WO2008032751A1 - Ni-BASE SINGLE CRYSTAL SUPERALLOY - Google Patents

Ni-BASE SINGLE CRYSTAL SUPERALLOY Download PDF

Info

Publication number
WO2008032751A1
WO2008032751A1 PCT/JP2007/067766 JP2007067766W WO2008032751A1 WO 2008032751 A1 WO2008032751 A1 WO 2008032751A1 JP 2007067766 W JP2007067766 W JP 2007067766W WO 2008032751 A1 WO2008032751 A1 WO 2008032751A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
less
single crystal
based single
phase
Prior art date
Application number
PCT/JP2007/067766
Other languages
English (en)
French (fr)
Inventor
Akihiro Sato
Hiroshi Harada
Kyoko Kawagishi
Toshiharu Kobayashi
Tadaharu Yokokawa
Yutaka Koizumi
Yasuhiro Aoki
Mikiya Arai
Kazuyoshi Chikugo
Shoju Masaki
Original Assignee
National Institute For Materials Science
Ihi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science, Ihi Corporation filed Critical National Institute For Materials Science
Priority to JP2008534370A priority Critical patent/JP5177559B2/ja
Priority to US12/441,017 priority patent/US8771440B2/en
Priority to CN2007800422228A priority patent/CN101652487B/zh
Priority to CA2663632A priority patent/CA2663632C/en
Priority to EP07807173.5A priority patent/EP2062990B1/en
Publication of WO2008032751A1 publication Critical patent/WO2008032751A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a Ni-based single crystal superalloy having improved creep characteristics, and more particularly to an improvement in a Ni-based single crystal superalloy for the purpose of improving oxidation resistance.
  • Ni-based single crystal superalloys are used as materials for parts or products that are used for a long time at high temperatures, such as moving and stationary blades of aircraft and gas turbines.
  • Ni-based single crystal superalloys deposit Ni A1 type precipitates by adding A1 (aluminum) to the base Ni (nickel).
  • Ni-based single crystal superalloy It is a superalloy that is strengthened and made into a single crystal by mixing and alloying refractory metals such as Cr (chromium), W (tungsten), and Ta (tantalum).
  • refractory metals such as Cr (chromium), W (tungsten), and Ta (tantalum).
  • the first generation that does not contain Re (rhenium) the second generation that contains about 3% by weight of Re
  • the third generation that contains 5 to 6% by weight of Re have already been developed.
  • the creep strength improves.
  • CMSX-2 Canon 'Maskegon, see Patent Document 1
  • CMSX-4 Canon'Maskegon is used for the second-generation Ni-based single crystal superalloy
  • CMSX-10 Canon, made by Maskegon, see Patent Document 3 and the like are known.
  • Ni-based single crystal superalloy is subjected to a solution treatment at a predetermined temperature and then an aging treatment to obtain an appropriate metal structure for improving the strength.
  • This superalloy is called a so-called precipitation-hardening alloy, and is a form in which a parent phase ( ⁇ phase) as an austenite phase and a precipitation phase ( ⁇ ′ phase) as an intermediate regular phase are dispersed and precipitated in this parent phase. I have.
  • CMSX-10 the third generation Ni-based single crystal superalloy described above, is a superalloy aimed at improving the creep strength at higher temperatures than the second generation Ni-based single crystal superalloy.
  • the Re composition ratio exceeds 5% by weight and exceeds the amount of Re solid solution in the parent phase ( ⁇ phase)
  • excess Re is combined with other elements, resulting in a high temperature.
  • TCP phase Topicological y Close Packed phase
  • the amount of TCP phase increased due to long-term use at high temperature, and the creep strength decreased.
  • Ni-based single crystal superalloy In order to solve the problem of this third generation Ni-based single crystal superalloy, Ru (ruthenium) that suppresses the TCP phase is added, and the composition ratio of other constituent elements is set within the optimum range.
  • Ru ruthenium
  • a Ni-based single crystal superalloy that can improve the strength at high temperatures by optimizing the lattice constant of the parent phase (solid phase) and the lattice constant of the precipitated phase ( ⁇ 'phase). It has been developed.
  • These Ni-based single crystal superalloys include the 4th generation containing up to about 3% by weight of Ru and the 5th generation containing 4% by weight or more of Ru. Strength is improved.
