WO2008034306A1 - Multimètre numérique à fonction sélection de mesure automatique - Google Patents

Multimètre numérique à fonction sélection de mesure automatique Download PDF

Info

Publication number
WO2008034306A1
WO2008034306A1 PCT/CN2006/003611 CN2006003611W WO2008034306A1 WO 2008034306 A1 WO2008034306 A1 WO 2008034306A1 CN 2006003611 W CN2006003611 W CN 2006003611W WO 2008034306 A1 WO2008034306 A1 WO 2008034306A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
measurement
microprocessor
current
measured
Prior art date
Application number
PCT/CN2006/003611
Other languages
English (en)
French (fr)
Inventor
Jiajing Zang
Yulun Zang
Original Assignee
Jiajing Zang
Yulun Zang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiajing Zang, Yulun Zang filed Critical Jiajing Zang
Priority to EP06840654A priority Critical patent/EP2073024A1/en
Priority to JP2009527675A priority patent/JP5292295B2/ja
Publication of WO2008034306A1 publication Critical patent/WO2008034306A1/zh
Priority to US12/406,214 priority patent/US7991568B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/08Circuits for altering the measuring range
    • G01R15/09Autoranging circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/12Circuits for multi-testers, i.e. multimeters, e.g. for measuring voltage, current, or impedance at will
    • G01R15/125Circuits for multi-testers, i.e. multimeters, e.g. for measuring voltage, current, or impedance at will for digital multimeters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

