WO2008041601A1 - Procédé d'oxydation par plasma, appareil d'oxydation par plasma et support de stockage - Google Patents

Procédé d'oxydation par plasma, appareil d'oxydation par plasma et support de stockage Download PDF

Info

Publication number
WO2008041601A1
WO2008041601A1 PCT/JP2007/068756 JP2007068756W WO2008041601A1 WO 2008041601 A1 WO2008041601 A1 WO 2008041601A1 JP 2007068756 W JP2007068756 W JP 2007068756W WO 2008041601 A1 WO2008041601 A1 WO 2008041601A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
processing
gas
oxide film
silicon oxide
Prior art date
Application number
PCT/JP2007/068756
Other languages
English (en)
French (fr)
Inventor
Toshihiko Shiozawa
Yoshiro Kabe
Takashi Kobayashi
Junichi Kitagawa
Kazuhiro Isa
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020097006461A priority Critical patent/KR101163276B1/ko
Priority to CN2007800364025A priority patent/CN101523576B/zh
Priority to JP2008537497A priority patent/JP5231233B2/ja
Priority to US12/443,552 priority patent/US20100029093A1/en
Publication of WO2008041601A1 publication Critical patent/WO2008041601A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • H01L21/31662Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe of silicon in uncombined form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region
    • H01L21/7621Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region the recessed region having a shape other than rectangular, e.g. rounded or oblique shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76229Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches

Definitions

  • Plasma oxidation processing method Plasma processing apparatus, and storage medium
  • the present invention relates to a plasma oxidation processing method, and more particularly to a plasma oxidation processing method that can be applied to, for example, a case where a silicon oxide film as an insulating film is formed in the manufacturing process of various semiconductor devices.
  • a silicon oxide film such as SiO is formed as an insulating film such as a gate insulating film of a transistor.
  • a silicon oxide film such as SiO is formed as an insulating film such as a gate insulating film of a transistor.
  • thermal oxidation using an oxidation furnace RTP Rapid Thermal Process
  • a silicon substrate is heated to a temperature of over 800 ° C, and oxygen and hydrogen are combusted to generate water vapor (HO).
  • Vapor Generator Water vapor
  • Oxidation atmosphere is used to oxidize the silicon surface to form a silicon oxide film.
  • the thermal oxidation treatment is considered to be a method capable of forming a high-quality silicon oxide film.
  • treatment at a high temperature exceeding 800 ° C. is required, there is a problem that the thermal budget increases and the silicon substrate is distorted by thermal stress.
  • Processing pressure is about 133. 3Pa, O flow rate in processing gas is 1% (for convenience of explanation, "low pressure
  • the surface of the object to be processed If the pattern of grooves, lines & spaces, etc. formed on the surface is sparse and dense, the formation rate of the silicon oxide film will differ between the part where the pattern is sparse and the part where the pattern is sparse, resulting in a uniform film thickness. In some cases, the silicon oxide film cannot be formed. If the thickness of the silicon oxide film varies depending on the part, it becomes a cause of lowering the reliability of a semiconductor device using this as an insulating film.
  • the conditions are that the processing pressure is about 667 Pa and the O flow rate in the processing gas is about 25%.
  • the plasma oxidation process is performed under the conditions (for convenience of explanation, “high pressure, high oxygen concentration conditions”), if a silicon oxide film is formed on the uneven surface, the oxidation rate of the dense part only decreases.
  • the rounded shape is not sufficiently introduced at the corner of the upper edge of the convex part, and there are concerns about the occurrence of leakage current due to electric field concentration from that part and the generation of cracks due to the stress of the silicon oxide film.
  • a silicon oxide film is formed by plasma oxidation, a uniform film thickness can be obtained regardless of the density of the pattern, and a round shape can be introduced into the corner portion at the upper end of the convex portion. Is desired.
  • An object of the present invention is to form a silicon oxide film with a uniform film thickness by forming a silicon corner at the upper end of a convex part of a pattern without causing a film thickness difference due to pattern density. It is to provide a plasma oxidation treatment capable of.
  • Another object of the present invention is to provide a plasma oxidation processing method capable of forming such a silicon oxide film with as high a throughput as possible.
  • an object to be processed having a surface made of silicon and having a concavo-convex pattern on the surface is disposed in a processing container of a plasma processing apparatus, and the processing container And forming a plasma in the range of 5 to 20% of oxygen in the processing gas and a processing pressure in the range of 267 Pa to 400 Pa, and the plasma forms silicon on the surface of the object to be processed.
  • a plasma oxidation treatment method is provided that includes oxidizing the substrate to form a silicon oxide film.
  • the plasma has the processing gas and a plurality of slots.
  • a microwave excited plasma formed by a microwave introduced into the processing vessel by a planar antenna.
  • an object to be processed having silicon on the surface is disposed in a processing container of a plasma processing apparatus, and a micro antenna is formed in the processing container from a planar antenna having a plurality of slots.
  • a plasma of a processing gas containing a rare gas and oxygen is formed in the processing container by radiating a wave, and a silicon oxide film is formed by oxidizing the silicon on the surface of the object to be processed by the plasma.
  • a plasma oxidation method comprising:
  • a processing gas containing 5 to 20% oxygen is supplied into the processing container at a flow rate of 0.128 mL / min or more per lmL volume of the plasma processing space in which the plasma processing is effectively performed in the processing container.
  • a plasma oxidation processing method is provided in which the plasma is formed at a processing pressure of 267 Pa to 400 Pa, and silicon on the surface of the object is oxidized by the plasma to form a silicon oxide film.
  • the silicon oxidation treatment with plasma is performed while heating the object to be processed, and the preheating of the object to be processed prior to the silicon oxidation process is performed for 5 to 30 seconds. Preferably it is done.
  • the processing gas can further include hydrogen gas. Furthermore, it is preferable that the surface of the object to be processed has a concavo-convex pattern.
  • the surface of the object to be processed has a concavo-convex pattern
  • the ratio (t / t) of the thickness t of the silicon oxide film formed at the corner of the upper end of the convex portion of the concavo-convex pattern and the thickness t of the silicon oxide film formed on the side surface of the convex portion is preferable to form the silicon oxide film so that the force is 0.95 or more and 1.5 or less.
  • the ratio of the thickness of the silicon oxide film at the bottom of the concave portion in the region where the uneven pattern is dense to the thickness of the silicon oxide film at the bottom of the concave portion in the region where the uneven pattern is sparse is 85% or less. It is preferable to be on top.
  • the proportion of oxygen in the processing gas is preferably 10 to 18%. Also, the above The treatment pressure is preferably 300 Pa or more and 350 Pa or less.
  • the ratio of hydrogen gas in the processing gas is 0.;! To 10%.
  • the processing temperature is preferably 200 to 800 ° C.
  • a processing container in which an object to be processed having a surface made of silicon and having an uneven pattern on the surface is accommodated, and a rare gas and oxygen are contained in the processing container.
  • a processing gas supply mechanism for supplying a processing gas containing a gas, an exhaust mechanism for evacuating the inside of the processing container, a plasma generating mechanism for generating plasma of the processing gas in the processing container,
  • plasma is formed in the processing container at a ratio of oxygen in the processing gas of 5 to 20% and a processing pressure of 267 Pa to 400 Pa
  • a plasma processing apparatus including a control unit that controls to oxidize silicon on the surface of the object to be processed to form a silicon oxide film by plasma.
  • a storage medium that operates on a computer and stores a program for controlling the plasma processing apparatus, and the program is processed by the plasma processing apparatus at the time of execution.
  • An object to be processed having a surface made of silicon and having an uneven pattern on the surface is placed in the container, and the oxygen content in the processing gas is within a range of 5 to 20% in the processing container.
  • a storage medium is provided for allowing a computer to control the plasma processing apparatus so that the method can be performed.
  • the object to be processed having a concavo-convex pattern is formed by plasma formed under conditions of a force of 5 to 20% of oxygen in the processing gas and a processing pressure of 267 Pa or more and 400 Pa or less.
  • a silicon oxide film By forming a silicon oxide film by oxidizing the silicon on the surface, both the suppression of the film thickness difference due to the density of the pattern and the introduction of a round shape to the silicon corner at the top of the convex part are achieved, and the surface has an uneven pattern.
  • a silicon oxide film can be formed with a uniform film thickness on the silicon surface. Therefore, it is possible to give good electrical characteristics to a semiconductor device using the silicon oxide film obtained by this method as an insulating film, and to improve the reliability of the semiconductor device.
  • the ratio of oxygen in the processing gas is 5 to 20% and the processing pressure is set to 267 Pa or more and 400 Pa or less, and plasma processing is effectively performed in the processing container. It has been found that when the volume of the plasma treatment space to be applied is 15 to 16 L, the oxidation rate is increased and the throughput is improved by setting the flow rate of the treatment gas to 2000 mL / min or more. In addition, the effect of increasing the oxidation rate is exhibited regardless of the volume of the processing container as long as the processing gas flow rate per unit volume of the plasma processing space in which the plasma processing is effectively performed in the processing container is greater than or equal to a predetermined value. Specifically, if the treatment gas flow rate is 0 ⁇ 128 mL / min or more per lmL volume, the oxidation rate increases and the throughput is improved.
  • FIG. 1 is a schematic cross-sectional view showing an example of a plasma processing apparatus suitable for carrying out the method of the present invention.
  • FIG. 2 is a drawing showing the structure of a planar antenna plate.
  • FIG. 3 is a flow chart for explaining the trench-shaped oxidation treatment by the plasma treatment apparatus of FIG.
  • FIG. 4 is a diagram showing a result of forming a silicon oxide film by changing the processing time under “high pressure and high oxygen concentration conditions” and “medium pressure and medium oxygen concentration conditions”.
  • FIG. 5 is a diagram for explaining a plasma processing space where plasma processing is effectively performed in the chamber.
  • FIG. 6 A figure that shows the change in film thickness by changing the total flow rate of the processing gas under the “medium pressure and medium oxygen concentration conditions”.
  • FIG. 8 Preliminary processing in the production of silicon oxide film under “medium pressure and medium oxygen concentration conditions”. The figure which shows the result of grasping the relation between the processing time, the film thickness, and the dispersion of the film thickness for the heat time of 35 seconds and the lOsec.
  • FIG. 9 is a schematic view of a wafer cross section showing an example of application to element isolation by STI.
  • FIG. 10 is a schematic diagram showing a longitudinal section near the wafer surface on which a pattern is formed.
  • FIG. 11 is a graph showing the relationship between the film thickness ratio of the silicon oxide film and the processing pressure.
  • FIG. 12 is a graph showing the relationship between the thickness ratio of the silicon oxide film and the oxygen ratio in the processing gas.
  • FIG. 13 is a graph showing the relationship between the processing pressure and the film thickness ratio due to the pattern density of the silicon oxide film.
  • FIG. 15 is a graph showing the relationship between the film thickness ratio depending on the plane orientation of the silicon oxide film and the processing pressure.
  • FIG. 16 is a graph showing the relationship between the film thickness ratio depending on the plane orientation of the silicon oxide film and the oxygen ratio in the processing gas.
  • FIG. 17A is a timing chart showing a conventional sequence.
  • FIG. 17B is a timing chart showing a sequence in which the oxidation treatment time is shortened by increasing the treatment gas flow rate.
  • FIG. 17C is a timing chart showing a sequence in which the preheating time is shortened in addition to shortening the oxidation treatment time by increasing the processing gas flow rate.