  • TMS-138 (NIMS—IHI, see Patent Document 4) for the 4th generation Ni-based single crystal superalloy
  • TMS-162 (NIMS—IHI, for the 5th generation Ni-based single crystal superalloy).
  • Manufactured see Patent Document 5).
  • the 4th generation Ni-based single crystal superalloy TMS-138 and the 5th generation Ni-based single crystal superalloy TMS-162 are superalloys with improved tally strength as described above. is there. It was found that when the test piece was heated under the conditions of 1100 ° C x 500 hours, the weight change was large in the negative direction.
  • Patent Document 1 US Patent No. 4,582,548
  • Patent Document 2 U.S. Pat.No. 4,643,782
  • Patent Document 3 US Patent No. 5,366,695
  • Patent Document 4 U.S. Pat.No. 6,966,956
  • Patent Document 5 US Patent Application Publication US2006 / 0011271 Disclosure of the invention
  • the present invention was devised in view of the above-described problems, and maintains oxidation resistance while maintaining the high creep strength that is characteristic of the fourth and fifth generation Ni-based single crystal superalloys.
  • the object is to provide a Ni-based single crystal superalloy that can be improved.
  • the inventors of the present invention have conducted extensive research based on the above-mentioned fourth and fifth generation Ni-based single crystal superalloys.
  • the present invention has been made on the basis of strength and knowledge.
  • each component has a weight ratio of A1: 5.0% by weight to 7.0% by weight, Ta: 4.0% by weight to 10.0% by weight, Mo (molybdenum) : 1.1 wt% to 4.5 wt%, W: 4.0 wt% to 10.0 wt%, Re: 3.1 wt% to 8.0 wt%, Hf: 0.0 wt% to 2.0 wt%, Cr: 2.5 wt% or more 8.5 wt% or less, Co: 0.0 wt% or more and 9.9 wt% or less, Nb (niobium): 0.0 wt% or more and 4.0 wt% or less, Ru (ruthenium): 1.0 wt% or more and 14.0 wt% or less It has a composition consisting of Ni and inevitable impurities.
  • the composition ratio of Hf and Cr may be Hf: 0.0 wt% or more and 0.5 wt% or less, and Cr: 5.1 wt% or more and 8.5 wt% or less.
  • the composition ratio of Hf, Cr, Mo, and Ta is as follows: Hf: 0.0 wt% to 0.5 wt%, Cr: 5.1 wt% to 8.5 wt%, Mo: 2.1 wt% to 4.5 wt%, Ta: You may make it become 4.0 to 6.0 weight%.
  • the Ni-based single crystal superalloy of the present invention has Al: 5.0 wt% or more and 6.5 wt% or less, Ta:
  • the Cr composition ratio may be Cr: 4.1 wt% or more and 8.5 wt% or less, or Cr: 5.1 wt% or more and 8.5 wt% or less.
  • composition ratio of Hf and Cr may be Hf: 0.1 wt% or more and 0.5 wt% or less, Cr: 4.1 wt% or more and 8.5 wt% or less, Hf: 0.1 wt% or more and 0.5 wt% or less, Cr: 5 It is good also as 1 to 8.5 weight%.
  • each component has a weight ratio of A1: 5.5% by weight or more.
  • Hf 0.1% to 2.0%
  • Cr 4.0% to 6.7%
  • Co 5.3% to 9.0%
  • Nb 0.0% to 1.0%
  • Ru 2.3 Containing at least 5.9% by weight, with the balance being Ni and inevitable impurities.
  • the composition ratio of Hf and Cr may be Hf: 0.1 wt% or more and 0.5 wt% or less, and Cr: 5.1 wt% or more and 6.7 wt% or less.
  • OP ⁇ 10 8 is preferable.
  • OP Direct may be OP ⁇ 113.
  • Ni-based single crystal superalloy of the present invention may contain 1.0% by weight or less of Ti (titanium) by weight. Also contains at least one component of B (boron), C (carbon), Si (silicon), Y (yttrium), La (lanthanum), Ce (cerium), V (vanadium), Zr (zirconium) Let me do it!
  • the individual components are as follows: B: 0.05% by weight or less, C: 0.15% by weight or less, Si: 0.1% by weight or less, Y: 0.1% by weight or less, La: 0.1% by weight or less, Ce: 0.1 wt% or less, ⁇ : 1 wt% or less, Zr: 0.1 wt% or less.
