JP5096539B2 - Plasma gun - Google Patents

Plasma gun Download PDF

Info

Publication number
JP5096539B2
JP5096539B2 JP2010196437A JP2010196437A JP5096539B2 JP 5096539 B2 JP5096539 B2 JP 5096539B2 JP 2010196437 A JP2010196437 A JP 2010196437A JP 2010196437 A JP2010196437 A JP 2010196437A JP 5096539 B2 JP5096539 B2 JP 5096539B2
Authority
JP
Japan
Prior art keywords
magnet
electrode
intermediate electrode
mounting base
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010196437A
Other languages
Japanese (ja)
Other versions
JP2012054134A (en
Inventor
荘一郎 大崎
孝市 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikuni KK
Original Assignee
Nikuni KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikuni KK filed Critical Nikuni KK
Priority to JP2010196437A priority Critical patent/JP5096539B2/en
Publication of JP2012054134A publication Critical patent/JP2012054134A/en
Application granted granted Critical
Publication of JP5096539B2 publication Critical patent/JP5096539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、物理気相成長法(PVD:Physical Vapor Deposition)または化学気相成長法(CVD:Chemical Vapor Deposition)で用いられるプラズマガンに関する。   The present invention relates to a plasma gun used in physical vapor deposition (PVD) or chemical vapor deposition (CVD).

PVDとしては、イオンプレーティング法、真空蒸着法、スパッタリング法などが知られている。   As PVD, an ion plating method, a vacuum deposition method, a sputtering method, and the like are known.

例えば、イオンプレーティング法では、図4に示されるようなイオンプレーティング装置が知られている。このイオンプレーティング装置は、陰極1aおよび中間電極1bを備えたプラズマガン1を真空チャンバ2の側面に取り付け、アルゴンガスなどのキャリアガスの供給を受けながら放電電源3から負の電圧が印加されたプラズマガン1によりガス放電させてプラズマ4を発生させ、このプラズマ4を収束用空芯コイル5内を経て真空チャンバ2内に発射し、この真空チャンバ2内にマグネット6とともに陽極(ハース)として設置されたチタンなどの蒸着金属7に照射し、この蒸着金属7を溶解・蒸気化させる。このとき、電子と分離して+イオン化された蒸着金属粒子は、真空チャンバ2内でイオン集積電源8により負の電圧が印加されたワークWの表面に引き寄せられて密着され金属被膜となる。   For example, in the ion plating method, an ion plating apparatus as shown in FIG. 4 is known. In this ion plating apparatus, a plasma gun 1 having a cathode 1a and an intermediate electrode 1b is attached to a side surface of a vacuum chamber 2, and a negative voltage is applied from a discharge power source 3 while receiving a carrier gas such as argon gas. Plasma discharge is performed by the plasma gun 1 to generate plasma 4, and this plasma 4 is emitted into the vacuum chamber 2 through the converging air-core coil 5. The magnet 6 is installed in the vacuum chamber 2 as an anode (hearth). The deposited metal 7 such as titanium is irradiated to melt and vaporize the deposited metal 7. At this time, the vapor-deposited metal particles separated from the electrons and + ionized are attracted to the surface of the work W to which a negative voltage is applied by the ion integrated power source 8 in the vacuum chamber 2 to be in close contact with each other to form a metal film.

真空チャンバ2内は、先ず真空ポンプ(図示せず)に接続された排気口2aから内部空気を外部へ排気して真空度を高めることで、蒸着金属7の蒸気化を促すとともに電子運動を活発化させ、また、上記真空チャンバ2内に反応ガス導入口2bから、窒素などの反応ガスを導入することで、蒸着金属粒子は、この反応ガスと反応した化合物の被膜となってワークWの表面に形成される。   In the vacuum chamber 2, first, the internal air is exhausted to the outside through an exhaust port 2a connected to a vacuum pump (not shown) to increase the degree of vacuum. In addition, by introducing a reactive gas such as nitrogen into the vacuum chamber 2 from the reactive gas inlet 2b, the deposited metal particles become a film of a compound that has reacted with the reactive gas, and the surface of the workpiece W Formed.

このようなイオンプレーティング法で用いられるプラズマガンの中間電極としては、プラズマが流出する第1開口を有する板状の第1鍔部と該第1鍔部の一方の主面に上記第1開口を囲むように突設された筒状の第1胴部とを有する導電性の第1ハウジングと、上記第1ハウジングの第1胴部の内孔に嵌挿された筒状の第1電極部材と、上記第1ハウジングの第1胴部の外周面に嵌入された環状の第1磁石と、上記第1磁石を上記第1ハウジングの第1胴部から抜けないよう止める第1止め部材(ナット)と、上記第1ハウジングの第1胴部の先端に上記第1開口と同軸状に配置された環状の絶縁部材と、プラズマが流入する第2開口を有する板状の第2鍔部と該第2鍔部の一方の主面に上記第2開口を囲むように突設された筒状の第2胴部とを有する導電性の第2ハウジングと、上記第2ハウジングの第2胴部の内孔に嵌挿された筒状の第2電極部材と、上記第2ハウジングの第2胴部の外周面に嵌入された環状の第2磁石と、上記第2磁石を上記第2ハウジングの第2胴部から抜けないよう止める第2止め部材(ナット)と、締結具とを備え、上記第2ハウジングが、その上記第2鍔部の一方の主面が上記第1ハウジングの第1鍔部の一方の主面と対向し、その上記第2開口が上記第1ハウジングの第1開口と同軸状に位置し、かつ、その上記第2胴部の先端が上記第1ハウジングの第1胴部の先端との間に上記絶縁部材を挟むように配置され、上記第1ハウジングの第1鍔部と上記第2ハウジングの第2鍔部とが上記締結具によって相互に締結されているものが知られている(特許文献1参照)。   As an intermediate electrode of a plasma gun used in such an ion plating method, a plate-like first flange portion having a first opening through which plasma flows out, and the first opening on one main surface of the first flange portion. A conductive first housing having a cylindrical first body projecting so as to surround the first tubular member, and a tubular first electrode member inserted into an inner hole of the first body of the first housing And an annular first magnet fitted on the outer peripheral surface of the first body portion of the first housing, and a first stop member (nut) that stops the first magnet from being removed from the first body portion of the first housing. ), A ring-shaped insulating member disposed coaxially with the first opening at the tip of the first body of the first housing, a plate-like second flange having a second opening through which plasma flows, and the A cylindrical second trunk projecting on one main surface of the second flange so as to surround the second opening A conductive second housing having a cylindrical shape, a cylindrical second electrode member fitted into an inner hole of the second body of the second housing, and an outer peripheral surface of the second body of the second housing. An annular second magnet, a second stop member (nut) that stops the second magnet from coming off from the second body of the second housing, and a fastener, the second housing comprising: One main surface of the second flange portion is opposed to one main surface of the first flange portion of the first housing, and the second opening is positioned coaxially with the first opening of the first housing; And the front end of the second body part is arranged so as to sandwich the insulating member between the front end of the first body part of the first housing, and the first flange part of the first housing and the second housing Are known to be fastened to each other by the fasteners. See Patent Document 1).