说明书
自动选择测暈功能的数字万用表 技术领域
本发明涉及一种数字万用表,特别涉及一种以使用快速模数转换 器构成的电压表为核心,并配以适当的辅助电源和微处理器及电子开 关,实现了根据测量对象自动选择多种类模拟量测量功能和测量量程 的数字万用表。 背景技术
常见的数字万用表通常是用机械的旋转式或按键式功能选择开 关,来由使用者自己判别和选择测量功能,例如根据被测对象是直流 电压、交流电压还是电阻或直流电流、交流电流等, 使旋转开关转动 到相应的功能测量档位,通过金属接触点产生一些电气的连接,形成 一定的直流电压、交流电压或是电阻或电流的测量电路。 自动量程的 数字万用表在选定一种测量功能后,可以根据被测对象的大小通过内 部电子开关的不同组合自动选择合适的量程,因此它可以在选定一种 测量功能后 (例如直流电压), 只用一个档位完成不同大小被测量值 (例如直流电压)的测量; 对于手动量程的万用表, 需要几个档位来 对应不同大小被测量值(例如直流电压)的测量来完成某一种测量功 能的整个测量范围的测量。 它们都不能自动选择测量功能。 己经有在自动量程数字万用表的基础上增加自动选择测量功能 的设计。但是由于通常需要有一个信号类型检测器来捡测模拟输入信 号的类型, 能够进行判别的模拟输入讯号的种类受到限制。而且由于 信号类型检测器的输入阻抗和切换开关的影晌,降低了所构成的自动 选择测量功能万用表的性能, 甚至使他们并无多大实用价值。
在发明专利 200310112175. 3中对自动选择测量功能万用表作了 相当大的改进,使自动选择测量功能万用表进入到实用的时代,但在 非电压或电流类的无源模拟输入量的自动选择方面,还是受到较大的 限制, 例如电容、 电感、 二极管的测量等。
本发明的任务是要提供一种新型的自动量程数字万用表,它不但 能够根据被测量的对象是直流电压、 交流电压还是电阻或交直流电 流, 自动选择测量功能,并且可以具有对包括电阻在内的更多种无源 的元器件自动选择测量功能的特点, 例如测量电阻、 电容、 电感、二 极管。在最简单的情况下,仅需要一个电源开关完成这万用表的开与 关。 而且在测量时它比普通的自动量程万用表有更快的反应速度。 发明内容
本发明的任务是以如下方式完成的:本发明的自动选择测量功能 的数字万用表, 包括被测对象输入端、快速模数转换器转换电路、微 处理器、辅助程控电压或电流源、分压网络及电子开关和显示器。所 述的快速模数转换器经过分压网络连接到所述被测对象输入端,对输 入端子间的电压进行快速测量;快速模数转换器输出数据到微处理器 分析处理,并由微处理器控制电子开关切换分压网络,控制测量的量 程; 测量的结果经微处理器处理后送到显示器显示。
本发明所述的万用表在所述的输入端检测测到外部电压时,根据 快速模数转换器的输出数据是否出现周期性改变极性,微处理器可以 自动判别是直流还是交流信号,并分析处理得出直流信号的极性和数 值以及交流信号的峰值、有效值、 频率、 周期等数值结果。 当然, 快 速模数转换器的采样速率必须比被测量的交流信号的频率要高许多 倍, 才能准确地测量被测交流信号。
本发明所述的万用表在输入端没有测到外部电压时,迸入无源模 拟量被测对象的测量程序。由微处理器控制辅助程控电压源或电流源 输出到输入端子, 并对输入端子间的电压变化情况, 由快速模数转换 器电路将测量的结果输入微处理器分析,判断出被测无源模拟量对象 的性质。所述的辅助程控电压或电流源在输入端为有源模拟量被测对 象时,到输入端子的连接被切断; 辅助程控电压或电流源在输入端为 无源模拟量被测对象时,到输入端子的连接被接通。所述的快速模数 转换器电路和微处理器控制的程控电压或电流源共同作用,选择多种 模拟量测量并选择测量量程。所述的无源模拟量对象测量时,辅助程 控电源首先输出一个微小的试测电流,保持输入端为一个高输入阻抗 的电路。
本发明所述的微处理器,接受测量数据输出, 并根据数据输出控 制信号控制程控电压或电流源的电子开关改变程控源的性质和大小 以改变量程。所述的微处理器通过对部分测量数据的储存,可以储存 并显示输入信号随时间变化的波形图或数值随时间变化的图。
本发明增加一个选择按键连接微处理器,可通过按键的作用退出 自动选择测量, 转为按一次按键转换一次测量功能。
本发明与现有技术相比,在构成自动选择测量功能万用表时, 由 于采用快速模数转换技术和在无源模拟量测量时施加一定的辅助电 源的方法,在无源量测量过程中,可以测量到施加辅助电源后出现在 输入端间的不同响应情况, 从而可以自动判别被测对象的特性和大 小,使得以往不能自动识别的、更多种类的模拟量的测量功能自动选 择和量程自动选择成为可能。
本发明与现有技术相比,在对交流信号的测量中,不但可以计算 得到交流信号的真有效值,而且可以同时得到交流信号的频率, 峰值 电压等数据。通常的万用表则需要通过增加专门的真有效值转换器把 交流转换成直流才能实现真有效值测量。而且与通常的真有效值万用 表相比,本发明的万用表在测量非正弦的大波峰因素(峰值电压高而 有效值小)的交流信号时, 还可以做到不会出现量程判别错误, 而通 常的真有效值万用表这时可能出现量程判别错误产生很大误差。
本发明与现有技术相比,在对于由交流半波整流或全波整流得到 的直流信号的测量,或者是单向脉冲信号的测量,都可以得到更准确 的数据。
本发明与现有技术相比,由于采用快速模数转换技术提高了测量 速度,不但对电容电感等储能元件可以测量到它们的过渡响应,而且 功能试探性测量的时间变得很短,量程的选择和切换时间也可以大大 缩短,整个万用表的响应大大加快,常见的自动量程万用表测量时需 要较长时间等待的现象得到克服。
同时本发明也使在测量到小于某数值电阻值时发出报警声的通 断报警功能可以在自动选择测量功能的万用表中可以实现,在其它万 用表中这一功能和二极管测量功能需要设置单独的测量功能挡位来 实现,利用模拟比较的方法快速的特点来解决通断测量希望快速响应 的要求。因为通常的自动量程万用表从表笔幵路到测量到一个小于某 一数值(例如 30欧姆) 的电阻需要经过几次量程转换, 使得响应比 较慢。
附图说明
图 1是根据本发明而构成的万用表实施例的主要特征的方框图。 图 2为图 1所示实施例的自动功能选择测量功能的主要功能程序 或状态的流程图。
图 3是增加一个功能选择键,实现只用一个键选择测量功能的数 字万用表的原理图。
图 4是增加辅助功能选择键后的数字万用表的原理图。 具体实施方式