  • B 0.05% by weight or less
  • C 0.15% by weight or less
  • Si 0.1% by weight or less
  • Y 0.1% by weight or less
  • La 0.1% by weight or less
  • Ce 0.1 wt% or less
  • 1 wt% or less
  • Zr 0.1 wt% or less.
  • FIG. 1 is a graph showing a change in weight (mg / cm 2 ) of an alloy after 5 cycles of 1100 ° C XlOOHr X.
  • FIG. 2 is a graph showing the change in weight (mg / cm 2 ) of the alloy after 50 cycles of 1100 ° CX IHr X.
  • FIG. 3 is a diagram showing the relationship between the measurement result of the weight change shown in FIG. 2 and the OP value.
  • FIG. 4 is a diagram showing the relationship between the measurement result of the weight change shown in FIG. 1 and the OP value.
  • FIG. 5 is a diagram showing the results of measuring the creep rupture rupture time (Hr) of an alloy.
  • FIG. 6 is a graph showing the weight change (113 ⁇ 4 / .111 2 ) of the alloy after 1100 ° and 100 ⁇ 3 ⁇ 4 cycles.
  • FIG. 7 is a diagram showing the relationship between the measurement result of the weight change shown in FIG. 6 and the OP value.
  • FIG. 8 is a diagram showing the results of measuring the creep rupture rupture time (Hr) of an alloy.
  • FIG. 9 is a graph showing the change in weight (mg / cm 2 ) of the alloy after 900 ° C. X 100 Hr.
  • FIG. 10 is a diagram showing the relationship between the measurement result of the weight change shown in FIG. 9 and the OP value.
  • Ni-based single crystal superalloy of the present invention contains a component such as Al, Ta, Mo, W, Re, Hf, Cr, Co, Ru, etc. and Ni (remainder), and further contains inevitable impurities. It is.
  • Ni-based single crystal superalloy described above is, for example, in a weight ratio of A1: 5.0 wt% or more and 7.0 wt% Ta: 4.0% to 10.0%, Mo: 1% to 4.5%, W: 4.0% to 10.0%, 1 ⁇ 3: 3.1% to 8.0% , Hf: 0.0 wt% to 2.0 wt%, Cr: 2.5 wt% to 8.5 wt%, Co: 0.0 wt% to 9.9 wt%, Nb: 0.0 wt% to 4.0 wt%, Ru: l It is a superalloy having a composition containing 0.0% by weight or more and 14.0% by weight or less, with the balance being Ni and inevitable impurities.
  • the Ni-based single crystal superalloy described above has, for example, a weight ratio of A1: 5.0 wt% to 6.5 wt%, Ta: 4.0 wt% to 6.5 wt%, ⁇ 0: 2.1 wt% % To 4.0% by weight, W: 4.0% to 6.0% by weight, Re: 4.5% to 7.5% by weight, Hf: 0.1% to 2.0% by weight, Cr: 2.5% to 8.5% by weight Co: 4.5% by weight or more and 9.5% by weight or less, Nb: 0.0% by weight or more and 1.5% by weight or less, Ru: 1.5% by weight or more and 6.5% by weight or less, with the balance being Ni and inevitable impurities A superalloy having a composition.
  • the Ni-based single crystal superalloy described above has, for example, a weight ratio of A1: 5.5 wt% to 5.9 wt%, Ta: 4.7 wt% to 5.6 wt%, ⁇ 0: 2.2 wt% or more 2.8 wt% or less, W: 4.4 wt% to 5.6 wt%, Re: 5.0 wt% to 6.8 wt%, Hf: 0.1 wt% to 2.0 wt%, Cr: 4.0 wt% to 6.7 wt% Co: 5.3 wt% or more and 9.0 wt% or less, Nb: 0.0 wt% or more and 1.0 wt% or less, Ru: 2.3 wt% or more and 5.9 wt% or less, with the balance being Ni and inevitable impurities It is a superalloy.
  • Each of the above superalloys has a ⁇ phase (parent phase) as an austenite phase and a ⁇ 'phase (precipitation phase) as an intermediate ordered phase that is dispersed and precipitated in the parent phase.
  • the ⁇ 'phase is mainly represented by Ni A1.
  • Cr is an element with excellent oxidation resistance, and improves the high-temperature corrosion resistance of Ni-based single crystal superalloys together with Hf and A1.