特開2008−66241号公報(第4頁、図1)Japanese Patent Laying-Open No. 2008-66241 (page 4, FIG. 1)

上記プラズマガンの中間電極は、第1磁石および第2磁石を第1ハウジングおよび第2ハウジングの外部に設けた構造であるため、第1ハウジングおよび第2ハウジングの小型化および軽量化を図ることができる利点があるものの、次のような課題もある。   Since the intermediate electrode of the plasma gun has a structure in which the first magnet and the second magnet are provided outside the first housing and the second housing, the first housing and the second housing can be reduced in size and weight. Although there are advantages that can be made, there are also the following problems.

すなわち、上記第1ハウジングの第1胴部の外周面に嵌入された環状の第1磁石は、上記第1ハウジングの第1胴部に螺合された上記第1止め部材(ナット)によって上記第1胴部から抜けないよう止め、上記第2ハウジングの第2胴部の外周面に嵌入された環状の第2磁石は、上記第2ハウジングの第2胴部に螺合された上記第2止め部材(ナット)によって上記第2胴部から抜けないよう止める構造であるため、上記第1胴部と上記第1止め部材とに螺合溝を加工する必要があるとともに、上記第2胴部と上記第2止め部材とに螺合溝を加工する必要がある。   That is, the annular first magnet fitted on the outer peripheral surface of the first body portion of the first housing is formed by the first stop member (nut) screwed into the first body portion of the first housing. An annular second magnet fitted to the outer peripheral surface of the second body of the second housing is fixed so as not to come off from the first body, and the second stop is screwed into the second body of the second housing. Since the structure is such that a member (nut) prevents the second barrel from coming off, it is necessary to process a threaded groove in the first barrel and the first stopper, and the second barrel and It is necessary to process a screwing groove in the second stopper member.

さらに、上記第1ハウジングの第1胴部の先端と上記第2ハウジングの第2胴部の先端との間に環状の絶縁部材を挟むように配置しつつ、上記第1ハウジングの第1鍔部と上記第2ハウジングの第2鍔部とを上記締結具によって相互に締結する構造であるため、絶縁部材の大きさや材質が限られ、小型でも所定の硬度を有するセラミックス製品などに限られる。   Further, the first flange portion of the first housing is disposed such that an annular insulating member is sandwiched between the front end of the first body portion of the first housing and the front end of the second body portion of the second housing. And the second flange portion of the second housing are fastened to each other by the fastener. Therefore, the size and material of the insulating member are limited, and it is limited to a ceramic product having a predetermined hardness even if it is small.

このような理由で、従来のプラズマガンには、部品組付け性およびコスト面での課題がある。   For this reason, the conventional plasma gun has problems in terms of assembling parts and cost.

本発明は、このような点に鑑みなされたもので、部品組付け性およびコスト面での改良がなされたプラズマガンを提供することを目的とする。   The present invention has been made in view of these points, and an object of the present invention is to provide a plasma gun that is improved in terms of component assembly and cost.

請求項1に記載された発明は、キャリアガスの供給を受けながら負の電圧が印加される陰極と、この陰極に対して同軸上に配置されて正の電圧が印加されるプラズマ発生・収束用の中間電極とを備え、上記中間電極は、上記陰極側に配置された第1中間電極と、上記第1中間電極に対して上記陰極とは反対側に配置された第2中間電極と、上記第1中間電極と上記第2中間電極との間に配置された絶縁部材と、上記第1中間電極と上記第2中間電極とを相互に締結する締結部材とを備えたプラズマガンにおいて、上記第1中間電極および上記第2中間電極は、上記締結部材で相互に締結されたフランジ部とこれらのフランジ部の中央部から相互に対向する方向に突出された胴部とをそれぞれ有するとともに中心部に穴をそれぞれ有する導電性の第1電極取付基体および第2電極取付基体と、上記第1電極取付基体および上記第2電極取付基体の中心部の各穴にそれぞれ嵌着された筒状の第1電極部材および第2電極部材と、上記第1電極取付基体および上記第2電極取付基体の各胴部の外周面にそれぞれ嵌着された環状の第1磁石および第2磁石とを備え、上記絶縁部材は、上記第1磁石と上記第2磁石との間に位置する絶縁本体部と、上記絶縁本体部からそれぞれ一体に突設されて上記第1磁石および上記第2磁石の外周面上にそれぞれ被嵌する第1被嵌部および第2被嵌部とを具備したプラズマガンである。 The invention described in claim 1 is for generating and converging a cathode to which a negative voltage is applied while being supplied with a carrier gas, and to which a positive voltage is applied coaxially with respect to the cathode. The intermediate electrode includes a first intermediate electrode disposed on the cathode side, a second intermediate electrode disposed on the opposite side of the cathode to the first intermediate electrode, and the intermediate electrode In the plasma gun, comprising: an insulating member disposed between the first intermediate electrode and the second intermediate electrode; and a fastening member for fastening the first intermediate electrode and the second intermediate electrode to each other. The first intermediate electrode and the second intermediate electrode each have a flange portion fastened to each other by the fastening member and a body portion protruding in a direction facing each other from the center portion of these flange portions, and at the center portion. Conductive with each hole The first electrode mounting base and the second electrode mounting base, and the cylindrical first electrode member and the second electrode member respectively fitted in the respective holes in the center of the first electrode mounting base and the second electrode mounting base And an annular first magnet and a second magnet respectively fitted on the outer peripheral surfaces of the respective body portions of the first electrode mounting base and the second electrode mounting base, and the insulating member includes the first magnet an insulating body portion positioned, so as to protrude above the insulation, respectively Re body portion or Raso integrally fitted to be respectively on the outer peripheral surface of said first magnet and said second magnet between the said second magnet It is the plasma gun which comprised the 1st fitting part and the 2nd fitting part.

