WO2008037673A1 - Verfahren zum klassieren wasserabsorbierender polymerpartikel - Google Patents

Verfahren zum klassieren wasserabsorbierender polymerpartikel Download PDF

Info

Publication number
WO2008037673A1
WO2008037673A1 PCT/EP2007/060073 EP2007060073W WO2008037673A1 WO 2008037673 A1 WO2008037673 A1 WO 2008037673A1 EP 2007060073 W EP2007060073 W EP 2007060073W WO 2008037673 A1 WO2008037673 A1 WO 2008037673A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer particles
sieve
water
mesh size
oversize
Prior art date
Application number
PCT/EP2007/060073
Other languages
English (en)
French (fr)
Inventor
Uwe Stueven
Rüdiger Funk
Matthias Weismantel
Karl J. Possemiers
Filip Mees
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38974694&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008037673(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Se filed Critical Basf Se
Priority to EP07820480.7A priority Critical patent/EP2073943B2/de
Priority to JP2009529674A priority patent/JP5766913B2/ja
Priority to CN2007800353675A priority patent/CN101516530B/zh
Priority to US12/438,486 priority patent/US7967148B2/en
Publication of WO2008037673A1 publication Critical patent/WO2008037673A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/244Stepwise homogeneous crosslinking of one polymer with one crosslinking system, e.g. partial curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels

Definitions

  • the present invention relates to a method for classifying water-absorbing polymer particles, wherein sieves with different mesh sizes are used for separating the oversize particles before and after the post-crosslinking.
  • Water-absorbing polymers are used as aqueous solution-absorbing products for the production of diapers, tampons, sanitary napkins and other non-sanitary, but also as water-retaining agents in agricultural horticulture.
  • the properties of the water-absorbing polymers can be adjusted via the degree of crosslinking. As the degree of cross-linking increases, the gel strength increases and the centrifuge retention capacity (CRC) decreases.
  • CRC centrifuge retention capacity
  • the water-absorbing polymers are used as pulverulent, granular product, preferably in the hygiene sector.
  • particle sizes between 200 and 850 .mu.m are used here, and the particulate polymer material is already classified to these particle sizes during the production process.
  • continuous sieving machines with two sieves are used, whereby sieves with the mesh sizes of 200 and 850 ⁇ m are used. Particles with a grain size of up to 200 ⁇ m fall through both screens and are collected at the bottom of the screening machine as undersize. Particles with a particle size of greater than 850 microns remain as oversize on the top sieve and are discharged.
  • each particle size fraction still contains a proportion of particles with the wrong particle size as a so-called faulty discharge.
  • the oversize fraction may still contain a proportion of particles with a particle size of 850 microns or less.
  • undersize Extracted undersize and oversize is usually attributed to production.
  • the undersize can be added to the polymerization, for example.
  • the oversize grain is usually crushed, which inevitably leads to a forced attack of further undersize.
  • a higher screening quality is usually achieved by adding to the product substances which serve to increase the flowability and / or the mechanical stability of the polymer powder.
  • a free-flowing product is achieved by adding to the polymer powder, usually after drying and / or as part of the post-crosslinking auxiliaries, for example surfactants, which prevent mutual sticking of the individual particles.
  • the post-crosslinking auxiliaries for example surfactants, which prevent mutual sticking of the individual particles.
  • screening aids such as screen balls, PVC friction rings, Teflon friction rings or rubber cubes, on the screen surface, helps only insignificantly to increase the selectivity. gladly. Especially with amorphous polymer material, such as water-absorbing polymer particles, this can lead to increased abrasion.
  • EP 855 232 A2 describes a classification method for water-absorbing polymers. By using heated or thermally insulated sieves, agglomerates below the sieve are avoided, especially with small grain sizes.
  • JP 2003/320308 A describes a method in which agglomerates are avoided by flowing the bottom of the sieve with warm air.
  • WO 92/18171 A1 describes the addition of inorganic powders as screen assistants.
  • the object of the present invention was to provide an improved classifying method for producing water-absorbing polymer particles.
  • the object has been achieved by a process for producing water-absorbing polymer particles, comprising
  • rri2 is greater mi.
  • oversize grain is here called a sieve cut, which has a larger compared to the target product mean particle size.
  • the oversize may also consist of several wire cuts that fulfill this condition.
  • the invention is based on the finding that only very few agglomerates with a slightly increased particle size are formed by postcrosslinking. For example, particles with a particle size of more than 850 ⁇ m were deposited before post-crosslinking. separates, the postcrosslinked product contains only very few particles with a particle size in the range greater than 850 to 1000 microns.
  • a particle with a grain size of 850 ⁇ m is here a particle, that a sieve with a mesh size of 850 ⁇ m can barely pass.
  • the sieving result can be further improved, in particular at high throughputs, if the oversize grain is separated by means of at least two sieves of different mesh widths.
  • the mesh size mi is usually at least 600 .mu.m, preferably at least 700 .mu.m, preferably at least 750 .mu.m, more preferably at least 800 .mu.m, most preferably at least 850 microns.
  • the mesh size rri2 is usually at least 800 .mu.m, preferably at least 850 .mu.m, preferably at least 900 .mu.m, more preferably at least 950 microns, most preferably at least 1,000 microns.
  • the mesh size rri2 is usually at least 50 .mu.m, preferably at least 100 .mu.m, preferably at least 120 .mu.m, more preferably at least 140 .mu.m, most preferably at least 150 .mu.m, greater than the mesh size m-i.
  • the water-absorbing polymer particles have preference during the classification, a temperature of 40 to 120 0 C, particularly preferably from 45 to 100 0 C, most preferably from 50 to 80 0 C, to.
  • the product is classified under reduced pressure.
  • the pressure is preferably 100 mbar less than the ambient pressure.
  • the classification method according to the invention is carried out continuously.
  • the throughput of water-absorbing polymer is usually at least 100 kg / m 2 h, preferably at least 150 kg / m 2 h, preferably at least 200 kg / m 2 h, more preferably at least 250 kg / m 2 h, most preferably at least 300 kg / m 2 h.
  • the water-absorbing resin is overflowed during the classifying with a gas stream, more preferably air.
  • the amount of gas is typically from 0.1 to 10 m 3 / h per m 2 screen area, preferably from 0.5 to 5 m 3 / h per m 2 screen area, particularly preferably from 1 to 3 m 3 / h per m 2 screen area, wherein the gas volume is measured under standard conditions (25 0 C and 1 bar).
  • the gas stream is heated before entering the sieve, typically at a temperature of 40 to 120 0 C, preferably at a temperature of 50 to 1 10 0 C, preferably at a temperature of 60 to 100 0 C, more preferably a temperature of 65 to 90 ° C., very particularly preferably to a temperature of 70 to 80 ° C.
  • the water content of the gas stream is typically less than 5 g / kg, preferably less than 4.5 g / kg, preferably less than 4 g / kg, more preferably less than 3.5 g / kg, most preferably less than 3 g / kg.
  • a gas stream with a low water content can be generated, for example, by condensing a corresponding amount of water from the gas stream having a higher water content by cooling.
  • the screening machines are usually electrically grounded.
  • the proportion of particles having a particle size of less than or equal to mi is usually less than 50% by weight, preferably less than 45% by weight, preferably less than 40% by weight, particularly preferably less than 35 Wt .-%, most preferably less than 30 wt .-%.
  • a further subject of the present invention is therefore a process for the continuous preparation of water-absorbing polymer particles, comprising
  • step iii) contains less than 50% by weight of particles having a particle size less than or equal to mi and the throughput in step iii) is at least 100 kg / m 2 h.
  • the screening devices which are suitable for the classification method according to the invention are not subject to any restrictions; plane sieve methods are preferred, tumble screening machines are very particularly preferred.
  • the screening device is used to support the Classification typically shaken. This is preferably done so that the material to be classified is spirally guided over the sieve. This forced vibration typically has an amplitude of from 0.7 to 40 mm, preferably from 1.5 to 25 mm, and a frequency of from 1 to 100 Hz, preferably from 5 to 10 Hz.
  • the water-absorbing polymer particles to be used in the process according to the invention can be prepared by polymerization of monomer solutions comprising at least one ethylenically unsaturated monomer a), optionally at least one crosslinker b), at least one initiator c) and water d).
  • the monomers a) are preferably water-soluble, ie the solubility in water at 23 ° C. is typically at least 1 g / 100 g of water, preferably at least 5 g / 100 g of water, more preferably at least 25 g / 100 g of water, most preferably at least 50 g / 100 g of water, and preferably have at least one acid group each.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Especially preferred is acrylic acid.
  • the preferred monomers a) have at least one acid group, wherein the acid groups are preferably at least partially neutralized.
  • the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
  • Preferred hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or tocopherols.
  • Tocopherol is understood as meaning compounds of the following formula
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen or methyl
  • R 3 is hydrogen or methyl
  • R 4 is hydrogen or an acid radical having 1 to 20 carbon atoms.
  • Preferred radicals for R 4 are acetyl, ascorbyl, succinyl, nicotinyl and other physiologically acceptable carboxylic acids.
  • the carboxylic acids can be mono-, di- or tricarboxylic acids.
  • R 1 is more preferably hydrogen or acetyl. Especially preferred is RRR-alpha-tocopherol.
  • the monomer solution preferably contains at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, in particular by 50 ppm by weight, hydroquinone, in each case based on Acrylic acid, wherein acrylic acid salts are taken into account as acrylic acid.
  • an acrylic acid having a corresponding content of hydroquinone half-ether can be used.
  • Crosslinkers b) are compounds having at least two polymerizable groups which can be radically copolymerized into the polymer network.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane, as described in EP 530 438 A1, di- and triacrylates, as in EP 547 847 A1, EP 559 476 A1, EP 632 068 A1, WO 93/21237 A1, WO 2003/104299 A1, WO 2003/104300 A1, WO 2003/104301 A1 and DE 103 31 450 A1, mixed acrylates which, in addition to acrylate groups, contain further ethylenically unsaturated groups, as in DE 103 31 456 A1 and DE 103 55 401 A1, or crosslinker mixtures, as described, for example, in DE 195 43 368 A1, DE
  • Suitable crosslinkers b) are, in particular, N, N'-methylenebisacrylamide and N, N'-methylenebismethacrylamide, esters of unsaturated monocarboxylic or polycarboxylic acids of polyols, such as diacrylate or triacrylate, for example butanediol or ethylene glycol diacrylate or methacrylate, and trimethylolpropane triacrylate and Allyl compounds, such as allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl esters, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and vinylphosphonic acid derivatives, as described, for example, in EP 343 427 A2.
  • crosslinkers b) are pentaerythritol di-, pentaerythritol tri- and pentaerythritol tetraallyl ethers, polyethylene glycol diallyl ether, ethylene glycol diallyl ether, glycerol di- and glycerol triallyl ether, polyallyl ethers based on sorbitol, and ethoxylated variants thereof.
  • Useful in the process according to the invention are di (meth) acrylates of polyethylene glycols, where the polyethylene glycol used has a molecular weight between 100 and 1000.
  • crosslinkers b) are di- and triacrylates of 3 to 20 times ethoxylated glycerol, 3 to 20 times ethoxylated trimethylolpropane, 3 to 20 times ethoxylated trimethylolethane, in particular di- and triacrylates of 2 to 6-times ethoxylated glycerol or trimethylolpropane, the 3-fold propoxylated glycerol or trimethylolpropane, and the 3-times mixed ethoxylated or propoxylated glycerol or trimethylolpropane, the 15-times ethoxylated glycerol or trimethylolpropane, and at least 40-times ethoxylated glycerol, Trimethylolethane or trimethylolpropane.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in WO 2003/104301 A1. Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol. Very particular preference is given to diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol. Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerin.
  • the amount of crosslinker b) is preferably 0.01 to 5 wt .-%, particularly preferably 0.05 to 2 wt .-%, most preferably 0.1 to 1 wt .-%, each based on the monomer solution ,
  • initiators c) it is possible to use all compounds which form radically under the polymerization conditions, for example peroxides, hydroperoxides, hydrogen peroxide, persulfates, azo compounds and the so-called redox initiators.
  • the use of water-soluble initiators is preferred.
  • mixtures of different initiators for example mixtures of hydrogen peroxide and sodium or potassium peroxodisulfate. Mixtures of hydrogen peroxide and sodium peroxodisulfate can be used in any proportion.
  • Particularly preferred initiators c) are azo initiators, such as 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride and 2,2'-azobis [2- (5-methyl-2-imidazoline-2 - yl) propane] dihydrochloride, and photoinitiators, such as 2-hydroxy-2-methylpropiophenone and 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, redox initiato such as sodium persulfate / hydroxymethylsulfinic acid, ammonium peroxodisulfate / hydroxymethylsulfinic acid, hydrogen peroxide / hydroxymethylsulfinic acid, sodium persulfate / ascorbic acid, ammonium peroxodisulfate / ascorbic acid and hydrogen peroxide / ascorbic acid, photoinitiators, such as 1- [4- (2-hydroxyethoxy) -phen