  • the composition ratio (weight ratio) of Cr is such that when the weight ratio of Hf is 2.0% by weight or less, more preferably 0.1% by weight or more and 2.0% by weight or less, Cr: 2.5% by weight or more 8. 5% by weight or less is preferred 4. 1% by weight or more 8. 5% by weight or less is more preferred 4. 0% by weight or more 6. 7% by weight or less is more preferred 5. Most preferably, it is in the range of 1 wt% to 8.5 wt%.
  • Hf weight ratio of Hf is 0.5% by weight or less, more preferably 0.1% by weight or more and 0.5% by weight or less, Cr: 4.1% by weight or more and 8.5% by weight or less Preferred range 5. More than 1% by weight 8.5 Less than 8.5% by weight More preferred 5. More than 1% by weight and less than 6. 7% by weight S Most preferred.
  • the Cr composition ratio is less than 2.5% by weight, the desired high-temperature corrosion resistance cannot be ensured. Therefore, if the Cr composition ratio exceeds 8.5% by weight, the precipitation of the ⁇ ′ phase is suppressed. In addition, harmful phases such as ⁇ phase and phase are generated and the high-temperature strength is lowered, which is not preferable.
  • A1 is Ni A1 that forms a ⁇ 'phase that combines with Ni and precipitates finely and uniformly in the matrix.
  • A1 is an element with excellent oxidation resistance, and improves the high-temperature corrosion resistance of Ni-based single crystal superalloys together with Cr and Hf.
  • composition ratio (weight ratio) of A1 is preferably in the range of 5.0% by weight or more and 7.0% by weight or less.
  • the range of 5.0% by weight or more and 6.5% by weight or less is more preferable.
  • the range of from wt% to 5.9 wt% is most preferred.
  • the A1 composition ratio is less than 5.0% by weight, the amount of precipitation of the ⁇ 'phase becomes insufficient, and the desired high temperature strength and high temperature corrosion resistance cannot be ensured.
  • Exceeding 0% by weight is not preferable because many coarse ⁇ phases called eutectic ⁇ 'phases are formed, solution treatment is impossible, and high high-temperature strength cannot be secured.
  • Hf is a grain boundary segregation element, and is unevenly distributed in the grain boundaries of the ⁇ phase and the ⁇ 'phase to strengthen the grain boundary, thereby improving the high-temperature strength.
  • Hf is an element with excellent oxidation resistance, and together with Cr and A1, improves the high-temperature corrosion resistance of Ni-based single crystal superalloys.
  • composition ratio (weight ratio) of Hf is preferably 2.0% by weight or less. 0.5% by weight or less It is more preferable than S, and a range of 0.1% by weight or more and 2.0% by weight or less is more preferable.
  • the composition ratio of Hf may be 0 wt% or more and less than 0.01 wt%.
  • the Hf composition ratio exceeds 2.0% by weight, it is not preferable because it may cause local melting and lower the high-temperature strength.
  • Mo dissolves in the matrix phase as a parent phase to increase the high temperature strength and contribute to the high temperature strength by precipitation hardening. Mo also greatly contributes to the lattice misfit and dislocation network spacing described later.
  • Mo composition ratio is preferably 1. 1% by weight or more and 4.5% by weight or less 2. 2. 1% by weight or more 4. 5% by weight or less is more preferred 2. 1% by weight or more 4 A range of 0% by weight or less is preferable. 2. A range of 2% by weight or more and 2. 8% by weight or less is most preferable.
  • the Mo composition ratio is less than 1.1% by weight, the desired high-temperature strength cannot be ensured, which is preferable. On the other hand, even if the Mo composition ratio exceeds 4.5% by weight, the high-temperature strength decreases. Furthermore, it is preferable because the high temperature corrosion resistance is lowered.
  • W improves the high temperature strength by the action of solid solution strengthening and precipitation hardening in the presence of Mo and Ta.
  • the composition ratio of W is preferably in the range of 4.0 wt% to 10.0 wt%. 4.0 wt% to 6.0 wt% is more preferable 4. 4 wt% to 5 wt% A strength of 6% by weight or less is most preferable.
  • the W composition ratio is less than 4.0% by weight, the desired high-temperature strength cannot be ensured, so this is not preferable. If the W composition ratio exceeds 10.0% by weight, the high-temperature corrosion resistance is lowered, which is not preferable.
