WO2008038467A1 - Integrated intermediate electrode and pressure gradient type plasma gun - Google Patents

Integrated intermediate electrode and pressure gradient type plasma gun Download PDF

Info

Publication number
WO2008038467A1
WO2008038467A1 PCT/JP2007/065737 JP2007065737W WO2008038467A1 WO 2008038467 A1 WO2008038467 A1 WO 2008038467A1 JP 2007065737 W JP2007065737 W JP 2007065737W WO 2008038467 A1 WO2008038467 A1 WO 2008038467A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
intermediate electrode
insulating member
pressure gradient
insulating
Prior art date
Application number
PCT/JP2007/065737
Other languages
French (fr)
Japanese (ja)
Inventor
Atsuhiro Terakura
Masao Marunaka
Takayuki Tsuchiya
Original Assignee
Shinmaywa Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinmaywa Industries, Ltd. filed Critical Shinmaywa Industries, Ltd.
Priority to JP2008507286A priority Critical patent/JPWO2008038467A1/en
Publication of WO2008038467A1 publication Critical patent/WO2008038467A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/31Electron-beam or ion-beam tubes for localised treatment of objects for cutting or drilling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/52Generating plasma using exploding wires or spark gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources

Definitions

  • the present invention relates to a pressure gradient type plasma gun used as a plasma source of a film forming apparatus and an intermediate electrode used therefor.
  • a pressure gradient type plasma gun has been used as a plasma source of a film forming apparatus.
  • the pressure gradient type plasma gun comprises a cylindrical container, a force sword, an annular first intermediate electrode, an annular second intermediate electrode, and insulation between the first intermediate electrode and the second intermediate electrode.
  • the components are provided coaxially and configured.
  • a first intermediate electrode and a second intermediate electrode are temporarily assembled using a temporary assembly member, and the temporary assembly is mounted on the pressure gradient plasma gun. It is done.
  • the temporarily assembled member may fall off, which is inconvenient to handle.
  • the weight of the provisionally assembled device increases.
  • Patent Document 1 a pressure gradient type plasma gun in which an intermediate electrode is attached by using a set member incorporating an insulating member is disclosed.
  • the first intermediate electrode and the second intermediate electrode can be attached separately, the first intermediate electrode and the second intermediate electrode can be attached so that the temporary assembly member will not fall off. Improves the work efficiency.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 256319
  • Patent Document 1 it is necessary to provide supporting means for supporting the set member on the first intermediate electrode and the second intermediate electrode, and there is a problem that the structure becomes complicated.
  • sealing is performed by welding a lid to a housing constituting the first intermediate electrode and the second intermediate electrode. .
  • the housing is sealed by welding, it is difficult to disassemble and adjust the inner part of the intermediate electrode due to leakage current, etc., and maintenance is bad! There was also.
  • the present invention has been made to solve the above problems, and has a simple structure and reduced weight to improve the convenience of handling, as well as maintenance when disassembling and adjusting. It is an object of the present invention to provide an intermediate electrode improved in the above and a pressure gradient type plasma gun using the same.
  • the integrated intermediate electrode of the present invention comprises a conductive first housing, a housing, and a contact with the inner peripheral surface of the first housing concentric with the first housing.
  • a second magnet coaxially accommodated in the two housings wherein the first housing and the second housing are integrated via an insulating member.
  • the first housing has a U-shaped cross section so that the surface facing the second housing is open, and the second housing is open the surface facing the first housing.
  • the insulating member is formed coaxially with the first housing and the second housing, and the open faces of the first housing and the second housing are The first magnet is accommodated in the space between the first housing and the insulating member, and the second magnet is accommodated in the space between the second housing and the insulating member. A magnet is accommodated, and the first housing, the insulating member, and the second housing are mutually fastened by fasteners! // ,.
  • fasteners! // With such a configuration, the number of components constituting the intermediate electrode is reduced, so that the weight can be reduced, and the convenience of handling is improved. Further, by releasing the fastening of the fastener and removing the lid by the insulating member, disassembly and adjustment can be performed even when a problem occurs inside the intermediate electrode, and the maintainability is improved.
  • the first housing, the insulating member, and the second housing may be joined in an airtight or liquid-tight manner in order.
  • a cooling medium channel is usually formed inside the intermediate electrode, and the cooling medium is circulated through the cooling medium channel. Therefore, with such a configuration, leakage of the cooling medium is prevented.
  • the bonding is preferably made air tight or liquid tight using an O-ring! /, Preferably!
  • the first housing, the insulating member, and the second housing can be easily made airtight or liquid tight.
  • the pressure gradient plasma gun of the present invention includes any one of the integral intermediate electrodes configured as described above.
  • a collar, the integrated intermediate electrode, an insulating pipe, and a force sword are provided, and the end of the insulating pipe remote from the integrated intermediate electrode is closed.
  • the pressure gradient type plasma gun may be configured to be mutually fastened by a fastener.
  • the integrated intermediate electrode of the present invention is configured as described above, the convenience of handling is improved with a simple configuration and reduced weight, and the maintenance property at the time of disassembly and adjustment is achieved. The effect is improved.
  • the pressure gradient type plasma gun of the present invention is configured as described above, an intermediate voltage can be obtained. The effect of facilitating the attachment of the pole is achieved.
  • FIG. 1 is a schematic view showing a schematic configuration of a sheet plasma film forming apparatus using a pressure gradient type plasma gun according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a state where the pressure gradient plasma gun of the embodiment of the present invention is cut vertically along the central axis.
  • FIG. 3 is a view showing an integral type intermediate electrode constituting the pressure gradient type plasma gun of FIG. 2, wherein (a) is a left side view and (b) is a center axis of the integral type intermediate electrode.
  • FIG. 7 is a cross-sectional view showing a state of being cut vertically along the line, and FIG.
  • Electromagnetic coil (second magnet) O ring groove
  • FIG. 1 is a schematic view showing a schematic configuration of a sheet plasma film-forming apparatus using a pressure gradient type plasma gun according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the pressure gradient type plasma gun according to the embodiment of the present invention vertically cut along the central axis.
  • FIG. 3 is a view showing an integrated intermediate electrode constituting the pressure gradient type plasma gun of FIG. 2, wherein (a) is a left side view, and (b) is vertically arranged along the central axis of the integrated intermediate electrode. Disconnected state And (c) is a right side view.
  • FIG. 1 is a schematic view showing a schematic configuration of a sheet plasma film-forming apparatus using a pressure gradient type plasma gun according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the pressure gradient type plasma gun according to the embodiment of the present invention vertically cut along the central axis.
  • FIG. 3 is a view showing an integrated intermediate electrode constituting the pressure gradient type plasma
  • FIG. 3 (b) the part where the insulating collar and the fastener pass through the first and second housings and the insulating member is shown as a partially cut BB sectional view.
  • the pressure gradient plasma gun and the integral intermediate electrode according to the present embodiment will be described below with reference to FIGS. 1 to 3.
  • the left side of Fig. 1 and the left side of Fig. 2 will be referred to as the front side
  • the right side of Fig. 1 and the right side of Fig. 2 will be described as the rear side.
  • the pressure gradient type plasma gun 1 of the present embodiment is used, for example, in a sheet plasma film forming apparatus 100.
  • the force s exemplified for the sheet plasma film forming apparatus 100 as the film forming apparatus in which the pressure gradient type plasma gun 1 of the present embodiment is used is not limited to this.
  • the configurations of the pressure gradient type plasma gun 1 and the integral intermediate electrode G will be briefly described here and will be described in detail later.
  • the pressure gradient type plasma gun 1 includes a force sword mount 2 and a cylinder 10 attached to the cathode mount 2.
  • the force sword mount 2 is provided with a force sword 8.
  • the cylindrical body 10 includes an insulating pipe 6 and an integral intermediate electrode G.
  • the integrated intermediate electrode G is configured to include a first intermediate electrode G, a second intermediate electrode G, and an insulating member 16.
  • the negative terminal and the positive terminal of the source voltage application device V are respectively connected.
  • the first intermediate electrode G is connected to the positive electrode terminal of the main bias voltage applying device V described above via the resistor R.
  • the second intermediate electrode G is connected to the main bias voltage mark described above via the resistor R.
  • the rear end of the sheet plasma forming chamber 30 is connected to the front end of the pressure gradient type plasma gun 1.
  • the sheet plasma forming chamber 30 is formed such that the rear end and the front end of the cylindrical member 31 are respectively closed by the insulating cover member 29 whose central portion is open and the first flange 39 whose central portion is open.
  • the cylindrical member 31 is made of a nonmagnetic material.
  • a first annular cavity for adjusting the shape of the introduced cylindrical plasma 36 around the rear end side of the cylindrical member 31 32 are provided.
  • a pair of permanent magnets 33 is disposed in front of the position where the first annular coil 32 of the tubular member 31 is disposed.
  • the pair of permanent magnets 33 are disposed such that their respective N poles face each other.
  • the pair of permanent magnets 33 form the introduced cylindrical plasma 36 into a sheet-like plasma (hereinafter referred to as a sheet-like plasma) 37. Furthermore, around the front end side of the cylindrical member 31, a second annular coil 34 for arranging the formed sheet-like plasma 37 is disposed! /.
  • the rear end of the film forming chamber 40 is connected to the front end of the sheet plasma forming chamber 30.
  • the sheet-like plasma 37 formed in the sheet plasma forming chamber 30 is introduced into the film forming chamber 40.
  • the film forming chamber 40 includes a cylindrical chamber 41. One end of the chamber 41 is closed by the upper lid 42, and the other end of the chamber 41 is closed by the lower lid 43.
  • the chamber 41 is made of a nonmagnetic material, such as stainless steel.
  • An exhaust port 52 is formed at an appropriate position of the chamber 41.
  • the exhaust port 52 is configured to be openable and closable by a valve 53.
  • a vacuum pump 54 is connected to the exhaust port 52.
  • the vacuum pump 54 evacuates the inside of the film forming chamber 40 (chamber 41) to a predetermined pressure at which the sheet-like plasma 37 can be transported.
  • a target holder 48 and a substrate holder 44 are disposed to face each other with the introduced sheet-like plasma 37 interposed therebetween.
  • the target holder 48 holds the target material 49.
  • the target holder 48 is attached to the chamber 41 via the insulating member 51.
  • the target holder 48 is airtightly attached to the chamber 41.
  • a bias voltage application device V is connected to the target holder 48. Sheet-like plasma is produced by this bias voltage application device V.
  • a negative bias voltage for the 37 potential is applied to the target holder 48.
  • the target material 49 is sputtered by plasma particles in the sheet plasma 37.
  • the substrate holder 44 holds the substrate 45 which forms a film.
  • the substrate holder 44 is attached to the chamber 41 via the insulating member 50.
  • the substrate holder 44 is airtightly attached to the chamber 41.
  • the substrate holder 44 is provided with a bias voltage application device V.
  • the potential of the sheet-like plasma 37 is set by the bias voltage application device V. Negative bias voltage is applied to the substrate holder 44. Thereby, the sputtered target material is deposited on the substrate 45 to form a film.
  • the rear end of the anode chamber 60 is connected to the front end of the film forming chamber 40.
  • the anode chamber 60 is formed such that the rear end and the front end of the cylindrical member 62 are closed by a second flange 59 and an anode 63 which are open at the central portion, respectively.
  • the cylindrical member 62 is made of, for example, glass.
  • a third annular coil 61 is provided around the cylindrical member 62 to adjust the shape of the sheet-like plasma 37.
  • the anode 63 is connected to the positive terminal of the main bias voltage applying device V as described above.
  • a permanent magnet 64 is provided on the back surface of the anode 63.
  • the permanent magnet 64 is provided such that its south pole is in contact with the anode 63.
  • the permanent magnet 64 shapes the end of the sheet-like plasma 37.
  • the sheet plasma film forming apparatus 100 is provided with a controller, which is not shown!
  • the control device controls the operation of the main bias voltage application device V, bias voltage application device V, V, etc.
  • the control device is configured by an arithmetic device such as a microcomputer, and controls the necessary components of the sheet plasma device 100 to control the operation of the sheet plasma device 100.
  • a control device also means a controller group in which a plurality of controllers cooperate with one another to execute control. Therefore, the control device does not necessarily have to be configured as a single controller, but a plurality of controllers are distributed, and they are configured to cooperate to control the operation of the sheet plasma apparatus 100. Good.
  • the cylindrical plasma 36 generated by the pressure gradient type plasma gun 1 is formed into a sheet-like plasma 37 by the pair of permanent magnets 33 of the sheet plasma forming chamber 30.
  • the sheet-like plasma 37 is introduced into the film forming chamber 40 and sputters the target material 49.
  • the target particles subjected to the scan are deposited on a substrate 45 disposed opposite to each other across the sheet plasma 37 to form a film.
  • the pressure gradient type plasma gun 1 of the present embodiment will be described in detail with reference to FIG.
  • the left side of FIG. 2 is the front side
  • the right side is the rear side.
  • the pressure gradient type plasma gun 1 of the present embodiment is provided with a force sword mount 2.