  • the initiators are used in customary amounts, for example in amounts of 0.001 to 5 wt .-%, preferably 0.01 to 1 wt .-%, based on the monomers a).
  • the preferred polymerization inhibitors require dissolved oxygen for optimum performance. Therefore, the monomer solution can be freed of dissolved oxygen prior to the polymerization by inertization, ie by flowing through with an inert gas, preferably nitrogen.
  • the oxygen content of the monomer solution before polymerization is reduced to less than 1 ppm by weight, more preferably less than 0.5 ppm by weight.
  • Suitable reactors are kneading reactors or belt reactors.
  • the polymer gel formed during the polymerization of an aqueous monomer solution is continuously comminuted by, for example, counter-rotating stirring shafts, as described in WO 2001/38402 A1.
  • the polymerization on the belt is described, for example, in DE 38 25 366 A1 and US Pat. No. 6,241,928.
  • Polymerization in a belt reactor produces a polymer gel which must be comminuted in a further process step, for example in a meat grinder, extruder or kneader.
  • the hydrogel After leaving the polymerization reactor, the hydrogel is advantageously still stored at elevated temperature, preferably at least 50 ° C., more preferably at least 70 ° C., very preferably at least 80 ° C., and preferably less than 100 ° C., for example in isolated containers.
  • elevated temperature preferably at least 50 ° C., more preferably at least 70 ° C., very preferably at least 80 ° C., and preferably less than 100 ° C., for example in isolated containers.
  • the monomer conversion is further increased.
  • the storage can also be significantly shortened or omitted storage.
  • the acid groups of the hydrogels obtained are usually partially neutralized, preferably from 25 to 95 mol%, preferably from 50 to 80 mol%, particularly preferably from 60 to 75 mol%, the usual neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides , Alkali metal carbonates or alkali metal hydrogencarbonates and mixtures thereof.
  • the usual neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides , Alkali metal carbonates or alkali metal hydrogencarbonates and mixtures thereof.
  • alkali metal salts and ammonium salts can be used.
  • Sodium and potassium are particularly preferred as alkali metals, but very particular preference is given to sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
  • the neutralization is preferably carried out at the stage of the monomers. This is usually done by mixing the neutralizing agent as an aqueous solution, as a melt, or preferably as a solid.
  • the neutralizing agent for example, sodium hydroxide with a water content well below 50 wt .-% as a waxy mass present with a melting point above 23 0 C. In this case, a dosage as general cargo or melt at elevated temperature is possible.
  • the hydrogel stage it is also possible to carry out the neutralization after the polymerization at the hydrogel stage. Furthermore, it is possible to neutralize up to 40 mol%, preferably 10 to 30 mol%, particularly preferably 15 to 25 mol%, of the acid groups before the polymerization by adding a part of the neutralizing agent already to the monomer solution and the desired final degree of neutralization only after the polymerization is adjusted at the level of the hydrogel. If the hydrogel is at least partially neutralized after the polymerization, the hydrogel is preferably comminuted mechanically, for example by means of a meat grinder, wherein the neutralizing agent can be sprayed, sprinkled or poured on and then thoroughly mixed in. For this purpose, the gel mass obtained can be further gewolfft for homogenization.
  • the hydrogel is then preferably dried with a belt dryer until the residual moisture content is preferably below 15% by weight, in particular below 10% by weight, the water content being determined in accordance with the test method No. 430.2- recommended by EDANA (European Disposables and Nonwovens Association). 02 "Moisture content" is determined.
  • a fluidized bed dryer or a heated ploughshare mixer can be used for drying.
  • the dryer temperature must be optimized, the air supply and removal must be controlled, and it is in any case to ensure adequate ventilation. Naturally, drying is all the easier and the product is whiter when the solids content of the gel is as high as possible.
  • the solids content of the gel before drying is therefore preferably between 30 and 80% by weight.
  • Particularly advantageous is the ventilation of the dryer with nitrogen or other non-oxidizing inert gas.
  • the dried hydrogel is thereafter ground and classified, wherein for grinding usually one- or multi-stage roller mills, preferably two- or three-stage roller mills, pin mills, hammer mills or vibratory mills can be used.
  • the mean particle size of the polymer fraction separated as a product fraction is preferably at least 200 ⁇ m, more preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
  • the mean particle size of the product fraction can be determined by means of the test method No. 420.2-02 "particle size distribution" recommended by the EDANA (European Disposables and Nonwovens Association) the mass fractions of the sieve fractions are cumulatively applied and the average particle size is determined graphically.
  • the mean particle size here is the value of the mesh size, which results for accumulated 50 wt .-%.
  • the water-absorbing polymer particles have a centrifuge retention capacity (CRC) of typically at least 15 g / g, preferably at least 20 g / g, preferably at least 25 g / g, more preferably at least 30 g / g, most preferably at least 35 g / g.
  • the centrifuge retention capacity (CRC) of the water-absorbing polymer particles is usually less than 60 g / g, the centrifuge retention capacity (CRC) according to the test method No. 441.2-02 "Centrifuge Retention Capacity.” Recommended by the EDANA (European Dispo- sables and Nonwovens Association) "is determined.
  • Suitable postcrosslinkers are compounds containing groups which can form covalent bonds with the at least two carboxylate groups of the hydrogel.
  • Suitable compounds are, for example, alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyepoxides, as described in EP 83 022 A2, EP 543 303 A1 and EP 937 736 A2, di- or polyfunctional alcohols, as described in DE 33 14 019 A1 DE 35 23 617 A1 and EP 450 922 A2, or
  • Hydroxyalkylamides as described in DE 102 04 938 A1 and US 6,239,230.
  • the amount of postcrosslinker is preferably 0.01 to 1 wt .-%, particularly preferably 0.05 to 0.5 wt .-%, most preferably 0.1 to 0.2 wt .-%, each based on the polymer ,
  • polyvalent cations are applied to the particle surface in addition to the postcrosslinkers.
  • the polyvalent cations which can be used in the process according to the invention are, for example, divalent cations, such as the cations of zinc, magnesium, calcium and Strontium, trivalent cations, such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations, such as the cations of titanium and zirconium.
  • chloride bromide, sulfate, hydrogen sulfate, carbonate, bicarbonate, nitrate, phosphate, hydrogen phosphate, dihydrogen phosphate and carboxylate, such as acetate and lactate, are possible.
  • Aluminum sulfate is preferred.
  • polyamines can also be used as polyvalent cations.
  • the amount of polyvalent cation used is, for example, 0.001 to 0.5% by weight, preferably 0.005 to 0.2% by weight, particularly preferably 0.02 to 0.1% by weight. in each case based on the polymer.
  • the postcrosslinking is usually carried out by spraying a solution of the postcrosslinker onto the hydrogel or the dry polymer particles. Subsequent to the spraying, it is thermally dried, whereby the postcrosslinking reaction can take place both before and during the drying.
  • the spraying of a solution of the crosslinker is preferably carried out in mixers with agitated mixing tools, such as screw mixers, paddle mixers, disk mixers, plowshare mixers and paddle mixers.
  • agitated mixing tools such as screw mixers, paddle mixers, disk mixers, plowshare mixers and paddle mixers.
  • Vertical mixers are particularly preferred, plowshare mixers and paddle mixers are very particularly preferred.
  • suitable mixers are Lödige mixers, Bepex mixers, Nauta mixers, Processall mixers and Schugi mixers.
  • the thermal drying is preferably carried out in contact dryers, particularly preferably paddle dryers, very particularly preferably disc dryers.
  • Suitable dryers include Bepex-T rockner and Nara-T rockner.
  • fluidized bed dryers can also be used.
  • the drying can take place in the mixer itself, by heating the jacket or blowing hot air.
  • a downstream dryer such as a hopper dryer, a rotary kiln or a heatable screw. Particularly advantageous is mixed and dried in a fluidized bed dryer.
  • Preferred drying temperatures are in the range 100 to 250 ° C., preferably 120 to 220 ° C., and more preferably 130 to 210 ° C.
  • the preferred residence time at this temperature in the reaction mixer or dryer is preferably at least 10 minutes, more preferably at least 20 minutes, completely more preferably at least 30 minutes.
  • the average diameter of the polymer fraction separated as a product fraction is preferably at least 200 ⁇ m, more preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
  • 90% of the polymer particles have a diameter of preferably 100 to 800 .mu.m, more preferably from 150 to 700 .mu.m, most preferably from 200 to 600 .mu.m.
  • Polyethylene glycol 400 diacrylate (diacrylate of a polyethylene glycol having an average molecular weight of 400 g / mol) is used as the polyethylenically unsaturated crosslinker.
  • the amount used was 2 kg per ton of monomer solution.
  • the throughput of the monomer solution was 20 t / h.
  • the monomer solution was rendered inert with nitrogen.
  • the reaction solution had at the inlet, a temperature of 23.5 0 C.
  • the reactor was operated at a rotational speed of the shafts of 38 rpm.
  • the residence time of the reaction mixture in the reactor was 15 minutes.
  • After polymerization and gel comminution, the aqueous polymer gel was applied to a belt dryer.
  • the residence time on the dryer belt was about 37 minutes.
  • the dried hydrogel was ground and sieved.
  • the fraction with the particle size 150 to 850 microns was postcrosslinked.
  • the postcrosslinker solution was sprayed onto the polymer particles in a Schugi mixer (Fa, Hosokawa-Micron B.V., Doetichem, NL).
  • the postcrosslinker solution was a 2.7% by weight solution of ethylene glycol diglycidyl ether in propylene glycol / water weight ratio 1: 3).
  • the postcrosslinked polymer particles were cooled in a NARA paddle dryer (Fa. GMF Gouda, Waddinxveen, NL) at 60 0 C.
  • the cooled polymer particles were continuously sieved in a tumble sieve machine (Allgaier Werke GmbH, Uhingen, DE) with three sieve decks.
  • the sieves had a diameter of 260 cm each and had, from bottom to top, a mesh size of 150 microns, 500 microns, 850 microns and 1,000 microns on.
  • the sieve fractions from the sieves with mesh sizes of 150 ⁇ m and 500 ⁇ m were combined to form the middle grain fraction.
  • the sieve fractions from the sieves with mesh sizes of 850 ⁇ m and 1,000 ⁇ m were combined and returned as oversize particles. Overall, 0.9 to 1.4 tonnes per hour were produced.
  • the particle size distribution of the combined middle-grain fraction was determined according to the test method No. 420.2-02 "particle size distribution" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the combined mid-grain fraction contained 0.14 wt .-% of particles having a particle size of about 850 microns and 24.7 wt .-% of particles having a particle size of about 600 to 850 microns.
  • the cooled polymer particles were continuously sieved in a tumble sieve machine (Allgaier Werke GmbH, Uhingen, DE) with three sieve decks.
  • the screens had a diameter of 260 cm each and had, from bottom to top, a mesh size of 150 microns, 500 microns, 1,000 microns and 3,000 microns on.
  • the sieve fractions from the sieves with mesh sizes of 150 ⁇ m and 500 ⁇ m were combined to form the middle grain fraction.
  • the sieve fractions from the sieves with the mesh sizes of 1,000 ⁇ m and 3,000 ⁇ m were combined and returned as oversize particles. Overall, 0.2 to 0.5 t / h of oversize grain was produced.
  • the particle size distribution of the combined mid-grain fraction was determined according to the test method no. 420.2-02 "Particle size distribution" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the combined mid-grain fraction contained 0.31 wt .-% of particles having a particle size of about 850 microns and 31, 7 wt .-% of particles having a particle size of about 600 to 850 microns.
  • the table shows that the oversize separated in the process according to the invention contains considerably less spillage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Verfahren zum Klassieren wasserabsorbierender Polymerpartikel, wobei zur Abtrennung des Überkorns vor und nach der Nachvernetzung Siebe mit unterschiedlichen Maschenweiten (ml bzw. m2 ) verwendet werden und, wobei m2 größer als ml ist.