  • Ta is high due to the effects of solid solution strengthening and precipitation hardening in the presence of Mo and W as described above. Improves the temperature strength, and partly precipitates and hardens against the ⁇ 'phase to improve the strength at high temperature.
  • the composition ratio of Ta is preferably in the range of 4.0 wt% to 10.0 wt%. 4.0 wt% to 6.5 wt% is more preferred 4.0 wt% to 6 wt% A range of 0% by weight or less is preferable. 4. A range of 7% by weight or more and 5. 6% by weight or less is most preferable.
  • the Ta composition ratio is less than 4.0% by weight, the desired high-temperature strength cannot be ensured, so this is not preferable. If the Ta composition ratio exceeds 10.0% by weight, a sigma phase or a phase is formed, resulting in high-temperature strength. Is unfavorable because it decreases.
  • Co increases the solid solution limit of Al, Ta, and other parent phases at high temperatures, disperses and precipitates fine ⁇ 'phases by heat treatment, and improves high-temperature strength.
  • the composition ratio of Co is preferably in the range of 0.0% by weight or more and 9.9% by weight or less. 4. The range of 5% by weight or more and 9.5% by weight or less is more preferable. A force of 0% by weight or less is most preferable.
  • the Co composition ratio is less than 0.1% by weight, the amount of precipitation of the ⁇ ′ phase becomes insufficient, and the desired high-temperature strength cannot be ensured. However, if necessary, the Co composition ratio may be 0 wt% or more and less than 0.1 wt%. If the Co composition ratio exceeds 9.9% by weight, the balance with other elements such as Al, Ta, Mo, W, Hf, and Cr will be lost, and a harmful phase will precipitate, resulting in a decrease in high-temperature strength. Preferred les.
  • Re dissolves in the ⁇ phase, which is the parent phase, and improves high temperature strength by solid solution strengthening. It also has the effect of improving corrosion resistance.
  • the TCP phase which is a harmful phase, precipitates at high temperatures, which may reduce the high-temperature strength.
  • composition ratio of Re is preferably in the range of 3.1% by weight or more and 8.0% by weight or less. 4. The range of 5% by weight or more and 7.5% by weight or less is more preferred. 5.0% by weight or more 6 A power of 8% by weight or less is most preferable.
  • the Re composition ratio is less than 3.1% by weight, the solid solution strengthening of the ⁇ phase is insufficient, and the desired high-temperature strength cannot be secured. If the Re composition ratio exceeds 8.0% by weight, the TCP phase precipitates at high temperatures, and it is not preferable because high high temperature strength cannot be secured.
  • Ru suppresses the precipitation of the TCP phase, thereby improving the high temperature strength.
  • composition ratio of Ru is preferably in the range of 1.0 to 14.4% by weight. 1.5% by weight More than 6.5% by weight is more preferred 2. More than 3% by weight and less than 5.9% by weight S Most preferred.
  • the Ru composition ratio is less than 1.0% by weight, the TCP phase precipitates at high temperatures, and high high-temperature strength cannot be secured. On the other hand, if the Ru composition ratio exceeds 14.0% by weight, the ⁇ phase precipitates and the high-temperature strength decreases, which is preferable.
  • the present invention is a force characterized by setting A1, Cr and Hf in the optimum range.
  • A1, Cr and Hf in the optimum range.
  • the composition ratio of Ta, Mo, W, Co, Re and Ni By setting the lattice misfit (described later) calculated by the lattice constant of the ⁇ phase and the lattice constant of the 7 'phase and the transition network spacing to the optimum range, the high temperature strength is improved, and by adding Ru, the TCP phase It is possible to suppress the precipitation of.
  • the composition ratio of A1, Cr, Ta, and Mo as described above, the manufacturing cost of the alloy can be reduced. Furthermore, it is possible to improve fatigue strength and to set lattice misfit and transition network spacing to optimum values.
  • the composition ratio of Cr when the composition ratio of Cr is set to be high in order to improve oxidation resistance, if the structural stability is impaired, a part of the Ta composition ratio may be replaced with Nb.
  • the Mo composition ratio When is negatively increased, the Mo composition ratio should be set low.
  • the Ru composition ratio should be set high.
  • the lattice constant of the crystal constituting the matrix phase as the parent phase is al and it is a precipitated phase.