  • a discharge gas introduction hole 3 is formed in the central portion of the force sword mount 2 (more precisely, on the central axis 201 of the insulating tube 6 described later), from which a discharge gas such as argon gas flows. be introduced.
  • a cooling medium channel 4 is formed inside the force sword mount 2, and the cooling medium is circulated through the cooling medium channel 4 by a cooling medium circulation mechanism (not shown).
  • cooling medium for example, water, pure water, ethylene glycol aqueous solution (antifreeze), fluorine-based refrigerant and the like can be mentioned as a liquid, and as a gas, for example, helium, argon, nitrogen and the like can be mentioned.
  • the rear end of the cylindrical insulating tube 6 is attached to the front end of the force sword mount 2.
  • the insulating tube 6 is made of an insulating material, such as glass or ceramics.
  • the cylindrical body 10 is a cylindrical body in the present embodiment.
  • the opening of the cylinder 10 (see FIG. 1) constitutes the plasma outlet.
  • the force sword mount 2 is provided with a force sword 8 so as to protrude above the central axis 201 of the insulating tube 6 inside the insulating tube 6.
  • the force sword 8 is provided with a discharge gas flow path 7. The discharge gas introduced from the discharge gas introduction hole 3 flows through the discharge gas passage 7.
  • An integral intermediate electrode G is attached to the front end of the insulating tube 6. As described above, the integral intermediate electrode G includes the first intermediate electrode G, the insulating member 16 and the second intermediate electrode G.
  • a short cylindrical insulating collar 24 is attached at the front end of the integral intermediate electrode G.
  • the insulating collar 24 is disposed coaxially with the insulating tube 6, and a seal member (not shown), for example, an O-ring, is disposed on both end surfaces thereof.
  • a seal member for example, an O-ring
  • an insulator such as polytetrafluroethylene or ceramics is used.
  • the front end of the insulating collar 24 is attached to an annular plate-like guide member (not shown). The insulating collar 24 ensures the insulation between the integral intermediate electrode G and the guide member.
  • the pressure gradient type plasma gun 1 is attached to the sheet plasma film forming apparatus 100 (more specifically, the insulating lid member 29 of the sheet plasma forming chamber 30) through the guide member.
  • the structure of the integral intermediate electrode G will be described in detail with reference to FIG. In the following description, the front end and the rear end correspond to “front” and “rear” described in FIG.
  • the integrated intermediate electrode G is provided with a first intermediate electrode G provided with a first housing 11 and a second provided with a second housing 17. 2 intermediate electrode G and insulating member 16
  • the first housing 11 is attached to the front end of the insulating pipe 6 (see FIG. 2).
  • the first housing 11 is formed in an annular shape having a U-shaped cross section.
  • the shape of the first housing 11 is not limited to an annular shape, and may be formed into an annular shape such as a quadrangle or a hexagonal shape.
  • the cross section of the first housing 11 is formed in a U shape such that the surface facing the second housing 17 is open, and is surrounded by the first housing 11 and the short cylindrical insulating member 16.
  • the space force cooling medium channel 14 is configured.
  • the first housing 11 is provided with a tubular first sleeve 12 in contact with the inner circumferential surface thereof.
  • a male thread groove is formed on the outer periphery of the first sleeve 12, and this male thread groove is provided so as to be screwed into a female thread groove formed on the inner periphery of the first housing 11.
  • the first sleeve 12 is provided concentrically with the first housing 11.
  • the first housing 11 and the first sleeve 12 constitute a first intermediate electrode G.
  • the first sleeve 12 is made of a high melting point and conductive material such as tungsten or molybdenum. The first sleeve 12 improves the heat resistance of the first housing 11 to the generated cylindrical plasma 36.
  • a cooling medium inlet 111 and a cooling medium outlet 112 are formed in the first housing 11.
  • the cooling medium inlet 111 and the cooling medium outlet 112 are a circumferentially opposite portion of the outer peripheral wall of the first housing 11, and penetrate a portion positioned in a horizontal direction with respect to the center of the first housing 11. It is formed as.
  • a cooling medium circulation mechanism (not shown) is connected to the cooling medium inlet 111 and the cooling medium outlet 112, and the cooling medium is circulated in the cooling medium channel 14 by the cooling medium circulation mechanism.
  • an annular permanent magnet (having a rectangular cross section along the inner circumference of the cooling medium channel 14)
  • the first magnet 15 is housed.
  • the shape of the permanent magnet 15 is appropriately changed in accordance with the shape of the first housing 11, and may be formed into, for example, an annular shape such as a square or a hexagon.
  • the permanent magnet 15 is accommodated concentrically with the first housing 11.
  • the cooling medium is circulated through the cooling medium channel 14 formed inside the first intermediate electrode G, and the permanent magnet 15 is in contact with the cooling medium.
  • the permanent magnet 15 is positioned by being sandwiched by the inner peripheral wall of the first housing 11 and the side wall of the insulating member 16.
  • a first protective plate 13 is provided at the rear end of the first housing 11. As shown in FIG. The first protective plate 13 protects the side surface (end surface) of the first housing 11 from being sputtered by plasma. Further, a screw hole 114 is formed on the rear end face of the first housing 11 so as to have a predetermined interval in the circumferential direction. By screwing a screw (not shown) into the screw hole 114, the first housing 11 and the insulating pipe 6 are fastened (fixed). Further, an annular O-ring groove 113 is formed in the rear end face of the first housing 11. By fitting an O-ring (not shown) into the O-ring groove 113 and attaching the insulating pipe 6, the first housing 11 and the insulating pipe 6 are airtightly joined.
  • a short cylindrical insulating member 16 is disposed.
  • the shape of the insulating member 16 is not limited to a cylindrical shape, and may be appropriately changed according to the shapes of the first housing 11 and the second housing 17.
  • the insulating member 16 may be formed in a rectangular shape, a hexagonal shape or the like. Good.
  • the insulating member 16 is disposed coaxially with the insulating pipe 6.
  • the insulating member 16 is made of an insulating material such as polytetrafluoroethylene or ceramics. The insulating member 16 insulates the first intermediate electrode G from the second intermediate electrode G described later.
  • the rear end of the second housing 17 is provided at the front end of the insulating member 16.
  • the second housing 17 is formed in an annular shape having a U-shaped cross section.
  • the shape of the second housing 17 is not limited to an annular shape, and may be formed into an annular shape such as a quadrangle or a hexagonal shape according to the shape of the first housing 11.
  • the cross section of the second housing 17 is formed in a U-shape such that the surface facing the first housing 11 is open, and a space surrounded by the second housing 17 and the short cylindrical insulating member 16.
  • the force S constitutes the cooling medium channel 20.
  • the second housing 17 is provided with an annular second sleeve 18 along the inner periphery thereof.
  • a male thread groove is formed on the outer periphery of the second sleeve 18, and this male thread groove is a second housing. It is provided in such a manner as to be screwed into a female screw groove formed on the inner periphery of the hook 17.
  • the second sleeve 18 is provided concentrically with the second housing 17.
  • the second housing 17 and the second sleeve 18 constitute a second intermediate electrode G.
  • the second sleeve 18 is a high melting point conductive material
  • the second sleeve 18 improves the heat resistance of the second housing 17 when the generated plasma passes.
  • a cooling medium inlet 171 and a cooling medium outlet 172 are formed in the second housing 17.
  • the cooling medium inlet 171 and the cooling medium outlet 172 pass through a circumferentially opposite portion of the outer peripheral wall of the second housing 17 and located horizontally with respect to the center of the second housing 17. It is formed as.
  • a cooling medium circulation mechanism (not shown) is connected to the cooling medium inlet 171 and the cooling medium outlet 172, and the cooling medium is circulated in the cooling medium flow passage 20 by the cooling medium circulation mechanism.
  • cooling medium for example, water, pure water, ethylene glycol aqueous solution (antifreeze), fluorine-based refrigerant and the like can be mentioned as a liquid, and as gas, for example, helium, argon, nitrogen and the like can be mentioned.
  • An annular electromagnetic coil (second magnet) 21 having a rectangular cross section is accommodated in the second housing 17 so as to be in contact with the inner periphery of the cooling medium flow passage 20.
  • the shape of the electromagnetic coil 21 is appropriately changed in accordance with the shape of the second housing 17, and may be formed into, for example, an annular shape such as a square or a hexagon.
  • the electromagnetic coil 21 is accommodated concentrically with the second housing 17. In other words, the cooling medium is circulated in the cooling medium channel 20 formed inside the second intermediate electrode G.
  • the electromagnetic coil 21 is in contact with the cooling medium.
  • the electromagnetic coil 21 is wound in an annular shape.
  • the electromagnetic coil 21 is positioned by being sandwiched by the side wall of the insulating member 16 and the inner circumferential wall of the second housing 17.
  • a second protective plate 19 is provided at the front end of the second housing 17.
  • the second protective plate 19 protects the side surface (end surface) of the second housing 17 from being sputtered by plasma.
  • an annular O-ring groove 173 is formed on the front end face of the second housing 17.
  • the insulating force roller 24 is formed in a short cylindrical shape.
  • the shape of the insulating collar 24 is appropriately changed according to the shape of the second housing 17.
  • the insulating collar 24 is formed in a tubular shape such as a square or a hexagon. It may be
  • bolt holes 28 are formed in the first housing 11, the second housing 17, and the insulating member 16 (see FIGS. 3 (b) and 3 (c)).
  • the bolt holes 28 also include forces through holes 28 a and 28 b respectively formed in the first housing 1 1 and the insulating member 16 and a screw hole 28 c formed in the second housing 17.
  • a cylindrical insulating collar 26 is inserted through the through holes 28a and 28b, and a bolt (fastener) 27 is screwed into the insulating collar 26 into the threaded through hole 28c, thereby forming the first housing 11 ,
  • the insulating member 16 and the second housing 17 are mutually fastened and integrated.
  • the insulating member 16 covers the open surfaces of the first housing 11 and the second housing 17 formed in a U-shape. That is, the open surfaces of the first housing 11 and the second housing 17 are sealed by the insulating member 16.
  • An O-ring groove 22 is formed at a predetermined position of the first housing 11 and the second housing 17, and an O-ring 23 is fitted in the O-ring groove 22.
  • the first housing 11, the insulating member 16 and the second housing 17 are joined in order in a liquid tight manner. Accordingly, the hermeticity between the insulating member 16 and the first housing 11 and the second housing 17 is maintained, and the leakage of the cooling medium from the integral intermediate electrode G is prevented.
  • bolt through holes 25 are formed at positions deviated from the bolt holes 28 by a predetermined central angle so as to penetrate them (see FIG. See Figure 3 (a) to (c)).
  • the bolt through hole 25 comprises through holes 25a, 25b and 25c formed in the first housing 11, the insulating member 16 and the second housing 17, respectively.
  • first housing 11 and second housing 17 are made of an aluminum alloy. And is preferred.
  • the weight of the first housing 11 and the second housing 17 can be reduced S because the aluminum alloy has a specific gravity smaller than that of stainless steel used for the housing of a normal intermediate electrode. This improves the operability when handling the first housing 11 and the second housing 17.
  • the aluminum alloy it is possible to use, for example, aluminum magnesium alloy (JIS 5000 series), aluminum magnesium cay alloy (JIS 6000 series), and aluminum zinc-magnesium alloy (JIS 7000 series). And to maintain corrosion resistance.
  • JIS 5000 series aluminum magnesium alloy
  • JIS 6000 series aluminum magnesium cay alloy
  • JIS 7000 series aluminum zinc-magnesium alloy
  • the surface of the portion of the first housing 11 and the second housing 17 in contact with the cooling medium (the surface of the U-shaped inner portion of the first housing 11 and the second housing 17) It is preferable that a surface treatment layer having conductivity, non-magnetism and corrosion resistance be formed.
  • a surface treatment layer having conductivity, non-magnetism and corrosion resistance include an electroless Ni plating layer.
  • the integrated intermediate electrode G it is possible to assemble the integrated intermediate electrode G by fastening the first housing 11, the insulating member 16 and the second housing 17 with the bolts (fasteners) 27. . Also, the integrated intermediate electrode G can be disassembled by performing the reverse operation. Furthermore, the assembled integral intermediate electrode G can be attached to the wall (insulating member 29) of the sheet plasma forming chamber 30 via the guide member.
  • the integrated intermediate electrode G of the present embodiment is configured as described above, the number of components can be reduced, and the weight thereof can be reduced. In addition, it becomes possible to manufacture the integrated intermediate electrode G in a compact manner. This improves the workability when attaching the integrated intermediate electrode G. Furthermore, since the first magnet 15 can be removed from the first housing 11 by removing the bolt 27, and the second magnet 21 can be removed from the second housing 17, the maintainability of the intermediate electrode is improved.
  • the cylindrical body 10 constituting the pressure gradient type plasma gun 1 is a cylindrical body, but the cross-sectional shape is arbitrary.
  • the cross-sectional shape in the direction perpendicular to the central axis 201 is positive. It may be polygonal.
  • the first sleeve 12 and the second sleeve 18 in which the male screw groove is formed are screwed to the inner circumferences of the first sleeve, the housing 11 and the second housing 17, respectively!
  • the grooved first sleeve 12 and the second sleeve 18 are passed along the inner circumferences of the first housing 11 and the second housing 17, respectively, and then each of them is covered by the protection plates 13, 19 from the outside. You may insert it. With such a configuration, welding of the screw groove is prevented, and replacement of the first sleeve 12 and the second sleeve 18 is facilitated.
  • the integrated intermediate electrode of the present invention is useful as an intermediate electrode which has a simple structure and reduces weight to improve the convenience of handling, and improves the maintainability at the time of disassembly and adjustment. is there.
  • the pressure gradient plasma gun of the present invention is useful as a pressure gradient plasma gun with improved workability when attaching an intermediate electrode.