請求項2に記載された発明は、請求項1記載のプラズマガンにおいて、絶縁本体部、第1被嵌部および第2被嵌部からなる絶縁部材が、絶縁耐熱樹脂により一体成型されたものである。 Those The invention described in claim 2, the plasma gun according to claim 1, wherein the insulation body part, first the fitting portion and the second consists of the fitting part insulating member, is integrally molded by an insulating heat-resistant resin It is.

請求項3に記載された発明は、請求項1または2記載のプラズマガンにおける上記第1磁石および上記第2磁石を、共に環状の永久磁石としたものである。   According to a third aspect of the present invention, both the first magnet and the second magnet in the plasma gun according to the first or second aspect are annular permanent magnets.

請求項1記載の発明によれば、上記第1中間電極および上記第2中間電極は、上記第1電極取付基体および上記第2電極取付基体の各胴部の外周面に環状の上記第1磁石および上記第2磁石をそれぞれ嵌着し、上記第1中間電極と上記第2中間電極との間に配置された絶縁部材は、上記第1磁石と上記第2磁石との間に位置する絶縁本体部から一体に突設された第1被嵌部および第2被嵌部を上記第1磁石および上記第2磁石の外周面上にそれぞれ被嵌し、上記第1電極取付基体および上記第2電極取付基体の各フランジ部を上記締結部材で相互に締結するようにしたので、これらのフランジ部間に、上記絶縁部材とともに上記第1磁石および上記第2磁石を同時に固定することができ、従来のような個別の磁石固定手段を設ける必要がなく、部品組付け性およびコスト面での向上を図れる。さらに、上記絶縁部材の第1被嵌部および第2被嵌部は、上記第1磁石および上記第2磁石を保護する保護カバーを兼用できる。   According to the first aspect of the present invention, the first intermediate electrode and the second intermediate electrode are formed on the outer peripheral surfaces of the respective body portions of the first electrode mounting base and the second electrode mounting base, respectively. And an insulating body that is fitted between the first magnet and the second intermediate electrode, and is disposed between the first magnet and the second magnet. A first fitting portion and a second fitting portion, which are integrally projected from the first portion, are fitted on the outer peripheral surfaces of the first magnet and the second magnet, respectively, and the first electrode mounting base and the second electrode Since the flange portions of the mounting base are fastened to each other by the fastening member, the first magnet and the second magnet can be simultaneously fixed together with the insulating member between the flange portions. There is no need to provide separate magnet fixing means Component assembly performance and can be improved in cost. Furthermore, the first fitted portion and the second fitted portion of the insulating member can also serve as a protective cover for protecting the first magnet and the second magnet.

請求項2記載の発明によれば、上記絶縁部材を絶縁耐熱樹脂により一体成型したので、軽量で安価な絶縁部材により、耐熱性、電気絶縁性などに関する高信頼性も確保できる。   According to the second aspect of the present invention, since the insulating member is integrally formed with the insulating heat-resistant resin, high reliability with respect to heat resistance, electrical insulation and the like can be ensured by a lightweight and inexpensive insulating member.

請求項3記載の発明によれば、上記第1磁石および上記第2磁石を、共に環状の永久磁石としたので、従来の少なくとも1つは電磁石を用いる場合と比べて、配線や絶縁性に関する取扱が容易になり、上記絶縁部材により上記第1磁石および上記第2磁石を容易に固定できるとともに、磁石からの発熱がないため、耐熱性能および冷却性能の向上を図れる。   According to the third aspect of the present invention, since the first magnet and the second magnet are both annular permanent magnets, at least one of the conventional methods is related to wiring and insulation compared to the case of using an electromagnet. The first magnet and the second magnet can be easily fixed by the insulating member, and heat generation from the magnet does not occur, so that heat resistance and cooling performance can be improved.

本発明に係るプラズマガンの一実施の形態を示す斜視断面図である。It is a perspective sectional view showing one embodiment of a plasma gun concerning the present invention. 同上プラズマガンの陰極冷却構造を示す一部破断の正面図である。It is a partially broken front view which shows the cathode cooling structure of a plasma gun same as the above. 同上プラズマガンの第1中間電極冷却構造を示す一部破断の正面図である。It is a partially broken front view which shows the 1st intermediate electrode cooling structure of a plasma gun same as the above. プラズマガンを用いた一般的なイオンプレーティング装置を示す概略図である。It is the schematic which shows the general ion plating apparatus using a plasma gun.

以下、本発明を、図1乃至図3に示された一実施の形態に基いて詳細に説明する。なお、図4に示されたイオンプレーティング装置は、必要に応じて参照する。   Hereinafter, the present invention will be described in detail based on the embodiment shown in FIGS. In addition, the ion plating apparatus shown by FIG. 4 is referred as needed.

先ず、図1乃至図3に示された一実施の形態を説明する。   First, an embodiment shown in FIGS. 1 to 3 will be described.

図1に示されるように、プラズマガン1は、キャリアガスの供給を受けながら負の電圧が印加される陰極1aと、この陰極1aに対して同軸上に配置されて正の電圧が印加されるプラズマ発生・収束用の中間電極1bとを備えている。   As shown in FIG. 1, a plasma gun 1 has a cathode 1a to which a negative voltage is applied while being supplied with a carrier gas, and is arranged coaxially with respect to the cathode 1a and is applied with a positive voltage. And an intermediate electrode 1b for generating and converging plasma.

上記陰極1aは、ステンレス鋼製の陰極取付基体11の中心部に、アルゴンガスなどの不活性ガスをキャリアガスとして導入するキャリアガス導入口12が設けられ、このキャリアガス導入口12に導電性の取付部材13を介してパイプ状の補助陰極14および円筒状の保護部材15が同心状に取り付けられ、補助陰極14の先端部に主陰極16が取り付けられ、さらに、最も外側に絶縁性の円筒管(ガラス管)17が設けられ、そして、絶縁耐熱樹脂カバー18で絶縁処理された複数の第1の締結部材19により陰極取付基体11が中間電極1bと締結されている。上記陰極取付基体11は、中央部に環状の凹部11aが形成され、この凹部11aの周縁に沿って蓋部11bが溶接されている。   The cathode 1a is provided with a carrier gas inlet 12 for introducing an inert gas such as argon gas as a carrier gas at the center of a stainless steel cathode mounting base 11, and the carrier gas inlet 12 is electrically conductive. A pipe-like auxiliary cathode 14 and a cylindrical protective member 15 are concentrically attached via an attachment member 13, a main cathode 16 is attached to the tip of the auxiliary cathode 14, and an insulating cylindrical tube is provided on the outermost side. A (glass tube) 17 is provided, and the cathode mounting base 11 is fastened to the intermediate electrode 1b by a plurality of first fastening members 19 insulated by an insulating heat resistant resin cover 18. The cathode mounting base 11 has an annular recess 11a formed at the center, and a lid 11b is welded along the periphery of the recess 11a.

