WO2008035565A1 - réactif de détection de biomolécule et procédé de détection de biomolécule utilisant ledit réactif - Google Patents

réactif de détection de biomolécule et procédé de détection de biomolécule utilisant ledit réactif Download PDF

Info

Publication number
WO2008035565A1
WO2008035565A1 PCT/JP2007/067182 JP2007067182W WO2008035565A1 WO 2008035565 A1 WO2008035565 A1 WO 2008035565A1 JP 2007067182 W JP2007067182 W JP 2007067182W WO 2008035565 A1 WO2008035565 A1 WO 2008035565A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomolecule
semiconductor
detection
semiconductor nanoparticle
biomolecule detection
Prior art date
Application number
PCT/JP2007/067182
Other languages
English (en)
French (fr)
Inventor
Hideki Hoshino
Kazuya Tsukada
Kazuyoshi Goan
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2008535311A priority Critical patent/JPWO2008035565A1/ja
Priority to US12/441,520 priority patent/US20090325814A1/en
Publication of WO2008035565A1 publication Critical patent/WO2008035565A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/588Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots

Definitions

  • the present invention relates to a biomolecule detection reagent using a semiconductor nanoparticle assembly and a biomolecule detection method using the same.
  • nanoparticle complexes that interact with biological systems have recently gained widespread interest in the fields of biology and medicine. These complexes are considered promising as new intravascular probes for both sensing (eg imaging) and therapeutic purposes (eg drug delivery).
  • a material that exhibits a quantum confinement effect in a nanometer-sized semiconductor material is called a “quantum dot”.
  • a quantum dot has a force S, which is a small lump within a few tens of nanometers, where hundreds to thousands of semiconductor atoms gather, and when it reaches an energy excited state by absorbing light from the excitation source. The energy equivalent to the energy band gap is released. Therefore, by adjusting the size or material composition of the quantum dots, the energy band gap can be adjusted and various levels of energy in the wavelength band can be used.
  • the marker substances such as organic fluorescent dyes conventionally used in this method are disadvantageous in that they are severely deteriorated when irradiated with ultraviolet rays and have a short life, and the luminous efficiency is low and the sensitivity is not sufficient. .
  • Patent Document 3 For example, a technique for easily detecting biopolymers such as DNA and proteins using semiconductor nanoparticles having different excitation wavelengths and fluorescence depending on the particle size is disclosed (for example, Patent Document 3). reference).
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-329686
  • Patent Document 2 JP-A-2005-172429
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-322654
  • the present invention has been made in view of the above problems, and a solution to the problem is that in the biomolecule detection reagent using semiconductor nanoparticles, the biodetection molecules are evenly distributed on the surface of the semiconductor nanoparticles.
  • the present invention provides a reagent for detecting a biomolecule that is present in the present invention and has a small variation in fluorescence intensity with little variation in fluorescence intensity.
  • the present invention provides a biomolecule detection reagent in which one detection molecule that specifically binds to a biomolecule exists per semiconductor nanoparticle.
  • a reagent for detecting a biomolecule using an assembly of semiconductor nanoparticles the semiconductor nanoparticle
  • Each semiconductor nanoparticle constituting the nanoparticle assembly has a detection molecule that specifically binds to a biomolecule on the surface, and the standard deviation of the number of detection molecules present on each semiconductor nanoparticle is 5
  • a biomolecule detection method characterized by using the biomolecule detection reagent according to any one of 1 to 4 above.
  • the biodetection molecules are evenly present on the surface of the semiconductor nanoparticles and the variation in fluorescence intensity is small. Reduction of fluorescence intensity ⁇ A reagent for detecting biomolecules with little fluctuation can be provided. In particular, it is possible to provide a reagent for detecting a biomolecule that has a molecular force for detection that specifically binds to a biomolecule per semiconductor nanoparticle.
  • the biomolecule detection reagent of the present invention is a biomolecule detection reagent using a semiconductor nanoparticle aggregate, and each semiconductor nanoparticle constituting the semiconductor nanoparticle aggregate is specific to the biomolecule on the surface.
  • Has a detection molecule that binds to the force on each semiconductor nanoparticle The standard deviation of the number of detection molecules present is 5% or less. This feature is common to the inventions according to claims 1 to 4.
  • semiconductor nanoparticle aggregate refers to a solution containing semiconductor nanoparticles, a sheet in which semiconductor nanoparticles are dispersed, a powder composed of semiconductor nanoparticles, and the like.
  • the biomolecule detection reagent of the present invention preferably uses a plurality of semiconductor nanoparticles that emit fluorescence having different wavelengths depending on the particle size. Also in this case, the standard deviation of the number of detection molecules present on each semiconductor nanoparticle needs to be 5% or less.
  • the semiconductor nanoparticles constituting the biomolecule detection reagent of the present invention can be formed using various semiconductor materials.
  • semiconductor compounds of Group IV, II VI, and III V of the periodic table of elements can be used.
  • GaAs, GaN, GaPGaSb, InGaAs, InP, InN, InSb, InAs, AlAs, A1P, AlSb, and A1S are preferable.
  • Group IV semiconductors Ge, Pb and Si are particularly suitable.
  • the semiconductor nanoparticles may be particles having a core / shell structure.
  • the so-called core / shell type semiconductor nanoparticles are semiconductor nanoparticles having a core / shell structure composed of core particles composed of semiconductor nanoparticles and a shell layer covering the core particles. It is preferable that the chemical composition of the particles and the shell layer are different.
  • semiconductor materials can be used as the semiconductor material used for the core particles.
  • Specific examples include, for example, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, Sr Se, SrTe, BaS, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, GaAs, GaP, GaSb, InGaAs, InP, InN, InSb, InAs, AlAs, A1P, AlSb, A1S, PbS, PbSe,
  • Ge, Si, or a mixture thereof can be used.
  • a particularly preferable semiconductor material is Si.
  • a very small amount of a doping material such as Ga may be included.
  • the average particle diameter of the core in order to achieve the effect of the invention, it is preferably 1 to;
  • the average particle size by setting the average particle size to !! to lOnm, it is possible to label and detect biomolecules with small particle size. Furthermore, if it is from! To 5 nm, sufficient labeling and dynamic imaging of one biological molecule is possible. It becomes. Therefore, particularly preferred is l-5 nm.
  • the "average particle size" of the core particles according to the present invention refers to a cumulative 50% volume particle size measured by a laser scattering method.
  • Various semiconductor materials can be used as the semiconductor material used for the shell layer.
  • a preferable material for the shell layer includes a semiconductive material having a bandgap energy higher than that of the semiconductive nanocrystal core.
  • suitable materials for shells are good conductivity and valence band offsets for the core semiconducting nanocrystals. Should have.
  • the conduction band is desirably higher than the conduction band of the core semiconducting nanocrystal and the valence band is desirably lower than the valence band of the core semiconducting nanocrystal.
  • Materials with band gap energy in the ultraviolet region for semiconducting nanocrystal cores that emit energy in the visible (eg Si, Ge, GaP) or in the near infrared (eg InP, InN, PbS, PbSe) Can be used.
  • a material with a visible band gap energy can also be used for a semiconducting nanocrystal core emitting in the near infrared.
  • the semiconductor material is SiO or ZnS.
  • the shell layer according to the present invention has no adverse effects as long as the core particles are partially exposed.
  • the entire surface of the core particle may not be completely covered.
  • the production method of the liquid phase method includes a precipitation method such as a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method.
  • a precipitation method such as a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method.
  • the reverse micelle method, the supercritical hydrothermal synthesis method, and the like are also excellent methods for producing nanoparticles (for example, JP 2002-322468, JP 2005-239775, JP 10-10). (See 310770 and JP 2000-104058).
  • a manufacturing method of the vapor phase method (1) a second high temperature generated by electrodeless discharge in a reduced-pressure atmosphere by evaporating opposing raw material semiconductors by a first high-temperature plasma generated between electrodes (2) A method for separating and removing nanoparticles from an anode made of a raw material semiconductor by electrochemical etching (for example, JP 2003-279015 A). —Refer to Japanese Patent No. 515459), laser abrasion method (for example, refer to Japanese Patent Laid-Open No. 2004-356163), and the like. Further, a method of synthesizing powder containing particles by reacting a raw material gas in a gas phase in a low pressure state is also preferably used.
  • a production method by a liquid phase method is particularly preferable.
  • the surface of the semiconductor nanoparticle aggregate according to the present invention is generally hydrophobic, If it remains, problems such as aggregation of particles having poor water dispersibility may occur. Therefore, it is preferable to hydrophilize the surface of the nanoparticles (in the case of core / shell type semiconductor nanoparticles, the surface of the shell layer).
