such a genetic construct makes it possible to produce a hybrid antibody whose constant human part is not or very little immunogenic in humans (it is generally the constant region of human IgG1 and of the human Ckappa region). . It is even known to preserve only the regions essential for the recognition of the antigen, so-called hypervariable regions, complementarity determining regions or CDR, and replace all others to operate what is called a "humanization" of the antibody. All of these proteins will be referred to as “artificially modified antibodies” to facilitate description. Some of these proteins are of particular interest for the antibodies of the present invention.
  • O-acetylated artificially anti-GD2-modified antibodies that retain O-acetylated GD2 ganglioside recognition without recognizing ganglioside GD2 could have a major advantage over mouse anti-GD2 O-acetyl monoclonal antibodies in that they would have superior physical and effector characteristics.
  • the artificially modified O-acetylated GD2-specific antibodies should have sufficient affinity for the corresponding antigen so as to eliminate at the maximum the diffusion of this antibody, possibly carrying a toxic or therapeutic substance in the tissues or healthy cells. .
  • the affinity for ganglioside GD2 should be greater than 10 ⁇ 7 mole / liter.
  • the affinity of these antibodies may be increased by techniques known to those skilled in the art.
  • the expression of antibody fragments on the surface of bacteriophages is a valuable tool for the search for high affinity mutants from a given scFv. It is thus possible to mimic the affinity maturation observed during the development of the immune response.
  • the techniques of random mutations or targeted mutations, followed by selection by repeated immunoabsorption / elution cycles, have thus been successfully employed and have resulted in antibody fragments having nearly 10-fold affinity. greater than that of the initial fragment
  • a particular object of the present invention which should not limit it to this example, relates to artificially modified antibodies prepared from the 8B6 antibody which is known to have the requisite specificity, as well as recombinant proteins using the sequences of the complementarity determining regions defined SEQ ID NO: 3 to 8.
  • Some of these applications require the injection of antibodies or their derivatives to patients suffering from certain cancerous pathologies.
  • the derivatives whose sequence is closer to a human antibody sequence will be preferred because they are likely to limit the production by the treated patient of antibodies against the injected molecule, thereby increasing tolerance and allowing repeated administration.
  • Such derivatives are moreover likely to promote the antibody response against specific determinants specific to the injected antibody, called anti-idiotype antibodies, which have been presented as having a therapeutic interest.
  • the preferred modifications will be those which make it possible to obtain cyto-toxic activity against the tumor cells expressing the target antigen, here GD2O-acetylated.
  • the said cytotoxic agent may be a chemical toxic agent, Antisense RNA, and in particular a cytotoxic anti-tumor drug, among which mention may be made of taxanes, periwinkle alkaloids and their derivatives, anthracyclines, alkylating agents, a biological toxic agent, and in particular plant or bacterial toxins, among which mention may be made of ricin or pseudomonas toxin, or else a radioactive isotope emitting beta particles, such as iodine-131, yttrium-90, lutetium-177, rhenium-186 or copper-67, or Auger electrons, such as indium 111, or alpha particles, such as bismuth 213, bismuth 212 or astate 211, these examples should not in any way limit the scope of the invention.
  • a radioactive isotope emitting beta particles such as iodine-131, yttrium-90, lutetium-177, rhenium-186 or copper
  • the antibody can also be produced by molecular engineering methods, known to those skilled in the art, in the form of a cytokine-associated fusion protein.
  • the cytokines used are essentially of the interleukin family such as interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-13, IL-14, IL-15, IL-16 and IL-18, hematopreitic growth factors such as GM-CSF (Granulocyte Macrophage Colony Stimulating Factor) or G-CSF (Granulocyte Colony Stimulating Factor), Tumor Necrosis Factor (TNF), chemokines.
  • the antibody-cytokine fusion protein obtained has the biological properties of the cytokine and the specificity of the antibody from which it is derived.
  • the antibodies of the present invention may also be advantageously applied to the diagnosis, which is carried out in vitro for the detection of the presence of O-acetylated GD2 antigen in samples of cells or biological fluids according to any one of the following: techniques known to those skilled in the art, or even practiced in vivo by administering a derivative of the modified antibody to make it detectable by one of the known medical imaging techniques, namely scintigraphy or tomography of positron emission.
  • the derivative of the antibody will be associated with a gamma-emitting radioactive isotope, such as iodine-131, iodine-123, indium-111, or technetium-99m for scintigraphic imaging or tomography.
  • positron emission tomography single photons, or an isotope positron emitter, such as fluorine 18, iodine 124, yttrium 86, copper 64, scandium 44, for positron emission tomography, these examples not again having to limit the field of the positron emission tomography. invention.
  • the antibodies of the present invention may be associated with toxic or radioactive compounds.
  • the toxic products are covalently coupled to the antibodies by a variety of chemical bonds, including ester, amide, disulfide or thiooether linkages.
  • the radioactive atoms are coupled either directly by electrophilic substitution (the case of isotopes of iodine) or nucleophilic (case of fluorine 18) or by means of a reactive radiolabeled synthon, and in particular the Bolton and Hunter reagent for isotopes. iodine or activated esters stannylated for the isotopes of iodine or astate 211, or even using a chelating agent when it is a radioactive metal.
  • DTPA may be used advantageously with indium 111, but DOTA will be preferable for labeling with yttrium 90.
  • the antibodies of the present invention may be used in methods known to those skilled in the art in which the toxic or detectable agent is not directly linked to the antibody, but rather linked to a molecule of low molecular weight.
  • administered in a second step after a derivative of the antibody capable of recognizing this small molecule in vivo has been administered to the patient.
  • the derivative of the antibody is in particular a bispecific antibody or an immunoconjugate or a fusion protein between a derivative of the antibody and an avidin. This approach may be advantageously used with the antibodies of the present invention for in vivo diagnosis and tumor treatment.
  • the antibody of the present invention and the "derivatives”, “derivative antibodies” or “derived products” can therefore be advantageously used for the diagnosis or the therapy of these tumors.
  • these tumors of origin neuroectodermal diseases including melanoma, small cell lung cancer, glioma and neuroblastoma.
  • the products of the present invention may be advantageously applied to the detection and treatment of these tumors, especially when they are disseminated or escape existing treatments.
  • the present invention describes the usefulness of antibodies in the immunocurization of human neuroectodermal cancers such as melanoma, glioblastoma, small cell lung carcinoma and neuroblastoma.
  • human neuroectodermal cancers such as melanoma, glioblastoma, small cell lung carcinoma and neuroblastoma.
  • a monoclonal antibody specific for O-acetylated GD2 does not bind to the nerve fibers expressing GD2 while recognizing the tumor cells expressing ganglioside GD2 and its O-acetylated form.
  • Such antibodies therefore have a specificity restricted to tumor cells of neuroectodermal origin, and which do not recognize the nerve fibers of the peripheral system.
  • the consequence of this increased specificity is a reduced toxicity in the therapeutic applications resulting in particular from the absence of fixation on the normal peripheral nervous tissues which is observed with the antibodies recognizing GD2 ganglioside.
  • the present invention therefore covers the use of such antibodies for the diagnosis and therapy of cancers with increased specificity and reduced toxicity compared to antibodies that recognize GD2.
  • the antibodies of the present invention have a cytotoxic activity for the tumor cells that they recognize, either intrinsically (this is one of the reasons for which they are chimerized or humanized), or because they serve as vectors for toxic agents, including radioactive
  • the present invention thus covers any chimeric or humanized monoclonal antibody recognizing only the O-acetylated form of ganglioside GD2, or fragment of said antibody, said antibody or said fragment recognizing O-acetylated GD2 molecules expressed by tumor cells and not recognizing the GD2 molecules expressed on the surface of the peripheral nerves.
  • the present invention also covers the antibodies of which certain amino acids have been replaced by others using molecular genetic techniques known to those skilled in the art, in particular to modify the properties of the original antibody, in particular to decrease its immunogenicity, or to increase its toxic activity or to accelerate or slow its elimination after injection.
  • the artificially modified monoclonal antibody or fragment thereof according to the invention is characterized in that it is a kappa IgG with an affinity greater than 10 ⁇ 7 mole / liter for GD2-O-acetyl and affinity at least ten times lower for GD2 itself, said antibody or said fragment being mono or bispecific.
  • the invention covers any artificially modified monoclonal antibody or fragment thereof where the regions determining the complementarity of the variable region of the H chain have as amino acid sequences those shown in SEQ ID NO: 3, SEQ ID NO: 4 and SEQ ID NO: 5 and the regions determining the complementarity of the variable region of the L chain have as amino acid sequences those represented in SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.
  • the invention covers any artificially modified monoclonal antibody or fragment thereof, the heavy chain of which is obtained by the junction between the cDNA encoding the variable region of the heavy chain of a non-human antibody and the cDNA encoding the constant region of a human immunoglobulin and whose light chain is obtained by the junction between the cDNA encoding the variable region of the light chain of the same non-human antibody and the cDNA encoding the constant region of the light chain of a human immunoglobulin characterized in that said non-human antibody is mouse monoclonal antibody 8B6 and said artificially modified antibody is directed against GD2 O-acetylated ganglioside and does not recognize not the nerve fibers of the peripheral system.
  • the invention covers any artificially modified monoclonal antibody or fragment thereof whose variable region of the heavy chain has the deduced amino acid sequence defined by SEQ ID NO: 1
  • variable region of the light chain has the deduced amino acid sequence defined by SEQ ID NO: 2.
  • the artificially-modified monoclonal antibody or fragment thereof according to claim 5 is the KM8B6 antibody obtainable using the CHO cell line or a fragment thereof.
  • the invention also covers any pharmaceutical molecule derived from the artificially modified antibody or a fragment thereof according to the invention wherein the antibody or fragment thereof is coupled with a molecule X, where X is a toxic molecule, a drug, a pro-drug, or a second antibody regardless of its specificity.
  • said toxic molecule is a chemical, biological or radioactive toxic molecule, said molecule being intended to destroy tumor cells expressing ganglioside GD2-0-acetylated.
  • said tumor cells targeted by the pharmaceutical molecules according to the invention are neuroblastoma, melanoma, glioblastoma or small cell lung cancer cells.
  • the pharmaceutical molecules according to the invention are mutated in their Fc region by the addition of sugars, thus modulating the activation of the immune cells and of the complement system molecules.
  • the invention also covers any molecule for the diagnosis of cancers showing expression of GD2 O-acetylated ganglioside on the surface of tumor cells, said molecule being derived from the artificially modified antibody or a fragment thereof according to the invention. invention, wherein said antibody or fragment is bound to an agent for detecting the antibody or said fragment by fluorescence or radioactivity.
  • the invention therefore relates to any use of an artificially modified antibody or a fragment thereof according to the invention and / or a molecule according to the invention, for the manufacture of a medicament for the therapy of a cancer whose cells express the O-acetylated form of ganglioside GD2 or for the manufacture of a product for the diagnosis of such a cancer.
  • the present invention also covers any use of the monoclonal antibody 8B6 (described in the article "Variable Region Gene Segments of Nine Monoclonal Antibodies Specifies to Disialoganglisosides (GD2, GD3) and their O-Actylated Derivatives", Cerato et al., Hybridoma Volume 16, Number 4, 1997, 317-316) for the manufacture of a pharmaceutical molecule wherein said antibody is bound to a chemical, biological or radioactive toxic agent, said molecule being intended to destroy tumor cells expressing ganglioside GD2- 0-acetylated.
  • the invention covers such use when said cells are neuroblastoma, melanoma, glioblastoma or small cell lung cancer cells.
  • the invention covers such use when said therapeutic molecule is mutated at its Fc region by the addition of sugars, thereby modulating the activation of immune cells and complement system molecules.
  • the invention also covers any use of the monoclonal antibody 8B6 for the manufacture of a molecule for the diagnosis of cancers showing expression of GD2-O-acetylated ganglioside on the surface of tumor cells, said molecule being derived from said antibody, wherein said antibody is bound to an agent for detecting the antibody by fluorescence or radioactivity.
  • the invention also covers any DNA sequence coding for the artificially modified antibody according to the invention as well as any expression vector comprising such a DNA sequence operably linked to a promoter.
  • the invention also covers any cell, including animal, comprising such an expression vector, as well as any non-human transformant that produces the artificially modified antibody according to the invention.
  • the invention covers any method for producing artificially modified antibody for GD2-O-acetylated ganglioside, which method comprises expressing the DNA sequence in a non-human cell or transformant under appropriate conditions and the recovery of the antibody.
  • the cell or the transformant is cultured under conditions in which the antibody accumulates.
  • Fig. 1 describes the construction of the plasmid, pcDNA3®60C3 L-VL.
  • FIG. 2 describes the construction of the plasmid, pcDNA3®60C3 L.
  • FIG. 3 describes the construction of the plasmid, pcDNA3® KM8B6L.
  • Fig.4 depicts the nucleotide sequence and the deduced amino acid sequence of the light chain of artificially modified KM8B6 antibody.
  • Fig. Describes the construction of the plasmid, pBluescript® II SK (+) 60C3 L-VH.
  • Fig. 6 describes the construction of the plasmid, pBluescript® II SK (+) KM60C3-H.
  • Fig. 7 describes the construction of the plasmid, pBluescript® II SK (+) KM8B6-H.
  • Fig. 8 describes the construction of the plasmid, pcDNA3.1 / Hygro ⁇ (+) KM8B6-H.
  • Fig. 9 describes the nucleotide sequence and the deduced amino acid sequence of the heavy chain of artificially modified KM8B6 antibody.
  • Fig. Describes the SDS-PAGE analysis of the artificially purified anti-purified GD2-O-acetylated antibody, KM8B6. The analysis was performed under reducing (left) and non-reducing (right) conditions. From left to right, molecular weight marker, KM8B6, IgG3 8B6 (reducing conditions), high molecular weight marker, KM8B6, and IgG3 8B6 (non-reducing conditions).
  • Fig. 11 is a graph which describes the reactivity of the antibody 8B6 and the KM8B6 antibody on IMR 32 and NeuroA cells, with or without the GD2-O-acetylated antigens respectively, measured by immunofluorescence, with the number of cells on the ordinate detected and on the abscissa the fluorescence intensity.
  • the blue line corresponds to the reactivity of the control and the red line corresponds to the reactivity of the products.
  • Fig. 12 is a graph that describes the reactivity of the 8B6 and KM8B6 antibodies analyzed by ELISA on IMR 32 and NeuroA cells.
  • Fig. Figure 13 shows the immunostaining profile obtained with KM8B6 antibody from rat brain gangliosides separated by thin layer chromatography of silica. Lane A resorcinol staining migrations of different rat brain gangliosides.
  • Fig. 14 shows the results of the immunohistochemical analysis of neuroblatoma cells and human nerve fibers.
  • Fig. Figure 15 shows the results of the Toxicity Study (ADCC) Percentage of ADCC activity of the artificially modified antiprotor KM8B6 and the mouse mAb 8B6 from which it is derived. * Rituxan® anti-CD20 antibody used as a negative control.
  • Fig. Figure 16 shows the results of the in vivo mouse study of the anti-tumor effect of 8B6 mAb against EL4 murine thymoma which expresses GD2-O-acetylated antigen.
  • the total RNA is extracted from 106 60C3 hybridoma cells in the exponential growth phase using the reagent RNAbIe (Eurobio, Courtaboeuf, France) according to the supplier's recommendations.
  • the total RNA concentration is determined by measuring the optical density at 260 nm.
  • the gene amplification of the cDNA coding for the variable region 60C3 L-VL was obtained from the messenger RNAs by RACE-PCR so as to obtain the nucleotide sequence coding for the signal peptide (L) associated with its variable region (VL). This amplification was carried out using the SMART TM RACE cDNA Amplification kit obtained from BD Biosciences (San Jose, CA, USA) according to the supplier's recommendations. The amount of total RNA used for retrotranscription is l ⁇ g. The product of the reaction was diluted in 100 ⁇ l of tricine buffer solution EDTA supplied by the supplier.
  • a volume of 2.5 ⁇ L of the diluted product was used for gene amplification.
  • the specific antisense primer of the 60C3 VL cDNA used is as follows: 3'-60C3 VL 5'-TT CAG CTC CAG CTT GGT CCC AGC -3 '.
  • the amplification was performed by incubating the reaction mixture in a Perkin-Elmer (PE) Thermal Thermal Cycler 480 (Perkin Elmer Wellesley, MA, USA) thermocycler under the following conditions: 5 cycles (94 ° C for 5 seconds, 72 °) C for 3 minutes), followed by 5 cycles (94 ° C for 5 seconds then 70 0 C for 10 seconds followed by 3 minutes at 72 ° C) and 25 cycles (94 ° C for 5 seconds followed by 69 ° C for 10 seconds and 3 minutes at 72 ° C).
  • PE Perkin-Elmer
  • MA Perkin Elmer
  • the RACE-PCR reaction product was analyzed by 1% agarose gel electrophoresis (Q.
  • Amplification of the 60C3 L-VL cDNA was obtained by reaction of RT-PCR from a total RNA extract of 60C3 hybridoma cells.
  • the reaction mixture is as follows: Oligo d (T) 18 0.5 ⁇ g (New England Biolabs Inc. Beverly, MA, USA), 1 ⁇ g RNA, 0.5 mM dNTP (Promega, Madison, WI, USA), sterile water qs 12 ⁇ L. This mixture is incubated for 5 minutes at 65 ° C. (dry water bath) and then 2 minutes at 4 ° C. (melting ice) to denature the RNA.
  • the 60C3 L-VL cDNA copies are obtained by gene amplification through a PCR reaction using the synthetic oligonucleotides are as follows: 5'-BamHI 60C3 L-VL: 5'-aggga tcc aaa gac aaa atg gat -3 '(sense primer) and 3'-Xhol 60C3 L-VL: 5'-tt cag ctc gag ctt ggt ccc agce a3 -3' (anti primer) -meaning)
  • the synthetic primers used allow the introduction of silent mutations in the DNA sequence which do not cause any amino acid sequence changes while allowing the appearance of the BamHI and XhoI restriction sites necessary for cloning in the region. vector.
  • the reaction medium has the following composition: dNTP (Promega) 500 ⁇ M,
  • Taq polymerase (Invitrogen Life Technologies) l ⁇ L, PCR buffer solution
  • amplification was carried out in a MJ-research thermocycler PTC 200 (Peltier Thermal Cycler) according to the following conditions: 5 minutes at 94 ° C., then 35 cycles following 30 seconds at 94 ° C., 45 seconds at 55 ° C. and 1 minute at 72 ° C.
  • cDNA 60C3 L-VL is purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations.
  • Restriction enzyme digestion provides a linear vector having cohesive ends necessary for insertion of the cDNA of interest. Digestion is carried out under the following conditions: 10X NEB2 buffer (5 ⁇ L), 100X BSA (0.5 ⁇ L), pcDNA3® vector or cDNA 60C3 L-VL (1 ⁇ g), BamHI restriction enzyme (10U), Xhol restriction (10U).
  • the enzymes of Restriction, the reaction buffer solutions and the BSA solution are from New England Biolabs Inc. The reaction is continued for 3 hours in a water bath at 37 ° C.
  • the digested vector and insert are purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations.
  • the vector is then dephosphorylated by CIP (New Englan Biolabs Inc.) for 1 hour at 37 ° C.
  • the composition of the reaction mixture is as follows: NEB3 buffer 1OX (5 ⁇ L), vector (1 ⁇ g), CIP (1 ⁇ L).
  • This reaction makes it possible to increase the yield of the ligation by decreasing the percentage of self-ligation of the vector. Indeed, the fact of removing the phosphate groups at the 5 'and 3' ends of the edges released by the digestion prevents the spontaneous closure of the vector.
  • Ligation allows the digested 60C3 L-VL cDNA to be inserted into the digested and dephosphorylated pcDNA3® vector through T4 ligase (New England Biolabs Inc.).
  • the reaction is continued on a water bath at 16 ° C. for 16 hours in the following reaction medium: 5X ligation buffer solution (4 ⁇ l) (New England Biolabs Inc.), digested dephosphorylated vector 200 ng, T4 ligase (400 ⁇ ) (New England Biolabs Inc.), purified cDNA 170 ng (for a 1 kb insert).
  • the insert / vector molar ratio is 3/1.
  • Isolated colonies are sterilely deposited under a hood respectively in a tube containing the PCR reaction mixture: dNTP (Promega) 500 ⁇ M, Taq polymerase (Invitrogen Life Technologies) ⁇ L, PCR buffer solution (Invitrogen Life Technologies) 10 ⁇ L, cDNA (template) 1 ⁇ L, 1.5 mM MgC12 (Invitrogen Life Technologies), 3'-XhoI 60C3 L-VL primer and 5'-BamHI 60C3 500 ⁇ M primer.
  • the amplification was carried out in a MJ-research PTC 200 thermocycler under the following conditions: 5 minutes at 94 ° C., then 35 cycles at 30 ° C. for 30 seconds at 94 ° C., 45 seconds at 55 ° C. and 1 minute at 72 ° C. .
  • the size of the amplified PCR product is monitored by electrophoretic analysis on 1% agarose gel. Clones that have been correctly transformed are the only ones to give a PCR product of expected size.
  • a sterile toothpick is used which after collection from the colony is put in 5 mL of LB selective liquid medium containing 100 ⁇ g / mL of ampicillin (Sigma Chemicals Co) and 12.5 ⁇ g / mL of tetracycline (Sigma Chemicals Co) and incubated 16 hours at 37 ° C. The bacterial dilution is then used for carrying out a plasmid DNA mini-preparation using the QIAprep spin miniprep kit (QIAGEN) according to the supplier's recommendations. 3. Preparation of cDNA encoding the hu-C kappa constant region of a human monoclonal antibody P3Non2
  • the total RNA is extracted from 106 P3Non2 hybridoma cells in the exponential growth phase using the RNAbIe reagent (Eurobio, Courtaboeuf, France) according to the supplier's recommendations.
  • the total RNA concentration is determined by measuring the optical density at 260 nm.
  • the amplification of the hu-C kappa cDNA was obtained by reaction of RT-PCR from a total RNA extract of P3Non2 hybridoma cells.
  • the reaction mixture is as follows: Oligo d (T) 18 0.5 ⁇ g (New England Biolabs Inc. Beverly, MA, USA), 1 ⁇ g RNA, 0.5 mM dNTP (Promega, Madison, WI, USA), sterile water qs
  • PCR using the synthetic oligonucleotides are as follows: 5'-Xhol hu-C kappa: 5'-ag ctc gag ctg aaa cga act gtg gct gca c -3 '(sense primer) and 3'-XbaI hu-C kappa: 5'- ctt cta gat tta aca ctc tcc this gtt -3 '(antisense primer).
  • the synthetic primers used allow the introduction of silent mutations in the DNA sequence that do not cause any changes at the level of the amino acid sequence while allowing the appearance of the XbaI and XhoI restriction sites necessary for cloning into the vector.
  • the reaction medium has the following composition: dNTP (Promega) 500 ⁇ M,
  • Taq polymerase (Invitrogen Life Technologies) l ⁇ L, 10 ⁇ L PCR solution (Invitrogen Life Technologies), 1 ⁇ L cDNA (template), MgC12 (Invitrogen Life)
  • the amplification was carried out in a MJ-research thermocycler PTC 200 (Peltier Thermal Cycler) according to the following conditions: 5 minutes at 94 ° C., then 35 cycles following 30 seconds at 94 ° C., 45 seconds at 55 ° C. and 1 minute at 72 ° C.
  • the hu-C kappa cDNA is purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations.
  • the restriction enzymes, the reaction buffer solutions and the BSA solution are from New England Biolabs Inc.
  • the reaction is continued for 3 hours in a water bath at 37 ° C.
  • the digested vector and insert are purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations.
  • the vector is then dephosphorylated by CIP (New Englan Biolabs Inc.) for 1 hour at 37 ° C.
  • the composition of the reaction medium is as follows: NEB3 buffer 1OX (5 ⁇ L), vector (1 ⁇ g), CIP (1 ⁇ L).
  • Isolated resistant colonies are sterilely deposited under a hood in a tube containing the PCR reaction mixture: dNTP (Promega) 500 ⁇ M, Taq polymerase (Invitrogen Life Technologies) ⁇ L, PCR buffer solution (Invitrogen Life Technologies) 10 ⁇ L, cDNA (template) 1 ⁇ L, 1.5 mM MgC12 (Invitrogen Life Technologies), 3'-XbaI hu-C kappa primer and 5'-XhoI hu-C kappa 500 ⁇ M primer.
  • the amplification was carried out in a MJ-research PTC 200 thermocycler under the following conditions: 5 minutes at 94 ° C., then 35 cycles at 30 ° C.
  • the size of the amplified PCR product is monitored by electrophoretic analysis on 1% agarose gel. Clones that have been correctly transformed are the only ones to give a PCR product of expected size.
  • the pcDNA3® hu-C kappa vector was prepared from the pcDNA3® KM60C3-L vector by digestion using BamHI and XhoI restriction enzymes.
  • the composition of the reaction medium is as follows: NEB2 buffer 10X (5 ⁇ L), 100X BSA (0.5 ⁇ L), vector (1 ⁇ g), BamHI restriction enzyme (10U), Xhol restriction enzyme (10U).
  • the restriction enzymes, the reaction buffer solutions and the BSA solution are from New England Biolabs Inc.
  • the reaction is continued for 3 hours in a water bath at 37 ° C.
  • the digested vector is purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations.
  • the vector is then dephosphorylated by CIP (New England Biolabs Inc.) for 1 hour at 37 ° C.
  • the composition of the reaction medium is as follows: NEB3 buffer 1OX (5 ⁇ L), vector (1 ⁇ g), CIP (1 ⁇ L).
  • the total RNA is extracted from 106 hybridoma cells 8B6 in exponential growth phase with the reagent RNAbIe (Eurobio, Courtaboeuf, France) according to the supplier's recommendations.
  • the total RNA concentration is determined by measuring the optical density at 260 nm.
  • a volume of 2.5 ⁇ L of the diluted product was used for gene amplification.
  • the specific antisense primer of the 8B6 VL cDNA used is as follows: 3'-mu C kappa 5'-gtt cat act cgt this acg tga ggg -3 'which hybridizes to the cDNA coding the constant domain C-kappa mu of the light chain of kappa-type mouse antibodies.
  • the amplification was performed by incubating the reaction mixture in a Perkin Elmer Thermal Cycler 480 (Perkin Elmer Wellesley, MA, USA) thermocycler under the following conditions: 5 cycles (94 ° C for 5 seconds, 72 °) C for 3 minutes), followed by 5 cycles (94 ° C for 5 seconds then 70 0 C for 10 seconds followed by 3 minutes at 72 ° C) and 25 cycles (94 ° C for 5 seconds followed by 69 ° C for 10 seconds and 3 minutes at 72 ° C).
  • the RACE-PCR reaction product was analyzed by 1% agarose gel electrophoresis (Q.
  • Amplification of the 8B6 L-VL cDNA was obtained by reaction of RT-PCR from a total RNA extract of 60C3 hybridoma cells.
  • the reaction mixture is as follows: Oligo d (T) 18 0.5 ⁇ g (New England Biolabs Inc. Beverly, MA, USA), 1 ⁇ g RNA, 0.5 mM dNTP (Promega, Madison, WI, USA), sterile water qs 12 ⁇ L. This mixture is incubated for 5 minutes at 65 ° C. (dry water bath) and then 2 minutes at 4 ° C. (melting ice) to denature the RNA.
  • the 8B6 L-VL cDNA copies are obtained by gene amplification by means of a PCR reaction using the synthetic oligonucleotides: 5'-BamHI 8B6 L-VL: 5'-aag gga tcc gcc ace atg aag ttg ce gtt -3 '(sense primer) and 3'- Xhol 8B6 L-VL: 5'-ceg ttt tat etc. gag ctt ggt ecc -3' (antisense primer)
  • the synthetic primers used allow the introduction of silent mutations in the DNA sequence which do not cause any amino acid sequence changes while allowing the appearance of the BamHI and XhoI restriction sites necessary for cloning in the region. vector.
  • the reaction medium has the following composition: dNTP (Promega) 500 ⁇ M, Taq polymerase (Invitrogen Life Technologies) l ⁇ L, PCR buffer solution (Invitrogen Life Technologies) 10 ⁇ L, 1 ⁇ L cDNA (template), 1.5 ⁇ M MgCl2 (Invitrogen Life Technologies), 3'-XhoI 8B6 L-VL primer and 5'-BamHI 8B6 L-VL 500 ⁇ M primer.
  • the amplification was carried out in a MJ-research thermocycler PTC 200 (Peltier Thermal Cycler) according to the following conditions: 5 minutes at 94 ° C., then 35 cycles following 30 seconds at 94 ° C., 45 seconds at 55 ° C. and 1 minute at 72 ° C.
  • cDNA 8B6 L-VL is purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations.
  • the 8B6 L-VL cDNA is digested using the BamHI and XhoI restriction enzymes.
  • the composition of the reaction medium is as follows: 10X NEB2 buffer (5 ⁇ L), 100X BSA (0.5 ⁇ L), 8B6 L-VL cDNA (1 ⁇ g), BamHI restriction enzyme (10U), Xhol restriction enzyme (10 ⁇ L) ).