  • the lattice constant of the crystal composing the ⁇ 'phase is a2
  • the relationship between al and a2 is a2 ⁇ 0.999al. That is, it is preferable that the lattice constant a2 of the crystal of the precipitated phase is 0.1% or less of the lattice constant al of the crystal of the parent phase.
  • the lattice constant a 2 of the precipitated phase crystal is 0.9965 or less of the lattice constant al of the parent phase crystal.
  • the relationship between al and a2 described above is a2 ⁇ 0.995al.
  • the percentage of the lattice constant a2 of the crystal in the deposited phase with respect to the lattice constant al of the parent phase crystal is referred to as “lattice misfit”.
  • the Ni-based single crystal superalloy described above may further contain Ti.
  • the composition ratio of Ti is preferably 1.0% by weight or less. If the Ti composition ratio exceeds 1.0% by weight, a harmful phase precipitates and the high-temperature strength decreases, which is not preferable.
  • the Ni-based single crystal superalloy described above may further contain Nb.
  • the composition ratio of Nb is preferably 4.0% by weight or less, more preferably 1.5% by weight or less, and most preferably 1.0% by weight or less.
  • the composition ratio of Nb exceeds 4.0% by weight, a harmful phase precipitates and the high-temperature strength decreases, which is not preferable.
  • High temperature strength can also be improved by setting the composition ratio of Ta, Nb, and Ti to 4.0 wt% or more and 10.0 wt% or less in terms of the sum of both (Ta + Nb + Ti).
  • the Ni-based single crystal superalloy described above contains, for example, B, C, Si, Y, La, Ce, V, Zr, etc.! ,.
  • the composition ratio of each component is B: 0.05% by weight or less, C: 0.15% by weight or less, Si: 0.1% by weight or less, Y: 0.1% by weight or less, La: 0.1% by weight or less, Ce: 0.1% by weight or less, ⁇ : 1% by weight or less, Zr: 0.1% by weight or less are preferable. If the composition ratio of the individual components exceeds the above range, a harmful phase is precipitated and the high-temperature strength is lowered.
  • Ni-based single crystal superalloy has a force that causes reverse distribution.
  • the Ni-based single crystal superalloy according to the present invention does not cause reverse distribution! /.
  • Example: Solution treatment in! ⁇ 15 is carried out by setting the initial solution temperature to 1503K (1230 ° C) ⁇ ; 1573K (1300 ° C), increasing the temperature step by step through a multi-step process. The temperature was increased from 1583 K (1310 ° C.) to 1613 K (1340 ° C.), maintained for several hours until the desired structure was obtained, and then cooled. The treatment time required for the solution treatment was 640 hours.
  • Example 2 was a force that was relatively close to the reference example.
  • Examples 1 and 4 were about half the values of Reference Examples 1 and 4. In Example 3, a value of 1/10 or less was obtained. It was.
  • test pieces of each example were placed in an atmospheric heat treatment furnace maintained at 1373 K (1100 ° C.), taken out at 1 hour intervals, and after 50 hours had passed ( Weighed 50 cycles). The result is shown in Fig.2. For comparison, the same measurement was performed for Reference Examples 1 to 4.
  • the amount of change in weight exceeding “ ⁇ 14 mg / cm 2 ” was observed.
  • the values were lower than those in the reference example.
  • the weight change amount is the smallest among the reference examples! /
  • the values of examples 5 and 6 with the large weight change amount among the examples are about half that of reference example 4. The result was obtained.
  • FIG. 3 is a diagram showing the relationship between the measurement result of the weight change amount shown in FIG. 2 and the OP value.
  • the vertical axis represents the weight change (mg / cm 2 )
  • the horizontal axis represents the OP values shown in Table 1.
  • the weight change amount can be classified into Criteria 1 and Criteri a2
  • the OP value (108) is higher than the criteria of Criteria 2
  • the weight change is smaller than Reference Examples 1 to 4, that is, oxidation resistance Ni-based single crystal superalloy Power S Power that can be obtained S Power.
  • the composition should be set within the OP value (113) range exceeding the Criterial standard! Also,
  • FIG. 4 is a diagram showing the relationship between the measurement result of the weight change amount shown in FIG. 1 and the OP value.