  • FIG. 1 is a cross-sectional view schematically showing an example of a plasma processing apparatus suitable for implementing the silicon oxide film forming method of the present invention.
  • This plasma processing apparatus is designed to generate plasma by introducing microwaves into a processing vessel using a planar antenna having a plurality of slots, particularly RLSA (Radial Line Slot Antenna). It is configured as an RLSA microwave plasma processing apparatus capable of generating microwave plasma having a low density and a low electron temperature, and is suitably used for forming insulating films in various semiconductor devices such as gate insulating films of transistors.
  • RLSA Random Line Slot Antenna
  • the plasma processing apparatus 100 is an airtight and substantially cylindrical chamber that is grounded. Have one. A circular opening 10 is formed at a substantially central portion of the bottom wall la of the chamber 11, and an exhaust chamber 11 that communicates with the opening 10 and protrudes downward is provided on the bottom wall la. ing.
  • a susceptor 2 made of ceramic such as A1N for horizontally supporting a semiconductor wafer (hereinafter referred to as “wafer”) W which is a substrate to be processed.
  • the susceptor 2 is supported by a support member 3 made of a ceramic material such as a cylindrical A1N that extends upward from the center of the bottom of the exhaust chamber 11.
  • a guide ring 4 for guiding the wafer W is provided on the outer edge of the susceptor 2.
  • a resistance heating type heater 5 is embedded in the susceptor 2, and the heater 5 heats the susceptor 2 by being supplied with power from the heater power source 6, and the heat is a wafer which is an object to be processed. Heat W.
  • the processing temperature can be controlled in the range from room temperature to 800 ° C.
  • a cylindrical liner 7 made of quartz is provided on the inner periphery of the chamber 11.
  • a quartz baffle plate 8 having a large number of exhaust holes 8a is provided in an annular shape on the outer peripheral side of the susceptor 2 in order to uniformly exhaust the inside of the chamber 11, and the baffle plate 8 includes a plurality of columns 9 Is supported by
  • the susceptor 2 is provided with wafer support pins (not shown) for supporting the wafer W and moving it up and down so as to protrude and retract with respect to the surface of the susceptor 2.
  • An annular gas introduction member 15 is provided on the side wall of the chamber 11, and gas radiation holes are formed uniformly.
  • a gas supply system 16 is connected to the gas introduction member 15.
  • the gas introduction member may be arranged in a shower shape.
  • the gas supply system 16 includes, for example, an Ar gas supply source 17, an O gas supply source 18, and an H gas supply source 19, and these gases are supplied to the gas supply system 16.
  • Each gas reaches the gas introduction member 15 through the gas line 20 and is uniformly introduced into the chamber 11 from the gas radiation hole of the gas introduction member 15.
  • Each of the gas lines 20 is provided with a mass flow controller 21 and opening / closing valves 22 before and after the mass flow controller 21. It should be noted that other rare gases such as Kr, He, Ne, Xe, etc. may be used instead of Ar gas, and no rare gas may be included as will be described later! /.
  • An exhaust pipe 23 is connected to the side surface of the exhaust chamber 11, and an exhaust device 24 including a high-speed vacuum pump is connected to the exhaust pipe 23! /. And this exhaust device 24 is operated As a result, the gas force in the chamber 11 is uniformly discharged into the space 11 1 a of the exhaust chamber 11 and is exhausted through the exhaust pipe 23. This makes it possible to depressurize the chamber 11 at a high speed, for example, to 0.133 Pa! /.
  • a loading / unloading port 25 for loading / unloading the wafer W to / from a transfer chamber (not shown) adjacent to the plasma processing apparatus 100 and the loading / unloading port 25 are opened and closed.
  • a gate valve 26 is provided!
  • the upper portion of the chamber 11 is an opening, and a ring-shaped support portion 27 is provided along the peripheral edge of the opening.
  • the support 27 has a dielectric such as quartz or AlO.
  • a microwave transmitting plate 28 made of ceramics and transmitting microwaves is hermetically provided through a seal member 29. Therefore, the inside of the chamber 11 is kept airtight.
  • a disk-shaped planar antenna plate 31 is provided above the microwave transmission plate 28 so as to face the susceptor 2.
  • the planar antenna plate 31 is engaged with the upper end of the side wall of the chamber 11.
  • the planar antenna plate 31 is a disc made of a conductive material having a diameter force of 00 to 400 mm and a thickness of 1 to several mm (for example, 5 mm) when it corresponds to, for example, an 8-inch wafer W.
  • the surface is made of a copper plate or aluminum plate plated with silver or gold, and a large number of microwave radiation holes 32 (slots) are formed to penetrate in a predetermined pattern. It may be a nickel plate or a stainless steel plate. For example, as shown in FIG.
  • the microphone mouth wave radiation holes 32 form a pair, and typically the pair of microwave radiation holes 32 are arranged in a “T” shape. A plurality of pairs are arranged concentrically.
  • the length and arrangement interval of the microwave radiation holes 32 are determined according to the wavelength (g) of the microwave.
  • the microwave radiation holes 32 are arranged such that the distance between the microwave radiation holes 32 is g / 4, lg / 2, or g. Is done.
  • the interval between adjacent microwave radiation holes 32 formed concentrically is indicated by.
  • the microwave radiation hole 32 may have another shape such as a circular shape or an arc shape.
  • the arrangement form of the microwave radiation holes 32 is not particularly limited.
  • the microwave radiation holes 32 may be arranged concentrically, for example, spirally or radially.
  • a slow wave material 33 made of a dielectric material having a dielectric constant of 1 or more larger than vacuum, for example, quartz.
  • Slow wave 33 You may be comprised with resin, such as a norethyleneethylene and a polyimide.
  • the slow wave material 33 has a function of adjusting the plasma by shortening the wavelength of the microwave because the wavelength of the microwave becomes longer in the vacuum. Note that the force S is placed between the planar antenna plate 31 and the microwave transmission plate 28 and between the slow wave member 33 and the planar antenna plate 31 so as to be in close contact with or away from each other.
  • a shield lid 34 having a waveguide function made of a metal material such as aluminum, stainless steel, or copper is provided on the upper surface of the chamber 11 so as to cover the planar antenna plate 31 and the slow wave material 33. Is provided. The upper surface of the chamber 11 and the shield cover 34 are sealed by a seal member 35.
  • a cooling water flow path 34a is formed in the shield lid 34, and by passing cooling water therethrough, the shield lid 34, the slow wave material 33, the planar antenna plate 31, and the microwave transmission plate 28 are provided. It is designed to cool.
  • the shield lid 34 is grounded.
  • An opening 36 is formed in the center of the upper wall of the shield lid 34, and a waveguide 37 is connected to the opening.
  • a microwave generator 39 is connected to the end of the waveguide 37 via a matching circuit 38. Thereby, for example, a microwave having a frequency of 2.45 GHz generated by the microwave generator 39 is propagated to the planar antenna plate 31 through the waveguide 37.
  • the microwave frequency 8.35 GHz, 1.98 GHz, or the like can be used.
  • the waveguide 37 includes a coaxial waveguide 37a having a circular cross section extending upward from the opening 36 of the shield lid 34, and a mode converter 40 at the upper end of the coaxial waveguide 37a. And a rectangular waveguide 37b extending in the horizontal direction.
  • the mode converter 40 between the rectangular waveguide 37b and the coaxial waveguide 37a has a function of converting the microphone mouth wave propagating in the TE mode in the rectangular waveguide 37b into the TEM mode.
  • An inner conductor 41 extends in the center of the coaxial waveguide 37a, and a lower end portion of the inner conductor 41 is connected and fixed to the center of the planar antenna plate 31. As a result, the microwave is uniformly and efficiently propagated to the planar antenna plate 31 via the inner conductor 41 of the coaxial waveguide 37a.
  • Each component of the plasma processing apparatus 100 is connected to and controlled by a process controller 50 having a CPU.
  • the process controller 50 has a process manager In order to manage the plasma processing apparatus 100, a user interface 51 including a keyboard for inputting commands and the like, and a display for visualizing and displaying the operation status of the plasma processing apparatus 100 is connected.
  • the process controller 50 includes a control program for realizing various processes executed by the plasma processing apparatus 100 under the control of the process controller 50, and each configuration of the plasma processing apparatus 100 according to processing conditions.
  • a storage unit 52 storing a recipe, that is, a program for causing the unit to execute processing is connected.
  • the recipe is stored in a storage medium in the storage unit 52.
  • the storage medium may be a hard disk or a semiconductor memory, or a portable medium such as a CDROM, DVD, or flash memory.
  • the recipe may be appropriately transmitted from another device via, for example, a dedicated line.
  • the plasma processing is performed under the control of the process controller 50 by calling an arbitrary recipe from the storage unit 52 according to an instruction from the user interface 51 and causing the process controller 50 to execute it.
  • the desired processing in apparatus 100 is performed.
  • the plasma processing apparatus 100 configured as described above can form a high-quality film by damage-free plasma processing even at a low temperature of 800 ° C or lower, preferably 500 ° C or lower, and has excellent plasma uniformity. And process uniformity can be achieved.
  • This plasma processing apparatus 100 is, for example, a case where a silicon oxide film is formed as a gate insulating film of a transistor, or a shallow trench isolation (Shallow Trench isolation) used as an element isolation technique in the manufacturing process of a semiconductor device. It can be suitably used when an oxide film is formed by oxidizing (liner oxidation) a trench-shaped surface in Isolation (STI).
  • a silicon oxide film is formed as a gate insulating film of a transistor, or a shallow trench isolation (Shallow Trench isolation) used as an element isolation technique in the manufacturing process of a semiconductor device. It can be suitably used when an oxide film is formed by oxidizing (liner oxidation) a trench-shaped surface in Isolation (STI).
  • the gate valve 26 is opened, and the wafer W in which the trench is formed from the loading / unloading port 25 is loaded into the chamber 11 and placed on the susceptor 2 (step 1).
  • step 2 the inside of the chamber 11 is sealed and evacuated to a high vacuum (step 2), and then Ar gas and O gas are supplied from the Ar gas supply source 17 and the O gas supply source 18 of the gas supply system 16.
  • the susceptor is heated to a predetermined temperature by the heater 5 introduced into the chamber 11 through the gas introduction member 15 and embedded in the susceptor 2 (preheating; step 3). After preheating for a predetermined time in this way, a microwave is introduced into the chamber 11 while the chamber 11 is maintained at a predetermined pressure and temperature, and the processing gas is converted into plasma to perform plasma oxidation processing. (Step 4).
  • microwaves from the microwave generator 39 pass through the matching circuit 38, the waveguide 37, the planar antenna plate 31 and the microwave transmitting plate 28, and the wafer in the chamber 11 Radiated into the upper space of W, the processing gas in the chamber 11 is turned into plasma by this microwave, and the plasma W is subjected to plasma oxidation treatment by this plasma.
  • the microwave from the microwave generator 39 passes through the matching circuit 38 and reaches the waveguide 37.
  • the microwave is a rectangular waveguide 37b, a mode converter 40
  • the light is supplied to the planar antenna plate 31 sequentially through the coaxial waveguide 37a, and radiated from the planar antenna plate 31 to the space above the wafer W in the chamber 11 through the microwave transmission plate 28.
  • the microwave propagates in the TE mode in the rectangular waveguide 37b, and the TE mode microwave is converted into the TEM mode by the mode converter 40, and the inside of the coaxial waveguide 37a is directed to the planar antenna plate 31. Will be propagated.
  • the microwave generator 39 has a power density of 0.41 to 4.19 W / cm 2 and a power of 0.5 to 5 kW.
  • An electromagnetic field is formed in the chamber 11 by the microwaves radiated from the planar antenna plate 31 through the microwave transmission plate 28 to the chamber 11, and Ar gas, O gas, etc. are turned into plasma,
  • This plasma oxidizes the silicon surface exposed in the recess formed in the wafer W.
  • This microwave plasma is a high-density plasma of approximately 1 X 10 10 to 5 X 10 12 / cm 3 or more by radiating microwaves from a large number of microwave radiation holes 32 of the planar antenna plate 31.
  • the electron temperature is as low as 0.5-2 eV, and the uniformity of the plasma density is ⁇ 5% or less. Therefore, it is possible to form a thin and uniform oxide film by performing an oxidation process at a low temperature for a short time, and because the plasma has a low electron temperature, the oxide film is less damaged by ions in the plasma, etc. Can form a film There is a merit.
  • plasma oxidation is performed under the conditions of a processing pressure of 267 Pa to 400 Pa and an oxygen ratio of the processing gas of 5 to 20%, as described later, so that the corner at the top of the trench is A part of the silicon oxide film can be formed in a round shape, and the silicon oxide film can be formed with a uniform film thickness without being affected by the density of the pattern formed on the surface of the object to be processed. Therefore, a semiconductor device manufactured using a silicon oxide film obtained by this method as an insulating film has good electrical characteristics.
  • the effect can be secured, and the effect of making the film thickness uniform can be maintained irrespective of the density difference of the pattern of “high pressure, high oxygen concentration condition”.
  • the proportion of oxygen in the treatment gas is preferably 5 to 20%, more preferably 10 to 18%, as described above.
  • the ratio of oxygen in the processing gas within this range, the amount of oxygen ions and oxygen radicals in the plasma is controlled, and even when there are irregularities (patterns) on the silicon surface, for example, at the bottom in the depressions. Since the amount of oxygen ions and oxygen radicals that reach can be increased, the force S for forming a silicon oxide film with a uniform thickness can be reduced.
  • the flow rate of the processing gas in the "intermediate pressure and oxygen concentration conditions" is Ar gas: 50 to 5000 mL / min, O gas: 5 to 500 mL / min.
  • H gas can be introduced from the H gas supply source 19 at a predetermined ratio.
  • the percentage of H is the total amount of process gas
  • the H / O ratio is 0.1
  • a range of ⁇ 0.5 is preferred.
  • the processing pressure in the chamber is preferably in the range of 267 to 400? & (2 to 3 0 ) as described above, more preferably in the range of 300 to 350Pa (2.2 to 7 Torr). I like it.
  • the treatment temperature can be selected from the range of 200 to 800 ° C, and 400 to 500 ° C force S is preferable.
  • FIG. Figure 4 shows the proportion of O gas in all gases for a 300mm wafer.
  • FIG. 6 is a view showing a result of forming a silicon oxide film by changing a processing time in “case”.
  • the processing gas is O gas + Ar gas + H gas.
  • the microwave output was 4000 W and the processing temperature (susceptor temperature) was 465 ° C. It should be noted that the microphone inside the liner 7 of the chamber 1 and the baffle plate 8 is indicated by the diagonal lines in FIG.
  • the volume of the plasma processing space S in which the plasma processing is effectively performed in the chamber corresponding to the portion up to the lower surface of the mouth wave transmission plate is about 15.6 L.
  • the deposition rate is slower than in the “high pressure force and high oxygen concentration conditions”.
  • the target film thickness is 4 nm, it is 150 se C under the “high pressure and high oxygen concentration condition”, whereas it is 240 sec under the condition of this embodiment, approximately 60% of the high pressure and high oxygen concentration condition. Takes too long. This tendency is the same for Ar gas + 0 gas.
  • the total flow rate of the processing gas is
  • the film thickness was changed to 800, 1400, 2000, 4000 mL / min (sccm).
  • the result is shown in Fig. 6.
  • the processing gas is O gas + Ar gas + H gas, and the processing gas
  • the film thickness increases as the flow rate increases until the total flow rate of the processing gas is 800 to 2000 mL / min (sccm), and the film thickness is saturated at 2000 mL / min (sccm) or more.
  • the total flow rate of the processing gas is 2 OOOmL / min (sccm) or higher, it is high! / Throughput (productivity) power S is obtained. Therefore, in order to shorten the film formation time and improve the productivity, the total flow rate of the processing gas is preferably set to 2000 mL / min (sccm) or more.
  • the volume in the chamber has some errors, the volume of the plasma processing space S in which the plasma processing is effectively performed in the chamber for a 300 mm wafer in the above experiment shown in FIG. ; In such a case, if it is 2000 mL / min (sccm) or more, it can be obtained with the force S to obtain the above-mentioned oxidation rate improving effect.
  • the effect of improving the productivity by shortening the film formation time depends on the total flow rate of the processing gas per unit volume of the plasma processing space where the plasma processing is effectively performed, If the total flow rate is not less than a predetermined amount, it can be achieved regardless of the volume of the chamber. Therefore, the plasma in which the plasma treatment is effectively performed in the chamber shown in FIG. Since the volume of the processing space is 2000 mL / min or more for the volume of 15.6 L, it is preferable to set the flow rate to 0.128 mL / min or more per lmL of the plasma processing space where plasma processing is effectively performed in the chamber. Masle.
  • the temperature dependency of the oxidation rate is “low pressure, low oxygen concentration condition” and It was found to be smaller than “high pressure, high oxygen concentration conditions”.
  • FIG. Figure 7 is a so-called Arrhenius plot with the horizontal axis representing the reciprocal temperature and the vertical axis representing the diffusion rate constant during the oxidation treatment.
  • Oxygen concentration conditions and “medium pressure, medium oxygen concentration conditions” will be described. Specific conditions of “low pressure and low oxygen concentration conditions”, “high pressure and high oxygen concentration conditions”, and “medium pressure and medium oxygen concentration conditions” are as follows.
  • the diffusion rate constant during the oxidation treatment greatly changes with respect to the temperature change in the "low pressure, low oxygen concentration condition" and "high pressure, high oxygen concentration condition”. It can be seen that the diffusion rate constant does not change much even when the temperature changes under the conditions of medium pressure and medium oxygen concentration. This is because, in the “intermediate pressure and intermediate oxygen concentration conditions” of this embodiment, in order to obtain film thickness stability, the “low pressure and low oxygen concentration conditions” and “high pressure and high oxygen concentration conditions” decrease in temperature. This indicates that qualitative properties are not required, and the “medium pressure and medium oxygen concentration conditions” of this embodiment confirm that the preheating time can be shortened.
  • the preheating time before the oxidation treatment was set to 35 seconds for the formation of the silicon oxide film under the "medium pressure and medium oxygen concentration conditions" of this embodiment!
  • an experiment was conducted to ascertain the relationship between the processing time, film thickness, and film thickness variation for those with lOsec.
  • the results are shown in Fig. 8.
  • a silicon oxide film formation rate equivalent to 35 seconds can be obtained even with a preheating time of about lOsec, and the film thickness stability is also equivalent. It was confirmed that the preheating time can be significantly reduced.
  • the preheating time is preferably 5 to 25 sec. From the viewpoint of throughput, 5 to 15 seconds is more preferable.
  • FIG. 9 illustrates the steps from the formation of the trench in STI to the subsequent oxide film formation.
  • a silicon oxide film 102 such as SiO is formed on a silicon substrate 101 by a method such as thermal oxidation.
  • the silicon oxide film 10 is formed on a silicon substrate 101 by a method such as thermal oxidation.
  • a silicon nitride film 103 such as SiN is formed by Vapor Deposition. And (d)
  • the resist layer 104 is formed by patterning using a photolithography technique.
  • the silicon nitride film 103 and the silicon oxide film 102 are selectively etched using, for example, a fluorocarbon-based etching gas.
  • the silicon substrate 101 is exposed corresponding to the pattern of the resist layer 104. That is, the silicon nitride film 103 forms a mask pattern for the trench.
  • (F) shows a state in which the resist layer 104 is removed by performing a so-called ashing process using, for example, an oxygen-containing plasma using a processing gas containing oxygen or the like.
  • trench 105 is formed by selectively etching (dry etching) silicon substrate 101 using silicon nitride film 103 and silicon oxide film 102 as a mask. This etching can be performed with halogen such as CI, HBr, SF, CF, etc.
  • (h) shows a step of forming a silicon oxide film on the exposed surface of the trench 105 formed in the silicon substrate 101 after the etching in STI.
  • the plasma oxidation process is performed under conditions of medium pressure and medium oxygen conditions, in which the ratio of oxygen in the process gas is 5 to 20% and the process pressure is 267 Pa or more and 400 Pa or less. Under these conditions, as shown in (i), the plasma oxidation treatment is applied, so that the silicon 101 on the shoulder 105a of the wrench 105 is rounded while the silicon oxide film is formed on the exposed surface of the trench 105. Can be formed.
  • the silicon in the shoulder 105a of the trench 105 in a round shape, the occurrence of leakage current can be suppressed as compared with the case where this portion is formed at an acute angle.
  • a uniform silicon oxide film can be formed on the surface of the trench (groove) without causing a difference in film thickness between the sparse part and the dense part.
  • the (100) plane is generally used as the crystal plane orientation of the silicon substrate 101.
  • the (111) plane is formed on the side wall in the trench 105.
  • the (110) plane is exposed, and the (100) plane is exposed on the bottom surface of the trench 105.
  • the oxidation rate varies depending on the plane orientation, and the plane orientation dependency that causes a difference in the oxide film thickness on each plane becomes a problem.
  • the silicon oxide film 11 la with a uniform film thickness on the inner surface (side wall portion, bottom portion) of the trench 105 without depending on the plane orientation of silicon. 111b can be formed.
  • the proportion of oxygen in the processing gas is 5 to 20% and the processing pressure force is 3 ⁇ 467 Pa. This is an effect peculiar to the plasma oxidation process performed under the condition of 400 Pa or less.
  • the partial pressure of oxygen is 13.3 to 80 Pa, and the proportion of oxygen is 10 to more preferable range; when 18%, the partial pressure of oxygen is 26.6 to 72 Pa.
  • an insulating film such as SiO is formed in the trench 105 by, for example, the CVD method according to the procedure of element isolation region formation by STI.
  • the silicon nitride film 103 is used as a stopper layer for C
  • the element isolation structure can be formed by removing the silicon nitride film 103 and the upper portion of the buried insulating film by etching.
  • FIG. 10 schematically shows a cross-sectional structure of the main part of the wafer W after the silicon oxide film 111 is formed on the surface of the silicon substrate 101 having the pattern 110.
  • plasma oxidation is performed under the following conditions A to C while changing the processing pressure and oxygen ratio to form a silicon oxide film on the uneven silicon surface.
  • the top film thickness a of the convex part, the side film thickness b in the part where the uneven pattern 110 is sparse (sparse part), the bottom film thickness c, the corner film thickness d of the shoulder 112, and the part where the uneven pattern is dense was performed for the side film thickness b ′, the bottom film thickness c ′, and the corner film thickness d ′ of the shoulder 112 in the (dense part).
  • the ratio of the opening width L of the concave portion in the sparse region to the opening width L of the concave portion in the dense region L /
  • the ratio of the sparse part was 1 or less and the dense part was 2.
  • Film thickness a) and the film thickness ratio [(film thickness c '/ film thickness c) X 100] due to the density of the uneven pattern 110 were measured. These results are shown in Table 1 and Figs.
  • FIG. 11 is a graph showing the relationship between the silicon oxide film thickness ratio and the processing pressure
  • FIG. 12 is a graph showing the relationship between the silicon oxide film thickness ratio and the oxygen ratio in the processing gas.
  • FIG. 13 is due to the pattern density of the silicon oxide film 14 is a graph showing the relationship between the film thickness ratio and the processing pressure, and FIG. 14 is a graph showing the relationship between the film thickness ratio due to pattern density of the silicon oxide film and the oxygen ratio in the processing gas.
  • the corner film thickness ratio indicates the degree of roundness of the shoulder portion 112 of the pattern. Is formed round. More preferably, it is 0.8 to 1.5, more preferably 0.95 to 1.5, and still more preferably 0.95 to 1.0. Conversely, when the corner film thickness ratio is less than 0.8, the silicon 101 at the corner is not sufficiently rounded and the corners of the silicon 101 remain sharp. If the silicon 101 in the corner portion has an acute angle as described above, electric field concentration occurs in the corner portion after device formation, leading to an increase in leakage current.
  • film thickness ratio (film thickness c ′ / film thickness a) between the top and the bottom shows the coverage performance for the silicon having a concavo-convex shape, and is closer to 1 /.
  • the film thickness ratio [(film thickness c '/ film thickness c) X 100] due to sparse / dense is an index of the film thickness difference between the sparse and dense parts of the pattern 110 and is good if it is 85% or more. .
  • Microwave power density 2. 30W / cm 2
  • Microwave power density 2 ⁇ 30W / cm 2
  • Condition C (Comparative Example 1) was confirmed. That is, the corner film thickness ratio when the silicon oxide film is formed according to the condition B (the present invention) is 0 ⁇ 99, and the condition A (Comparative Example 1) is a relatively low pressure and low oxygen concentration condition. 1. Although it was inferior to 14 and good, it was confirmed that a sufficient round shape was formed in the silicon of the shoulder 112. However, in the case of Condition C (Comparative Example 2), which is a relatively high pressure and high oxygen concentration condition, the corner film thickness ratio is 0.94, not reaching 0.95, and the shoulder 1 12 Round shape to silicon The introduction was insufficient.
  • Condition B present invention
  • Condition C Comparative Example 1
  • Condition A Comparative Example 1
  • Condition C Comparative Example 1> Condition B (Invention)> Condition A (Comparative Example 1) It was done. In other words, Condition B (the present invention) was excellent at 89.4%, although it was lower than 93.8% of Condition C (Comparative Example 2), which is a relatively high pressure and high oxygen concentration condition. On the other hand, condition A (Comparative Example 1), which is a relatively low pressure and low oxygen concentration condition, was 81.5%, which was significantly inferior to the other conditions.
  • Condition B (the present invention) and condition C (Comparative Example 2), which is a relatively high pressure and high oxygen concentration condition, are compared to condition A (Comparative Example 1), which is a relatively low pressure, low oxygen concentration condition. It was thought that good results were obtained with small difference in film thickness due to density, because radicals easily enter the recesses of the uneven pattern 110 where the oxygen radical density in the plasma was high.
  • condition A which is a relatively low pressure and low oxygen concentration condition
  • condition C which is a relatively high pressure, high oxygen concentration condition
  • the force condition B which is inferior in either the film thickness ratio or the film thickness ratio due to density, and did not obtain a result satisfying all the characteristics, gave good results for all the characteristics. It was.
  • the treatment pressure in order to make the corner film thickness ratio 0.8 or more, preferably 0.95 or more, the treatment pressure is 400 Pa or less, and the proportion of oxygen in the treatment gas is 20% or less.
  • the processing pressure in the plasma oxidation treatment is preferably 267 Pa or more and 400 Pa or less, and the proportion of oxygen in the processing gas is preferably 5% or more and 20% or less, and preferably 10% or more and 18% or less. It was confirmed that it was more preferable.
  • Ar / O / H is used as a processing gas at a total flow rate of 800.
  • Plasma oxidation treatment is performed on silicon whose surface crystal planes are (100) plane and (110) plane, and the film thickness ratio by plane orientation [(110) plane thickness / (Thickness of (100) plane] was examined.
  • Oxygen damage in process gas IJ is 4.25%, 6.37%, 8.5%, 12.75, 17.0 % And 21.25%, and adjust the balance with Ar flow rate and H flow rate to
  • the flow rate was adjusted.
  • the treatment pressure was varied at 266.7 Pa, 333.2 Pa, 400 Pa, 533.3 Pa and 666.5 Pa.
  • the H / O flow rate ratio was fixed at 0 ⁇ 176. Also,
  • the microwave power was 2750 W (power density: 2. 30 W / cm 2 ), the processing temperature was 400 ° C, and the processing time was 360 seconds.
  • the results are shown in FIG. 15 and FIG.
  • the film thickness ratio by this plane orientation is preferably 1.15 or less, more preferably 1.1 or more and 1.15 or less.
  • the film thickness ratio [ 110) surface thickness / (100) surface film thickness] 1. 15 or less, for example, 1.1 or more and 1. 15 or less.
  • Film thickness ratio by plane orientation is preferably 1.0 or more
  • the film thickness ratio due to density is poor.
  • a film thickness ratio with a plane orientation of 1 or more is required, and if the film thickness ratio with a plane orientation is 1.1 or higher, a corner film The thickness ratio can also be maintained at a good value.
  • the uneven pattern 110 was formed by forming a silicon oxide film under the conditions of 267 Pa to 400 Pa and the ratio of oxygen in the processing gas of 5% to 20%. It was shown that roundness could be introduced into the shoulder 112 of the skin, and at the same time, the film thickness difference due to pattern density could be improved, and the film thickness difference due to surface orientation could be suppressed. These effects are shown in FIG. 10.
  • the ratio (L / L) of the opening width L of the concave portion in the region where the uneven pattern 110 is sparse to the opening width L of the concave portion in the dense region is larger than 1, for example, 2 to 10 is enough
  • the ratio (aspect ratio) between the depth of the recesses and the opening width (aspect ratio) of the concavo-convex pattern 110 is 1 or less, preferably 0.02 or more and 1 or less, and 2 or more and 10 or less, preferably 5 or more and 10 or less, in the dense part.
  • the above effects can also be obtained for the uneven pattern.
  • a silicon oxide film can be uniformly formed even on an extremely fine uneven pattern 110.
  • the preheating time was set at two levels of 35 sec and l Osec.
  • a silicon oxide film forming process was performed as “high pressure and high oxygen concentration conditions” and by changing the preheating time.
  • the sequence at this time is shown in Fig. 17A.
  • the plasma processing time to obtain a 4.2 nm silicon oxide film can be shortened to 180 seconds (the processing in Table 2).
  • C the processing time was reduced by 43 seconds compared to 800 mL / min, and the difference from “high pressure, high oxygen concentration conditions” was reduced to 35 seconds.
  • FIG. 17B The sequence at this time is shown in FIG. 17B.
  • the plasma processing time is not extended so much, and the film thickness variation is 35 sec. It was similar to the case.
  • the plasma treatment time at this time is 188 seconds, and the preheating time is lOsec. Therefore, the total time is 198 seconds, which is 18 seconds longer than treatment A, which is a “high pressure, high oxygen concentration condition”.
  • the processing time was almost the same as Processing A, as it became longer.
  • the sequence at this time is shown in Fig. 17C.
  • an RLSA type plasma processing apparatus is exemplified as an apparatus for performing the method of the present invention.
  • a remote plasma type an ICP plasma type, an ECR plasma type, a surface reflection wave plasma type, a magnetron
  • Other plasma processing apparatuses such as a plasma system may be used.
  • the method for forming the silicon oxide film as the insulating film has been described.
  • the silicon oxide film formed by the method of the present invention is further nitrided to obtain a silicon oxynitride film (SiON film). It is applied also to the use which forms.
  • the nitriding method there is no limitation on the nitriding method.
  • plasma nitriding is performed using a mixed gas containing Ar gas and N gas.
  • the force S shown for the example in which the silicon substrate that is a semiconductor substrate is used as the object to be processed may be another semiconductor substrate such as a compound semiconductor substrate.
  • FPD substrate such as an LCD substrate or an organic EL substrate.
  • the present invention can be suitably used when a silicon oxide film is formed in the manufacture of various semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Element Separation (AREA)
  • Semiconductor Memories (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明 細 書
プラズマ酸化処理方法、 プラズマ処理装置、 及び、 記憶媒体
技術分野
[0001] 本発明は、プラズマ酸化処理方法に関し、詳細には、例えば、各種半導体装置の 製造過程で絶縁膜としてのシリコン酸化膜を形成する場合などに適用可能なプラズ マ酸化処理方法に関する。
背景技術
[0002] 各種半導体装置の製造過程では、例えばトランジスタのゲート絶縁膜等の絶縁膜と して SiOなどのシリコン酸化膜の形成が行なわれている。このようなシリコン酸化膜を
2
形成する方法としては、酸化炉ゃ RTP (Rapid Thermal Process)装置を用いる熱酸 化処理が用いられている。例えば、熱酸化処理の一つである酸化炉によるウエット酸 化処理では、 800°C超の温度にシリコン基板を加熱し、酸素と水素を燃焼させて水 蒸気(H O)を生成する WVG (Water Vapor Generator)装置を用レ、て水蒸気(H
2 2 o)の酸化雰囲気に曝すことによりシリコン表面を酸化させてシリコン酸化膜を形成す
[0003] 熱酸化処理は、良質なシリコン酸化膜を形成できる方法であると考えられている。し かし、 800°C超の高温による処理が必要であることから、サーマルバジェットが増大し 、熱応力によってシリコン基板に歪みなどを生じさせてしまうという問題がある。
[0004] これに対し、処理温度が 400°C前後であるため、熱酸化処理におけるサーマルバ ジェットの増大や基板の歪みなどの問題を回避することができる技術として、アルゴン ガスと酸素ガスを含み、酸素の流量比率が約 1 %の処理ガスを用い、 133. 3Paのチ ヤンバー内圧力で形成されたマイクロ波励起プラズマを用いて、シリコンを主成分と する電子デバイスの表面に作用させて酸化処理を行なうことにより、膜厚のコントロー ルが容易で良質なシリコン酸化膜を形成できる酸化膜形成方法が提案されている( 例えば、 WO2001/69673号)。
[0005] 処理圧力 133. 3Pa程度、処理ガス中の O流量 1 %の条件(説明の便宜上、「低圧
2
力、低酸素濃度条件」という)でプラズマ処理を行なった場合、例えば、被処理体表 面に形成された溝、ライン &スペースなどのパターンに疎密がある場合には、パター ンが疎の部位と密の部位とでシリコン酸化膜の形成速度に差が生じてしまい、均一な 膜厚でシリコン酸化膜を形成することができないことがある。シリコン酸化膜の膜厚が 部位により異なると、これを絶縁膜として用いる半導体装置の信頼性を低下させる一 因になる。
[0006] これを避けるために、処理圧力 667Pa程度、処理ガス中の O流量 25%程度の条
2
件 (説明の便宜上、「高圧力、高酸素濃度条件」という)でプラズマ酸化処理を行なつ た場合、凹凸の表面にシリコン酸化膜を形成すると、密の部分の酸化レートが低下す るだけでなぐ凸部上端のコーナー部に丸み形状が十分に導入されず、その部位か らの電界集中によるリーク電流の発生や、シリコン酸化膜の応力によるクラックの発生 が懸念される。
[0007] つまり、プラズマ酸化処理によってシリコン酸化膜を形成する場合に、パターンの疎 密に関係なく均一な膜厚を得るとともに、凸部上端のコーナー部への丸み形状の導 入を両立させることが望まれている。また、このようなシリコン酸化膜の形成は、極力 高レ、スループットで形成することが望まれる。
発明の開示
[0008] 本発明の目的は、パターンの疎密による膜厚差を生じさせることなぐパターンの凸 部上端のシリコンのコーナーを丸み形状に形成し、均一な膜厚でシリコン酸化膜を形 成することが可能なプラズマ酸化処理を提供することにある。
また、本発明の他の目的は、このようなシリコン酸化膜を極力高いスループットで形 成することができるプラズマ酸化処理方法を提供することにある。
[0009] 本発明の第 1の観点によれば、プラズマ処理装置の処理容器内に、表面がシリコン で構成され表面に凹凸形状のパターンを有する被処理体を配置することと、前記処 理容器内で、処理ガス中の酸素の割合が 5〜20%の範囲で、かつ処理圧力が 267 Pa以上 400Pa以下の範囲でプラズマを形成することと、前記プラズマにより、前記被 処理体の表面のシリコンを酸化してシリコン酸化膜を形成することとを含む、プラズマ 酸化処理方法が提供される。
[0010] 上記第 1の観点において、前記プラズマは、前記処理ガスと、複数のスロットを有す る平面アンテナにより前記処理容器内に導入されるマイクロ波と、によって形成される マイクロ波励起プラズマであることが好ましレ、。
[0011] 本発明の第 2の観点では、プラズマ処理装置の処理容器内に、表面にシリコンを有 する被処理体を配置することと、複数のスロットを有する平面アンテナから前記処理 容器内にマイクロ波を放射して前記処理容器内にマイクロ波により希ガスと酸素を含 む処理ガスのプラズマを形成することと、前記プラズマにより、被処理体表面のシリコ ンを酸化してシリコン酸化膜を形成することとを含むプラズマ酸化処理方法であって
5〜20%の酸素を含む処理ガスを、前記処理容器内で実効的にプラズマ処理が 施されるプラズマ処理空間の容積 lmLあたり 0. 128mL/min以上の流量で前記 処理容器内に供給し、かつ処理圧力を 267Pa以上 400Pa以下として前記プラズマ を形成し、そのプラズマにより被処理体表面のシリコンを酸化してシリコン酸化膜を形 成する、プラズマ酸化処理方法が提供される。
[0012] 上記第 2の観点において、前記プラズマによるシリコンの酸化処理は、被処理体を 加熱しつつ行い、前記シリコンの酸化処理に先立って行われる被処理体の予備加熱 を、 5〜30秒間行うことが好ましい。
[0013] また、上記第 1または第 2の観点において、前記処理ガスは、さらに水素ガスを含む ものとすること力 Sできる。さらに、被処理体の表面に凹凸パターンを有するものである ことが好ましい。
[0014] また、被処理体表面に凹凸パターンを有する場合において、特に前記凹凸パター ンが疎な領域と、該凹凸パターンが密な領域とが形成されている場合に有効である。
[0015] また、前記凹凸パターンの凸部上端のコーナーに形成されるシリコン酸化膜の膜厚 tと、前記凸部の側面に形成されるシリコン酸化膜の膜厚 tとの比(t /t )力 0. 95 以上 1. 5以下となるようにシリコン酸化膜を形成することが好ましい。
[0016] さらに、前記凹凸パターンが疎な領域の凹部の底のシリコン酸化膜の膜厚に対し、 前記凹凸パターンが密な領域の凹部の底のシリコン酸化膜の膜厚の比率が 85%以 上となるようにすることが好ましい。
[0017] また、前記処理ガス中の酸素の割合が 10〜; 18%であることが好ましい。また、前記 処理圧力が、 300Pa以上 350Pa以下であることが好ましい。
さらに、前記処理ガスの水素ガスの割合は 0. ;!〜 10%であることが好ましい。 さらにまた、処理温度が 200〜800°Cであることが好ましい。
[0018] 本発明の第 3の観点によれば、表面がシリコンで構成され表面に凹凸形状のバタ ーンを有する被処理体が収容される処理容器と、前記処理容器内に希ガスと酸素を 含む処理ガスを供給する処理ガス供給機構と、前記処理容器内を真空排気する排 気機構と、前記処理容器に前記処理ガスのプラズマを生成させるプラズマ生成機構 と、前記処理容器内に、前記被処理体が配置された状態で、前記処理容器内で、前 記処理ガス中の酸素の割合が 5〜20%で、かつ処理圧力が 267Pa以上 400Pa以 下でプラズマを形成することと、前記プラズマにより、前記被処理体の表面のシリコン を酸化してシリコン酸化膜を形成することとが行われるように制御する制御部とを具備 する、プラズマ処理装置が提供される。
[0019] 本発明の第 4の観点によれば、コンピュータ上で動作し、プラズマ処理装置を制御 するプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、ブラ ズマ処理装置の処理容器内に、表面がシリコンで構成され表面に凹凸形状のパター ンを有する被処理体を配置することと、前記処理容器内で、処理ガス中の酸素の割 合が 5〜20%の範囲で、かつ処理圧力が 267Pa以上 400Pa以下の範囲でプラズマ を形成することと、前記プラズマにより、前記被処理体の表面のシリコンを酸化してシ リコン酸化膜を形成することとを含む、プラズマ酸化処理方法が行われるように、コン ピュータに前記プラズマ処理装置を制御させる、記憶媒体が提供される。
[0020] 本発明によれば、処理ガス中の酸素の割合が 5〜20%で、力、つ 267Pa以上 400P a以下の処理圧力の条件で形成されたプラズマにより、凹凸パターンを有する被処理 体表面のシリコンを酸化してシリコン酸化膜を形成することにより、パターンの疎密に よる膜厚差の抑制と凸部上端のシリコンのコーナーへの丸み形状の導入とを両立さ せ、凹凸パターンを有するシリコン表面に均一な膜厚でシリコン酸化膜を形成するこ とができる。従って、この方法により得られたシリコン酸化膜を絶縁膜として使用する 半導体装置に良好な電気的特性を付与できるとともに、半導体装置の信頼性を向上 させること力 Sでさる。 [0021] しかし、その後の本発明者らの検討結果においては、このような条件を用いて複数 のスロットを有する平面アンテナから前記処理容器内にマイクロ波を放射する方式で プラズマを形成してシリコン酸化膜を形成する場合には、スループットが低くなる傾向 にあることが判明した。
そこで、このような点も解決すべく検討を重ねた結果、処理ガス中の酸素の割合が 5〜20%で、かつ 267Pa以上 400Pa以下の処理圧力とし、処理容器内で実効的に プラズマ処理が施されるプラズマ処理空間の容積が 15〜; 16Lである場合に、処理ガ スの流量を 2000mL/min以上とすることにより酸化レートが増大し、スループットが 向上することを見出した。また、酸化レートの増大効果は、処理容器内で実効的にプ ラズマ処理が施されるプラズマ処理空間の単位容積当たりの処理ガス流量が所定値 以上であれば処理容器の容積によらず発揮することができ、具体的には、容積 lmL あたり 0· 128mL/min以上の処理ガス流量であれば酸化レートが増大し、スルー プットが向上する。
図面の簡単な説明
[0022] [図 1]本発明方法の実施に適したプラズマ処理装置の一例を示す概略断面図。
[図 2]平面アンテナ板の構造を示す図面。
[図 3]図 1のプラズマ処理装置によるトレンチ形状の酸化処理を説明するフローチヤ ート。
[図 4]「高圧力、高酸素濃度条件」と「中圧力、中酸素濃度条件」において、処理時間 を変化させてシリコン酸化膜を形成した結果を示す図。
[図 5]チャンバ一内で実効的にプラズマ処理が施されるプラズマ処理空間を説明する ための図。
[図 6]「中圧力、中酸素濃度条件」において、処理ガスのトータル流量を変化させて膜 厚の変化を把握した図。
[図 7]横軸に温度の逆数をとり、縦軸に酸化処理の際の拡散速度定数をとつたァレニ ウスプロットを、「低圧力、低酸素濃度条件」、「高圧力、高酸素濃度条件」、「中圧力 、中酸素濃度条件」について示す図。
[図 8]「中圧力、中酸素濃度条件」におけるシリコン酸化膜の作製において、予備加 熱時間を従来の 35secとしたものと、 lOsecにしたものについて、処理時間と膜厚お よび膜厚のばらつきとの関係を把握した結果を示す図。
[図 9]STIによる素子分離への適用例を示すウェハ断面の模式図。
[図 10]パターンが形成されたウェハ表面付近の縦断面を示す模式図。
[図 11]シリコン酸化膜の膜厚比と処理圧力との関係を示すグラフ。
[図 12]シリコン酸化膜の膜厚比と処理ガス中の酸素比率との関係を示すグラフ。
[図 13]シリコン酸化膜のパターン疎密による膜厚比と処理圧力との関係を示すグラフ
[図 14]シリコン酸化膜のパターン疎密による膜厚比と処理ガス中の酸素比率との関
[図 15]シリコン酸化膜の面方位による膜厚比と処理圧力との関係を示すグラフ。
[図 16]シリコン酸化膜の面方位による膜厚比と処理ガス中の酸素比率との関係を示 すグラフ。
[図 17A]従来のシーケンスを示すタイミングチャート。
[図 17B]処理ガス流量を多くして酸化処理時間を短くしたシーケンスを示すタイミング チャート。
[図 17C]処理ガス流量を多くして酸化処理時間を短くすることに加えてプリヒート時間 を短くしたシーケンスを示すタイミングチャート。
発明を実施するための最良の形態
[0023] 以下、図面を参照しながら、本発明の好ましい形態について説明する。
図 1は、本発明のシリコン酸化膜の形成方法の実施に適したプラズマ処理装置の 一例を模式的に示す断面図である。このプラズマ処理装置は、複数のスロットを有す る平面アンテナ、特に RLSA (Radial Line Slot Antenna;ラジアルラインスロットアンテ ナ)にて処理容器内にマイクロ波を導入してプラズマを発生させることにより、高密度 かつ低電子温度のマイクロ波プラズマを発生させ得る RLSAマイクロ波プラズマ処理 装置として構成されており、例えば、トランジスタのゲート絶縁膜をはじめとする各種 半導体装置における絶縁膜の形成に好適に用いられる。
[0024] このプラズマ処理装置 100は、気密に構成され、接地された略円筒状のチャンバ一 1を有している。チャンバ一 1の底壁 laの略中央部には円形の開口部 10が形成され ており、底壁 laにはこの開口部 10と連通し、下方に向けて突出する排気室 11が設 けられている。
[0025] チャンバ一 1内には被処理基板である半導体ウェハ(以下、「ウェハ」と記す) Wを 水平に支持するための A1N等のセラミックスからなるサセプタ 2が設けられて!/、る。こ のサセプタ 2は、排気室 11の底部中央から上方に延びる円筒状の A1N等のセラミツ タスからなる支持部材 3により支持されている。サセプタ 2の外縁部にはウェハ Wをガ イドするためのガイドリング 4が設けられている。また、サセプタ 2には抵抗加熱型のヒ ータ 5が埋め込まれており、このヒータ 5はヒータ電源 6から給電されることによりサセ プタ 2を加熱して、その熱で被処理体であるウェハ Wを加熱する。このとき、例えば室 温から 800°Cまでの範囲で処理温度が制御可能となっている。なお、チャンバ一 1の 内周には、石英からなる円筒状のライナー 7が設けられている。また、サセプタ 2の外 周側には、チャンバ一 1内を均一排気するため、多数の排気孔 8aを有する石英製の バッフルプレート 8が環状に設けられ、このバッフルプレート 8は、複数の支柱 9により 支持されている。
[0026] サセプタ 2には、ウェハ Wを支持して昇降させるためのウェハ支持ピン(図示せず) がサセプタ 2の表面に対して突没可能に設けられている。
[0027] チャンバ一 1の側壁には環状をなすガス導入部材 15が設けられており、均等にガ ス放射孔が形成されている。このガス導入部材 15にはガス供給系 16が接続されてい る。ガス導入部材はシャワー状に配置してもよい。このガス供給系 16は、例えば Arガ ス供給源 17、 Oガス供給源 18、 Hガス供給源 19を有しており、これらのガスが、そ
2 2
れぞれガスライン 20を介してガス導入部材 15に至り、ガス導入部材 15のガス放射孔 からチャンバ一 1内に均一に導入される。ガスライン 20の各々には、マスフローコント ローラ 21およびその前後の開閉バルブ 22が設けられている。なお、 Arガスに代えて 他の希ガス、例えば Kr、 He、 Ne、 Xeなどのガスを用いてもよぐまた、後述するよう に希ガスは含まなくてもよ!/、。
[0028] 上記排気室 11の側面には排気管 23が接続されており、この排気管 23には高速真 空ポンプを含む排気装置 24が接続されて!/、る。そしてこの排気装置 24を作動させる ことによりチャンバ一 1内のガス力、排気室 11の空間 1 1a内へ均一に排出され、排気 管 23を介して排気される。これによりチャンバ一 1内を例えば 0. 133Paまで高速に 減圧することが可能となって!/、る。
[0029] チャンバ一 1の側壁には、プラズマ処理装置 100に隣接する搬送室(図示せず)と の間でウェハ Wの搬入出を行うための搬入出口 25と、この搬入出口 25を開閉するゲ ートバルブ 26とが設けられて!/、る。
[0030] チャンバ一 1の上部は開口部となっており、この開口部の周縁部に沿ってリング状 の支持部 27が設けられている。この支持部 27に誘電体、例えば石英や Al O等の
2 3 セラミックスからなり、マイクロ波を透過するマイクロ波透過板 28がシール部材 29を介 して気密に設けられている。したがって、チャンバ一 1内は気密に保持される。
[0031] マイクロ波透過板 28の上方には、サセプタ 2と対向するように、円板状の平面アン テナ板 31が設けられている。この平面アンテナ板 31はチャンバ一 1の側壁上端に係 止されている。平面アンテナ板 31は、例えば 8インチサイズのウェハ Wに対応する場 合には、直径力 00〜400mm、厚みが 1〜数 mm (例えば 5mm)の導電性材料から なる円板である。具体的には、例えば表面が銀または金メッキされた銅板またはアル ミニゥム板からなり、多数のマイクロ波放射孔 32 (スロット)が所定のパターンで貫通し て形成された構成となっている。ニッケル板やステンレス鋼板であってもよい。マイク 口波放射孔 32は、例えば図 2に示すように長い形状をなすものが対をなし、典型的 には対をなすマイクロ波放射孔 32同士が「T」字状に配置され、これらの対が複数、 同心円状に配置されている。マイクロ波放射孔 32の長さや配列間隔は、マイクロ波 の波長( g)に応じて決定され、例えばマイクロ波放射孔 32の間隔は、 g/4、 l g /2またはえ gとなるように配置される。なお、図 2においては、同心円状に形成された 隣接するマイクロ波放射孔 32同士の間隔を で示している。また、マイクロ波放射 孔 32は、円形状、円弧状等の他の形状であってもよい。さらに、マイクロ波放射孔 32 の配置形態は特に限定されず、同心円状のほか、例えば、螺旋状、放射状に配置す ることあでさる。
[0032] この平面アンテナ板 31の上面には、真空よりも大きい 1以上の誘電率を有する誘電 体材料、例えば石英からなる遅波材 33が設けられている。遅波材 33は、ポリテトラフ ノレォロエチレン、ポリイミドなどの樹脂で構成されていてもよい。この遅波材 33は、真 空中ではマイクロ波の波長が長くなることから、マイクロ波の波長を短くしてプラズマ を調整する機能を有している。なお、平面アンテナ板 31とマイクロ波透過板 28との間 、また、遅波材 33と平面アンテナ板 31との間は、それぞれ密着または離間させて配 置すること力 Sでさる。
[0033] チャンバ一 1の上面には、これら平面アンテナ板 31および遅波材 33を覆うように、 例えばアルミニウムやステンレス鋼、銅等の金属材からなる導波管機能を有するシー ルド蓋体 34が設けられている。チャンバ一 1の上面とシールド蓋体 34とはシール部 材 35によりシールされている。シールド蓋体 34には、冷却水流路 34aが形成されて おり、そこに冷却水を通流させることにより、シールド蓋体 34、遅波材 33、平面アンテ ナ板 31、マイクロ波透過板 28を冷却するようになっている。なお、シールド蓋体 34は 接地されている。
[0034] シールド蓋体 34の上壁の中央には開口部 36が形成されており、この開口部には 導波管 37が接続されている。この導波管 37の端部には、マッチング回路 38を介して マイクロ波発生装置 39が接続されている。これにより、マイクロ波発生装置 39で発生 した例えば周波数 2. 45GHzのマイクロ波が導波管 37を介して上記平面アンテナ板 31へ伝播されるようになっている。なお、マイクロ波の周波数としては、 8. 35GHz, 1 . 98GHz等を用いることもできる。
[0035] 導波管 37は、上記シールド蓋体 34の開口部 36から上方へ延出する断面円形状 の同軸導波管 37aと、この同軸導波管 37aの上端部にモード変換器 40を介して接続 された水平方向に延びる矩形導波管 37bとを有している。矩形導波管 37bと同軸導 波管 37aとの間のモード変換器 40は、矩形導波管 37b内を TEモードで伝播するマ イク口波を TEMモードに変換する機能を有している。同軸導波管 37aの中心には内 導体 41が延在しており、この内導体 41の下端部は、平面アンテナ板 31の中心に接 続固定されている。これにより、マイクロ波は、同軸導波管 37aの内導体 41を介して 平面アンテナ板 31へ均一に効率よく伝播される。
[0036] プラズマ処理装置 100の各構成部は、 CPUを備えたプロセスコントローラ 50に接 続されて制御される構成となっている。プロセスコントローラ 50には、工程管理者がプ ラズマ処理装置 100を管理するためにコマンドの入力操作等を行うキーボードや、プ ラズマ処理装置 100の稼働状況を可視化して表示するディスプレイ等からなるユー ザ一インターフェース 51が接続されている。
[0037] また、プロセスコントローラ 50には、プラズマ処理装置 100で実行される各種処理を プロセスコントローラ 50の制御にて実現するための制御プログラムや、処理条件に応 じてプラズマ処理装置 100の各構成部に処理を実行させるためのプログラムすなわ ちレシピが格納された記憶部 52が接続されている。レシピは記憶部 52の中の記憶 媒体に記憶されている。記憶媒体は、ハードディスクや半導体メモリであってもよいし 、 CDROM、 DVD,フラッシュメモリ等の可搬性のものであってもよい。また、他の装 置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。
[0038] そして、必要に応じて、ユーザーインターフェース 51からの指示等にて任意のレシ ピを記憶部 52から呼び出してプロセスコントローラ 50に実行させることで、プロセスコ ントローラ 50の制御下で、プラズマ処理装置 100での所望の処理が行われる。
[0039] このように構成されたプラズマ処理装置 100は、 800°C以下好ましくは 500°C以下 の低い温度でもダメージフリーなプラズマ処理により、良質な膜を形成できるとともに 、プラズマ均一性に優れており、プロセスの均一性を実現することができる。
[0040] このプラズマ処理装置 100は、例えば、トランジスタのゲート絶縁膜としてのシリコン 酸化膜を形成する場合や、半導体装置の製造過程で素子分離技術として利用され ているシヤロートレンチアイソレーション(Shallow Trench Isolation; STI)においてトレ ンチ形状の表面を酸化処理 (ライナー酸化)して酸化膜を形成する場合などに、好適 に利用可能なものである。
[0041] 以下、プラズマ処理装置 100によるトレンチ形状(凹部)の酸化処理について、図 3 のフローチャートを参照しながら説明する。まず、ゲートバルブ 26を開にして搬入出 口 25からトレンチが形成されたウェハ Wをチャンバ一 1内に搬入し、サセプタ 2上に 載置する (ステップ 1)。
[0042] そして、チャンバ一 1内を密閉して高真空まで真空排気し (ステップ 2)、その後、ガ ス供給系 16の Arガス供給源 17および Oガス供給源 18から、 Arガスおよび Oガス
2 2 を所定の流量で、またはこれに Hガス供給源 19からの所定流量の Hガスを加えて、 ガス導入部材 15を介してチャンバ一 1内に導入するとともにサセプタ 2に埋設された ヒーター 5によりサセプタを所定の温度で加熱を開始する(予備加熱;ステップ 3)。こ のようにして所定時間予備加熱を行った後、チャンバ一 1内を所定圧力および所定 温度に保った状態でチャンバ一 1内にマイクロ波を導入して処理ガスをプラズマ化し プラズマ酸化処理を行う(ステップ 4)。
[0043] このプラズマ酸化処理の際には、予備加熱の際から引き続いて、 Arガスおよび O
2 ガス、またはこれらに Hガスを加えた処理ガスをチャンバ
2 一 1内に導入し、その状態 で、マイクロ波発生装置 39からマイクロ波がマッチング回路 38、導波管 37、平面アン テナ板 31およびマイクロ波透過板 28を介してチャンバ一 1内におけるウェハ Wの上 方空間に放射され、このマイクロ波によりチャンバ一 1内の処理ガスがプラズマ化し、 このプラズマによりウェハ Wにプラズマ酸化処理が施される。
[0044] 具体的には、マイクロ波発生装置 39からのマイクロ波がマッチング回路 38を経て導 波管 37に至り、導波管 37では、マイクロ波が矩形導波管 37b、モード変換器 40、お よび同軸導波管 37aを順次通って平面アンテナ板 31に供給され、平面アンテナ板 3 1からマイクロ波透過板 28を介してチャンバ一 1内におけるウェハ Wの上方空間に放 射される。マイクロ波は、矩形導波管 37b内では TEモードで伝播し、この TEモード のマイクロ波はモード変換器 40で TEMモードに変換されて、同軸導波管 37a内を平 面アンテナ板 31に向けて伝播されていく。この際、マイクロ波発生装置 39のパワー 密度は 0. 41—4. 19W/cm2、パワーは 0. 5〜5kWとすることが好ましい。
[0045] 平面アンテナ板 31からマイクロ波透過板 28を介してチャンバ一 1に放射されたマイ クロ波によりチャンバ一 1内で電磁界が形成され、 Arガス、 Oガス等がプラズマ化し、
2
このプラズマによりウェハ Wに形成された凹部内に露出したシリコン表面を酸化する 。このマイクロ波プラズマは、マイクロ波が平面アンテナ板 31の多数のマイクロ波放 射孔 32から放射されることにより、略 1 X 1010~5 X 1012/cm3あるいはそれ以上の 高密度のプラズマとなり、その電子温度は、 0. 5〜2eV程度と低ぐプラズマ密度の 均一性は、 ± 5%以下である。したがって、低温かつ短時間で酸化処理を行って薄く 均一な酸化膜を形成することができ、しかも低電子温度のプラズマのため酸化膜へ のプラズマ中のイオン等によるダメージが小さぐ良質なシリコン酸化膜を形成できる というメリットがある。
[0046] この際に、処理圧力を 267Pa以上 400Pa以下、処理ガス中の酸素の割合を 5〜2 0%の条件でプラズマ酸化処理を行なうことにより、後述するように、トレンチ上部のコ ーナ一部を丸み形状に形成できるとともに、被処理体表面に形成されたパターンの 疎密に影響されることなぐ均一な膜厚でシリコン酸化膜を形成できる。したがって、 この方法により得られたシリコン酸化膜を絶縁膜として使用して製造された半導体装 置は、良好な電気的特性を有するものとなる。
[0047] 上記「低圧力、低酸素濃度条件」の場合、プラズマ中の活性種としてイオン成分が 支配的となり、酸化の成長しにくいコーナー部(角部)にプラズマによる電界が集中し 、活性種が引き込まれ積極的なラジカル酸化が促進されるので、パターンの疎密差 により電子化レートに差が出て均一な酸化膜が形成され難い。
[0048] 一方、上述したように、上記「高圧力、高酸素濃度条件」の場合、粗密差は小さく良 好であるものの、活性種のラジカルが主に酸化に寄与するのでイオンアシストが不十 分となりコーナー部分に十分な丸みを形成することができない。
[0049] これに対して、本発明の「中圧力、中酸素濃度条件」では、上記「低圧力、低酸素 濃度条件」のコーナー部分の丸みを良好に維持することができる程度のイオンアシス トの効果を確保することができ、し力、も「高圧力、高酸素濃度条件」のパターンの粗密 差にかかわらず膜厚が均一にする効果を維持することができる。
[0050] このプラズマ処理に際して、処理ガス中の酸素の割合は、上述のように 5〜20%が 好ましく、 10〜; 18%がより好ましい。処理ガス中の酸素の割合をこの範囲で調節する ことにより、プラズマ中の酸素イオンや酸素ラジカルの量を制御し、シリコン表面に例 えば凹凸(パターン)が存在する場合でも、凹部内の底部に到達する酸素イオンや酸 素ラジカルの量をより多くすることがきるので、均一な膜厚でシリコン酸化膜を形成す ること力 Sでさる。
[0051] 「中圧力、中酸素濃度条件」における処理ガスの流量は、 Arガス: 50〜5000mL /min、 Oガス: 5〜500mL/minの範囲から、全ガス流量に対する酸素の割合が
2
上記値となるように選択することができる。
[0052] また、 Arガス供給源 17および Oガス供給源 18からの Arガスおよび Oガスに加え 、上述したように、 Hガス供給源 19から Hガスを所定比率で導入することができる。
2 2
このように Hガスを供給することにより、プラズマ酸化処理における酸化レートを向上
2
させること力 Sできる。これは、 Hガスを供給することで OHラジカルが生成され、これが
2
酸化レート向上に寄与するためである。この場合、 Hの割合は、処理ガス全体の量
2
に対して 0. 01〜; 10 %となるようにすることカ好ましく、 0. ;!〜 5 %カより好ましく、 0. ;!〜 2 %が望ましい。具体的には、 Arガス: 50〜5000mL/min、 Oガス: 10
2 〜500 mL/min、 Hガス:;!〜 1 l OmL/minの範囲が好ましい。また、 H /O比は 0. 1
2 2 2
〜0. 5の範囲が好ましい。
[0053] また、チャンバ一内処理圧力は、上述したょぅな267〜400?& (2〜3丁0 )の範囲 カ好ましく、 300〜350Pa (2. 2—2. 7Torr)の範囲カより好ましレヽ。
また、処理温度は 200〜800°Cの範囲から選択でき、 400〜500°C力 S好ましい。
[0054] ところで、本発明者らの実験結果によれば、本実施形態における処理ガス中の O
2 ガスの割合が 5〜20 %でチャンバ一内圧力が 267Pa以上 400Pa以下の範囲(以下 「中圧力、中酸素濃度条件」という)では、「低圧力、低酸素濃度条件」、および「高圧 力、高酸素濃度条件」の場合に比べて、単位時間当たりに形成される膜厚が小さい ことが判明した。すなわち、所定の膜厚を得るための時間が長くなりスループットが小 さくなつてしまう。
[0055] そのことを図 4に示す。図 4は、 300mmウェハについて、全ガス中の Oガスの割合
2 が 23 %で圧力が 665Pa ( 5Torr)の「高圧力、高酸素濃度条件」と、上記範囲内であ る Oガスの割合が 12. 7 %で圧力力 ¾33Pa (2. 5Torr)の「中圧力、中酸素濃度条
2
件」において、処理時間を変化させてシリコン酸化膜を形成した結果を示す図である 。なお、いずれの場合にも処理ガスは Oガス + Arガス + Hガスとし、「高圧力、高酸
2 2
素濃度条件」では、〇ガス: 37mL/min (sccm)、 Arガス: 120mL/min (sccm)、
2
Hガス: 3mL/min (sccm)、総流量を 1 60mLZmin (sccm)とし、「中圧力、中酸
2
素濃度条件」においては、〇ガス: 102mL/min (sccm)、 Arガス: 680mL/min (
2
sccm)、 Hガス: 18mL/ min (sccm)、総流直を 800mL/ miiusccm)とし 7こ。ま 7こ
2
、マイクロ波の出力を 4000W、処理温度(サセプタ温度)を 465°Cとした。なお、図 5 に斜線で示す、チャンバ一 1のライナー 7の内側でかつバッフルプレート 8からマイク 口波透過板下面までの部分に対応する、チャンバ一内で実効的にプラズマ処理が施 されるプラズマ処理空間 Sの容積は約 15. 6Lである。
[0056] この図 4からわかるように、本実施形態の「中圧力、中酸素濃度条件」では、「高圧 力、高酸素濃度条件」よりも成膜速度が遅い。例えばターゲット膜厚を 4nmとした場 合に、「高圧力、高酸素濃度条件」では 150seCであるのに対し、本実施形態の条件 では 240secと、高圧力、高酸素濃度条件より略 60%も長くかかる。この傾向は Arガ ス + 0ガスの場合でも同様である。
2
[0057] そこで、本実施形態の「中圧力、中酸素濃度条件」において、処理ガスの総流量を
800、 1400、 2000、 4000mL/min (sccm)と変ィ匕させて膜厚の変ィ匕を巴提した。 その結果を図 6に示す。ここでは、処理ガスを Oガス + Arガス + Hガスとし、処理ガ
2 2
ス中の〇ガスの割合を 15%とし、処理ガスの総流量を 800mL/minとした場合には
2
Ar : 0: H = 680 : 102 : 18、処理ガスの総流量を 2200mL/minとした場合には A
2 2
r : 0: H = 1870 : 280. 5 : 49. 5とした。また、圧力を 333Pa、マイクロ波の出力を 4
2 2
000W、処理温度(サセプタ温度)を 465°Cとした。この図に示すように、処理ガスの 総流量が 800〜2000mL/min (sccm)までは流量が増加するに従って膜厚が増 加し、 2000mL/min (sccm)以上で膜厚が飽和する。つまり処理ガスの総流量が 2 OOOmL/min (sccm)以上で高!/、スループット(生産性)力 S得られること力 Sわ力、る。し たがって、膜形成時間を短縮して生産性を向上させるためには、処理ガスの総流量 を 2000mL/min (sccm)以上とすることが好ましい。つまり、処理ガスの総流量を従 来の 2. 5倍以上とすることが有効であることが確認された。なお、チャンバ一内の容 積には多少の誤差があるが、図 5に示す上記実験での 300mmウェハ用のチャンバ 一では実効的にプラズマ処理が施されるプラズマ処理空間 Sの容積は 15〜; 16Lで あり、そのような場合に 2000mL/min (sccm)以上であれば上記酸化レート向上効 果を得ること力 Sでさる。
[0058] また、このような膜形成時間を短縮して生産性を向上させる効果は、実効的にブラ ズマ処理が施されるプラズマ処理空間の単位容積当たりの処理ガスの総流量に依存 し、その総流量が所定量以上であれば、チャンバ一の容積によらず発揮することがで きる。したがって、図 5に示すチャンバ一の実効的にプラズマ処理が施されるプラズマ 処理空間の容積 15. 6Lに対して 2000mL/min以上であるから、チャンバ一内で 実効的にプラズマ処理が施されるプラズマ処理空間の lmLあたり 0. 128mL/min 以上の流量とすることが好ましレ、。
[0059] 上記ステップ 3の予備加熱工程に関しては、従来の「低圧力、低酸素濃度条件」、 およびパターンの粗密による膜厚差の問題を改善するための「高圧力、高酸素濃度 条件」においては、温度変化により酸化レートが変化するため、基板およびチャンバ 内の温度を安定させて酸化レートを安定させることを目的に 35secと十分な時間に設 定している。
[0060] しかし、本発明者らの検討結果によれば、本実施形態の「中圧力、中酸素濃度条 件」においては、酸化レートの温度依存性が「低圧力、低酸素濃度条件」および「高 圧力、高酸素濃度条件」よりも小さいことが判明した。
[0061] そのことを図 7に示す。図 7は横軸に温度の逆数をとり、縦軸に酸化処理の際の拡 散速度定数をとつたいわゆるァレニウスプロットであり、「低圧力、低酸素濃度条件」、 「高圧力、高酸素濃度条件」、「中圧力、中酸素濃度条件」について示す。「低圧力、 低酸素濃度条件」、「高圧力、高酸素濃度条件」、「中圧力、中酸素濃度条件」の具 体的条件に関しては、以下の通りである。
「高圧力、高酸素濃度条件」
〇刀ス: 370mL/mim sccm)
2
Ar /ス: 1200mL/ min (sccm)
H刀ス: 30mLZmin (sccm)
2
圧力: 665Pa (5Torr)
「中圧力、中酸素濃度条件」
〇ガス: 280. 5mL/ min (sccm
2
Ar /ス: 1870mL/ min (sccm)
H刀ス: 49. 5mL/ min (sccm)
2
圧力: 333Pa (2. 5Torr)
「低圧力、低酸素濃度条件」
〇刀ス: 20mL/min (sccm) Arガス: 2000mL/ min (sccm)
Hガス: 10mL/ min (sccm)
2
圧力: 133Pa (lTorr)
[0062] 図 7に示すように、「低圧力、低酸素濃度条件」、「高圧力、高酸素濃度条件」では 温度変化に対して酸化処理の際の拡散速度定数が大きく変化するのに対し、「中圧 力、中酸素濃度条件」では温度が変化しても拡散速度定数がさほど変化しないこと がわかる。このことは、本実施形態の「中圧力、中酸素濃度条件」では、膜厚安定性 を得るために、「低圧力、低酸素濃度条件」、「高圧力、高酸素濃度条件」ほど温度安 定性は求められないことを示しており、本実施形態の「中圧力、中酸素濃度条件」で は、予備加熱時間を短縮可能なことを裏付けている。
[0063] この結果に基づいて、本実施形態の「中圧力、中酸素濃度条件」におけるシリコン 酸化膜の形成にお!/、て、酸化処理する前の予備加熱時間を従来の 35secとしたもの と、 lOsecにしたものについて、処理時間と膜厚および膜厚のばらつきとの関係を把 握するための実験を行った。その結果を図 8に示す。図 8に示すように、本実施形態 の「中圧力、中酸素濃度条件」では、予備加熱時間が lOsec程度でも 35secと同等 のシリコン酸化膜形成レートが得られ、しかも膜厚安定性も同等であり、予備加熱時 間を大幅に短縮可能であることが確認された。膜厚安定性を維持可能な範囲で極力 処理時間を短縮する観点からは、予備加熱時間は 5〜25secが好ましい。スループ ットの観点からは 5〜; 15secがより好ましい。
[0064] 次に、図 9を参照しながら、本発明のプラズマ酸化処理方法を STIにおけるトレンチ 形状表面への酸化膜形成へ適用した例について説明する。図 9は、 STIにおけるト レンチの形成とその後で行なわれる酸化膜形成までの工程を図示している。
[0065] まず、図 9の(a)および(b)において、シリコン基板 101に例えば熱酸化などの方法 により SiOなどのシリコン酸化膜 102を形成する。次に、(c)では、シリコン酸化膜 10
2
2上に、例えば CVD (Chemical
Vapor Deposition)により Si Nなどのシリコン窒化膜 103を形成する。さらに、(d)
3 4
では、シリコン窒化膜 103の上に、フォトレジストを塗布した後、フォトリソグラフィー技 術によりパターユングしてレジスト層 104を形成する。 [0066] 次に、(e)に示すように、レジスト層 104をエッチングマスクとし、例えばフロロカーボ ン系等のエッチングガスを用いてシリコン窒化膜 103とシリコン酸化膜 102を選択的 にエッチングすることにより、レジスト層 104のパターンに対応してシリコン基板 101を 露出させる。つまり、シリコン窒化膜 103により、トレンチのためのマスクパターンが形 成される。 (f)は、例えば酸素などを含む処理ガスを用いた酸素含有プラズマにより、 いわゆるアツシング処理を実施し、レジスト層 104を除去した状態を示す。
[0067] (g)では、シリコン窒化膜 103およびシリコン酸化膜 102をマスクとして、シリコン基 板 101に対し選択的にエッチング(ドライエッチング)を実施することにより、トレンチ 1 05を形成する。このエッチングは、例えば CI、 HBr、 SF、 CFなどのハロゲンまた
2 6 4
はハロゲン化合物や、 oなどを含むエッチングガスを使用して行なうことができる。
2
[0068] (h)は、 STIにおけるエッチング後にシリコン基板 101に形成されたトレンチ 105の 露出面に対し、シリコン酸化膜を形成する工程を示している。ここでは、中圧力、中酸 素条件である、処理ガス中の酸素の割合が 5〜20%で、かつ処理圧力が 267Pa以 上 400Pa以下の条件でプラズマ酸化処理が行なわれる。このような条件で(i)に示す ようにプラズマ酸ィ匕処理を fiなうことにより、卜レンチ 105の肩咅 105aのシリコン 101 に丸みを持たせつつ、トレンチ 105の露出面にシリコン酸化膜を形成することができ る。トレンチ 105の肩部 105aのシリコンを丸み形状に形成することによって、この部位 が鋭角に形成されている場合と比較して、リーク電流の発生を抑制することができる。 また、凹凸パターンに疎密がある場合でも、疎な部位と密な部位との膜厚差を生じ させずに均一なシリコン酸化膜をトレンチ (溝)形状の表面に形成できる。
[0069] さらに、シリコン基板 101の結晶面方位としては(100)面が一般的に用いられ、基 板をエッチングしてトレンチ 105を形成した際、トレンチ 105内の側壁面には(111) 面または(110)面が露出し、トレンチ 105の底面には(100)面が露出する。このよう なトレンチ 105を酸化処理すると、面方位によって酸化レートが異なり、各面で酸化 膜厚に差がでる面方位依存性が問題となる。しかし、上記本発明の酸化処理条件で プラズマ酸化処理を行なうことにより、シリコンの面方位に依存することなぐトレンチ 1 05の内面(側壁部、底部)に均一な膜厚でシリコン酸化膜 11 la, 111bを形成できる 。これらの効果は、処理ガス中の酸素の割合が 5〜20%で、かつ処理圧力力 ¾67Pa 以上 400Pa以下の条件行なわれるプラズマ酸化処理に特有の効果である。そのとき の酸素の分圧は 13. 3〜80Paであり、酸素の割合がより好ましい範囲である 10〜; 18 %のとき、酸素の分圧は 26. 6〜72Paである。
[0070] なお、本発明のシリコン酸化膜の形成方法によってシリコン酸化膜 111を形成した 後は、 STIによる素子分離領域形成の手順に従い、例えば CVD法によりトレンチ 10 5内に SiOなどの絶縁膜を埋込んだ後、シリコン窒化膜 103をストッパー層として C
2
MPによって研磨を行ない平坦化する。平坦化した後は、エッチングによってシリコン 窒化膜 103および埋込み絶縁膜の上部を除去することにより、素子分離構造を形成 できる。
[0071] 次に、本発明のシリコン酸化膜の形成方法を、疎密を持つライン &スペースの凹凸 ノ ターンが形成されたシリコン表面の酸化膜形成に適用した例について説明する。 図 10は、パターン 110を有するシリコン基板 101の表面にシリコン酸化膜 111を形成 した後のウェハ Wの要部の断面構造を模式的に示したものである。
[0072] 図 1のプラズマ処理装置 100を用い、下記の条件 A〜Cで処理圧力および酸素割 合を変化させてプラズマ酸化処理を行ない、凹凸のシリコン表面にシリコン酸化膜を 形成後、パターン 110の凸部の頂部膜厚 a、凹凸パターン 110が疎な部分 (疎部)に おける側部膜厚 b、底部膜厚 cおよび肩部 112のコーナー膜厚 d、並びに凹凸パター ンが密な部分 (密部)における側部膜厚 b'、底部膜厚 c'および肩部 112のコーナー 膜厚 d'について、それぞれ測定を行なった。なお、この凹凸パターン 110において、 パターンが疎な領域の凹部の開口幅 Lと、密な領域の凹部の開口幅 Lとの比(L /
1 2 1
L )は、 10以上であった。また、凹凸パターン 110の凹部の深さと開口幅との比(ァス
2
ぺクト比)は疎部が 1以下であり、密部が 2であった。
[0073] 形成されたシリコン酸化膜について、凹凸パターン 110の凸部のコーナー膜厚比( 膜厚 d' /膜厚 b' )、凹凸パターン 110の頂部と底部の膜厚比 (膜厚 c ' /膜厚 a)およ び凹凸パターン 110の疎密による膜厚比 [ (膜厚 c' /膜厚 c) X 100]を測定した。こ れらの結果を表 1および図 11〜図 14に示す。図 11はシリコン酸化膜の膜厚比と処 理圧力との関係を示すグラフであり、図 12はシリコン酸化膜の膜厚比と処理ガス中の 酸素比率との関係を示すグラフであり、図 13はシリコン酸化膜のパターン疎密による 膜厚比と処理圧力との関係を示すグラフであり、図 14はシリコン酸化膜のパターン疎 密による膜厚比と処理ガス中の酸素比率との関係を示すグラフである。
[0074] コーナー膜厚比(膜厚 d' /膜厚 )は、パターンの肩部 1 12の丸み形成の度合い を示しており、例えば 0. 8以上であれば肩部 112のシリコン 101の角が丸く形成され る。より好ましくは 0. 8~ 1. 5、さらに好ましくは 0. 95- 1. 5、さらに一層好ましくは 0 . 95- 1. 0である。逆に、このコーナー膜厚比が 0. 8未満では、コーナー部分のシリ コン 101が十分に丸まっておらずシリコン 101の角が鋭角のままの形状になる。この ようにコーナー部分のシリコン 101が鋭角であると、デバイス形成後、このコーナー部 分に電界集中が起こりリーク電流の増大につながる。
また、頂部と底部の膜厚比 (膜厚 c ' /膜厚 a)は、凹凸形状を有するシリコンに対す るカバレッジ性能を示し、 1に近!/、ほど良好である。
さらに、疎密による膜厚比 [ (膜厚 c ' /膜厚 c) X 100]は、パターン 110の疎部と密 部との膜厚差の指標であり、 85%以上であれば良好である。
[0075] <条件 A ;比較例 1〉
Ar流 500mL/ min (sccm)
O流直:5ITLL min (sccm)
2
H i ifm : OmL/ min (sccm)
2
Oガス比率:約 1 %
2
処理圧力: 133· 3Pa (lTorr)
マイクロ波パワー密度: 2. 30W/cm2
処理温度: 400°C
処理時間: 360秒
[0076] <条件 B ;本発明〉
Ari^ifm: d40mL/ min (sccm)
O流直: 51mL/ miiusccm)
2
H ^] 9mL/ min (sccm)
2
Oガス比率:約 13%
2
処理圧力: 333· 3Pa (2. 5Torr) マイクロ波パワー密度: 2. 30W/cm2
処理温度: 400°C
処理時間: 585秒
[0077] <条件 C ;比較例 2 >
Ar流量: 120mL/ mi sccmj
O流量: 37mL/ min (sccm
H流量: 3mL/ min (sccm)
2
Oガス比率:約 23%
2
処理圧力: 666· 5Pa (5Torr)
マイクロ波パワー密度: 2· 30W/cm2
処理温度: 400°C
処理時間: 444秒
[0078] [表 1]
Figure imgf000022_0001
[0079] 表 1、図 1 1および図 12より、コーナー部分の膜厚比は、条件 Α (比較例 1 )〉条件 Β
(本発明) >条件 C (比較例 1 )であることが確認された。すなわち、条件 B (本発明)に よりシリコン酸化膜を形成した場合のコーナー膜厚比は 0· 99であって、相対的に低 圧力、低酸素濃度条件である条件 A (比較例 1 )の 1. 14よりも劣るが良好な結果であ り、肩部 112のシリコンに十分な丸み形状が形成されていることが確認された。しかし 、相対的に高圧力、高酸素濃度条件である条件 C (比較例 2)の場合には、コーナー 膜厚比は 0. 94であり、 0. 95に達しておらず、肩部 1 12のシリコンへの丸み形状の 導入が不十分であった。また、頂部と底部の膜厚比は、条件 B (本発明)〉条件 C (比 較例 1)〉条件 A (比較例 1)であることが確認された。すなわち、条件 B (本発明)と、 条件 C (比較例 2)は優れているが、相対的に低圧力、低酸素濃度条件である条件 A (比較例 1)では劣っていた。
[0080] さらに、表 1、図 13および図 14より、疎密による膜厚比は、条件 C (比較例 1) >条 件 B (本発明)〉条件 A (比較例 1)であることが確認された。すなわち、条件 B (本発 明)では 89. 4%と、相対的に高圧力、高酸素濃度条件である条件 C (比較例 2)の 9 3. 8%よりも低いものの優れていた。一方、相対的に低圧力、低酸素濃度条件であ る条件 A (比較例 1)では、 81. 5%と他の条件に比べて大幅に劣っていた。
条件 B (本発明)および相対的に高圧力、高酸素濃度条件である条件 C (比較例 2) では、相対的に低圧力、低酸素濃度条件である条件 A (比較例 1)に比べてプラズマ 中の酸素ラジカル密度が高ぐ凹凸パターン 110の凹部内にラジカルが進入しやす いことから疎密による膜厚差が小さく良好な結果が得られたものと考えられた。
[0081] このように、相対的に低圧力、低酸素濃度条件である条件 A (比較例 1)と、相対的 に高圧力、高酸素濃度条件である条件 C (比較例 2)では、コーナー膜厚比または疎 密による膜厚比のいずれかにおいて劣っており、全ての特性を満足する結果は得ら れなかった力 条件 B (本発明)では、全ての特性において良好な結果が得られた。
[0082] また、上記試験結果から、コーナー膜厚比を 0. 8以上、好ましくは 0. 95以上にす るためには、処理圧力を 400Pa以下、処理ガス中の酸素の割合を 20%以下とすれ ばよいことがわかる。他方、疎密による膜厚比を 85%以上にするためには、処理圧 力を 267Pa以上、処理ガス中の酸素の割合を 5%以上にすればよいことがわかる。 従って、プラズマ酸化処理における処理圧力は、 267Pa以上 400Pa以下とすること が好ましぐ処理ガス中の酸素の割合は 5%以上 20%以下とすることが好ましぐ 10 %以上 18%以下とすることがより好ましいことが確認された。
[0083] 次に、プラズマ処理装置 100において、処理ガスとして Ar/O /Hを総流量 800
2 2
mL/min (sccm)で用い、表面の結晶面が(100)面と(110)面のシリコンに対して プラズマ酸化処理を実施し、面方位による膜厚比 [ (110)面の膜厚/ (100)面の膜 厚]を調べた。処理ガス中の酸素害 IJ合は 4. 25%、 6. 37%、 8. 5%、 12. 75、 17. 0 %および 21. 25%で変化させ、残部を Ar流量および H流量により調節して上記総
2
流量となるようにした。また、処理圧力は、 266. 7Pa、 333. 2Pa、 400Pa、 533. 3P aおよび 666. 5Paで変化させた。なお、 H /O流量比を 0· 176で固定した。また、
2 2
マイクロ波パワーは 2750W (パワー密度: 2. 30W/cm2)、処理温度は 400°C、処 理時間は 360秒とした。その結果を図 15および図 16に示した。
[0084] シリコン酸化膜を形成する場合、凹凸を有するシリコンの側部の(110)面と、凹凸 の底部の(100)面との膜厚比をできるだけ均一化することが重要である。この面方位 による膜厚比 [ (110)面の膜厚/ (100)面の膜厚]は、 1. 15以下が好ましぐ 1. 1 以上 1. 15以下がより好ましい。
[0085] 図 15および図 16より、処理圧力が、 267Pa以上 400Pa以下、処理ガス中の酸素 の割合が 5%以上 20%以下のプラズマ酸化処理条件であれば、面方位による膜厚 比 [ (110)面の膜厚/ (100)面の膜厚]を 1. 15以下、例えば 1. 1以上 1. 15以下に でさること力 S確言忍された。
[0086] 面方位による膜厚比 [ (110)面の膜厚/ (100)面の膜厚]は 1. 0以上が好ましい
1S 1. 0の場合には疎密による膜厚比が悪くなる。疎密による膜厚比を 85%以上と するためには、 1. 1以上の面方位による膜厚比が必要であり、かつ、面方位による膜 厚比が 1. 1以上であれば、コーナー膜厚比も良好な値に維持することができる。
[0087] 以上の試験結果から、プラズマ処理装置 100において、 267Pa以上 400Pa以下、 処理ガス中の酸素の割合が 5%以上 20%以下の条件でシリコン酸化膜を形成するこ とにより、凹凸パターン 110の肩部 112に丸みを導入できると同時に、パターン疎密 による膜厚差を改善でき、さらに面方位による膜厚差も抑制できることが示された。こ れらの効果は、図 10において、凹凸パターン 110が疎な領域の凹部の開口幅 Lと、 密な領域の凹部の開口幅 Lとの比(L /L )が 1より大きく例えば 2〜; 10でも十分に
2 1 2
得られる。さらに、凹凸パターン 110の凹部の深さと開口幅との比(アスペクト比)が疎 部で 1以下好ましくは 0. 02以上 1以下、密部で 2以上 10以下好ましくは 5以上 10以 下である凹凸パターンに対しても上記各効果が得られる。また、極微細な凹凸パター ン 110に対しても均一にシリコン酸化膜を形成できる。
[0088] 次に、処理時間短縮の試験を行った結果につ!/、て説明する。ここでは、本実施形 態の「中圧力、中酸素濃度条件」として、チャンバ一内圧力: 333Pa (2. 5Torr)、全 ガス流量に対する Oガスの割合: 12. 75%、 Hガスの割合: 2. 25%とし、処理温度
2 2
: 465°C、マイクロ波パワー: 4000W (パワー密度: 3. 35W/cm2)の条件で、処理 ガスの総流量を 800mL/min (sccm)および 2200mL/min (min)とし、 2200mL /minの場合に予備加熱時間を 35secおよび l Osecの 2水準とした。また、比較のた めに「高圧力、高酸素濃度条件」として、および予備加熱時間を変化させてシリコン 酸化膜形成処理を行った。チャンバ一内圧力: 665Pa (5Torr)、全ガスに対する O
2 ガスの割合: 23%、 Hガスの割合: 2. 25%とし、処理温度: 465°C、マイクロ波パヮ
2
一: 4000W (パワー密度: 3. 35W/cm2)の条件で、表 2に示すように予備加熱時 間: 35sec、プラズマ処理 145sec、総時間: 180secで 4. 2nmのシリコン酸化膜が形 成された(表 2の処理 A)。これに対して、「中圧力、中酸素濃度条件」では処理ガス の総流量が 800mL/min (sccm)のとき(表 2の処理 B)に、 4. 2nmのシリコン酸化 膜を得るための処理時間は、予備加熱時間: 35sec、プラズマ処理時間: 223sec、 総時間: 258secで「高圧力、高酸素濃度条件」の場合よりも 78secも長かった。このと きのシーケンスを図 17Aに示す。し力、し、処理ガスの総流量を 2200mL/min (scc m)まで上昇させることで 4. 2nmのシリコン酸化膜を得るためのプラズマ処理時間を 180secまで短縮することができ(表 2の処理 C)、 800mL/minの場合よりも処理時 間を 43sec短縮することができ、「高圧力、高酸素濃度条件」の場合との差が 35sec まで縮まった。このときのシーケンスを図 17Bに示す。また、処理ガスの総流量を 220 OmL/minでかつ予備加熱時間を lOsecまで減らしても(表 2の処理 D)プラズマ処 理時間はさほど延長されず、膜厚のばらつきも予備加熱が 35secの場合と同程度で あった。表 2に示すように、この時のプラズマ処理時間は 188secであり、予備加熱時 間は lOsecであるから、総時間が 198secとなり、「高圧力、高酸素濃度条件」である 処理 Aよりも 18sec長くなる程度で、処理 Aとほぼ同等の処理時間となった。このとき のシーケンスを図 17Cに示す。
[表 2] 条件 総流量 パワー プラズマ ON 予備加熱時間 (3 (2) Aとの時間差
[mL/min] [W] [sec] ① [sec]② [secj [sec]
A 高圧高酸素 160 4000 145 35 180 ―
B 800 223 35 258 78
C 中圧中酸素 2200 4000 180 35 215 35
D 188 10 198 18
[0090] なお、本発明は上記実施形態に限定されることなぐ種々の変形が可能である。例 えば上記実施形態では、本発明の方法を実施する装置として RLSA方式のプラズマ 処理装置を例に挙げたが、例えばリモートプラズマ方式、 ICPプラズマ方式、 ECRプ ラズマ方式、表面反射波プラズマ方式、マグネトロンプラズマ方式等の他のプラズマ 処理装置であってもよい。
[0091] また、上記実施形態では図 9、 10に例示されるような単結晶シリコンであるシリコン 基板上に形成された凹凸パターンの表面に高品質な酸化膜形成をする必要性が高 い STIにおけるトレンチ内部の酸化膜形成を例示した力 トランジスタのポリシリコン ゲート電極側壁の酸化膜形成などその他の凹凸パターンの表面に高品質な酸化膜 形成の必要性の高いアプリケーションにも適用できるし、また、凹凸が形成されて部 位により面方位が相違するシリコン表面例えばフィン構造や溝ゲート構造の 3次元ト ランジスタの製造過程でゲート絶縁膜等としてのシリコン酸化膜を形成する場合にも 適用可能である。さらに、フラッシュメモリーなどのトンネル酸化膜の形成などにも適 用可能である。
[0092] また、上記実施形態では、絶縁膜としてシリコン酸化膜を形成する方法に関して述 ベたが、本発明方法により形成されたシリコン酸化膜をさらに窒化処理してシリコン酸 窒化膜(SiON膜)を形成する用途にも適用される。この場合、窒化処理の方法は問 わないが、例えば Arガスと Nガスを含む混合ガスを用いてプラズマ窒化処理をする
2
ことが好ましい。また、 Arガスと Nガスと Oガスの混合ガスを用いてプラズマ酸窒化
2 2
処理することによる酸窒化膜の形成に適用することもできる。
[0093] さらにまた、上記実施形態では被処理体として半導体基板であるシリコン基板を用 いた例について示した力 S、化合物半導体基板のような他の半導体基板であってもよく
、また、 LCD基板、有機 EL基板等の FPD用の基板であってもよい。 産業上の利用可能性
本発明は、各種半導体装置の製造において、シリコン酸化膜を形成する場合に好 適に利用できる。

Claims

請求の範囲
[1] プラズマ処理装置の処理容器内に、表面がシリコンで構成され表面に凹凸形状の ノ ターンを有する被処理体を配置することと、
前記処理容器内で、処理ガス中の酸素の割合が 5〜20%の範囲で、かつ処理圧 力力 ¾67Pa以上 400Pa以下の範囲でプラズマを形成することと、
前記プラズマにより、前記被処理体の表面のシリコンを酸化してシリコン酸化膜を形 成することと、
を含む、プラズマ酸化処理方法。
[2] 前記プラズマは、前記処理ガスが、複数のスロットを有する平面アンテナにより前記 処理容器内に導入されるマイクロ波によって励起されて形成されるマイクロ波励起プ ラズマである、請求項 1に記載のプラズマ酸化処理方法。
[3] 被処理体の表面には、前記凹凸パターンが疎な領域と、該凹凸パターンが密な領 域とが形成されて!/、る、請求項 1に記載のプラズマ酸化処理方法。
[4] 前記凹凸パターンの凸部上端のコーナー部に形成されるシリコン酸化膜の膜厚 t と、前記凸部の側面に形成されるシリコン酸化膜の膜厚 tとの比 (t /t )が、 0. 95以 上 1. 5以下となるようにシリコン酸化膜を形成する、請求項 1に記載のプラズマ酸化 処理方法。
[5] 前記凹凸パターンが疎な領域の凹部の底のシリコン酸化膜の膜厚に対し、前記凹 凸パターンが密な領域の凹部の底のシリコン酸化膜の膜厚の比率が 85%以上とな るようにシリコン酸化膜を形成する、請求項 3に記載のプラズマ酸化処理方法。
[6] 前記処理ガス中の酸素の割合が 10〜; 18%である、請求項 1に記載のプラズマ酸 化処理方法。
[7] 前記処理圧力が 300Pa以上 350Pa以下である、請求項 1に記載のプラズマ酸化 処理方法。
[8] 前記処理ガスは、水素を 0.;!〜 10%の割合で含む、請求項 1に記載のプラズマ酸 化処理方法。
[9] 処理温度が 200〜800°Cである、請求項 1に記載のプラズマ酸化処理方法。
[10] プラズマ処理装置の処理容器内に、表面にシリコンを有する被処理体を配置するこ とと、複数のスロットを有する平面アンテナから前記処理容器内にマイクロ波を放射し て前記処理容器内にマイクロ波により希ガスと酸素を含む処理ガスのプラズマを形成 することと、前記プラズマにより、被処理体表面のシリコンを酸化してシリコン酸化膜を 形成することとを含むプラズマ酸化処理方法であって、
5〜20%の酸素を含む処理ガスを、前記処理容器内で実効的にプラズマ処理が 施されるプラズマ処理空間の容積 lmLあたり 0. 128mL/min以上の流量で前記 処理容器内に供給し、かつ処理圧力を 267Pa以上 400Pa以下として前記プラズマ を形成し、そのプラズマにより被処理体表面のシリコンを酸化してシリコン酸化膜を形 成する、プラズマ酸化処理方法。
[11] 前記処理容器内で実効的にプラズマ処理が施されるプラズマ処理空間の容積が 1 5〜; 16Lである場合に、酸素の割合が 5〜20%の処理ガスを 2000mL/min以上の 流量で前記処理容器内に供給される、請求項 10に記載のプラズマ酸化処理方法。
[12] 前記プラズマによるシリコンの酸化処理は、被処理体を加熱しつつ行い、前記シリ コンの酸化処理に先立って行われる被処理体の予備加熱を、 5〜30秒間行う、請求 項 10に記載のプラズマ酸化処理方法。
[13] 前記処理ガスは、さらに水素ガスを含む、請求項 10に記載のプラズマ酸化処理方 法。
[14] 被処理体の表面に凹凸パターンを有する、請求項 10に記載のプラズマ酸化処理 方法。
[15] 被処理体の表面には、前記凹凸パターンが疎な領域と、該凹凸パターンが密な領 域とが形成されている、請求項 14に記載のプラズマ酸化処理方法。
[16] 前記凹凸パターンの凸部上端のコーナー部に形成されるシリコン酸化膜の膜厚 t と、前記凸部の側面に形成されるシリコン酸化膜の膜厚 tとの比 (t /t )が、 0. 95以 上 1. 5以下となるようにシリコン酸化膜を形成する、請求項 14に記載のプラズマ酸化 処理方法。
[17] 前記凹凸パターンが疎な領域の凹部の底のシリコン酸化膜の膜厚に対し、前記凹 凸パターンが密な領域の凹部の底のシリコン酸化膜の膜厚の比率が 85%以上とな るようにシリコン酸化膜を形成する、請求項 15に記載のプラズマ酸化処理方法。
[18] 前記処理ガス中の酸素の割合が 10〜; 18%である、請求項 10に記載のプラズマ酸 化処理方法。
[19] 前記処理圧力が 300Pa以上 350Pa以下である、請求項 10に記載のプラズマ酸化 処理方法。
[20] 前記処理ガスの水素ガスの割合は 0. ;!〜 10%である、請求項 10に記載のプラズ マ酸化処理方法。
[21] 処理温度が 200〜800°Cである、請求項 10に記載のプラズマ酸化処理方法。
[22] 表面がシリコンで構成され表面に凹凸形状のパターンを有する被処理体が収容さ れる処理容器と、
前記処理容器内に希ガスと酸素を含む処理ガスを供給する処理ガス供給機構と、 前記処理容器内を真空排気する排気機構と、
前記処理容器に前記処理ガスのプラズマを生成させるプラズマ生成機構と、 前記処理容器内に、前記被処理体が配置された状態で、前記処理容器内で、前 記処理ガス中の酸素の割合が 5〜20%で、かつ処理圧力が 267Pa以上 400Pa以 下でプラズマを形成することと、前記プラズマにより、前記被処理体の表面のシリコン を酸化してシリコン酸化膜を形成することとが行われるように制御する制御部と を具備する、プラズマ処理装置。
[23] コンピュータ上で動作し、プラズマ処理装置を制御するプログラムが記憶された記 憶媒体であって、前記プログラムは、実行時に、プラズマ処理装置の処理容器内に、 表面がシリコンで構成され表面に凹凸形状のパターンを有する被処理体を配置する ことと、前記処理容器内で、処理ガス中の酸素の割合が 5〜20%の範囲で、かつ処 理圧力力 ¾67Pa以上 400Pa以下の範囲でプラズマを形成することと、前記プラズマ により、前記被処理体の表面のシリコンを酸化してシリコン酸化膜を形成することとを 含む、プラズマ酸化処理方法が行われるように、コンピュータに前記プラズマ処理装 置を制御させる、記憶媒体。
PCT/JP2007/068756 2006-09-29 2007-09-27 Procédé d'oxydation par plasma, appareil d'oxydation par plasma et support de stockage WO2008041601A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020097006461A KR101163276B1 (ko) 2006-09-29 2007-09-27 플라즈마 산화 처리 방법 및 플라즈마 처리 장치
CN2007800364025A CN101523576B (zh) 2006-09-29 2007-09-27 等离子体氧化处理方法
JP2008537497A JP5231233B2 (ja) 2006-09-29 2007-09-27 プラズマ酸化処理方法、プラズマ処理装置、及び、記憶媒体
US12/443,552 US20100029093A1 (en) 2006-09-29 2007-09-27 Plasma oxidizing method, plasma processing apparatus, and storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006267745 2006-09-29
JP2006-267745 2006-09-29
JP2007-091702 2007-03-30
JP2007091702 2007-03-30

Publications (1)

Publication Number Publication Date
WO2008041601A1 true WO2008041601A1 (fr) 2008-04-10

Family

ID=39268462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068756 WO2008041601A1 (fr) 2006-09-29 2007-09-27 Procédé d'oxydation par plasma, appareil d'oxydation par plasma et support de stockage

Country Status (6)

Country Link
US (1) US20100029093A1 (ja)
JP (1) JP5231233B2 (ja)
KR (1) KR101163276B1 (ja)
CN (1) CN101523576B (ja)
TW (1) TWI433237B (ja)
WO (1) WO2008041601A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034057A1 (ja) * 2009-09-17 2011-03-24 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理装置用ガス供給機構
JP5860392B2 (ja) * 2010-03-31 2016-02-16 東京エレクトロン株式会社 プラズマ窒化処理方法及びプラズマ窒化処理装置
WO2018179038A1 (ja) * 2017-03-27 2018-10-04 株式会社Kokusai Electric 半導体装置の製造方法、プログラム及び基板処理装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045786B2 (ja) * 2010-05-26 2012-10-10 東京エレクトロン株式会社 プラズマ処理装置
JP5649510B2 (ja) * 2010-08-19 2015-01-07 キヤノンアネルバ株式会社 プラズマ処理装置,成膜方法,dlc皮膜を有する金属板の製造方法,セパレータの製造方法
CN104051210B (zh) * 2013-03-12 2016-05-11 中微半导体设备(上海)有限公司 一种减少门效应的等离子体处理装置
US9829790B2 (en) * 2015-06-08 2017-11-28 Applied Materials, Inc. Immersion field guided exposure and post-exposure bake process
FR3038419B1 (fr) * 2015-06-30 2017-07-28 Oberthur Technologies Serveur et procede de verification de code de securite
US10203604B2 (en) 2015-11-30 2019-02-12 Applied Materials, Inc. Method and apparatus for post exposure processing of photoresist wafers
US20180076026A1 (en) 2016-09-14 2018-03-15 Applied Materials, Inc. Steam oxidation initiation for high aspect ratio conformal radical oxidation
US11049731B2 (en) 2018-09-27 2021-06-29 Applied Materials, Inc. Methods for film modification
JP2021027125A (ja) * 2019-08-02 2021-02-22 キオクシア株式会社 半導体記憶装置及び半導体記憶装置の製造方法
CN114121672A (zh) * 2021-11-23 2022-03-01 上海华力集成电路制造有限公司 鳍结构表面氧化层均匀化的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297822A (ja) * 2002-03-29 2003-10-17 Tokyo Electron Ltd 絶縁膜の形成方法
JP2006216774A (ja) * 2005-02-03 2006-08-17 Advanced Lcd Technologies Development Center Co Ltd 絶縁膜の成膜方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368941B1 (en) * 2000-11-08 2002-04-09 United Microelectronics Corp. Fabrication of a shallow trench isolation by plasma oxidation
EP1361605A4 (en) 2001-01-22 2006-02-15 Tokyo Electron Ltd METHOD FOR PRODUCING MATERIAL OF AN ELECTRONIC COMPONENT
JP2002280369A (ja) 2001-03-19 2002-09-27 Canon Sales Co Inc シリコン基板の酸化膜形成装置及び酸化膜形成方法
US20050155345A1 (en) * 2002-03-29 2005-07-21 Tokyo Electron Limited Device and method for purifying exhaust gas from industrial vehicle engine
US6734082B2 (en) * 2002-08-06 2004-05-11 Chartered Semiconductor Manufacturing Ltd. Method of forming a shallow trench isolation structure featuring a group of insulator liner layers located on the surfaces of a shallow trench shape
JP2006135161A (ja) * 2004-11-08 2006-05-25 Canon Inc 絶縁膜の形成方法及び装置
JP4718189B2 (ja) * 2005-01-07 2011-07-06 東京エレクトロン株式会社 プラズマ処理方法
WO2006082730A1 (ja) * 2005-02-01 2006-08-10 Tokyo Electron Limited 半導体装置の製造方法およびプラズマ酸化処理方法
US7268057B2 (en) * 2005-03-30 2007-09-11 Micron Technology, Inc. Methods of filling openings with oxide, and methods of forming trenched isolation regions
US8318554B2 (en) * 2005-04-28 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Method of forming gate insulating film for thin film transistors using plasma oxidation
KR100670925B1 (ko) * 2005-08-01 2007-01-19 삼성전자주식회사 반도체 장치 및 이의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297822A (ja) * 2002-03-29 2003-10-17 Tokyo Electron Ltd 絶縁膜の形成方法
JP2006216774A (ja) * 2005-02-03 2006-08-17 Advanced Lcd Technologies Development Center Co Ltd 絶縁膜の成膜方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034057A1 (ja) * 2009-09-17 2011-03-24 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理装置用ガス供給機構
JP5454575B2 (ja) * 2009-09-17 2014-03-26 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理装置用ガス供給機構
US8967082B2 (en) 2009-09-17 2015-03-03 Tokyo Electron Limited Plasma processing apparatus and gas supply device for plasma processing apparatus
JP5860392B2 (ja) * 2010-03-31 2016-02-16 東京エレクトロン株式会社 プラズマ窒化処理方法及びプラズマ窒化処理装置
WO2018179038A1 (ja) * 2017-03-27 2018-10-04 株式会社Kokusai Electric 半導体装置の製造方法、プログラム及び基板処理装置
US10796900B2 (en) 2017-03-27 2020-10-06 Kokusai Electric Corporation Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
TWI433237B (zh) 2014-04-01
US20100029093A1 (en) 2010-02-04
CN101523576B (zh) 2012-10-03
TW200830416A (en) 2008-07-16
JPWO2008041601A1 (ja) 2010-02-04
KR101163276B1 (ko) 2012-07-05
KR20090058002A (ko) 2009-06-08
JP5231233B2 (ja) 2013-07-10
CN101523576A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
JP5231233B2 (ja) プラズマ酸化処理方法、プラズマ処理装置、及び、記憶媒体
JP5073482B2 (ja) シリコン酸化膜の製造方法、その制御プログラム、記憶媒体及びプラズマ処理装置
US8372761B2 (en) Plasma oxidation processing method, plasma processing apparatus and storage medium
JP5089121B2 (ja) シリコン酸化膜の形成方法およびプラズマ処理装置
TWI402912B (zh) Manufacturing method of insulating film and manufacturing method of semiconductor device
KR101028625B1 (ko) 기판의 질화 처리 방법 및 절연막의 형성 방법
JP4906659B2 (ja) シリコン酸化膜の形成方法
JP5231232B2 (ja) プラズマ酸化処理方法、プラズマ処理装置、及び、記憶媒体
JP5271702B2 (ja) シリコン酸化膜の形成方法およびシリコン酸化膜の形成装置
KR20110055707A (ko) 실리콘 산화막의 형성 방법 및 장치
JP5291467B2 (ja) プラズマ酸化処理方法、記憶媒体、及び、プラズマ処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036402.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008537497

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097006461

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12443552

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828502

Country of ref document: EP

Kind code of ref document: A1