下面将结合附图为例对发明作进一步的详细描述。参看图 1, 图 中包含了三个输入端 1, 2, 3, 以及 A,B,( D四个电路部件。 其中 A 部件是快速模数转换器; B部件是微处理器; C部件是显示器; D部 件是一个由部件 B控制的电压或电流源。输入端子 2是公共输入端子, 和通常的万用表一样,它代表测量信号地。输入端子 1是除了电流测 量以外所有被测模拟量的输入端,在测量时,这些被测模拟量对象被 连接在输入端子 1和 2之间。输入端子 3是电流测量输入端,被测的 电流信号可以被连接在输入端子 3和 2之间,在输入端子 3和 2之间 已经接有电阻 R6,它的作用是把电流信号转变为电压信号,在电流测 量时,快速模数转换器构成自动量程的电压表测量在端子 3和 2之间 的电压, 它代表被测电流的性质和大小。 R6 阻值的大小和功率根据 要测量电流的大小选取。 在不需要进行电流测量时, 此输入端子 3 和 R6可以不要。
在图 1中部件 A是一个以快速模数转换器为核心,以及一些由部 件 B控制的电子开关和电阻 Rl, R2, R3, R4, R5组成的自动量程电压表。 根据输入电压的大小,部件 B控制电子开关的接通与断开使 Rl- R5组 合成分压比为 1, 10, 100, 1000, 10000的分压网络, 使不同大小的 输入电压都可以变换到快速模数转换器的测量范围之内,例如对应的 电压量程为 400mV, 4V, 40V, 400V, 1000V。 在分压比为 1即不经过 衰减直接输入的 400mV基本量程,部件 A具有很高的输入阻抗, 在其 它情况下输入阻抗约为 10兆欧姆。 只要快速模数转换器的转换速度 足够快,就可以在一定范围内准确地得到在输入端子间出现的电压信 号的数据和变化情况。这里说的快速模数转换器是指一秒钟至少能转 换几千次以上的模数转换器,而不是普通万用表中使用的每秒几次的 低速模数转换器。而且由于快速模数转换器的使用,可以使万用表判 别测量功能和转换到适当量程所化的时间更短,不像目前普通的自动 量程万用表得到一个稳定的测量结果需要等待较长的时间。
部件 B是一个微处理器, 它一方面接受部件 A的测量数据输出, 同时根据数据出现的情况输出控制信号控制部件 A的电子开关改变 量程,使部件 A成为一个自动量程电压表;通过对部件 A的部分测量 数据输出的储存,事实上可以储存输入信号随时间变化的波形图。因 此, 根据电压信号的变化和是否周期性地改变方向 (极性), 它可以 分辨电压信号是交流还是直流或者是交直流都有的情况并做出相应 的处理。它也可以使显示器不但显示测量的数值结果,而且可以根据 需要显示被测对象的波形图或其数值随时间变化的情况。对于输入端 子 1和 2之间有超过预设的门限值大小的电压的情况,万用表会进入 和保持在电压测量状态并自动处在合适的量程上。 设置门限值的目 的, 是为了防止在输入端开路时外界的干扰信号引起错误的功能判 别。
在部件 A经过一段时间 (例如 10毫秒)没有检测到超过门限值 的电压信号后,部件 B会进入对无源模拟量的测试步骤。部件 B控制 部件 D产生一个受控的电流输入到输入端子 1, 而在这之前部件 D的 输出是与输入端子 1不连通的。根据这时部件 A对输入端子 1和 2之 间的电压变化的测量结果,可以判别非电压量测量对象是电阻,二极 管, 电容还是电感或输入端处于开路状态。
如果检测到输入端 1和 2处于开路状态,部件 B控制部件 A转而 测量输入端子 3和 2之间的电压, 如果测到超过某一门限值的电压, 则进入到电流测量状态。对交流电流或直流电流的分辨,与上述电压 的分辨方式相同。
如果没有检测到有电流输入到输入端 3和 2之间,部件 B会使测 量回到初始的状态,使部件 A开始检测输入端 1和 2之间的电压,依 上述步骤不断进行。
部件 C是一个显示器,它可以按照部件 B输出的数据显示相应的 测量结果以及单位符号。如果需要,也可以在交流电压或电流测量时 同时显示其波形图,或者各种被测对象通过测量得到的数值结果随时 间的变化图, 只要部件 B储存和输出适当的数据信号就可以做到。
部件 D是一个由部件 B控制的电压或电流源。受部件 B的控制它 可以向输入端子 1输出不同大小和波形的电压或电流信号,满足对不 同测量对象测量的需要。 例如可以输出 0. 01微安, 1微安或 1毫安 等直流电流,或输出不同斜率的三角波电流等。它的最大输出电压被 控制在例如 2V。 在电压测量状态, 它与输入端子 1间的连接是断开 的。
对电阻, 电容, 电感和二极管的判别和测量原理, 是基于它们对 不同电压源或电流源呈现不同的反应。
当被测对象是电阻或二极管,或是储能元件电容或电感时, 电压 电流关系分别为:
1. ¾阻1¾上的电压11 和流过电阻的电流 之间的关系为: u,= ; c R , 或 R =^ (1)
2. 流进电容 C的电流。与电容上电压^随时间的变化率^间的关系 i = c , 或 ic= c ^- (2)
dt At
3.流经电感 L的电流 iL随时间 ft变化率 ^与电感上呈现的电压 u L间 at 的关系为: uL=l^ , 或 Ui=L (3) dt L At
4.而对于二极管的电压电流关系, 可根据半导体物理的原理从理论 上分析得到如下构成二极管的 PN结伏安特性的表达式, 即通常被 称为二极管方程的
I = Is(e¾ -l) (4) 式中 Is为反向饱和电流, UT是温度的电压当量, 在常温 (300。K)下, UT^2. 6mVo
由上面二极管方程可见, 如果给二极管加上一个反向电压 U< 0, 而且 M〉〉 UT, 则 I - Is , 即反向电流基本上是一个恒定值。 若二极管加上正向电压,即 U〉0, 而且 U) ) UT ,则上式中的 e T〉〉 1, 可得 I^Is e¾ , 说明正向电流 I与电压 ϋ基本上成为指数关系。
通常用万用表测量二极管时,是通过对二极管正反两个方向的测 量来判别它的好坏。 反向时由于二极管呈现高阻抗而显示 "0L" ,在 正向时则显示二极管的正向电压降,通常是在电流为 1毫安时的正向 电压降。 因此, 如果在测量电阻, 经过放电的电容, 电感或二极管等无源 器件时,部件 Α是测量不到电压的。这时使部件 D向输入端子 1注入 一个恒定电流或者串联有某一阻值电阻的电压源,接在输入端子 1和 2之间的被测对象依照它们是电阻, 电容, 电感或二极管, 将呈现各 个不同响应而使输入端子 1与 2间的电压出现不同的变化。
对于被测对象是电阻的情况:根据公式 (1 ),部件 A测量到的电 压与电阻阻值成正比, 也与通过电阻的电流成正比。 因此, 在微处理 器控制的部件 D产生并施加一个已知恒定电流的时候,部件 A测量到 的电压是一个固定的数值; 改变恒定电流的数值, 电阻上的电压按比 例变化。通过计算部件 A测量到的电压与已知恒定电流的比值,可以 得到电阻的阻值的数字结果。超出万用表规定的最大电阻测量范围的 状态视为开路。 也可以采用通常万用表中常用的比例法测量电阻。