Abstract

An integrated intermediate electrode (G) comprises a first conductive housing (11), a first conductive sleeve (12) provided concentrically to the first housing in contact with the inner circumferential surface of the first housing, a first magnet (15) contained in the first housing concentrically thereto, a second conductive housing (17) provided coaxially with the first housing, a second conductive sleeve (18) provided concentrically to the second housing in contact with the inner circumferential surface of the second housing, and a second magnet (21) contained in the second housing concentrically thereto. The first housing and the second housing are integrated through an insulating member (16).

Description

明 細 書  Specification
一体型中間電極及びこれを用いた圧力勾配型プラズマガン  Integrated intermediate electrode and pressure gradient type plasma gun using the same
技術分野  Technical field
[0001] 本発明は、成膜装置のプラズマ源として用いる圧力勾配型プラズマガン及びこれに 用いられる中間電極に関する。  The present invention relates to a pressure gradient type plasma gun used as a plasma source of a film forming apparatus and an intermediate electrode used therefor.
背景技術  Background art
[0002] 従来、成膜装置のプラズマ源として、圧力勾配型プラズマガンが用いられている。  Conventionally, a pressure gradient type plasma gun has been used as a plasma source of a film forming apparatus.
圧力勾配型プラズマガンは、筒状の容器に、力ソードと、環状の第 1中間電極と、環 状の第 2中間電極と、第 1中間電極と第 2中間電極との間に介在する絶縁部材とが同 軸状に設けられて構成されてレ、る。  The pressure gradient type plasma gun comprises a cylindrical container, a force sword, an annular first intermediate electrode, an annular second intermediate electrode, and insulation between the first intermediate electrode and the second intermediate electrode. The components are provided coaxially and configured.
[0003] このような圧力勾配型プラズマガンでは、第 1中間電極と第 2中間電極とを仮組み 部材を用いて仮組みし、この仮組みされたものが圧力勾配型プラズマガンに取り付 けられている。しかし、第 1中間電極と第 2中間電極とを仮組みするときに仮組み部材 が脱落する場合があり、取り扱いに不便であるという問題があった。また、第 1中間電 極と第 2中間電極とを仮組みすると、その仮組みしたものの重量が大きくなるという問 題もあった。  In such a pressure gradient type plasma gun, a first intermediate electrode and a second intermediate electrode are temporarily assembled using a temporary assembly member, and the temporary assembly is mounted on the pressure gradient plasma gun. It is done. However, when temporarily assembling the first intermediate electrode and the second intermediate electrode, the temporarily assembled member may fall off, which is inconvenient to handle. In addition, there is also a problem that when the first intermediate electrode and the second intermediate electrode are provisionally assembled, the weight of the provisionally assembled device increases.
[0004] そこで、特許文献 1に示すように、絶縁部材を組み込んだセット部材を用いて中間 電極を取り付けた圧力勾配型プラズマガンが示されて!/、る。このような圧力勾配型プ ラズマガンでは、第 1中間電極と第 2中間電極とを個別に取り付けることができるので 、仮組み部材が脱落するということがなぐ第 1中間電極及び第 2中間電極を取り付け る際の作業性が向上する。  [0004] Therefore, as shown in Patent Document 1, a pressure gradient type plasma gun in which an intermediate electrode is attached by using a set member incorporating an insulating member is disclosed. In such a pressure gradient type plasma gun, since the first intermediate electrode and the second intermediate electrode can be attached separately, the first intermediate electrode and the second intermediate electrode can be attached so that the temporary assembly member will not fall off. Improves the work efficiency.
特許文献 1 :特開平 11 256319号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 11 256319
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0005] しかしながら、特許文献 1の構成においては、セット部材を支持する支持手段を第 1 中間電極及び第 2中間電極に設ける必要があり、構造が複雑になるという問題があ つた。 [0006] また、従来においては、第 1中間電極及び第 2中間電極の気密性を保っため、第 1 中間電極及び第 2中間電極を構成するハウジングに蓋を溶接することによって封止 している。しかし、溶接によってハウジングを封止すると、漏電等により中間電極の内 部に不具合が生じた場合にその分解及び調整を行うことが困難であり、メンテナンス 性が悪!/、と!/、つた問題もあった。 However, in the configuration of Patent Document 1, it is necessary to provide supporting means for supporting the set member on the first intermediate electrode and the second intermediate electrode, and there is a problem that the structure becomes complicated. In the related art, in order to maintain the airtightness of the first intermediate electrode and the second intermediate electrode, sealing is performed by welding a lid to a housing constituting the first intermediate electrode and the second intermediate electrode. . However, if the housing is sealed by welding, it is difficult to disassemble and adjust the inner part of the intermediate electrode due to leakage current, etc., and maintenance is bad! There was also.
[0007] 本発明は上記のような課題を解決するためになされたもので、簡易な構成でかつ 重量を軽減させて取り扱いの利便性を向上させると共に、分解及び調整を行う際のメ ンテナンス性を向上させた中間電極、及びこれを用いた圧力勾配型プラズマガンを 提供することを目的とする。  The present invention has been made to solve the above problems, and has a simple structure and reduced weight to improve the convenience of handling, as well as maintenance when disassembling and adjusting. It is an object of the present invention to provide an intermediate electrode improved in the above and a pressure gradient type plasma gun using the same.
課題を解決するための手段  Means to solve the problem
[0008] 上記課題を解決するために、本発明の一体型中間電極は、導電性を有する第 1ノ、 ウジングと、該第 1ハウジングと同心状にかつ該第 1ハウジングの内周面に接触する ように設けられた導電性を有する第 1スリーブと、前記第 1ハウジングに該第 1ハウジ ングと同心状に収容された第 1磁石と、前記第 1ハウジングと同軸状に設けられた導 電性を有する第 2ハウジングと、該第 2ハウジングと同心状にかつ該第 2ハウジングの 内周面に接触するように設けられた導電性を有する第 2スリーブと、前記第 2ハウジン グに該第 2ハウジングと同心状に収容された第 2磁石と、を備え、前記第 1ハウジング と前記第 2ハウジングとが絶縁部材を介して一体化されている。  [0008] In order to solve the above problems, the integrated intermediate electrode of the present invention comprises a conductive first housing, a housing, and a contact with the inner peripheral surface of the first housing concentric with the first housing. A conductively conductive first sleeve, a first magnet concentrically accommodated in the first housing with the first housing, and a conductive provided coaxially with the first housing A second housing having conductivity, a second sleeve having conductivity provided concentrically with the second housing and in contact with the inner peripheral surface of the second housing, and the second housing in the second housing And a second magnet coaxially accommodated in the two housings, wherein the first housing and the second housing are integrated via an insulating member.
[0009] このような構成とすると、これを組み込んだ圧力勾配型プラズマガンを用いる装置( 例えば、成膜装置)への取り付けが容易になる。  With such a configuration, mounting to a device (for example, a film forming device) using a pressure gradient plasma gun incorporating the same becomes easy.
[0010] 前記第 1ハウジングは前記第 2ハウジングと対向する面が開放されるようにコの字状 の断面を有し、前記第 2ハウジングは前記第 1ハウジングと対向する面が開放される ようにコの字状の断面を有し、前記絶縁部材は前記第 1ハウジング及び前記第 2ハウ ジングと同軸状に形成されており、前記第 1ハウジング及び前記第 2ハウジングの各 々の開放面が前記絶縁部材によって蓋をされており、前記第 1ハウジングと前記絶縁 部材との間の空間に前記第 1磁石が収容されかつ前記第 2ハウジングと前記絶縁部 材との間の空間に前記第 2磁石が収容されており、かつ、前記第 1ハウジング、前記 絶縁部材、及び前記第 2ハウジングが締結具によつて相互に締結されて!/、てもよレ、。 [0011] このような構成とすると、中間電極を構成する構成部品の点数が減るのでその重量 を軽減することができ、取り扱いの利便性が向上する。また、締結具の締結を解除し て絶縁部材による蓋をはずすことにより、中間電極の内部で不具合が生じた場合に おいても分解及び調整を行うことができ、メンテナンス性が向上する。 [0010] The first housing has a U-shaped cross section so that the surface facing the second housing is open, and the second housing is open the surface facing the first housing. The insulating member is formed coaxially with the first housing and the second housing, and the open faces of the first housing and the second housing are The first magnet is accommodated in the space between the first housing and the insulating member, and the second magnet is accommodated in the space between the second housing and the insulating member. A magnet is accommodated, and the first housing, the insulating member, and the second housing are mutually fastened by fasteners! // ,. [0011] With such a configuration, the number of components constituting the intermediate electrode is reduced, so that the weight can be reduced, and the convenience of handling is improved. Further, by releasing the fastening of the fastener and removing the lid by the insulating member, disassembly and adjustment can be performed even when a problem occurs inside the intermediate electrode, and the maintainability is improved.
[0012] 前記第 1ハウジングと前記絶縁部材と前記第 2ハウジングとが順に気密又は液密に 接合されていてもよい。  The first housing, the insulating member, and the second housing may be joined in an airtight or liquid-tight manner in order.
[0013] 中間電極の内部には冷却媒体流路が形成されることが通常であり、この冷却媒体 流路には冷却媒体が流通されている。そこで、このような構成とすると、冷却媒体の 漏れが防止される。  A cooling medium channel is usually formed inside the intermediate electrode, and the cooling medium is circulated through the cooling medium channel. Therefore, with such a configuration, leakage of the cooling medium is prevented.
[0014] 前記接合は Oリングを用いて気密又は液密にされて!/、ることが好まし!/、。  [0014] The bonding is preferably made air tight or liquid tight using an O-ring! /, Preferably!
[0015] このような構成とすると、前記第 1ハウジングと前記絶縁部材と前記第 2ハウジングと を容易に気密又は液密にすることができる。  With such a configuration, the first housing, the insulating member, and the second housing can be easily made airtight or liquid tight.
[0016] 本発明の圧力勾配型プラズマガンは、上記のように構成された一体型中間電極の うちのいずれかを備える。 The pressure gradient plasma gun of the present invention includes any one of the integral intermediate electrodes configured as described above.
[0017] このような構成とすると、圧力勾配型プラズマガンに中間電極を取り付ける際の作業 性が向上する。 With such a configuration, the workability at the time of attaching the intermediate electrode to the pressure gradient type plasma gun is improved.
[0018] 本発明の圧力勾配型プラズマガンにおいては、カラーと、前記一体型中間電極と、 絶縁管と、力ソードを備え前記絶縁管の前記一体中間電極から遠いほうの端を塞ぐ 力ソードマウントと、が締結具によつて相互に締結されて前記圧力勾配型プラズマガ ンが構成されていてもよい。  In the pressure gradient type plasma gun according to the present invention, a collar, the integrated intermediate electrode, an insulating pipe, and a force sword are provided, and the end of the insulating pipe remote from the integrated intermediate electrode is closed. And the pressure gradient type plasma gun may be configured to be mutually fastened by a fastener.
[0019] このような構成とすると、圧力勾配型プラズマガンを組み立てることが容易になる。 With such a configuration, it becomes easy to assemble the pressure gradient plasma gun.
[0020] 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features and advantages of the present invention will be apparent from the following detailed description of preferred embodiments with reference to the attached drawings.
発明の効果  Effect of the invention
[0021] 本発明の一体型中間電極は、上記のような構成としたため、簡易な構成でかつ重 量を軽減させて取り扱いの利便性が向上すると共に、分解及び調整を行う際のメン テナンス性が向上するという効果を奏する。  Since the integrated intermediate electrode of the present invention is configured as described above, the convenience of handling is improved with a simple configuration and reduced weight, and the maintenance property at the time of disassembly and adjustment is achieved. The effect is improved.