上記中間電極1bは、上記陰極1a側に第1中間電極21が配置され、この第1中間電極21に対して上記陰極1aとは反対側に第2中間電極22が配置され、上記第1中間電極21と上記第2中間電極22との間に絶縁部材23が配置され、上記第1中間電極21と上記第2中間電極22とが、絶縁耐熱樹脂カバー24で絶縁処理された複数の第2の締結部材25により相互に締結されている。   The intermediate electrode 1b has a first intermediate electrode 21 disposed on the cathode 1a side, a second intermediate electrode 22 disposed on the opposite side of the first intermediate electrode 21 from the cathode 1a, and the first intermediate electrode 21b. An insulating member 23 is disposed between the electrode 21 and the second intermediate electrode 22, and the first intermediate electrode 21 and the second intermediate electrode 22 are insulated by a heat-resistant insulating resin cover 24. The fastening members 25 are fastened to each other.

上記第1中間電極21および上記第2中間電極22は、中心部に穴をそれぞれ有するステンレス鋼製の第1電極取付基体26および第2電極取付基体27を備えている。これらの第1電極取付基体26および第2電極取付基体27は、上記第2の締結部材25で相互に締結されたフランジ部28,28と、これらのフランジ部28,28の中央部から相互に対向する方向に突出された胴部29,29と、これらの胴部29,29とは反対側からフランジ部28,28に環状の凹部31,31がそれぞれ形成され、これらの凹部31,31の周縁に沿って蓋部32,32が溶接されている。   The first intermediate electrode 21 and the second intermediate electrode 22 include a first electrode mounting base 26 and a second electrode mounting base 27 made of stainless steel each having a hole in the center. The first electrode mounting base 26 and the second electrode mounting base 27 are connected to each other from the flange portions 28 and 28 fastened to each other by the second fastening member 25, and from the central portion of the flange portions 28 and 28. Annular recesses 31, 31 are formed in the flanges 28, 28 from the opposite sides of the body parts 29, 29 projecting in opposite directions, and on the opposite sides of the body parts 29, 29, respectively. Lids 32, 32 are welded along the periphery.

上記第1電極取付基体26および上記第2電極取付基体27の中心部の各穴には、筒状の第1電極部材33および第2電極部材34がそれぞれ嵌着され、上記第1電極取付基体26および上記第2電極取付基体27の各胴部29,29の外周面には、環状の第1磁石35および第2磁石36がそれぞれ嵌着されている。これらの第1磁石35および第2磁石36は、共に環状の永久磁石であり、軸方向陰極側にN極が配置され、軸方向反対側にS極が配置されている。   A cylindrical first electrode member 33 and a second electrode member 34 are fitted into the respective holes in the center of the first electrode mounting base 26 and the second electrode mounting base 27, and the first electrode mounting base An annular first magnet 35 and a second magnet 36 are fitted on the outer peripheral surfaces of the body portions 29 and 29 of the 26 and the second electrode mounting base 27, respectively. The first magnet 35 and the second magnet 36 are both annular permanent magnets, and an N pole is disposed on the axial cathode side and an S pole is disposed on the opposite side in the axial direction.

上記絶縁部材23は、上記第1磁石35と上記第2磁石36との間に環状の絶縁本体部37が挟まれるように位置するとともに、この絶縁本体部37の外周面部から上記第1磁石35および上記第2磁石36の外周面上に円筒状の第1被嵌部38および第2被嵌部39がそれぞれ一体に突設されて、これらの第1磁石35および第2磁石36の外周面上にそれぞれ被嵌る。 The insulating member 23 is positioned such that an annular insulating main body 37 is sandwiched between the first magnet 35 and the second magnet 36, and the first magnet 35 extends from the outer peripheral surface of the insulating main body 37. A cylindrical first fitted portion 38 and a second fitted portion 39 are integrally projected on the outer peripheral surface of the second magnet 36 , and the outer peripheral surfaces of the first magnet 35 and the second magnet 36 are integrally provided. each of the above you fitted on.

上記絶縁部材23の上記絶縁本体部37、第1被嵌部38および第2被嵌部39は、絶縁耐熱樹脂により一体成型されたものである。   The insulating main body 37, the first fitted portion 38, and the second fitted portion 39 of the insulating member 23 are integrally formed of an insulating heat resistant resin.

そして、このプラズマガン1は、上記第2中間電極22の上記蓋部32に接合する環状の絶縁部材(図示せず)および図4に示されるように収束用空芯コイル5の内側に設けられた案内筒を介して、真空チャンバ2の側面に取り付けられている。   The plasma gun 1 is provided inside an annular insulating member (not shown) joined to the lid portion 32 of the second intermediate electrode 22 and the focusing air core coil 5 as shown in FIG. It is attached to the side surface of the vacuum chamber 2 through a guide tube.

このように真空チャンバ2に接続されたプラズマガン1は、気密性を保持する必要があるので、上記陰極1aの陰極取付基体11と上記円筒管(ガラス管)17の一端面との間にOリングなどのシール部材51が設けられ、上記円筒管(ガラス管)17の他端面と上記第1中間電極21の上記第1電極取付基体26との間にOリングなどのシール部材52が設けられ、上記第1中間電極21および上記第2中間電極22の各胴部29,29と上記絶縁部材23の上記絶縁本体部37との間にOリングなどのシール部材53,53が設けられ、上記蓋部32に接合する環状の絶縁部材(図示せず)および上記案内筒の端面部にも上記シール部材51,52と同様のシール部材が設けられている。   Since the plasma gun 1 connected to the vacuum chamber 2 as described above needs to maintain airtightness, the plasma gun 1 is not provided between the cathode mounting base 11 of the cathode 1a and one end face of the cylindrical tube (glass tube) 17. A seal member 51 such as a ring is provided, and a seal member 52 such as an O-ring is provided between the other end surface of the cylindrical tube (glass tube) 17 and the first electrode mounting base 26 of the first intermediate electrode 21. Seal members 53, 53 such as O-rings are provided between the body portions 29, 29 of the first intermediate electrode 21 and the second intermediate electrode 22 and the insulating main body portion 37 of the insulating member 23, and Seal members similar to the seal members 51 and 52 are provided on the annular insulating member (not shown) joined to the lid portion 32 and the end surface portion of the guide tube.