对于二极管测量的情况,则其表现与电阻类似而与电容或电感不 同, 因为电容和电感属于储能类元件, 它们对突然施加于其两端的恒 定电流会呈现与时间有关的响应。在二极管反向测量时,通常对施加 于其两端的恒定电流会呈现一个较高的阻抗或开路的状态,甚至于使 部件 D不能输出预定的电流值而出现部件 D最高的输出电压(例如 2V)0 对于正向测量, 按公式(4), 在微处理器控制的部件 D产生并 施加一个已知恒定电流的时候,部件 A测量到的电压是一个固定的数 值, 即代表着一个固定的阻抗; 改变恒定电流的数值, 部件 A测量到 的电压却并不像电阻那样按比例变化, 电流越大,表现出来的阻抗越 小。由此可以把二极管测量与电阻测量状态区分开,如果改变恒定电 流为 1毫安,则就可以得出在 1毫安电流时二极管的正向压降的数值。
对于电容测量, 根据公式(2), 在突然施加一个恒定电流于被测 的经过放电的电容两端后,在其两端会出现一个从零开始随时间而增 长变化的电压, 这个电压的变化率^与所加的电流值成正比, 与被
At 测电容的容量大小成反比。 在知道部件 D输出电流的值 if , 并通过部 件 A测量得到在某一时间间隔 At内电容上电压的变化值 , 可以得 到被测电容的容量的数值结果: C =^, 此式是公式(2) 的另外一 种表达方式。如果使所施加的恒定电流反向,则电容上的电压会减小, 其电压的减小的变化率依然与所加的电流值成正比,与被测电容的容 量大小成反比。
对于电感, 根据公式 (3)显然流过被测电感的电流不能突变, 因此在试图把一个预定的电流加到电感上时,由于电感产生的反电动 势使部件 D不能输出预定的电流值,而出现部件 D最高的输出电压 (例 如 2V), 在这电压的作用下电感中的电流会逐步增加直到部件 D预定 的电流值, 电感两端的电压会下降,最后这个电压会维持在所加的电 流在电感内阻上产生的压降上。如果突然断开电流, 由于电感的作用 会产生一个很大的反电动势, 在其两端出现一个反向电压。 当部件 B 感知到这个特征后,可以改而使部件 D输出一个三角波电流信号, 当 三角波的斜率 固定在某一数值时,根据公式(3),在电感上将出现 dt
与电感量成正比的一个恒定电压 i^=L , 这个电压在电流上升时为 at
正值,在电流下降时为负值。根据电流变化的斜率 和测量到的电压 dt
值 ^, 可以得到电感的数值大小。 根据开始判别时施加直流电流测 得的电感内阻上产生的压降, 可以知道它的内阻。 下面参考图 2的流程图为例进一步说明本发明的工作过程。在起 点,万用表得到输入端开路的信息后,微处理器会启动功能检测程序。 首先,使功能部件 A的快速模数转换器在一段时间内(例如 10毫秒) 连续测量输入端子 1和 2之间的电压,看是否有超出规定的门限值的 电压出现。如前所说, 设置门限值的目的, 是为了防止在输入端开路 时外界的干扰信号引起错误的功能判别。连续测量观察一段时间的目 的是为了防止在有交流电压(例如 50¾)输入时, 快速模数转换器 正好只采样到了交流电压的过零点而误判为没有电压输入。
如果这时已经有超过门限值的电压加到输入端子 1和 2之间,经 过微处理器判别,万用表将进入测量电压的程序。通常在开始测量时, 部件 A这个快速自动量程电压表会处在电压测量的最高量程,然后根 据测得的峰值电压的大小调整到合适的量程。 根据测量得到的数据, 也很容易知道是否有交替出现不同极性的电压。
如果有交替出现不同极性的电压, 那被测量的电压是交流电压。 只要快速模数转换器在交流电压的一个周期时间内取得足够数量的 采样值,通过微处理器的处理很容易得到这个交流电压的峰值,真有 效值,频率或周期的数据。这些测量结果, 可根据需要选择全部显示 或部分显示。显然,快速模数转换器的采样速率和微处理器的处理速 度限制了可测量的交流电压的最大频宽。本发明采用快速模数转换器 带来的另外一个优点时在测量波峰因素较高 (峰值电压高而有效值 小)的交变波形信号时,不会因为错误选择量程而造成很大的测量错 误,这在通常的真有效值自动量程万用表上会出现。因为本发明的万 用表是根据测量到的峰值电压来选择量程, 测量的是真实完整的波 形。而通常的真有效值万用表是根据电压的有效值来选择量程,会造 成大的峰值电压被削顶而产生很大的误差。
如果没有交替出现不同极性的电压, 那被测量的电压是直流电 压, 同时也已经知道了它的极性,通过部件 B把电压的值和它的极性 送到部件 C显示器显示就可以完成整个测量。对于叠加有交流纹波的 直流信号,会使快速自动量程电压表测量得到的数据出现波动,通常 的处理是如同对交流信号的处理一样,计算一段时间内的真有效值作 为最终测量的结果。对于由交流半波整流或全波整流得到的直流信号 的测量, 或者是单向脉冲信号的测量, 都可以得到准确的数据。根据 不同的需要, 也可以另外计算出交流紋波的峰峰值或有效值并显示。
对于没有检测到超过规定门限值的电压的情况,万用表将进入对 无源器件的测量功能状态。部件 B的微处理器将控制部件 D的辅助电 源依次向输入端 1注入不同的测试电流, 例如 0. 01微安, 1微安, 1 亳安。 它的最大输出电压是例如 2伏。
在电流源是 0. 01微安, 1微安时, 功能部件 A将处在不经过衰 减的高输入阻抗的直接输入状态,它的量程范围是例如 ±400. 0毫伏。 在电流源是 1毫安时, 部件 A将进入经过衰减 10倍的输入状态, 它 的量程范围是例如 ±4. 000伏。
在每次注入不同的电流后,部件 A都会连续测量输入端 1和 2之 间的电压,并由部件 B分辨电压是否出现随时间改变的情形。因为无 论是电阻测量,还是二极管测量或者输入端开路,在一定电流的作用 下都不会出现随时间而变化的电压,只有在输入端之间接有储能元件 例如电容或电感才会出现这样的情况。因此,在一个固定的电流源突 然加上到输入端 1和 2上后,可以根据出现的电压是否随时间改变来 迸行判别,把电感和电容的测量区分出来。如果不需要具备对电容和 电感这类储能元件自动检测和测量的功能, 这个判别环节可以省略。
如果输入端子间接有电感, 由于电感内的电流不能突变,会首先 出现一个高电压(相当于电流源最大输出电压的电压值), 经过一段 时间的过渡过程后由于电感中的电流增长到了电流源预定的输出值, 而使电压下降最终到达电流源所加电流在这电感的内阻上的压降值, 这通常是一个较小的电压值, 在 +400毫伏以下。 根据这一特点可以 判别需要进行电感测量。进入电感测量程序后, 电流源改而输出某一 斜率的三角波,在输入端子 1和 2间会出现与电感量和驱动电流斜率 相关的电压。按照测量得到的电压的大小改变斜率,可以实现对不同 大小的电感自动选择不同的合适量程。