[0022] また、本発明の圧力勾配型プラズマガンは、上記のような構成としたため、中間電 極の取り付けが容易になるという効果を奏する。 In addition, since the pressure gradient type plasma gun of the present invention is configured as described above, an intermediate voltage can be obtained. The effect of facilitating the attachment of the pole is achieved.
図面の簡単な説明  Brief description of the drawings
[0023] [図 1]図 1は、本発明の実施形態の圧力勾配型プラズマガンを用いたシートプラズマ 成膜装置の概略の構成を示す模式図である。  [FIG. 1] FIG. 1 is a schematic view showing a schematic configuration of a sheet plasma film forming apparatus using a pressure gradient type plasma gun according to an embodiment of the present invention.
[図 2]図 2は、本発明の実施形態の圧力勾配型プラズマガンを中心軸に沿って垂直 に切断した状態を模式的に示す断面図である。  [FIG. 2] FIG. 2 is a cross-sectional view schematically showing a state where the pressure gradient plasma gun of the embodiment of the present invention is cut vertically along the central axis.
[図 3]図 3は、図 2の圧力勾配型プラズマガンを構成する一体型中間電極を示す図で あって、(a)は左側面図、(b)は一体型中間電極を中心軸に沿って垂直に切断した 状態を示す断面図、(c)は右側面図である。  [FIG. 3] FIG. 3 is a view showing an integral type intermediate electrode constituting the pressure gradient type plasma gun of FIG. 2, wherein (a) is a left side view and (b) is a center axis of the integral type intermediate electrode. FIG. 7 is a cross-sectional view showing a state of being cut vertically along the line, and FIG.
符号の説明  Explanation of sign
[0024] 1 圧力勾配型プラズマガン 1 pressure gradient type plasma gun
2 力ソードマウント  2 Force Sword Mount
3 放電ガス導入孔  3 Discharge gas introduction hole
4 冷却媒体流路  4 Coolant channel
6 絶縁管  6 Insulated pipe
7 放電ガス流路  7 Discharge gas flow path
8 力ソード  8 Force Sword
10 筒体  10 cylinder
11 第 1ハウジング  11 First housing
12 第 1スリーブ  12 first sleeve
13  13
14, 20 冷却媒体流路  14, 20 Coolant channel
15 永久磁石(第 1磁石)  15 Permanent magnet (1st magnet)
16 絶縁部材  16 insulation member
17 第 2ハウジング  17 second housing
18 第 2スリーブ  18 second sleeve
19 第 2保護板  19 second protective plate
21 電磁コイル(第 2磁石) Oリング溝21 Electromagnetic coil (second magnet) O ring groove
〇リング ○ Ring
絶縁カラー ボルト挿通孔a, 25b, 25c 貫通孑し 絶縁カラー ボルト (締結具) ボルト孔 Insulated collar bolt insertion holes a, 25b, 25c penetration collar insulation collar bolt (fastener) bolt hole
a, 28b 貫通孔c ネジ孔 a, 28b through hole c screw hole
絶縁蓋部材 シートプラズマ形成室 円筒部材  Insulating lid member Sheet plasma forming chamber Cylindrical member
第 1環状コイル 水久磁石  First annular coil Mizukyu magnet
第 2環状コイル 円筒状プラズマ シート状プラズマ 第 1フランジ 成膜室  Second annular coil Cylindrical plasma Sheet-like plasma First flange Deposition chamber
チャンノ  Channo
 To
下芸  Second line
基材ホルダ 基材  Substrate holder
ターゲットホルダ ターゲット Target holder target
, 51 絶縁部材 52 排気口 51 insulation member 52 Exhaust port
53 バノレブ  53 Bano Reb
54 真空ポンプ  54 vacuum pump
59 第 2フランジ  59 Second flange
60 陽極室  60 anode chamber
61 第 3環状コイル  61 3rd annular coil
62 円筒部材  62 Cylindrical member
63 アノード  63 anode
64 永久磁石  64 permanent magnet
111 , 171 冷却媒体入口  111, 171 Coolant inlet
112, 172 冷却媒体出口  112, 172 coolant outlet
113, 173 Oリング溝  113, 173 O-ring groove
114 ネジ孔  114 screw holes
201 中心軸  201 central axis
G 一体型中間電極  G integrated intermediate electrode
G 第 1中間電極  G 1st intermediate electrode
G 第 2中間電極  G 2nd intermediate electrode
2  2
R, R, R 抵抗体  R, R, R resistor
V 1 2  V 1 2
V 主バイアス電圧印加装置  V main bias voltage application device
V , V バイアス電圧印加装置  V, V bias voltage application device
2 3  twenty three
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、本発明の実施形態を、図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0026] (実施形態)  Embodiment (Embodiment)
図 1は、本発明の実施形態の圧力勾配型プラズマガンを用いたシートプラズマ成膜 装置の概略の構成を示す模式図である。図 2は、本発明の実施形態の圧力勾配型 プラズマガンを中心軸に沿って垂直に切断した状態を模式的に示す断面図である。 図 3は、図 2の圧力勾配型プラズマガンを構成する一体型中間電極を示す図であつ て、(a)は左側面図、(b)は一体型中間電極を中心軸に沿って垂直に切断した状態 を示す断面図、(c)は右側面図である。なお、図 3 (b)においては、絶縁カラー及び 締結具が第 1及び第 2ハウジング並びに絶縁部材を貫通する部分は、部分的に切り 欠いた B— B断面図として示している。以下、図 1乃至図 3を参照しながら、本実施形 態に係る圧力勾配型プラズマガン及び一体型中間電極について説明する。なお、以 下においては、図 1の左側及び図 2の左側を前側とし、図 1の右側及び図 2の右側を 後側として説明する。 FIG. 1 is a schematic view showing a schematic configuration of a sheet plasma film-forming apparatus using a pressure gradient type plasma gun according to an embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing the pressure gradient type plasma gun according to the embodiment of the present invention vertically cut along the central axis. FIG. 3 is a view showing an integrated intermediate electrode constituting the pressure gradient type plasma gun of FIG. 2, wherein (a) is a left side view, and (b) is vertically arranged along the central axis of the integrated intermediate electrode. Disconnected state And (c) is a right side view. In FIG. 3 (b), the part where the insulating collar and the fastener pass through the first and second housings and the insulating member is shown as a partially cut BB sectional view. The pressure gradient plasma gun and the integral intermediate electrode according to the present embodiment will be described below with reference to FIGS. 1 to 3. In the following description, the left side of Fig. 1 and the left side of Fig. 2 will be referred to as the front side, and the right side of Fig. 1 and the right side of Fig. 2 will be described as the rear side.
[0027] 図 1に示すように、本実施形態の圧力勾配型プラズマガン 1は、例えば、シートブラ ズマ成膜装置 100に用いられる。ここでは、本実施形態の圧力勾配型プラズマガン 1 が用いられる成膜装置としてシートプラズマ成膜装置 100を例示した力 s、これに限定 されないことはいうまでもない。なお、圧力勾配型プラズマガン 1及び一体型中間電 極 Gの構成については、ここでは簡単に説明し、後において詳細に説明する。  As shown in FIG. 1, the pressure gradient type plasma gun 1 of the present embodiment is used, for example, in a sheet plasma film forming apparatus 100. Here, it is needless to say that the force s exemplified for the sheet plasma film forming apparatus 100 as the film forming apparatus in which the pressure gradient type plasma gun 1 of the present embodiment is used is not limited to this. The configurations of the pressure gradient type plasma gun 1 and the integral intermediate electrode G will be briefly described here and will be described in detail later.
[0028] 圧力勾配型プラズマガン 1は、力ソードマウント 2と、該カソードマウント 2に取り付け られた筒体 10とを備えている。力ソードマウント 2には、力ソード 8が設けられている。 筒体 10は、絶縁管 6と、一体型中間電極 Gとを備えている。一体型中間電極 Gは、第 1中間電極 Gと、第 2中間電極 Gと、絶縁部材 16とを含んで構成される。  The pressure gradient type plasma gun 1 includes a force sword mount 2 and a cylinder 10 attached to the cathode mount 2. The force sword mount 2 is provided with a force sword 8. The cylindrical body 10 includes an insulating pipe 6 and an integral intermediate electrode G. The integrated intermediate electrode G is configured to include a first intermediate electrode G, a second intermediate electrode G, and an insulating member 16.
1 2  1 2
[0029] 力ソード 8 (力ソードマウント 2)と後述するアノード 63とは、抵抗体 Rを介して主バイ  [0029] Force Sword 8 (Force Sword Mount 2) and the anode 63 described later
V  V
ァス電圧印加装置 Vの負極端子及び正極端子にそれぞれ接続されている。第 1中 間電極 Gは、抵抗体 Rを介して、上記の主バイアス電圧印加装置 Vの正極端子に 接続されている。第 2中間電極 Gは、抵抗体 Rを介して、上記の主バイアス電圧印  The negative terminal and the positive terminal of the source voltage application device V are respectively connected. The first intermediate electrode G is connected to the positive electrode terminal of the main bias voltage applying device V described above via the resistor R. The second intermediate electrode G is connected to the main bias voltage mark described above via the resistor R.
2 2  twenty two
加装置 Vの正極端子に接続されている。主バイアス電圧印加装置 Vと抵抗体 R , R  It is connected to the positive terminal of the feeder V. Main bias voltage application device V and resistors R and R
1 I V 1 I V
, Rとの組み合わせによって、力ソード 8とアノード 63との間に所定のバイアス電圧, R together with the bias voltage between Force Sword 8 and Anode 63
1 2 1 2
が印加される。これにより、圧力勾配型プラズマガン 1の力ソード 8の近傍において円 筒状プラズマ 36が発生される。  Is applied. As a result, cylindrical plasma 36 is generated in the vicinity of the force sword 8 of the pressure gradient type plasma gun 1.
[0030] 圧力勾配型プラズマガン 1の前端には、シートプラズマ形成室 30の後端が接続さ れている。シートプラズマ形成室 30は、筒状部材 31の後端及び前端が、それぞれ、 中央部が開口した絶縁蓋部材 29及び中央部が開口した第 1フランジ 39によって閉 鎖されて形成されている。筒状部材 31は、非磁性体で構成されている。筒状部材 31 の後端側の周囲には、導入された円筒状プラズマ 36の形状を整える第 1環状コィノレ 32が配設されている。また、筒状部材 31の第 1環状コイル 32が配設された位置の前 方には、一対の永久磁石 33が配設されている。一対の永久磁石 33は、それぞれの N極を対向させるようにして配設されている。一対の永久磁石 33は、導入された円筒 状プラズマ 36をシート状のプラズマ(以下、シート状プラズマという) 37に形成する。 さらに、筒状部材 31の前端側の周囲には、形成されたシート状プラズマ 37の形状を 整える第 2環状コイル 34が配設されて!/、る。 The rear end of the sheet plasma forming chamber 30 is connected to the front end of the pressure gradient type plasma gun 1. The sheet plasma forming chamber 30 is formed such that the rear end and the front end of the cylindrical member 31 are respectively closed by the insulating cover member 29 whose central portion is open and the first flange 39 whose central portion is open. The cylindrical member 31 is made of a nonmagnetic material. A first annular cavity for adjusting the shape of the introduced cylindrical plasma 36 around the rear end side of the cylindrical member 31 32 are provided. Further, a pair of permanent magnets 33 is disposed in front of the position where the first annular coil 32 of the tubular member 31 is disposed. The pair of permanent magnets 33 are disposed such that their respective N poles face each other. The pair of permanent magnets 33 form the introduced cylindrical plasma 36 into a sheet-like plasma (hereinafter referred to as a sheet-like plasma) 37. Furthermore, around the front end side of the cylindrical member 31, a second annular coil 34 for arranging the formed sheet-like plasma 37 is disposed! /.
[0031] シートプラズマ形成室 30の前端には、成膜室 40の後端が接続されている。シート プラズマ形成室 30において形成されたシート状プラズマ 37は、成膜室 40の内部に 導入される。 The rear end of the film forming chamber 40 is connected to the front end of the sheet plasma forming chamber 30. The sheet-like plasma 37 formed in the sheet plasma forming chamber 30 is introduced into the film forming chamber 40.
[0032] 成膜室 40は、円筒状のチャンバ 41を備えている。チャンバ 41の一方の端部は上 蓋 42により閉鎖されており、チャンバ 41の他方の端部は下蓋 43により閉鎖されてい る。チャンバ 41は、非磁性の材料、例えば、ステンレスで構成されている。チャンバ 4 1の適所には、排気口 52が形成されている。排気口 52は、バルブ 53により開閉可能 に構成されている。排気口 52には、真空ポンプ 54が接続されている。真空ポンプ 54 は、成膜室 40 (チャンバ 41)の内部をシート状プラズマ 37が輸送できる所定の圧力 まで真空引きする。チャンバ 41の内部には、導入されたシート状プラズマ 37を挟ん で対向するように、ターゲットホルダ 48と基材ホルダ 44とが配設されている。  The film forming chamber 40 includes a cylindrical chamber 41. One end of the chamber 41 is closed by the upper lid 42, and the other end of the chamber 41 is closed by the lower lid 43. The chamber 41 is made of a nonmagnetic material, such as stainless steel. An exhaust port 52 is formed at an appropriate position of the chamber 41. The exhaust port 52 is configured to be openable and closable by a valve 53. A vacuum pump 54 is connected to the exhaust port 52. The vacuum pump 54 evacuates the inside of the film forming chamber 40 (chamber 41) to a predetermined pressure at which the sheet-like plasma 37 can be transported. Inside the chamber 41, a target holder 48 and a substrate holder 44 are disposed to face each other with the introduced sheet-like plasma 37 interposed therebetween.