Description

Verfahren zum Klassieren wasserabsorbierender Polymerpartikel
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zum Klassieren wasserabsorbierender Polymerpartikel, wobei zur Abtrennung des Überkorns vor und nach der Nachvernetzung Siebe mit unterschiedlichen Maschenweiten verwendet werden.
Die Herstellung wasserabsorbierender Polymerpartikel wird in der Monographie "Mo- dem Superabsorbent Polymer Technology", F. L. Buchholz und AT. Graham, Wiley- VCH, 1998, Seiten 71 bis 103, beschrieben.
Wasserabsorbierende Polymere werden als wässrige Lösungen absorbierende Produkte zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygienearti- kein, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
Die Eigenschaften der wasserabsorbierenden Polymere können über den Vernetzungsgrad eingestellt werden. Mit steigendem Vernetzungsgrad steigt die Gelfestigkeit und sinkt die Zentrifugenretentionskapazität (CRC).
Zur Verbesserung der Anwendungseigenschaften, wie beispielsweise Flüssigkeitsweiterleitung im gequollenen Gelbett (SFC) in der Windel und Absorption unter Druck (AUL), werden wasserabsorbierende Polymerpartikel im allgemeinen nachvernetzt. Dadurch steigt nur der Vernetzungsgrad der Partikeloberfläche, wodurch die Absorption unter Druck (AUL) und die Zentrifugenretentionskapazität (CRC) zumindest teilweise entkoppelt werden können. Diese Nachvernetzung kann in wässriger Gelphase durchgeführt werden. Vorzugsweise werden aber getrocknete, gemahlene und abgesiebte Polymerpartikel (Grundpolymer) an der Oberfläche mit einem Nachvernetzer beschichtet, thermisch nachvernetzt und getrocknet. Dazu geeignete Vernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylatgruppen des hydrophilen Polymeren kovalente Bindungen bilden können.
Die wasserabsorbierenden Polymere gelangen als pulverförmiges, körniges Produkt bevorzugt im Hygienesektor zum Einsatz. Hier werden beispielsweise Teilchengrößen zwischen 200 und 850 μm eingesetzt und das partikuläre Polymermaterial wird bereits beim Herstellungsprozess auf diese Korngrößen klassiert. Hierbei werden kontinuierlich arbeitende Siebmaschinen mit zwei Sieben eingesetzt, wobei Siebe mit den Maschenweiten von 200 und 850 μm verwendet werden. Partikel mit einer Korngröße von bis zu 200 μm fallen dabei durch beide Siebe und werden am Boden der Siebmaschine als Unterkorn gesammelt. Partikel mit einer Korngröße von größer 850 μm verbleiben als Überkorn auf dem obersten Sieb und werden ausgeschleust. Die Produktfraktion mit einer Korngröße von größer 200 bis 850 μm wird als Mittelkorn zwischen den beiden Sieben der Siebmaschine entnommen. Abhängig von der Siebgüte enthält dabei jede Korngrößenfraktion noch einen Anteil an Partikeln mit der falschen Korngröße als sogenannten Fehlaustrag. So kann beispielsweise die Überkornfraktion noch einen Anteil an Partikeln mit einer Korngröße von 850 μm oder weniger enthalten.
Ausgeschleustes Unter- und Überkorn wird üblicherweise in die Herstellung zurückgeführt. Das Unterkorn kann beispielsweise der Polymerisation zugesetzt werden. Das Überkorn wird üblicherweise zerkleinert, was zwangsläufig auch zu einem Zwangsan- fall von weiterem Unterkorn führt.
Bei den herkömmlichen Klassiervorgängen treten unterschiedliche Probleme auf, wenn teilchenförmige Polymere klassiert werden. Häufigstes Problem ist die Verstopfung der Sieboberfläche sowie die Verschlechterung der Klassifizierungseffizienz und der Klas- sierfähigkeit. Ein weiteres Problem ist die Verbackungsneigung des Produkts, die vor, nach und während der Siebung zu unerwünschte Agglomeraten führt. Der Verfahrensschritt der Siebung kann daher nicht frei von Störungen, oft begleitet von ungewollten Stillständen bei der Polymerherstellung, durchgeführt werden. Besonders problematisch erweisen sich derartige Störungen im kontinuierlichen Herstellungsverfahren. Ins- gesamt resultiert daraus jedoch eine unzureichende Trennschärfe bei der Siebung. Diese Problematik ist vor allem bei der Klassierung von nachvernetztem Produkt zu beobachten.
Eine höhere Siebgüte wird üblicherweise dadurch erzielt, indem man dem Produkt Substanzen zusetzt, die dazu dienen, die Rieselfähigkeit und/oder die mechanische Stabilität des Polymerpulvers zu erhöhen. In aller Regel wird ein rieselfähiges Produkt erreicht, wenn man dem Polymerpulver, meist nach der Trocknung und/oder im Rahmen der Nachvernetzung Hilfsstoffe, beispielsweise Tenside, zusetzt, die ein gegenseitiges Verkleben der einzelnen Partikel verhindern. In anderen Fällen versucht man durch verfahrenstechnische Maßnahmen Einfluss auf die Verbackungstendenzen zu nehmen.
Um ohne weitere Produktzusätze höhere Trennschärfen zu erreichen, wurden Verbesserungen durch alternative Siebanlagen vorgeschlagen. So werden höhere Trenn- schärfen erreicht, wenn Sieböffnungsflächen spiralförmig angetrieben werden. Dies ist beispielsweise der Fall bei Taumelsiebmaschinen. Wird jedoch der Durchsatz derartiger Siebvorrichtungen erhöht, so werden obige Probleme verstärkt, und es wird immer weniger möglich, das hohe Klassiervermögen aufrechtzuerhalten.
Auch der Zusatz von Siebhilfen, wie Siebbälle, PVC-Reibringe, Teflon-Reibringe oder Gummiwürfel, auf die Sieboberfläche, hilft nur unwesentlich die Trennschärfe zu stei- gern. Besonders bei amorphem Polymermaterial, wie wasserabsorbierenden Polymerpartikeln, kann es dadurch zu verstärktem Abrieb kommen.
Ein allgemeine Übersicht zur Klassierung ist beispielsweise in Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Band 2, Seiten 43 bis 56, Verlag Chemie, Wein- heim, 1972, zu finden.
EP 855 232 A2 beschreibt ein Klassierverfahren für wasserabsorbierende Polymere. Durch Verwendung beheizter oder thermisch isolierter Siebe werden insbesondere bei kleinen Korngrößen Agglomerate unterhalb des Siebes vermieden.
DE 10 2005 001 789 A1 beschreibt ein Klassierverfahren, das bei vermindertem Druck durchgeführt wird.
JP 2003/320308 A beschreibt ein Verfahren, bei dem Agglomerate vermieden werden, indem die Siebunterseite mit warmer Luft angeströmt wird.
WO 92/18171 A1 beschreibt den Zusatz anorganischer Pulver als Siebhilfsmittel.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Klas- sierverfahrens zur Herstellung wasserabsorbierender Polymerpartikel.
Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel, umfassend
i) Klassieren der wasserabsorbierenden Polymerpartikel, wobei das Überkorn mittels mindestens eines Siebes abgetrennt wird und das Sieb oder bei mehreren Sieben das Sieb mit der niedrigsten Maschenweite die Maschenweite mi aufweist, ii) Nachvernetzen der klassierten Polymerpartikel und iii) Klassieren der nachvernetzten Polymerpartikel, wobei das Überkorn mittels mindestens eines Siebes abgetrennt wird und das Sieb oder bei mehreren Sieben das Sieb mit der niedrigsten Maschenweite die Maschenweite rri2 aufweist,
dadurch gekennzeichnet, dass rri2 größer mi ist.
Mit Überkorn wird hierbei ein Siebschnitt bezeichnet, der eine im Vergleich zum Zielprodukt größere mittlere Partikelgröße aufweist. Das Überkorn kann auch aus mehreren Siebschnitten bestehen, die diese Bedigung erfüllen.
Der Erfindung liegt die Erkenntnis zugrunde, dass durch die Nachvernetzung nur sehr wenige Agglomerate mit geringfügig erhöhter Korngröße entstehen. Wurden beispielsweise Partikel mit einer Korngröße von größer 850 μm vor der Nachvernetzung abge- trennt, so enthält das nachvernetzte Produkt nur sehr wenige Partikel mit einer Korngröße in Bereich größer 850 bis 1000 μm. Ein Partikel mit einer Korngröße von 850 μm ist hierbei ein Partikel, dass eine Sieb mit einer Maschenweite von 850 μm gerade noch passieren kann.
Dies ermöglicht die Verwendung von Sieben mit vergrößerter Maschenweite bei der Abtrennung des Überkorns nach der Nachvernetzung. Einerseits kann durch diese Maßnahme die Spezifikation an Partikeln mit großen Korngrößen in der Mittelkornfraktion, beispielsweise höchstens 1 Gew.-% mit einer Korngröße von über 850 μm, ein- gehalten werden, andererseits wird der Fehlaustrag in der Überkornfraktion und damit der Zwangsanfall an Unterkorn bei der Rückführung erheblich reduziert.
Das Siebergebnis kann, insbesondere bei hohen Durchsätzen, weiter verbessert werden, wenn dass Überkorn mittels mindestens zweier Siebe unterschiedlicher Ma- schenweiten abgetrennt wird.
Die Maschenweite mi beträgt üblicherweise mindestens 600 μm, vorzugsweise mindestens 700 μm, bevorzugt mindestens 750 μm, besonders bevorzugt mindestens 800 μm, ganz besonders bevorzugt mindestens 850 μm.
Die Maschenweite rri2 beträgt üblicherweise mindestens 800 μm, vorzugsweise mindestens 850 μm, bevorzugt mindestens 900 μm, besonders bevorzugt mindestens 950 μm, ganz besonders bevorzugt mindestens 1.000 μm.
Die Maschenweite rri2 ist üblicherweise mindestens 50 μm, vorzugsweise mindestens 100 μm, bevorzugt mindestens 120 μm, besonders bevorzugt mindestens 140 μm, ganz besonders bevorzugt mindestens 150 μm, größer als die Maschenweite m-i.
Die wasserabsorbierenden Polymerpartikel weisen während des Klassierens vorzugs- weise eine Temperatur von 40 bis 120 0C, besonders bevorzugt von 45 bis 100 0C, ganz besonders bevorzugt von 50 bis 80 0C, auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird bei vermindertem Druck klassiert. Der Druck beträgt dabei vorzugsweise 100 mbar weniger als der Umgebungsdruck.
Besonders vorteilhaft wird das erfindungsgemäße Klassierverfahren kontinuierlich durchgeführt. Der Durchsatz an wasserabsorbierendem Polymer beträgt dabei üblicherweise mindestens 100 kg/m2 h, vorzugsweise mindestens 150 kg/m2 h, bevorzugt mindestens 200 kg/m2 h, besonders bevorzugt mindestens 250 kg/m2 h, ganz besonders bevorzugt mindestens 300 kg/m2 h. Vorzugsweise wird das wasserabsorbierende Harz während des Klassierens mit einem Gasstrom, besonders bevorzugt Luft, überströmt. Die Gasmenge beträgt typischerweise von 0,1 bis 10 m3/h pro m2 Siebfläche, vorzugsweise von 0,5 bis 5 m3/h pro m2 Siebfläche, besonders bevorzugt von 1 bis 3 m3/h pro m2 Siebfläche, wobei das Gasvolu- men unter Standardbedingungen gemessen wird (25 0C und 1 bar). Besonders bevorzugt wird der Gasstrom vor dem Eintritt in die Siebvorrichtung angewärmt, typischerweise auf eine Temperatur von 40 bis 120 0C, vorzugsweise auf eine Temperatur von 50 bis 1 10 0C, bevorzugt auf eine Temperatur von 60 bis 100 0C, besonders bevorzugt auf eine Temperatur von 65 bis 90 0C, ganz besonders bevorzugt auf eine Temperatur von 70 bis 80 0C. Der Wassergehalt des Gasstroms beträgt typischerweise weniger 5 g/kg, vorzugsweise weniger als 4,5 g/kg, bevorzugt weniger als 4 g/kg, besonders bevorzugt weniger als 3,5 g/kg, ganz besonders bevorzugt weniger als 3 g/kg. Ein Gasstrom mit geringem Wassergehalt kann beispielsweise erzeugt werden, indem aus einem Gasstrom mit höherem Wassergehalt eine entsprechende Wassermenge durch Abkühlung auskondensiert wird.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden mehrere Siebmaschinen parallel betrieben.
Die Siebmaschinen werden üblicherweise elektrisch geerdet.
Durch Einsatz des erfindungsgemäßen Klassierverfahrens beträgt der Anteil an Partikeln mit einer Korngröße von kleiner oder gleich mi üblicherweise weniger als 50 Gew.-%, vorzugsweise weniger als 45 Gew.-%, bevorzugt weniger als 40 Gew.-%, besonders bevorzugt weniger als 35 Gew.-%, ganz besonders bevorzugt weniger als 30 Gew.-%.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur kontinuierlichen Herstellung wasserabsorbierender Polymerpartikel, umfassend