  • the restriction enzymes, the reaction buffer solutions and the BSA solution are from New England Biolabs Inc.
  • the reaction is continued for 3 hours in a water bath at 37 ° C.
  • the digested insert is purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations.
  • Ligation allows the digested 8B6 L-VL cDNA to be inserted into the digested and dephosphorylated pcDNA3® hu-C kappa vector using T4 ligase (New England Biolabs Inc.).
  • the reaction is continued on a water bath at 16 ° C. for 16 hours in the following reaction medium: 5X ligation buffer solution (4 ⁇ l) (New England Biolabs Inc.), pcDNA3® hu-C kappa vector digested and dephosphorylated 200 ng, T4 ligase (400U) (New England Biolabs Inc.), purified 8B6 L-VL cDNA 170 ng (for a 1 kb insert). The insert / vector molar ratio is 3/1.
  • the reaction product of ligation is used for transformation of E. coli XL1 blue competent bacteria (Stratagene).
  • the isolated resistant colonies are sterilely deposited under a hood in a tube containing the PCR reaction mixture: dNTP (Promega) 500 ⁇ M, Taq polymerase (Invitrogen Life Technologies) ⁇ L, PCR buffer solution (Invitrogen Life Technologies) 10 ⁇ L, cDNA (template) 1 ⁇ L, 1.5 mM Invitrogen Life Technologies (MgC12), 3'-XhoI 8B6 L-VL primer and 5'-BamHI 8B6 L-VL 500 ⁇ M primer.
  • the amplification was carried out in a MJ-research PTC 200 thermocycler under the following conditions: 5 minutes at 94 ° C., then 35 cycles at 30 ° C.
  • the size of the amplified PCR product is monitored by electrophoretic analysis on 1% agarose gel. Clones that have been correctly transformed are the only ones to give a PCR product of expected size.
  • the gene amplification of the cDNA coding for the variable region 60C3 L-VH was obtained from the messenger RNAs by RACE-PCR so as to obtain the nucleotide sequence coding for the signal peptide (L) associated with its variable region (VL). .
  • This amplification was performed using the SMARTTM RACE cDNA kit
  • the specific antisense primer of the 60C3 VH cDNA used is the following: 3 '- 60C3 L-VH 5'-tgc AGA gac agt gag cag agag agt ccc -3' (antisense primer) which hybridizes to the cDNA encoding the mu C-kappa constant domain of the kappa-type mouse antibody light chain.
  • the amplification was carried out by incubating the reaction mixture in a Perkin-Elmer (PE) Thermal Cycler 480 thermal cycler (Perkin Elmer Wellesley, MA, USA) under the following conditions: 5 cycles (94 ° C for 5 seconds, 72 ° C for 3 minutes), followed by 5 cycles (94 ° C for 5 seconds then 70 ° C for 10 seconds followed by 3 minutes at 72 ° C) and 25 cycles (94 ° C for 5 seconds followed by 69 ° C for 10 seconds and 3 minutes at 72 ° C).
  • PE Perkin-Elmer
  • MA Perkin Elmer
  • Amplification of the 60C3 L-VH cDNA was obtained by reaction of RT-PCR from a total RNA extract of 60C3 hybridoma cells.
  • the reaction mixture is as follows: Oligo d (T) 18 0.5 ⁇ g (New England Biolabs Inc. Beverly, MA, USA), 1 ⁇ g RNA, 0.5 mM dNTP (Promega, Madison, WI, USA), sterile water qs 12 ⁇ L. This mixture is incubated for 5 minutes at 65 ° C. (dry water bath) and then 2 minutes at 4 ° C. (melting ice) to denature the RNA.
  • the copies of 60C3 L-VH cDNA are obtained by gene amplification through a PCR reaction using the synthetic oligonucleotides are as follows: 5'-BamHI 60C3 L-VH: 5'-cag gat ccg aac aca ctg act cta ace atg g - 3 '(sense primer) and 3'-Nhel 60C3 L-VH: 5'-1 gct age tgc aga gac agt gag cag agt -3' (antisense primer).
  • the synthetic primers used allow the introduction of silent mutations in the DNA sequence which do not cause any amino acid sequence changes while allowing the appearance of the BamHI and XhoI restriction sites necessary for cloning in the region. vector.
  • the reaction medium has the following composition: dNTP (Promega) 500 ⁇ M, Taq polymerase (Invitrogen Life Technologies) l ⁇ L, PCR buffer solution (Invitrogen Life Technologies) 10 ⁇ L, cDNA (matrix) 1 ⁇ L, MgC12 (Invitrogen Life Technologies) 1.5 mM, 3'-Nhel 60C3 L-VH primer and 5'-BamHI 60C3 L-VH 500 ⁇ M primer.
  • the amplification was carried out in a MJ-research thermocycler PTC 200 (Peltier Thermal Cycler) according to the following conditions: 5 minutes at 94 ° C., then 35 cycles following 30 seconds at 94 ° C., 45 seconds at 55 ° C. and 1 minute at 72 ° C.
  • cDNA 60C3 L-VH is purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations.
  • the coding sequence for the 60C3 L-VH region into the pBluescript II SK (+) vector, the latter is digested with the restriction enzyme EcoRV 'New England Biolabs Inc.' which causes a blunt cut.
  • the treatment of the plasmid thus linearized with Taq polymerase in the presence of dTTP makes it possible to add a thymidine to the 3 'end of the vector and prevents self-ligating.
  • the Taq DNA polymerase used to obtain the 60C3 L-VH cDNA has a 5 '-3' exonuclease activity adding a terminal adenine at each 3 'end of the PCR products that can be directly cloned into such a vector.
  • the yield of the ligation reaction is greatly improved due to the complementarity A / T with that of the free-end ligation reaction.
  • the ligation reaction product is used for transformation of E. coli XL1 blue competent bacteria (Stratagene).
  • the amplification was carried out in a thermocycler MJ-research PTC 200 under the following conditions: 5 minutes at 94 ° C., then 35 cycles following 30 seconds at 94 ° C, 45 seconds at 55 ° C and 1 minute at 72 ° C.
  • the size of the amplified PCR product is monitored by electrophoretic analysis on 1% agarose gel. Clones that have been correctly transformed are the only ones to give a PCR product of expected size.
  • the presence of the 60C3 L-VH insert in the sense orientation is confirmed by enzymatic digestion of the pBluescript II SK (+) 60C3 L-VH vector by the BamHI enzyme (New England Biolabs Inc.) according to the supplier's recommendations. Indeed, the cloning technique T does not impose orientation for the insert which can therefore be inserted in sense or antisense orientation.
  • the 60C3 L-VH insert is flanked by two BamHI restriction sites only if it is in the sense orientation. Thus, after digestion with the BamHI enzyme, the electrophoretic analysis makes it possible to distinguish and select a clone possessing the 60C3 L-VH cDNA in the sense orientation. 8. Preparation of the cDNA encoding the constant region of a human hu-C gamma 1 antibody
  • the total RNA is extracted from 106 LP1 hybridoma cells in the exponential growth phase using the reagent RNAbIe (Eurobio, Courtaboeuf, France) according to the supplier's recommendations.
  • the total RNA concentration is determined by measuring the optical density at 260 nm.
  • RNA amplification of the hu-C gamma 1 cDNA segment was performed from a total RNA extract of the LP1 hybridoma.
  • the reaction mixture is as follows: Oligo d (T) 18 0.5 ⁇ g (New England Biolabs Inc. Beverly, MA, USA), 1 ⁇ g RNA, 0.5 mM dNTP (Promega, Madison, WI, USA), sterile water qs 12 ⁇ L. This mixture is incubated for 5 minutes at 65 ° C. (dry water bath) and then 2 minutes at 4 ° C. (melting ice) to denature the RNA.
  • cDNA cDNA hu-C gamma 1 The copies of cDNA cDNA hu-C gamma 1 are obtained by gene amplification through a PCR reaction using synthetic oligonucleotides are as follows: 5'-Nhel hu-C gamma 1: 5'-ca gct agc ace aag ggc ## STR1 ## and 3'-Xbal hu-C gamma 1: 5'-agc etc. tec ctg tet ceg ggt aaa taa tet aga cg -3 '(antisense primer).
  • the synthetic primers used allow the introduction of silent mutations in the DNA sequence that do not cause any changes at the level of the amino acid sequence while allowing the appearance of the NheI and XbaI restriction sites required for cloning into the vector.
  • the reaction medium has the following composition: dNTP (Promega) 500 ⁇ M,
  • Taq polymerase (Invitrogen Life Technologies) l ⁇ L, 10 ⁇ L PCR solution (Invitrogen Life Technologies), 1 ⁇ L cDNA (template), MgC12 (Invitrogen Life)
  • the amplification was carried out in a MJ-research thermocycler PTC 200 (Peltier Thermal Cycler) according to the following conditions: 5 minutes at 94 ° C., then 35 cycles following 30 seconds at 94 ° C., 45 seconds at 55 ° C. and 1 minute at 72 ° C.
  • the hu-C gamma 1 cDNA is purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations.
  • reaction medium 5X ligation buffer solution (4 ⁇ L) (New England Biolabs Inc.), dephosphorylated digested vector pBluescript II SK (+) 60C3 L -VH 200 ng, T4 ligase (400U) (New England Biolabs Inc.), purified hu-C gamma 1 cDNA 170 ng (for a 1 kb insert).
  • the insert / vector molar ratio is 3/1.
  • the ligation reaction product is used for transformation of E. coli XL1 blue competent bacteria (Stratagene).
  • the hu-C gamma insert 1 may be in the sense or antisense orientation. This is due to the sequence of restriction sites which does not impose orientation for the insert.
  • the orientation orientation of the insert is confirmed by a PCR reaction. Isolated colonies are sterilely deposited under a hood respectively in a tube containing the PCR reaction mixture: dNTP 500 ⁇ M (Promega), Taq polymerase (Invitrogen Life Technologies) l ⁇ L, PCR buffer solution (Invitrogen Life Technologies) 10 ⁇ L, MgC12 (Invitrogen Life Technologies) 1.5 mM, sense primer and 500 ⁇ M antisense primer.
  • the amplification was carried out in a MJ-research PTC 200 thermocycler under the following conditions: 5 minutes at 94 ° C., then 35 cycles at 30 ° C. for 30 seconds at 94 ° C., 45 seconds at 55 ° C. and 1 minute at 72 ° C. .
  • the primers used are: 5'-BamHI 60C3 L-VH: 5'-cag gat ccg aac aca ctg act cta ace atg g -3 '(sense primer) and 3'- Xbal hu- C gamma 1: 5' age etc tec ctg tet ccg ggt aaa taa tet aga cg -3 '(antisense primer).
  • the primers are found on the same strand of the sequence to be amplified and there is no amplification.
  • the size of the amplified PCR product is monitored by agarose gel electrophoretic analysis
  • Clones that have been correctly transformed are the only ones to give a PCR product of expected size.
  • PBluescript II SK (+) hu-C gamma vector was prepared from pBluescript II SK (+) KM60C3 H vector by digestion using restriction enzymes BamHI and XbaI.
  • the composition of the reaction medium is as follows: NEB2 buffer 1OX (5 ⁇ l), 100X BSA (0.5 ⁇ l), vector (1 ⁇ g), BamHI restriction enzyme (10U), XbaI restriction enzyme (10U).
  • the restriction enzymes, the reaction buffer solutions and the BSA solution are from New England Biolabs Inc.
  • the reaction is continued for 3 hours in a water bath at 37 ° C.
  • the vector is then purified thanks to the QIAquick Gel Extraction kit (Qiagen) according to the recommendations from the supplier.
  • the vector is then dephosphorylated by CIP (New England Biolabs Inc.) for 1 hour at 37 ° C.
  • the composition of the reaction medium is as follows: NEB3 buffer 1OX (5 ⁇ L), vector (1 ⁇ g), CIP (1 ⁇ L).
  • the total RNA is extracted from 106 hybridoma cells 8B6 in exponential growth phase with the reagent RNAbIe (Eurobio, Courtaboeuf, France) according to the supplier's recommendations.
  • the total RNA concentration is determined by measuring the optical density at 260 nm.
  • a volume of 2.5 ⁇ L of the diluted product was used for gene amplification.
  • the specific antisense primer of the 8B6 L-VH cDNA used is the following: 3'-mu C gamma 3 5'-tga tca act cag tct tgc tgc tgt ggt ggg -3 'which hybridises on the cDNA coding the constant mu domain C-gamma 3 of the heavy chain of gamma-type mouse 3 antibodies.
  • the amplification was carried out by incubation of the reaction mixture in a Perkin-Elmer (PE) Thermal Cycler 480 thermal cycler (Perkin Elmer Wellesley, MA, USA) under the following conditions: 5 cycles (94 ° C.
  • the RACE-PCR reaction product was analyzed by 1% agarose gel electrophoresis (Q.
  • Tris EDTA pH 8 migration buffer solution 40 mM Tris-base (Sigma Chemicals Co), 25 mM EDTA (Inerchim, Montlucon, France), 20 mM acetic acid (Carlo Erba Reagenti SpA, Rodano, MI, Italy)
  • the expected molecular weight products are then purified using the QIAquick Gel Extraction kit. (Qiagen) according to the supplier's recommendations
  • the determination of the nucleic acid sequence of the purified products obtained was carried out by GENOME express (Meylan, France) in order to verify the sequence of the cDNA encoding the 8B6 L-VH region.
  • Amplification of the 8B6 L-VH cDNA was obtained by reaction of RT-PCR from a total RNA extract of 8B6 hybridoma cells.
  • the reaction mixture is as follows: Oligo d (T) 18 ⁇ L (New England Biolabs Beverly Inc., MA, USA), 1 ⁇ g RNA, 0.5 mM dNTP (Promega, Madison, WI, USA), sterile water qsp 12 ⁇ L. This mixture is incubated for 5 minutes at 65 ° C. (dry water bath) and then 2 minutes at 4 ° C. (melting ice) to denature the RNA.
  • the 8B6 L-VH cDNA copies are obtained by gene amplification through a PCR reaction using the following synthetic oligonucleotides: 5'-BamHI 8B6 L-VH: 5'- (3g) and 3'-Nhel 8B6 L-VH: 5'-cgg ggt gct age tga gga tgt -3 '(antisense primer).
  • the primers used allow the introduction of silent mutations in the DNA sequence that do not cause any amino acid sequence changes while allowing the appearance of the BamHI and Nhel restriction sites necessary for cloning into the vector.
  • the reaction medium has the following composition: dNTP 500 ⁇ M (Promega),
  • Taq polymerase (Invitrogen Life Technologies) l ⁇ L, PCR buffer solution
  • Invitrogen Life Technologies 10 ⁇ L, 1 ⁇ L cDNA (template), 1.5mM Invitrogen Life Technologies (MgC12), 3'-Nhel 8B6 L-VH primer, and 5'-BamHI 8B6 L-primer.
  • amplification was carried out in a MJ-research thermocycler PTC 200 (Peltier Thermal Cycler) according to the following conditions: 5 minutes at 94 ° C., then 35 cycles following 30 seconds at 94 ° C., 45 seconds at 55 ° C. and 1 minute at 72 ° C.
  • cDNA 8B6 L-VH is purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations.
  • the composition of the reaction medium is as follows: 10X NEB2 buffer (5 ⁇ L), 100X BSA (0.5 ⁇ L), 8B6 L-VH cDNA (1 ⁇ g), BamHI restriction enzyme (10U), NheI restriction enzyme (10 ⁇ L) ).
  • the restriction enzymes, the reaction buffer solutions and the BSA solution are from New England Biolabs Inc.
  • the reaction is continued for 3 hours in a water bath at 37 ° C.
  • the digested insert is purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations. (F).
  • the ligation makes it possible to insert the digested 8B6 L-VH cDNA into the digested and dephosphorylated pGluescript II SK (+) hu-C gamma 1 vector.
  • the reaction is continued in a water bath at 16 ° C. for 16 hours in the following reaction medium: 5X ligation buffer solution (4 ⁇ l) (New England Biolabs Inc.), dephosphorylated digested vector pBluescript II SK (+) hu-C gamma 1,200 ng, T4 ligase (400U)
  • the ligation reaction product is used for the transformation of E. coli XL1 blue (Stratagene) complex bacteria.
  • the pBluescript II SK (+) KM8B6 H vector is digested with the BamHI and XbaI restriction enzymes to obtain the cDNA encoding the heavy chain of the artificially modified antibody.
  • the composition of the reaction medium is as follows: 10X NEB2 buffer (5 ⁇ L), 100X BSA (0.5 ⁇ L), vector (1 ⁇ g), restriction enzyme
  • the reaction is continued for 3 hours in a water bath at 37 ° C.
  • the released insert is purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations.
  • the reaction medium 100X BSA (0.5 ⁇ L), vector (1 ⁇ g), BamHI restriction enzyme (10U), XbaI restriction enzyme (10U).
  • the restriction enzymes, the reaction buffer solutions and the BSA solution are from New England Biolabs Inc.
  • the reaction is continued 3 hours in a water bath at 37 ° C.
  • the digested vector and insert are purified using the QIAquick Gel Extraction kit (Qiagen) according to the supplier's recommendations.
  • the vector is then dephosphorylated by CIP (New Englan Biolabs Inc.) for 1 hour at 37 ° C.
  • the composition of the reaction medium is as follows: NEB3 buffer 1OX (5 ⁇ L), vector (1 ⁇ g), CIP (1 ⁇ L).
  • the ligation reaction makes it possible to insert the cDNA encoding the heavy chain of the artificially modified antibody into the digested and dephosphorylated pcDNA3 / Hygro vector.
  • the ligation reaction was continued on a water bath at 16 ° C. for 16 hours in the following reaction medium: 5X ligation buffer solution (4 ⁇ L) (New England Biolabs Inc.), dephosphorylated digested vector pcDNA3 / Hygro 200 ng, T4 ligase (400U) (New England Biolabs Inc.), the cDNA encoding the artificially purified modified antibody heavy chain 170 ng (for a 1 kb insert).
  • the insert / vector molar ratio is 3/1.
  • the ligation reaction product is used for transformation of E. coli XL1 blue competent bacteria (Stratagene).
  • the isolated resistant colonies are sterilely deposited under a hood in a tube containing the PCR reaction mixture: 500 ⁇ M dNTP (Promega), Taq polymerase (Invitrogen Life Technologies) 1 ⁇ L, 10 ⁇ L Invitrogen Life Technologies PCR solution, MgC12 (Invitrogen Life). Technologies) 1.5 mM, 3 'primer and 5' 500 ⁇ M primer.
  • the amplification was carried out in a MJ-research PTC 200 thermocycler under the following conditions: 5 minutes at 94 ° C., then 35 cycles after 30 seconds at 94 ° C., 45 seconds at 55 ° C. and 1 minute at 72 ° C. .
  • the primers used are: 5'-BamHI 60C3 L-VH: 5'-ccg tcg gat ccg gcc ace atg aag ttg tgg -3 ' (sense primer) and 3'-Nhel 8B6 L-VH: 5'-cgg ggt gct agc tga gga tgt -3 '(antisense primer).
  • the size of the amplified PCR product is monitored by electrophoretic analysis on 1% agarose gel. Clones that have been correctly transformed are the only ones to give a PCR product of expected size.
  • a sterile toothpick is used which after removal from the colony is put into
  • CHO cells were used as host cells to express and secrete the artificially modified KM8B6 antibody. These cells were co-transfected with the plasmids pDNA3® KM8B6-L and pDNA3.1 / Hygro ⁇ KM8B6-H, respectively encoding the light chain (FIG. 4) and the heavy chain of the artificially modified antibody KM8B6 (FIG. 9). , using the PolyFect® kit (Qiagen GMBH, Hildn, Germany) according to the supplier's recommendations. Transformed cells were selected for resistance to geneticin® and hygromycin B® (Invitrogen Life Technologies, Carlsbad, CA, USA).
  • Resistant clones were obtained by a conventional limiting dilution cloning technique. They were then selected for their expression and secretion of the KM8B6 antibody by immunoassay ELISA. A stable transfectant clone secreting the KM8B6 antibody at 3.8 ⁇ g / mL was retained. 12. Purification of antibodies 8B6 and KM8B6
  • Ganglioside-specific mouse monoclonal antibodies were produced from culture supernatant of the corresponding hybridoma (Cerato et al, 1997). They were purified by protein A chromatography (GE Healthcare Amersham Bioscience AB, Uppsala, Sweden) according to a protocol developed by the inventor that limits the irreversible homophilic aggregation of mouse IgG3 (Chapman et al, 1990) .
  • the column is first equilibrated with a 0.1 M Tris-HCl pH 7.6 buffer. A 2 L sample of culture supernatant containing 10% equilibration buffer is deposited on the column at a flow rate of 1 mL / min. The column is then washed with 10 volumes of equilibration buffer.
  • the material bound to the protein A is eluted with a 0.1 M acid buffer 0.3 M NaCl pH 3 citrate and then collected in fractions immediately neutralized by the prior deposition in tubes of a 1M Tris-HCl pH 7 buffer. 6.
  • the progress of the purification is monitored by measuring the variation of the optical density of the fractions collected.
  • the fractions of interest are then dialysed in a solution of PBS pH 7.4 0.3M NaCl and sterilized by filtration on a 0.22 ⁇ m filter.
  • the amount of protein is determined by measuring the optical density at 280 nm and then the concentration of the mAb is adjusted to a concentration of less than or equal to 0.9 mg of AcN per ml so as to prevent the homophilic aggregation phenomenon.
  • mouse IgG3. Purified mAbs are stored at 4 ° C until use.
  • the artificially modified KM8B6 antibody was purified by protein A affinity chromatography from the CHO cell culture supernatant from a clone co-stably transfected with plasmids pcDNA3 KM8B6-L and pcDNA3 / Hygro KM8B6- H.
  • the purified antibodies are analyzed by SDS-PAGE analysis under denaturing reducing conditions.
  • the samples are taken up in a 0.5M Tris-HCl buffer solution pH 6.8, containing 10% of VWR glycerol, Fontenay sous Bois, France) and 5% B-mercaptoethanol (Promega). They are boiled for 5 minutes and then analyzed by SDS-PAGE electrophoresis according to the Laemmli technique.
  • the proteins are deposited at a rate of 3 ⁇ g in wells of a polyacrylamide gel 1.5 mm thick with upper and lower gel respectively concentrations of polyacrylamide of 4.5% and 12% (VWR).
  • the specificity of the antibodies was studied on IMR32 cells that express GD2-0-acetylated and on Neuro 2A cells that do not express GD2-0-acetylated.
  • the tumor cells cultured in vitro are detached from their culture support by treatment with trypsin. After three washings with PBS, the cells are distributed in Maxisorp flat-bottomed microtiter plates (Nunc A / S, Roskilde, Denmark) at the rate of 105 cells per well in a volume of 50 ⁇ l of PBS. The plates are then placed in an oven at 37 ° C overnight to allow evaporation of the PBS. Plates can be used directly or stored for several months at room temperature before use.
  • the plates are first incubated with stirring for one hour at room temperature with 200 ⁇ l of a pH 7.4 buffer solution containing 1% BSA in order to saturate the non-specific sites.
  • the plate is then incubated for 2 hours with stirring at ambient temperature with 100 ⁇ l of an antibody solution diluted in PBS buffer containing 0.1% BSA.
  • 100 ⁇ l of a solution of F (ab ') 2 of specific biotinylated antibodies 100 ⁇ l of a solution of F (ab ') 2 of specific biotinylated antibodies, either total immunoglobulins of mice or total human immunoglobulins (Jackson ImmunoResearch Europe LTD, Cambrideshire , UK) diluted 1/2500 in 0.1% PBS-BSA is deposited in each well.
  • the results obtained show that the KM8B6 antibody, like the 8B6 antibody, binds in a dose-dependent manner exclusively on the IMR32 cells.
  • the analysis was performed on a total ganglioside extract of EVIR32 cells.
  • the tissue gangliosides are extracted according to the technique described by Ariga et al. (1991).
  • the sample to be extracted is ground in ten volumes of a chloroform / methanol (C: M) mixture (1: 1, v / v) and left under mechanical stirring at room temperature overnight. After filtration, the residue is taken up in 2.5 volumes (C: M) (1: 1, v / v) and stirred again for six hours.
  • the mixture is then filtered and the two filtrates are evaporated under reduced pressure in a rotary evaporator.
  • the dry residue is then deposited on a column containing 2 mL of DEAE-Sephadex A-25 in acetate form (Sigma Chemicals Co).
  • the neutral lipids are removed with 15 ml of solvent A.
  • the gangliosides are then eluted with 15 ml of methanol containing 0.4M sodium acetate (Sigma Chemicals Co).
  • To the fraction obtained are added 30 ml of PBS pH 7.4 to be desalted on a Sep-Pak column (Waters Co., Milford, MA, USA) of hydrophobic gel Cl 8 according to the method of Mc Luer (1990).
  • the Cl 8 gel is first conditioned by two volumes of methanol column and then methanol / PBS mixture 1: 2 (v / v).
  • the extract to be desalted is then deposited on the column at a rate of 1 mL / min.
  • the hydrocarbon chains of gangliosides interact by hydrophobic bonds with the gel while salts and other non-hydrophobic molecules are removed by two column volumes of distilled water.
  • the glycosphingolipids are then eluted with a volume of methanol and then a volume of a chloroform / methanol mixture 2: 1 (v / v).
  • the gangliosides eluted from this column are concentrated in a new suitable volume of a mixture C / M 2: 1 (v / v) and stored at -20 ° C.
  • the gangliosides are then separated by thin layer chromatography. This method makes it possible to assess the profile of the total gangliosides.
  • the HPTLC plates consist of a 60 'silica gel Merck) covering an aluminum foil.
  • the deposited gangliosides migrate for 20 minutes at room temperature in a tank saturated with migration solvent.
  • This solvent (mobile phase) consists of a C / M / CaCl 2 mixture in water 0.22% (50:45:10, v / v / v). The more ganglioside is sialylated, the more polar it is and the less mobile it will be.
  • Plaque ganglioside detection is chemically performed by the resorcinol / HCl reagent (Svennerholm, 1963). This reagent reacts only with sialic acid, which is characteristic of gangliosides. After revelation with resorcinol, several colored bands are observed corresponding to ganglioside migration of the total extract. The identification of the separated gangliosides is carried out either with the aid of specific monoclonal antibodies, or by comparison with standard gangliosides used as markers having migrated at the same time as the ganglioside extract to be analyzed.
  • the plate After ganglioside migration on a thin layer of silica, the plate is immersed in a solution of poly (isobutyl) methacrylate 0.01% hexane for 1 minute and then dried in air. This makes it possible to laminate the plate and to prevent the gel from being detached from its support during the subsequent steps.
  • the protocol for the ELISA test on desiccated cells is then followed, except for revealing the binding of the antibody to ganglioside, which is carried out with a solution of 4-chloro-1-naphthol (Sigma Aldrich Chemie GmbH, Stenheim, germany). prepared extemporaneously at a rate of 1 mg of product dissolved in 1 ml of methanol, taken up in 20 ml of PBS and added with 30 ⁇ l of hydrogen peroxide 30 volumes.
  • Tumor specimens (glioblastoma, lung cancer neuroblastoma melanoma) were obtained from surgical excision.
  • Human peripheral nerve samples were taken from the distal sensory branch of the musculocutaneous nerve, the lateral branch of the peroneal nerve. These are diagnostic samples of peripheral neuropathy or for diseases of the anterior horn (normal sensory nerves) that have caused diagnostic problems.
  • a tissue volume not exceeding 0.5 cm3 is taken and frozen in isopentane cooled to the temperature of the liquid nitrogen. After 60 seconds, the sample is removed and transferred to a freezing tube previously cooled to -70 ° C. 10 ⁇ m sections of frozen tissue are made using a cryostat. The sections are collected on Suoerfrost GoId + glass slides (VWR).
  • the sections are air dried for 3 minutes and then fixed in acetone for 10 minutes and again air-dried. The sections are then stored at -20 ° C. until the immunohistochemical analysis is carried out. Immunostaining of the tissue samples was performed using the following primary mouse mAbs: GD2 specific primary antibody:
  • MAb 10B8 (IgG3, kappa) specific for GD2-specific mAb 8B6 (IgG3, kappa) of GD2-O-Ac
  • Primary antibody as negative control reagent DNP specific mAb MCA2063 (IgG3, kappa) (Serotec France, Cergy Saint Christophe, Rance).
  • the examined nerve samples all showed a staining of internins of myelinated fibers with the 10B8 antibody while the axons and fibroblasts showed no staining. This labeling is not found or is difficult to detect with the antibody 8B6. No labeling was detected with the MCA2063 antibody.
  • RPMI RPMI are incubated in the presence of 1.85 MBq of Na 2 51 CrC 2 for 1 hour at 37 ° C. The cells are then washed three times with RPMI and centrifugation before being resuspended in RPMI and incubated at 4 ° C for 30 minutes to measure the spontaneous release of the radioactive substance.
  • the cells are taken up in 5 ml of RPMI to adjust the concentration to 2x10 5 cells / ml.
  • Human blood was collected from volunteer donors on blood collection tubes containing heparin.
  • Peripheral leukocytes from the blood were separated from whole blood on a Ficoll® gradient by centrifugation (1800 xg for 30 minutes).
  • the cells obtained are centrifuged three times in RPMI at 1500 ⁇ g for washing and resuspended in RPMI in order to obtain a cell concentration of 5 ⁇ 10 6 cells / ml.
  • the anti-tumor activity of the 8B6 antibody was determined in the syngeneic subcutaneous transplant model of EL-4 mouse lymphoma, which expresses the GD2 antigen, in the C57BL / 6 strain mouse (Zhang H , Zhang S, Cheung NK, Ragupathi G, Livingston PO, Antibodies against GD2 ganglioside can eradicate syngeneic cancer micro metastases, Cancer Res 1998, 58: 2844-9). These EL4 cells also express the GD2-0-acetylated antigen. Twenty four mice bred in an animal approved Al level received a subcutaneous injection of 2OxIO 4 EL-4 cells suspended in PBS at the age of 12 weeks. Two lots of 12 mice were formed.
  • mice of Lot A received 70 ug of mAb 8B6 dissolved in 200 L of PBS buffer solution through iv, every 3 days from the first day after injection of EL4 cells until 21 th day.
  • the mice of batch B received, according to the same modalities, only 200 ⁇ l of PBS solution. Tumor volume was then measured every other day.
  • volume (mm) length (mm) x width (mm) x 0.5 (Zeng G, Li DD, Gao L, Birkle S, Bieberich E, Tokuda A, Yu RK.Alteration of ganglioside composition by stable transfection with antisense vectors against GD3-synthase gene expression Biochemistry 1999 38: 8762-9). Mice with a volume> 3,000 mm are sacrificed. The results obtained are shown in Figure 16. Lot B receiving the
  • PBS iv corresponds to the untreated control batch ( Figure 16, panel B). Tumors begin to be detectable 10 days after inoculation and then show exponential growth. Twenty days after inoculation, all mice except two have a tumor of more than 1000 mm 3 . All the mice were sacrificed before day 30 according to the rules of the animal experiment because their tumor exceeded 3000 mm. In Lot A mice, treated with the 8B6 antibody ( Figure 16, Panel A), tumor onset delay is observed. In addition, the tumor growth is slowed down in the mice that received this antibody. Twenty days after inoculation, none of the treated mice has a tumor of more than 1000 mm 3 . After 30 days, 58% of mice treated with 8B6 mAb survived while all untreated mice died. After 40 days 25% of treated mice were still alive and 50 th day, 8% of the mice are still alive and present no papables tumors and are considered cured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