[0033] ターゲットホルダ 48は、ターゲット材料 49を保持する。ターゲットホルダ 48は、絶縁 部材 51を介してチャンバ 41に取り付けられている。ターゲットホルダ 48は、チャンバ 41に対して気密的に取り付けられている。ターゲットホルダ 48には、バイアス電圧印 加装置 Vが接続されている。このバイアス電圧印加装置 Vにより、シート状プラズマ  The target holder 48 holds the target material 49. The target holder 48 is attached to the chamber 41 via the insulating member 51. The target holder 48 is airtightly attached to the chamber 41. A bias voltage application device V is connected to the target holder 48. Sheet-like plasma is produced by this bias voltage application device V.
2 2  twenty two
37の電位に対する負のバイアス電圧がターゲットホルダ 48に印加される。これにより 、ターゲット材料 49が、シート状プラズマ 37中のプラズマ粒子によってスパッタリング される。  A negative bias voltage for the 37 potential is applied to the target holder 48. As a result, the target material 49 is sputtered by plasma particles in the sheet plasma 37.
[0034] 一方、基材ホルダ 44は、膜を形成する基材 45を保持する。基材ホルダ 44は、絶縁 部材 50を介してチャンバ 41に取り付けられている。基材ホルダ 44は、チャンバ 41に 対して気密的に取り付けられている。基材ホルダ 44には、バイアス電圧印加装置 V  On the other hand, the substrate holder 44 holds the substrate 45 which forms a film. The substrate holder 44 is attached to the chamber 41 via the insulating member 50. The substrate holder 44 is airtightly attached to the chamber 41. The substrate holder 44 is provided with a bias voltage application device V.
3 が接続されている。このバイアス電圧印加装置 Vにより、シート状プラズマ 37の電位 に対する負のバイアス電圧が基材ホルダ 44に印加される。これにより、スパッタリング されたターゲット材料が基材 45に堆積し、膜が形成される。 3 is connected. The potential of the sheet-like plasma 37 is set by the bias voltage application device V. Negative bias voltage is applied to the substrate holder 44. Thereby, the sputtered target material is deposited on the substrate 45 to form a film.
[0035] 成膜室 40の前端には、陽極室 60の後端が接続されている。陽極室 60は、筒状部 材 62の後端及び前端が、それぞれ、中央部が開口した第 2フランジ 59及びアノード 63で閉鎖されて形成されている。筒状部材 62は、例えば、ガラスで構成されている。 筒状部材 62の周囲には、シート状プラズマ 37の形状を整える第 3環状コイル 61が配 設されている。アノード 63は、前述のように、主バイアス電圧印加装置 Vの正極端子 に接続されている。アノード 63の裏面には、永久磁石 64が設けられている。永久磁 石 64は、その S極がアノード 63と接触するように設けられている。永久磁石 64は、シ ート状プラズマ 37の末端の形状を整える。  The rear end of the anode chamber 60 is connected to the front end of the film forming chamber 40. The anode chamber 60 is formed such that the rear end and the front end of the cylindrical member 62 are closed by a second flange 59 and an anode 63 which are open at the central portion, respectively. The cylindrical member 62 is made of, for example, glass. A third annular coil 61 is provided around the cylindrical member 62 to adjust the shape of the sheet-like plasma 37. The anode 63 is connected to the positive terminal of the main bias voltage applying device V as described above. A permanent magnet 64 is provided on the back surface of the anode 63. The permanent magnet 64 is provided such that its south pole is in contact with the anode 63. The permanent magnet 64 shapes the end of the sheet-like plasma 37.
[0036] また、シートプラズマ成膜装置 100は、図示しなレ、制御装置を備えて!/、る。制御装 置は、主バイアス電圧印加装置 V、バイアス電圧印加装置 V , V等の動作を制御  In addition, the sheet plasma film forming apparatus 100 is provided with a controller, which is not shown! The control device controls the operation of the main bias voltage application device V, bias voltage application device V, V, etc.
1 2 3  one two Three
する。制御装置は、マイコン等の演算装置で構成され、シートプラズマ装置 100の所 要の構成要素を制御して、シートプラズマ装置 100の動作を制御する。ここで、本明 細書においては、制御装置とは、単独の制御器だけでなぐ複数の制御器が協働し て制御を実行する制御器群をも意味する。よって、制御装置は、必ずしも単独の制御 器で構成される必要はなぐ複数の制御器が分散配置されていて、それらが協働し てシートプラズマ装置 100の動作を制御するよう構成されていてもよい。  Do. The control device is configured by an arithmetic device such as a microcomputer, and controls the necessary components of the sheet plasma device 100 to control the operation of the sheet plasma device 100. Here, in the present specification, a control device also means a controller group in which a plurality of controllers cooperate with one another to execute control. Therefore, the control device does not necessarily have to be configured as a single controller, but a plurality of controllers are distributed, and they are configured to cooperate to control the operation of the sheet plasma apparatus 100. Good.
[0037] 以上のように構成されたシートプラズマ成膜装置 100の動作について、簡単に説明 する。 The operation of the sheet plasma film forming apparatus 100 configured as described above will be briefly described.
[0038] 圧力勾配型プラズマガン 1により発生された円筒状プラズマ 36は、シートプラズマ 形成室 30の一対の永久磁石 33により、シート状プラズマ 37に形成される。このシー ト状プラズマ 37は成膜室 40に導入され、ターゲット材料 49をスパッタリングする。ス ノ クタされたターゲット粒子は、シート状プラズマ 37を挟んで対向した位置に配置さ れた基材 45に堆積し、膜を形成する。  The cylindrical plasma 36 generated by the pressure gradient type plasma gun 1 is formed into a sheet-like plasma 37 by the pair of permanent magnets 33 of the sheet plasma forming chamber 30. The sheet-like plasma 37 is introduced into the film forming chamber 40 and sputters the target material 49. The target particles subjected to the scan are deposited on a substrate 45 disposed opposite to each other across the sheet plasma 37 to form a film.
[0039] 次に、本実施形態の圧力勾配型プラズマガン 1について、図 2を参照しながら詳しく 説明する。なお、図 2では、説明の便宜上、前述のように、図 2の左側を前側、右側を 後側としている。 [0040] 図 2に示すように、本実施形態の圧力勾配型プラズマガン 1は、力ソードマウント 2を 備えている。力ソードマウント 2の中央部(正確には、後述する絶縁管 6の中心軸 201 上に位置するように)には放電ガス導入孔 3が形成されていて、ここからアルゴンガス 等の放電ガスが導入される。また、力ソードマウント 2の内部には冷却媒体流路 4が形 成されており、図示しない冷却媒体流通機構によって、この冷却媒体流路 4に冷却 媒体が流通される。冷却媒体として、液体では、例えば、水、純水、エチレングリコー ル水溶液(不凍液)、フッ素系冷媒等が挙げられ、気体では、例えば、ヘリウム、アル ゴン、窒素等が挙げられる。 Next, the pressure gradient type plasma gun 1 of the present embodiment will be described in detail with reference to FIG. In FIG. 2, for convenience of description, as described above, the left side of FIG. 2 is the front side, and the right side is the rear side. As shown in FIG. 2, the pressure gradient type plasma gun 1 of the present embodiment is provided with a force sword mount 2. A discharge gas introduction hole 3 is formed in the central portion of the force sword mount 2 (more precisely, on the central axis 201 of the insulating tube 6 described later), from which a discharge gas such as argon gas flows. be introduced. Further, a cooling medium channel 4 is formed inside the force sword mount 2, and the cooling medium is circulated through the cooling medium channel 4 by a cooling medium circulation mechanism (not shown). As a cooling medium, for example, water, pure water, ethylene glycol aqueous solution (antifreeze), fluorine-based refrigerant and the like can be mentioned as a liquid, and as a gas, for example, helium, argon, nitrogen and the like can be mentioned.
[0041] 力ソードマウント 2の前端には、円筒状の絶縁管 6の後端が取り付けられている。絶 縁管 6は、絶縁材料、例えば、ガラスやセラミックス等で構成されている。この絶縁管 6 と、それぞれ後述する、一体型中間電極 G、及び絶縁カラー 24が筒体 10を構成して いる。筒体 10は、本実施形態では円筒体である。筒体 10の開口(図 1参照)が、ブラ ズマ流出口を構成する。  The rear end of the cylindrical insulating tube 6 is attached to the front end of the force sword mount 2. The insulating tube 6 is made of an insulating material, such as glass or ceramics. The insulating tube 6 and the integral intermediate electrode G and the insulating collar 24 which will be described later respectively constitute the cylindrical body 10. The cylindrical body 10 is a cylindrical body in the present embodiment. The opening of the cylinder 10 (see FIG. 1) constitutes the plasma outlet.
[0042] 力ソードマウント 2には、絶縁管 6の内部の該絶縁管 6の中心軸 201の上に突出す るように、力ソード 8が設けられている。力ソード 8は、放電ガス流路 7を備えている。放 電ガス流路 7には、放電ガス導入孔 3から導入された放電ガスが流通する。  The force sword mount 2 is provided with a force sword 8 so as to protrude above the central axis 201 of the insulating tube 6 inside the insulating tube 6. The force sword 8 is provided with a discharge gas flow path 7. The discharge gas introduced from the discharge gas introduction hole 3 flows through the discharge gas passage 7.
[0043] 絶縁管 6の前端には、一体型中間電極 Gが取り付けられている。一体型中間電極 Gは、前述のように、第 1中間電極 Gと、絶縁部材 16と、第 2中間電極 Gとを含んで  An integral intermediate electrode G is attached to the front end of the insulating tube 6. As described above, the integral intermediate electrode G includes the first intermediate electrode G, the insulating member 16 and the second intermediate electrode G.
1 2 構成されている。一体型中間電極 Gの構成については、後に詳しく説明する。  1 2 is configured. The configuration of the integral intermediate electrode G will be described in detail later.
[0044] 一体型中間電極 Gの前端には、短円筒状の絶縁カラー 24の後端が取り付けられて いる。絶縁カラー 24は絶縁管 6と同軸状に配置され、その両端面には、図示しないシ ール部材、例えば Oリングが配設されている。絶縁カラー 24を構成する材料には、ポ リテトラフルォロエチレンやセラミックス等の絶縁体が用いられる。絶縁カラー 24の前 端は、図示しない円環の板状のガイド部材に取り付けられている。絶縁カラー 24は、 一体型中間電極 Gとガイド部材との絶縁性を確保する。 At the front end of the integral intermediate electrode G, the rear end of a short cylindrical insulating collar 24 is attached. The insulating collar 24 is disposed coaxially with the insulating tube 6, and a seal member (not shown), for example, an O-ring, is disposed on both end surfaces thereof. As a material for forming the insulating collar 24, an insulator such as polytetrafluroethylene or ceramics is used. The front end of the insulating collar 24 is attached to an annular plate-like guide member (not shown). The insulating collar 24 ensures the insulation between the integral intermediate electrode G and the guide member.
[0045] そして、圧力勾配型プラズマガン 1は、ガイド部材を介して、シートプラズマ成膜装 置 100 (より具体的には、シートプラズマ形成室 30の絶縁蓋部材 29)に取り付けられ [0046] 次に、一体型中間電極 Gの構造について、図 3を参照しながら詳しく説明する。な お、以下の説明における前端と後端とは、図 2中に記載した「前」と「後」とに対応する Then, the pressure gradient type plasma gun 1 is attached to the sheet plasma film forming apparatus 100 (more specifically, the insulating lid member 29 of the sheet plasma forming chamber 30) through the guide member. Next, the structure of the integral intermediate electrode G will be described in detail with reference to FIG. In the following description, the front end and the rear end correspond to “front” and “rear” described in FIG.
[0047] 図 3 (a) , (b) , (c)に示すように、一体型中間電極 Gは、第 1ハウジング 11を備えた 第 1中間電極 Gと、第 2ハウジング 17を備えた第 2中間電極 Gと、絶縁部材 16とを As shown in FIG. 3 (a), (b) and (c), the integrated intermediate electrode G is provided with a first intermediate electrode G provided with a first housing 11 and a second provided with a second housing 17. 2 intermediate electrode G and insulating member 16
1 2  1 2
含んで構成されている。  It is comprised including.
[0048] 第 1ハウジング 11は、絶縁管 6の前端に取り付けられる(図 2参照)。第 1ハウジング 11は、断面コの字状の円環状に形成されている。なお、第 1ハウジング 11の形状は 円環状に限定されず、四角形、六角形などの環状に形成されていてもよい。第 1ハウ ジング 11の断面は、第 2ハウジング 17と対向する面が開放されるようなコの字状に形 成されていて、第 1ハウジング 11と短円筒状の絶縁部材 16とによって囲まれた空間 力 冷却媒体流路 14を構成する。第 1ハウジング 11には、その内周面に接触するよ うにして筒状の第 1スリーブ 12が設けられている。第 1スリーブ 12の外周には、例え ば雄ねじ溝が形成され、この雄ねじ溝が第 1ハウジング 11の内周に形成された雌ね じ溝に螺合するようにして設けられている。第 1スリーブ 12は、第 1ハウジング 11と同 心状に設けられている。第 1ハウジング 11と第 1スリーブ 12とが、第 1中間電極 Gを 構成する。第 1スリーブ 12は、高融点かつ導電性の材料、例えば、タングステンゃモ リブデン等で構成されている。第 1スリーブ 12は、発生された円筒状プラズマ 36に対 する第 1ハウジング 11の耐熱性を向上させる。  The first housing 11 is attached to the front end of the insulating pipe 6 (see FIG. 2). The first housing 11 is formed in an annular shape having a U-shaped cross section. The shape of the first housing 11 is not limited to an annular shape, and may be formed into an annular shape such as a quadrangle or a hexagonal shape. The cross section of the first housing 11 is formed in a U shape such that the surface facing the second housing 17 is open, and is surrounded by the first housing 11 and the short cylindrical insulating member 16. The space force cooling medium channel 14 is configured. The first housing 11 is provided with a tubular first sleeve 12 in contact with the inner circumferential surface thereof. For example, a male thread groove is formed on the outer periphery of the first sleeve 12, and this male thread groove is provided so as to be screwed into a female thread groove formed on the inner periphery of the first housing 11. The first sleeve 12 is provided concentrically with the first housing 11. The first housing 11 and the first sleeve 12 constitute a first intermediate electrode G. The first sleeve 12 is made of a high melting point and conductive material such as tungsten or molybdenum. The first sleeve 12 improves the heat resistance of the first housing 11 to the generated cylindrical plasma 36.
[0049] 第 1ハウジング 11には、冷却媒体入口 111及び冷却媒体出口 112が形成されてレ、 る。本実施形態では、冷却媒体入口 111及び冷却媒体出口 112は、第 1ハウジング 11の外周壁の周方向における反対部分であって第 1ハウジング 11の中心に対して 水平方向に位置する部分を貫通するように形成されている。冷却媒体入口 111及び 冷却媒体出口 112には図示しない冷却媒体循環機構が接続されており、この冷却 媒体循環機構によって冷却媒体流路 14に冷却媒体が流通される。冷却媒体として、 液体では、例えば、水、純水、エチレングリコール水溶液(不凍液)、フッ素系冷媒等 が挙げられ、気体では、例えば、ヘリウム、アルゴン、窒素等が挙げられる。第 1ハウ ジング 11には、冷却媒体流路 14の内周に沿うように断面矩形の環状の永久磁石( 第 1磁石) 15が収容されている。なお、永久磁石 15の形状は、第 1ハウジング 11の 形状に応じて適宜変更され、例えば、四角形、六角形などの環状に形成されていて もよい。永久磁石 15は、第 1ハウジング 11と同心状に収容されている。換言すると、 第 1中間電極 Gの内部に形成された冷却媒体流路 14に冷却媒体が流通され、この 冷却媒体に永久磁石 15が接触されている。永久磁石 15は、第 1ハウジング 11の内 周壁と絶縁部材 16の側壁とによって挟み込まれることにより位置決めされている。 A cooling medium inlet 111 and a cooling medium outlet 112 are formed in the first housing 11. In the present embodiment, the cooling medium inlet 111 and the cooling medium outlet 112 are a circumferentially opposite portion of the outer peripheral wall of the first housing 11, and penetrate a portion positioned in a horizontal direction with respect to the center of the first housing 11. It is formed as. A cooling medium circulation mechanism (not shown) is connected to the cooling medium inlet 111 and the cooling medium outlet 112, and the cooling medium is circulated in the cooling medium channel 14 by the cooling medium circulation mechanism. As a cooling medium, for example, water, pure water, ethylene glycol aqueous solution (antifreeze), fluorine-based refrigerant and the like can be mentioned as a liquid, and as gas, for example, helium, argon, nitrogen and the like can be mentioned. In the first housing 11, an annular permanent magnet (having a rectangular cross section along the inner circumference of the cooling medium channel 14) The first magnet 15 is housed. The shape of the permanent magnet 15 is appropriately changed in accordance with the shape of the first housing 11, and may be formed into, for example, an annular shape such as a square or a hexagon. The permanent magnet 15 is accommodated concentrically with the first housing 11. In other words, the cooling medium is circulated through the cooling medium channel 14 formed inside the first intermediate electrode G, and the permanent magnet 15 is in contact with the cooling medium. The permanent magnet 15 is positioned by being sandwiched by the inner peripheral wall of the first housing 11 and the side wall of the insulating member 16.
[0050] 図 3 (b) , (c)に示すように、第 1ハウジング 11の後端には、第 1保護板 13が設けら れている。第 1保護板 13は、第 1ハウジング 11の側面(端面)がプラズマによってスパ ッタリングされないようにこれを保護する。また、第 1ハウジング 11の後端の面には、 周方向において所定の間隔をあけるようにして、ネジ孔 114が形成されている。この ネジ孔 114にネジ(図示せず)を螺入することにより、第 1ハウジング 11と絶縁管 6とを 締結(固定)している。さらに、第 1ハウジング 11の後端の面には、環状の Oリング溝 1 13が形成されている。この Oリング溝 113に Oリング(図示せず)を嵌揷して絶縁管 6 を取り付けることにより、第 1ハウジング 11と絶縁管 6とを気密に接合している。  As shown in FIGS. 3 (b) and 3 (c), a first protective plate 13 is provided at the rear end of the first housing 11. As shown in FIG. The first protective plate 13 protects the side surface (end surface) of the first housing 11 from being sputtered by plasma. Further, a screw hole 114 is formed on the rear end face of the first housing 11 so as to have a predetermined interval in the circumferential direction. By screwing a screw (not shown) into the screw hole 114, the first housing 11 and the insulating pipe 6 are fastened (fixed). Further, an annular O-ring groove 113 is formed in the rear end face of the first housing 11. By fitting an O-ring (not shown) into the O-ring groove 113 and attaching the insulating pipe 6, the first housing 11 and the insulating pipe 6 are airtightly joined.
[0051] 第 1中間電極 Gの前端には、短円筒状の絶縁部材 16が配設されている。なお、絶 縁部材 16の形状は円筒状に限定されず、第 1ハウジング 11及び第 2ハウジング 17 の形状に応じて適宜変更され、例えば、四角形、六角形などの筒状に形成されてい てもよい。絶縁部材 16は絶縁管 6と同軸状に配置されている。絶縁部材 16は、絶縁 材料、例えば、ポリテトラフルォロエチレン、セラミックス等で構成されている。絶縁部 材 16は、第 1中間電極 Gと後述する第 2中間電極 Gとを絶縁する。  At the front end of the first intermediate electrode G, a short cylindrical insulating member 16 is disposed. The shape of the insulating member 16 is not limited to a cylindrical shape, and may be appropriately changed according to the shapes of the first housing 11 and the second housing 17. For example, the insulating member 16 may be formed in a rectangular shape, a hexagonal shape or the like. Good. The insulating member 16 is disposed coaxially with the insulating pipe 6. The insulating member 16 is made of an insulating material such as polytetrafluoroethylene or ceramics. The insulating member 16 insulates the first intermediate electrode G from the second intermediate electrode G described later.
1 2  1 2
[0052] 絶縁部材 16の前端には、第 2ハウジング 17の後端が設けられている。第 2ハウジン グ 17は、断面コの字状の円環状に形成されている。なお、第 2ハウジング 17の形状 は円環状に限定されず、第 1ハウジング 11の形状に応じて、四角形、六角形などの 環状に形成されていてもよい。第 2ハウジング 17の断面は、第 1ハウジング 11と対向 する面が開放されるようなコの字状に形成されていて、第 2ハウジング 17と短円筒状 の絶縁部材 16とによって囲まれた空間力 S、冷却媒体流路 20を構成する。第 2ハウジ ング 17には、その内周に沿うようにして、環状の第 2スリーブ 18が設けられている。第 2スリーブ 18の外周には、例えば雄ねじ溝が形成され、この雄ねじ溝が第 2ハウジン グ 17の内周に形成された雌ねじ溝に螺合するようにして設けられている。第 2スリー ブ 18は、第 2ハウジング 17と同心状に設けられている。第 2ハウジング 17と第 2スリー ブ 18とが、第 2中間電極 Gを構成する。第 2スリーブ 18は、高融点かつ導電性の材 The rear end of the second housing 17 is provided at the front end of the insulating member 16. The second housing 17 is formed in an annular shape having a U-shaped cross section. The shape of the second housing 17 is not limited to an annular shape, and may be formed into an annular shape such as a quadrangle or a hexagonal shape according to the shape of the first housing 11. The cross section of the second housing 17 is formed in a U-shape such that the surface facing the first housing 11 is open, and a space surrounded by the second housing 17 and the short cylindrical insulating member 16. The force S constitutes the cooling medium channel 20. The second housing 17 is provided with an annular second sleeve 18 along the inner periphery thereof. For example, a male thread groove is formed on the outer periphery of the second sleeve 18, and this male thread groove is a second housing. It is provided in such a manner as to be screwed into a female screw groove formed on the inner periphery of the hook 17. The second sleeve 18 is provided concentrically with the second housing 17. The second housing 17 and the second sleeve 18 constitute a second intermediate electrode G. The second sleeve 18 is a high melting point conductive material
2  2
料、例えば、タングステンやモリブデン等で構成されている。第 2スリーブ 18は、発生 されたプラズマが通過する際の第 2ハウジング 17の耐熱性を向上させる。  For example, it is made of tungsten or molybdenum. The second sleeve 18 improves the heat resistance of the second housing 17 when the generated plasma passes.
[0053] 第 2ハウジング 17には、冷却媒体入口 171及び冷却媒体出口 172が形成されてい る。本実施形態では、冷却媒体入口 171及び冷却媒体出口 172は、第 2ハウジング 17の外周壁の周方向における反対部分であって第 2ハウジング 17の中心に対して 水平方向に位置する部分を貫通するように形成されている。冷却媒体入口 171及び 冷却媒体出口 172には図示しない冷却媒体循環機構が接続されており、この冷却 媒体循環機構によって冷却媒体流路 20に冷却媒体が流通される。冷却媒体として、 液体では、例えば、水、純水、エチレングリコール水溶液(不凍液)、フッ素系冷媒等 が挙げられ、気体では、例えば、ヘリウム、アルゴン、窒素等が挙げられる。第 2ハウ ジング 17には、冷却媒体流路 20の内周に接するように断面矩形の円環状の電磁コ ィル (第 2磁石) 21が収容されている。なお、電磁コイル 21の形状は、第 2ハウジング 17の形状に応じて適宜変更され、例えば、四角形、六角形などの環状に形成されて いてもよい。電磁コイル 21は、第 2ハウジング 17と同心状に収容されている。換言す ると、第 2中間電極 Gの内部に形成された冷却媒体流路 20に冷却媒体が流通され A cooling medium inlet 171 and a cooling medium outlet 172 are formed in the second housing 17. In the present embodiment, the cooling medium inlet 171 and the cooling medium outlet 172 pass through a circumferentially opposite portion of the outer peripheral wall of the second housing 17 and located horizontally with respect to the center of the second housing 17. It is formed as. A cooling medium circulation mechanism (not shown) is connected to the cooling medium inlet 171 and the cooling medium outlet 172, and the cooling medium is circulated in the cooling medium flow passage 20 by the cooling medium circulation mechanism. As a cooling medium, for example, water, pure water, ethylene glycol aqueous solution (antifreeze), fluorine-based refrigerant and the like can be mentioned as a liquid, and as gas, for example, helium, argon, nitrogen and the like can be mentioned. An annular electromagnetic coil (second magnet) 21 having a rectangular cross section is accommodated in the second housing 17 so as to be in contact with the inner periphery of the cooling medium flow passage 20. The shape of the electromagnetic coil 21 is appropriately changed in accordance with the shape of the second housing 17, and may be formed into, for example, an annular shape such as a square or a hexagon. The electromagnetic coil 21 is accommodated concentrically with the second housing 17. In other words, the cooling medium is circulated in the cooling medium channel 20 formed inside the second intermediate electrode G.
2  2
、この冷却媒体に電磁コイル 21が接触されている。電磁コイル 21は、環状に巻回さ れている。電磁コイル 21は、絶縁部材 16の側壁と第 2ハウジング 17の内周壁とによ つて挟み込まれることにより位置決めされている。  The electromagnetic coil 21 is in contact with the cooling medium. The electromagnetic coil 21 is wound in an annular shape. The electromagnetic coil 21 is positioned by being sandwiched by the side wall of the insulating member 16 and the inner circumferential wall of the second housing 17.
[0054] 第 2ハウジング 17の前端には、第 2保護板 19が設けられている。第 2保護板 19は、 第 2ハウジング 17の側面(端面)がプラズマによってスパッタリングされないようにこれ を保護する。また、第 2ハウジング 17の前端の面には、環状の Oリング溝 173が形成 されている。この Oリング溝 173に Oリング(図示せず)を嵌揷して絶縁カラー 24を取り 付けることにより、第 2ハウジング 17と絶縁カラー 24とを気密に接合している。絶縁力 ラー 24は、短円筒状に形成されている。なお、絶縁カラー 24の形状は、第 2ハウジン グ 17の形状に応じて適宜変更され、例えば、四角形、六角形などの筒状に形成され ていてもよい。 At the front end of the second housing 17, a second protective plate 19 is provided. The second protective plate 19 protects the side surface (end surface) of the second housing 17 from being sputtered by plasma. Further, an annular O-ring groove 173 is formed on the front end face of the second housing 17. By fitting an O-ring (not shown) into the O-ring groove 173 and attaching the insulating collar 24, the second housing 17 and the insulating collar 24 are airtightly joined. The insulating force roller 24 is formed in a short cylindrical shape. The shape of the insulating collar 24 is appropriately changed according to the shape of the second housing 17. For example, the insulating collar 24 is formed in a tubular shape such as a square or a hexagon. It may be
[0055] また、第 1ハウジング 11、第 2ハウジング 17、及び絶縁部材 16には、ボルト孔 28が 形成されている(図 3 (b)及び (c)参照)。ボルト孔 28は、第 1ハウジング 1 1及び絶縁 部材 16にそれぞれ形成された貫通孔 28a及び 28bと、第 2ハウジング 17に形成され たネジ孔 28cと力も成っている。そして、この貫通孔 28a, 28bに筒状の絶縁カラー 2 6を揷通すると共に、この絶縁カラー 26にボルト(締結具) 27を揷通しネジ孔 28cに 螺入することにより、第 1ハウジング 11と絶縁部材 16と第 2ハウジング 17とが相互に 締結されて一体化されている。これにより、絶縁部材 16は、コの字状に形成された第 1ハウジング 11及び第 2ハウジング 17の開放面に蓋をしている。すなわち、第 1ハウ ジング 11及び第 2ハウジング 17のそれぞれの開放面は、絶縁部材 16によって封止 されている。第 1ハウジング 11及び第 2ハウジング 17の所定の箇所には Oリング溝 22 が形成されていて、この Oリング溝 22に Oリング 23が嵌揷されている。これにより、第 1ハウジング 11と絶縁部材 16と第 2ハウジング 17とは、順に気密又は液密に接合さ れている。すなわち、気体の冷却媒体を用いる場合には、第 1ハウジング 11と絶縁部 材 16と第 2ハウジング 17とは順に気密に接合されている。一方、液体の冷却媒体を 用いる場合には、第 1ハウジング 11と絶縁部材 16と第 2ハウジング 17とは順に液密 に接合されている。したがって、絶縁部材 16と第 1ハウジング 11及び第 2ハウジング 1 7との密閉性が保たれ、一体型中間電極 Gから冷却媒体が漏れることが防止される。  Further, bolt holes 28 are formed in the first housing 11, the second housing 17, and the insulating member 16 (see FIGS. 3 (b) and 3 (c)). The bolt holes 28 also include forces through holes 28 a and 28 b respectively formed in the first housing 1 1 and the insulating member 16 and a screw hole 28 c formed in the second housing 17. Then, a cylindrical insulating collar 26 is inserted through the through holes 28a and 28b, and a bolt (fastener) 27 is screwed into the insulating collar 26 into the threaded through hole 28c, thereby forming the first housing 11 , The insulating member 16 and the second housing 17 are mutually fastened and integrated. Thus, the insulating member 16 covers the open surfaces of the first housing 11 and the second housing 17 formed in a U-shape. That is, the open surfaces of the first housing 11 and the second housing 17 are sealed by the insulating member 16. An O-ring groove 22 is formed at a predetermined position of the first housing 11 and the second housing 17, and an O-ring 23 is fitted in the O-ring groove 22. Thus, the first housing 11, the insulating member 16 and the second housing 17 are joined in an airtight or liquid-tight manner in order. That is, when a gaseous cooling medium is used, the first housing 11, the insulating member 16 and the second housing 17 are airtightly joined in order. On the other hand, when a liquid cooling medium is used, the first housing 11, the insulating member 16 and the second housing 17 are joined in order in a liquid tight manner. Accordingly, the hermeticity between the insulating member 16 and the first housing 11 and the second housing 17 is maintained, and the leakage of the cooling medium from the integral intermediate electrode G is prevented.
[0056] 第 1ハウジング 11、絶縁部材 16、及び第 2ハウジング 17には、ボルト孔 28と所定の 中心角だけずれた位置に、これらを貫通するようボルト揷通孔 25が形成されている( 図 3 (a)乃至(c)参照)。このボルト揷通孔 25は、第 1ハウジング 11、絶縁部材 16、及 び第 2ハウジング 17にそれぞれ形成された貫通孔 25a, 25b, 25cから成っている。 このボルト揷通孔 25にボルト(締結具、図示せず)を揷通し、このボルト(締結具)を図 示しないガイド部材に螺入することによって、一体型中間電極 G (又は一体型中間電 極 Gの組み込まれた圧力勾配型プラズマガン 1)がガイド部材を介してシートプラズマ 形成室 30 (より具体的には、シートプラズマ形成室 30の絶縁蓋部材 29)に取り付け られる。  In the first housing 11, the insulating member 16 and the second housing 17, bolt through holes 25 are formed at positions deviated from the bolt holes 28 by a predetermined central angle so as to penetrate them (see FIG. See Figure 3 (a) to (c)). The bolt through hole 25 comprises through holes 25a, 25b and 25c formed in the first housing 11, the insulating member 16 and the second housing 17, respectively. By screwing a bolt (fastener, not shown) into the bolt through hole 25 and screwing the bolt (fastener) into a guide member (not shown), an integral intermediate electrode G (or an integral intermediate electrode) is obtained. A pressure gradient type plasma gun 1) incorporating the pole G is attached to the sheet plasma forming chamber 30 (more specifically, the insulating lid member 29 of the sheet plasma forming chamber 30) through the guide member.
[0057] ここで、第 1ハウジング 11及び第 2ハウジング 17は、アルミニウム合金で構成するこ とが好ましい。アルミニウム合金は、通常の中間電極のハウジングに用いられている ステンレス鋼よりも比重が小さいため、第 1ハウジング 11及び第 2ハウジング 17の重 量を軽くすること力 Sできる。これにより、第 1ハウジング 11及び第 2ハウジング 17を取り 扱う際の作業性が向上する。 Here, first housing 11 and second housing 17 are made of an aluminum alloy. And is preferred. The weight of the first housing 11 and the second housing 17 can be reduced S because the aluminum alloy has a specific gravity smaller than that of stainless steel used for the housing of a normal intermediate electrode. This improves the operability when handling the first housing 11 and the second housing 17.
[0058] アルミニウム合金の例としては、例えば、アルミニウム マグネシウム系合金 (JIS 50 00系)、アルミニウム マグネシウム ケィ素系合金 (JIS6000系)、アルミニウム 亜鉛—マグネシウム系合金 (JIS7000系)を用いることが、強度及び耐腐食性を維持 するために好ましい。 [0058] As an example of the aluminum alloy, it is possible to use, for example, aluminum magnesium alloy (JIS 5000 series), aluminum magnesium cay alloy (JIS 6000 series), and aluminum zinc-magnesium alloy (JIS 7000 series). And to maintain corrosion resistance.
[0059] また、第 1ハウジング 11及び第 2ハウジング 17の冷却媒体と接触する部分の表面( 第 1ハウジング 11及び第 2ハウジング 17のコの字状に形成された内側部分の表面) には、導電性と非磁性と耐腐食性とを具備する表面処理層が形成されていることが 好ましい。このような導電性と非磁性と耐腐食性とを具備する表面処理層としては、 例えば、無電解 Niメツキ層が挙げられる。これにより、第 1ハウジング 11及び第 2ハウ ジング 17と冷却媒体とが接触する部分における劣化が抑制される。  In addition, the surface of the portion of the first housing 11 and the second housing 17 in contact with the cooling medium (the surface of the U-shaped inner portion of the first housing 11 and the second housing 17) It is preferable that a surface treatment layer having conductivity, non-magnetism and corrosion resistance be formed. Examples of the surface treatment layer having such conductivity, non-magnetism and corrosion resistance include an electroless Ni plating layer. As a result, deterioration in the portion where the first housing 11 and the second housing 17 contact the cooling medium is suppressed.
[0060] 上記の事項を総括すると、第 1ハウジング 11と、絶縁部材 16と、第 2ハウジング 17と を、ボルト(締結具) 27で締結することにより一体型中間電極 Gを組み立てることがで きる。また、その逆の作業をすることにより、一体型中間電極 Gを分解することができ る。さらに、組み立てられた一体型中間電極 Gは、ガイド部材を介してシートプラズマ 形成室 30の壁(絶縁部材 29)に取り付けることができる。  [0060] In summary of the above matters, it is possible to assemble the integrated intermediate electrode G by fastening the first housing 11, the insulating member 16 and the second housing 17 with the bolts (fasteners) 27. . Also, the integrated intermediate electrode G can be disassembled by performing the reverse operation. Furthermore, the assembled integral intermediate electrode G can be attached to the wall (insulating member 29) of the sheet plasma forming chamber 30 via the guide member.
[0061] 本実施形態の一体型中間電極 Gは、上記のような構成としたため、構成する部品の 点数を減らすことができ、その重量を小さくすることができる。また、一体型中間電極 Gをコンパクトに製造することが可能になる。これにより、一体型中間電極 Gを取り付 ける際の作業性が向上する。さらに、ボルト 27を外すことによって第 1磁石 15を第 1 ハウジング 11から取り外すことができると共に、第 2磁石 21を第 2ハウジング 17から 取り外すことができるため、中間電極のメンテナンス性が向上する。  Since the integrated intermediate electrode G of the present embodiment is configured as described above, the number of components can be reduced, and the weight thereof can be reduced. In addition, it becomes possible to manufacture the integrated intermediate electrode G in a compact manner. This improves the workability when attaching the integrated intermediate electrode G. Furthermore, since the first magnet 15 can be removed from the first housing 11 by removing the bolt 27, and the second magnet 21 can be removed from the second housing 17, the maintainability of the intermediate electrode is improved.
[0062] なお、本実施形態では、圧力勾配型プラズマガン 1を構成する筒体 10を円筒体と したが、その断面形状は任意であり、例えば中心軸 201に垂直する方向の断面形状 が正多角形であってもよい。 [0063] また、雄ねじ溝の形成された第 1スリーブ 12及び第 2スリーブ 18をそれぞれ第 1ノ、 ウジング 11及び第 2ハウジング 17の内周に螺合させて設けて!/、たが、雄ねじ溝のな い第 1スリーブ 12及び第 2スリーブ 18をそれぞれ第 1ハウジング 11及び第 2ハウジン グ 17の内周に沿うように揷通したのち、その外方からそれぞれを保護板 13, 19によ り挟み込んでもよい。このような構成とすると、ねじ溝の溶着が防止され、第 1スリーブ 12及び第 2スリーブ 18の交換が容易になる。 In the present embodiment, the cylindrical body 10 constituting the pressure gradient type plasma gun 1 is a cylindrical body, but the cross-sectional shape is arbitrary. For example, the cross-sectional shape in the direction perpendicular to the central axis 201 is positive. It may be polygonal. In addition, the first sleeve 12 and the second sleeve 18 in which the male screw groove is formed are screwed to the inner circumferences of the first sleeve, the housing 11 and the second housing 17, respectively! The grooved first sleeve 12 and the second sleeve 18 are passed along the inner circumferences of the first housing 11 and the second housing 17, respectively, and then each of them is covered by the protection plates 13, 19 from the outside. You may insert it. With such a configuration, welding of the screw groove is prevented, and replacement of the first sleeve 12 and the second sleeve 18 is facilitated.
[0064] 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らか である。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行 する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を 逸脱することなぐその構造及び/又は機能の詳細を実質的に変更できる。  From the above description, many modifications and other embodiments of the present invention will be apparent to those skilled in the art. Accordingly, the above description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the present invention. The details of its structure and / or function may be varied substantially without departing from the spirit of the invention.
産業上の利用可能性  Industrial applicability
[0065] 本発明の一体型中間電極は、簡易な構成でかつ重量を軽減させて取り扱いの利 便性が向上すると共に、分解及び調整を行う際のメンテナンス性が向上する中間電 極として有用である。 The integrated intermediate electrode of the present invention is useful as an intermediate electrode which has a simple structure and reduces weight to improve the convenience of handling, and improves the maintainability at the time of disassembly and adjustment. is there.
[0066] 本発明の圧力勾配型プラズマガンは、中間電極を取り付ける際の作業性が向上し た圧力勾配型プラズマガンとして有用である。  The pressure gradient plasma gun of the present invention is useful as a pressure gradient plasma gun with improved workability when attaching an intermediate electrode.

Claims

請求の範囲 The scope of the claims
[1] 導電性を有する第 1ハウジングと、該第 1ハウジングと同心状にかつ該第 1ハウジン グの内周面に接触するように設けられた導電性を有する第 1スリーブと、前記第 1ハウ ジングに該第 1ハウジングと同心状に収容された第 1磁石と、前記第 1ハウジングと同 軸状に設けられた導電性を有する第 2ハウジングと、該第 2ハウジングと同心状にか っ該第 2ハウジングの内周面に接触するように設けられた導電性を有する第 2スリー ブと、前記第 2ハウジングに該第 2ハウジングと同心状に収容された第 2磁石と、を備 え、前記第 1ハウジングと前記第 2ハウジングとが絶縁部材を介して一体化されてレ、る 、一体型中間電極。  [1] A first housing having conductivity, a first sleeve having conductivity provided concentrically with the first housing and in contact with the inner peripheral surface of the first housing, and the first sleeve. A first magnet coaxially housed with the first housing in a housing, a conductive second housing coaxially provided with the first housing, and a second housing concentric with the second housing are provided. A conductive second sleeve provided in contact with the inner circumferential surface of the second housing; and a second magnet concentrically accommodated in the second housing with the second housing. An integrated intermediate electrode, wherein the first housing and the second housing are integrated via an insulating member.
[2] 前記第 1ハウジングは前記第 2ハウジングと対向する面が開放されるようにコの字状 の断面を有し、前記第 2ハウジングは前記第 1ハウジングと対向する面が開放される ようにコの字状の断面を有し、前記絶縁部材は前記第 1ハウジング及び前記第 2ハウ ジングと同軸状に形成されており、前記第 1ハウジング及び前記第 2ハウジングの各 々の開放面が前記絶縁部材によって蓋をされており、前記第 1ハウジングと前記絶縁 部材との間の空間に前記第 1磁石が収容されかつ前記第 2ハウジングと前記絶縁部 材との間の空間に前記第 2磁石が収容されており、かつ、前記第 1ハウジング、前記 絶縁部材、及び前記第 2ハウジングが締結具によつて相互に締結されている、請求 項 1に記載の一体型中間電極。  [2] The first housing has a U-shaped cross section so that the surface facing the second housing is open, and the second housing is open the surface facing the first housing. The insulating member is formed coaxially with the first housing and the second housing, and the open faces of the first housing and the second housing are The first magnet is accommodated in the space between the first housing and the insulating member, and the second magnet is accommodated in the space between the second housing and the insulating member. The integral intermediate electrode according to claim 1, wherein a magnet is accommodated, and the first housing, the insulating member, and the second housing are mutually fastened by a fastener.
[3] 前記第 1ハウジングと前記絶縁部材と前記第 2ハウジングとが順に気密又は液密に 接合されている、請求項 2に記載の一体型中間電極。  [3] The integrated intermediate electrode according to claim 2, wherein the first housing, the insulating member, and the second housing are airtightly or liquid-tightly joined in order.
[4] 前記接合は Oリングを用いて気密又は液密にされている、請求項 3に記載の一体 型中間電極。  [4] The integral intermediate electrode according to claim 3, wherein the bonding is air-tight or liquid-tight using an O-ring.
[5] 請求項 1乃至請求項 4のいずれかに記載の一体型中間電極を備えた、圧力勾配型 プラズマガン。  [5] A pressure gradient type plasma gun comprising the integrated intermediate electrode according to any one of claims 1 to 4.
[6] カラーと、前記一体型中間電極と、絶縁管と、力ソードを備え前記絶縁管の前記一 体型中間電極から遠いほうの端を塞ぐ力ソードマウントと、が締結具によつて相互に 締結されて前記圧力勾配型プラズマガンが構成されている、請求項 5に記載の圧力 勾配型プラズマガン。  [6] A collar, the integral intermediate electrode, an insulating pipe, and a force sword mount provided with a force sword for closing the end of the insulating pipe remote from the integral intermediate electrode are mutually fastened by a fastener. The pressure gradient plasma gun according to claim 5, wherein the pressure gradient plasma gun is configured to be fastened.
PCT/JP2007/065737 2006-09-25 2007-08-10 Integrated intermediate electrode and pressure gradient type plasma gun WO2008038467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008507286A JPWO2008038467A1 (en) 2006-09-25 2007-08-10 Integrated intermediate electrode and pressure gradient plasma gun using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-259266 2006-09-25
JP2006259266 2006-09-25

Publications (1)

Publication Number Publication Date
WO2008038467A1 true WO2008038467A1 (en) 2008-04-03

Family

ID=39229907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065737 WO2008038467A1 (en) 2006-09-25 2007-08-10 Integrated intermediate electrode and pressure gradient type plasma gun

Country Status (3)

Country Link
JP (1) JPWO2008038467A1 (en)
TW (1) TW200826748A (en)
WO (1) WO2008038467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109280A (en) * 2014-12-05 2015-06-11 国立大学法人名古屋大学 Radical source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298741A (en) * 1997-04-23 1998-11-10 Sumitomo Heavy Ind Ltd Device for drawing out intermediate electrode coil of plasma gun
JP2001143895A (en) * 1999-08-31 2001-05-25 Chugai Ro Co Ltd Pressure gradient plasma gun

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298741A (en) * 1997-04-23 1998-11-10 Sumitomo Heavy Ind Ltd Device for drawing out intermediate electrode coil of plasma gun
JP2001143895A (en) * 1999-08-31 2001-05-25 Chugai Ro Co Ltd Pressure gradient plasma gun

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109280A (en) * 2014-12-05 2015-06-11 国立大学法人名古屋大学 Radical source

Also Published As

Publication number Publication date
TW200826748A (en) 2008-06-16
JPWO2008038467A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
US9640359B2 (en) Inverted cylindrical magnetron (ICM) system and methods of use
US7879203B2 (en) Method and apparatus for cathodic arc ion plasma deposition
KR100860931B1 (en) Fluid-cooled ion source
CN110382733B (en) Target cooling for physical vapor deposition processing systems
JP2008001988A (en) Improved pvd target
US7439521B2 (en) Ion source with removable anode assembly
EP1982345B1 (en) Ion source with removable anode assembly
US7566883B2 (en) Thermal transfer sheet for ion source
WO2008038467A1 (en) Integrated intermediate electrode and pressure gradient type plasma gun
CN103887133A (en) Magnetic field reinforced type linear large-area ion source
JP2011179061A (en) Sputtering thin film deposition system
CN104928632B (en) A kind of cathode arc source
US9368331B2 (en) Sputtering apparatus
EP2120255B1 (en) Ion pump device
CN114164404A (en) Vacuum coating equipment and coating method
JPH11315371A (en) Plasma source of vacuum film forming device
JP5096539B2 (en) Plasma gun
CN220413507U (en) Ceramic sputtering furnace
US10115574B2 (en) Hermetically sealed magnetic keeper cathode
WO2008032523A1 (en) Pressure gradient plasma gun
US20220013324A1 (en) Single beam plasma source
JPH10298741A (en) Device for drawing out intermediate electrode coil of plasma gun
JP2002270395A (en) Center electrode structure of pressure gradient plasma generating equipment
JP5271145B2 (en) Plasma deposition system
JP2008115445A (en) Target holder, film deposition system, and film deposition method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2008507286

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07792382

Country of ref document: EP

Kind code of ref document: A1