i) Klassieren der wasserabsorbierenden Polymerpartikel, wobei das Überkorn mittels mindestens eines Siebes abgetrennt wird und das Sieb oder bei mehreren Sieben das Sieb mit der niedrigsten Maschenweite die Maschenweite mi aufweist, ii) Nachvernetzen der klassierten Polymerpartikel und iii) Klassieren der nachvernetzten Polymerpartikel,
dadurch gekennzeichnet, dass das in Schritt iii) abgetrennte Überkorn weniger als 50 Gew.-% Partikel mit einer Korngröße kleiner oder gleich mi enthält und der Durchsatz in Schritt iii) mindestens 100 kg/m2 h beträgt.
Die für das erfindungsgemäße Klassierverfahren geeigneten Siebvorrichtungen unterliegen keiner Beschränkung, bevorzugt sind Plansiebverfahren, ganz besonders bevorzugt sind Taumelsiebmaschinen. Die Siebvorrichtung wird zur Unterstützung der Klassierung typischerweise gerüttelt. Dies geschieht vorzugsweise so, dass das zu klassierende Gut spiralförmig über das Sieb geführt wird. Diese erzwungene Vibration hat typischerweise eine Amplitude von 0,7 bis 40 mm, vorzugsweise von 1 ,5 bis 25 mm, und eine Frequenz von 1 bis 100 Hz, vorzugsweise von 5 bis 10 Hz.
Die im erfindungsgemäßen Verfahren einzusetzenden wasserabsorbierenden Polymerpartikel können durch Polymerisation von Monomerlösungen, enthaltend mindestens ein ethylenisch ungesättigtes Monomer a), wahlweise mindestens einen Vernetzer b), mindestens einen Initiator c) und Wasser d), hergestellt werden.
Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23 0C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz besonders bevorzugt mindestens 50 g/100 g Wasser, und haben vorzugsweise mindestens je eine Säuregruppe.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevor- zugt ist Acrylsäure.
Die bevorzugten Monomere a) haben mindestens eine Säuregruppe, wobei die Säuregruppen vorzugsweise zumindest teilweise neutralisiert sind.
Der Anteil an Acrylsäure und/oder deren Salzen an der Gesamtmenge der Monomeren a) beträgt vorzugsweise mindestens 50 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz besonders bevorzugt mindestens 95 mol-%.
Die Monomere a), insbesondere Acrylsäure, enthalten vorzugsweise bis zu 0,025 Gew.-% eines Hydrochinonhalbethers. Bevorzugte Hydrochinonhalbether sind Hydro- chinonmonomethylether (MEHQ) und/oder Tocopherole.
Unter Tocopherol werden Verbindungen der folgenden Formel verstanden
Figure imgf000007_0001
wobei R1 Wasserstoff oder Methyl, R2 Wasserstoff oder Methyl, R3 Wasserstoff oder Methyl und R4 Wasserstoff oder ein Säurerest mit 1 bis 20 Kohlenstoffatomen bedeutet. Bevorzugte Reste für R4 sind Acetyl, Ascorbyl, Succinyl, Nicotinyl und andere physiologisch verträgliche Carbonsäuren. Die Carbonsäuren können Mono-, Di- oder Tricar- bonsäuren sein.
Bevorzugt ist alpha-Tocopherol mit R1 = R2 = R3 = Methyl, insbesondere racemisches alpha-Tocopherol. R1 ist besonders bevorzugt Wasserstoff oder Acetyl. Insbesondere bevorzugt ist RRR-alpha-Tocopherol.
Die Monomerlösung enthält bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindesten 10 Gew.-ppm, besonders bevorzugt mindesten 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf Acrylsäure, wobei Acrylsäuresalze als Acrylsäure mit berücksichtigt werden. Beispielsweise kann zur Herstellung der Monomerlösung eine Acrylsäure mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden.
Vernetzer b) sind Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldiacrylat, Al- lylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallyloxyethan, wie in EP 530 438 A1 beschrieben, Di- und Triacrylate, wie in EP 547 847 A1 , EP 559 476 A1 , EP 632 068 A1 , WO 93/21237 A1 , WO 2003/104299 A1 , WO 2003/104300 A1 , WO 2003/104301 A1 und DE 103 31 450 A1 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE 103 31 456 A1 und DE 103 55 401 A1 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 und WO 2002/32962 A2 beschrieben.
Geeignete Vernetzer b) sind insbesondere N,N'-Methylenbisacrylamid und N, N'- Methylenbismethacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren von Po- lyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethylenglykoldiac- rylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen, wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallyloxyethan, Triallylamin, Tetraallylethylendiamin, Allylester der Phosphorsäure sowie Vi- nylphosphonsäurederivate, wie sie beispielsweise in EP 343 427 A2 beschrieben sind. Weiterhin geeignete Vernetzer b) sind Pentaerythritoldi-, Pentaerythritoltri- und Pentae- rythritoltetraallylether, Polyethylenglykoldiallylether, Ethylenglykoldiallylether, Glyzerin- di- und Glyzerintriallylether, Polyallylether auf Basis Sorbitol, sowie ethoxylierte Varianten davon. Im erfindungsgemäßen Verfahren einsetzbar sind Di(meth)acrylate von Po- lyethylenglykolen, wobei das eingesetzte Polyethylenglykol ein Molekulargewicht zwischen 100 und 1000 aufweist. Besonders vorteilhafte Vernetzer b) sind jedoch Di- und Triacrylate des 3- bis 20-fach ethoxylierten Glyzerins, des 3- bis 20-fach ethoxylierten Trimethylolpropans, des 3- bis 20-fach ethoxylierten Trimethylolethans, insbesondere Di- und Triacrylate des 2- bis 6-fach ethoxylierten Glyzerins oder Trimethylolpropans, des 3-fach propoxylierten GIy- zerins oder Trimethylolpropans, sowie des 3-fach gemischt ethoxylierten oder propoxylierten Glyzerins oder Trimethylolpropans, des 15-fach ethoxylierten Glyzerins oder Trimethylolpropans, sowie des mindestens 40-fach ethoxylierten Glyzerins, Trimethylolethans oder Trimethylolpropans.
Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine, wie sie beispielsweise in WO 2003/104301 A1 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins.
Die Menge an Vernetzer b) beträgt vorzugsweise 0,01 bis 5 Gew.-%, besonders bevorzugt 0,05 bis 2 Gew.-%, ganz besonders bevorzugt 0,1 bis 1 Gew.-%, jeweils bezo- gen auf die Monomerlösung.
Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen radikalbildende Verbindungen eingesetzt werden, beispielsweise Peroxide, Hydroperoxide, Wasserstoffperoxid, Persulfate, Azoverbindungen und die sogenannten Redoxinitiato- ren. Bevorzugt ist der Einsatz von wasserlöslichen Initiatoren. In manchen Fällen ist es vorteilhaft, Mischungen verschiedener Initiatoren zu verwenden, beispielsweise Mischungen aus Wasserstoffperoxid und Natrium- oder Kaliumperoxodisulfat. Mischungen aus Wasserstoffperoxid und Natriumperoxodisulfat können in jedem beliebigen Verhältnis verwendet werden.
Besonders bevorzugte Initiatoren c) sind Azoinitiatoren, wie 2,2'-Azobis[2-(2- imidazolin-2-yl)propan]dihydrochlorid und 2,2'-Azobis[2-(5-methyl-2-imidazolin-2- yl)propan]dihydrochlorid, und Photoinitiatoren, wie 2-Hydroxy-2-methylpropiophenon und 1 -[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1 -propan-1 -on, Redoxinitiato- ren, wie Natriumpersulfat/ Hydroxymethylsulfinsäure, Ammoniumperoxodisul- fat/Hydroxymethylsulfinsäure, Wasserstoffperoxid/Hydroxymethylsulfinsäure, Natrium- persulfat/Ascorbinsäure, Ammoniumperoxodisulfat/Ascorbinsäure und Wasserstoffpe- roxid/Ascorbinsäure, Photoinitiatoren, wie 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2- methyl-1-propan-1-on, sowie deren Mischungen.
Die Initiatoren werden in üblichen Mengen eingesetzt, beispielsweise in Mengen von 0,001 bis 5 Gew.-%, vorzugsweise 0,01 bis 1 Gew.-%, bezogen auf die Monomeren a). Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sauerstoff. Daher kann die Monomerlösung vor der Polymerisation durch Inertisie- rung, d. h. Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff, von gelöstem Sauerstoff befreit werden. Vorzugsweise wird der Sauerstoffgehalt der Monomerlösung vor der Polymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, gesenkt.
Die Herstellung eines geeigneten Polymers sowie weitere geeignete hydrophile ethyle- nisch ungesättigte Monomere a) werden in DE 199 41 423 A1 , EP 686 650 A1 , WO 2001/45758 A1 und WO 2003/104300 A1 beschrieben.
Geeignete Reaktoren sind Knetreaktoren oder Bandreaktoren. Im Kneter wird das bei der Polymerisation einer wässrigen Monomerlösung entstehende Polymergel durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert, wie in WO 2001/38402 A1 beschrieben. Die Polymerisation auf dem Band wird beispielsweise in DE 38 25 366 A1 und US 6,241 ,928 beschrieben. Bei der Polymerisation in einem Bandreaktor entsteht ein Polymergel, das in einem weiteren Verfahrensschritt zerkleinert werden muss, beispielsweise in einem Fleischwolf, Extruder oder Kneter.
Vorteilhaft wird das Hydrogel nach dem Verlassen des Polymerisationsreaktors noch bei höherer Temperatur, vorzugsweise mindestens 50 0C, besonders bevorzugt mindestes 70 0C, ganz besonders bevorzugt mindestens 80 0C, sowie vorzugsweise weniger als 100 0C, gelagert, beispielsweise in isolierten Behältern. Durch die Lagerung, üblicherweise 2 bis 12 Stunden, wird der Monomerumsatz weiter erhöht.
Bei höheren Monomerumsätzen im Polymerisationsreaktor kann die Lagerung auch deutlich verkürzt bzw. auf eine Lagerung verzichtet werden.
Die Säuregruppen der erhaltenen Hydrogele sind üblicherweise teilweise neutralisiert, vorzugsweise zu 25 bis 95 mol-%, bevorzugt zu 50 bis 80 mol-%, besonders bevorzugt zu 60 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Alkalimetallcarbonate oder Alkalimetallhydrogencarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium sind als Alkalime- talle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Natriumhydroxid, Natriumcarbonat oder Natriumhydrogencarbonat sowie deren Mischungen.
Die Neutralisation wird vorzugsweise auf der Stufe der Monomeren durchgeführt. Dies geschieht üblicherweise durch Einmischung des Neutralisationsmittels als wässrige Lösung, als Schmelze, oder bevorzugt auch als Feststoff. Beispielsweise kann Natriumhydroxid mit einem Wasseranteil deutlich unter 50 Gew.-% als wachsartige Masse mit einem Schmelzpunkt oberhalb 23 0C vorliegen. In diesem Fall ist eine Dosierung als Stückgut oder Schmelze bei erhöhter Temperatur möglich.
Es ist aber auch möglich die Neutralisation nach der Polymerisation auf der Stufe des Hydrogels durchzuführen. Weiterhin ist es möglich bis zu 40 mol-%, vorzugsweise 10 bis 30 mol-%, besonders bevorzugt 15 bis 25 mol-%, der Säuregruppen vor der Polymerisation zu neutralisieren indem ein Teil des Neutralisationsmittels bereits der Monomerlösung zugesetzt und der gewünschte Endneutralisationsgrad erst nach der Polymerisation auf der Stufe des Hydrogels eingestellt wird. Wird das Hydrogel zumindest teilweise nach der Polymerisation neutralisiert, so wird das Hydrogel vorzugsweise mechanisch zerkleinert, beispielsweise mittels eines Fleischwolfes, wobei das Neutralisationsmittel aufgesprüht, übergestreut oder aufgegossen und dann sorgfältig untergemischt werden kann. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homogenisierung gewolft werden.
Das Hydrogel wird dann vorzugsweise mit einem Bandtrockner getrocknet bis der Restfeuchtegehalt vorzugsweise unter 15 Gew.-%, insbesondere unter 10 Gew.-% liegt, wobei der Wassergehalt gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 430.2-02 "Moisture content" bestimmt wird. Wahlweise kann zur Trocknung aber auch ein Wirbelbetttrockner oder ein beheizter Pflugscharmischer verwendet werden. Um besonders weiße Produkte zu erhalten, ist es vorteilhaft bei der Trocknung dieses Gels einen schnellen Abtransport des verdampfenden Wassers sicherzustellen. Dazu ist die Trocknertemperatur zu optimieren, die Luftzu- und -abführung muss kontrolliert erfolgen, und es ist in jedem Fall auf ausreichende Belüftung zu achten. Die Trocknung ist naturgemäß um so einfacher und das Produkt um so weißer, wenn der Feststoffgehalt des Gels möglichst hoch ist. Bevorzugt liegt der Feststoffgehalt des Gels vor der Trocknung daher zwischen 30 und 80 Gew.-%. Besonders vorteilhaft ist die Belüftung des Trockners mit Stickstoff oder einem anderen nicht-oxidierenden Inertgas. Wahlweise kann aber auch einfach nur der Partialdruck des Sauerstoffs während der Trocknung abgesenkt werden, um oxidative Vergilbungsvorgänge zu verhindern.