如果输入端子间接有经过放电后的电容,由于电容器上的电压不 能突变,会出现一个从零开始随时间线性增长的电压。根据这一过渡 过程特点可以判别需要进行电容测量。在进入电容测量程序后, 改变 电流源输出电流的大小可以改变电容器的充电速度,根据被测电容的 大小选择适当的电流值可以实现自动量程选择。为了对被测电容实现 多次连续的测量, 在电容器上的电压充到某一数值(例如 400毫伏) 时, 电流源会改 ¾产生一个使电容器放电的动作, 比如说使被测电容 器短路或施加以反向电流。但测量电容前一定要先行放电,否则电容 上如果有超过门限电压值的残留电压,会使万用表进入电压测量状态 去测量这电压量而不是测量电容量。
如果没有捡测到电压随时间改变,或者是不需要自动识别和测量 电感和电容功能的场合, 贝 ϋ万用表进入电阻和二极管等的测量程序。 这时对于不同的辅助电源的电流, 会出现以下情况-
Figure imgf000017_0001
Figure imgf000017_0002
注 1 : 如果需要使用万用表常见的通断测量报警功能, 可以增加 一个判断环节, 即按照设定的报警门限值(例如小于 30欧姆)和测 量的结果判断是否要发出蜂鸣声。
注 2: 在二极管反向状态, 所说的高阻抗可以是相当于开路, 或 者是由于各个二极管反向漏电流的不同,因而用较小的电流源可能测 量到小于 40Μ Ω的阻抗。 这时应作如下处理:
a.如果在电流源在 1毫安时,测量到电流源的最高输出电压(例 如 2V), 则应以测到的较小阻抗作为测量结果;
b.如果在电流源在 1毫安时,测量到的电压低于电流源的最高输 出电压, 则应以这时测到的电压作为测量结果, 因为它可能是一个击 穿电压低于 2V的齐纳二极管, 例如 1. 2V的齐纳二极管。 W
注 3: 在二极管正向状态, 所说的较高阻抗, 较小阻抗, 更小阻 抗是相对而言的。根据二极管的正向特性,在通过电流较大时呈现的 阻抗较小。这时应该按通常万用表测量二极管的方式,显示在 1毫安 电流下测量到的电压值。 根据上表 1 就可以判别是开路, 还是测量电阻或测量二极管状 态。
1. 如果在测量电流为 0. 01微安和 1微安的情况下, 测量到的电 压都超过这时功能部件 A的最大量程(400inV) ; 而在测量电 流为 1毫安的情况下(这时功能部件 A的最大量程为 4V),测 到的电压接近电流源的最大输出 (2V), 则认为输入端 1和 2 之间为开路状态。 接下来功能部件 A将检测输入端 3和 2之 间有无电压- a. 如有电压则转入到电流测量状态。 根据欧姆定理和接在输 入端子 3和 2的电流取样电阻的大小, 对测量的结果进行 处理, 判别并显示是交流电流还是直流电流及它的数值大 小;
b. 如果测量到输入端子 3和 2的电压为零, 则认为所有输入 端都开路, 使整个测量程序回到起点。
2. 出现以下三种情况都属于电阻测量:
a. 在电流源电流为 0. 01微安时测得电压小于 400毫伏, 而 在 1微安时电压超过了这时电压表的最大测量值(400毫 伏), 在电流源电流为 1毫安时测得电流源的最大输出 2 伏(这时电压表的测量范围已经改到最大 4伏), 则选定 0. 01徼安为测量电流, 根据公式 (1 )可以得到被测电阻 的数值, 它在 400千欧姆与 40兆欧姆之间;
b. 在电流源电流为 0. 01微安时测得电压小于 4毫伏,而在 1 微安时测得电压小于 400毫伏, 在电流源电流为 1毫安时 测得电压大于 400毫伏, 则选定 1徼安为测量电流, 可以 得到被测电阻的数值, 它在 400欧姆与 400千欧姆之间; c. 在电流源电流为 0. 01 微安时测得电压小于基本为零, 而 在 1微安时测得电压小于 0. 4毫伏, 在电流源电流为 1毫 安时测得电压小于 400毫伏, 则选定 1毫安为测量电流, 可以得到被测电阻的数值,它是一个小于 400欧姆的数值。 为了提高读数的有效数字位数, 这时也可以把功能部件 A 电压表改变到 400毫伏量程。 对于需要有通断测量报警功 能的情况, 可以再加入一个是否小于报警门限的判别环 节。
如果被测对象是二极管, 则按照表 1 也可以把它与其它情况 区分开来:
在二极管反向状态,一般会呈现一个高阻抗。所说的高阻 抗可以是相当于开路,或者是由于各个二极管反向漏电流的不 同, 因而用较小的电流源可能测量到小于 40ΜΩ的阻抗。这时 应作如下处理: W
a. 如果在电流源在 1毫安时,测量到电流源的最高输出电压
(例如 2V), 则应以在较小电流下测到的较小阻抗作为测 量结果; 、 b. 如果在电流源在 1毫安时,测量到的电压低于电流源的最 高输出电压, 表示出现反向击穿, 则应以这时测到的电压 作为测量结果, 因为它可能是一个击穿电压低于 2V 的齐 纳二极管, 例如 1. 2V的齐纳二极管。
在二极管正向状态,一般在不同电流源的作用下会呈现不同导通 状态, 表一所说的较高阻抗, 较小 ia抗, 更小阻抗是相对而言的。根 据二 ¾管的正向特性,在通过电流较大时呈现的阻抗较小。这时应该 按通常万用表测量二极管的方式,显示在 1毫安电流下测量到的电压 值。
在以上测量的过程中,一旦发现测量到异常的电压,则立即退回 到初始状态, 重新进行判别。
在上述发明的基础上,还可以实现只用一个按键来选择测量功能 的数字万用表。也就是说只要加上一个功能选择键,按动这个键时在 内部微处理器控制下退出自动功能选择状态,按照不同的测量功能调 整内部的电子开关和辅助源,成为固定在某一测量功能状态上进行测 量。通过一次次按动这功能选择键,可以变换和选择测量功能。例如- 开机初始状态是自动功能选择状态,按动功能选择键时将进入电阻测 量功能;再按一次进入交流电压测量功能;再按时依次进入直流电压 测量, 频率测量, 二极管测量, 通断测量, 电容测量, 电感测量, 直 流电流测量, 交流电流测量, 然后又回到电压、 电阻和电流及其它测 量的功能自动选择测量状态。 附图 3给出了它的原理方框图。
附图 4表达了在上述发明的基础上,根据需要完全可以增加一些 在普通数字万用表上常见的如数据保持, 最大值, 最小值显示, 差值 显示, 和连接外部电脑的 RS232通信功能等附加功能。
本说明书已经详细地描述和说明了本发明,但是,这都只是作为 说明和实例,而不是要作为限定,本发明的精神和范围仅受限于权利 要求书中所描述的。