さらに、上記プラズマガン1は、放電により高温に加熱されるので、効率よく冷却するために、上記陰極1aの上記陰極取付基体11内に第1の冷却手段61が設けられ、上記第1中間電極21の上記第1電極取付基体26内に第2の冷却手段62が設けられ、上記第2中間電極22の上記第2電極取付基体27内に第3の冷却手段63が設けられている。   Further, since the plasma gun 1 is heated to a high temperature by discharge, a first cooling means 61 is provided in the cathode mounting base 11 of the cathode 1a for efficient cooling, and the first intermediate electrode is provided. A second cooling means 62 is provided in the first electrode mounting base 26 of the 21, and a third cooling means 63 is provided in the second electrode mounting base 27 of the second intermediate electrode 22.

図2は第1の冷却手段61を示し、上記陰極取付基体11にあってキャリアガス導入口12の周囲に環状の冷却流体通路溝64が設けられ、この冷却流体通路溝64の一部から半径方向外方へ拡大するように径方向拡大凹溝65が形成され、この径方向拡大凹溝65を2等分するように冷却流体通路溝64から径方向拡大凹溝65にわたって半径方向の仕切板66が設けられ、この仕切板66の一側に位置する径方向拡大凹溝65aに対し蓋部11bに冷却流体入口部67が設けられ、仕切板66の他側に位置する径方向拡大凹溝65bに対し蓋部11bに冷却流体出口部68が設けられている。   FIG. 2 shows a first cooling means 61, which is provided with an annular cooling fluid passage groove 64 around the carrier gas inlet 12 in the cathode mounting base 11, and a radius from a part of the cooling fluid passage groove 64. A radially expanding groove 65 is formed so as to expand outward in the direction, and the radial partition plate extends from the cooling fluid passage groove 64 to the radially expanding groove 65 so as to bisect the radially expanded groove 65. The cooling fluid inlet 67 is provided in the lid portion 11b with respect to the radially enlarged groove 65a located on one side of the partition plate 66, and the radially enlarged groove located on the other side of the partition plate 66. A cooling fluid outlet 68 is provided in the lid 11b with respect to 65b.

上記仕切板66より冷却流体出口部68側の冷却流体通路溝64中であって上記冷却流体出口部68よりやや上流となる位置には、爪形の冷却流体案内部69が冷却流体の流れを尖端で切り裂くように周方向に設置されている。   At a position in the cooling fluid passage groove 64 on the cooling fluid outlet portion 68 side from the partition plate 66 and slightly upstream from the cooling fluid outlet portion 68, a claw-shaped cooling fluid guide portion 69 flows the cooling fluid. It is installed in the circumferential direction so as to cut at the tip.

図3は第2の冷却手段62を示し、上記第1電極取付基体26にあって上記胴部29に設けられた上記第1電極部材33が嵌合する穴の周囲に環状の冷却流体通路溝71が設けられ、この冷却流体通路溝71の一部から半径方向外方へ拡大するように径方向拡大凹溝72が形成され、この径方向拡大凹溝72を2等分するように冷却流体通路溝71から径方向拡大凹溝72にわたって半径方向の仕切板73が設けられ、この仕切板73の一側に位置する径方向拡大凹溝72aに対し上記第1電極取付基体26のフランジ部28に冷却流体入口部74が設けられ、仕切板73の他側に位置する径方向拡大凹溝72bに対し上記第1電極取付基体26のフランジ部28に冷却流体出口部75が設けられている。   FIG. 3 shows the second cooling means 62, and an annular cooling fluid passage groove is formed around the hole in the first electrode mounting base 26 where the first electrode member 33 provided in the body 29 is fitted. 71 is provided, and a radially expanded concave groove 72 is formed so as to expand radially outward from a part of the cooling fluid passage groove 71, and the cooling fluid is divided so as to divide the radially expanded concave groove 72 into two equal parts. A radial partition plate 73 is provided from the passage groove 71 to the radially enlarged concave groove 72, and the flange portion 28 of the first electrode mounting base 26 is provided with respect to the radially enlarged concave groove 72a located on one side of the partition plate 73. The cooling fluid inlet portion 74 is provided, and the cooling fluid outlet portion 75 is provided in the flange portion 28 of the first electrode mounting base 26 with respect to the radially enlarged concave groove 72b located on the other side of the partition plate 73.

上記仕切板73より冷却流体出口部75側の冷却流体通路溝71中であって上記冷却流体出口部75よりやや上流となる位置には、爪形の冷却流体案内部76が冷却流体の流れを尖端で切り裂くように周方向に設置されている。   In the cooling fluid passage groove 71 on the cooling fluid outlet portion 75 side of the partition plate 73 and at a position slightly upstream of the cooling fluid outlet portion 75, a claw-shaped cooling fluid guide portion 76 flows the cooling fluid. It is installed in the circumferential direction so as to cut at the tip.

上記第2中間電極22の上記第2電極取付基体27内に設けられた第3の冷却手段63は、上記第2の冷却手段62と同様の構造であるので、説明を省略する。   Since the third cooling means 63 provided in the second electrode mounting base 27 of the second intermediate electrode 22 has the same structure as the second cooling means 62, description thereof is omitted.

次に、上記中間電極1bを組み立てる場合は、上記第1電極取付基体26および上記第2電極取付基体27の各胴部29,29の外周面に環状の上記第1磁石35および上記第2磁石36をそれぞれ嵌着し、上記第1磁石35と上記第2磁石36との間に上記絶縁部材23の絶縁本体部37を挟むとともに、上記第1磁石35および上記第2磁石36の外周面上に上記絶縁部材23の第1被嵌部38および第2被嵌部39をそれぞれ被嵌した状態で、上記第1電極取付基体26および上記第2電極取付基体27の各フランジ部28,28を上記第2の締結部材25で相互に締結することで、上記絶縁部材23、上記第1磁石35および上記第2磁石36を同時に固定するとともに、上記絶縁部材23の第1被嵌部38および第2被嵌部39により、上記第1磁石35および上記第2磁石36を保護する。   Next, when the intermediate electrode 1b is assembled, the annular first magnet 35 and second magnet are formed on the outer peripheral surfaces of the body portions 29, 29 of the first electrode mounting base 26 and the second electrode mounting base 27. 36, and the insulating main body 37 of the insulating member 23 is sandwiched between the first magnet 35 and the second magnet 36, and on the outer peripheral surfaces of the first magnet 35 and the second magnet 36. In the state where the first fitted portion 38 and the second fitted portion 39 of the insulating member 23 are fitted, the flange portions 28, 28 of the first electrode mounting base 26 and the second electrode mounting base 27 are By fastening together with the second fastening member 25, the insulating member 23, the first magnet 35 and the second magnet 36 are simultaneously fixed, and the first fitted portion 38 and the first fitting portion 38 of the insulating member 23 are fixed. Two first fitting portions 39 protect the first magnet 35 and the second magnet 36.

次に、図1乃至図3に示された一実施の形態の作用効果を説明する。   Next, the function and effect of the embodiment shown in FIGS. 1 to 3 will be described.

上記陰極1aの補助陰極14にアルゴンガスなどのキャリアガスを供給しつつ、図4に示された放電電源3から上記補助陰極14および上記主陰極16に負の電圧を印加するとともに、放電電源3から上記第1中間電極21の第1電極部材33および上記第2中間電極22の第2電極部材34に正の電圧を印加することで、これらの正負の電極間で放電がなされ、プラズマが発生する。   While supplying a carrier gas such as argon gas to the auxiliary cathode 14 of the cathode 1a, a negative voltage is applied to the auxiliary cathode 14 and the main cathode 16 from the discharge power source 3 shown in FIG. By applying a positive voltage to the first electrode member 33 of the first intermediate electrode 21 and the second electrode member 34 of the second intermediate electrode 22, a discharge occurs between these positive and negative electrodes, and plasma is generated. To do.

このプラズマは、環状に形成された第1磁石35および第2磁石36により収束しつつ、真空チャンバ2内に発射され、図4に示されるように真空チャンバ2内にマグネット6とともに陽極(ハース)として設置されたチタンなどの蒸着金属7に照射され、この蒸着金属7を溶解・蒸気化させる。このとき、+イオン化された蒸着金属粒子は、真空チャンバ2内でイオン集積電源8により負の電圧が印加されたワークWの表面に引き寄せられて密着され金属被膜となる。   The plasma is emitted into the vacuum chamber 2 while converging by the first magnet 35 and the second magnet 36 formed in an annular shape, and as shown in FIG. The deposited metal 7 such as titanium is irradiated to cause the deposited metal 7 to be dissolved and vaporized. At this time, the + ionized vapor-deposited metal particles are attracted to the surface of the workpiece W to which a negative voltage is applied by the ion integrated power supply 8 in the vacuum chamber 2 to form a metal film.

上記放電で加熱された上記陰極1aを冷却する第1の冷却手段61は、上記陰極取付基体11に設けられた冷却流体入口部67から環状の冷却流体通路溝64に流入した冷却流体が、この冷却流体通路溝64に沿って上記陰極取付基体11の中央部周囲をほぼ一周旋回した後、冷却流体出口部68から外部へ排出されるので、上記陰極取付基体11の中央部に接続された取付部材13を介して補助陰極14、保護部材15および主陰極16などを効率良く冷却することができる。その際、冷却流体が半径方向の仕切板66に衝突する直前に、爪形の冷却流体案内部69が冷却流体の流れ方向を冷却流体出口部68側へ変化させるので、冷却流体が外部へ円滑に排出され、冷却効率が向上する。   The first cooling means 61 for cooling the cathode 1a heated by the discharge is such that the cooling fluid flowing into the annular cooling fluid passage groove 64 from the cooling fluid inlet portion 67 provided in the cathode mounting base 11 is After turning around the central portion of the cathode mounting base 11 along the cooling fluid passage groove 64, it is discharged from the cooling fluid outlet 68 to the outside, so that the mounting connected to the central portion of the cathode mounting base 11 The auxiliary cathode 14, the protective member 15, the main cathode 16, and the like can be efficiently cooled through the member 13. At that time, immediately before the cooling fluid collides with the partition plate 66 in the radial direction, the claw-shaped cooling fluid guide portion 69 changes the flow direction of the cooling fluid to the cooling fluid outlet portion 68 side, so that the cooling fluid smoothly flows to the outside. The cooling efficiency is improved.

同様に、上記放電で加熱された上記第1中間電極21および上記第2中間電極22を冷却する第2の冷却手段62および第3の冷却手段63は、上記第1電極取付基体26および上記第2電極取付基体27の各フランジ部28に設けられた冷却流体入口部74から各胴部29に設けられた環状の冷却流体通路溝71に流入した冷却流体が、この冷却流体通路溝71に沿って第1電極部材33および第2電極部材34の各周囲をほぼ一周旋回した後、冷却流体出口部75から外部へ排出されるので、第1電極部材33および第2電極部材34をそれぞれ効率良く冷却することができる。その際、冷却流体が半径方向の仕切板73に衝突する直前に、爪形の冷却流体案内部76が冷却流体の流れ方向を冷却流体出口部75側へ変化させるので、冷却流体が外部へ円滑に排出され、冷却効率が向上する。   Similarly, the second cooling means 62 and the third cooling means 63 for cooling the first intermediate electrode 21 and the second intermediate electrode 22 heated by the discharge include the first electrode mounting base 26 and the second cooling means 63, respectively. The cooling fluid that has flowed into the annular cooling fluid passage groove 71 provided in each body portion 29 from the cooling fluid inlet portion 74 provided in each flange portion 28 of the two-electrode mounting base 27 along the cooling fluid passage groove 71. The first electrode member 33 and the second electrode member 34 are swung around the circumference of the first electrode member 33 and the second electrode member 34 and then discharged from the cooling fluid outlet 75 to the outside. Can be cooled. At that time, just before the cooling fluid collides with the radial partition plate 73, the claw-shaped cooling fluid guide 76 changes the flow direction of the cooling fluid toward the cooling fluid outlet 75, so that the cooling fluid smoothly flows to the outside. The cooling efficiency is improved.

さらに、上記第1電極取付基体26および上記第2電極取付基体27の各フランジ部28から各胴部29にわたってこれらの内部にそれぞれ環状の凹部31および冷却流体通路溝71を設けたので、上記第1電極取付基体26および上記第2電極取付基体27を全体的に効率よく冷却でき、第1電極部材33および第2電極部材34だけでなく、上記第1磁石35および上記第2磁石36も効率よく冷却できる。   Further, since the annular recess 31 and the cooling fluid passage groove 71 are provided in the first electrode mounting base 26 and the flanges 28 of the second electrode mounting base 27 from the flange portions 28 to the body portions 29, respectively, The one electrode mounting base 26 and the second electrode mounting base 27 can be efficiently cooled as a whole, and not only the first electrode member 33 and the second electrode member 34 but also the first magnet 35 and the second magnet 36 are efficient. Can cool well.

また、上記第1の冷却手段61は、冷却流体通路溝64の一部から半径方向外方へ拡大するように形成された径方向拡大凹溝65に対し冷却流体入口部67および冷却流体出口部68が設けられ、また、第2の冷却手段62および第3の冷却手段63は、冷却流体通路溝71の一部から半径方向外方へ拡大するように形成された径方向拡大凹溝72に対し冷却流体入口部74および冷却流体出口部75が設けられているので、薄型の陰極取付基体11、第1電極取付基体26および第2電極取付基体27に対して、十分な流量の冷却流体を供給することができる。   Further, the first cooling means 61 has a cooling fluid inlet portion 67 and a cooling fluid outlet portion with respect to the radially enlarged concave groove 65 formed so as to expand radially outward from a part of the cooling fluid passage groove 64. 68, and the second cooling means 62 and the third cooling means 63 are provided in a radially enlarged concave groove 72 formed so as to expand radially outward from a part of the cooling fluid passage groove 71. On the other hand, since the cooling fluid inlet portion 74 and the cooling fluid outlet portion 75 are provided, a sufficient amount of cooling fluid is supplied to the thin cathode mounting base 11, the first electrode mounting base 26 and the second electrode mounting base 27. Can be supplied.

そして、上記第1中間電極21および上記第2中間電極22は、上記第1電極取付基体26および上記第2電極取付基体27の各胴部29,29の外周面に環状の上記第1磁石35および上記第2磁石36をそれぞれ嵌着し、上記第1中間電極21と上記第2中間電極22との間に配置された絶縁部材23は、上記第1磁石35と上記第2磁石36との間に位置する絶縁本体部37から一体に突設された第1被嵌部38および第2被嵌部39を上記第1磁石35および上記第2磁石36の外周面上にそれぞれ被嵌し、上記第1電極取付基体26および上記第2電極取付基体27の各フランジ部28,28を上記第2の締結部材25で相互に締結するようにしたので、これらのフランジ部28,28間に、上記絶縁部材23とともに上記第1磁石35および上記第2磁石36を同時に固定することができ、従来のような個別の磁石固定手段を設ける必要がなく、部品組付け性およびコスト面での向上を図れる。さらに、上記絶縁部材23の第1被嵌部38および第2被嵌部39は、上記第1磁石35および上記第2磁石36を保護する保護カバーを兼用できる。   The first intermediate electrode 21 and the second intermediate electrode 22 are formed on the outer peripheral surfaces of the body portions 29 and 29 of the first electrode mounting base 26 and the second electrode mounting base 27, respectively. And the second magnet 36 and the insulating member 23 disposed between the first intermediate electrode 21 and the second intermediate electrode 22 are formed between the first magnet 35 and the second magnet 36. The first fitted portion 38 and the second fitted portion 39 that are integrally projected from the insulating main body portion 37 positioned therebetween are fitted on the outer peripheral surfaces of the first magnet 35 and the second magnet 36, respectively. Since the flange portions 28, 28 of the first electrode mounting base 26 and the second electrode mounting base 27 are fastened to each other by the second fastening member 25, between the flange portions 28, 28, The first magnet 35 and the second magnet 36 together with the insulating member 23 can be fixed at the same time. It is unnecessary to provide a stone fixing means, component assembling property and can be improved in cost. Further, the first fitted portion 38 and the second fitted portion 39 of the insulating member 23 can also serve as a protective cover for protecting the first magnet 35 and the second magnet 36.

また、上記絶縁部材23を絶縁耐熱樹脂により一体成型したので、軽量で安価な絶縁部材23により、耐熱性、電気絶縁性などに関する高信頼性も確保できる。   In addition, since the insulating member 23 is integrally formed of an insulating heat-resistant resin, the lightweight and inexpensive insulating member 23 can ensure high reliability regarding heat resistance, electrical insulation, and the like.

さらに、上記第1磁石35および上記第2磁石36を、共に環状の永久磁石としたので、従来の少なくとも1つは電磁石を用いる場合と比べて、配線や絶縁性に関する取扱が容易になり、上記絶縁部材23により上記第1磁石35および上記第2磁石36を容易に固定できるとともに、磁石からの発熱がないため、耐熱性能および冷却性能の向上を図れる。   Furthermore, since both the first magnet 35 and the second magnet 36 are annular permanent magnets, at least one of the conventional magnets can be handled more easily with respect to wiring and insulation than the case where an electromagnet is used. The first magnet 35 and the second magnet 36 can be easily fixed by the insulating member 23, and heat generation performance and cooling performance can be improved because no heat is generated from the magnet.

なお、本発明のプラズマガン1は、イオンプレーティング法だけでなく、他のPVD(例えば、アシスト蒸着スパッタ法)や、CVDにおけるプラズマ発生器として利用できる。   The plasma gun 1 of the present invention can be used not only as an ion plating method but also as a plasma generator in other PVD (for example, assist vapor deposition sputtering) or CVD.

本発明は、プラズマガンの製造業および販売業などにおいて利用可能である。   The present invention can be used in plasma gun manufacturing and sales.