Das getrocknete Hydrogel wird hiernach gemahlen und klassiert, wobei zur Mahlung üblicherweise ein- oder mehrstufige Walzenstühle, bevorzugt zwei- oder dreistufige Walzenstühle, Stiftmühlen, Hammermühlen oder Schwingmühlen eingesetzt werden können.
Die mittlere Partikelgröße der als Produktfraktion abgetrennten Polymerpartikel beträgt vorzugsweise mindestens 200 μm, besonders bevorzugt von 250 bis 600 μm, ganz besonders von 300 bis 500 μm. Die mittlere Partikelgröße der Produktfraktion kann mittels der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 420.2-02 "Partikel size distribution" ermittelt werden, wobei die Massenanteile der Siebfraktionen kumuliert aufgetragen werden und die mittlere Partikelgröße graphisch bestimmt wird. Die mittlere Partikelgröße ist hierbei der Wert der Maschenweite, der sich für kumulierte 50 Gew.-% ergibt.
Die wasserabsorbierenden Polymerpartikel weisen eine Zentrifugenretentionskapazität (CRC) von typischerweise mindestens 15 g/g, vorzugsweise mindestens 20 g/g, bevorzugt mindestens 25 g/g, besonders bevorzugt mindestens 30 g/g, ganz besonders bevorzugt mindestens 35 g/g, auf. Die Zentrifugenretentionskapazität (CRC) der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 60 g/g, wobei die Zentrifugenretentionskapazität (CRC) gemäß der von der EDANA (European Dispo- sables and Nonwovens Association) empfohlenen Testmethode Nr. 441.2-02 "Centri- fuge retention capacity" bestimmt wird.
Die Polymerpartikel werden zur weiteren Verbesserung der Eigenschaften nachver- netzt. Geeignete Nachvernetzer sind Verbindungen, die Gruppen enthalten, die mit den mindestens zwei Carboxylatgruppen des Hydrogels kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise Alkoxysiliylverbindungen, Polyaziri- dine, Polyamine, Polyamidoamine, Di- oder Polyepoxide, wie in EP 83 022 A2, EP 543 303 A1 und EP 937 736 A2 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE 33 14 019 A1 , DE 35 23 617 A1 und EP 450 922 A2 beschrieben, oder ß-
Hydroxyalkylamide, wie in DE 102 04 938 A1 und US 6,239,230 beschrieben.
Des weiteren sind in DE 40 20 780 C1 zyklische Karbonate, in DE 198 07 502 A1 2- Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE 198 07 992 C1 Bis- und Poly-2-oxazolidinone, in DE 198 54 573 A1 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE 198 54 574 A1 N-Acyl-2-Oxazolidone, in DE 102 04 937 A1 zyklische Harnstoffe, in DE 103 34 584 A1 bizyklische Amidacetale, in EP 1 199 327 A2 Oxetane und zyklische Harnstoffe und in WO 2003/31482 A1 Morpholin-2,3- dion und dessen Derivate als geeignete Nachvernetzer beschrieben.
Weiterhin können auch Nachvernetzer eingesetzt werden, die zusätzliche polymeri- sierbare ethylenisch ungesättigte Gruppen enthalten, wie in DE 37 13 601 A1 beschrieben
Die Menge an Nachvernetzer beträgt vorzugsweise 0,01 bis 1 Gew.-%, besonders bevorzugt 0,05 bis 0,5 Gew.-%, ganz besonders bevorzugt 0,1 bis 0,2 Gew.-%, jeweils bezogen auf das Polymer.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden zusätzlich zu den Nachvernetzern polyvalente Kationen auf die Partikeloberfläche aufgebracht. Die im erfindungsgemäßen Verfahren einsetzbaren polyvalenten Kationen sind beispielsweise zweiwertige Kationen, wie die Kationen von Zink, Magnesium, Kalzium und Strontium, dreiwertige Kationen, wie die Kationen von Aluminium, Eisen, Chrom, Seltenerden und Mangan, vierwertige Kationen, wie die Kationen von Titan und Zirkonium. Als Gegenion sind Chlorid, Bromid, Sulfat, Hydrogensulfat, Carbonat, Hydrogencarbo- nat, Nitrat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat und Carboxylat, wie Acetat und Lactat, möglich. Aluminiumsulfat ist bevorzugt. Außer Metallsalzen können auch Polyamine als polyvalente Kationen eingesetzt werden.
Die Einsatzmenge an polyvalentem Kation beträgt beispielsweise 0,001 bis 0,5 Gew.- %, vorzugsweise 0,005 bis 0,2 Gew.-%, besonders bevorzugt 0,02 bis 0,1 Gew.-%. jeweils bezogen auf das Polymer.
Die Nachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Nach- vernetzers auf das Hydrogel oder die trockenen Polymerpartikel aufgesprüht wird. Im Anschluss an das Aufsprühen wird thermisch getrocknet, wobei die Nachvernetzungs- reaktion sowohl vor als auch während der Trocknung stattfinden kann.
Das Aufsprühen einer Lösung des Vernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Paddelmischer, Scheibenmischer, Pflugscharmischer und Schaufelmischer, durchgeführt werden. Besonders bevorzugt sind Vertikalmischer, ganz besonders bevorzugt sind Pflugscharmischer und Schaufelmischer. Geeignete Mischer sind beispielsweise Lödige-Mischer, Bepex-Mischer, Nauta-Mischer, Processall-Mischer und Schugi-Mischer.
Die thermische Trocknung wird vorzugsweise in Kontakttrocknern, besonders bevor- zugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Bepex-T rockner und Nara-T rockner. Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Besonders vorteilhaft wird in einem Wirbelschichttrockner gemischt und getrocknet.
Bevorzugte Trocknungstemperaturen liegen im Bereich 100 bis 250 0C, bevorzugt 120 bis 220 0C, und besonders bevorzugt 130 bis 210 0C. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt vorzugsweise mindestens 10 Minuten, besonders bevorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten.
Anschließend wird das nachvernetzte Polymer erneut klassiert. Der mittlere Durchmesser der als Produktfraktion abgetrennten Polymerpartikel beträgt vorzugsweise mindestens 200 μm, besonders bevorzugt von 250 bis 600 μm, ganz besonders von 300 bis 500 μm. 90% der Polymerpartikel weisen einen Durchmesser von vorzugsweise 100 bis 800 μm, besonders bevorzugt von 150 bis 700 μm, ganz besonders bevorzugt von 200 bis 600 μm, auf.
Beispiele
Vergleichsbeispiel:
Durch kontinuierliches Mischen von Wasser, 50 gew.-%iger Natronlauge und Acrylsäu- re wurde eine 38,8 gew.-%ige Acrylsäure/Natriumacrylatlösung hergestellt, so dass der Neutralisationsgrad 71 ,3 mol-% betrug. Die Monomerlösung wurde nach dem Mischen der Komponenten durch einen Wärmetauscher kontinuierlich abgekühlt.
Als mehrfach ethylenisch ungesättigter Vernetzer wird Polyethylenglykol-400-diacrylat (Diacrylat eines Polyethylenglykols mit einem mittleren Molgewicht von 400 g/mol) verwendet. Die Einsatzmenge betrug 2 kg pro t Monomerlösung.
Zur Initiierung der radikalischen Polymerisation wurden folgende Komponenten eingesetzt: Wasserstoffperoxid (1 ,03 kg (0,25 gew.-%ig) pro t Monomerlösung), Natriumpe- roxodisulfat (3,10 kg (15 gew.-%ig) pro t Monomerlösung), sowie Ascorbinsäure (1 ,05 kg (1 gew.-%ig) pro t Monomerlösung).
Der Durchsatz der Monomerlösung betrug 20 t/h.
Die einzelnen Komponenten werden kontinuierlich in einen List Contikneter mit 6.3m3 Volumen (Fa. List, Arisdorf, Schweiz) in folgenden Mengen eindosiert:
20 t/h Monomerlösung
40 kg/h Polyethylenglycol-400-diacrylat
82,6 kg/h Wasserstoffperoxidlösung/Natriumperoxodisulfat-Lösung
21 kg/h Ascorbinsäurelösung
Zwischen den Zugabepunkten für Vernetzer und Initiatoren wurde die Monomerlösung mit Stickstoff inertisiert.
Am Ende des Reaktors wurden zusätzlich 1.000 kg/h abgetrenntes Unterkorn mit einer Partikelgröße kleiner 150 μm zudosiert.
Die Reaktionslösung hatte am Zulauf eine Temperatur von 23,5 0C. Der Reaktor wurde mit einer Drehzahl der Wellen von 38rpm betrieben. Die Verweilzeit der Reaktionsmischung im Reaktor betrug 15 Minuten. Nach Polymerisation und Gelzerkleinerung wurde das wässrige Polymergel auf einen Bandtrockner aufgegeben. Die Verweilzeit auf dem Trocknerband betrug ca. 37 Minuten.
Das getrocknete Hydrogel wurde gemahlen und gesiebt. Die Fraktion mit der Partikelgröße 150 bis 850 μm wurde nachvernetzt.
Die Nachvernetzerlösung wurde in einem Schugi-Mischer (Fa, Hosokawa-Micron B.V., Doetichem, NL) auf die Polymerpartikel aufgesprüht. Die Nachvernetzerlösung war eine 2,7 gew.-%ige Lösung von Ethylenglykoldiglycidylether in Propylenglykol/Wasser Gewichtsverhältnis 1 :3).
Es wurden die folgenden Mengen dosiert:
7,5 t/h wasserabsorbierende Polymerpartikel (Grundpolymer)
308,25 kg/h Nachvernetzerlösung
Anschließend wurde 60 Minuten bei 150 0C in einem NARA-Paddle-Dryer (Fa. GMF Gouda, Waddinxveen, NL) getrocknet und nachvernetzt.
Die nachvernetzten Polymerpartikel wurden in einem NARA-Paddle-Dryer (Fa. GMF Gouda, Waddinxveen, NL) auf 60 0C abgekühlt.
Die abgekühlten Polymerpartikel wurden in einer Taumelsiebmaschine (Allgaier Werke GmbH, Uhingen, DE) mit drei Siebdecks kontinuierlich gesiebt. Die Siebe hatten einen Durchmesser von jeweils 260 cm und wiesen, von unten nach oben, eine Maschenweite von 150 μm, 500 μm, 850 μm und 1.000 μm auf. Die Siebfraktionen von den Sieben mit den Maschenweiten von 150 μm und 500 μm wurden zur Mittelkornfraktion vereinigt. Die Siebfraktionen von den Sieben mit den Maschenweiten von 850 μm und 1.000 μm wurden vereinigt und als Überkorn rückgeführt. Insgesamt fielen 0,9 bis 1 ,4 t/h Ü- berkorn an.
Die Partikelgrößenverteilung der vereinigten Mittelkornfraktion wurde gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Test- methode Nr. 420.2-02 "Particle size distribution" bestimmt. Die vereinigte Mittelkornfraktion enthielt 0,14 Gew.-% Partikel mit einer Korngröße von über 850 μm und 24,7 Gew.-% Partikel mit einer Korngröße von über 600 bis 850 μm.
Zusätzlich wurde die Partikelgrößenverteilung der vereinigten Überkornfraktion be- stimmt. Hierzu wurden zu unterschiedlichen Zeiten zwei Proben genommen. Das Ergebnis ist in der Tabelle zusammengefasst. Beispiel:
Es wurde verfahren wie im Vergleichsbeispiel.
Die abgekühlten Polymerpartikel wurden in einer Taumelsiebmaschine (Allgaier Werke GmbH, Uhingen, DE) mit drei Siebdecks kontinuierlich gesiebt. Die Siebe hatten einen Durchmesser von jeweils 260 cm und wiesen, von unten nach oben, eine Maschenweite von 150 μm, 500 μm, 1.000 μm und 3.000 μm auf. Die Siebfraktionen von den Sieben mit den Maschenweiten von 150 μm und 500 μm wurden zur Mittelkornfraktion vereinigt. Die Siebfraktionen von den Sieben mit den Maschenweiten von 1.000 μm und 3.000 μm wurden vereinigt und als Überkorn rückgeführt. Insgesamt fielen 0,2 bis 0,5 t/h Überkorn an.
Die Partikelgrößenverteilung der vereinigten Mittelkornfraktion wurde gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 420.2-02 "Particle size distribution" bestimmt. Die vereinigte Mittelkornfraktion enthielt 0,31 Gew.-% Partikel mit einer Korngröße von über 850 μm und 31 ,7 Gew.-% Partikel mit einer Korngröße von über 600 bis 850 μm.
Zusätzlich wurde die Partikelgrößenverteilung der vereinigten Überkornfraktion bestimmt. Hierzu wurden zu unterschiedlichen Zeiten zwei Proben genommen. Das Ergebnis ist in der Tabelle zusammengefasst.
Tab.: Partikelgrößenverteilung des vereinigten Überkorns nach der Nachvernetzung
Figure imgf000017_0001
Die Tabelle zeigt, dass das im erfindungsgemäßen Verfahren abgetrennte Überkorn erheblich weniger Fehlaustrag enthält.