Claims

权利要求书
模数转换电路、 微处理器、 分压网络及电子开关和显示器, 其特 征在于使用快速模数转换器经过分压网络连接到所述被测对象输 入端, 对输入端子间的电压进行快速测量; 所述的快速模数转换 器电路输出数据到分析处理的微处理器, 微处理器控制电子开关 切换分压网络, 选择快速模数转换器测量的量程; 所述的微处理 器可控制辅助程控电压或电流源连接到输入端的无源被测对象, 根据快速模数转换器对输入端出现的电压变化情况的快速测量结 果, 选择对无源被测对象的测量方式和量程; 微处理器控制显示 器显示测量的结果。
、 根据权利要求 1所述的自动选择测量功能的数字万用表,其特 征在于所述快速模数转换器在输入端检测测到外部电压时, 微处 理器可以根据快速模数转换器的输出数据自动判别是直流还是交 流信号, 并分析处理得出其测量结果。
、 根据权利要求 1所述的自动选择测量功能的数字万用表,其特 征在于所述的输入端没有测到外部电压时, 由微处理器控制输出 不同的辅助程控电压或电流源到输入端子, 并对输入端子间的电 压变化情况, 由快速模数转换器电路将测量的结果输入微处理器 分析, 可以判断出连接在输入端子间的被测对象是何种模拟量, 并选择适当的辅助程控源作用到被测对象上, 由微处理器对快速 模数转换器测量的结果进行适当处理得出其测量结果。
、 根据权利要求 2或 3所述的自动选择测量功能的数字万用表, 其特征在于所述的辅助程控电压或电流源在输入端为有源被测对 象时, 由微处理器控制的程控电压或电流源到输入端子的连接被 切断; 而所述的辅助程控电压或电流源在输入端为无源被测对象 时, 由微处理器控制的程控电压或电流源到输入端子的连接被接 通。
、 根据权利要求 4所述的自动选择测量功能的数字万用表,其特 征在于所述的快速模数转换器电路和微处理器控制的程控电压或 电流源共同作用选择多种模拟量测量并选择测量量程。
、 根据权利要求 5所述的自动选择测量功能的数字万用表,其特 征在于所述的无源模拟量对象测量时, 首先输出一个微小的试测 电流, 保持输入端为一个高输入阻抗的电路。
、 根据权利要求 1所述的自动选择测量功能的数字万用表,其特 征在于可以增加一个选择按键连接微处理器, 按动按键可退出自 动选择测量功能, 转为按一次按键转换一种测量功能的一个按键 选择测量功能的方式。
、 根据权利要求 1所述的自动选择测量功能的数字万用表,其特 征在于所述的微处理器通过对部分测量数据的储存, 可以储存并 显示输入信号随时间变化的波形图或数值随时间变化的图。
PCT/CN2006/003611 2006-09-18 2006-12-26 Multimètre numérique à fonction sélection de mesure automatique WO2008034306A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06840654A EP2073024A1 (en) 2006-09-18 2006-12-26 A digital multimeter with automatic measurement selection function
JP2009527675A JP5292295B2 (ja) 2006-09-18 2006-12-26 測定機能自動選択のデジタル・マルチメーター
US12/406,214 US7991568B2 (en) 2006-09-18 2009-03-18 Digital multimeter with automatic measurement selection function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610062667.XA CN101149399B (zh) 2006-09-18 2006-09-18 自动选择测量功能的数字万用表
CN200610062667.X 2006-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/406,214 Continuation US7991568B2 (en) 2006-09-18 2009-03-18 Digital multimeter with automatic measurement selection function