L'invention concerne l'utilisation des anticorps monoclonaux ne reconnaissant que la forme O-acétylée du ganglioside GD2, ou fragment de cet anticorps pour le diagnostic et la thérapeutique de cancers dont les cellules expriment le GD2 O-acétylé, ledit anticorps ou ledit fragment reconnaissant les molécules de GD2 O-acétylé exprimées par les cellules tumorales et ne reconnaissant pas les molécules de GD2 exprimées à la surface des nerfs périphériques pur augmenter la spécificité du diagnostic et diminuer la toxicité des traitements. L'invention concerne également les anticorps modifiés articifiellement utilisés avantageusement pour le traitement et le diagnostic de cancers dont les cellules expriment le GD2 O-acétylé.

Description

Utilisation d'anticorps monoclonaux spécifiques de la forme O-acétylée du ganglioside GD2 dans le traitement de certains cancers.
Domaine de l'invention La présente invention vise à fournir de nouveaux moyens pour le diagnostic et la thérapie des cancers dont les cellules expriment la forme O-acétylée du ganglioside GD2. Ces moyens incluent essentiellement l'utilisation d'anticorps monoclonaux recombinants ou des fragments de celui-ci reconnaissant le GD2 O-acétylé -et qui ne reconnaissant pas les cellules saines et les fibres nerveuses du système nerveux périphérique. Ces nouveaux moyens seront plus spécifiques des cellules cancéreuses et réduiront la toxicité des traitements par rapport aux anticorps et dérivés utilisés précédemment pour traiter ces cancers. Art antérieur
Les cellules tumorales possèdent à leur surface un certain nombre de déterminants antigéniques. Parmi ces déterminants antigéniques, certains sont des antigènes spécifiques de la tumeur. Ces antigènes tumoraux sont exprimés principalement voire exclusivement à la surface de cellules cancéreuses.
Ces antigènes tumoraux humains induisent la production, par le système immunitaire d'espèces différentes comme la souris, des molécules appelées anticorps qui ont la particularité de reconnaître précisément les molécules d'antigène à l'origine de leur production.
Cette reconnaissance spécifique entre un anticorps monoclonal et son antigène tumoral humain présente un intérêt majeur pour l'immunociblage des cancers. En effet, elle permet de concentrer au niveau des tissus ou des organes malades, des agents de détection dans un but de diagnostic ou des agents toxiques dans un but de traitement des tumeurs. Ces agents de détection ou toxiques peuvent être des composés chimiques ou biologiques, éventuellement radioactifs, attachés artificiellement aux anticorps avant ou après leur administration. Ces agents peuvent également être des composés biologiques naturellement présents chez le patient (composants du complément, chemokines, cytokines, cellules cytotoxiques, par exemple lymphocytes T ou NK) recrutées vers les cellules tumorales par les anticorps. Les gangliosides sont des constituants de la membrane cellulaire et certains d'entre eux ont été caractérisés comme étant des antigènes tumoraux. Il a pu être démontré que le ganglioside GD2 est fortement exprimé dans les cancers humains d'origine neuroectodermique tels que notamment les mélanomes, les glioblastomes, les carcinomes pulmonaires à petite cellule et les neuroblastomes. La liste des pathologies tumorales ici citées n'est pas exhaustive. Les rétinoblastomes et les ostéosarcomes expriment également le ganglioside GD2. Certains cancers de l'ovaire expriment également le ganglioside GD2. Le ganglioside GD2 est un glycolipide acide formé par un céramide associé un oligosaccharide dont la séquence est glucose galactose N-acétyl-galactosamine. À la molécule de galactose se trouvent rattachées deux molécules d'acide sialique. L'acide sialique terminal peut être modifié par l'ajout d'un groupement O-acétyl pour former le GD2 O-acétylé. À l'aide d'anticorps spécifiques du GD2 qui reconnaissent également sa forme O-acétylée, il a pu être montré que certains types de cancers, notamment les tumeurs d'origine neuroectodermique expriment le GD2 et sa forme O-acétylée, le GD2 O-acétylé, en proportion variable.
Plusieurs anticorps monoclonaux anti-GD2 produits chez la souris ont été décrits. L'utilisation thérapeutique des anticorps monoclonaux anti-GD2, 14.G2a et 3F8, appartenant respectivement aux immunoglobulines de classe IgG2a et IgG3 de souris, a été testée dans des études cliniques. Ces études ont mis en avant plusieurs effets secondaires négatifs inhérents aux anticorps monoclonaux de souris. Un de ces effets négatifs est une réaction allergique ou anaphylactique qui peut être attribuée à une réponse immunitaire développée par l'homme contre les anticorps de souris. Afin de résoudre ce problème d'immunogénicité des anticorps monoclonaux produits chez la souris, il est possible grâce à des techniques d'ingénierie génétique de réaliser des anticorps chimériques. On appelle anticorps "chimérique" un anticorps modifié génétiquement dans lequel une partie plus ou moins importante de l'information génétique codant l'anticorps de souris par la partie correspondante d'un anticorps humain. Généralement, les régions variables des chaînes lourdes et légères de l'anticorps murins (VH et VL) sont conservées, tandis que le reste de la molécule d'anticorps provient d'un anticorps humain. Ces anticorps chimériques conservent la reconnaissance spécifique de l'antigène tumoral inhérente à l'anticorps monoclonal de souris tout en présentant les propriétés physiques et effectrices inhérentes à l'anticorps humain. Ainsi, des études cliniques ont démontré que les anticorps chimériques ch.l4G2a et ch.14.18 présentent une immunogénicité réduite et une demi -vie sérique accrue en comparaison à l'anticorps monoclonal de souris dont ils dérivent. De plus il a été mis en évidence que les anticorps monoclonaux anti-GD2 de souris présentent une capacité accrue à recruter les cellules effectrices humaines lorsqu'ils sont chimérisés, alors que les anticorps de souris n'ont qu'une capacité limitée, à recruter ces cellules effectrices humaines.
L'identification des anticorps murins aux anticorps humains peut être poussée plus loin en ne conservant de l'anticorps murin que les acides aminés des régions dites CDR ou "complementarity determining régions" qui constituent le site de liaison de l'antigène et déterminent donc la spécificité de l'anticorps. On appelle anticorps "humanisé" un anticorps génétiquement modifié dans lequel on a conservé seulement les acides aminés des CDR, plus éventuellement quelques acides aminés proches de ces régions CDR de l'anticorps de souris de départ, et dans lequel le reste de la molécule provient d'un anticorps humain. Inconvénients de l'art antérieur
Une utilisation thérapeutique ou diagnostique in vivo des anticorps monoclonaux nécessite que ceux-ci réunissent des qualités particulières de spécificité, d'affinité et de non toxicité. Or les études cliniques menées sur les anticorps monoclonaux et chimériques anti-GD2 mettent en avant un effet secondaire négatif majeur, non résolu par la chimérisation ou l'humanisation et qui est la neurotoxicité des anticorps anti-GD2. En effet, les patients présentant un cancer d'origine neuroectodermique auxquels ont été administrés des anticorps anti-GD2 ont présenté des douleurs au cours de l'administration des anticorps et certains de ces patients ont développé une neuropathie du système nerveux périphérique. Ces effets s'expliquent par la présence de gangliosides GD2 à la surface des cellules fibres nerveuses du système périphérique. On comprend alors que cette toxicité nerveuse inhérente à l'utilisation des anticorps anti-GD2 a limité le développement clinique de l'immunothérapie utilisant ces anticorps. Pourtant le grand nombre de cibles antigéniques GD2 reste un facteur d'intérêt majeur pour l'immunociblage des cancers d'origine neuroectodermique.
Une approche qui permettrait de résoudre le problème de toxicité nerveuse serait d'utiliser un anticorps reconnaissant un antigène tumoral associé aux cancers d'origine neuroectodermique différent du ganglioside GD2 et qui ne reconnaîtrait pas les fibres nerveuses du système périphérique.
Il y quelques années, les inventeurs ont mené une série d'immunisations de souris afin de produire des anticorps anti-GD2. Plusieurs anticorps anti-GD2 ont ainsi pu être isolé et leur caractérisation a conduit notamment à l'identification d'un anticorps de la classe des IgG3 de souris appelé 8B6 reconnaissant spécifiquement une molécule de ganglioside GD2 légèrement modifiée par la présence d'un groupement O-acétyle. Ces travaux, et notamment cet anticorps 8B6 sont décrits dans l'article « Variable Région Gène Segments of Nine Monoclonal Antibodies Spécifie to Disialoganglisosides (GD2,GD3) and their O-Actylated Derivatives », Cerato et al., Hybridoma Volume 16, Number 4, 1997,307-316, ici incorporé par référence.
La structure de cet anticorps a été étudiée, mais son développement n'a pas été poursuivi. En effet, aucun intérêt particulier de ce nouvel anticorps par rapport aux anticorps anti-GD2 connus n'apparaissait alors. Contrairement à la forme non acétylée du GD2, la distribution tissulaire chez l'homme du GD2 O-acétylé reste très peu documentée en raison de l'absence de méthodes de détection sensibles comme les méthodes immunologiques reposant sur l'utilisation d'anticorps monoclonaux spécifique de la forme acétylée du GD2. Il était donc présagé que l'utilisation clinique de ce nouvel anticorps présenterait probablement le même problème de neurotoxicité que l'utilisation des anticorps monoclonaux anti-GD2. De plus aucune activité cytotoxique de l'anticorps 8B6 n'a été mise en évidence et les anticorps IgG3 ne sont pas de manipulation aisée du fait de leur tendance à s'agglutiner Objectifs de l'invention
Les anticorps monoclonaux spécifiques du ganglioside GD2-0-acétylé qui ne reconnaissent pas le ganglioside GD2, pourraient présenter l'avantage de ne pas reconnaître les fibres nerveuses du système périphérique et donc ne pas être à l'origine d'une toxicité nerveuse. De tels anticorps pourraient donc présenter un avantage majeur dans l'immunociblage de certains types de cancers comme les cancers humains d'origine neuroectodermique qui expriment le ganglioside GD2 sous sa forme O-acétylé par rapport aux anticorps monoclonaux anti-GD2.
De tels anticorps pourront être obtenus par une variété de techniques connues de l'homme de l'art. Une partie de ces techniques commencent par l'immunisation d'animaux, notamment de rongeurs et parmi eux les souris, rats ou hamsters, les lagomorphes et notamment les lapins, les camélidés, et parmi eux les lamas. L'immunogène, préparation contenant l'antigène contre lequel on veut obtenir des anticorps, peut être soit le glycolipide lui-même, purifié ou contenu dans un mélange brut ou partiellement purifié, soit le glycolipide ou une de ses parties, notamment la partie glycosylée hydrophile, éventuellement couplé de façon covalente ou non à des protéines ou des lipides servant de "carrier" pour stimuler la réponse immunitaire. Dans un autre procédé d'immunisation, l'immunogène peut être préparé à partir de cellules exprimant l'antigène, obtenues par culture cellulaire de lignées de cellules tumorales ou de cellules primaires obtenues à partir de prélèvements tumoraux. Parmi les lignées utiles on peut citer notamment des lignées de cellules animales, comme le thymome murin EL-4, ou humaines, comme le neuroblastome humain IMR32, le glioblastome humain U87MG, le carcinome pulmonaire à petite cellule HCI-H82 et le mélanome humain M21. - Ces cellules peuvent alors être administrées entières, vivantes ou fixées, ou être fractionnées pour n'injecter par exemple qu'une fraction partiellement purifiée contenant les composants de la membrane cellulaire ou du cytoplasme.
Ces immunogènes pourront être administrés aux animaux par diverses voies, notamment sous-cutanée, intra-péritonéale ou intra-musculaire, seul ou en présence d'un adjuvant, notamment alum ou adjuvant de Freund. Les immunisations peuvent être répétées avec une fréquence pouvant aller de quelques jours à quelques mois.
Trois méthodes générales pourront conduire à l'obtention des anticorps utilisables dans des applications industrielles. La première consiste à prélever le sang des animaux immunisés et à extraire de celui-ci, par des procédés connus de l'homme de l'art, des fractions contenant l'anticorps plus ou moins purifié (sérum ou plasma, immunoglobulines totales). Les anticorps peuvent être encore purifiés par des techniques chromatographiques ou d'immunoadsorption. La deuxième méthode consiste à prélever des cellules capables de synthétiser les anticorps, et notamment des cellules spléniques ou de ganglions lymphatiques, et de les immortaliser, notamment par transformation virale ou par hybridation somatique selon des procédés connus de l'homme de l'art. Parmi les cellules immortalisées, le clonage permet de sélectionner des cellules produisant les anticorps d'intérêt et la culture cellulaire permettra d'isoler à partir des surnageants de culture ces anticorps et de les purifier en grandes quantités. Enfin la troisième méthode consiste à isoler le RNA de cellules capables de synthétiser des anticorps, notamment des cellules spléniques, de ganglions lymphatiques ou des lymphocytes périphériques prélevées à des animaux, immunisés ou non, voire d'êtres humains et de constituer des banques de cDNA à partir desquelles les séquences d'anticorps d'intérêt seront sélectionnées par criblage selon des méthodes connues de l'homme de l'art et notament par expression de cette banque à la surface d'un bactériophage appelé encore système d'expression du phage display. La construction de banques combinatoires de régions VH et VL humaines, exprimées à la surface de phages filamenteux ("phage display"), sous forme de fragments « simple chaîne » ("single chain Fv", scFv), liant une région VH et une région VL ou de fragments F(ab), constitués de la chaîne légère associée au segment peptidique VH-CHl, ce dernier correspondant au premier domaine de la région constante.
Les anticorps de la présente invention pourront être sélectionnés à partir des anticorps obtenus par l'une ou l'autre des méthodes décrites ci-dessus en ce qu'ils reconnaissent l'antigène GD2-O-acétylé et pas l'antigène GD2 non O-acétylé, propriété que l'on nommera spécificité requise. Cette sélection pourra être réalisée au cours du procédé d'isolement des anticorps, par exemple en ne propageant que les cellules produisant des anticorps possédant la spécificité requise. Alternativement, on pourra rechercher parmi des anticorps déjà isolés, ceux qui possèdent cette spécificité. À cette fin, une variété de méthodes peuvent être utilisées, notamment l'immunofluorescence indirecte sur cellules pour distinguer ceux des anticorps qui reconnaissent les cellules connues pour exprimer le GD2 O-acétylé, notamment IMR32, de ceux qui reconnaissent également des cellules exprimant le GD2 mais pas le GD2 O-acétylé, notamment Neuro 2A. On pourra également utiliser un test immuno-enzymatique ELISA sur des cellules dessiquées pour sélectionner les anticorps qui se fixent uniquement sur les cellules exprimant le GD2 O-acétylé et pas sur celles qui n'expriment que le GD2. On pourra aussi sélectionner les anticorps présentant la spécificité requise en utilisant la chromatographie couche mince sur silice pour séparer les composants glycolipidiques de cellules exprimant à la fois GD2 O-acétylé et GD2, notamment IMR32, en ne retenant que les anticorps qui marquent seulement la bande correspondant au GD2-0-acétylé. On pourra confirmer ce résultat en détruisant par traitement alcalin le GD2 O-acétylé dans l'extrait lipidique et en vérifiant que le marquage est bien aboli. Des exemples de mise en œuvre de ces techniques pour la confirmation de la spécificité des anticorps de la présente invention sont donnés dans la description détaillée de l'invention, ci-dessous. D'autres méthodes, visant au même résultat, pourront être mises au point par l'homme de l'art.
Les anticorps de la présente invention pourront être modifiés par une variété de techniques connues de l'homme de l'art pour les adapter à différentes applications. On pourra ainsi utiliser les méthodes connues de l'art antérieur pour produire des anticorps simple chaîne scFv ainsi qu'une variété de protéines de fusion conservant la capacité de lier l'antigène. On sait en particulier que l'on peut modifier entièrement les régions dites constantes des anticorps, par exemple pour échanger des régions constantes murines contre des régions constantes d'anticorps humains, sans perdre la reconnaissance de l'antigène. La construction d'un anticorps chimérique consiste à isoler l'ADN codant pour la région VH et la région VL d'un anticorps monoclonal de souris et à le lier à l'ADN codant les régions constantes H et L d'une immunoglobuline humaine. Une telle construction génétique permet de produire un anticorps hybride dont la partie constante, humaine, n'est pas ou très peu immunogène chez l'Homme (il s'agit en général de la région constante des IgGl humaines et de la région Ckappa humaine). On sait même conserver seulement les régions indispensables à la reconnaissance de l'antigène, régions dites hypervariables, régions déterminant la complémentarité ou encore CDR, et remplacer toutes les autres pour opérer ce que l'on appelle une "humanisation" de l'anticorps. L'ensemble de ces protéines sera désigné par le terme « anticorps modifiés artificiellement » pour faciliter la description. Certaines de ces protéines ont un intérêt particulier pour les anticorps de la présente invention. Par exemple, les anticorps modifiés artificiellement anti-GD2 O- acétylés qui conservent la reconnaissance du ganglioside GD2 O-acétylés sans reconnaître le ganglioside GD2 pourraient présenter un avantage majeur par rapport aux anticorps monoclonaux anti-GD2 O-acétyles de souris en ce qu'ils auraient des caractéristiques physiques et effectrices supérieures.
Les anticorps modifiés artificiellement spécifiques du GD2 O-acétylé devront avoir une affinité suffisante pour l'antigène correspondant de façon à éliminer au maximun la diffusion de cet anticorps, le cas échéant porteur d'une substance toxique ou thérapeutique dans les tissus ou des cellules sains. Dans le cadre de la présente invention, l'affinité pour le ganglioside GD2 devra être supérieure à 10~7 mole/litre. L'affinité de ces anticorps pourra être augmentée par des techniques connues de l'homme de l'art. Ainsi, l'expression de fragments d'anticorps à la surface de bactériophages constitue un outil précieux pour la recherche de mutants de haute affinité à partir d'un scFv donné. Il est ainsi possible de mimer la maturation d'affinité observée lors du développement de la réponse immunitaire. Les techniques de mutations aléatoires ou de mutations ciblées, suivies d'une sélection par des cycles répétés d'immuno-adsorption/élution ont été ainsi employées avec succès et ont permis d'obtenir des fragments d'anticorps ayant une affinité près de 10 fois supérieure à celle du fragment initial
Un objet particulier de la présente invention, qui ne doit pas limiter celle-ci à cet exemple, concerne les anticorps modifiés artificiellement préparés à partir de l'anticorps 8B6 dont on sait qu'il présente la spécificité requise, ainsi que les protéines recombinantes utilisant les séquences des régions déterminant la complémentarité définies SEQ ID NO: 3 à 8.
C'est également un objet de l'invention de proposer des modifications des anticorps présentant la spécificité requise afin de leur conférer des propriétés utiles pour le diagnostic ou la thérapeutique de certains cancers. Certaines de ces applications nécessitent l'injection des anticorps ou de leurs dérivés à des malades atteints de certaines pathologies cancéreuses. Dans ce cas, les dérivés dont la séquence se rapproche plus d'une séquence d'anticorps humain seront préférés car ils sont susceptibles de limiter la production par le patient traité d'anticorps contre la molécule injectée, augmentant en cela la tolérance et permettant une administration répétée. De tels dérivés sont par ailleurs susceptibles de favoriser la réponse anticorps contre des déterminants spécifiques particuliers à l'anticorps injecté, dits anticorps anti-idiotypes, qui ont été présentés comme possédant un intérêt thérapeutique.
Pour des applications thérapeutiques, les modifications préférées seront celles qui permettent d'obtenir une activité cyto toxique contre les cellules tumorales exprimant l'antigène cible, ici le GD2O-acétylé.
On sait que seules certaines classes d'immunoglobulines possèdent la propriété d'activer le complément ou d'induire une cytotoxicité à médiation cellulaire. À titre d'exemple, l'anticorps 8B6 reconnaît le GD2O-acétylé mais n'est pas capable d'induire cette cytotoxicité assez efficacement. C'est donc un autre objet de cette invention de proposer des anticorps reconnaissant le GD2 O-acétylé et possédant une activité cytotoxique. Ceci peut être obtenu notamment en remplaçant les régions constantes de l'anticorps par des régions constantes d'anticorps capables d'éliciter cette cytotoxicité et notamment des régions constantes d'immunoglobulines humaines de classe 1. Le pouvoir cytotoxique pourra alors être encore augmenté, notamment en produisant des anticorps glycosylés de façon particulière, et notamment peu fucosylés, par exemple en les faisant produire par des cellules spécialement sélectionnées ou transformées. Des mutations spécifiques, décrites dans la littérature pourront être également introduites dans la séquence de l'anticorps pour le même effet.
Une autre manière de réaliser des anticorps thérapeutiques selon la présente invention est d'associer à un dérivé d'anticorps présentant la spécificité requise un agent cytotoxique. Ledit agent cytotoxique pourra être un agent toxique chimique, des ARN antisens, et notamment un médicament antitumoral cytotoxique, parmi lesquels on peut citer les taxanes, les alcaloïdes de la pervenche et leurs dérivés, les anthracyclines, les agents alkylants, un agent toxique biologique, et notamment les toxines végétales ou bactériennes, parmi les quels on peut citer la ricine ou la toxine de pseudomonas, ou bien encore un isotope radioactif émettant des particules bêta, comme l'iode 131, Fyttrium 90, le lutétium 177, le rhénium 186 ou le cuivre 67, ou des électrons Auger, comme l'indium 111, ou encore des particules alpha, comme le bismuth 213, le bismuth 212 ou l'astate 211, ces exemples ne devant en aucun cas limiter la portée de l'invention. L'anticorps peut être également produit par des méthodes d'ingénierie moléculaire, connues de l'homme de l'art, sous la forme d'une protéine de fusion associée à une cytokine. Les cytokines utilisées sont essentiellement de la famille des interleukines comme l'interleukine-2 (IL-2), IL-4, IL-5, IL-6, IL-7, IL-IO, IL-12, IL-13, IL-14, IL-15, IL-16 et IL-18, des facteurs de croissance hématopéitique tel que le GM-CSF (granulocyte macrophage Colony Stimulating Factor) ou le G-CSF {granulocyte Colony Stimulating Factor), le Tumor Necrosis Factor (TNF), des chemokines. La protéine de fusion anticorps-cytokine obtenue possède les propriétés biologiques de la cytokine et la spécificité de l'anticorps dont elle dérive.
Les anticorps de la présente invention pourront également être appliqués avantageusement au diagnostic, que celui-ci soit pratiqué in vitro pour la détection de la présence de l'antigène GD2 O-acétylé dans des prélèvements de cellules ou de fluides biologiques suivant l'une quelconque des techniques connues de l'homme de l'art, ou bien encore pratiqué in vivo par administration d'un dérivé de l'anticorps modifié pour le rendre détectable par une des techniques d'imagerie médicale connues, à savoir scintigraphie ou tomographie d'émission de positons. Dans ce cas, le dérivé de l'anticorps sera associé à un isotope radioactif émetteur de photon gammas, comme l'iode 131, l'iode 123, l'indium 111, ou le technétium 99m pour l'imagerie scintigraphique ou la tomographie de simples photons, ou à un isotope émetteur de positons, comme le fluor 18, l'iode 124, l'yttrium 86, le cuivre 64, le scandium 44, pour la tomographie d'émission de positons, ces exemples ne devant encore une fois pas limiter le champ de l'invention.
Les anticorps de la présente invention pourront être associés à des composés toxiques ou radioactifs. Les produits toxiques sont couplés chimiquement, de façon covalente, aux anticorps par une variété de liaisons chimiques, parmi lesquelles on peut citer les liaisons esters, amides, disulfures ou thiooéthers. Les atomes radioactifs sont couplés soit directement par substitution électrophile (cas des isotopes de l'iode) ou nucléophile (cas du fluor 18) ou par l'intermédiaire d'un synthon radiomarqué réactif, et notamment le réactif de Bolton et Hunter pour les isotopes de l'iode ou les esters activés stannylés pour les isotopes de l'iode ou l'astate 211, ou bien encore à l'aide d'un agent chélatant quand il s'agit d'un métal radioactif. Dans ce dernier cas, l'homme de l'art sait choisir parmi les chélatants celui qui donnera avec le métal un complexe de bonne stabilité dans les fluides biologiques. Ainsi le DTPA pourra être utilisé avantageusement avec l'indium 111, mais le DOTA sera préférable pour un marquage avec l'yttrium 90.
Les anticorps de la présente invention pourront être utilisés dans des méthodes connues de l'homme de l'art dans lesquelles l'agent toxique ou détectable n'est pas lié directement à l'anticorps, mais au contraire lié à une molécule de faible moléculaire administrée dans une deuxième étape, après qu'un dérivé de l'anticorps capable de reconnaître in vivo cette petite molécule a été administré au patient. Dans ce cas le dérivé de l'anticorps est notamment un anticorps bispécifique ou un immunoconjugué ou une protéine de fusion entre un dérivé de l'anticorps et une avidine. Cette approche pourra être utilisée avantageusement avec les anticorps de la présente invention pour le diagnostic in vivo et le traitement des tumeurs.
L'anticorps de la présente invention et les « dérivés », « anticorps dérivés » ou « produits dérivés » pourront donc être avantageusement utilisés pour le diagnostic ou la thérapeutique de ces tumeurs. Parmi celles-ci on trouve les tumeurs d'origine neuroectodermique et notamment les mélanomes, les cancers du poumon à petites cellules, les gliomes et les neuroblastomes. Les produits de la présente invention pourront être appliqués avantageusement à la détection et au traitement de ces tumeurs, notamment lorsque celles-ci sont disséminées ou échappent aux traitements existants.