Claims

Patentansprüche
1. Verfahren zur Herstellung wasserabsorbierender Polymerpartikel, umfassend
i) Klassieren der wasserabsorbierenden Polymerpartikel, wobei das Überkorn mittels mindestens eines Siebes abgetrennt wird und das Sieb oder bei mehreren Sieben das Sieb mit der niedrigsten Maschenweite die Maschenweite mi aufweist, ii) Nachvernetzen der klassierten Polymerpartikel und iii) Klassieren der nachvernetzten Polymerpartikel, wobei das Überkorn mittels mindestens eines Siebes abgetrennt wird und das Sieb oder bei mehreren Sieben das Sieb mit der niedrigsten Maschenweite die Maschenweite rri2 aufweist,
dadurch gekennzeichnet, dass rri2 größer mi ist.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Überkorn in Schritt i) mittels mindestens zweier Siebe unterschiedlicher Maschenweiten abgetrennt wird.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Überkorn in Schritt iii) mittels mindestens zweier Siebe unterschiedlicher Maschenweiten abgetrennt wird.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Maschenweite mi mindestens 600 μm beträgt.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Maschenweite rri2 mindestens 800 μm beträgt.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Maschenweite rri2 mindestens 50 μm größer ist als die Maschenweite m-i.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Überkorn in Schritt i) mittels mindestens zweier Siebe unterschiedlicher Maschenweiten abgetrennt wird und mindestens ein Sieb eine Maschenweite aufweist, die um mindestens 50 μm größer ist als die Maschenweite m-i.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Überkorn in Schritt iii) mittels mindestens zweier Siebe unterschiedlicher Maschenweiten abgetrennt wird und mindestens ein Sieb eine Maschenweite aufweist, die um mindestens 500 μm größer ist als die Maschenweite rri2.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die wasserabsorbierenden Polymerpartikel während des Klassierens eine Temperatur von mindestens 40 0C aufweisen.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass bei vermindertem Druck klassiert wird.
1 1. Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der stündliche Durchsatz an wasserabsorbierenden Polymerpartikeln beim Klassieren mindestens 100 kg pro m2 Siebfläche beträgt.
12. Verfahren gemäß einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die wasserabsorbierenden Polymerpartikel während des Klassierens von einem Gasstrom überströmt werden.
13. Verfahren gemäß Anspruch 12, dadurch gekennzeichnet, dass der Gasstrom eine Temperatur von 40 bis 120 0C aufweist.
14. Verfahren gemäß Anspruch 12 oder 13, dadurch gekennzeichnet, dass der Gasstrom einen Wasserdampfgehalt von weniger als 5 g/kg aufweist.
15. Verfahren zur kontinuierlichen Herstellung wasserabsorbierender Polymerpartikel, umfassend i) Klassieren der wasserabsorbierenden Polymerpartikel, wobei das Überkorn mittels mindestens eines Siebes abgetrennt wird und das Sieb oder bei mehreren Sieben das Sieb mit der niedrigsten Maschenweite die Maschenweite mi aufweist, ii) Nachvernetzen der klassierten Polymerpartikel und iii) Klassieren der nachvernetzten Polymerpartikel,
dadurch gekennzeichnet, dass das in Schritt iii) abgetrennte Überkorn weniger als 50 Gew.-% Partikel mit einer Korngröße kleiner oder gleich mi enthält und der Durchsatz in Schritt iii) mindestens 100 kg/m2 h beträgt.
16. Verfahren gemäß einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die wasserabsorbierenden Polymerpartikel vor Schritt ii) eine Zentrifugenretenti- onskapazität von mindestens 15 g/g aufweisen.
PCT/EP2007/060073 2006-09-25 2007-09-24 Verfahren zum klassieren wasserabsorbierender polymerpartikel WO2008037673A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07820480.7A EP2073943B2 (de) 2006-09-25 2007-09-24 Verfahren zum klassieren wasserabsorbierender polymerpartikel
JP2009529674A JP5766913B2 (ja) 2006-09-25 2007-09-24 吸水性ポリマー粒子の分級法
CN2007800353675A CN101516530B (zh) 2006-09-25 2007-09-24 吸水性聚合物颗粒的分级方法
US12/438,486 US7967148B2 (en) 2006-09-25 2007-09-24 Method for grading water-absorbent polymer particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06121230 2006-09-25
EP06121230.4 2006-09-25

Publications (1)

Publication Number Publication Date
WO2008037673A1 true WO2008037673A1 (de) 2008-04-03

Family

ID=38974694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/060073 WO2008037673A1 (de) 2006-09-25 2007-09-24 Verfahren zum klassieren wasserabsorbierender polymerpartikel

Country Status (5)

Country Link
US (1) US7967148B2 (de)
EP (1) EP2073943B2 (de)
JP (1) JP5766913B2 (de)
CN (1) CN101516530B (de)
WO (1) WO2008037673A1 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113671A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の充填方法
WO2009125849A1 (ja) 2008-04-11 2009-10-15 株式会社日本触媒 吸水性樹脂の表面処理方法および吸水性樹脂の製造方法
EP2137238A1 (de) * 2007-03-26 2009-12-30 Nippon Shokubai Co., Ltd. Klassifizierungsverfahren von partikelförmigem wasserabsorbierendem harz
WO2010032694A1 (ja) 2008-09-16 2010-03-25 株式会社日本触媒 吸水性樹脂の製造方法および通液性向上方法
WO2010094639A2 (de) 2009-02-18 2010-08-26 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2011034147A1 (ja) 2009-09-16 2011-03-24 株式会社日本触媒 吸水性樹脂粉末の製造方法
WO2011115216A1 (ja) 2010-03-17 2011-09-22 株式会社日本触媒 吸水性樹脂の製造方法
WO2011136301A1 (ja) 2010-04-27 2011-11-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2012144595A1 (ja) 2011-04-20 2012-10-26 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法および製造装置
WO2014021432A1 (ja) 2012-08-01 2014-02-06 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
WO2015046604A1 (ja) 2013-09-30 2015-04-02 株式会社日本触媒 粒子状吸水剤の充填方法および粒子状吸水剤充填物のサンプリング方法
US9233186B2 (en) 2010-03-12 2016-01-12 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US9328207B2 (en) 2009-10-09 2016-05-03 Basf Se Method for re-wetting surface post-cross-linked, water-absorbent polymer particles
US9976001B2 (en) 2010-02-10 2018-05-22 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin powder
EP2978462B1 (de) * 2013-03-28 2018-10-10 Basf Se Verfahren zur klassifizierung wasserabsorbierender polymerperlen
WO2019011793A1 (en) 2017-07-12 2019-01-17 Basf Se PROCESS FOR PRODUCING SUPERABSORBENT POLYMER PARTICLES
US10537874B2 (en) 2015-04-02 2020-01-21 Nippon Shokubai Co., Ltd. Method for producing particulate water-absorbing agent