Publications (1)

Publication Number Publication Date
WO2008034306A1 true WO2008034306A1 (fr) 2008-03-27

Family

ID=39200153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003611 WO2008034306A1 (fr) 2006-09-18 2006-12-26 Multimètre numérique à fonction sélection de mesure automatique

Country Status (5)

Country Link
US (1) US7991568B2 (zh)
EP (1) EP2073024A1 (zh)
JP (1) JP5292295B2 (zh)
CN (1) CN101149399B (zh)
WO (1) WO2008034306A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825652A (zh) * 2009-03-05 2010-09-08 鸿富锦精密工业(深圳)有限公司 测量设备的自动量程选择器
CN101839931A (zh) * 2009-03-19 2010-09-22 北京普源精电科技有限公司 一种交流信号测量装置、系统和方法
CN112557722A (zh) * 2020-12-07 2021-03-26 中国南方电网有限责任公司超高压输电公司梧州局 万用示波表

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650380B (zh) * 2008-08-15 2012-11-28 承永资讯科技股份有限公司 自动选择量测功能的智能型量测装置
JP2010281571A (ja) * 2009-06-02 2010-12-16 Hioki Ee Corp 測定装置
EP2275827A3 (en) * 2009-07-17 2016-04-06 Fluke Corporation Clamp-on multimeters including a rogowski coil for measuring alternating current in a conductor
CN102466769A (zh) * 2010-11-03 2012-05-23 北京普源精电科技有限公司 实现阈值可调的通断测试的测试设备和方法
JP5912919B2 (ja) * 2012-06-28 2016-04-27 日置電機株式会社 マルチメータ
CN102768334B (zh) * 2012-07-10 2015-02-04 刘海先 电路分析仪的分析方法
CN103713197A (zh) * 2012-09-29 2014-04-09 丹纳赫(上海)工业仪器技术研发有限公司 电池测试仪
CN102944712A (zh) * 2012-11-26 2013-02-27 西安华伟光电技术有限公司 电子式电流互感器多量程自动选择装置
US9081396B2 (en) * 2013-03-14 2015-07-14 Qualcomm Incorporated Low power and dynamic voltage divider and monitoring circuit
US9568504B2 (en) 2013-03-15 2017-02-14 Milwaukee Electric Tool Corporation Digital multi-meter
US9166465B2 (en) * 2013-05-21 2015-10-20 Hamilton Sundstrand Corporation Current divider for extended current measurement
JP2017138133A (ja) * 2016-02-02 2017-08-10 株式会社ユアテック 検電器
WO2018062597A1 (ko) * 2016-09-30 2018-04-05 와이테크 주식회사 계측의 편의성이 향상된 멀티미터 전용 계측시스템
CN108291927B (zh) * 2016-09-30 2020-11-24 株式会社Y科技 具备计测对象自动识别功能的智能手机连接型万用表及由其构成的计测系统
CN106405188B (zh) * 2016-10-08 2020-04-17 中国电力科学研究院 一种电流测量装置的自动量程切换系统及方法
CN107179735A (zh) * 2017-02-06 2017-09-19 国网山东省电力公司利津县供电公司 一种生活小区自来水管线跑水自动报警控制系统及控制方法
CN109387678B (zh) * 2017-08-05 2023-01-06 富泰华工业(深圳)有限公司 电压表及其使用方法
CN107797499B (zh) * 2017-11-30 2023-10-31 佛山科学技术学院 一种脉冲式程控电源及控制方法
CN108828293B (zh) * 2018-06-20 2023-10-13 国网安徽省电力有限公司滁州供电公司 一种电压测量装置
CN108802480B (zh) * 2018-06-20 2024-02-06 国网安徽省电力有限公司滁州供电公司 一种感应电压测量装置
CN109782039A (zh) * 2019-03-19 2019-05-21 优利德科技(中国)股份有限公司 一种探头信号自动识别方法、设备、系统及探头
CN109959812B (zh) * 2019-04-28 2022-03-29 深圳市兴威帆电子技术有限公司 带有测量指示功能的万用表的表笔及控制方法
CN112415455A (zh) * 2019-08-20 2021-02-26 北京振兴计量测试研究所 数字式万用表自动化校准装置
CN110456125B (zh) * 2019-08-23 2020-05-19 深圳成智达科技有限公司 一种智能数字测量系统
KR102444528B1 (ko) * 2020-04-20 2022-09-20 주식회사 남전사 AC/DC 겸용 IoT 미터
CN113848440A (zh) * 2021-09-30 2021-12-28 珠海黑石电气自动化科技有限公司 一种基于超声波传感器的局部放电检测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052951A (zh) * 1989-12-29 1991-07-10 三星电子株式会社 数字式万能测量仪的自动量程选择器
GB2273365A (en) * 1992-10-15 1994-06-15 Metrawatt Gmbh Gossen Hand-held digital multimeter capable of performing isolation resistance measurements
US5557197A (en) * 1993-09-18 1996-09-17 Gossen-Metrawatt Gmbh Multimeter with automatic function-setting
CN2480850Y (zh) * 2001-04-17 2002-03-06 符雪涛 高频未知频率正弦波矢量高精度快速数字测量装置
CN2566275Y (zh) * 2002-08-11 2003-08-13 漳州市东方电子有限公司 全智能化数字万用表