  • Examples of the hydrophilic treatment method include a method of chemically and / or physically binding a surface modifier to the particle surface after removing the lipophilic group on the surface with pyridine or the like.
  • a surface modifier those having a carboxyl group or an amino group as a hydrophilic group are preferably used, and specific examples include mercaptopropionic acid, mercaptodecanoic acid, and aminoprononthiol.
  • the detection molecule according to the present invention is not particularly limited as long as it can be used for specific detection of biopolymers.
  • biopolymers for example, avidin or streptavidin or biotin, antigen or antibody, Examples thereof include oligos or polynucleotides such as DNA or RNA.
  • an alkylthiol compound having a carboxyl group as a substituted alkylthiol hereinafter sometimes referred to as thiolcarboxylic acid
  • the carboxyl group is used.
  • biotin When biotin is bound as a molecule for detection, for example, an alkylthiol compound having an amino group as a substituted alkylthiol (hereinafter sometimes referred to as aminothiol! /) Is used, and an amino group is used. Is prepared by reacting it with a derivatized biotin such as Biotin-Sulfo-Osu (Sulfosuccinimidyl D-biotin) (Dojindo Laboratories). Can be combined.
  • a derivatized biotin such as Biotin-Sulfo-Osu (Sulfosuccinimidyl D-biotin) (Dojindo Laboratories).
  • a person skilled in the art can appropriately select reaction conditions and reagents suitable for binding by a substitution reaction, depending on the functional group on the semiconductor nanoparticle and the type of target molecule for detection.
  • the detection molecule is preferably avidin, streptavidin, or biotin.
  • the biomolecule detection reagent of the present invention is characterized in that a detection molecule that specifically binds to a biomolecule is present on the surface of the semiconductor nanoparticle.
  • the standard deviation of the number of molecules for detection present on each semiconductor nanoparticle is 5% or less.
  • the standard deviation here represents the degree of variation in the number of detected molecules bonded to the semiconductor nanoparticles, and is the square root of the mean square of the difference (deviation) between the number of detected molecules for each semiconductor and their average value. expressed.
  • it is particularly preferable that one semiconductor nanoparticle has a molecular force for detection that specifically binds to a biomolecule.
  • one semiconductor nanoparticle can be formed.
  • the surface of the semiconductor nanoparticle can be modified by reacting it with a molecule for detection.
  • Detection of a biomolecule such as a biopolymer using the biomolecule detection reagent of the present invention is performed using a sample containing a biomolecule, for example, a polynucleotide protein labeled with a molecule that can react specifically with the detection molecule.
  • a biomolecule for example, a polynucleotide protein labeled with a molecule that can react specifically with the detection molecule.
  • the biomolecule detection reagent of the present invention can be added to the semiconductor nanoparticles that have produced specific binding, and the fluorescence can be detected.
  • the binding reaction and detection can also be performed in solution. .
  • the detection may be performed in a cell containing a biomolecule, or may be caused to react on a microarray such as a DNA chip or a protein chip.
  • an oligonucleotide fixed on a DNA chip and an oligonucleotide labeled with biotin are hybridized, and then avidin or streptavidin is added thereto.
  • the presence or absence of hybridization can be detected by adding the attached semiconductor nanoparticles.
  • the ability to determine whether or not the target gene is present in the target sample can be determined by the presence or absence of the hybridisation.
  • the “oligonucleotide” is not particularly limited, but is a DNA or RNA oligonucleotide having a length of 100 bases or less. You can use both natural and synthetic ingredients.
  • oligonucleotide immobilized on a DNA chip and cDNA labeled with biotin semiconductor nanoparticles to which avidin or streptavidin is bound are added thereto. Can detect the presence or absence of hybridization. Whether or not the target gene is present in the target sample can be determined based on the presence or absence of hybridization.
  • oligonucleotide immobilized on a DNA chip and a cDNA labeled with avidin or streptavidin semiconductor nanoparticles bound with biotin are added thereto.
  • the ability to detect the presence or absence of hybridization. Whether or not the target gene is present in the target sample can be determined based on the presence or absence of hybridization.
  • a tag immobilized on a protein chip is used. After binding the protein and the protein labeled with biotin, the presence or absence of binding between the proteins can be detected by adding semiconductor nanoparticles to which avidin or streptavidin is bound.
  • a semiconductor nanoparticle having biotin bound thereto is added thereto to add a protein between the proteins. Can detect the presence or absence of binding
  • the biomolecule detection method according to the present invention is preferably a method in which semiconductor nanoparticles are bound to avidin or streptavidin, and biomolecules labeled with biotin are detected by fluorescence of the semiconductor nanoparticles.
  • a plurality of types of biopolymers can be detected using a plurality of types of semiconductor nanoparticles having different particle sizes or chemical compositions. If each peak of the fluorescence spectrum of the semiconductor nanoparticles used can be identified, multiple types of biopolymers can be detected at the same time. A force that depends on the sharpness of the peak, for example, two peaks separated by about lOOnm It is sufficiently identifiable. The detectable range is 400 nm to 700 nm.
  • the semiconductor nanoparticles were surface modified using aminothiol.
  • the amino group of the surface modifier is modified with biotin for labeling the amino group.
  • S-2- (3-Ethylaminopropylamino) ethyl dihydrogen phosphorothioate was injected into a suspension of 20 nm indium gallium phosphide / zinc sulfide core / shell type semiconductor nanoparticles. After stirring for 24 hours under a nitrogen atmosphere, an equivalent amount of sulfosuccinimidyl D-biotin to the amino group of the thiol compound was added to the reaction solution. Thereafter, the mixture was stirred for 1 hour in a nitrogen atmosphere to obtain semiconductor nanoparticles bonded with biotin.
  • FITC fluorescein isocyanate 1 per biotin molecule bonded to the semiconductor 1
  • FITC fluorescein isocyanate 1 per biotin molecule bonded to the semiconductor 1
  • a calibration curve graph of the number of FITC molecules and the emission intensity was prepared in advance.
  • the number of FITC was calculated from the obtained emission intensity using a calibration curve, and the number of biotin junctions for each semiconductor nanoparticle was determined. The result was obtained for 100 particles and the standard deviation of the biotin adsorption number was determined to be 6%.
  • S—2— (3-ethylaminopropylamino) ethyl dihydrogen phosphorothioate was introduced into a suspension of 20 nm indium gallium phosphide / zinc sulfide core / shell semiconductor nanoparticles in a nitrogen atmosphere. After stirring for 24 hours, semiconductor nanoparticles were deposited on a porous silica film having a pore size controlled to 25 to 30 nm. After that, sulfosuccinimidyl D biotin equivalent to the amino group of the thiol compound is put into the porous silica film on which the semiconductor nanoparticles are deposited, and stirred for 1 hour in a nitrogen atmosphere, and then unreacted. Objects were removed and washed to obtain semiconductor nanoparticles bound with only one biotin. That is, the most preferable standard deviation of the present invention is 0%.
  • the DNA (target) to be labeled using the avidin-biotin system is detected by performing a hybridization reaction (detection of DNA on the chip). Use DNA whose ends are modified with avidin.
  • the semiconductor nanoparticles are modified with biotin and become a fluorescent label for DNA.
  • solution D guanidine thiocyanate, n-lauryl sarcosine, 1M sodium citrate, ⁇ mercaptoethanol
  • solution D guanidine thiocyanate, n-lauryl sarcosine, 1M sodium citrate, ⁇ mercaptoethanol
  • Centrifugation was performed at 4 ° C for 15000 rpm for 5 minutes, suspended again in 4 ml of DEPC-treated water, 650 1 of 5M sodium chloride, and 8 ml of CTAB / urea solution were added, and centrifuged at 15000 rpm for 5 minutes at room temperature. Add 8ml of ethanol and cool at 20 ° C for 1 hour, 15000rpm 5 minutes 4 ° C And centrifuged. It was washed with 70% ethanol and resuspended in DEPC-treated water.
  • RNA sample / primer mixture 10 X PCR buffer, 25 mM MgCl, 10 mM dNTP mix, 0.1 MD ⁇ , reverse transcriptase 1, 1 1 and incubate at 42 ° C for 50 min. After stopping, 1 ⁇ l of RNaseH was added and incubated at 37 ° C for 20 minutes, and PCR was performed to obtain avidinized cDNA.
  • the hybridized cDNA was labeled by adding semiconductor nanoparticles with biotin to the DNA chip after the hybridization reaction and reacting them.
  • the fluorescence intensity of each spot on the DNA chip was measured with a fluorescence scanner.
  • the standard deviation of the fluorescence intensity (signal) when the above operation was performed 100 times was confirmed.
  • the standard deviation of the comparative example was 8.6%, while the standard deviation of the example according to the present invention was 3.3%.
  • the examples using the biomolecule detection reagent of the present invention have a smaller standard deviation of the fluorescence intensity of each spot on the DNA chip and higher detection accuracy than the comparative example. It can be seen that the reproducibility is high. This is because the semiconductor nanoparticles of the biomolecule detection reagent of the present invention are uniformly attached to the semiconductor nanoparticles of the biomolecule detection reagent according to the present invention, and the variation in fluorescence intensity is reduced. is there. Also, the magnitude of the fluorescence intensity (absolute Value), it was found that there is substantially one detection molecule that specifically binds to a biomolecule in one semiconductor nanoparticle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

明 細 書
生体分子検出用試薬及びそれを用いた生体分子検出方法
技術分野
[0001] 本発明は、半導体ナノ粒子集合体を利用した生体分子検出用試薬及びそれを用 いた生体分子検出方法に関する。
背景技術
[0002] ナノテクノロジーにおける最近の進歩は、ナノ粒子を、検出、診断、感知及びその 他の用途に使用することの可能性を示唆している。また、生物系と相互作用するナノ 粒子複合体は、最近生物及び医学の分野で広く関心を集めている。これらの複合体 は、感知(例えば画像化)及び治療目的(例えば薬物送達)の両方にとって新規血管 内プローブとして有望であると考えられてレ、る。
[0003] 一般に、ナノ'メートルサイズの半導体物質で量子閉じ込め(quantum confinem ent)効果を示す物質は「量子ドット」と称されている。このような量子ドットは、半導体 原子が数百個から数千個集まった 10数 nm程度以内の小さな塊である力 S、励起源か ら光を吸収してエネルギー励起状態に達すると、量子ドットのエネルギーバンドギヤッ プに相当するエネルギーを放出する。したがって、量子ドットの大きさまたは物質組 成を調節すると、エネルギーバンドギャップを調節することができて様々な水準の波 長帯のエネルギーを利用することができる。
[0004] ところで、分子生物学の進歩によって生体が活動するさまざまな仕組みが明らかに なり脳ゃレ、ろ!/、ろな臓器の病気やガンなどを分子レベルで解明する試みが行われて いる。そのひとつとして生体の機能とその異常を蛍光画像として捉える所謂バイオ'ィ メージング法が進展しつつある。この分野において、生体分子検出方法として、従来 分子標識物質をマーカー物質に結合した生体物質標識剤を用いる方法が検討され ている。し力、し、当該方法で従来使用されてきた有機蛍光色素などのマーカー物質 は、紫外線照射時の劣化が激しく寿命が短いことが欠点であり、また発光効率が低く 、感度も十分ではなかった。
[0005] そのため、近年、上記マーカー物質として半導体ナノ粒子を用いる方法が注目され ている。例えば、極性官能基を有する高分子を半導体ナノ粒子の表面に物理的およ び/または化学的に吸接合した生体物質標識剤が検討されている(例えば、特許文 献 1参照。)。また、有機分子を Si/SiO型半導体ナノ粒子の表面に結合した生体 物質標識剤が検討されている (例えば、特許文献 2参照。)。
[0006] 例えば、粒径の違いにより異なる励起波長及び蛍光を持つ半導体ナノ粒子を利用 して、 DNAやタンパク質等の生体高分子を容易に検出する技術が開示されている( 例えば、特許文献 3参照)。
[0007] しかしながら、上記の従来公知の方法においては、半導体ナノ粒子 1個当たり;!〜 1
000個の検出用分子を結合させた生体物質標識剤又は生体分子検出用試薬となつ ているため、複数の抗原に 1個のナノ粒子が結合してしまい、発光シグナルの低減- 変動等が起こり、所望の結果が得られない。また、液中での混合攪拌では全てのナノ 粒子に均等に結合分子が付かず、ばらつきが大きいといような問題があった。
[0008] また、近年、半導体ナノ粒子を用いた種々の検出方法が開発されてきている力 半 導体ナノ粒子と検出用分子とを 1対 1で反応させる技術がなかった。
特許文献 1 :特開 2003— 329686号公報
特許文献 2:特開 2005— 172429号公報
特許文献 3:特開 2003— 322654号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、半導体ナノ粒 子を利用した生体分子検出用試薬において、半導体ナノ粒子表面上に、生体検出 用分子が均等に存在し、蛍光強度のばらつきが小さぐ蛍光強度の低減'変動が少 ない生体分子検出用試薬を提供することである。特に、半導体ナノ粒子 1個当たり、 生体分子と特異的に結合する検出用分子が 1個存在する生体分子検出用試薬を提 供することである。
課題を解決するための手段
[0010] 本発明に係る上記課題は下記の手段により解決される。
[0011] 1.半導体ナノ粒子集合体を利用した生体分子検出用試薬であって、該半導体ナ ノ粒子集合体を構成する各半導体ナノ粒子が表面上に生体分子と特異的に結合す る検出用分子を有し、かつ各半導体ナノ粒子上に存在する該検出用分子数の標準 偏差が 5%以下であることを特徴とする生体分子検出用試薬。
[0012] 2.前記半導体ナノ粒子 1個当たり、生体分子と特異的に結合する検出用分子が 1 個存在することを特徴とする前記 1に記載の生体分子検出用試薬。
[0013] 3.前記半導体ナノ粒子が粒径の違いにより異なる波長の蛍光を発することを特徴 とする前記 1又は 2に記載の生体分子検出用試薬。
[0014] 4.前記検出用分子がアビジン若しくはストレプトアビジン、又はビォチンであること を特徴とする前記;!〜 3のいずれか 1項に記載の生体分子検出用試薬。
[0015] 5.前記 1〜4のいずれ力、 1項に記載の生体分子検出用試薬を用いることを特徴と する生体分子検出方法。
[0016] 6.前記 5に記載の生体分子検出方法であって、半導体ナノ粒子をアビジン又はス トレブトアビジンと結合させ、ビォチンにより標識された生体分子を該半導体ナノ粒子 の蛍光により検出することを特徴とする生体分子検出方法。
[0017] 7.前記 5又は 6に記載の生体分子検出方法であって、マイクロアレイ上で実施する ことを特徴とする生体分子検出方法。
発明の効果
[0018] 本発明の上記手段により、半導体ナノ粒子を利用した生体分子検出用試薬におい て、半導体ナノ粒子表面上に、生体検出用分子が均等に存在し、蛍光強度のばらつ きが小さぐ蛍光強度の低減 ·変動が少ない生体分子検出用試薬を提供することが できる。特に、半導体ナノ粒子 1個当たり、生体分子と特異的に結合する検出用分子 力 ^個存在する生体分子検出用試薬を提供することができる。
発明を実施するための最良の形態
[0019] 以下、本発明と構成要素等について詳細な説明をする。
[0020] (生体分子検出用試薬)
本発明の生体分子検出用試薬は、半導体ナノ粒子集合体を利用した生体分子検 出用試薬であって、該半導体ナノ粒子集合体を構成する各半導体ナノ粒子が表面 上に生体分子と特異的に結合する検出用分子を有し、力、つ各半導体ナノ粒子上に 存在する該検出用分子数の標準偏差が 5%以下であることを特徴とする。この特徴 は、請求の範囲 1〜4に係る発明に共通する特徴である。
[0021] ここで、本発明に係る「半導体ナノ粒子集合体」とは、半導体ナノ粒子を含有する溶 液、半導体ナノ粒子が分散したシート、半導体ナノ粒子からなる粉体などを指す。
[0022] なお、本発明の生体分子検出用試薬は、粒径の違いにより異なる波長の蛍光を発 する複数の半導体ナノ粒子を使用することも好ましレ、態様の一つである。この場合に も、各半導体ナノ粒子上に存在する該検出用分子数の標準偏差が 5%以下であるこ とを要する。
[0023] 以下、本発明の生体分子検出用試薬の構成要素について説明する。
[0024] 〈半導体ナノ粒子〉
本発明の生体分子検出用試薬を構成する半導体ナノ粒子は種々の半導体材料を 用いて形成することができる。例えば、元素の周期表の IV族、 II VI族、及び III V 族の半導体化合物を用いることができる。
[0025] II— VI族の半導体の中では、特に、 MgS、 MgSe、 MgSe、 MgTe、 CaS、 CaSe、 CaTe、 SrS、 SrSe、 SrTe、 BaS、 BaSe、 BaTe、 ZnS、 ZnSe、 ZnTe、 CdS、 CdSe 、 HgS、 HgSe及び HgTeを挙げることができる。
[0026] m—V族の半導体の中では、 GaAs、 GaN、 GaPGaSb, InGaAs, InP、 InN、 InS b、 InAs、 AlAs、 A1P、 AlSb及び A1Sが好ましい。
[0027] IV族の半導体の中では、 Ge、 Pb及び Siは特に適している。
[0028] 本発明においては、半導体ナノ粒子をコア/シェル構造を有する粒子にすることも できる。この場合、所謂コア/シェル型半導体ナノ粒子は半導体ナノ粒子からなるコ ァ粒子と該コア粒子を被覆するシェル層とで構成されるコア/シェル構造を有する半 導体ナノ粒子であって、該コア粒子とシェル層の化学組成が相異するものであること が好ましい。
[0029] 以下、コア粒子とシェル層について説明する。
[0030] 〈コア粒子〉
コア粒子に用いられる半導体材料としては、種々の半導体材料を用いることができ る。具体例としては、例えば、 MgS、 MgSe、 MgTe、 CaS、 CaSe、 CaTe、 SrS、 Sr Se、 SrTe、 BaS、 BaTe、 ZnS、 ZnSe、 ZnTe、 CdS、 CdSe、 CdTe、 GaAs、 GaP、 GaSb、 InGaAs, InP、 InN、 InSb、 InAs、 AlAs、 A1P、 AlSb、 A1S、 PbS、 PbSe、
Ge、 Si、又はこれらの混合物等が挙げられる。本発明において、特に好ましい半導 体材料は、 Siである。
[0031] なお、必要があれば Gaなどのドープ材料を極微量含んでもよい。
[0032] 本発明に係るコアの平均粒径に関しては、発明の効果発現のために、 1〜; !Onmで あること力 S好ましい。なお、平均粒径を;!〜 lOnmとすることにより小粒径の生体分子 の標識及び検知が可能となり、更に、;!〜 5nmであれば、十分に生体 1分子に対する 標識並びに動態イメージングが可能となる。従って、特に好ましいのは l〜5nmであ
[0033] なお、本発明に係るコア粒子の「平均粒径」とは、レーザー散乱法により測定される 累積 50%体積粒径をいう。
[0034] 〈シェル層〉
シェル層に用いられる半導体材料としては、種々の半導体材料を用いることができ る。具体列としては、 列えば、、 ZnO、 ZnS、 ZnSe、 ZnTe、 CdO、 CdS、 CdSe、 CdT e、 MgS、 MgSe、 GaS、 GaN、 GaP、 GaAs、 GaSb、 In As, InN、 InP、 InSb、 AIA s、 A1N、 A1P、 AlSb、又はこれらの混合物等が挙げられる。
[0035] なお、好ましいシェル層の材料としては、半導性ナノ結晶コアより高いバンドギヤッ プエネルギーを有する半導性材料が挙げられる。
[0036] 半導性微粒子結晶コアより高!/、バンドギャップエネルギーを有することに加えて、シ エルに適切な材料は、コア半導性ナノ結晶に関して、良好な伝導性および原子価バ ンドオフセットを有するべきである。従って、伝導性バンドは、コア半導性ナノ結晶の 伝導性バンドよりも望ましくは高ぐそして原子価バンドは、コア半導性ナノ結晶の原 子価バンドよりも望ましくは低い。可視で (例えば、 Si、 Ge、 GaP、)または近赤外で( 例えば、 InP、 InN、 PbS、 PbSe)エネルギーを放出する半導性ナノ結晶コアについ て、紫外線領域でバンドギャップエネルギーを有する材料が使用され得る。具体例と しては、例えば、 ZnS、 GaNおよびマグネシウムカルコゲニド(例えば、 MgS、 MgSe および MgTe)が挙げられる。 [0037] 近赤外で放出する半導性ナノ結晶コアにつ!/、て、可視でバンドギャップエネルギー を有する材料もまた使用され得る。
[0038] 本発明にお!/、て、特に好まし!/、半導体材料は、 SiO、 ZnSである。
[0039] なお、本発明に係るシェル層は、コア粒子が部分的に露出して弊害を生じない限り
、コア粒子の全表面を完全に被覆するものでなくてもよい。
[0040] 〈半導体ナノ粒子の製造方法〉
本発明の半導体ナノ粒子の製造については、従来公知の種々の方法を用いること ができる。
[0041] 液相法の製造方法としては、沈殿法である、共沈法、ゾルーゲル法、均一沈殿法、 還元法などがある。そのほかに、逆ミセル法、超臨界水熱合成法、などもナノ粒子を 作製する上で優れた方法である(例えば、特開 2002— 322468号、特開 2005— 23 9775号、特開平 10— 310770号、特開 2000— 104058号の各公報を参照。 )。
[0042] 気相法の製造方法としては、(1)対向する原料半導体を電極間で発生させた第一 の高温プラズマによって蒸発させ、減圧雰囲気中において無電極放電で発生させた 第二の高温プラズマ中に通過させる方法 (例えば、特開平 6— 279015号公報参照 。)、(2)電気化学的エッチングによって、原料半導体からなる陽極からナノ粒子を分 離'除去する方法(例えば、特表 2003— 515459号公報参照。)、レーザーアブレ一 シヨン法 (例えば、特開 2004— 356163号参照。)などが用いられる。また、原料ガス を低圧状態で気相反応させて、粒子を含む粉末を合成する方法も、好ましく用いら れる。
[0043] 本発明の蛍光半導体微粒子の製造方法としては、特に液相法による製造方法が 好ましい。
[0044] なお、本発明に係る半導体ナノ粒子の粒径や発光強度の均一性を実現するため に、原材料の純度、合成濃度、合成温度と時間、粒子形成後のァニール温度 '時間 等の条件を最適化して、格子欠陥が少なく結晶性の高い半導体ナノ粒子とすること を要する。
[0045] 〈検出用分子による半導体ナノ粒子の表面修飾〉
本発明に係る半導体ナノ粒子集合体表面は、一般的には、疎水性であるため、そ のままでは水分散性が悪ぐ粒子が凝集してしまう等の問題が生じる場合がある。従 つて、ナノ粒子の表面(コア/シェル型半導体ナノ粒子の場合は、シェル層の表面) を親水化処理することが好ましレ、。
[0046] 親水化処理の方法としては例えば、表面の親油性基をピリジン等で除去した後に 粒子表面に表面修飾剤を化学的および/または物理的に結合させる方法がある。 表面修飾剤としては、親水基として、カルボキシル基 'ァミノ基を持つものが好ましく 用いられ、具体的にはメルカプトプロピオン酸、メルカプトゥンデカン酸、アミノプロノ ンチオールなどがあげられる。
[0047] 本発明に係る検出用分子としては、生体高分子の特異的検出のために使用し得る ものであれば特に限定するものではないが、例えばアビジン若しくはストレブトァビジ ンまたはビォチン、抗原または抗体、 DNAまたは RNA等のオリゴ若しくはポリヌクレ ォチド等が挙げられる。
[0048] 例えば、アビジン若しくはストレプトアビジンを検出用分子として結合させる場合に は、例えば置換アルキルチオールとしてカルボキシル基を有するアルキルチオール 化合物(以下、チオールカルボン酸という場合もある。)を用い、カルボキシル基が表 面に露出した半導体ナノ粒子を調製し、これを更に例えば N—ヒドロキシスルホスクシ ンイミド等を用いて誘導体化した後、アビジンまたはストレプトアビジン (例えばシグマ アルドリッチジャパン株式会社等から入手可能。 )と反応させて結合することができる
[0049] また、ビォチンを検出用分子として結合させる場合には、例えば置換アルキルチオ ールとしてアミノ基を有するアルキルチオール化合物(以下、アミノチオールと!/、う場 合もある)を用い、ァミノ基が表面に露出した半導体ナノ粒子を調製し、これを、例え ば Biotin - Sulfo -Osu (スルホスクシンィミジル D -ビォチン)(株式会社同仁科学 研究所)等の誘導体化したビォチンと反応させて結合することができる。
[0050] 当業者であれば、半導体ナノ粒子上の官能基と目的の検出用分子の種類等に応 じて、置換反応による結合に適した反応条件及び試薬を適宜選択することができる。
[0051] 本発明においては、検出用分子がアビジン、ストレプトアビジン、又はビォチンであ ることが好ましい。 [0052] 本発明の生体分子検出用試薬においては、半導体ナノ粒子の表面に生体分子と 特異的に結合する検出用分子が存在することを特徴とする。各半導体ナノ粒子上に 存在する該検出用分子数の標準偏差が 5%以下であることを特徴とする。ここでいう 標準偏差は半導体ナノ粒子に接合した検出分子数のちらばりの度合いを表したもの で、半導体毎の検出分子数とそれらの平均値との差 (偏差)の二乗の平均の平方根で 表される。更に、本発明において請求の範囲第 2項に記載したように半導体ナノ粒子 1個に生体分子と特異的に結合する検出用分子力 個存在することが特に好ましい。
[0053] この特徴を実現するためには、種々の方法が考えられ、特に限定されないが、例え ば、 MEMS (micro electro mechanical systems)等の微細流路を用いて、半 導体ナノ粒子 1個と検出用分子 1個を結合させる方法、又は、半導体ナノ粒子ナノ粒 子をポーラスアルミナや多孔質シリカ膜のような基板上に 1層堆積させた後、検出用 分子をナノ粒子表層に吸着させる方法等により半導体ナノ粒子表面に検出用分子を 反応させ表面修飾をすることができる。
[0054] (生体分子検出方法)
本発明の生体分子検出用試薬を用いた生体高分子等の生体分子の検出は、生体 分子、例えば予め検出用分子と特異的に反応し得る分子によって標識されたポリヌク レオチドゃタンパク質を含有するサンプルに本発明の生体分子検出用試薬を添加し 、特異的結合が生じた半導体ナノ粒子を単離してその蛍光を検出することによって 行うことができ、溶液中で結合反応及び検出を行うこともできる。
[0055] 検出は、生体分子を含有する細胞中で行っても良ぐまた、 DNAチップやタンパク 質チップ等のマイクロアレイ上で反応させても良い。
[0056] 本発明の方法の一実施形態として、例えば、 DNAチップ上に固定されたオリゴヌク レオチドとビォチンにより標識されたオリゴヌクレオチドとをハイブリダィゼーシヨンさせ た後、これにアビジン若しくはストレプトアビジンを結合させた半導体ナノ粒子を添カロ することによってハイブリダィゼーシヨンの有無を検出することができる。ハイブリダィ ゼーシヨンの有無によって、対象サンプル中に目的の遺伝子が存在するか否かを決 定すること力 Sできる。尚、本明細書中において、「オリゴヌクレオチド」とは、特に限定 するものではないが、 100塩基長以下の長さの DNAまたは RNAオリゴヌクレオチド をレ、レ、、天然起源のものでも合成したものでも良レ、。
[0057] また、 DNAチップ上に固定された cDNAとビォチンにより標識された cDNAとをハ イブリダィゼーシヨンさせた後、これにアビジン若しくはストレプトアビジンを結合させ た半導体ナノ粒子を添加することによってハイブリダィゼーシヨンの有無を検出するこ と力 Sできる。ハイブリダィゼーシヨンの有無によって、対象サンプル中に目的の遺伝子 が存在するか否かを決定することができる。
[0058] さらに、 DNAチップ上に固定されたオリゴヌクレオチドとビォチンにより標識された c DNAとをハイブリダィゼーシヨンさせた後、これにアビジン若しくはストレプトアビジン を結合させた半導体ナノ粒子を添加することによってハイブリダィゼーシヨンの有無を 検出すること力 Sできる。ハイブリダィゼーシヨンの有無によって、対象サンプル中に目 的の遺伝子が存在するか否かを決定することができる。
[0059] あるいはまた、 DNAチップ上に固定されたオリゴヌクレオチドとアビジン若しくはスト レプトアビジンにより標識されたオリゴヌクレオチドとをハイブリダィゼーシヨンさせた後 、これにビォチンを結合させた半導体ナノ粒子を添加することによってハイブリダィゼ ーシヨンの有無を検出することができる。上記と同様に、ハイブリダィゼーシヨンの有 無によって、対象サンプル中に目的の遺伝子が存在するか否かを決定することがで きる。
[0060] また、 DNAチップ上に固定された cDNAとアビジン若しくはストレプトアビジンによ り標識された cDNAとをハイブリダィゼーシヨンさせた後、これにビォチンを結合させ た半導体ナノ粒子を添加することによってハイブリダィゼーシヨンの有無を検出するこ と力 Sできる、ハイブリダィゼーシヨンの有無によって、対象サンプル中に目的の遺伝子 が存在するか否かを決定することができる。
[0061] また、 DNAチップ上に固定されたオリゴヌクレオチドとアビジン若しくはストレプトァ ビジンにより標識された cDNAとをハイブリダィゼーシヨンさせた後、これにビォチン を結合させた半導体ナノ粒子を添加することによってハイブリダィゼーシヨンの有無を 検出すること力 Sできる。ハイブリダィゼーシヨンの有無によって、対象サンプル中に目 的の遺伝子が存在するか否かを決定することができる。
[0062] 一方、タンパク質の検出の場合には、例えば、タンパク質チップ上に固定されたタ ンパク質とビォチンにより標識されたタンパク質とを結合させた後、これにアビジン若 しくはストレプトアビジンを結合させた半導体ナノ粒子を添加することによってタンパク 質間の結合の有無を検出することができる。
[0063] また、タンパク質チップ上に固定されたタンパク質とアビジン若しくはストレプトアビ ジンにより標識されたタンパク質とを結合させた後、これにビォチンを結合させた半導 体ナノ粒子を添加することによってタンパク質間の結合の有無を検出することができ
[0064] 本発明に係る生体分子検出方法としては、半導体ナノ粒子をアビジン又はストレブ トァビジンと結合させ、ビォチンにより標識された生体分子を該半導体ナノ粒子の蛍 光により検出する態様の方法が好ましい。
[0065] 本発明の方法においては、粒径または化学組成の異なる複数種類の半導体ナノ 粒子を用いて複数種類の生体高分子を検出することができる。用いる半導体ナノ粒 子の蛍光スペクトルの各ピークが識別可能であれば複数種類の生体高分子を同時 に検出することができ、ピークの鋭さにも依存する力 例えば lOOnm程度離れた 2本 のピークは十分識別可能である。尚、検出可能範囲は 400nmから 700nmである。 実施例
[0066] 以下、実施例により本発明をより詳細に説明するが、本発明はこれに限定されるも のではない。
[0067] 生体検出用試薬の合成 (ビォチンで表面修飾された半導体ナノ粒子の合成)
(比較例)
アミノチオールを用いて半導体ナノ粒子を表面修飾した。表面修飾剤のアミノ基を アミノ基標識用のビォチンにて修飾する。
[0068] 20nmのインジウムガリウムリン/硫化亜鉛コア/シェル型半導体ナノ粒子の懸濁 液に S— 2—(3—ェチルァミノプロピルァミノ)ェチル二水素ホスホロチォエートを投 入して窒素雰囲気下で 24時間撹拌した後、チオール化合物の有するァミノ基と等量 のスルホスクシンィミジル D—ビォチンを反応液に投入した。その後、窒素雰囲気下 で 1時間撹拌してビォチンを結合した半導体ナノ粒子を得た。
[0069] なお、半導体に接合する 1ビォチン分子毎に FITC (fluorescein isocyanate) 1 分子を結合させたものを用い、ビォチン結合させた半導体ナノ粒子をベックマンコー ルター社製フローサイトメトリー装置を用いて、 1粒子当たりの FITCの発光強度を検 出した。予め FITCの分子数と発光強度との検量線グラフを作成しておいた。得た発 光強度から検量線を用いて FITCの数を求め、半導体ナノ粒子 1粒子ごとのビォチン 接合数を求めた。その結果を 100粒子について求めビォチン吸着数の標準偏差を 求めたところ 6%であった。
[0070] (実施例)
20nmのインジウムガリウムリン/硫化亜鉛コア/シェル型半導体ナノ粒子の懸濁 液に S— 2—(3 ェチルァミノプロピルァミノ)ェチル二水素ホスホロチォエートを投 入して窒素雰囲気下で 24時間撹拌した後、孔径を 25〜30nmに制御した多孔質シ リカ膜上に半導体ナノ粒子を堆積させた。その後、チオール化合物の有するアミノ基 と等量のスルホスクシンィミジル D ビォチンを半導体ナノ粒子が堆積した多孔質シ リカ膜に投入し、それを窒素雰囲気下で 1時間撹拌した後、未反応物を除去、洗浄し てビォチンを 1個だけ結合させた半導体ナノ粒子を得た。即ち、本発明の最も好まし い、検出用分子数の標準偏差が 0%を指す。
[0071] アビジンービォチン系を利用して標識する DNA (ターゲット)はハイブリダィゼーシ ヨン反応(チップ上の DNAの検出)を行!/、検出される。その末端をアビジンで修飾し た DNAを使用する。半導体ナノ粒子はビォチンで修飾されており、 DNAの蛍光標 識となる。
[0072] 1 mRNA抽出
組織 lgあたり 10mlの solution D (チオシアン酸グァニジン、 n— laurylサルコシン 、 1Mクェン酸ナトリウム、 β メルカプトエタノール)を加えホモジェナイズし酢酸塩 ナトリウム(2Μ, ρΗ4· 0)、酸性フエノール、クロロフオルムをそれぞれ混合しながら 加え撹拌した。 15分間氷上で冷やした後、 15000rpmで 30分遠心分離し、水層に 等量のイソプロパノールを加え、 1時間 20°Cで冷やした後、 70%エタノールで洗 浄した。 15000rpml 5分 4°Cで遠心分離し、 4mlの DEPC処理水で再度懸濁し 5M 塩化ナトリウムを 650 1、 CTAB/尿素溶液を 8ml加え、 15000rpml 5分室温で遠 心分離した。 8mlのエタノールを加え 1時間一 20°Cで冷やし、 15000rpml 5分 4°C で遠心分離した。 70%エタノールで洗浄し DEPC処理水で再度懸濁した。
[0073] 2 RT-PCR
poly(A)—RNAとアビジン化済みオリゴ(dT)プライマーと DEPC処理水を加え、 7 0°C 10分間インキュベートし氷上にて急冷した。次!/、で RNAサンプル/プライマー 混合液、 10 X PCRバッファー、 25mM MgCl、 10mM dNTPミックス、 0· 1MD ΤΤ、逆転写酵素 1 ,1 1を加えて 42°Cで 50分間インキュベートして反応を停止させ、 R NaseHを 1 μ 1加え 37°C20分間インキュベートし PCRを行い、アビジン化した cDNA を得た。
[0074] 3 ハイブリダィゼーシヨン
チューブに 20 X SSCとイオン交換水と上記のアビジン化した cDNAを加え、 95°C で 3分間インキュベートし DNAを変性させ、 10%SDSをカロえた。このハイブリダィゼ ーシヨン溶液を、 DNAチップにかけカバーガラスを乗せて 65°Cで 20時間インキュべ ートしてハイブリダィゼーシヨン後、 2 X SSC 0. 1 %SDS溶液にスライドガラスを浸し カバーガラスをはずした。 SSCにて洗浄を繰り返し、 lOOOrpmで 2分間遠心分離し て室温で乾燥させた。
[0075] 4 半導体ナノ微粒子による標識
ハイブリダィゼーシヨン反応後の DNAチップに、ビォチンを結合させた半導体ナノ 微粒子を添加し、反応させることでハイブリダィズした cDNAを標識した。蛍光スキヤ ナにより DNAチップ上の各スポットの蛍光強度を測定した。
[0076] 比較例と実施例の半導体ナノ粒子について、上記操作を 100回行ったときの蛍光 強度 (シグナル)の標準偏差を確認した。
[0077] 測定結果は、比較例の標準偏差が 8. 6%であるのに対し、本発明に係る実施例の 標準偏差は 3. 3%であった。
[0078] この結果から明らかなように、本発明の生体分子検出用試薬を使用した実施例は、 比較例に比べ、 DNAチップ上の各スポットの蛍光強度の標準偏差 が小さぐ検出 精度が高ぐ再現性も高いことがわかる。これは、本発明に力、かる構成を得ることによ り本発明の生体分子検出用試薬の半導体ナノ粒子には、生体検出用分子が均等に 付き、蛍光強度のばらつきが小さくなつたことにある。また、蛍光強度の大きさ(絶対 値)から、半導体ナノ粒子 1個に生体分子と特異的に結合する検出用分子が実質的 に 1個存在することが分かった。
なお、粒径の違いにより異なる波長の蛍光を発する複数の半導体ナノ粒子を使用 した生体分子検出用試薬の場合にも同様の結果を得た。

Claims

請求の範囲
[1] 半導体ナノ粒子集合体を利用した生体分子検出用試薬であって、該半導体ナノ粒 子集合体を構成する各半導体ナノ粒子が表面上に生体分子と特異的に結合する検 出用分子を有し、かつ各半導体ナノ粒子上に存在する該検出用分子数の標準偏差 力 S5%以下であることを特徴とする生体分子検出用試薬。
[2] 前記半導体ナノ粒子 1個当たり、生体分子と特異的に結合する検出用分子が 1個存 在することを特徴とする請求の範囲第 1項に記載の生体分子検出用試薬。
[3] 前記半導体ナノ粒子が粒径の違いにより異なる波長の蛍光を発することを特徴とす る請求の範囲第 1項又は第 2項に記載の生体分子検出用試薬。
[4] 前記検出用分子がアビジン若しくはストレプトアビジン、又はビォチンであることを特 徴とする請求の範囲第 1項乃至第 3項のいずれ力、 1項に記載の生体分子検出用試
:。
[5] 請求の範囲第 1項乃至第 4項のいずれか 1項に記載の生体分子検出用試薬を用い ることを特徴とする生体分子検出方法。
[6] 請求の範囲第 5項に記載の生体分子検出方法であって、半導体ナノ粒子をアビジン 又はストレプトアビジンと結合させ、ビォチンにより標識された生体分子を該半導体ナ ノ粒子の蛍光により検出することを特徴とする生体分子検出方法。
[7] 請求の範囲第 5項又は第 6項に記載の生体分子検出方法であって、マイクロアレイ 上で実施することを特徴とする生体分子検出方法。
PCT/JP2007/067182 2006-09-19 2007-09-04 réactif de détection de biomolécule et procédé de détection de biomolécule utilisant ledit réactif WO2008035565A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008535311A JPWO2008035565A1 (ja) 2006-09-19 2007-09-04 生体分子検出用試薬及びそれを用いた生体分子検出方法
US12/441,520 US20090325814A1 (en) 2006-09-19 2007-09-04 Biomolecule detection reagent and method for detecting biomolecule using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-252454 2006-09-19
JP2006252454 2006-09-19

Publications (1)

Publication Number Publication Date
WO2008035565A1 true WO2008035565A1 (fr) 2008-03-27

Family

ID=39200392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067182 WO2008035565A1 (fr) 2006-09-19 2007-09-04 réactif de détection de biomolécule et procédé de détection de biomolécule utilisant ledit réactif

Country Status (3)

Country Link
US (1) US20090325814A1 (ja)
JP (1) JPWO2008035565A1 (ja)
WO (1) WO2008035565A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144983A1 (ja) * 2008-05-28 2009-12-03 コニカミノルタエムジー株式会社 無機ナノ粒子標識剤
JPWO2009072441A1 (ja) * 2007-12-05 2011-04-21 コニカミノルタエムジー株式会社 検出方法および検出キット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249663A (ja) * 1996-03-15 1997-09-22 Ss Pharmaceut Co Ltd Sh基標識用試薬、その製法及びそれを用いた標識法
JP2003322654A (ja) * 2002-02-27 2003-11-14 Hitachi Software Eng Co Ltd 生体高分子の検出方法
JP2004194669A (ja) * 1996-07-29 2004-07-15 Nanosphere Inc オリゴヌクレオチドが付着したナノ粒子および該粒子の利用法
JP2006510389A (ja) * 2002-08-26 2006-03-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 集光性多発色団を用いてポリヌクレオチドを検出及び分析するための方法並びに組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311027A (ja) * 2001-04-09 2002-10-23 Hitachi Software Eng Co Ltd ビーズ、ビーズ製造方法、フローサイトメータ及びプログラム
EP1430549A2 (en) * 2001-09-04 2004-06-23 Koninklijke Philips Electronics N.V. Electroluminescent device comprising quantum dots
GB0227738D0 (en) * 2002-11-28 2003-01-08 Univ Liverpool Nanoparticle conjugates and method of production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249663A (ja) * 1996-03-15 1997-09-22 Ss Pharmaceut Co Ltd Sh基標識用試薬、その製法及びそれを用いた標識法
JP2004194669A (ja) * 1996-07-29 2004-07-15 Nanosphere Inc オリゴヌクレオチドが付着したナノ粒子および該粒子の利用法
JP2003322654A (ja) * 2002-02-27 2003-11-14 Hitachi Software Eng Co Ltd 生体高分子の検出方法
JP2006510389A (ja) * 2002-08-26 2006-03-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 集光性多発色団を用いてポリヌクレオチドを検出及び分析するための方法並びに組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009072441A1 (ja) * 2007-12-05 2011-04-21 コニカミノルタエムジー株式会社 検出方法および検出キット
WO2009144983A1 (ja) * 2008-05-28 2009-12-03 コニカミノルタエムジー株式会社 無機ナノ粒子標識剤

Also Published As

Publication number Publication date
US20090325814A1 (en) 2009-12-31
JPWO2008035565A1 (ja) 2010-01-28

Similar Documents

Publication Publication Date Title
JP4601828B2 (ja) 生物学的用途のための半導体ナノクリスタルプローブ
WO2008032534A1 (fr) Ensemble microparticules semi-conductrices fluorescentes, ensemble agent de marquage fluorescent pour substances biologiques, et procédé de bio-imagerie et procédé d'analyse de substances biologiques au moyen de ces ensembles
JP4638128B2 (ja) 水性媒体における増強された分散性を有する、表面が修飾された半導性および金属性のナノ粒子
US20090220792A1 (en) Synthesis of Alloyed Nanocrystals in Aqueous or Water-Soluble Solvents
US20070141726A1 (en) Detection via switchable emission of nanocrystals
US20050147974A1 (en) Luminescent, spherical, non-autofluorescent silica gel particles having variable emission intensities and frequencies
US20060240227A1 (en) Nanocrystal coated surfaces
US20100272650A1 (en) Semiconductor nanoparticle, and fluorescent labeling substance and molecule/cell imaging method by use thereof
WO2008035569A1 (fr) réactif de détection de biomolécule et procédé de détection de biomolécule utilisant le réactif
WO2008032599A1 (fr) agrégat de nanoparticules semi-conductrices, processus de fabrication de l'agrégat de nanoparticules semi-conductrices, et agent de marquage de substance biologique utilisant l'agrégat de nanoparticules semi-conductrices
WO2008035565A1 (fr) réactif de détection de biomolécule et procédé de détection de biomolécule utilisant ledit réactif
JP5024291B2 (ja) 蛍光半導体微粒子、その製造方法、それを用いた生体物質蛍光標識剤及びそれを用いたバイオイメージング法
JP2003287498A (ja) 半導体ナノ粒子蛍光試薬及び蛍光測定方法
JP4245415B2 (ja) 分子認識蛍光体の製造方法
WO2009116408A1 (ja) コア/シェル型半導体ナノ粒子の製造方法およびコア/シェル型半導体ナノ粒子
JP5168092B2 (ja) 半導体ナノ粒子標識剤
JP2004352542A (ja) ナノ粒子で装飾された無機成形体及びその製造方法
Mattoussi et al. Colloidal semiconductor quantum dot conjugates in biosensing
JP2009280841A (ja) 半導体ナノ粒子含有膜、半導体ナノ粒子及びそれを用いた生体物質標識剤
US20130101999A1 (en) Multi-leg luminescent nanoparticles, multi-leg luminescent nanoparticle compounds and various applications
KR20080083699A (ko) 수성 또는 수용성 용매 내의 얼로이된 나노 결정 합성
Pompa et al. Fluorescent Nanocrystals and Proteins
Pişkin et al. 6 Probe Immobilization Techniques in Array Technologies
JP2009175161A (ja) 生物学的用途のための有機発光半導体ナノクリスタルプローブ、およびこのようなプローブを製造および使用するプロセス
JP2010142141A (ja) パーティクルガン法により細胞へ導入された生体関連物質の解析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828175

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535311

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12441520

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828175

Country of ref document: EP

Kind code of ref document: A1