1 プラズマガン
1a 陰極
1b 中間電極
21 第1中間電極
22 第2中間電極
23 絶縁部材
25 締結部材
26 第1電極取付基体
27 第2電極取付基体
28 フランジ部
29 胴部
33 第1電極部材
34 第2電極部材
35 第1磁石
36 第2磁石
37 絶縁本体部
38 第1被嵌部
39 第2被嵌部
1 Plasma gun
1a Cathode
1b Intermediate electrode
21 First intermediate electrode
22 Second intermediate electrode
23 Insulating material
25 Fastening member
26 First electrode mounting base
27 Second electrode mounting base
28 Flange
29 Torso
33 First electrode member
34 Second electrode member
35 First magnet
36 Second magnet
37 Insulation body
38 First fitting part
39 Second fitting part

Claims (3)

キャリアガスの供給を受けながら負の電圧が印加される陰極と、この陰極に対して同軸上に配置されて正の電圧が印加されるプラズマ発生・収束用の中間電極とを備え、
上記中間電極は、
上記陰極側に配置された第1中間電極と、
上記第1中間電極に対して上記陰極とは反対側に配置された第2中間電極と、
上記第1中間電極と上記第2中間電極との間に配置された絶縁部材と、
上記第1中間電極と上記第2中間電極とを相互に締結する締結部材とを備えたプラズマガンにおいて、
上記第1中間電極および上記第2中間電極は、
上記締結部材で相互に締結されたフランジ部とこれらのフランジ部の中央部から相互に対向する方向に突出された胴部とをそれぞれ有するとともに中心部に穴をそれぞれ有する導電性の第1電極取付基体および第2電極取付基体と、
上記第1電極取付基体および上記第2電極取付基体の中心部の各穴にそれぞれ嵌着された筒状の第1電極部材および第2電極部材と、
上記第1電極取付基体および上記第2電極取付基体の各胴部の外周面にそれぞれ嵌着された環状の第1磁石および第2磁石とを備え、
上記絶縁部材は、
上記第1磁石と上記第2磁石との間に位置する絶縁本体部と、
上記絶縁本体部からそれぞれ一体に突設されて上記第1磁石および上記第2磁石の外周面上にそれぞれ被嵌する第1被嵌部および第2被嵌部と
を具備したことを特徴とするプラズマガン。
A cathode to which a negative voltage is applied while being supplied with a carrier gas, and an intermediate electrode for generating and converging plasma, which is arranged coaxially with respect to the cathode and to which a positive voltage is applied,
The intermediate electrode is
A first intermediate electrode disposed on the cathode side;
A second intermediate electrode disposed on a side opposite to the cathode with respect to the first intermediate electrode;
An insulating member disposed between the first intermediate electrode and the second intermediate electrode;
In a plasma gun comprising a fastening member for fastening the first intermediate electrode and the second intermediate electrode to each other,
The first intermediate electrode and the second intermediate electrode are
Conductive first electrode mounting having a flange portion fastened to each other by the fastening member and a body portion protruding in a direction opposite to each other from the center portion of these flange portions, and having a hole in the center portion. A base and a second electrode mounting base;
A cylindrical first electrode member and a second electrode member fitted in respective holes in the center of the first electrode mounting base and the second electrode mounting base;
An annular first magnet and a second magnet respectively fitted on the outer peripheral surfaces of the body portions of the first electrode mounting base and the second electrode mounting base;
The insulating member is
An insulating main body positioned between the first magnet and the second magnet;
The insulated projecting from the main body portion or Raso Re respective integral that and a first object fitting part and the second to be fitting portion fitted to be respectively on the outer peripheral surface of said first magnet and said second magnet A plasma gun characterized by
縁本体部、第1被嵌部および第2被嵌部からなる絶縁部材は、絶縁耐熱樹脂により一体成型された
ことを特徴とする請求項1記載のプラズマガン。
Insulated body portion, first the fitting portion and the second insulating member made from the fitting portion, the plasma gun according to claim 1, characterized in that it is integrally molded by an insulating heat-resistant resin.
上記第1磁石および上記第2磁石は、共に環状の永久磁石である
ことを特徴とする請求項1または2記載のプラズマガン。
The plasma gun according to claim 1 or 2, wherein both the first magnet and the second magnet are annular permanent magnets.
JP2010196437A 2010-09-02 2010-09-02 Plasma gun Active JP5096539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010196437A JP5096539B2 (en) 2010-09-02 2010-09-02 Plasma gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010196437A JP5096539B2 (en) 2010-09-02 2010-09-02 Plasma gun

Publications (2)

Publication Number Publication Date
JP2012054134A JP2012054134A (en) 2012-03-15
JP5096539B2 true JP5096539B2 (en) 2012-12-12

Family

ID=45907236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196437A Active JP5096539B2 (en) 2010-09-02 2010-09-02 Plasma gun

Country Status (1)

Country Link
JP (1) JP5096539B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645822A (en) * 2017-09-18 2018-01-30 中国人民解放军空军工程大学 A kind of air intake duct shock wave control device and method based on the electric discharge of surface magnetic control arc

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324262A (en) * 1996-06-06 1997-12-16 Nikon Corp Production of fluoride thin film and fluoride thin film
JP3832568B2 (en) * 2001-03-14 2006-10-11 スタンレー電気株式会社 Intermediate electrode structure of pressure gradient plasma generator
JP4906448B2 (en) * 2006-09-11 2012-03-28 新明和工業株式会社 Intermediate electrode unit of plasma gun and plasma gun including the same

Also Published As

Publication number Publication date
JP2012054134A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
US7879203B2 (en) Method and apparatus for cathodic arc ion plasma deposition
US20130292363A1 (en) Non-transferred and hollow type plasma torch
KR870006231A (en) Vacuum sputtering device
JP2014089983A (en) Expanding thermal plasma device
JP2011042875A (en) Gas distribution ring assembly for plasma spray system
WO2013010509A1 (en) Reduced droplet arc target and plasma coating system with same
JP5096539B2 (en) Plasma gun
JP2019527671A (en) Ozone generator unit and ozone generator system
US9422619B2 (en) Processing apparatus and shield
CN210807772U (en) Plasma generator
US9368331B2 (en) Sputtering apparatus
JP3832568B2 (en) Intermediate electrode structure of pressure gradient plasma generator
JPH11315371A (en) Plasma source of vacuum film forming device
JP2008066241A (en) Intermediate electrode unit for plasma gun and plasma gun provided with the same
US20160013027A1 (en) Film forming device
US7482740B2 (en) Electrode unit of extreme ultraviolet generator
JP7308849B2 (en) Single arc tandem low pressure coating gun utilizing a neutrode stack as a method of plasma arc control
US9728382B2 (en) Evaporation source
CN114340127B (en) Cathode structure of plasma generator, electrode mechanism and plasma generator
WO2008038467A1 (en) Integrated intermediate electrode and pressure gradient type plasma gun
JP2013089550A (en) Plasma gun
US20150162159A1 (en) Bearing arrangement for rotatably mounting an electrode and electrode arrangement
JPH11256319A (en) Plasma source of vacuum deposition apparatus
US20100098600A1 (en) Plasma system
JP3041509B2 (en) Anode structure of plasma processing equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Ref document number: 5096539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250