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663586A (en) * 1985-05-02 1987-05-05 Hewlett-Packard Company Device with automatic compensation of an ac attenuator
US5113188A (en) * 1989-08-08 1992-05-12 University Of Maryland At College Park Analog-to-digital converter utilizing devices with current versus voltage characteristics with a plurality of peaks and negative resistance regions between peaks
US5396168A (en) * 1992-03-27 1995-03-07 Tandy Corporation Digital multimeter with microprocessor control
JP3194374B2 (ja) * 1992-09-30 2001-07-30 セイコーエプソン株式会社 ディジタルテスタ
US5508607A (en) * 1994-08-11 1996-04-16 Fluke Corporation Electronic test instrument for component test
US5530373A (en) * 1995-01-20 1996-06-25 Fluke Corporation Method and apparatus for determining and selectively displaying valid measurement information
JPH1144712A (ja) * 1997-07-29 1999-02-16 Chino Corp 入力取込装置
US6043640A (en) * 1997-10-29 2000-03-28 Fluke Corporation Multimeter with current sensor
US6243034B1 (en) * 1998-10-29 2001-06-05 National Instruments Corporation Integrating analog to digital converter with improved resolution
CN100414305C (zh) * 2003-11-13 2008-08-27 臧玉伦 用光控电子开关的自动选择功能万用表
US8170506B2 (en) * 2008-07-29 2012-05-01 Qualcomm Incorporated Direct current (DC) offset correction using analog-to-digital conversion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052951A (zh) * 1989-12-29 1991-07-10 三星电子株式会社 数字式万能测量仪的自动量程选择器
GB2273365A (en) * 1992-10-15 1994-06-15 Metrawatt Gmbh Gossen Hand-held digital multimeter capable of performing isolation resistance measurements
US5557197A (en) * 1993-09-18 1996-09-17 Gossen-Metrawatt Gmbh Multimeter with automatic function-setting
CN2480850Y (zh) * 2001-04-17 2002-03-06 符雪涛 高频未知频率正弦波矢量高精度快速数字测量装置
CN2566275Y (zh) * 2002-08-11 2003-08-13 漳州市东方电子有限公司 全智能化数字万用表

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825652A (zh) * 2009-03-05 2010-09-08 鸿富锦精密工业(深圳)有限公司 测量设备的自动量程选择器
CN101839931A (zh) * 2009-03-19 2010-09-22 北京普源精电科技有限公司 一种交流信号测量装置、系统和方法
CN112557722A (zh) * 2020-12-07 2021-03-26 中国南方电网有限责任公司超高压输电公司梧州局 万用示波表

Also Published As

Publication number Publication date
EP2073024A1 (en) 2009-06-24
JP5292295B2 (ja) 2013-09-18
JP2010503830A (ja) 2010-02-04
CN101149399B (zh) 2013-04-17
RU2009113711A (ru) 2010-10-27
US20090287436A1 (en) 2009-11-19
US7991568B2 (en) 2011-08-02
CN101149399A (zh) 2008-03-26

Similar Documents

Publication Publication Date Title
WO2008034306A1 (fr) Multimètre numérique à fonction sélection de mesure automatique
TWI334931B (en) Intelligent multi-meter with automatic function selection
KR950010295B1 (ko) 자동기능선택 멀티미터
TWI280523B (en) Test system with differential signal measurement
US7948227B2 (en) Electrical circuit diagnostic tool
JP2892611B2 (ja) 電子テスト計器において半導体ダイオードを自動的にテストする方法およびポータブルテスト計器
JP6272379B2 (ja) ケーブル検査装置及びケーブル検査システム
JP3262819B2 (ja) 接触判定回路を備えるインピーダンス測定装置及びその接触判定方法
CN216646725U (zh) 芯片管脚测试系统
US4267503A (en) Method and instrument for testing the operating characteristics of a capacitor
JP4777828B2 (ja) 測定装置および検査装置
JP2010025667A (ja) 並列抵抗測定方法及びその装置
TWI326361B (en) Intelligent multi-functional measuring device and its measuring method
CN112180265A (zh) 电池测试仪
CN107024660B (zh) 用于确定电池复合体中的单电池的电池电压的电路装置
TW201222920A (en) Battery capacitance detecting system
JPH09211041A (ja) 容量性素子の等価直列抵抗測定方法および等価直列抵抗測定装置
AU715105B2 (en) Electronic signal measurement apparatus and method for the acquisition and display of short-duration analog signal events
US5530361A (en) Method and apparatus for measuring the state of charge of an electrochemical cell pulse producing a high discharge current
RU2482501C2 (ru) Цифровой мультиметр с автоматическим выбором функции измерения
CN207007914U (zh) 一种带辅助语音提示功能的数字万用表
RU2491557C1 (ru) Способ определения составляющих полного сопротивления заземляющего устройства
TWI707630B (zh) 殘留物檢測裝置及其方法
JP5893411B2 (ja) 電圧測定装置および電圧測定方法
JP6966309B2 (ja) 絶縁抵抗計およびその測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06840654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009527675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1956/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006840654

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009113711

Country of ref document: RU

Kind code of ref document: A