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517703A (ja) * 2007-12-19 2011-06-16 ビーエーエスエフ ソシエタス・ヨーロピア 表面架橋超吸収性物質の製造方法
JP5631866B2 (ja) 2009-03-31 2014-11-26 株式会社日本触媒 粒子状吸水性樹脂の製造方法
US9012356B2 (en) 2011-11-16 2015-04-21 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin
CN102580919A (zh) * 2012-02-29 2012-07-18 成都中光电科技有限公司 玻璃原料有效粒径的检测方法
EP2890411B1 (de) * 2012-08-29 2021-10-06 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
JP5883948B2 (ja) 2012-11-27 2016-03-15 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
KR102566284B1 (ko) 2018-11-14 2023-08-10 주식회사 엘지화학 고흡수성 수지의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855232A2 (de) * 1997-01-27 1998-07-29 Nippon Shokubai Co., Ltd. Verfahren zur Klasssifizierung von hydrophilen Polymerpartikeln und Siebvorrichtung
WO2005080479A1 (de) * 2004-02-24 2005-09-01 Basf Aktiengesellschaft Verfahren zur nachvernetzung wasserabsorbierender polymere
WO2006074816A1 (de) * 2005-01-13 2006-07-20 Basf Aktiengesellschaft Verfahren zum klassieren eines teilchenförmigen wasserabsorbierenden harzes

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2683533A (en) * 1950-03-10 1954-07-13 Huntley Mfg Company Grain separator and cleaner
US3061095A (en) * 1960-10-10 1962-10-30 Process Engineers Inc Machine for processing mineral material
US3620368A (en) * 1969-06-02 1971-11-16 Dart Ind Inc Classification of dry polymer beads
US4192920A (en) * 1978-07-24 1980-03-11 Rohm And Haas Company Uniform polymer beads and ion exchange resins therefrom prepared by post-crosslinking of lightly crosslinked beads
US5002986A (en) * 1989-02-28 1991-03-26 Hoechst Celanese Corporation Fluid absorbent compositions and process for their preparation
CA2038779A1 (en) * 1990-04-02 1991-10-03 Takumi Hatsuda Method for production of fluid stable aggregate
ES2091924T3 (es) 1990-04-02 1996-11-16 Procter & Gamble Composiciones polimericas absorbentes, en forma de particulas que contienen agregados entrecruzados entre particulas.
DE69229828T2 (de) 1991-04-12 2000-04-20 Procter & Gamble Absorbierende strukturen mit spezifischer teilchengrössenverteilung von superabsorbierenden hydrogel formende materialien
JP4271736B2 (ja) 1997-04-29 2009-06-03 シュトックハウゼン ゲゼルシャフト ミット ベシュレンクテル ハフツング すぐれた加工性を有する高吸収性ポリマー
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US7183360B2 (en) 2001-10-05 2007-02-27 Basf Aktiengesellschaft Method for crosslinking hydrogels with morpholine-2,3-diones
JP2003320308A (ja) 2002-04-30 2003-11-11 Sumitomo Chem Co Ltd 水硬性粉体の造粒物の篩別方法および装置
JP4460851B2 (ja) * 2003-05-27 2010-05-12 株式会社日本触媒 吸水性樹脂の整粒方法
AU2005285763A1 (en) 2004-09-24 2006-03-30 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent containing water-absorbent resin as a main component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855232A2 (de) * 1997-01-27 1998-07-29 Nippon Shokubai Co., Ltd. Verfahren zur Klasssifizierung von hydrophilen Polymerpartikeln und Siebvorrichtung
WO2005080479A1 (de) * 2004-02-24 2005-09-01 Basf Aktiengesellschaft Verfahren zur nachvernetzung wasserabsorbierender polymere
WO2006074816A1 (de) * 2005-01-13 2006-07-20 Basf Aktiengesellschaft Verfahren zum klassieren eines teilchenförmigen wasserabsorbierenden harzes

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2137238A1 (de) * 2007-03-26 2009-12-30 Nippon Shokubai Co., Ltd. Klassifizierungsverfahren von partikelförmigem wasserabsorbierendem harz
EP2137238A4 (de) * 2007-03-26 2013-08-28 Nippon Catalytic Chem Ind Klassifizierungsverfahren von partikelförmigem wasserabsorbierendem harz
WO2009113671A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の充填方法
WO2009113673A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2009125849A1 (ja) 2008-04-11 2009-10-15 株式会社日本触媒 吸水性樹脂の表面処理方法および吸水性樹脂の製造方法
WO2010032694A1 (ja) 2008-09-16 2010-03-25 株式会社日本触媒 吸水性樹脂の製造方法および通液性向上方法
WO2010094639A2 (de) 2009-02-18 2010-08-26 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US8608096B2 (en) 2009-02-18 2013-12-17 Basf Se Method for the production of water-absorbing polymer particles
EP2479195A1 (de) * 2009-09-16 2012-07-25 Nippon Shokubai Co., Ltd. Verfahren zur herstellung eines wasserabsorbierenden harzpulvers
CN102498134A (zh) * 2009-09-16 2012-06-13 株式会社日本触媒 吸水性树脂粉末的制造方法
JP5718817B2 (ja) * 2009-09-16 2015-05-13 株式会社日本触媒 吸水性樹脂粉末の製造方法
US9102804B2 (en) 2009-09-16 2015-08-11 Nippon Shokubai Co., Ltd Production method for water-absorbing resin powder
US8513378B2 (en) 2009-09-16 2013-08-20 Nippon Shokubai Co., Ltd. Production method for water-absorbing resin powder
WO2011034146A1 (ja) 2009-09-16 2011-03-24 株式会社日本触媒 吸水性樹脂粉末の製造方法
WO2011034147A1 (ja) 2009-09-16 2011-03-24 株式会社日本触媒 吸水性樹脂粉末の製造方法
JP5718816B2 (ja) * 2009-09-16 2015-05-13 株式会社日本触媒 吸水性樹脂粉末の製造方法
EP2479195A4 (de) * 2009-09-16 2014-07-02 Nippon Catalytic Chem Ind Verfahren zur herstellung eines wasserabsorbierenden harzpulvers
US9328207B2 (en) 2009-10-09 2016-05-03 Basf Se Method for re-wetting surface post-cross-linked, water-absorbent polymer particles
US9976001B2 (en) 2010-02-10 2018-05-22 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin powder
US9233186B2 (en) 2010-03-12 2016-01-12 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US9272068B2 (en) 2010-03-12 2016-03-01 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US10307506B2 (en) 2010-03-12 2019-06-04 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
WO2011115216A1 (ja) 2010-03-17 2011-09-22 株式会社日本触媒 吸水性樹脂の製造方法
WO2011115221A1 (ja) 2010-03-17 2011-09-22 株式会社日本触媒 吸水性樹脂の製造方法
WO2011136301A1 (ja) 2010-04-27 2011-11-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2012144595A1 (ja) 2011-04-20 2012-10-26 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法および製造装置
KR20150040884A (ko) 2012-08-01 2015-04-15 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수성 수지의 제조 방법
WO2014021432A1 (ja) 2012-08-01 2014-02-06 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
EP2978462B1 (de) * 2013-03-28 2018-10-10 Basf Se Verfahren zur klassifizierung wasserabsorbierender polymerperlen
WO2015046604A1 (ja) 2013-09-30 2015-04-02 株式会社日本触媒 粒子状吸水剤の充填方法および粒子状吸水剤充填物のサンプリング方法
EP4159307A1 (de) 2013-09-30 2023-04-05 Nippon Shokubai Co., Ltd. Verfahren zum füllen eines partikelförmigen wasserabsorptionsmittels und verfahren zur probenahme eines gefüllten partikelförmigen wasserabsorptionsmittels
US10537874B2 (en) 2015-04-02 2020-01-21 Nippon Shokubai Co., Ltd. Method for producing particulate water-absorbing agent
WO2019011793A1 (en) 2017-07-12 2019-01-17 Basf Se PROCESS FOR PRODUCING SUPERABSORBENT POLYMER PARTICLES
US11680142B2 (en) 2017-07-12 2023-06-20 Basf Se Process for producing superabsorbent polymer particles

Also Published As

Publication number Publication date
EP2073943B2 (de) 2020-09-02
EP2073943A1 (de) 2009-07-01
CN101516530A (zh) 2009-08-26
US20090194462A1 (en) 2009-08-06
EP2073943B1 (de) 2012-11-14
CN101516530B (zh) 2012-06-27
US7967148B2 (en) 2011-06-28
JP5766913B2 (ja) 2015-08-19
JP2010504417A (ja) 2010-02-12

Similar Documents

Publication Publication Date Title
EP2073943B1 (de) Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP2076338B1 (de) Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP2069409B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2076337A1 (de) Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP1949011B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP1838463B1 (de) Verfahren zum klassieren eines teilchenförmigen wasserabsorbierenden harzes
EP2307062B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2291416A1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2238181B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2069121B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2225284B2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2222398B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
CN110799275A (zh) 超吸收性聚合物颗粒的分级方法
EP2129706A1 (de) Verfahren zum beschichten wasserabsorbierender polymerpartikel
EP3464427A1 (de) Verfahren zur herstellung von superabsorbern

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780035367.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07820480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007820480

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12438486

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009529674

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE