WO2008040680A1 - Verfahren zur herstellung eines trägerelements mit einem winkelsensor - Google Patents

Verfahren zur herstellung eines trägerelements mit einem winkelsensor Download PDF

Info

Publication number
WO2008040680A1
WO2008040680A1 PCT/EP2007/060291 EP2007060291W WO2008040680A1 WO 2008040680 A1 WO2008040680 A1 WO 2008040680A1 EP 2007060291 W EP2007060291 W EP 2007060291W WO 2008040680 A1 WO2008040680 A1 WO 2008040680A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle sensor
leadframe
carrier element
sensor module
transducer
Prior art date
Application number
PCT/EP2007/060291
Other languages
English (en)
French (fr)
Inventor
Erwin Schneider
Werner Wallrafen
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to EP07820678.6A priority Critical patent/EP2087320B1/de
Priority to JP2009530854A priority patent/JP5135351B2/ja
Priority to US12/444,564 priority patent/US8339124B2/en
Priority to CN2007800373594A priority patent/CN101558285B/zh
Priority to KR1020097009178A priority patent/KR101503935B1/ko
Publication of WO2008040680A1 publication Critical patent/WO2008040680A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B7/31Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0205Arrangements; Control features; Details thereof working on the throttle valve and another valve, e.g. choke

Definitions

  • the present invention relates to a method for producing a carrier element, for example in the form of a housing cover or for insertion in a housing cover, with an angle sensor for detecting the rotational angle of a shaft and with electrical
  • the present invention is also a carrier element with an angle sensor for an actuator of an internal combustion engine, wherein the angle sensor comprises a magnet associated with the actuator and electronic components and with electrical plug-in connections, for. B. a so-called customer plug equipped.
  • Such support elements with integrated angle sensor are used in internal combustion engines, where they detect the rotational position of actuators for the control of the internal combustion engine, for example in the load control, exhaust gas recirculation, air valves in the intake tract or the adjustment of the blades of a turbocharger.
  • the design as a housing cover has the advantage that the angle sensor is closed even protected in a unit, wherein the electrical connections are designed as customer plug, which is configured according to customer requirements and allows electrical connection to the engine electronics.
  • the actual angle sensor usually consists of at least one magnetoresistive sensor or a Hall sensor, z. B. in semiconductor technology, wherein the sensor already each have a chip with the Evaluation is assigned. Frequently, the angle sensor also includes capacitors to improve the electromagnetic compatibility.
  • the redundant training with two sensors and two associated evaluation electronics to increase the security, for example, when detecting the angular position of a throttle valve (e-gas).
  • Sensor and the transmitter is preconfigured by a chip manufacturer, d. H. the chip for the evaluation and the sensor are electrically connected to a punched grid for contacting to the outside, for example by bonding, and then the electronic components are molded individually with a thermoset. Subsequently, a check is made by the manufacturer and the preconfigured angle sensor is then delivered to a customer.
  • This derives from another manufacturer a housing cover blank made of plastic, which is usually produced by injection molding, and manufactures the angle sensor angle sensor module in that initially the preconfigured angle sensor is electrically connected to a so-called lead frame by welding or soldering. Subsequently, the leadframe is inserted into the housing blank and the leadframe is overmolded with a thermoplastic, wherein a separate cover must protect the sensor, otherwise it would be damaged. Finally, a function check of the finished housing cover must be made again.
  • the previous manufacturing process can be characterized by three injection molding operations, wherein both the partial encapsulation of the stamped grid on the part of the chip manufacturer as well as the final encapsulation of the lead frame for connection with the housing cover must take place under special process conditions to avoid the risk of malfunction.
  • two functional checks are necessary, namely on the part of the chip manufacturer after completion of the sensor and on the part of the manufacturer of the support element after encapsulation of the leadframe.
  • the object of the present invention is to provide a method for producing a housing cover or other support element with an angle sensor of the type described above, which is simplified compared to the known manufacturing method.
  • the electronic components of the angle sensor are electrically connected directly to a leadframe, the leadframe without the carrier element with the electronic components is encapsulated or encapsulated with a thermoset to form an angle sensor module and finally the angle sensor module is inserted into a receptacle of the carrier element, attached and connected to the electrical connections.
  • the method has the advantage that only two injection molding operations must be carried out, whereby the hitherto previously provided partial encapsulation of a stamped grid equipped with components is eliminated and the electronic components of the angle sensor are electrically connected directly to the leadframe. This reduces the number of within the angle sensor module to be provided electrical connections and the risk of malfunction is reduced. It is also advantageous in this context that only one single functional check is to be carried out after encapsulation with duroplastic.
  • the electronic components are, for example, at least one sensor and at least one electronic sensor associated with a sensor, wherein capacitors for improving the electromagnetic compatibility with the leadframe can be connected as further components.
  • the carrier element itself may also consist of other plastics, such as injection-molded thermoplastic.
  • a preferred embodiment of the method can provide that the leadframe is positioned by direct contact at defined locations on the carrier element or in the housing cover. As a result, an optimal position of the sensor in the housing cover can be achieved without tolerance influences by the plastic, which, however, can also be ensured by other measures.
  • the leadframe for example, Z-shaped or L-shaped
  • one sensor or two sensors being electrically connected side by side to the end of the leadframe projecting into the housing interior on each side inside projecting area of the leadframe is completely encapsulated with thermosetting plastic.
  • This design ensures that both transducers can be placed in a rotating, homogeneous magnetic field so that they produce substantially identical output signals.
  • Temperature calibrations means a longer waiting time
  • rib-shaped recesses can be provided in the region of the encapsulation of the region projecting into the housing.
  • the electrical connection between the angle sensor module and the carrier element can be made via welded joints or a plug-in connections with clamping action, which can also ensure a mechanical grip.
  • the mechanical hold between the angle sensor module and the housing cover can also be achieved or improved by gluing or clipping.
  • the subject of the present invention is also a
  • Carrier element with an angle sensor which has been presented by one of the methods described above.
  • a carrier element itself consists of a plastic, such as. B. Duro- or thermoplastic, with which a separate angle sensor module is mechanically and electrically connected, wherein the angle sensor module has a leadframe, which is connected to electrical components of the angle sensor, and the leadframe with the electronic components separately molded from the support member with a thermoset or are umgössen, the leadframe of the angle sensor module in the area between the at least one sensor and the evaluation electrically insulating completely surrounded by thermoset and the at least one transducer has only a single layer of thermoset as an intermediate wall to a magnet.
  • the electronic components consist of the at least one sensor and also of an evaluation circuit for the corresponding sensor signal. Magnetically based sensors with magnetoresistive properties or with at least one Hall element are provided as sensors. To improve the electromagnetic compatibility of the lead frame with at least one Capacitor be electrically connected, which is also encapsulated with thermosetting plastic.
  • a major advantage of the described housing cover with integrated angle sensor is also that the at least one sensor is coated with only a single layer of plastic.
  • the gap width between sensor and moving magnetic element with respect to two plastic layers reduce because manufacturing technology only certain minimum layer thicknesses are to be observed in injection molding.
  • the leadframe may be exposed in the region of the at least one transducer so that it comes as close as possible to the surface within the thermosetting plastic.
  • the electrically insulating enclosing the connection areas of the leadframe between the transducer of the evaluation circuit allows the immediate attachment of the angle sensor module to the
  • a redundant sensor can be in the angle sensor angle sensor module z.
  • B. realize that two sensors are arranged parallel to each other on both sides of the leadframe or side by side and are each connected to a separate or common evaluation electronics. So that both sensors can interact with the same magnetic fields, it is preferred that the two mutually parallel sensors are arranged parallel to the end face of a Duroplast dome in this, wherein the leadframe Z-shaped or L-shaped protrudes into this projection.
  • thermoset in the region of the dome may have rib-shaped recesses.
  • Fig. 1 is a schematic representation of an angle sensor module for a housing cover
  • FIG. 2 shows a schematic section of the angle sensor module from FIG.
  • FIG. 3 shows a schematic view of an angle sensor module for a housing cover with redundant sensor technology
  • FIG. 4 shows a schematic section of the angle sensor module from FIG.
  • FIG. 5 shows a schematic partial section of a housing cover with an inserted angle sensor module according to FIG.
  • Fig. 6 is a schematic plan view of the angle sensor module of Fig. 5;
  • Fig. 7 is a schematic section of another
  • FIG. 8 shows a schematic partial section of a housing cover with a glued-in angle sensor module according to FIG. 1 with welded electrical contacts.
  • FIG. 1 shows an angle sensor module 10 for a housing cover (see FIGS. 5 and 8).
  • the angle sensor module 10 has a leadframe 12 with free contact ends 14, 16, 18 which serve as electrical contacts for connection to another leadframe in the housing cover, which also forms a customer plug 20 (see FIGS. 5 and 6) configured according to customer requirements can be.
  • the three electrical contacts 14, 16, 18 of the leadframe 12 are connected via bonded electrical connections 22 with a circuit 24 directly, the one
  • Evaluation electronics for a transducer 26 represents.
  • capacitors 30 are provided between the contacts 14, 16, 18, which improve the electromagnetic compatibility of the angle sensor module 10.
  • the leadframe 12 with the contacted electrical components 24, 26, 30 is overmolded or encapsulated with a duroplastic 32, which makes the angle sensor module insensitive to external influences.
  • the illustrated angle sensor module 10 is finally used in a housing cover, wherein the positioning can be done via holes 34 or by stop edges 36 of the lead frame itself. This will be discussed later in connection with FIGS. 5 and 6 in more detail.
  • thermoset coating 132 is firstly produced around a leadframe 112 with electrically connected electronic components 124, 126, 130, and then the angle sensor module is inserted into the housing cover.
  • the angle sensor module shown in FIG. 3 has a redundant sensor system with two sensors 126, which are arranged parallel to one another on both sides of an end 127 of a Z-shaped angled leadframe 112.
  • the transducers 126 are connected by connections 128 not directly associated with evaluation electronics 124, but via traces of the lead frame, which then are in turn connected via connections 129 to the evaluation circuits 124.
  • Due to the here Z-shaped design of the lead frame 112 is formed after encapsulation with the thermoset 132, a cylindrical dome 134 which has partially rib-shaped recesses 136.
  • the angle sensor module 110 has four connection contacts 114, 116, 118, 119, which in turn are angled. Since two output channels are provided in the angle sensor module 110 shown in FIGS. 3 and 4, three capacitors 130 are necessary to improve the electromagnetic compatibility.
  • Fig. 5 shows in cross-section a housing cover 11 having a recess 40 in which an angle sensor module 210 is inserted.
  • the housing cover 11 has a second leadframe 42, which is encapsulated to form the housing with thermoplastic or thermosetting plastic.
  • the second leadframe 42 forms a custom-designed connector 20 to which, for example, a plug for connection to the control unit of a motor can be connected.
  • the leadframe On the opposite inside of the housing, the leadframe has electrical contact terminals 44, 45, 47 which serve for connection to the electrical terminals 14, 16, 18 of the angle sensor module 10.
  • Shown in FIG. 5 is also a rotary magnet 46, which sits on a shaft 48 of an actuator (not shown) and whose angular position can be detected by means of the angle sensor module.
  • the transducer 26 is positioned according to the position of the rotary magnet 46 in the angle sensor module 210 shown here and in FIG. 6.
  • connection of the previously described angle sensor module 210 to the housing cover 11 is effected by simple pressing, wherein in the contact region between the electrical terminals 214, 216, 218 of the angle sensor module 210 and the electrical contact terminals 44, 45, 47 of the second leadframe 42 of the housing cover 11 known plug-in connections 50 are provided in which spring tongues 52 abut sharp contact with the contact. Since such connectors ensure their strong clamping and a good and accurate mechanical support, skilful dimensioning can be dispensed with further attachment measures, the
  • an adhesive layer 54 may be provided between the angle sensor module 210 and the housing cover 11.
  • Fig. 7 is another embodiment of a
  • Angle sensor module 310 shown in which the leadframe 312 is issued in the region of the transducer 26 by embossing trapezoidal, so that it is closer to the rotary magnet 46, d. H. the thermoset layer between the magnet 46 and the sensor is minimized, resulting in a better measurement accuracy and the use of smaller magnets is possible.
  • the arrangement of the evaluation electronics 24 and the capacitor 30 corresponds to the embodiment shown in Fig. 6.
  • FIG. 8 again shows a housing cover 11, which substantially corresponds to the housing cover shown in FIG. 5, wherein only the electrical contact terminals 44, 45, 47 are directly next to one another and should not serve for the mechanical fixation of the angle sensor module.
  • the electrical connection between the terminal lugs 14, 16, 18 of the angle sensor module and the electrical contact terminals 44, 45, 47 takes place here by welding, while the hold of the angle sensor module 10, which corresponds to the embodiment of FIG. 1, is effected on the housing cover 11 primarily by the adhesive layer 54.
  • the positioning is again carried out with the aid of the bores 34 and the dowel pins (not shown) assigned to the housing cover 11 or with the aid of a clamping and / or latching connection between the angle sensor module and the housing cover.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Das Verfahren dient zur Herstellung eines Trägerelements mit einem Winkelsensor für einen Aktuator einer Verbrennungskraftmaschine. Das Trägerelement besitzt elektrische Anschlüsse (20) und in ihm sitzt ein Winkelsensor (24, 26, 30). Zur Vereinfachung der Herstellung werden elektronische Bauelemente (24, 26, 30) unmittelbar mit einem Leadframe (12) elektrisch verbunden. Anschließend wird der Leadframe (12) mit den elektronischen Bauelementen (24, 26, 30) mit Duroplast (132) umspritzt und das dadurch entstehende Winkelsensormodul (10) mit einem vorgefertigten Trägerelement zusammengefügt. Das Trägerelement selbst kann aus Thermoplast oder Duroplast bestehen und umfasst einen Steckanschluss (20).

Description

Beschreibung
Verfahren zur Herstellung eines Trägerelements mit einem Winkelsensor
Die vorliegende Erfindung befasst sich mit einem Verfahren zur Herstellung eines Trägerelements, beispielsweise in der Form eines Gehäusedeckels oder zum Einsetzen in einen Gehäusedeckel, mit einem Winkelsensor zur Erfassung des Drehwinkels einer Welle und mit elektrischen
Steckanschlüssen, wobei das Trägerelement aus Kunststoff, z. B. Duroplast oder Thermoplast besteht und elektrische Bauteile mit einem Kunststoff umspritzt oder umgössen werden. Gegenstand der vorliegenden Erfindung ist auch ein Trägerelement mit einem Winkelsensor für einen Aktuator einer Verbrennungskraft-Maschine, wobei der Winkelsensor einen dem Aktuator zugeordneten Magneten und elektronische Bauteile umfasst und mit elektrischen Steckanschlüssen, z. B. einem so genannten Kundenstecker, ausgerüstet ist.
Derartige Trägerelemente mit integriertem Winkelsensor finden bei Verbrennungskraftmaschinen Anwendung, wo sie die Drehstellung von Aktuatoren für die Steuerung des Verbrennungsmotors erfassen, beispielsweise bei der Laststeuerung, Abgasrückführung, Luftklappen im Ansaugtrakt oder der Verstellung der Schaufeln eines Turboladers. Die Ausbildung als Gehäusedeckel hat den Vorteil, dass der Winkelsensor selbst in einer Baueinheit geschützt verschlossen wird, wobei die elektrischen Anschlüsse als Kundenstecker ausgebildet sind, der nach Kundenwünschen konfiguriert ist und den elektrischen Anschluss an die Motorelektronik ermöglicht.
Der eigentliche Winkelsensor besteht dabei in der Regel aus wenigstens einem magnetoresistiven Messaufnehmer oder einem Hallsensor, z. B. in Halbleitertechnik, wobei dem Messaufnehmer auch bereits jeweils ein Chip mit der Auswerteelektronik zugeordnet ist. Häufig umfasst der Winkelsensor auch noch Kondensatoren, um die elektromagnetische Verträglichkeit zu verbessern. Vorteilhaft ist die redundante Ausbildung mit zwei Messaufnehmern und zwei zugeordneten Auswertelektroniken, um die Sicherheit beispielsweise beim Erfassen der Drehwinkelstellung einer Drosselklappe (E-Gas) zu erhöhen.
Die Herstellung z. B. von Gehäusedeckeln mit integriertem Winkelsensor erfolgt bislang in der Weise, dass der
Messaufnehmer und die Auswerteelektronik von einem Chip- Hersteller vorkonfiguriert wird, d. h. der Chip für die Auswerteelektronik und der Messaufnehmer werden mit einem Stanzgitter zur Kontaktierung nach außen elektrisch verbunden, beispielsweise durch Bonden, und anschließend werden die elektronischen Bauteile mit einem Duroplasten einzeln umspritzt. Anschließend erfolgt eine Prüfung durch den Hersteller und der vorkonfigurierte Winkelsensor wird dann an einen Kunden geliefert. Dieser bezieht von einem weiteren Hersteller einen Gehäusedeckelrohling aus Kunststoff, der in der Regel im Spritzgussverfahren hergestellt wird, und stellt das Winkelsensor- Winkelsensormodul dadurch her, dass zunächst der vorkonfigurierte Winkelsensor mit einem so genannten Leadframe elektrisch durch Schweißen oder Löten verbunden wird. Anschließend wird der Leadframe in den Gehäuserohling eingelegt und der Leadframe mit einem Thermoplasten umspritzt, wobei eine separate Abdeckung die Sensorik schützen muss, weil diese sonst beschädigt würde. Abschließend muss nochmals eine Funktionskontrolle des fertigen Gehäusedeckels vorgenommen werden.
Zusammenfassend lässt sich das bisherige Herstellungsverfahren durch drei Spritzgießvorgänge charakterisieren, wobei sowohl das teilweise Umspritzen des Stanzgitters auf Seiten des Chip-Herstellers als auch das abschließende Umspritzen des Leadframes zur Verbindung mit dem Gehäusedeckel unter besonderen Prozessbedingungen stattfinden muss, um die Gefahr von Funktionsstörungen zu vermeiden. Schließlich sind auch zwei Funktionsüberprüfungen notwendig, nämlich auf Seiten des Chipherstellers nach Fertigstellung des Sensors und auf Seiten des Herstellers des Trägerelements nach dem Umspritzen des Leadframes.
Das Festlegen des eigentlichen Winkelsensors an dem Trägerelement durch Umspritzen führt auch zwangsläufig dazu, dass der Messaufnehmer von dem zu erfassenden Drehmagneten durch wenigstens zwei Kunststoffwandungen oder -schichten getrennt ist. Der daraus resultierende größere Abstand verschlechtert die Messgenauigkeit und erfordert stärkere Magneten .
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zur Herstellung eines Gehäusedeckels oder sonstigen Trägerelements mit einem Winkelsensor der vorstehend beschriebenen Art anzugeben, das gegenüber den bekannten Herstellungsverfahren vereinfacht ist.
Erfindungsgemäß ist daher vorgesehen, dass die elektronischen Bauteile des Winkelsensors unmittelbar mit einem Leadframe elektrisch verbunden werden, der Leadframe ohne das Trägerelement mit den elektronischen Bauelementen mit einem Duroplasten zur Bildung eines Winkelsensormoduls umspritzt oder umgössen wird und das Winkelsensormodul schließlich in eine Aufnahme des Trägerelements eingelegt, befestigt und mit den elektrischen Anschlüssen verbunden wird.
Das Verfahren hat den Vorteil, dass nur noch zwei Spritzgießvorgänge durchgeführt werden müssen, wobei das bislang vorab vorgesehene teilweise Umspritzen eines mit Bauelementen bestückten Stanzgitters entfällt und die elektronischen Bauelemente des Winkelsensors unmittelbar mit dem Leadframe elektrisch verbunden werden. Dadurch reduziert sich die Anzahl der innerhalb des Winkelsensormoduls vorzusehenden elektrischen Verbindungen und das Risiko eines Funktionsausfalls wird vermindert. Vorteilhaft in diesem Zusammenhang ist auch, dass nach dem Umspritzen mit Duroplast nur eine einzige Funktionskontrolle durchzuführen ist.
Die elektronischen Bauelemente sind beispielsweise wenigstens ein Messaufnehmer und wenigstens eine einem Messaufnehmer zugeordnete Auswertelektronik, wobei als weitere Bauelemente Kondensatoren zur Verbesserung der elektromagnetischen Verträglichkeit mit dem Leadframe verbunden werden können. Während für das Umspritzen des Leadframes mit den empfindlichen elektronischen Bauelementen und den beispielsweise durch Bonden, Löten oder Leitkleben hergestellten elektrischen Verbindungen vornehmlich Duroplast geeignet ist, kann das Trägerelement selbst auch aus anderen Kunststoffen bestehen, beispielsweise spritzgegossenem Thermoplast .
Eine bevorzugte Weiterbildung des Verfahrens kann vorsehen, dass der Leadframe durch unmittelbare Anlage an definierten Stellen an dem Trägerelement bzw. in dem Gehäusedeckel positioniert wird. Hierdurch lässt sich eine optimale Lage der Messaufnehmer in dem Gehäusedeckel ohne Toleranzeinflüsse durch den Kunststoff erreichen, die allerdings auch durch andere Maßnahmen sichergestellt werden kann.
Zur Bildung eines redundanten Systems mit wenigstens zwei Messaufnehmern wird vorgeschlagen, den Leadframe beispielsweise Z-förmig oder L-förmig umzubiegen, wobei an dem in das Gehäuseinnere ragenden Ende des Leadframes auf jeder Seite jeweils ein Messaufnehmer oder zwei Messaufnehmer nebeneinander elektrisch verbunden werden und der nach innen ragende Bereich des Leadframes vollständig mit Duroplast umspritzt wird. Diese Ausbildung stellt sicher, dass beide Messaufnehmer in einem rotierenden, homogenen Magnetfeld angeordnet werden können, so dass sie im Wesentlichen identische Ausgangssignale erzeugen. Um unnötige Materialansammlungen zu vermeiden, die insbesondere wegen der höheren thermisch relevanten Masse bei
Temperaturkalibrierungen eine längere Wartezeit bedeutet, können im Bereich der Umspritzung des in das Gehäuse ragenden Bereiches rippenförmige Aussparungen vorgesehen werden.
Die elektrische Verbindung zwischen dem Winkelsensormodul und dem Trägerelement kann über Schweißverbindungen oder eine Steckverbindungen mit Klemmwirkung erfolgen, die auch einen mechanischen Halt gewährleisten können. Der mechanische Halt zwischen dem Winkelsensormodul und dem Gehäusedeckel kann auch durch Verkleben oder Verklipsen erreicht oder verbessert werden .
Gegenstand der vorliegenden Erfindung ist auch ein
Trägerelement mit einem Winkelsensor, der nach einem der vorstehend beschriebenen Verfahren vorgestellt worden ist. Ein solches Trägerelement besteht selbst aus einem Kunststoff, wie z. B. Duro- oder Thermoplast, mit dem ein separates Winkelsensormodul mechanisch und elektrisch verbunden ist, wobei das Winkelsensormodul einen Leadframe aufweist, der mit elektrischen Bauteilen des Winkelsensors verbunden ist, und der Leadframe mit den elektronischen Bauteilen getrennt von dem Trägerelement mit einem Duroplasten umspritzt oder umgössen sind, der Leadframe des Winkelsensormoduls in den Bereich zwischen dem wenigstens einen Messaufnehmer und der Auswertschaltung elektrisch isolierend vollständig von Duroplast umgeben ist und der wenigstens eine Messwertaufnehmer nur eine einzige Schicht aus Duroplast als Zwischenwand zu einem Magnet aufweist. Die elektronischen Bauteile bestehen aus dem wenigstens einen Messaufnehmer und auch aus einer Auswertschaltung für das entsprechende Messaufnehmersignal. Als Messaufnehmer sind magnetisch basierte Messaufnehmer mit magnetoresistiven Eigenschaften oder mit wenigstens einem Hall-Element vorgesehen. Zur Verbesserung der elektromagnetischen Verträglichkeit kann der Leadframe mit wenigstens einem Kondensator elektrisch verbunden sein, der ebenfalls mit Duroplast umspritzt ist.
Ein großer Vorteil des beschriebenen Gehäusedeckels mit integriertem Winkelsensor besteht auch darin, dass der wenigstens eine Messaufnehmer nur mit einer einzigen Schicht aus Kunststoff überzogen ist. Dadurch lässt sich die Spaltbreite zwischen Messaufnehmer und bewegtem Magnetelement gegenüber zwei Kunststoffschichten, wie sie beim Stand der Technik anzutreffen sind, verringern, da fertigungstechnisch nur bestimmte Mindestschichtdicken bei Spritzgießvorgängen einzuhalten sind. Der Leadframe kann im Bereich des wenigstens einen Messwertaufnehmers ausgestellt sein, so dass dieser möglichst nahe an die Oberfläche innerhalb der Duroplastmasse heranreicht.
Das elektrisch isolierende Umschließen der Verbindungsbereiche des Leadframe zwischen dem Messwertaufnehmer der Auswertschaltung erlaubt das unmittelbare Befestigen des Winkelsensormoduls an dem
Trägerelement ohne nachträgliches Isolieren, da die Leiter nicht durch Schmutzpartikel kurzgeschlossen werden können.
Eine redundante Sensorik lässt sich bei dem Winkelsensor- Winkelsensormodul z. B. dadurch realisieren, dass zwei Messaufnehmer parallel zueinander auf beiden Seiten des Leadframes oder nebeneinander angeordnet und jeweils mit einer getrennten oder gemeinsamen Auswertelektronik verbunden sind. Damit beide Messaufnehmer mit gleichen Magnetfeldern zusammenwirken können, ist es bevorzugt, dass die beiden parallel zueinander liegenden Messaufnehmer parallel zur Stirnfläche eines Domes aus Duroplast in diesem angeordnet sind, wobei der Leadframe Z-förmig oder L-förmig in diesen Vorsprung hineinragt.
Zur Vermeidung von Materialansammlungen kann der Duroplast im Bereich des Domes rippenförmige Aussparungen aufweisen. Nachfolgend wird anhand der beigefügten Zeichnungen näher auf Ausführungsbeispiele der Erfindung eingegangen. Es zeigen:
Fig. 1 eine schematische Darstellung eines Winkelsensormoduls für einen Gehäusedeckel;
Fig. 2 einen schematischen Schnitt des Winkelsensormoduls aus Fig.l;
Fig. 3 eine schematische Ansicht eines Winkelsensormoduls für einen Gehäusedeckel mit redundanter Sensorik;
Fig. 4 einen schematischen Schnitt des Winkelsensormoduls aus Fig.3.
Fig. 5 einen schematischen Teilschnitt eines Gehäusedecke mit einem eingesteckten Winkelsensormodul nach Fig.
6;
Fig. 6 eine schematische Draufsicht auf das Winkelsensormodul aus Fig. 5;
Fig. 7 einen schematischen schnitt einer weiteren
Ausführungsform eines Winkelsensormoduls;
Fig. 8 einen schematischen Teilschnitt eines Gehäusedeckels mit einem eingeklebten Winkelsensormodul nach Fig. 1 mit verschweißten elektrischen Kontakten.
In Fig. 1 ist ein Winkelsensormodul 10 für einen Gehäusedeckel (siehe Fig. 5 und 8) dargestellt. Das Winkelsensormodul 10 besitzt einen Leadframe 12 mit freien Kontaktenden 14, 16, 18, welche als elektrische Kontakte zur Verbindung mit einem weiteren Leadframe in dem Gehäusedeckel dienen, der auch einen Kundenstecker 20 (siehe Fig. 5 und 6) bildet, der nach Kundenwünschen konfiguriert werden kann. Die drei elektrischen Kontakte 14, 16, 18 des Leadframes 12 sind über gebondete elektrische Verbindungen 22 mit einer Schaltung 24 unmittelbar verbunden, die eine
Auswertelektronik für einen Messwertaufnehmer 26 darstellt. Der Messwertaufnehmer 26, der beispielsweise als magnetoresistiver Sensor oder als Hallsensor ausgebildet sein kann, ist wiederum über gebondete Zuleitungen 28 mit der Auswertelektronik 24 verbunden. Zudem sind zwischen den Kontakten 14, 16, 18 Kondensatoren 30 vorgesehen, die die elektromagnetische Verträglichkeit des Winkelsensormoduls 10 verbessern .
Der Leadframe 12 mit den kontaktierten elektrischen Bauelementen 24, 26, 30 ist mit einem Duroplast 32 überspritzt oder umgössen, der das Winkelsensormodul unempfindlich gegen äußere Einflüsse macht.
Das gezeigte Winkelsensormodul 10 wird abschließend in einen Gehäusedeckel eingesetzt, wobei die Positionierung über Bohrungen 34 oder auch durch Anschlagkanten 36 des Leadframes selbst erfolgen kann. Hiermit wird später im Zusammenhang mit Fig. 5 und 6 noch näher eingegangen.
Ein redundantes Winkelsensormodul 110 ist in Fig. 3 und Fig. 4 gezeigt. Bei diesem Winkelsensormodul wird wiederum zunächst der Duroplastüberzug 132 um einen Leadframe 112 mit elektrisch verbundenen elektronischen Bauelementen 124, 126, 130 erzeugt und anschließend wird das Winkelsensormodul in den Gehäusedeckel eingesetzt.
Das in Fig. 3 gezeigte Winkelsensormodul verfügt über eine redundante Sensorik mit zwei Messaufnehmern 126, die parallel zueinander auf beiden Seiten eines Endes 127 eines Z-förmig abgewinkelten Leadframes 112 angeordnet sind. Die Messwertaufnehmer 126 sind durch Verbindungen 128 nicht unmittelbar mit zugeordneten Auswertelektroniken 124 verbunden, sondern über Leiterbahnen des Leadframes, die dann wiederum über Verbindungen 129 mit den Auswertschaltungen 124 verbunden sind. Bedingt durch die hier Z-förmige Ausbildung des Leadframes 112 entsteht nach dem Umspritzen mit dem Duroplasten 132 ein zylindrischer Dom 134, der teilweise rippenförmige Aussparungen 136 aufweist. Durch diese
Ausbildung ist es möglich, beide Messwertaufnehmer 126 in einem homogenen Magnetfeld anzuordnen, das durch den Vorsprung 134 umgebende Magnetelemente gebildet ist. Entsprechend den zwei Ausgangskanälen der beiden Messwertaufnehmer 126 verfügt das Winkelsensormodul 110 über vier Anschlusskontakte 114, 116, 118, 119, die wiederum abgewinkelt sind. Da bei dem in Fig. 3 und 4 gezeigten Winkelsensormodul 110 zwei Ausgangskanäle vorgesehen sind, sind drei Kondensatoren 130 notwendig, um die elektromagnetische Verträglichkeit zu verbessern.
Fig. 5 zeigt im Querschnitt einen Gehäusedeckel 11, der eine Ausnehmung 40 aufweist, in welcher ein Winkelsensormodul 210 eingesetzt ist. Der Gehäusedeckel 11 besitzt einen zweiten Leadframe 42, der zur Bildung des Gehäuses mit Thermoplast oder Duroplast umspritzt ist. Der zweite Leadframe 42 bildet eine nach Kundenwünschen ausgebildete Steckverbindung 20, an die beispielsweise ein Stecker zur Verbindung mit dem Steuergerät eines Motors angeschlossen werden kann. Auf der gegenüberliegenden Gehäuseinnenseite verfügt der Leadframe über elektrische Kontaktanschlüsse 44, 45, 47 die zur Verbindung mit den elektrischen Anschlüssen 14, 16, 18 des Winkelsensormoduls 10 dienen. Dargestellt ist in Fig. 5 auch ein Drehmagnet 46, der auf eine Welle 48 eines Aktuators (nicht gezeigt) sitzt und dessen Drehwinkelstellung mit Hilfe des Winkelsensormoduls erfasst werden kann. Der Messwertaufnehmer 26 ist bei dem hier und in Fig. 6 gezeigten Winkelsensormodul 210 entsprechend der Lage des Drehmagnetes 46 positioniert.
Die Verbindung des zuvor beschriebenen Winkelsensormoduls 210 mit dem Gehäusedeckel 11 erfolgt durch einfaches Aufpressen, wobei im Kontaktbereich zwischen den elektrischen Anschlüssen 214, 216, 218 des Winkelsensormoduls 210 und den elektrischen Kontaktanschlüssen 44, 45, 47 des zweiten Leadframes 42 des Gehäusedeckels 11 vom Grundprinzip her bekannte Steckverbindungen 50 vorgesehen sind, bei welchen Federzungen 52 scharfkantig am Kontaktpartner anliegen. Da solche Steckverbindungen durch ihre starke Klemmung auch einen guten und genauen mechanischen Halt gewährleisten, kann bei geschickter Dimensionierung auf weitergehende Befestigungsmaßnahmen verzichtet werden, wobei die
Positionierung über Passstifte (nicht gezeigt) an dem Kunststoffgehäuse des Gehäusedeckels 11 erfolgen kann, die in die Bohrungen 34 des Winkelsensormoduls 210 (siehe hierzu auch Fig. 1 und 2) eingreifen. Zur Verbesserung des Halts und Vermeidung einer Verlagerung des Winkelsensormoduls bei beispielsweise hohen Beschleunigungen, kann zwischen dem Winkelsensormodul 210 und dem Gehäusedeckel 11 eine Klebeschicht 54 vorgesehen sein.
In Fig. 7 ist eine weitere Ausführungsform eines
Winkelsensormoduls 310 gezeigt, bei welcher der Leadframe 312 im Bereich des Messwertaufnehmers 26 durch Prägen trapezförmig ausgestellt ist, so dass dieser näher an dem Drehmagneten 46 liegt, d. h. die Duroplastschicht zwischen dem Magneten 46 und dem Messaufnehmer ist minimiert, wodurch sich eine bessere Messgenauigkeit ergibt und der Einsatz kleinerer Magnete ermöglicht wird. Die Anordnung der Auswertelektronik 24 und des Kondensators 30 entspricht der in Fig. 6 gezeigten Ausführungsform.
Fig. 8 zeigt wiederum einen Gehäusedeckel 11, der im Wesentlichen dem in Fig. 5 gezeigten Gehäusedeckel entspricht, wobei lediglich die elektrischen Kontaktanschlüsse 44, 45, 47 unmittelbar nebeneinander liegen und nicht der mechanischen Fixierung des Winkelsensormoduls dienen sollen. Die elektrische Verbindung zwischen den Anschlusslaschen 14, 16, 18 des Winkelsensormoduls und den elektrischen Kontaktanschlüssen 44, 45, 47 erfolgt hier durch ein Verschweißen, während der Halt des Winkelsensormoduls 10, das der Ausführungsform gemäß Fig. 1 entspricht, an dem Gehäusedeckel 11 in erster Linie durch die Klebeschicht 54 bewirkt wird. Die Positionierung erfolgt wiederum mit Hilfe der Bohrungen 34 und den nicht gezeigten, dem Gehäusedeckel 11 zugeordneten Passstiften oder mit Hilfe einer Klemm- und/oder Rastverbindung zwischen dem Winkelsensormodul und dem Gehäusedeckel.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Trägerelements (11) mit einem Winkelsensor (10) zur Erfassung des Drehwinkels einer Welle (48) und mit elektrischen Steckanschlüssen
(20), wobei das Trägerelement aus Kunststoff besteht und elektrische Bauteile (12, 24, 26, 30) des Winkelsensors mit einem Kunststoff umspritzt oder umgössen werden, d a d u r c h g e k e n n z e i c h n e t , dass die elektronischen Bauteile (24, 26, 30) des Winkelsensors unmittelbar mit einem Leadframe (12) elektrisch verbunden werden, der Leadframe (12) mit den elektrisch verbundenen Bauelementen (24, 26, 30) mit einem Duroplast (32) zur Bildung eines Winkelsensormoduls (10) umspritzt oder umgössen wird und das Winkelsensormodul (10) schließlich in eine Aufnahme (40) des Trägerelements (11) eingelegt, befestigt und mit den Steckanschlüssen (20) anschließend verbunden wird.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass als elektronische Bauelemente wenigstens ein Messwertaufnehmer (26) und wenigstens eine einem Messwertaufnehmer (26) zugeordnete Auswertelektronik (24) mit dem Leadframe (12) verbunden werden.
3. Verfahren nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass als weitere Bauelemente Kondensatoren (30) zur Verbesserung der elektromagnetischen Verträglichkeit mit dem Leadframe (12) verbunden werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , dass die Kontaktierung der Bauelemente (24, 26, 30) durch Bonden, Löten und/oder Leitkleben erfolgt.
5. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Trägerelement (11) als Gehäusedeckel aus Duroplast oder Thermoplast mit den Steckanschlüssen (20) spritzgegossen wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Leadframe (12) durch unmittelbare Anlage an definierten Stellen an dem Trägerelement bzw. in dem Gehäusedeckel positioniert wird.
7. Verfahren nach einem der Ansprüche 2 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass der Leadframe (112) Z-förmig oder L-förmig umgebogen wird, wobei mit dem in das Gehäuseinnere ragenden Ende (127) des Leadframes (112) auf jeder Seite jeweils ein Messaufnehmer (126) oder zwei Messaufnehmer seitlich nebeneinander elektrisch verbunden werden und der nach innen ragende Bereich des Leadframes (112) vollständig mit Duroplast umspritzt oder umgössen wird.
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , dass der Duroplast im Bereich des Domes (134) rippenartig ausgespart wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Winkelsensormodul (10) mit dem Trägerelement (11) über Steckverbindungen (50) mit Klemmwirkung mechanisch und/oder elektrisch verbunden wird.
10. Verfahren nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass der
Leadframe des Winkelsensormoduls (10) über eine Löt- oder Schweißverbindung elektrisch mit dem Leadframe (42) des Trägerelements (11) verbunden wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das
Winkelsensormodul (10) mit dem Trägerelement (11) verklebt wird.
12. Trägerelement mit einem Winkelsensor für einen Aktuator einer Verbrennungskraftmaschine, wobei der Winkelsensor einen dem Aktuator zugeordneten Magneten (46) und elektronische Bauteile (24 ,26 ,30) mit wenigstens einem Messwertaufnehmer (26) und einer Auswertschaltung (24) zur Auswertung des entsprechenden Messaufnehmer-Signals umfasst und mit elektrischen Anschlüssen (20) ausgerüstet ist, d a d u r c h g e k e n n z e i c h n e t , dass das Trägerelement (11) selbst aus Kunststoff gefertigt ist und mit dem Trägerelement ein separates Winkelsensormodul (10) mechanisch und elektrisch verbunden ist, wobei das Winkelsensormodul (10) einen Leadframe (12) aufweist, der mit elektrischen Bauelementen (24, 26, 30) des Winkelsensors verbunden ist, und der Leadframe (12) mit den elektronischen Bauelementen (24, 26, 30) getrennt von dem Trägerelement mit Duroplast (32) umspritzt oder umgössen sind, wobei der Leadframe (12) des Winkelsensormoduls in dem Bereich zwischen dem wenigstens einen Messwertaufnehmer (26) und der Auswertschaltung (24) elektrisch isolierend vollständig von Duroplast (32) umgeben ist und der wenigstens eine Messwertaufnehmer (26) nur eine einzige Schicht aus Duroplast als Zwischenwand zum Magneten (46) aufweist .
13. Trägerelement nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass der wenigstens eine Messwertaufnehmer (26) als magnetisch basierter Messwertaufnehmer mit magnetoresistiven Elementen oder mit wenigstens einem Hall-Element ausgebildet ist.
14. Trägerelement nach Anspruch 12 oder 13, d a d u r c h g e k e n n z e i c h n e t , dass mit dem Leadframe wenigstens ein Kondensator (30) elektrisch verbunden ist, der ebenfalls im Winkelsensormodul (10) umspritzt ist.
15. Trägerelement nach einem der Ansprüche 12 bis 14, d a d u r c h g e k e n n z e i c h n e t , dass zwei Messwertaufnehmer (126) parallel zueinander auf beiden Seiten des Leadframes (112) oder zwei Messwertaufnehmer nebeneinander auf einer Seite des Leadframes angeordnet und mit mindestens einer Auswertelektronik elektrisch (124) verbunden sind.
16. Trägerelement nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t , dass die beiden Messwertaufnehmer (126) parallel zur Stirnfläche eines zylindrischen Domes (134) aus Duroplast in diesem angeordnet sind, wobei der Leadframe (12) in diesen Vorsprung (134) hineinragt.
17. Trägerelement nach Anspruch 16, d a d u r c h g e k e n n z e i c h n e t , dass der Dom (134) rippenartige Aussparungen (136) aufweist.
18. Trägerelement nach einem der Ansprüche 12 bis 17, d a d u r c h g e k e n n z e i c h n e t , dass der Leadframe (12) im Bereich des Messwertaufnehmers (26) durch eine trapezförmige Biegung oder Prägung (312) so ausgebildet ist, dass die Kunststoffwandstärke im Bereich des Messwertaufnehmers minimiert ist.
19. Trägerelement nach einem der Ansprüche 12 bis 18, d a d u r c h g e k e n n z e i c h n e t , dass es als Gehäusedeckel (11) oder Teil eines Gehäusedeckels ausgebildet ist und zwischen einem Leadframe (42) des Trägerelements und dem Winkelsensormodul (10) elektrische Steckverbindungen vorgesehen sind.
PCT/EP2007/060291 2006-10-04 2007-09-28 Verfahren zur herstellung eines trägerelements mit einem winkelsensor WO2008040680A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07820678.6A EP2087320B1 (de) 2006-10-04 2007-09-28 Verfahren zur herstellung eines trägerelements mit einem winkelsensor
JP2009530854A JP5135351B2 (ja) 2006-10-04 2007-09-28 ケーシングリッド
US12/444,564 US8339124B2 (en) 2006-10-04 2007-09-28 Method for manufacturing a mounting element with an angle sensor
CN2007800373594A CN101558285B (zh) 2006-10-04 2007-09-28 用于制造具有角度传感器的支承部件的方法
KR1020097009178A KR101503935B1 (ko) 2006-10-04 2007-09-28 각도 센서를 구비한 장착 부재를 제조하는 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006046984.4 2006-10-04
DE102006046984A DE102006046984A1 (de) 2006-10-04 2006-10-04 Verfahren zur Herstellung eines Trägerelements mit einem Winkelsensor

Publications (1)

Publication Number Publication Date
WO2008040680A1 true WO2008040680A1 (de) 2008-04-10

Family

ID=38695470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/060291 WO2008040680A1 (de) 2006-10-04 2007-09-28 Verfahren zur herstellung eines trägerelements mit einem winkelsensor

Country Status (7)

Country Link
US (1) US8339124B2 (de)
EP (1) EP2087320B1 (de)
JP (1) JP5135351B2 (de)
KR (1) KR101503935B1 (de)
CN (1) CN101558285B (de)
DE (1) DE102006046984A1 (de)
WO (1) WO2008040680A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112651A (ja) * 2009-11-25 2011-06-09 Infineon Technologies Ag 角度測定システム
DE102011118773B4 (de) 2011-11-17 2023-10-05 Hartmann-Exact Gmbh Vorrichtung zur berührungslosen Erfassung der Relativposition zweier relativ zueinander bewegbarer Teile

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006529A1 (de) * 2009-01-28 2010-08-26 Continental Automotive Gmbh Positionssensor
DE102010047128A1 (de) * 2010-09-30 2012-04-05 Infineon Technologies Ag Hallsensoranordnung zum redundanten Messen eines Magnetfeldes
KR102182947B1 (ko) * 2011-08-24 2020-11-25 콘티넨탈 테베스 아게 운트 코. 오하게 단일 전기 캐리어 수단을 갖는 센서
DE102012224075A1 (de) 2012-12-20 2014-06-26 Continental Teves Ag & Co. Ohg Sensor zum Erfassen einer Position eines Geberelements
DE102013213053A1 (de) * 2013-07-04 2015-01-08 Continental Automotive Gmbh Drehwinkelsensorvorrichtung mit redundanten Sensoreinheiten
DE102013213054A1 (de) * 2013-07-04 2015-01-08 Continental Automotive Gmbh Drehwinkelsensorvorrichtung mit redundanten Sensoreinheiten zum Bestimmen eines eindeutigen Winkelsignals
DE102014217705A1 (de) * 2013-10-02 2015-04-02 Schaeffler Technologies Gmbh & Co. Kg Kolben-Zylinder-Anordnung
JP6017401B2 (ja) * 2013-11-05 2016-11-02 愛三工業株式会社 回転角度検出センサ
DK3158345T3 (da) * 2014-06-20 2024-02-19 Xcerra Corp Teststikanordning og relaterede fremgangsmåder
DE102014218544A1 (de) 2014-09-16 2016-03-17 Schaeffler Technologies AG & Co. KG Sensorikeinheit zur Bestimmung einer Rotorlage eines Elektromotors und ein Elektromotor, vozugsweise für einen Kupplungsaktor eines Kupplungsbetätigungssystems eines Kraftfahrzeuges
DE102015207310A1 (de) * 2015-04-22 2016-10-27 Zf Friedrichshafen Ag Elektronikmodul und Verfahren zum Umkapseln desselben
FR3040213B1 (fr) * 2015-08-18 2017-09-15 Continental Automotive France Procede de fabrication d'un capteur de mesure pour vehicule automobile
ITUB20160271A1 (it) * 2016-01-29 2017-07-29 Magneti Marelli Spa Metodo per l'assemblaggio di un sensore in un componente elettromeccanico per un motore a combustione interna e componente elettromeccanico ottenuto mediante tale metodo
US10251295B2 (en) * 2016-02-01 2019-04-02 Alps Alpine Co., Ltd. Electronic device and method of producing the same
JP2018049942A (ja) * 2016-09-21 2018-03-29 アイシン精機株式会社 変位センサ
DE102019210375A1 (de) * 2019-07-12 2021-01-14 Continental Teves Ag & Co. Ohg Verfahren zur Herstellung eines robusten Sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4115883A1 (de) * 1990-05-15 1991-11-21 Mitsubishi Electric Corp Verfahren zum herstellen eines gussteils mit darin eingebetteten elektroden
DE19618631A1 (de) * 1996-05-09 1997-11-13 Teves Gmbh Alfred Vorrichtung zur Messung von Dreh- oder Winkelbewegungen und ein Verfahren zur Herstellung dieser Vorrichtung
EP1275939A2 (de) * 2001-07-13 2003-01-15 Siemens Aktiengesellschaft Magnetoresistiver Winkelsensor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637995A (en) * 1992-12-09 1997-06-10 Nippondenso Co., Ltd. Magnetic detection device having a magnet including a stepped portion for eliminating turbulence at the MR sensor
JPH11237395A (ja) * 1998-02-23 1999-08-31 Honda Motor Co Ltd 回転センサ及び回転センサ用磁気検出ic
JPH11304894A (ja) * 1998-04-23 1999-11-05 Mitsubishi Electric Corp 磁気検出装置とその製造方法
US6305921B1 (en) * 1999-07-12 2001-10-23 Accu-Mold Corp. Saw tooth mold
JP2001289610A (ja) * 1999-11-01 2001-10-19 Denso Corp 回転角度検出装置
JP3843969B2 (ja) * 1999-11-01 2006-11-08 株式会社デンソー 回転角検出装置
JP3830319B2 (ja) * 1999-12-16 2006-10-04 株式会社デンソー 回転角度検出センサの温度特性調整方法
DE10133631A1 (de) * 2001-07-11 2003-01-30 Siemens Ag Verfahren zur berührungslosen Erfassung der Position einer Drosselklappenwelle eines Drosselklappenstutzens und Drosselklappenstutzen
JP4190780B2 (ja) * 2002-03-18 2008-12-03 株式会社デンソー 回転検出装置
JP3720801B2 (ja) 2002-10-24 2005-11-30 三菱電機株式会社 磁気検出装置
DE102004042488A1 (de) * 2004-08-31 2006-03-16 Siemens Ag Elektrische Baugruppe
DE102004059171A1 (de) * 2004-12-08 2006-06-14 Siemens Ag Teileinheit zur Betätigung einer drehbar gelagerten Welle, deren aktueller Drehwinkel kontinuierlich zu erfassen ist
US7425824B2 (en) * 2005-05-20 2008-09-16 Honeywell International Inc. Magnetoresistive sensor
US7378721B2 (en) * 2005-12-05 2008-05-27 Honeywell International Inc. Chip on lead frame for small package speed sensor
US7375406B2 (en) * 2005-12-20 2008-05-20 Honeywell International Inc. Thermoplastic overmolding for small package turbocharger speed sensor
US20080218158A1 (en) * 2007-03-07 2008-09-11 Carlson Joseph D Rotary position sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4115883A1 (de) * 1990-05-15 1991-11-21 Mitsubishi Electric Corp Verfahren zum herstellen eines gussteils mit darin eingebetteten elektroden
DE19618631A1 (de) * 1996-05-09 1997-11-13 Teves Gmbh Alfred Vorrichtung zur Messung von Dreh- oder Winkelbewegungen und ein Verfahren zur Herstellung dieser Vorrichtung
EP1275939A2 (de) * 2001-07-13 2003-01-15 Siemens Aktiengesellschaft Magnetoresistiver Winkelsensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112651A (ja) * 2009-11-25 2011-06-09 Infineon Technologies Ag 角度測定システム
DE102011118773B4 (de) 2011-11-17 2023-10-05 Hartmann-Exact Gmbh Vorrichtung zur berührungslosen Erfassung der Relativposition zweier relativ zueinander bewegbarer Teile

Also Published As

Publication number Publication date
US8339124B2 (en) 2012-12-25
JP2010506157A (ja) 2010-02-25
JP5135351B2 (ja) 2013-02-06
EP2087320B1 (de) 2019-11-06
CN101558285A (zh) 2009-10-14
DE102006046984A1 (de) 2008-04-10
CN101558285B (zh) 2012-11-14
KR101503935B1 (ko) 2015-03-24
US20100109654A1 (en) 2010-05-06
EP2087320A1 (de) 2009-08-12
KR20090097849A (ko) 2009-09-16

Similar Documents

Publication Publication Date Title
EP2087320B1 (de) Verfahren zur herstellung eines trägerelements mit einem winkelsensor
DE102007054905B4 (de) Rotationswinkelsensoren und Drosseleinrichtungen
EP2366096B1 (de) Bausatz für einen elektromotor mit einem drehwinkelgeber
DE19620548A1 (de) Magnetfeld-Sensoranordnung
DE202008009002U1 (de) Magnetfeldsensor
EP1949524A1 (de) Getriebe-antriebseinheit mit elektronik-einsteckmodul
EP2021809A1 (de) Induktiver sensor
EP1202024A1 (de) Sensormodul mit Blechformteil ( magnetoresistiver Drosselklappensensor )
DE102014226483A1 (de) Positionserfassungseinrichtung
DE102011018180A1 (de) Rotationswinkelsensoren und Herstellungsverfahren dafür
EP2223125A2 (de) Magnetfeld-sensorelement
AT411639B (de) Verfahren zum herstellen einer kunststoffumspritzten leiterstruktur sowie elektrische schaltungseinheit mit einer kunststoffumspritzten leiterstruktur
EP1828720B1 (de) Magnetsensoranordnung
DE102018204297A1 (de) Elektrische Antriebseinheit mit mindestens zwei Leiterplatinen
DE202009000925U1 (de) Moduleinheit
DE4219923C2 (de) Magnet-Sensor
DE19848081A1 (de) Antriebseinrichtung mit einem Stellantrieb
EP1546529B1 (de) Deckel
DE202005013344U1 (de) Elektrische Moduleinheit und Sensor
EP2936515B1 (de) Verfahren zum herstellen eines messaufnehmers
DE19744673C2 (de) Vorrichtung zur Erfassung der Drehzahl eines umlaufenden Bauteiles, insbesondere für ein Kraftfahrzeug
WO2008049690A1 (de) Magnetfeldsensor
DE102011081222B4 (de) Sensorbaugruppe
WO2011064245A1 (de) Drehmomentsensor
DE19804607A1 (de) Anordnung zum elektrischen Anschluß zumindest eines Sensors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037359.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07820678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007820678

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009530854

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12444564

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097009178

Country of ref document: KR