Résumé de l'invention
La présente invention décrit l'utilité d'anticorps dans l'immunociblage des cancers humains d'origine neuroectodermique tels que les mélanomes, les glioblastomes, les carcinomes pulmonaires à petite cellule et les neuroblastomes. Dans l'ensemble des différents aspects de l'invention décrit ci-dessus, il est particulièrement surprenant de constater qu'un anticorps monoclonal spécifique du GD2 O-acétylé ne se fixe pas sur les fibres nerveuses exprimant le GD2 alors qu'il reconnaissait les cellules tumorales exprimant le ganglioside GD2 et sa forme O- acétylée. De tels anticorps possèdent donc une spécificité restreinte aux cellules tumorales d'origine neuroectodermique, et ne reconnaissant pas les fibres nerveuses du système périphérique. La conséquence de cette spécificité accrue est une toxicité réduite dans les applications thérapeutiques résultant notamment de l'absence de fixation sur les tissus nerveux périphériques normaux qui est observée avec les anticorps reconnaissant le ganglioside GD2. La présente invention couvre donc l'utilisation de tels anticorps pour le diagnostic et la thérapeutique des cancers avec une spécificité accrue et une toxicité réduite par rapport aux anticorps qui reconnaissent le GD2.
Les anticorps de la présente invention ont une activité cytotoxique pour les cellules tumorales qu'ils reconnaissent, soit intrinsèquement (c'est une des raisons pour lesquelles on les chimérise ou humanise), soit parce qu'ils servent de vecteurs pour des agents toxiques, radioactifs notamment.
La présente invention couvre donc tout anticorps monoclonal chimérique ou humanisé ne reconnaissant que la forme O-acétylée du ganglioside GD2, ou fragment de cet anticorps, ledit anticorps ou ledit fragment reconnaissant les molécules de GD2 O-acétylé exprimées par des cellules tumorales et ne reconnaissant pas les molécules de GD2 exprimées à la surface des nerfs périphériques.
La présente invention couvre également les anticorps dont certains amino- acides ont été remplacés par d'autres en utilisant les techniques de génétique moléculaire connues de l'homme de l'art, notamment pour modifier les propriétés de l'anticorps original, en particulier pour diminuer son immunogénicité, ou pour augmenter son activité toxique ou encore pour accélérer ou ralentir son élimination après injection.
Avantageusement l'anticorps monoclonal modifié artificiellement ou fragment de celui-ci selon l'invention est caractérisé en ce qu'il est une IgG kappa d'affinité supérieure à 10~7 mole/litre pour le GD2-0-acétylé et d'affinité au moins dix fois plus faible pour le GD2 lui-même, ledit anticorps ou ledit fragment étant mono ou bi- spécifique.
Notamment, mais non exclusivement, l'invention couvre tout anticorps monoclonal modifié artificiellement ou fragment de celui-ci où les régions déterminant la complémentarité de la région variable de la chaîne H ont comme séquences d'aminoacides celles représentées dans SEQ ID NO :3, SEQ ID NO :4 et SEQ ID NO :5 et les régions déterminant la complémentarité de la région variable de la chaîne L ont comme séquences d'aminoacides celles représentées dans SEQ ID N0:6, SEQ ID N0:7 et SEQ ID N0:8.
Notamment, mais non exclusivement, l'invention couvre tout anticorps monoclonal modifié artificiellement ou fragment de celui-ci, dont la chaîne lourde est obtenue par la jonction entre l'ADNc codant la région variable de la chaîne lourde d'un anticorps non humain et l'ADNc codant la région constante d'une immunoglobuline humaine et dont la chaîne légère est obtenue par la jonction entre l'ADNc codant la région variable de la chaîne légère du même anticorps non humain et l'ADNc codant la région constante de la chaîne légère d'une Immunoglobuline humaine caractérisé en ce que ledit anticorps non humain est l'anticorps monoclonal de souris 8B6 et ledit anticorps modifié artificiellement est dirigé contre le ganglioside GD2 O-acétylé et ne reconnaît pas les fibres nerveuses du système périphérique.
Notamment, mais non exclusivement, l'invention couvre tout anticorps monoclonal modifié artificiellement ou fragment de celui-ci dont la région variable de la chaîne lourde possède la séquence déduite en acides aminés définie par SEQ ID
NO :1 et dont la région variable de la chaîne légère possède la séquence déduite en acides aminés définie par SEQ ID NO :2.
Préférentiellement, l'anticorps monoclonal modifié artificiellement ou fragment de celui-ci selon la revendication 5, est l'anticorps KM8B6 pouvant être obtenu à l'aide de la lignée cellulaire CHO ou un fragment de celui-ci.
L'invention couvre également toute molécule pharmaceutique dérivée de l'anticorps modifié artificiellement ou d'un fragment de celui-ci selon l'invention dans laquelle l'anticorps ou le fragment de celui-ci est couplé avec une molécule X, où X est une molécule toxique, un médicament, une pro-drogue, ou un deuxième anticorps quelle que soit sa spécificité.
Selon une variante, ladite molécule toxique est une molécule toxique chimique, biologique ou radioactive, ladite molécule étant destinée à détruire des cellules tumorales exprimant le ganglioside GD2-0-acétylé.
Préférentiellement lesdites cellules tumorales visées par les molécules pharmaceutiques selon l'invention sont des cellules de neuroblastome, de mélanome, de glioblastome ou de cancer pulmonaire à petites cellules. Préférentiellement les molécules pharmaceutiques selon l'invention sont mutées au niveau de leur région Fc par l'adjonction de sucres, modulant ainsi l'activation des cellules immunitaires et des molécules du système du complément. L'invention couvre également toute molécule pour le diagnostic des cancers montrant une expression du ganglioside GD2 O-acétylé à la surface des cellules tumorales, ladite molécule étant dérivée de l'anticorps modifié artificiellement ou d'un fragment de celui-ci selon l'invention, dans laquelle ledit anticorps ou ledit fragment est lié à un agent permettant la détection de l'anticorps ou dudit fragment par la fluorescence ou la radioactivité.
L'invention concerne donc toute utilisation d'un anticorps modifié artificiellement ou d'un fragment de celui-ci selon l'invention et/ou d'une molécule selon l'invention, pour la fabrication d'un médicament pour la thérapie d'un cancer dont les cellules expriment la forme O-acétylée du ganglioside GD2 ou pour la fabrication d'un produit pour le diagnostic d'un tel cancer.
La présente invention couvre également toute utilisation de l'anticorps monoclonal 8B6 (décrit dans l'article « Variable Région Gène Segments of Nine Monoclonal Antibodies Spécifie to Disialoganglisosides (GD2, GD3) and their O- Actylated Derivatives », Cerato et al., Hybridoma Volume 16, Number 4, 1997,307- 316) pour la fabrication d'une molécule pharmaceutique dans laquelle ledit anticorps est lié à un agent toxique chimique, biologique ou radioactif, ladite molécule étant destinée à détruire des cellules tumorales exprimant le ganglioside GD2-0-acétylé.
Notamment, mais non exclusivement, l'invention couvre une telle utilisation lorsque lesdites cellules sont des cellules de neuroblastome, de mélanome, de glioblastome ou de cancer pulmonaire à petites cellules.
Notamment, mais non exclusivement, l'invention couvre une telle utilisation lorsque ladite molécule thérapeutique est mutée au niveau de sa région Fc par l'adjonction de sucres, modulant ainsi l'activation des cellules immunitaires et des molécules du système du complément.
L'invention couvre également toute utilisation de l'anticorps monoclonal 8B6 pour la fabrication d'une molécule pour le diagnostic des cancers montrant une expression du ganglioside GD2-O-acétylé à la surface des cellules tumorales, ladite molécule étant dérivée dudit anticorps, dans laquelle ledit anticorps est lié à un agent permettant la détection de l'anticorps par la fluorescence ou la radioactivité.
L'invention couvre aussi toute séquence d'ADN codant pour l'anticorps modifié artificiellement selon l'invention ainsi que tout vecteur d'expression comprenant une telle séquence d'ADN liée de façon opérationnelle à un promoteur.
L'invention couvre aussi toute cellule, notamment animale, comprenant un tel vecteur d'expression, ainsi que tout transformant non humain qui produit l'anticorps modifié artificiellement selon l'invention.
Enfin, l'invention couvre tout procédé pour la production d'anticorps modifié artificiellement pour le ganglioside GD2-O-acétylé, ce procédé comprenant l'expression de la séquence d'ADN dans une cellule ou un transformant non humain dans des conditions appropriées et la récupération de l'anticorps.
Préférentiellement, la cellule ou le transformant est cultivé dans des conditions dans lesquelles l'anticorps s'accumule.
Brève description des figures
Fig. 1 décrit la construction du plasmide, pcDNA3®60C3 L-VL.
Fig. 2 décrit la construction du plasmide, pcDNA3®60C3 L. Fig. 3 décrit la construction du plasmide, pcDNA3® KM8B6L.
Fig.4 décrit la séquence nucléotidique et la séquence déduite en acides aminés de la chaîne légère de l'anticorps modifié artificiellement KM8B6.
Fig. 5 décrit la construction du plasmide, pBluescript® II SK (+) 60C3 L-VH.
Fig. 6 décrit la construction du plasmide, pBluescript® II SK (+) KM60C3-H. Fig. 7 décrit la construction du plasmide, pBluescript® II SK (+) KM8B6-H.
Fig. 8 décrit la construction du plasmide, pcDNA3.1/Hygro© (+) KM8B6-H.
Fig. 9 décrit la séquence nucléotidique et la séquence déduite en acides aminés de la chaîne lourde de l'anticorps modifié artificiellement KM8B6. Fig. 10 décrit l'analyse SDS-PAGE de l'anticorps modifié artificiellement anti-GD2- O-acétylé purifié, KM8B6. L'analyse a été réalisée dans des conditions réductrices (gauche) et non réductrices (droite). De gauche à droite, marqueur de poids moléculaire, KM8B6, IgG3 8B6 (conditions réductrices), marqueur de haut poids moléculaire, KM8B6, and IgG3 8B6 (conditions non réductrices).
Fig. 11 est un graphique qui décrit la réactivité de l'anticorps 8B6 et de l'anticorps KM8B6 sur des cellules IMR 32 and NeuroA, possédant ou non les antigènes GD2- O-acétylés respectivement, mesurée par immunofluorescence, avec en ordonnées le nombre de cellules détectées et en abscisse l'intensité de fluorescence. Le tracé bleu correspond à la réactivité du contrôle et le tracé rouge correspond à la réactivité des produits.
Fig. 12 est un graphique qui décrit la réactivité des anticorps 8B6 et KM8B6 analysée par test ELISA sur des cellules IMR 32 et NeuroA. Fig. 13 montre le profil d'immunocoloration obtenu avec l'anticorps KM8B6 de gangliosides de cerveau de rat séparés par chromatographie sur couche mince de silice. Lane A coloration au résorcinol des migrations des différents gangliosides de cerveau de rat.
Fig. 14 montre les résultats de l'analyse immuno-histochimique de cellules de neuroblatome et de fibres nerveuses humains. Fig. 15 montre les résultats de l'étude de toxicité (ADCC) Pourcentage d'activité ADCC de l'anticoprs modifié artificiellement KM8B6 et de l'AcM de souris 8B6 dont il dérive. * Anticorps Rituxan® anti-CD20 utilisé comme contrôle négatif. Fig. 16 montre les résultats de l'étude in vivo chez la souris de l'effet anti-tumoral de 1'AcM 8B6 contre le thymome murin EL4 qui exprime l'antigène GD2-O-acétylé.
Description détaillée de l'invention Production d'anticorps modifié artificiellement KM8B6
1. Préparation de l'ADNc codant la région variable L-VL de l'anticorps monoclonal de souris 60C3
(a). Extraction de l'ARN total de l'hybridome 60C3, producteur de l'anticorps monoclonal 60C3.
L'ARN total est extrait à partir de 106 cellules d'hybridome 60C3 en phase exponentielle de croissance grâce au réactif RNAbIe (Eurobio, Courtaboeuf, France) selon les recommandations du fournisseur. La concentration en ARN total est déterminée par mesure de la densité optique à 260 nm.
(b). Obtention de la séquence nucléotidique de l'ADNc 60C3 L-VL L'amplification génique de l'ADNc codant la région variable 60C3 L-VL a été obtenue à partir des ARN messagers par RACE-PCR de façon à obtenir la séquence nucléotidique codant le peptide signal (L) associé à sa région variable (VL). Cette amplification a été réalisée en utilisant le coffret SMARTTM RACE cDNA Amplification obtenu auprès de la société BD Biosciences (San José, CA, USA) selon les recommandations du fournisseur. La quantité d'ARN total utilisé pour la rétrotranscription est de lμg. Le produit de la réaction a été dilué dans lOOμL de solution tampon tricine EDTA fourni par le fournisseur. Un volume de 2,5μL du produit dilué a été utilisé pour l'amplification génique. L'amorce antisens spécifique de l'ADNc 60C3 VL utilisée est la suivante : 3'- 60C3 VL 5'- TTT CAG CTC CAG CTT GGT CCC AGC -3'. L'amplification a été réalisée par incubation du mélange réactionnel dans un thermocycleur Perkin-Elmer (PE) DNA thermal Cycler 480 (Perkin Elmer Wellesley, MA, USA) dans les conditions suivantes : 5 cycles (94°C pendant 5 secondes, 72°C pendant 3 minutes), suivi de 5 cycles (94°C pendant 5 secondes puis 700C pendant 10 secondes suivi de 3 minutes à 72°C) et de 25 cycles (94°C pendant 5 secondes suivi de 69°C pendant 10 secondes et 3 minutes à 72°C). Le produit de réaction de RACE-PCR est analysé par électrophorèse sur gel d'agarose 1% (Q. Biogene, Morgan Irvine, CA, USA) dans une solution tampon de migration de Tris EDTA pH 8 (40 mM Tris-base (Sigma Chemicals Co), 25 mM EDTA (Inerchim, Montluçon, France) , 20 mM acide acétique (Carlo Erba Reagenti SpA, Rodano, MI, Italie). Les produits de poids moléculaire attendu sont ensuite purifiés à l'aide du coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur. La détermination de la séquence en acide nucléique des produits obtenus purifiés a été réalisée par la société GENOME express (Meylan, France) afin de vérifier la séquence de l'ADNc codant la région 60C3 L-VL. La séquence correspondant au peptide signal associé à la région variable de la chaîne légère de l'anticorps 60C3 a été ainsi déterminée et des amorces dessinées pour permettre le clonage de l'ADNc 60C3 L-VL dans le vecteur d'expression.
(c). Amplification de l'ADNc 60C3 L-VL
L'amplification de l'ADNc 60C3 L-VL a été obtenue par réaction de RT-PCR à partir d'un extrait d'ARN total de cellules d'hybridome 60C3. Le mélange réactionnel est le suivant : Oligo d(T)18 0,5μg (New England Biolabs Inc. Beverly, MA, USA), ARN lμg, dNTP 0,5 mM (Promega, Madison, WI, USA), eau stérile qsp 12μL. Ce mélange est incubé 5 minutes à 65°C (bain marie sec) puis 2 minutes à 4°C (glace fondante) pour dénaturer l'ARN. Sont ensuite ajoutés au mélange réactionnel, 4μL de solution tampon 5X First-strand Buffer (Invitrogen Life Biotechnologies), 10 mM DTT (Invitrogen Life Biotechnologies), 160 U de Rnasine (Promega) et 800 U de transcriptase inverse (Invitrogen Life Biotechnologies). L'ensemble est incubé 1 heure à 37°C puis à 700C pendant 15 minutes afin d'arrêter la réaction. Les copies d'ADNc 60C3 L-VL sont obtenues par amplification génique grâce à une réaction de PCR utilisant les oligonucléotides de synthèse sont les suivantes : 5'- BamHI 60C3 L-VL : 5'- ag gga tcc aaa gac aaa atg gat -3' (amorce sens) et 3'- Xhol 60C3 L-VL : 5'- tt cag ctc gag ctt ggt ccc agc ace -3' (amorce anti-sens)
Les amorces de synthèse utilisées permettent l'introduction de mutations silencieuses dans la séquence d'ADN qui n'entraînent aucune modification au niveau de la séquence en acides aminés tout en permettant l'apparition des sites de restriction BamHI et Xhol nécessaires au clonage dans le vecteur.
Le milieu réactionnel a la composition suivante : dNTP (Promega) 500 μM,
Taq polymerase (Invitrogen Life Technologies) lμL, solution tampon de PCR
(Invitrogen Life Technologies) lOμL, ADNc (matrice) lμL, MgC12 (Invitrogen Life Technologies) 1,5 mM, amorce 3'- Xhol 60C3 L-VL et amorce 5'- BamHI 60C3
500μM.
L'amplification a été réalisée dans un thermocycleur MJ-research PTC 200 (Peltier Thermal Cycler) selon les conditions suivantes : 5 minutes à 94°C, puis 35 cycles suivants 30 secondes à 94°C, 45 secondes à 55°C et 1 minute à 72°C. Après vérification des produits de PCR par analyse électrophorétique sur gel d'agarose à 1%, le cDNA 60C3 L-VL est purifié à l'aide du coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur.
2. Construction d'un plasmide recombinant possédant l'ADNc 60C3 L-VL : pcDNA3® 60C3 L-VL
(a). Digestion du vecteur pcDNA3® et de l'ADNc 60C3 L-VL et déphosphorylation du vecteur digéré
La digestion par les enzymes de restriction permet d'obtenir un vecteur linéaire présentant des extrémités cohésives nécessaires pour l'insertion de l'ADNc d'intérêt. La digestion se fait dans les conditions suivantes : tampon NEB2 10X (5 μL), BSA 100X (0,5 μL), vecteur pcDNA3® ou cDNA 60C3 L-VL (1 μg), enzyme de restriction BamHI (10U), enzyme de restriction Xhol (10U). Les enzymes de restriction, les solutions tampons de réaction et la solution de BSA sont de New England Biolabs Inc. La réaction est poursuivie 3 heures au bain marie à 37°C. Le vecteur et l'insert digérés sont purifiés grâce au coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur. Le vecteur est ensuite déphosphorylé par la CIP (New Englan Biolabs Inc.) pendant 1 heure à 37°C. La composition du mélange réactionnel est la suivante : tampon NEB3 1OX (5 μL), vecteur (1 μg), CIP (lμL). Cette réaction permet d'augmenter le rendement de la ligature en diminuant le pourcentage d'autoligation du vecteur. En effet, le fait de supprimer les groupements phosphate aux extrémités 5' et 3' des bords libérés par la digestion empêche la fermeture spontanée du vecteur.
(b). Réaction de ligation
La ligation permet d'insérer l'ADNc 60C3 L-VL digéré dans le vecteur pcDNA3® digéré et déphosphorylé grâce à la T4 ligase (New England Biolabs Inc.). La réaction est poursuivie au bain marie à 16°C pendant 16 heures dans le millieu réactionnel suivant : solution tampon de ligature 5X (4 μL) (New England Biolabs Inc.), vecteur digéré déphosphorylé 200 ng, T4 ligase (400U) (New England Biolabs Inc.), ADNc purifié 170 ng (pour un insert de 1 kb). Le rapport molaire insert/vecteur est de 3/1.
(c). Transformation de bactéries compétentes E. coli XLl blue (Stratagene)
20μL de produit de la réaction de ligature est ajouté à lOOμL de suspension de bactéries compétentes. L'ensemble est incubé à 4°C pendant 30 minutes. Les bactéries sont alors soumises à un choc thermique de 2 minutes à 42°C, suivies de 2 minutes à 4°C. Un volume de 1 mL de milieu LB est alors ajouté et les bactéries sont incubées 1 heure à 37°C sous agitation (250 rpm). Les bactéries sont récupérées par centrifugation pendant 5 minutes à 4000 g à 4°C. Le culot bactérien est repris dans lOOμL de milieu LB avant d'être étalé sur une boîte de Pétri contenant le milieu 2XTY agar contenant lOOμg/mL d'ampicilline (Sigma Chemicals Co) et 12,5μg/mL de tétracycline (Sigma Chemicals Co). Les colonies résistantes apparaissent après une nuit d'incubation à 37°C.
(d). Vérification de la présence de l' insert 60C3 L-VL dans le vecteur pcDNA3® par réaction de PCR
Des colonies isolées sont déposées stérilement sous hotte respectivement dans un tube contenant le mélange réactionnel de PCR : dNTP (Promega) 500 μM, Taq polymerase (Invitrogen Life Technologies) lμL, solution tampon de PCR (Invitrogen Life Technologies) lOμL, ADNc (matrice) lμL, MgC12 (Invitrogen Life Technologies) 1,5 mM, amorce 3'- Xhol 60C3 L-VL et amorce 5'- BamHI 60C3 500μM.
L'amplification a été réalisée dans un thermocycleur MJ-research PTC 200 selon les conditions suivantes : 5 minutes à 94°C, puis 35 cycles suivants 30 secondes à 94°C, 45 secondes à 55°C et 1 minute à 72°C. La taille du produit PCR amplifié est contrôlée par analyse électrophorétique sur gel d'agarose 1%. Les clones qui ont été correctement transformés sont les seuls à donner un produit de PCR de taille attendue.
(e). Production du plasmide d'intérêt pcDNA3® 60C3 L-VL
On utilise un cure-dent stérile qui après prélèvement de la colonie est mis dans 5 mL de milieu liquide sélectif LB contenant lOOμg/mL d'ampicilline (Sigma Chemicals Co) et 12,5μg/mL de tétracycline (Sigma Chemicals Co) et incubé 16 heures à 37°C. La dilution bactérienne est alors utilisée pour la réalisation d'une minipréparation d'ADN plasmidique en utilisant le coffret QIAprep spin miniprep (QIAGEN) selon les recommandations du fournisseur. 3. Préparation de l'ADNc codant la région constante hu-C kappa d'un anticorps monoclonal humain P3Non2
(a). Extraction de l'ARN total de l'hybridome P3Non2, producteur de l'anticorps monoclonal P3Non2.
L' ARN total est extrait à partir de 106 cellules d'hybridome P3Non2 en phase exponentielle de croissance grâce au réactif RNAbIe (Eurobio, Courtaboeuf, France) selon les recommandations du fournisseur. La concentration en ARN total est déterminée par mesure de la densité optique à 260 nm.
(b). Amplification de l'ADNc hu-C kappa
L'amplification de l'ADNc hu-C kappa a été obtenue par réaction de RT-PCR à partir d'un extrait d'ARN total de cellules d'hybridome P3Non2. Le mélange réactionnel est le suivant : Oligo d(T)18 0,5μg (New England Biolabs Inc. Beverly, MA, USA), ARN lμg, dNTP 0,5 mM (Promega, Madison, WI, USA), eau stérile qsp
12μL. Ce mélange est incubé 5 minutes à 65°C (bain marie sec) puis 2 minutes à 4°C
(glace fondante) pour dénaturer l'ARN. Sont ensuite ajoutés au mélange réactionnel,
4μL de solution tampon 5X First-strand Buffer (Invitrogen Life Biotechnologies), 10 mM DTT (Invitrogen Life Biotechnologies), 160 U de Rnasine (Promega) et 800 U de transcriptase inverse (Invitrogen Life Biotechnologies). L'ensemble est incubé 1 heure à 37°C puis à 700C pendant 15 minutes afin d'arrêter la réaction. Les copies d'ADNc 60C3 L-VL sont obtenues par amplification génique grâce à une réaction de
PCR utilisant les oligonucléotides de synthèse sont les suivantes : 5'- Xhol hu-C kappa: 5'- ag ctc gag ctg aaa cga act gtg gct gca c -3' (amorce sens) et 3'-XbaI hu-C kappa : 5'- ctt cta gat tta aca ctc tcc cet gtt ga -3 ' (amorce anti-sens).
Les amorces de synthèse utilisées permettent l'introduction de mutations silencieuses dans la séquence d'ADN qui n'entraînent aucune modification au niveau de la séquence en acides aminés tout en permettant l'apparition des sites de restriction Xbal et Xhol nécessaires au clonage dans le vecteur.
Le milieu réactionnel a la composition suivante : dNTP (Promega) 500 μM,
Taq polymerase (Invitrogen Life Technologies) lμL, solution tampon de PCR (Invitrogen Life Technologies) lOμL, ADNc (matrice) lμL, MgC12 (Invitrogen Life
Technologies) 1,5 mM, amorce 3 '-Xbal hu-C kappa et amorce 5'- Xhol hu-C kappa
500μM.
L'amplification a été réalisée dans un thermocycleur MJ-research PTC 200 (Peltier Thermal Cycler) selon les conditions suivantes : 5 minutes à 94°C, puis 35 cycles suivants 30 secondes à 94°C, 45 secondes à 55°C et 1 minute à 72°C.
Après vérification des produits de PCR par analyse électrophorétique sur gel d'agarose à 1%, le cDNA hu-C kappa est purifié à l'aide du coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur.
4. Construction du vecteur d'expression de la chaîne légère de l'anticorps modifié artificiellement KM 60C3 : pcDNA3® KM60C3-L
(a). Digestion du vecteur pcDNA3® 60C3 L-VL et de l'ADNc hu-C kappa et déphosphorylation du vecteur digéré La digestion se fait dans les conditions suivantes : tampon NEB2 10X (5 μL),
BSA 100X (0,5 μL), vecteur pcDNA3® 60C3 L-VL ou ADNc hu-C kappa (1 μg), enzyme de restriction Xhol (10U), enzyme de restriction Xbal (10U). Les enzymes de restriction, les solutions tampons de réaction et la solution de BSA sont de New England Biolabs Inc. La réaction est poursuivie 3 heures au bain marie à 37°C. Le vecteur et l'insert digérés sont purifiés grâce au coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur. Le vecteur est ensuite déphosphorylé par la CIP (New Englan Biolabs Inc.) pendant 1 heure à 37°c. La composition du milieu réactionnel est la suivante : tampon NEB3 1OX (5 μL), vecteur (l μg), CIP (lμL).
(b). Réaction de ligation La ligation permet d'insérer l'ADNc ADNc hu-C kappa digéré dans le vecteur pcDNA3® 60C3 L-VL digéré et déphosphorylé grâce à la T4 ligase (New England Biolabs Inc.). La réaction est poursuivie au bain marie à 16°C pendant 16 heures dans le millieu réactionnel suivant : solution tampon de ligature 5X (4 μL) (New England Biolabs Inc.), vecteur digéré déphosphorylé 200 ng, T4 ligase (400U) (New England Biolabs Inc.), ADNc purifié 170 ng (pour un insert de 1 kb). Le rapport molaire insert/vecteur est de 3/1. Le produit de réaction de ligature est utilisé pour la transformation de bactéries compétentes E. coli XLl blue (Stratagene).
(c). Vérification de la présence de l' insert hu-Ckappa dans le vecteur pcDNA3® 60C3 L-VL par réaction de PCR
Les colonies résistantes isolées sont déposées stérilement sous hotte dans un tube contenant le mélange réactionnel de PCR : dNTP (Promega) 500 μM, Taq polymerase (Invitrogen Life Technologies) lμL, solution tampon de PCR (Invitrogen Life Technologies) lOμL, ADNc (matrice) lμL, MgC12 (Invitrogen Life Technologies) 1,5 mM, amorce 3'-XbaI hu-C kappa et amorce 5'- Xhol hu-C kappa 500μM. L'amplification a été réalisée dans un thermocycleur MJ-research PTC 200 selon les conditions suivantes : 5 minutes à 94°C, puis 35 cycles suivants 30 secondes à 94°C, 45 secondes à 55°C et 1 minute à 72°C. La taille du produit PCR amplifié est contrôlée par analyse électrophorétique sur gel d'agarose 1%. Les clones qui ont été correctement transformés sont les seuls à donner un produit de PCR de taille attendue.
(d). Production du plasmide d'intérêt pcDNA3® KM60C3-L On utilise un cure-dent stérile qui après prélèvement de la colonie est mis dans 5 mL de milieu liquide sélectif LB contenant lOOμg/mL d'ampicilline (Sigma Chemicals Co) et 12,5μg/mL de tétracycline (Sigma Chemicals Co) et incubé 16 heures à 37°C. La dilution bactérienne est alors utilisée pour la réalisation d'une minipréparation d'ADN plasmidique en utilisant le coffret QIAprep spin miniprep (QIAGEN) selon les recommandations du fournisseur.
5. Construction du vecteur d'expression de la chaîne légère de l'anticorps modifié artificiellement KM 8B6 : pcDNA3® 8B6-L
(a). Obtention du vecteur pcDNA3® hu-C kappa
Le vecteur pcDNA3® hu-C kappa a été préparé à partir du vecteur pcDNA3® KM60C3-L par digestion utilisant les enzymes de restriction BamHI et Xhol. La composition du milieu réactionnel est la suivante : tampon NEB2 1OX (5 μL), BSA 100X (0,5 μL), vecteur (1 μg), enzyme de restriction BamHI (10U), enzyme de restriction Xhol (10U). Les enzymes de restriction, les solutions tampons de réaction et la solution de BSA sont de New England Biolabs Inc. La réaction est poursuivie 3 heures au bain marie à 37°C. Le vecteur digéré est purifié grâce au coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur. Le vecteur est ensuite déphosphorylé par la CIP (New England Biolabs Inc.) pendant 1 heure à 37°C. La composition du milieu réactionnel est la suivante : tampon NEB3 1OX (5 μL), vecteur (1 μg), CIP (lμL).
(b). Extraction de l'ARN total de l'hybridome 8B6, producteur de l'anticorps monoclonal 8B6.
L' ARN total est extrait à partir de 106 cellules d'hybridome 8B6 en phase exponentielle de croissance grâce au réactif RNAbIe (Eurobio, Courtaboeuf, France) selon les recommandations du fournisseur. La concentration en ARN total est déterminée par mesure de la densité optique à 260 nm.
(c). Obtention de la séquence nucléotidique de l'ADNc 8B6 L-VL L'amplification génique de l'ADNc codant la région variable 8B6 L-VL a été obtenue à partir des ARN messagers par RACE-PCR de façon à obtenir la séquence nucléotidique codant le peptide signal (L) associé à sa région variable (VL). Cette amplification a été réalisée en utilisant le coffret SMARTTM RACE cDNA Amplification obtenu auprès de la société BD Biosciences (San José, CA, USA) selon les recommandations du fournisseur. La quantité d'ARN total utilisé pour la rétrotranscription est de lμg. Le produit de la réaction a été dilué dans lOOμL de solution tampon tricine EDTA fourni par le fournisseur. Un volume de 2,5μL du produit dilué a été utilisé pour l'amplification génique. L'amorce antisens spécifique de l'ADNc 8B6 VL utilisée est la suivante : 3'- mu C kappa 5'- gtt cat act cgt cet tgg tca acg tga ggg -3' qui s'hybride sur l'ADNc codant le domaine constant mu C-kappa de la chaîne légère des anticorps de souris de type kappa. L'amplification a été réalisée par incubation du mélange réactionnel dans un thermocycleur Perkin- Elmer (PE) DNA thermal Cycler 480 (Perkin Elmer Wellesley, MA, USA) dans les conditions suivantes : 5 cycles (94°C pendant 5 secondes, 72°C pendant 3 minutes), suivi de 5 cycles (94°C pendant 5 secondes puis 700C pendant 10 secondes suivi de 3 minutes à 72°C) et de 25 cycles (94°C pendant 5 secondes suivi de 69°C pendant 10 secondes et 3 minutes à 72°C). Le produit de réaction de RACE-PCR est analysé par électrophorèse sur gel d'agarose 1% (Q. Biogene, Morgan Irvine, CA, USA) dans une solution tampon de migration de Tris EDTA pH 8 (40 mM Tris-base (Sigma Chemicals Co), 25 mM EDTA (Inerchim, Montluçon, France) , 20 mM acide acétique (Carlo Erba Reagenti SpA, Rodano, MI, Italie). Les produits de poids moléculaire attendu sont ensuite purifiés à l'aide du coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur. La détermination de la séquence en acide nucléique des produits obtenus purifiés a été réalisée par la société GENOME express (Meylan, France) afin de vérifier la séquence de l'ADNc codant la région 8B6 L-VL. La séquence correspondant au peptide signal associé à la région variable de la chaîne légère de l'anticorps 8B6 a été ainsi déterminée et des amorces dessinées pour permettre le clonage de l'ADNc 8B6 L-VL dans le vecteur d'expression.
(d). Amplification de l'ADNc 8B6 L-VL
L'amplification de l'ADNc 8B6 L-VL a été obtenue par réaction de RT-PCR à partir d'un extrait d'ARN total de cellules d'hybridome 60C3. Le mélange réactionnel est le suivant : Oligo d(T)18 0,5μg (New England Biolabs Inc. Beverly, MA, USA), ARN lμg, dNTP 0,5 mM (Promega, Madison, WI, USA), eau stérile qsp 12μL. Ce mélange est incubé 5 minutes à 65°C (bain marie sec) puis 2 minutes à 4°C (glace fondante) pour dénaturer l'ARN. Sont ensuite ajoutés au mélange réactionnel, 4μL de solution tampon 5X First-strand Buffer (Invitrogen Life Biotechnologies), 10 mM DTT (Invitrogen Life Biotechnologies), 160 U de Rnasine (Promega) et 800 U de transcriptase inverse (Invitrogen Life Biotechnologies). L'ensemble est incubé 1 heure à 37°C puis à 700C pendant 15 minutes afin d'arrêter la réaction. Les copies d'ADNc 8B6 L-VL sont obtenues par amplification génique grâce à une réaction de PCR utilisant les oligonucléotides de synthèse sont les suivantes : 5'- BamHI 8B6 L- VL : 5'- aag gga tcc gcc ace atg aag ttg cet gtt -3' (amorce sens) et 3'- Xhol 8B6 L- VL : 5'- ceg ttt tat etc gag ctt ggt ecc -3' (amorce anti-sens)
Les amorces de synthèse utilisées permettent l'introduction de mutations silencieuses dans la séquence d'ADN qui n'entraînent aucune modification au niveau de la séquence en acides aminés tout en permettant l'apparition des sites de restriction BamHI et Xhol nécessaires au clonage dans le vecteur.
Le milieu réactionnel a la composition suivante : dNTP (Promega) 500 μM, Taq polymerase (Invitrogen Life Technologies) lμL, solution tampon de PCR (Invitrogen Life Technologies) lOμL, ADNc (matrice) lμL, MgC12 (Invitrogen Life Technologies) 1,5 mM, amorce 3'- Xhol 8B6 L-VL et amorce : 5'- BamHI 8B6 L- VL 500μM.
L'amplification a été réalisée dans un thermocycleur MJ-research PTC 200 (Peltier Thermal Cycler) selon les conditions suivantes : 5 minutes à 94°C, puis 35 cycles suivants 30 secondes à 94°C, 45 secondes à 55°C et 1 minute à 72°C.
Après vérification des produits de PCR par analyse électrophorétique sur gel d'agarose à 1%, le cDNA 8B6 L-VL est purifié à l'aide du coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur.
(e). Digestion de l'ADNc 8B6 L-VL
L'ADNc 8B6 L-VL est digéré utilisant les enzymes de restriction BamHI et Xhol. La composition du milieu réactionnel est la suivante : tampon NEB2 10X (5 μL), BSA 100X (0,5 μL), ADNc 8B6 L-VL (1 μg), enzyme de restriction BamHI (10U), enzyme de restriction Xhol (10U). Les enzymes de restriction, les solutions tampons de réaction et la solution de BSA sont de New England Biolabs Inc. La réaction est poursuivie 3 heures au bain marie à 37°C. L'insert digéré est purifié grâce au coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur.
(f). Réaction de ligation
La ligation permet d'insérer l'ADNc 8B6 L-VL digéré dans le vecteur pcDNA3® hu-C kappa digéré et déphosphorylé grâce à la T4 ligase (New England Biolabs Inc.). La réaction est poursuivie au bain marie à 16°C pendant 16 heures dans le millieu réactionnel suivant : solution tampon de ligature 5X (4 μL) (New England Biolabs Inc.), vecteur pcDNA3® hu-C kappa digéré et déphosphorylé 200 ng, T4 ligase (400U) (New England Biolabs Inc.), ADNc 8B6 L-VL purifié 170 ng (pour un insert de 1 kb). Le rapport molaire insert/vecteur est de 3/1. Le produit de réaction de ligature est utilisé pour la transformation de bactéries compétentes E. coli XLl blue (Stratagene).
(g). Vérification de la présence de l'insert 8B6 L-VL dans le vecteur pcDNA3® hu-C kappa par réaction de PCR
Les colonies résistantes isolées sont déposées stérilement sous hotte dans un tube contenant le mélange réactionnel de PCR : dNTP (Promega) 500 μM, Taq polymerase (Invitrogen Life Technologies) lμL, solution tampon de PCR (Invitrogen Life Technologies) lOμL, ADNc (matrice) lμL, MgC12 (Invitrogen Life Technologies) 1,5 mM, amorce 3'- Xhol 8B6 L-VL et amorce 5'- BamHI 8B6 L-VL 500μM. L'amplification a été réalisée dans un thermocycleur MJ-research PTC 200 selon les conditions suivantes : 5 minutes à 94°C, puis 35 cycles suivants 30 secondes à 94°C, 45 secondes à 55°C et 1 minute à 72°C. La taille du produit PCR amplifié est contrôlée par analyse électrophorétique sur gel d'agarose 1%. Les clones qui ont été correctement transformés sont les seuls à donner un produit de PCR de taille attendue.
(h). Production du plasmide d'intérêt pcDNA3® KM8B6 L On utilise un cure-dent stérile qui après prélèvement de la colonie est mis dans 5 mL de milieu liquide sélectif LB contenant lOOμg/mL d'ampicilline (Sigma Chemicals Co) et 12,5μg/mL de tétracycline (Sigma Chemicals Co) et incubé 16 heures à 37°C. La dilution bactérienne est alors utilisée pour la réalisation d'une minipréparation d'ADN plasmidique en utilisant le coffret QIAprep spin miniprep (QIAGEN) selon les recommandations du fournisseur.
6. Préparation de l'ADNc codant la région variable L-VH de l'anticorps monoclonal de souris 60C3 (a). Obtention de la séquence nucléotidique de l'ADNc 60C3 L-VH
L'amplification génique de l'ADNc codant la région variable 60C3 L-VH a été obtenue à partir des ARN messagers par RACE-PCR de façon à obtenir la séquence nucléotidique codant le peptide signal (L) associé à sa région variable (VL). Cette amplification a été réalisée en utilisant le coffret SMARTTM RACE cDNA
Amplification obtenu auprès de la société BD Biosciences (San José, CA, USA) selon les recommandations du fournisseur. La quantité d'ARN total utilisé pour la rétrotranscription est de lμg. Le produit de la réaction a été dilué dans lOOμL de solution tampon tricine EDTA fourni par le fournisseur. Un volume de 2,5μL du produit dilué a été utilisé pour l'amplification génique. L'amorce antisens spécifique de l'ADNc 60C3 VH utilisée est la suivante : 3 '- 60C3 L-VH 5'-tgc AGA gac agt gac cag cag agt agt ccc -3' (amorce anti-sens) qui s'hybride sur l'ADNc codant le domaine constant mu C-kappa de la chaîne légère des anticorps de souris de type kappa.. L'amplification a été réalisée par incubation du mélange réactionnel dans un thermocycleur Perkin-Elmer (PE) DNA thermal Cycler 480 (Perkin Elmer Wellesley, MA, USA) dans les conditions suivantes : 5 cycles (94°C pendant 5 secondes, 72°C pendant 3 minutes), suivi de 5 cycles (94°C pendant 5 secondes puis 700C pendant 10 secondes suivi de 3 minutes à 72°C) et de 25 cycles (94°C pendant 5 secondes suivi de 69°C pendant 10 secondes et 3 minutes à 72°C). Le produit de réaction de RACE- PCR est analysé par électrophorèse sur gel d'agarose 1% (Q. Biogene, Morgan Irvine, CA, USA) dans une solution tampon de migration de Tris EDTA pH 8 (40 mM Tris- base (Sigma Chemicals Co), 25 mM EDTA (Inerchim, Montluçon, France) , 20 mM acide acétique (Carlo Erba Reagenti SpA, Rodano, MI, Italie). Les produits de poids moléculaire attendu sont ensuite purifiés à l'aide du coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur. La détermination de la séquence en acide nucléique des produits obtenus purifiés a été réalisée par la société GENOME express (Meylan, France) afin de vérifier la séquence de l'ADNc codant la région 60C3 L-VH. La séquence correspondant au peptide signal associé à la région variable de la chaîne légère de l'anticorps 60C3 a été ainsi déterminée et des amorces dessinées pour permettre le clonage de l'ADNc 60C3 L-VH dans le vecteur d'expression.
(b). Amplification de l'ADNc 60C3 L-VH
L'amplification de l'ADNc 60C3 L-VH a été obtenue par réaction de RT-PCR à partir d'un extrait d'ARN total de cellules d'hybridome 60C3. Le mélange réactionnel est le suivant : Oligo d(T)18 0,5μg (New England Biolabs Inc. Beverly, MA, USA), ARN lμg, dNTP 0,5 mM (Promega, Madison, WI, USA), eau stérile qsp 12μL. Ce mélange est incubé 5 minutes à 65°C (bain marie sec) puis 2 minutes à 4°C (glace fondante) pour dénaturer l'ARN. Sont ensuite ajoutés au mélange réactionnel, 4μL de solution tampon 5X First-strand Buffer (Invitrogen Life Biotechnologies), 10 mM DTT (Invitrogen Life Biotechnologies), 160 U de Rnasine (Promega) et 800 U de transcriptase inverse (Invitrogen Life Biotechnologies). L'ensemble est incubé 1 heure à 37°C puis à 700C pendant 15 minutes afin d'arrêter la réaction. Les copies d'ADNc 60C3 L-VH sont obtenues par amplification génique grâce à une réaction de PCR utilisant les oligonucléotides de synthèse sont les suivantes : 5'- BamHI 60C3 L-VH : 5'- cag gat ccg aac aca ctg act cta ace atg g - 3' (amorce sens) et 3'- Nhel 60C3 L-VH : 5'- 1 gct age tgc aga gac agt gac cag agt -3' (amorce anti-sens). Les amorces de synthèse utilisées permettent l'introduction de mutations silencieuses dans la séquence d'ADN qui n'entraînent aucune modification au niveau de la séquence en acides aminés tout en permettant l'apparition des sites de restriction BamHI et Xhol nécessaires au clonage dans le vecteur.
Le milieu réactionnel a la composition suivante : dNTP (Promega) 500 μM, Taq polymerase (Invitrogen Life Technologies) lμL, solution tampon de PCR (Invitrogen Life Technologies) lOμL, ADNc (matrice) lμL, MgC12 (Invitrogen Life Technologies) 1,5 mM, amorce 3'- Nhel 60C3 L-VH et amorce 5'- BamHI 60C3 L- VH 500μM. L'amplification a été réalisée dans un thermocycleur MJ-research PTC 200 (Peltier Thermal Cycler) selon les conditions suivantes : 5 minutes à 94°C, puis 35 cycles suivants 30 secondes à 94°C, 45 secondes à 55°C et 1 minute à 72°C.
Après vérification des produits de PCR par analyse électrophorétique sur gel d'agarose à 1%, le cDNA 60C3 L-VH est purifié à l'aide du coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur.
7. Construction du plasmide recombinant possédant l'ADNc 60C3 L-VH
(a). Construction du vecteur de clonage pBluescript II SK (+) 60C3 L-VH
Pour insérer la séquence codant la région 60C3 L-VH dans le vecteur pBluescript II SK (+), ce dernier est digéré par l'enzyme de restriction EcoRV 'New England Biolabs Inc.) qui provoque une coupure à bouts francs. Le traitement du plasmide ainsi linéarisé par la Taq polymerase en présence de dTTP permet de rajouter une thymidine à l'extrémité 3' du vecteur et empêche l' autoligature. La Taq DNA polymerase utilisée pour l'obtention de l'ADNc 60C3 L-VH possède une activité 5 '-3' exonucléase ajoutant une adénine terminale à chaque extrémité 3' des produits de PCR qui peut être directement clone dans un tel vecteur. Le rendement de le réaction de ligature est largement amélioré du fait de la complémentarité A /T à celui de la réaction de ligature à bout franc. Le produit de réaction de ligature est utilisé pour la transformation de bactéries compétentes E. coli XLl blue (Stratagene).
(b). Vérification de la présence de l'insert 60C3 L-VH dans le vecteur pBluescript II SK (+) par réaction de PCR Les colonies résistantes isolées sont déposées stérilement sous hotte dans un tube contenant le mélange réactionnel de PCR : dNTP 500 μM (Promega), Taq polymerase (Invitrogen Life Technologies) lμL, solution tampon de PCR (Invitrogen Life Technologies) lOμL , MgC12 (Invitrogen Life Technologies) 1,5 mM, amorce 3'- Nhel 60C3 L-VH et amorce 5'- BamHI 60C3 L-VH 500μM.. L'amplification a été réalisée dans un thermocycleur MJ-research PTC 200 selon les conditions suivantes : 5 minutes à 94°C, puis 35 cycles suivants 30 secondes à 94°C, 45 secondes à 55°C et 1 minute à 72°C. La taille du produit PCR amplifié est contrôlée par analyse électrophorétique sur gel d'agarose 1%. Les clones qui ont été correctement transformés sont les seuls à donner un produit de PCR de taille attendue.
(c). Production du plasmide d'intérêt pBluescript II SK (+) 60C3 L-VH Pour cela, on utilise un cure-dent stérile qui après prélèvement de la colonie est mis dans 5 mL de milieu liquide sélectif LB contenant lOOμg/mL d'ampicilline (Sigma Chemicals Co) et 12,5μg/mL de tétracycline (Sigma Chemicals Co) et incubé 16 heures à 37°C. La dilution bactérienne est alors utilisée pour la réalisation d'une minipréparation d'ADN plasmidique en utilisant le coffret QIAprep spin miniprep (QIAGEN) selon les recommandations du fournisseur.
(d). Vérification de l'orientation de l' insert 60C3 L-VH dans le vecteur pBluescript II SK (+) 60C3 L-VH par digestion enzymatique
La présence de l'insert 60C3 L-VH en orientation sens est confirmée par une digestion enzymatique du vecteur pBluescript II SK (+) 60C3 L-VH par l'enzyme BamHI (New England Biolabs Inc.) selon les recommandations du fournisseur. En effet, la technique de clonage T n'impose pas d'orientation pour l'insert qui peut donc être inséré en orientation sens ou antisens. L'insert 60C3 L-VH n'est encadré par deux sites de restriction BamHI que s'il est en orientation sens. Ainsi après digestion par l'enzyme BamHI, l'analyse électrophorétique permet de distinguer et de sélectionner un clone possédant l' ADNc 60C3 L-VH en orientation sens. 8. Préparation de l'ADNc codant la région constante d'un anticorps humain hu-C gamma 1
a. Extraction de l'ARN total de la lignée de myélome humain LPl producteur d'une chaîne loruded' isotype gamma 1.
L' ARN total est extrait à partir de 106 cellules d'hybridome LPl en phase exponentielle de croissance grâce au réactif RNAbIe (Eurobio, Courtaboeuf, France) selon les recommandations du fournisseur. La concentration en ARN total est déterminée par mesure de la densité optique à 260 nm.
b. Amplification génique du segment ADNc hu-C gamma 1 L'amplification de l'ADNc hu-C gamma 1 a été réalisée à partir d'un extrait d'ARN total de l'hybridome LPl . Le mélange réactionnel est le suivant : Oligo d(T)18 0,5μg (New England Biolabs Inc. Beverly, MA, USA), ARN lμg, dNTP 0,5 mM (Promega, Madison, WI, USA), eau stérile qsp 12μL. Ce mélange est incubé 5 minutes à 65°C (bain marie sec) puis 2 minutes à 4°C (glace fondante) pour dénaturer l'ARN. Sont ensuite ajoutés au mélange réactionnel, 4μL de solution tampon 5X First-strand Buffer (Invitrogen Life Biotechnologies), 10 mM DTT (Invitrogen Life Bio technologies), 160 U de Rnasine (Promega) et 800 U de transcriptase inverse (Invitrogen Life Bio technologies). L'ensemble est incubé 1 heure à 37°C puis à 700C pendant 15 minutes afin d'arrêter la réaction. Les copies d'ADNc ADNc hu-C gamma 1 sont obtenues par amplification génique grâce à une réaction de PCR utilisant les oligonucléotides de synthèse sont les suivantes : 5'- Nhel hu-C gamma 1 : 5'- ca gct agc ace aag ggc cca teg gtc ttc c -3' (amorce sens) et 3'- Xbal hu-C gamma 1 : 5'- agc etc tec ctg tet ceg ggt aaa taa tet aga cg -3' (amorce anti-sens).
Les amorces de synthèse utilisées permettent l'introduction de mutations silencieuses dans la séquence d'ADN qui n'entraînent aucune modification au niveau de la séquence en acides aminés tout en permettant l'apparition des sites de restriction Nhel et Xbal nécessaires au clonage dans le vecteur.
Le milieu réactionnel a la composition suivante : dNTP (Promega) 500 μM,
Taq polymerase (Invitrogen Life Technologies) lμL, solution tampon de PCR (Invitrogen Life Technologies) lOμL, ADNc (matrice) lμL, MgC12 (Invitrogen Life
Technologies) 1,5 mM, amorce 3'- Xbal hu-C gamma 1 et amorce 5'- Nhel hu-C gamma 1500μM.
L'amplification a été réalisée dans un thermocycleur MJ-research PTC 200 (Peltier Thermal Cycler) selon les conditions suivantes : 5 minutes à 94°C, puis 35 cycles suivants 30 secondes à 94°C, 45 secondes à 55°C et 1 minute à 72°C.
Après vérification des produits de PCR par analyse électrophorétique sur gel d'agarose à 1%, le cDNA hu-C gamma 1 est purifié à l'aide du coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur.
9. Construction d'un plasmide recombinant possédant l'ADNc 60C3 L-VH couplé à l'ADNc hu-C gamma 1 : pBluescript II SK (+) KM60C3 H
(a). Digestion du vecteur pBluescript II SK (+) 60C3 L-VH et de l'ADNc hu- C gamma 1 et déphosphorylation du vecteur digéré La digestion se fait dans les conditions suivantes : tampon NEB2 10X (5 μL),
BSA 100X (0,5 μL), vecteur pBluescript II SK (+) 60C3 L-VH ou l'ADNc hu-C gamma 1 (1 μg), enzyme de restriction Nhel (10U), enzyme de restriction Xbal (10U). Les enzymes de restriction, les solutions tampons de réaction et la solution de BSA sont de New England Biolabs Inc. La réaction est poursuivie 3 heures au bain marie à 37°C. Le vecteur et l'insert digérés sont purifiés grâce au coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur. Le vecteur est ensuite déphosphorylé par la CIP (New Englan Biolabs Inc.) pendant 1 heure à 37°c. La composition du milieu réactionnel est la suivante : tampon NEB3 1OX (5 μL), vecteur (1 μg), CIP (lμL).
(b). Réaction de ligation La ligation permet d'insérer l'ADNc hu-C gamma 1 digéré dans le vecteur pBluescript II SK (+) 60C3 L-VH digéré et déphosphorylé grâce à la T4 ligase (New England Biolabs Inc.). La réaction de ligature est poursuivie au bain marie à 16°C pendant 16 heures dans le millieu réactionnel suivant : solution tampon de ligature 5X (4 μL) (New England Biolabs Inc.), vecteur digéré déphosphorylé pBluescript II SK (+) 60C3 L-VH 200 ng, T4 ligase (400U) (New England Biolabs Inc.), ADNc hu- C gamma 1 purifié 170 ng (pour un insert de 1 kb). Le rapport molaire insert/vecteur est de 3/1. Le produit de réaction de ligation est utilisé pour la transformation de bactéries compétentes E. coli XLl blue (Stratagene).
(c). Vérification de la présence et de l'orientation de l'insert hu-C gamma 1 dans le vecteur pBluescript II SK (+) 60C3 L-VH par réaction de PCR
En raison du choix des sites de restriction Nhel et Xbal, l'insert hu-C gamma 1 peut être dans l'orientation sens ou antisens. Ceci est dû à la séquence des sites de restrction qui n'impose pas d'orientation pour l'insert. L'orientation sens de l'insert est confirmée par une réaction de PCR. Des colonies isolées sont déposées stérilement sous hotte respectivement dans un tube contenant le mélange réactionnel de PCR : dNTP 500 μM (Promega), Taq polymerase (Invitrogen Life Technologies) lμL, solution tampon de PCR (Invitrogen Life Technologies) lOμL , MgC12 (Invitrogen Life Technologies) 1,5 mM, amorce sens et amorce antisens 500μM. L'amplification a été réalisée dans un thermocycleur MJ-research PTC 200 selon les conditions suivantes : 5 minutes à 94°C, puis 35 cycles suivants 30 secondes à 94°C, 45 secondes à 55°C et 1 minute à 72°C. Les amorces utilisées sont :5'- BamHI 60C3 L-VH : 5'- cag gat ccg aac aca ctg act cta ace atg g -3' (amorce sens) et 3'- Xbal hu- C gamma 1: 5'- age etc tec ctg tet ccg ggt aaa taa tet aga cg -3' (amorce anti-sens).
Si l'insert n'est pas dans la bonne orientation, les amorces se retrouvent sur le même brin de la séquence à amplifier et il n'y a donc pas d'amplification. La taille du produit PCR amplifié est contrôlée par analyse électrophorétique sur gel d'agarose
1%. Les clones qui ont été correctement transformés sont les seuls à donner un produit de PCR de taille attendue.
(d). Production du plasmide d'intérêt pBluescript II SK (+) KM60C3 H On utilise un cure-dent stérile qui après prélèvement de la colonie est mis dans
5 mL de milieu liquide sélectif LB contenant lOOμg/mL d'ampicilline (Sigma Chemicals Co) et 12,5μg/mL de tétracycline (Sigma Chemicals Co) et incubé 16 heures à 37°C. La dilution bactérienne est alors utilisée pour la réalisation d'une minipréparation d'ADN plasmidique en utilisant le coffret QIAprep spin miniprep (QIAGEN) selon les recommandations du fournisseur.
10. Construction du vecteur d'expression de la chaîne lourde de l'anticorps modifié artificiellement KM 8B6 : pcDNA3/Hygro 8B6-H
(a). Obtention du vecteur pBluescript II SK (+) hu-C gamma 1
Le vecteur pBluescript II SK (+) hu-C gamma la été préparé à partir du vecteur pBluescript II SK (+) KM60C3 H par digestion utilisant les enzymes de restriction BamHI et Xbal. La composition du milieu réactionnel est la suivante : tampon NEB2 1OX (5 μL), BSA 100X (0,5 μL), vecteur (1 μg), enzyme de restriction BamHI (10U), enzyme de restriction Xbal (10U). Les enzymes de restriction, les solutions tampons de réaction et la solution de BSA sont de New England Biolabs Inc. La réaction est poursuivie 3 heures au bain marie à 37°C. Le vecteur est alors purifié grâce au coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur. Le vecteur est ensuite déphosphorylé par la CIP (New England Biolabs Inc.) pendant 1 heure à 37°C. La composition du milieu réactionnel est la suivante : tampon NEB3 1OX (5 μL), vecteur (1 μg), CIP (lμL).
(b). Extraction de l'ARN total de l'hybridome 8B6 producteur de l'anticorps monoclonal 8B6.
L' ARN total est extrait à partir de 106 cellules d'hybridome 8B6 en phase exponentielle de croissance grâce au réactif RNAbIe (Eurobio, Courtaboeuf, France) selon les recommandations du fournisseur. La concentration en ARN total est déterminée par mesure de la densité optique à 260 nm.
(c). Obtention de la séquence nucléotidique du cDNA 8B6 L-VH L'amplification génique de l'ADNc codant la région variable 8B6 L-VH a été obtenue à partir des ARN messagers par RACE-PCR de façon à obtenir la séquence nucléotidique codant le peptide signal (L) associé à sa région variable (VH). Cette amplification a été réalisée en utilisant le coffret SMART RACE cDNA Amplification obtenu auprès de la société BD Biosciences (San José, CA, USA) selon les recommandations du fournisseur. La quantité d'ARN total utilisé pour la rétrotranscription était de lμg. Le produit de la réaction a été dilué dans lOOμL de solution tampon tricine EDTA fourni par le fournisseur. Un volume de 2,5μL du produit dilué a été utilisé pour l'amplification génique. L'amorce antisens spécifique de l'ADNc 8B6 L-VH utilisée est la suivante : 3'- mu C gamma 3 5'- tga tca act cag tct tgc tgg ctg ggt ggg -3' qui s'hybride sur l'ADNc codant le domaine constant mu C-gamma 3 de la chaîne lourde des anticorps de souris de type gamma 3. L'amplification a été réalisée par incubation du mélange réactionnel dans un thermocycleur Perkin-Elmer (PE) DNA thermal Cycler 480 (Perkin Elmer Wellesley, MA, USA) dans les conditions suivantes : 5 cycles (94°C pendant 5 secondes, 72°C pendant 3 minutes), suivi de 5 cycles (94°C pendant 5 secondes puis 700C pendant 10 secondes suivi de 3 minutes à 72°C) et de 25 cycles (94°C pendant 5 secondes suivi de 69°C pendant 10 secondes et 3 minutes à 72°C). Le produit de réaction de RACE- PCR est analysé par électrophorèse sur gel d'agarose 1% (Q. Biogene, Morgan Irvine, CA, USA) dans une solution tampon de migration de Tris EDTA pH 8 (40 mM Tris- base (Sigma Chemicals Co), 25 mM EDTA (Inerchim, Montluçon, France) , 20 mM acide acétique (Carlo Erba Reagenti SpA, Rodano, MI, Italie). Les produits de poids moléculaire attendu sont ensuite purifiés à l'aide du coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur. La détermination de la séquence en acide nucléique des produits obtenus purifiés a été réalisée par la société GENOME express (Meylan, France) afin de vérifier la séquence de l'ADNc codant la région 8B6 L-VH. La séquence correspondant au peptide signal associé à la région variable de la chaîne lourde de l'anticorps 8B6 a été ainsi déterminée et des amorces dessinées pour permettre le clonage de l'ADNc 8B6 L-VH dans le vecteur d'expression pBluescript II SK (+) hu-C gamma 1.
(d). amplification génique des segments 8B6 L-VH
L'amplification de l'ADNc 8B6 L-VH a été obtenue par réaction de RT-PCR à partir d'un extrait d'ARN total de cellules d'hybridome 8B6. Le mélange réactionnel est le suivant : Oligo d(T)18 lμL (New England Biolabs Inc. Beverly, MA, USA), ARN lμg, dNTP 0,5 mM (Promega, Madison, WI, USA), eau stérile qsp 12μL. Ce mélange est incubé 5 minutes à 65°C (bain marie sec) puis 2 minutes à 4°C (glace fondante) pour dénaturer l'ARN. Sont ensuite ajoutés au mélange réactionnel, 4μL de solution tampon 5X First-strand Buffer (Invitrogen Life Biotechnologies), 10 mM DTT (Invitrogen Life Biotechnologies), 160 U de Rnasine (Promega) et 800 U de transcriptase inverse (Invitrogen Life Biotechnologies). L'ensemble est incubé 1 heure à 37°C puis à 700C pendant 15 minutes afin d'arrêter la réaction. Les copies d'ADNc 8B6 L-VH sont obtenues par amplification génique grâce à une réaction de PCR utilisant les oligonucléotides de synthèse suivants : 5'- BamHI 8B6 L-VH : 5'- ccg tcg gat ccg gcc ace atg aag ttg tgg -3' (amorce sens) et 3'- Nhel 8B6 L-VH : 5'- cgg ggt gct age tga gga gac tgt -3' (amorce antisens).
Les amorces utilisées permettent l'introduction de mutations silencieuses dans la séquence d'ADN qui n'entraînent aucune modification au niveau de la séquence en acides aminés tout en permettant l'apparition des sites de restriction BamHI et Nhel nécessaires au clonage dans le vecteur.
Le milieu réactionnel a la composition suivante : dNTP 500 μM (Promega),
Taq polymerase (Invitrogen Life Technologies) lμL, solution tampon de PCR
(Invitrogen Life Technologies) lOμL , ADNc (matrice) lμL, MgC12 (Invitrogen Life Technologies) 1,5 mM, amorce 3'- Nhel 8B6 L-VH et amorce 5'- BamHI 8B6 L-
VH 500μM.
L'amplification a été réalisée dans un thermocycleur MJ-research PTC 200 (Peltier Thermal Cycler) selon les conditions suivantes : 5 minutes à 94°C, puis 35 cycles suivants 30 secondes à 94°C, 45 secondes à 55°C et 1 minute à 72°C. Après vérification des produits de PCR par analyse électrophorétique sur gel d'agarose à 1%, le cDNA 8B6 L-VH est purifié à l'aide du coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur.
(e). Digestion de l'ADNc 8B6 L-VH L'ADNc 8B6 L-VH est digéré utilisant les enzymes de restriction BamHI et
Nhel. La composition du milieu réactionnel est la suivante : tampon NEB2 10X (5 μL), BSA 100X (0,5 μL), ADNc 8B6 L-VH (1 μg), enzyme de restriction BamHI (10U), enzyme de restriction Nhel (10U). Les enzymes de restriction, les solutions tampons de réaction et la solution de BSA sont de New England Biolabs Inc. La réaction est poursuivie 3 heures au bain marie à 37°C. L'insert digéré est purifié grâce au coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur. (f). Réaction de ligation
La ligation permet d'insérer l'ADNc 8B6 L-VH digéré dans le vecteur pBluescript II SK (+) hu-C gamma 1 digéré et déphosphorylé. La réaction est poursuivie au bain marie à 16°C pendant 16 heures dans le millieu réactionnel suivant : solution tampon de ligature 5X (4 μL) (New England Biolabs Inc.), vecteur digéré déphosphorylé pBluescript II SK (+) hu-C gamma 1 200 ng, T4 ligase (400U)
(New England Biolabs Inc.), ADNc 8B6 L-VH purifié 170 ng (pour un insert de 1 kb). Le rapport molaire insert/vecteur est de 3/1. Le produit de réaction de ligature est utilisé pour la transformation de bactéries comp étentes E. coli XLl blue (Stratagene).
(g). Obtention de l'ADNc codant la chaîne lourde de l'anticorps modifié artificiellement
Le vecteur pBluescript II SK (+) KM8B6 H est digéré par les enzymes de restriction BamHI et Xbal pour obtenir l'ADNc codant la chaîne lourde de l'anticorps modifié artificiellement. La composition du milieu réactionnel est la suivante : tampon NEB2 10X (5 μL), BSA 100X (0,5 μL), vecteur (1 μg), enzyme de restriction
BamHI (10U), enzyme de restriction Xbal (10U). Les enzymes de restriction, les solutions tampons de réaction et la solution de BSA sont de New England Biolabs
Inc. La réaction est poursuivie 3 heures au bain marie à 37°C. L'insert libéré est purifié grâce au coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur.
(h). Digestion du vecteur pcDNA3/Hygro et déphosphorylation du vecteur digéré La digestion se fait dans les conditions suivantes : tampon NEB2 10X (5 μL),
BSA 100X (0,5 μL), vecteur (1 μg), enzyme de restriction BamHI (10U), enzyme de restriction Xbal (10U). Les enzymes de restriction, les solutions tampons de réaction et la solution de BSA sont de New England Biolabs Inc. La réaction est poursuivie 3 heures au bain marie à 37°C. Le vecteur et l'insert digérés sont purifiés grâce au coffret QIAquick Gel Extraction (Qiagen) selon les recommandations du fournisseur. Le vecteur est ensuite déphosphorylé par la CIP (New Englan Biolabs Inc.) pendant 1 heure à 37°c. La composition du milieu réactionnel est la suivante : tampon NEB3 1OX (5 μL), vecteur (1 μg), CIP (lμL).
(i). Réaction de ligation
La réaction de ligation permet d'insérer l'ADNc codant la chaîne lourde de l'anticorps modifié artificiellement dans le vecteur pcDNA3/Hygro digéré et déphosphorylé. La réaction de ligature est poursuivie au bain marie à 16°C pendant 16 heures dans le millieu réactionnel suivant : solution tampon de ligature 5X (4 μL) (New England Biolabs Inc.), vecteur digéré déphosphorylé pcDNA3/Hygro 200 ng, T4 ligase (400U) (New England Biolabs Inc.), l'ADNc codant la chaîne lourde de l'anticorps modifié artificiellement purifié 170 ng (pour un insert de 1 kb). Le rapport molaire insert/vecteur est de 3/1. Le produit de réaction de ligation est utilisé pour la transformation de bactéries compétentes E. coli XLl blue (Stratagene).
(j). Vérification de la présence de l'ADNc codant la chaîne lourde de l'anticorps modifié artificiellement dans le vecteur pcDNA3/Hygro par réaction de PCR
Les colonies résistantes isolées sont déposées stérilement sous hotte dans un tube contenant le mélange réactionnel de PCR : dNTP 500 μM (Promega), Taq polymerase (Invitrogen Life Technologies) lμL, solution tampon de PCR (Invitrogen Life Technologies) lOμL , MgC12 (Invitrogen Life Technologies) 1,5 mM, amorce 3' et amorce 5' 500μM. L'amplification a été réalisée dans un thermocycleur MJ- research PTC 200 selon les conditions suivantes : 5 minutes à 94°C, puis 35 cycles suivants 30 secondes à 94°C, 45 secondes à 55°C et 1 minute à 72°C. Les amorces utilisées sont : 5'- BamHI 60C3 L-VH : 5'- ccg tcg gat ccg gcc ace atg aag ttg tgg -3' (amorce sens) et 3'- Nhel 8B6 L-VH: 5'- cgg ggt gct agc tga gga gac tgt -3' (amorce antisens).
La taille du produit PCR amplifié est contrôlée par analyse électrophorétique sur gel d'agarose 1%. Les clones qui ont été correctement transformés sont les seuls à donner un produit de PCR de taille attendue.
(k). Production du plasmide d'intérêt pcDNA3 KM8B6 L
On utilise un cure-dent stérile qui après prélèvement de la colonie est mis dans
5 mL de milieu liquide sélectif LB contenant lOOμg/mL d'ampicilline (Sigma Chemicals Co) et 12,5μg/mL de tétracycline (Sigma Chemicals Co) et incubé 16 heures à 37°C. La dilution bactérienne est alors utilisée pour la réalisation d'une minipréparation d'ADN plasmidique en utilisant le coffret QIAprep spin miniprep
(QIAGEN) selon les recommandations du fournisseur.
11. Transfection des cellules CHO pour l'expression de l'anticorps modifié artificiellement KM8B6
Les cellules CHO ont été utilisées comme cellules hôtes pour exprimer et sécréter l'anticorps modifié artificiellement KM8B6. Ces cellules ont été co- transféctées avec les plasmides pDNA3® KM8B6-L et pDNA3.1/Hygro© KM8B6- H, codant respectivement la chaîne légère (Figure 4) et la chaîne lourde de l'anticorps modifié artificiellement KM8B6 (Figure 9),à l'aide du coffret PolyFect® (Qiagen GMBH, Hildn, Allemagne) selon les recommandations du fournisseur. Les cellules transformées ont été sélectionnées pour leur résistance à la généticine® et l'hygromycine B® (Invitrogen Life Technologies, Carlsbad, CA, USA). Des clones résistants ont été obtenus par une technique classique de clonage par dilution limite. Ils ont été ensuite sélectionnés pour leur expression et leur sécrétion de l'anticorps KM8B6 par test immuno-enzymatique ELISA. Un clone transfectant stable sécrétant l'anticorps KM8B6 à 3,8μg/mL a été retenu. 12. Purification des anticorps 8B6 et KM8B6
Les anticorps monoclonaux de souris spécifiques des gangliosides ont été produits à partir de surnageant de culture de l'hybridome correspondant (Cerato et al, 1997). Ils ont été purifiés par chromatographie sur protéine A (GE Healthcare Amersham Bioscience AB, Uppsala, Suède) selon un protocole mis au point par l'inventeur qui limite les phénomènes d'aggrégations homophiles irréversibles des IgG3 de souris (Chapman et al, 1990). La colonne est d'abord équilibrée par un tampon 0,1 M Tris-HCl pH 7,6. Un échantillon de 2 L de surnageant de culture contenant 10% de tampon d'équilibration est déposé sur la colonne avec un débit de 1 mL/min. La colonne est ensuite lavée avec 10 volumes de tampon d'équilibration. Le matériel fixé à la protéine A est élue avec un tampon acide 0,1 M citrate 0,3 M NaCl pH 3 puis collecté par fractions immédiatement neutralisées par le dépôt préalable dans des tubes collecteurs d'un tampon 1 M Tris-HCl pH 7,6. Le déroulement de la purification est suivi par la mesure de la variation de la densité optique des fractions collectées. Les fractions intéressantes sont ensuite dialysées dans une solution de PBS pH 7,4 NaCl 0,3M et stérilisées par fîltration sur filtre 0,22μm. La quantité de protéine est déterminée par mesure de la densité optique à 280 nm puis la concentration de l'AcM est ajustée à une concentration inférieure ou égale à 0,9 mg d'AcN par mL de façon à prévenir le phénomène d »aggrégation homophile des IgG3 de souris. Les AcM purifiés sont conservés ainsi à 4°C jusqu'à utilisation.
L'anticorps modifié artificiellement KM8B6 a été purifié par chromatographie d'affinité sur protéine A à partir du surnageant de culture de cellule CHO provenant d'un clone co-transfécté de manière stable avec les plasmides pcDNA3 KM8B6-L et pcDNA3/Hygro KM8B6-H.
Les anticorps purifiés sont analysés par analyse SDS-PAGE en conditions dénaturantes réductrices. Les échantillons sont repris dans une solution tampon Tris- HCl 0,5 M pH 6,8, contenant 10% de glycérol 'VWR, Fontenay sous Bois, France) et 5% de B-mercaptoethanol (Promega). Ils sont portés à ébullition 5 minutes, puis analysés en électrophorèse SDS-PAGE selon la technique de Laemmli. Les protéines sont déposées à raison de 3μg dans des puits d'un gel de polyacrylamide de 1,5 mm d'épaisseur avec pour gel supérieur et inférieur des concentrations respectives de polyacrylamide de 4,5% et 12% (VWR). Après électrophorèse à 200V pendant 45 minutes à température ambiante, le gel est fixé et coloré au bleu de Coomassie R250 (Sigma Chemicals Co). Les masses moléculaires sont calculées à partir de la migration de marqueur de poids moléculaire Précision Plus Protein Standards (BIO- RAD). L'analyse SDS-PAGE sur gel à 12% en conditions dénaturantes réductrices montre que les masses moléculaires des chaînes chimériques L et H sont respectivement de 25 kDa et 5OkDa. L'analyse SDS-PAGE sur gel à 6% en conditions dénaturantes non réductrices montre que les chaînes L et H sont correctement assemblées pour former une molécule d'anticorps et que la masse moléculaire de l'anticorps modifié artificiellement est de l'ordre de 150 kDa.
13. Etude de la spécificité de l'anticorps KM8B6
(a), par immunofiuorescence indirecte sur cellules vivantes La spécificité des anticorps a été étudiée sur les cellules IMR32 qui expriment le GD2-O-acétylé et sur les cellules Neuro 2A qui n'expriment pas le GD2-O-acétylé. Les cellules au nombre de 10 sont mises à incuber avec l'anticorps 8B6 ou KM8B6 pendant 30 minutes à 4°C. Les cellules sont ensuite lavées deux fois dans du tampon PBS-BSA 1% pH 7,4 et mises à incuber de nouveau 30 minutes en présence d'anticorps de chèvre F(ab)2 anti-immunoglobulines de souris ou anti- immunoglobulines humaines marqués à l'isothiocyanate de fluorescéine (Jackson ImmunoResearch Europe LTD, Cambrideshire, UK) dilués au 1/100 dans du PBS- BSA 1%. Après trois nouveaux lavages dans du PBS, 10 000 cellules sont analysées à l'aide d'un cytomètre de flux FACScan (Beton-Dockinson, Mountain View, CA) dans une fenêtre SSC/FL1-H après exclusion des cellules mortes et des débris cellulaires. Sont déclarées positives, les cellules présentant une fluorescence supérieure à 1 Log après ajustement de la base à l'aide de témoins marqués non spécifiquement par le second anticorps seul.
Les résultats obtenus montrent que l'anticorps KM8B6, comme l'anticorps 8B6, reconnaît uniquement les cellules IMR32.
(b). par test immuno-enzymatique ELISA sur des cellules dessiquées en plaque de microtitration à 96 puits
La spécificité des anticorps a été étudiée sur les cellules IMR32 qui expriment le GD2-0-acétylé et sur les cellules Neuro 2A qui n'expriment pas le GD2-0-acétylé. Les cellules tumorales cultivées in vitro sont décollées de leur support de culture par traitement à la trypsine. Après trois lavages avec du PBS, les cellules sont distribuées dans des plaques de microtitration à fond plat Maxisorp (Nunc A/S, Roskilde, Danemark) à raison de 105 cellules par puits dans un volume de 50μL de PBS. Les plaques sont ensuite placées dans une étuve à 37°C pendant une nuit pour permettre l'évaporation du PBS. Les plaques peuvent être utilisées directement ou conservées pendant plusieurs mois à température ambiante avant utilisation. Au moment de l'analyse, les plaques sont d'abord incubées sous agitation une heure à tempéarture ambiante avec 200μL d'une solution tampon de PBS pH 7,4 contenant 1% d'e BSA afin de saturer les sites non spécifiques. La plaque est ensuite incubée durant 2 heures sous agitation à température ambiante avec lOOμL d'une solution d'anticorps dilué dans du tampon PBS à 0,1% de BSA. Après trois lavages , chacun effectué avec 200μL de tampon PBS, lOOμL d'une solution de F(ab')2 d'anticorps biotinylés spécifiques soit d'immunoglobulines totales de souris, soit d'immunoglobulines totales humaine (Jackson ImmunoResearch Europe LTD, Cambrideshire, UK) dilués au 1/2500 dans du PBS-BSA 0,1% est déposée dans chaque puit. Après 1 heure d'incubation sous agitation à température ambiante et trois lavages en PBS, une solution de streptavidine peroxydase biotinylée (Jackson ImmunoResearch Europe LTD, Cambrideshire, UK) dans du PBS-BSA 0,1% est mise à réagir pendant 1 heure avant d'être éliminée par lavage. La révélation du complexe fixé est mise en évidence par addition de lOOμL de substrat ABTS (Roche Diagnostics GmbH Mannheim, Germany). La densité optique est déterminée par une lecture de la plaque au spectrphotomètre (Multisan EX, Thermo Electron Corporation, Waltham, MA) à 405 nm à différents intervais de temps.
Les résultats obtenus montrent que l'anticorps KM8B6, comme l'anticorps 8B6, se fixe de manière dose-dépendante exclusivement sur les cellules IMR32.
(c). sur couche mince de silice
L'analyse a été réalisée sur un extrait gangliosidique total de cellules EVIR32. Les gangliosides tissulaires sont extraits selon la technique décrite par Ariga et al. (1991). L'échantillon à extraire est broyé dans dix volumes d'un mélange chloroforme/méthanol (C :M) (1 : 1, v/v) et laissé sous agitation mécanique à température ambiante pendant une nuit. Après fîltration, le résidu est repris dans 2,5 volumes (C :M) (1 : 1 , v/v) et à nouveau agité durant six heures. Le mélange est alors filtré et les deux filtrats sont évaporés sous pression réduite dans un évaporateur rotatif. Le résidu sec est alors déposé sur une colonne contenant 2 mL de DEAE- Sephadex A-25 sous forme acétate (Sigma Chemicals Co). Les lipides neutres sont éliminés par 15 mL de solvant A. Les gangliosides sont ensuite élues avec 15 mL de méthanol contenant 0,4M d'acétate de sodium 'Sigma Chemicals Co). A la fraction obtenue sont ajoutés 30 mL de PBS pH 7,4 pour être dessalée sur une colonne Sep- Pak (Waters Co., Milford, MA, USA) de gel hydrophobe Cl 8 selon la méthode de Mc Luer (1990). Le gel Cl 8 est d'abord conditionné par deux volumes de colonne de méthanol puis du mélange méthanol/PBS 1 :2 (v/v). L'extrait à dessaler est ensuite déposé sur la colonne à une vitesse de 1 mL/min. Les chaînes hydrocarbonnées des gangliosides interagissent par des liaisons hydrophobes avec le gel alors que les sels et les autres molécules non hydrophobes sont éliminés par deux volumes de colonne d'eau distillée. Les glycosphingolipides sont ensuite élues par un volume de méthanol puis un volume d'un mélange chloroforme/méthanol 2 :1 (v/v). Les gangliosides élues de cette colonne sont concentrés dans un nouveau volume adéquat d'un mélange C/M 2 :1 (v/v) et conservés à -200C.
Les gangliosides sont ensuite séparés par chromatographie sur couche mince. Cette méthode permet d'apprécier le profil des gangliosides totaux. Les plaques HPTLC sont constituées d'un gel de silice 60 'Merck) recouvrant une feuille d'aluminium. Les gangliosides déposés migrent 20 minutes à température ambiante dans une cuve saturée en solvant de migration. Ce solvant (phase mobile) est constitué d'un mélange C/M/CaC12 dans l'eau 0,22% (50 :45 :10, v/v/v). Plus un ganglioside est sialylé, plus il est polaire et moins il sera mobile. La détection des gangliosides sur plaque est réalisée chimiquement par le réactif résorcinol/HCl (Svennerholm, 1963). Ce réactif ne réagit qu'avec l'acide sialique qui est caractéristique des gangliosides. Après révélation au résorcinol, plusieurs bandes colorées sont observées correspondant à la migration des gangliosides de l'extrait total. L'identification des gangliosides séparés est réalisée soit à l'aide d'anticorps monoclonaux spécifiques, soit par comparaison avec des gangliosides standards utilisés comme marqueurs ayant migres en même temps que l'extrait gangliosidique à analyser.
Après migration des gangliosides sur une couche mince de silice, la plaque est immergée dans une solution de poly-(isobutyl)-méthacrylate 0,01% en hexane pendant 1 minute puis séchée à l'air. Ceci permet de plastifier la plaque et d'éviter le décollement du gel de son support lors des étapes ultérieures. Le protocole du test ELISA sur cellules dessiquées est alors suivi à l'exception de la révélation de la fixation de l'anticorps au ganglioside qui est effectué avec une solution de 4-chloro-l naphtol (Sigma Aldrich Chemie GmbH, Stenheim, germany) préparée extemporanément à raison de 1 mg de produit dissous dans 1 mL de méthanol, repris dans 20 mL de PBS et additionné de 30μL d'eau oxygénée 30 volumes.
Les résultats montrent que l'anticorps KM8B6, comme l'anticorps 8B6, reconnaît le GD2-0-acétylé uniquement en absence de traitement alcalin de l'extrait gangliosidique.
14. Etude de la distribution du ganglioside GD2 et de sa forme O-acétylée dans le système nerveux et sur des tissus tumoraux
Les échantillons de tumeurs (glioblastome, neuroblastome mélanome de cancer pulmonaire) ont été obtenus à partir d'exérèse chirurgicale. Les échantillons de nerfs périphériques humains ont été prélevés sur le rameau sensitif distal du nerf musculo-cutané, branche latérale du nerf péronier. Il s'agit de prélèvements diagnostiques de neuropathie périphérique ou pour des affections de la corne antérieure (nerfs sensitifs normaux) ayant posé des problèmes diagnostiques. Un volume de tissus ne dépassant pas les 0,5 cm3 est prélevé et congelé dans de l'isopentane refroidi à la température de l'azote liquide. Après 60 secondes, l'échantillon est retiré et transféré dans un tube de congélation préalablement refroifi à -700C. Des coupes de lOμm de tissu congelé sont réalisées à l'aide d'un cryostat. Les coupes sont recueillies sur des lames en verre Suoerfrost GoId + (VWR). Les coupes sont séchées à l'air pendant 3 minutes puis fixées dans de l'acétone pendant 10 minutes et de nouveau séchées à l'air. Les coupes sont alors conservées à -200C jusqu'à la réalisation de l'analyse immmunohistochimique. L'immunocoloration des échantillons tissulaires a été réalisée en utilisant les AcM de souris primaires suivants : Anticorps primaire spécifique du GD2 :
AcM 10B8 (IgG3, kappa) spécifique du GD2 AcM 8B6 (IgG3, kappa) spécifique du GD2-O-Ac Anticorps primaire servant de réactif de témoin négatif : AcM MCA2063 (IgG3, kappa) spécifique du DNP (Serotec France, Cergy Saint Christophe, Rance).
La révélation de la fixation de ces anticorps sur les échantillons tissulaires testés a été effectuée à l'aide de la trousse DakoCytomation Envision + system, Peroxydase HRP (Dako, Glostrup, Danemark) pour un usage avec les anticorps primaires de la souris selon les recommandations du fournisseur. Les échantillons sont ensuite montés entre lames et lamelles avec um milieu de montage aqueux
Aquadex (VWR). La recherche du marquage est alors réalisée par analyse en microscopie optique à l'aide d'un microscope optique au grossissement 100 et 400. Des microphotographies numériques de trois champs microscopiques choisis au hasard par échantillons analysés.
Les échantillons tumoraux, provenant de patients différents, ont tous présenté un marquage positif, membranaire et cytoplasmique, avec les anticorps 10B8 et 8B6 alors que les cellules saines n'ont pas été marquées par l'un ou l'autre de ces anticorps. Aucun marquage n'a été détecté avec l'anticorps MCA2063 anti-DNP.
Les échantillons de nerfs examinés ont tous présenté un marquage au niveau d'internodes de fibres myélinisées avec l'anticorps 10B8 alors que les axones et les fibroblastes ne présentaient pas de marquage. Ce marquage n'est pas retrouvé ou est difficilement détectable avec l'anticorps 8B6. Aucun marquage n'a été mis en évidence avec l'anticorps MCA2063.
15. Etude de la cytotoxicité des anticorps anti-GD2-O-acétylé 8B6 et KM8B6
(a). Préparation de la suspension de cellules cibles. 1x106 cellules de neuroblastome humain IMR32 cultivées dans du milieu
RPMI sont incubées en présence de 1,85 MBq de Na2 51CrC^ pendant 1 heure à 37°C. Les cellules sont ensuite lavées trois fois par du RPMI et centrifugation avant d'être resuspendues dans du RPMI et incubées à 4°C pendant 30 minutes afin de mesurer le relargage spontané de la substance radioactive.
Après une dernière centrifugation, les cellules sont reprises dans 5 mL de RPMI afin d'ajuster la concentration à 2xlO5 cellules/mL.
(b). Préparation des cellules effectrices
Du sang humain à été prélevé sur des donneurs volontaires sur des tubes à prélèvement sanguin contenant de l'héparine. Les leucocytes périphériques du sang ont été séparés du sang total sur un gradient de Ficoll® par centrifugation (1 800 x g pendant 30 minutes). Les cellules obtenues sont centrifugées trois fois dans du RPMI à 1500 x g pour lavage et re-suspendues dans du RPMI afin d'obtenir une concentration en cellules de 5x106 cellules/mL.
(c). Mesure de l'activité ADCC Dans chacun des puits de plaque de microtitration à 96 puits en fond en U, obtenue auprès de la société Falcon, 50 μL de suspension de cellules cibles, obtenues en a., sont déposés. 100 μL de la suspension de cellules effectrices, obtenue en b., sont ensuite ajoutés soit 50 000 cellules par puit. Le ratio de cellules cibles sur le nombre de cellules effectrices est de 1/50. L'anticorps 8B6, et l'anticorps modifié artificiellement KM8B6 et le rituxan®, anticorps homme-souris IgGl, kappa, anti- CD20 utilisé comme contrôle négatif) sont ensuite ajoutés dans chaque puit à la concentration de 1 μg/mL ou de 10 μg/mL. Le mélange est incubés 4 heures à 37°C. Après centrifugation, la plaque est centrifugée et la quantité de 51Cr présente dans le surnageant est mesurée à l'aide d'un compteur γ. La quantité totale de 51Cr libérée est mesurée selon la même procédure en ajoutant du milieu sans anticorps, et une solution de soude 5 N à la place de la suspension de cellules effectrices. L'ADCC est alors calculée en utilisant la formule suivante : % activité d'ADCC = (51Cr présent dans le surnageant - 51Cr libéré spontanément)/ (51Cr total - 51Cr libéré spontanément)
16. Activité tumorale de l'anticorps 8B6 dans un modèle syngénique de lymphome de souris.
L'activité anti-tumorale de l'anticorps 8B6 a été déterminée dans le modèle de greffe sous-cutanée syngénique du lymphome T de souris EL-4, qui exprime l'antigène GD2, chez la souris de souche C57BL/6 (Zhang H, Zhang S, Cheung NK, Ragupathi G, Livingston PO. Antibodies against GD2 ganglioside can eradicate syngeneic cancer micro métastases. Cancer Res. 1998, 58: 2844-9). Ces cellules EL4 expriment également l'atigène GD2-0-acétylé. Vingt quatre souris élevées en animalerie agréée de niveau Al ont reçu une injection sous-cutanée de 2OxIO4 cellules EL-4 en suspension dans du PBS, à l'âge de 12 semaines. Deux lots de 12 souris ont été constitués. Les souris du lot A ont reçu 70 μg d'AcM 8B6 en solution dans 200 μL de solution tampon PBS par voie i.v., tous les 3 jours à partir du premier jour après l'injection des cellules EL4 et jusqu'au 21eme jour. Les souris du lot B ont reçu, selon les mêmes modalités, uniquement 200 μL de solution PBS. Le volume des tumeurs a ensuite été mesuré tous les deux jours. Le volume tumoral a été estimé grâce à la formule suivante : volume (mm ) = longueur (mm) x largeur (mm) x 0,5 (Zeng G, Li DD, Gao L, Birkle S, Bieberich E, Tokuda A, Yu RK.Alteration of ganglioside composition by stable transfection with antisense vectors against GD3- synthase gène expression. Biochemistry 1999 38: 8762-9). Les souris présentant un volume > 3.000 mm sont sacrifiés. Les résultats obtenus sont présentés dans la Figure 16. Le lot B recevant le
PBS par voie i.v., correspond au lot témoin non traité (Figure 16, panneau B). Les tumeurs commencent à être détectable 10 jours après inoculation et montrent ensuite une croissance exponentielle. Vingt jours après inoculation, toutes les souris sauf deux ont une tumeur de plus de 1000 mm3. Toutes les souris ont été sacrifiées avant le jour 30 suivant les règles de l'expérimentation animale car leur tumeur dépassait 3000 mm . Chez les souris du lot A, traitées avec l'anticorps 8B6 (Figure 16, panneau A), un retard d'apparition des tumeurs est observé. De plus, la croissance tumorale est ralentie chez les souris ayant reçu cet anticorps. Vingt jours après l'inoculation, aucune des souris traitées n'a une tumeur de plus de 1000 mmm3. Au bout de 30 jours, 58 % des souris traitées avec l'AcM 8B6 sont survivantes alors que toutes les souris non traitées sont mortes. Au bout de 40 jours, 25 % des souris traitées sont encore en vie et au 50eme jour, 8 % des souris sont encore en vie et ne présentent pas de tumeurs papables et sont considérées comme guéries.

Claims

REVENDICATIONS
1. Utilisation d'un anticorps reconnaissant le ganglioside GD2-0-acétylé et ne reconnaissant pas le ganglioside GD2 pour le traitement des cancers sans la neurotoxicité observée lorsque des anticorps reconnaissant le ganglioside GD2 sont utilisés par administration à des fins thérapeutiques, ledit anticorps reconnaissant les molécules de GD2 O-acétylé exprimées par des cellules tumorales et ne reconnaissant pas les molécules de GD2 exprimées à la surface des nerfs périphériques et autres tissus nerveux normaux.
2. Utilisation selon la revendication 1 caractérisée que l'anticorps ne reconnaissant que la forme O-acétylée du ganglioside GD2 est une IgG kappa d'affinité supérieure à 107 litre/mole pour le GD2-0-acétylé et d'affinité au moins dix fois plus faible pour le GD2 lui-même.
3. Utilisation selon la revendication 1 ou 2 caractérisée en ce que l'anticorps ne reconnaissant que la forme O-acétylée du ganglioside GD2 est un anticorps monoclonal ou fragment de cet anticorps.
4. Utilisation selon la revendication 3 caractérisée en ce que l'anticorps ne reconnaissant que la forme O-acétylée du ganglioside GD2 correspond à un anticorps original dans lequel certains amino-acides ont été remplacés par d'autres en utilisant les techniques de génétique moléculaire connues de l'homme de l'art, pour modifier les propriétés dudit anticorps original, en particulier pour diminuer son immunogénicité, ou pour augmenter son activité toxique ou encore pour accélérer ou ralentir son élimination après injection.
5. Utilisation selon la revendication 3 caractérisée en ce que l'anticorps ne reconnaissant que la forme O-acétylée du ganglioside GD2 est l'anticorps 8B6 dont les régions déterminant la complémentarité de la région variable de la chaîne H ont comme séquences d'aminoacides celles représentées dans SEQ ID NO:3, SEQ ID NO:4 et SEQ ID NO:5 et les régions déterminant la complémentarité de la région variable de la chaîne L ont comme séquences d'aminoacides celles représentées dans SEQ ID NO:6, SEQ ID NO:7 et SEQ ID NO:8.
6. Utilisation selon la revendication 3 caractérisée en ce que l'anticorps ne reconnaissant que la forme O-acétylée du ganglioside GD2 est un anticorps chimérique ou fragment de celui-ci.
7. Utilisation selon la revendication 3 caractérisée en ce que l'anticorps ne reconnaissant que la forme O-acétylée du ganglioside GD2 est un anticorps humanisé ou fragment de celui-ci.
8. Utilisation selon l'une des revendications 5, 6 ou 7 caractérisée en ce que l'anticorps ne reconnaissant que la forme O-acétylée du ganglioside GD2 est un anticorps chimérique ou humanisé dont les régions déterminant la complémentarité de la région variable de la chaîne H ont comme séquences d'aminoacides celles représentées dans SEQ ID NO:3, SEQ ID NO:4 et SEQ ID NO:5 et les régions déterminant la complémentarité de la région variable de la chaîne L ont comme séquences d'aminoacides celles représentées dans SEQ ID NO:6, SEQ ID NO:7 et SEQ ID NO:8.
9. Utilisation selon les revendications 1 à 8 caractérisée en ce que lesdits cancers sont des neuroblastomes, des mélanomes, des glioblastomes ou des cancers pulmonaires à petites cellules.
10. Utilisation selon les revendications 1 à 9 caractérisée en ce que l'anticorps ou fragment de celui-ci est couplé avec une molécule X, où X est une molécule toxique, un médicament, une pro-drogue, ou un deuxième anticorps quelle que soit sa spécificité.
11. Utilisation selon la revendication 10 caractérisée en ce que ladite molécule toxique est une molécule toxique chimique, biologique ou radioactive, ladite molécule étant destinée à détruire des cellules tumorales exprimant le ganglioside GD2-O-acétylé.
12. Utilisation selon l'une quelconque des revendications 1 à 9 caractérisée en ce que l'anticorps est muté au niveau de sa région Fc par l'adjonction de sucres, modulant ainsi l'activation des cellules immunitaires et des molécules du système du complément.
13. Anticorps monoclonal ne reconnaissant que la forme O-acétylée du ganglioside GD2 et correspondant à un anticorps original dans lequel certains amino-acides ont été remplacés par d'autres en utilisant les techniques de génétique moléculaire connues de l'homme de l'art, pour modifier les propriétés de l'anticorps original, en particulier pour diminuer son immunogénicité, ou pour augmenter son activité toxique ou encore pour accélérer ou ralentir son élimination après injection.
14. Anticorps monoclonal selon la revendication 13, chimérique ou humanisé, reconnaissant le ganglioside GD2-0-acétylé et pas le ganglioside GD2 ou un fragment de celui-ci, où les régions déterminant la complémentarité de la région variable de la chaîne H ont comme séquences d'aminoacides celles représentées dans SEQ ID NO:3, SEQ ID NO:4 et SEQ ID NO:5 et les régions déterminant la complémentarité de la région variable de la chaîne L ont comme séquences d'aminoacides celles représentées dans SEQ ID NO:6, SEQ ID NO:7 et SEQ ID NO:8.
15. Anticorps monoclonal chimérique ou humanisé, ou fragment de celui-ci, selon la revendication 14 dont la région variable de la chaîne lourde possède la séquence déduite en acides aminés définie par SEQ ID NO : 1 et dont la région variable de la chaîne légère possède la séquence déduite en acides aminés définie par SEQ ID NO :2.
16. Anticorps monoclonal selon l'une des revendications 13, 14 ou 15 pouvant être obtenu à l'aide de la lignée cellulaire CHO ou un fragment de celui-ci.
17. Molécule pharmaceutique dérivée de l'anticorps selon l'une quelconque des revendications 13 àl6 dans laquelle l'anticorps ou le fragment de celui-ci est couplé avec une molécule X, où X est une molécule toxique, un médicament, une pro-drogue, ou un deuxième anticorps quelle que soit sa spécificité.
18. Molécule pharmaceutique selon la revendication 17 caractérisée en ce que ladite molécule toxique est une molécule toxique chimique, biologique ou radioactive, ladite molécule étant destinée à détruire des cellules tumorales exprimant le ganglioside GD2-0-acétylé.
19. Molécule pharmaceutique selon l'une quelconque des revendications 17 à 18 caractérisée en ce que ladite molécule thérapeutique est mutée au niveau de sa région Fc par l'adjonction de sucres, modulant ainsi l'activation des cellules immunitaires et des molécules du système du complément.
20. Molécule pour le diagnostic des cancers montrant une expression du ganglioside GD2 O-acétylé à la surface des cellules tumorales, ladite molécule étant dérivée de l'anticorps ou d'un fragment de celui-ci selon l'une quelconque des revendications 13 à 16, dans laquelle ledit anticorps ou ledit fragment est lié à un agent permettant la détection de l'anticorps ou dudit fragment par la fluorescence ou la radioactivité.
21. Séquence d'ADN codant pour l'anticorps selon l'une quelconque des revendications 13 à 16.
22. Vecteur d'expression comprenant la séquence d'ADN selon la revendication 21, liée de façon opérationnelle à un promoteur.
23. Cellule comprenant le vecteur d'expression selon la revendication 22.
24. Cellule selon la revendication 23, ladite cellule étant une cellule animale.
25. Transformant non humain qui produit l'anticorps selon l'une quelconque des revendications 13 à 16.
26. Procédé pour la production d'anticorps pour le ganglioside GD2-O-acétylé, ce procédé comprenant l'expression de la séquence d'ADN selon la revendication 21 dans une cellule ou un transformant non humain selon l'une quelconque des revendications 23 à 25 dans des conditions appropriées et la récupération de l'anticorps.
27. Procédé selon la revendication 26, dans lequel la cellule ou le transformant selon l'une quelconque des revendications 23 à 25 est cultivé dans des conditions dans lesquelles l'anticorps s'accumule.
PCT/EP2007/060750 2006-10-10 2007-10-10 Utilisation d'anticorps monoclonaux specifiques de la forme o-acetylee du ganglioside gd2 dans le traitement de certains cancers WO2008043777A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN2007800456900A CN101616935B (zh) 2006-10-10 2007-10-10 O-乙酰化形式gd2神经节苷酯特异性的单克隆抗体用于治疗一些癌症的用途
EP07821118A EP2076542B1 (fr) 2006-10-10 2007-10-10 Utilisation d'anticorps monoclonaux spécifiques de la forme o-acétylée du ganglioside gd2 dans le traitement de certains cancers
JP2009531833A JP5519283B2 (ja) 2006-10-10 2007-10-10 癌を治療するための、o−アセチル化型のgd2ガングリオシドに特異的なモノクローナル抗体の使用
US12/445,071 US8951524B2 (en) 2006-10-10 2007-10-10 Use of monoclonal antibodies specific to the O-acetylated form of GD2 ganglioside for treatment of certain cancers
ES07821118T ES2392631T3 (es) 2006-10-10 2007-10-10 Utilización de anticuerpos monoclonales específicos de la forma O-acetilada del gangliósido GD2 en el tratamiento de determinados cánceres
CA2703466A CA2703466C (fr) 2006-10-10 2007-10-10 Utilisation d'anticorps monoclonaux specifiques de la forme o-acetylee du ganglioside gd2 dans le traitement de certains cancers
AU2007306384A AU2007306384C1 (en) 2006-10-10 2007-10-10 Use of monoclonal antibodies specific to the O-acetylated form of GD2 ganglioside for the treatment of certain cancers
US14/581,048 US9334330B2 (en) 2006-10-10 2014-12-23 Use of monoclonal antibodies specific to the O-acetylated form of GD2 ganglioside for the treatment of certain cancers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0608881 2006-10-10
FR0608881A FR2906808B1 (fr) 2006-10-10 2006-10-10 Utilisation d'anticorps monoclonaux specifiques de la forme o-acetylee du ganglioside gd2 dans le traitement de certains cancers

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/445,071 A-371-Of-International US8951524B2 (en) 2006-10-10 2007-10-10 Use of monoclonal antibodies specific to the O-acetylated form of GD2 ganglioside for treatment of certain cancers
US14/581,048 Continuation US9334330B2 (en) 2006-10-10 2014-12-23 Use of monoclonal antibodies specific to the O-acetylated form of GD2 ganglioside for the treatment of certain cancers
US14/581,048 Continuation-In-Part US9334330B2 (en) 2006-10-10 2014-12-23 Use of monoclonal antibodies specific to the O-acetylated form of GD2 ganglioside for the treatment of certain cancers

Publications (2)

Publication Number Publication Date
WO2008043777A1 true WO2008043777A1 (fr) 2008-04-17
WO2008043777B1 WO2008043777B1 (fr) 2008-06-19

Family

ID=37963990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/060750 WO2008043777A1 (fr) 2006-10-10 2007-10-10 Utilisation d'anticorps monoclonaux specifiques de la forme o-acetylee du ganglioside gd2 dans le traitement de certains cancers

Country Status (10)

Country Link
US (1) US8951524B2 (fr)
EP (1) EP2076542B1 (fr)
JP (2) JP5519283B2 (fr)
CN (1) CN101616935B (fr)
AU (1) AU2007306384C1 (fr)
CA (1) CA2703466C (fr)
ES (1) ES2392631T3 (fr)
FR (1) FR2906808B1 (fr)
RU (1) RU2462476C2 (fr)
WO (1) WO2008043777A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002822A1 (fr) * 2008-06-30 2010-01-07 Morphotek, Inc. Anticorps anti-gd2 et procédés et utilisations associés à ceux-ci
EP2537933A1 (fr) 2011-06-24 2012-12-26 Institut National de la Santé et de la Recherche Médicale (INSERM) Immunocytokines basées sur le domaine IL-15 et IL-15Ralpha sushi
EP3269739A1 (fr) 2016-07-15 2018-01-17 OGD2 Pharma Anticorps humanisé contre le ganglioside gd2 o-acétylé (oacgd2)
US10669328B2 (en) 2013-11-12 2020-06-02 Ogd2 Pharma Human IgG1 derived antibody with pro-apoptotic activity
US11401312B2 (en) 2013-04-19 2022-08-02 Cytune Pharma Cytokine derived treatment with reduced vascular leak syndrome
WO2022219076A1 (fr) 2021-04-14 2022-10-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Nouveau procédé pour améliorer l'activité antitumorale de macrophages
WO2022219080A1 (fr) 2021-04-14 2022-10-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Nouvelle méthode pour améliorer la cytotoxicité de cellules nk

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2906808B1 (fr) * 2006-10-10 2012-10-05 Univ Nantes Utilisation d'anticorps monoclonaux specifiques de la forme o-acetylee du ganglioside gd2 dans le traitement de certains cancers
US9334330B2 (en) * 2006-10-10 2016-05-10 Universite De Nantes Use of monoclonal antibodies specific to the O-acetylated form of GD2 ganglioside for the treatment of certain cancers
JP6029581B2 (ja) 2010-06-19 2016-11-24 メモリアル スローン−ケタリング キャンサー センター 抗gd2抗体
CA2835506A1 (fr) * 2011-05-10 2012-11-15 Biomark Technologies Inc. Anticorps monoclonal pour l'acetylamantadine
JP6482525B2 (ja) * 2013-03-15 2019-03-13 メモリアル スローン ケタリング キャンサー センター 高親和性抗gd2抗体
KR102190322B1 (ko) * 2013-04-29 2020-12-11 오제데2 파르마 암줄기세포 암에 대한 새로운 치료적 진단적 전략으로서 o-아세틸화된-gd2 갱글리오사이드 타겟화
US10745489B2 (en) 2013-04-29 2020-08-18 Ogd2 Pharma Targeting o-acetylated gd2 ganglioside as a new therapeutic and diagnostic strategy for Cancer Stem Cells cancer
EP2871190A1 (fr) * 2013-11-11 2015-05-13 ATLAB Pharma Anticorps contre le ganglioside GD2-O-acétylé comportant une activité pro-apoptotique
EP2915569A1 (fr) 2014-03-03 2015-09-09 Cytune Pharma Procédé de purification de conjugués à base Il -15/IL-15Ralpha
GB201403972D0 (en) 2014-03-06 2014-04-23 Ucl Business Plc Chimeric antigen receptor
EP3593812A3 (fr) 2014-03-15 2020-05-27 Novartis AG Traitement du cancer à l'aide d'un récepteur d'antigène chimérique
WO2016044605A1 (fr) 2014-09-17 2016-03-24 Beatty, Gregory Ciblage de cellules cytotoxiques avec des récepteurs chimériques pour l'immunothérapie adoptive
US20180334490A1 (en) 2014-12-03 2018-11-22 Qilong H. Wu Methods for b cell preconditioning in car therapy
US11161907B2 (en) 2015-02-02 2021-11-02 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
JP2018507910A (ja) * 2015-02-12 2018-03-22 ジ・アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・ジ・ユニバーシティ・オブ・アリゾナ 神経芽細胞腫を治療する方法
US20180298068A1 (en) 2015-04-23 2018-10-18 Novartis Ag Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
WO2017027392A1 (fr) 2015-08-07 2017-02-16 Novartis Ag Traitement du cancer à l'aide des protéines de récepteur cd3 chimères
SI3380620T1 (sl) 2015-11-23 2024-09-30 Novartis Ag Optimizirani lentivirusni prenosni vektorji in njihove uporabe
WO2017114497A1 (fr) 2015-12-30 2017-07-06 Novartis Ag Thérapies à base de cellules effectrices immunitaires dotées d'une efficacité accrue
KR20180118175A (ko) 2016-03-04 2018-10-30 노파르티스 아게 다중 키메라 항원 수용체 (car) 분자를 발현하는 세포 및 그에 따른 용도
EP3432924A1 (fr) 2016-03-23 2019-01-30 Novartis AG Mini-corps sécrétés par des cellules et leurs usages
EP4219721A3 (fr) 2016-04-15 2023-09-06 Novartis AG Compositions et procédés pour l'expression sélective de protéines
US20190161542A1 (en) 2016-08-01 2019-05-30 Novartis Ag Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule
EP3329937A1 (fr) 2016-12-05 2018-06-06 OGD2 Pharma Utilisation d'anticorps contre le ganglioside gd2 o-acétylé afin d'améliorer le potentiel thérapeutique de médicaments
WO2018111340A1 (fr) 2016-12-16 2018-06-21 Novartis Ag Procédés de détermination de la puissance et de la fonction proliférative de lymphocytes t à récepteur antigénique chimérique (car)
ES2912408T3 (es) 2017-01-26 2022-05-25 Novartis Ag Composiciones de CD28 y métodos para terapia con receptores quiméricos para antígenos
CN110582509A (zh) 2017-01-31 2019-12-17 诺华股份有限公司 使用具有多特异性的嵌合t细胞受体蛋白治疗癌症
EP3589647A1 (fr) 2017-02-28 2020-01-08 Novartis AG Compositions d'inhibiteur shp et utilisations pour une thérapie de récepteur d'antigène chimère
WO2018229715A1 (fr) 2017-06-16 2018-12-20 Novartis Ag Compositions comprenant des anticorps anti-cd32b et procédés d'utilisation correspondants
RU2663104C1 (ru) * 2017-07-13 2018-08-01 Общество с ограниченной ответственностью "Реал Таргет" Получение пегилированных фрагментов gd2-специфичных антител, индуцирующих прямую клеточную гибель gd2-позитивных опухолевых клеток, и их применение в терапии gd2-позитивных опухолей
TW202428622A (zh) 2017-10-18 2024-07-16 瑞士商諾華公司 用於選擇性蛋白質降解的組合物及方法
RU2020116579A (ru) 2017-10-25 2021-11-25 Новартис Аг Способы получения клеток, экспрессирующих химерный антигенный рецептор
US20210040205A1 (en) 2017-10-25 2021-02-11 Novartis Ag Antibodies targeting cd32b and methods of use thereof
WO2019089798A1 (fr) 2017-10-31 2019-05-09 Novartis Ag Compositions anti-car et procédés
WO2019210153A1 (fr) 2018-04-27 2019-10-31 Novartis Ag Thérapies reposant sur des cellules car-t présentant une efficacité améliorée
EP3788369A1 (fr) 2018-05-01 2021-03-10 Novartis Ag Biomarqueurs pour évaluer des cellules car-t pour prédire un résultat clinique
US20210213063A1 (en) 2018-05-25 2021-07-15 Novartis Ag Combination therapy with chimeric antigen receptor (car) therapies
EP3802825A1 (fr) 2018-06-08 2021-04-14 Intellia Therapeutics, Inc. Compositions et procédés d'immuno-oncologie
AR116109A1 (es) 2018-07-10 2021-03-31 Novartis Ag Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos
CN108948211B (zh) * 2018-07-24 2021-08-20 北京美康基免生物科技有限公司 一种基于靶向gd2的嵌合抗原受体及其应用
KR20210106437A (ko) 2018-12-20 2021-08-30 노파르티스 아게 3-(1-옥소이소인돌린-2-일)피페리딘-2,6-디온 유도체를 포함하는 투약 요법 및 약학적 조합물
CN113490528A (zh) 2019-02-15 2021-10-08 诺华股份有限公司 3-(1-氧代-5-(哌啶-4-基)异吲哚啉-2-基)哌啶-2,6-二酮衍生物及其用途
EP3924055B1 (fr) 2019-02-15 2024-04-03 Novartis AG Dérivés de 3-(1-oxoisoindoline-2-yl)pipéridine-2,6-dione substitués et leurs utilisations
WO2020219742A1 (fr) 2019-04-24 2020-10-29 Novartis Ag Compositions et procédés de dégradation sélective de protéines
RU2733430C1 (ru) * 2019-11-19 2020-10-01 Общество с ограниченной ответственностью «Реал Таргет» Создание конъюгатов gd2-специфичных антител и фрагментов gd2-специфичных антител с препаратами
MX2022007759A (es) 2019-12-20 2022-07-19 Novartis Ag Combinacion del anticuerpo anti tim-3 mbg453 y anticuerpo anti tgf-beta nis793, con o sin decitabina o el anticuerpo anti pd-1 spartalizumab, para el tratamiento de mielofibrosis y sindrome mielodisplasico.
AU2021207901A1 (en) 2020-01-14 2022-09-08 Synthekine, Inc. IL2 orthologs and methods of use
AU2021288224A1 (en) 2020-06-11 2023-01-05 Novartis Ag ZBTB32 inhibitors and uses thereof
CN115916199A (zh) 2020-06-23 2023-04-04 诺华股份有限公司 包含3-(1-氧代异吲哚啉-2-基)哌啶-2,6-二酮衍生物的给药方案
EP4188549A1 (fr) 2020-08-03 2023-06-07 Novartis AG Dérivés de 3-(1-oxoisoindolin-2-yl)pipéridine-2,6-dione substitués par hétéroaryle et leurs utilisations
TW202304979A (zh) 2021-04-07 2023-02-01 瑞士商諾華公司 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途
CN118056008A (zh) 2021-04-27 2024-05-17 诺华股份有限公司 病毒载体生产系统
WO2023214325A1 (fr) 2022-05-05 2023-11-09 Novartis Ag Dérivés de pyrazolopyrimidine et leurs utilisations en tant qu'inhibiteurs de tet2
WO2024040194A1 (fr) 2022-08-17 2024-02-22 Capstan Therapeutics, Inc. Conditionnement pour l'ingénierie de cellules immunitaires in vivo
WO2024089639A1 (fr) 2022-10-26 2024-05-02 Novartis Ag Formulations lentivirales

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9904581D0 (sv) * 1999-12-15 1999-12-15 A & Science Invest Ab A novel helicobacter pylori-binding substance and use thereof
PL211180B1 (pl) * 2002-12-17 2012-04-30 Merck Patent Gmbh Białko fuzyjne typu przeciwciało-IL2, wektor zawierający sekwencję kwasów nukleinowych kodujących takie białko, kompozycja farmaceutyczna zawierająca takie białko fuzyjne oraz jego zastosowania do wytwarzania leków
DE602005016773D1 (de) * 2004-01-22 2009-11-05 Merck Patent Gmbh Antikrebs-antikörper mit reduzierter komplementfixierung
FR2906808B1 (fr) * 2006-10-10 2012-10-05 Univ Nantes Utilisation d'anticorps monoclonaux specifiques de la forme o-acetylee du ganglioside gd2 dans le traitement de certains cancers

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AUBRY JACQUES: "MAb 60C3 anti-GD2 ganglioside and its O-acetylated form", HYBRIDOMA, vol. 16, no. 6, December 1997 (1997-12-01), pages 566, XP008078467, ISSN: 0272-457X *
AUBRY JACQUES: "MAb 8B6 anti-O-acetyl GD2 ganglioside", HYBRIDOMA, vol. 16, no. 6, December 1997 (1997-12-01), pages 568, XP008078553, ISSN: 0272-457X *
CERATO E ET AL: "Variable region gene segments of nine monoclonal antibodies specific to disialogangliosides (GD2, GD3) and their O-acetylated derivatives.", HYBRIDOMA AUG 1997, vol. 16, no. 4, August 1997 (1997-08-01), pages 307 - 316, XP008078446, ISSN: 0272-457X *
HAMILTON W B ET AL: "Ganglioside expression on human malignant melanoma assessed by quantitative immune thin-layer chromatography.", INTERNATIONAL JOURNAL OF CANCER. JOURNAL INTERNATIONAL DU CANCER 20 FEB 1993, vol. 53, no. 4, 20 February 1993 (1993-02-20), pages 566 - 573, XP002432458, ISSN: 0020-7136 *
MEZAZIGH A ET AL: "A MONOCLONAL ANTIBODY REACTING SPECIFICALLY FOR GANGLIOSIDE O-ACETYLATED GD2 IN NEUROECTODERMAL TUMORS", GLYCOCONJUGATE JOURNAL, LUND, SE, vol. 10, no. 4, 20 August 1993 (1993-08-20), pages 300 - 301, XP008078472, ISSN: 0282-0080 *
SJOBERG E R ET AL: "Structural and immunological characterization of O-acetylated GD2. Evidence that GD2 is an acceptor for ganglioside O-acetyltransferase in human melanoma cells.", THE JOURNAL OF BIOLOGICAL CHEMISTRY 15 AUG 1992, vol. 267, no. 23, 15 August 1992 (1992-08-15), pages 16200 - 16211, XP002432457, ISSN: 0021-9258 *
YAN LI ET AL: "Pharmacogenetics and pharmacogenomics in oncology therapeutic antibody development", BIOTECHNIQUES, INFORMA LIFE SCIENCES PUBLISHING, WESTBOROUGH, MA, US, vol. 39, no. 4, October 2005 (2005-10-01), pages 565 - 568, XP001245630, ISSN: 0736-6205 *
YE J N ET AL: "A novel O-acetylated ganglioside detected by anti-GD2 monoclonal antibodies.", INTERNATIONAL JOURNAL OF CANCER. JOURNAL INTERNATIONAL DU CANCER 21 JAN 1992, vol. 50, no. 2, 21 January 1992 (1992-01-21), pages 197 - 201, XP002432456, ISSN: 0020-7136 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507657B2 (en) 2008-06-30 2013-08-13 Morphotek, Inc. Anti-GD2 antibodies
JP2011526785A (ja) * 2008-06-30 2011-10-20 モーフオテク・インコーポレーテツド 抗gd2抗体並びにそれに関連する方法及び使用
US8278065B2 (en) 2008-06-30 2012-10-02 Morphotek, Inc. Polynucleotides encoding anti-GD2 antibodies
WO2010002822A1 (fr) * 2008-06-30 2010-01-07 Morphotek, Inc. Anticorps anti-gd2 et procédés et utilisations associés à ceux-ci
US8956832B2 (en) 2008-06-30 2015-02-17 Morphotek, Inc. Cells expressing anti-GD2 antibodies and methods related thereto
EP3406723A1 (fr) 2011-06-24 2018-11-28 Cytune Immunocytokines basées sur le domaine il-15 et il-15ralpha sushi
AU2012272138B2 (en) * 2011-06-24 2017-07-20 Cytune Pharma An IL-15 and IL-15Ralpha sushi domain based immunocytokines
US11753454B2 (en) 2011-06-24 2023-09-12 Cytune Pharma IL-15 and IL-15R\alpha sushi domain based immunocytokines
WO2012175222A1 (fr) 2011-06-24 2012-12-27 Cytune Immunocytokines à base d'il-15 et domaine sushi d'il-15rα
EP2537933A1 (fr) 2011-06-24 2012-12-26 Institut National de la Santé et de la Recherche Médicale (INSERM) Immunocytokines basées sur le domaine IL-15 et IL-15Ralpha sushi
US10626155B2 (en) 2011-06-24 2020-04-21 Cytune Pharma IL-15 and IL-15R\alpha sushi domain based immunocytokines
US10899816B2 (en) 2011-06-24 2021-01-26 Inserm (Institut National De La Santé Et De La Recherche Medicale) IL-15 and IL-15Rα sushi domain based immunocytokines
AU2019240556B2 (en) * 2011-06-24 2022-01-13 Cytune Pharma An IL-15 and IL-15Ralpha sushi domain based immunocytokines
US11401312B2 (en) 2013-04-19 2022-08-02 Cytune Pharma Cytokine derived treatment with reduced vascular leak syndrome
US10669328B2 (en) 2013-11-12 2020-06-02 Ogd2 Pharma Human IgG1 derived antibody with pro-apoptotic activity
WO2018010846A1 (fr) 2016-07-15 2018-01-18 Ogd2 Pharma Anticorps humanisé contre le ganglioside gd2 o-acétylé (oacgd2)
EP4019551A1 (fr) 2016-07-15 2022-06-29 OGD2 Pharma Anticorps humanisé contre le ganglioside gd2 o-acétylé (oacgd2)
US11440968B2 (en) 2016-07-15 2022-09-13 Ogd2 Pharma Humanized antibody against O-acetylated GD2 ganglioside (OAcGD2)
EP3269739A1 (fr) 2016-07-15 2018-01-17 OGD2 Pharma Anticorps humanisé contre le ganglioside gd2 o-acétylé (oacgd2)
WO2022219076A1 (fr) 2021-04-14 2022-10-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Nouveau procédé pour améliorer l'activité antitumorale de macrophages
WO2022219080A1 (fr) 2021-04-14 2022-10-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Nouvelle méthode pour améliorer la cytotoxicité de cellules nk

Also Published As

Publication number Publication date
FR2906808B1 (fr) 2012-10-05
AU2007306384C1 (en) 2012-10-25
JP2014062107A (ja) 2014-04-10
JP5519283B2 (ja) 2014-06-11
WO2008043777B1 (fr) 2008-06-19
CN101616935A (zh) 2009-12-30
AU2007306384B2 (en) 2012-04-12
JP5844790B2 (ja) 2016-01-20
CN101616935B (zh) 2013-08-21
FR2906808A1 (fr) 2008-04-11
ES2392631T3 (es) 2012-12-12
CA2703466C (fr) 2015-09-08
RU2009117299A (ru) 2010-11-20
RU2462476C2 (ru) 2012-09-27
US8951524B2 (en) 2015-02-10
AU2007306384A1 (en) 2008-04-17
EP2076542B1 (fr) 2012-08-15
JP2010505909A (ja) 2010-02-25
CA2703466A1 (fr) 2008-04-17
EP2076542A1 (fr) 2009-07-08
US20100150910A1 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
EP2076542B1 (fr) Utilisation d'anticorps monoclonaux spécifiques de la forme o-acétylée du ganglioside gd2 dans le traitement de certains cancers
US9334330B2 (en) Use of monoclonal antibodies specific to the O-acetylated form of GD2 ganglioside for the treatment of certain cancers
JP3066983B2 (ja) 膜結合cd30抗原の蛋白質分解性開裂及び遊離を防ぐ抗cd30抗体
KR101683884B1 (ko) 항-EpCAM 항체 및 이의 용도
EP1824887A2 (fr) Anticorps cytotoxique dirige contre les proliferations hematopoïetiques lymphoïdes de type b
JP2022530301A (ja) Cd3抗原結合性断片及びその使用
KR20140014064A (ko) 신규한 조절 인자 및 사용 방법
KR20140018837A (ko) 노텀 단백질 조절 인자 및 사용 방법
CN112153987B (zh) 抗体-药物缀合物及其用于治疗癌症的用途
FR2909092A1 (fr) Nouveaux anticorps anti-proliferation
TW200902038A (en) Kits of parts for treating a malignant pathology, an auto-immune disease or an infectious disease
CN111196854A (zh) Ox40抗体及其制备方法和应用
KR20210025023A (ko) 콘드로이틴 황산 프로테오글리칸-5에 결합하는 항체
JP2022539344A (ja) 抗cea抗体及びその応用
MXPA06009759A (es) Codocito para trastornos por linfocitos b.
EP3660155A1 (fr) Anticorps anti cd147
JP2004522447A (ja) ハイブリドーマ細胞系g250およびモノクローナル抗体を製造するためのその使用
EP0781337A1 (fr) Anticorps humanise dirige contre la chaine beta 1 des integrines
KR20140126349A (ko) 강글리오시드에 대한 이중 특이성을 갖는 재조합 항체 및 그 용도
EP2673298A1 (fr) Anticorps anti-gb3 utiles dans le traitement des maladies associées à l'angiogénèse
WO2008099071A2 (fr) Anticorps monoclonal dirigé contre le récepteur humain des ldl
TW202400651A (zh) 抗cd200r1抗體
TW202434637A (zh) 抗體、抗原結合片段及其醫藥用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780045690.0

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07821118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007821118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2703466

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2009531833

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007306384

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009117299

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2007306384

Country of ref document: AU

Date of ref document: 20071010

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12445071

Country of ref document: US