  • the vertical axis represents the weight change (mg / cm 2 ), and the horizontal axis represents the OP values shown in Table 1. From FIG. 4, it can be seen that the same results as in FIG. 3 are obtained for Examples 1 to 4.
  • the creep rupture rupture time is a measurement of the time (life) until each sample ruptures under the conditions of temperature and stress of 1000 ° C '245MPa and 1100 ° C' 137MPa.
  • Example 1 As shown in this figure, for Example 1 and Example 2, the force S resulted in a shorter creep rupture rupture time (Hr) than Reference Example 1, and the other examples were for reference. Results similar to or higher than Example 1 were obtained.
  • FIG. 7 is a diagram showing the relationship between the measurement result of the weight change amount shown in FIG. 6 and the OP value.
  • the vertical axis represents the weight change (mg / cm 2 )
  • the horizontal axis represents the OP values shown in Table 2. From Figure 7, also Example 16 Example 22, it forces s Wakakaru substantially the same results as in FIG. 3 and FIG. 4 is obtained, et al.
  • FIG. 10 is a diagram showing the relationship between the measurement result of the weight change amount shown in FIG. 9 and the OP value.
  • the vertical axis represents the weight change (mg / cm 2 )
  • the horizontal axis represents the OP values shown in Table 2. From FIG. 10, it can be seen that the same results as in FIGS. 3, 4 and 7 can be obtained for Examples 16 to 22.
  • the oxidation resistance can be improved while maintaining the creep strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明 細 書
Ni基単結晶超合金
技術分野
[0001] 本発明は、クリープ特性を向上させた Ni基単結晶超合金に関し、特に、耐酸化性 の向上を目的とした Ni基単結晶超合金の改良に関する。
本願 (ま、 2006年 9月 13曰 ίこ、 曰本 ίこ出願された特願 2006— 248714号 ίこ基づき 優先権を主張し、その内容をここに援用する。
背景技術
[0002] 航空機やガスタービン等の動 ·静翼等のように高温下で長時間使用される部品また は製品には、材料として Ni基単結晶超合金が使用されている。 Ni基単結晶超合金 は、ベースである Ni (ニッケル)に A1 (アルミニウム)を添加して Ni A1型の析出物を析
3
出させて強化し、 Cr (クロム)、 W (タングステン)、 Ta (タンタル)等の高融点金属を混 合して合金化し、単結晶化させた超合金である。この Ni基単結晶超合金には、 Re ( レニウム)を含まない第 1世代、 Reを 3重量%程度含む第 2世代、 Reを 5〜6重量% 含む第 3世代が既に開発されており、世代が進むにつれクリープ強度が向上してい る。例えば、第 1世代の Ni基単結晶超合金には CMSX— 2 (キャノン 'マスケゴン社 製、特許文献 1参照)、第 2世代の Ni基単結晶超合金には CMSX— 4 (キャノン 'マス ケゴン社製、特許文献 2参照)、第 3世代の Ni基単結晶超合金には CMSX— 10 (キ ャノン 'マスケゴン社製、特許文献 3参照)等が知られている。
[0003] 上記 Ni基単結晶超合金は、所定の温度で溶体化処理を行った後、時効処理を行 つて強度向上のために適切な金属組織を得ている。この超合金は、いわゆる析出硬 化型合金と呼ばれており、オーステナイト相たる母相(γ相)と、この母相中に中間規 則相たる析出相( γ '相)が分散析出した形態を有してレ、る。
[0004] 上記第 3世代の Ni基単結晶超合金である CMSX— 10は、第 2世代の Ni基単結晶 超合金よりも高温下でのクリープ強度の向上を目的とした超合金である。し力、しながら 、 Reの組成比が 5重量%以上と高ぐ母相( γ相)への Re固溶量を越えてしまうため 、余剰の Reが他の元素と化合してしまい、高温下でいわゆる TCP相(Topological y Close Packed相)を析出させる。その結果、高温下における長時間の使用によつ て TCP相の量が増加し、クリープ強度が低下するという問題があった。
[0005] この第 3世代の Ni基単結晶超合金の問題を解決するために、 TCP相を抑制する R u (ルテニウム)を添加し、かつ他の構成元素の組成比を最適な範囲に設定すること により、母相( Ί相)の格子定数と析出相( γ '相)の格子定数とを最適な値にし、高 温下での強度を向上させることができる Ni基単結晶超合金が開発された。このような Ni基単結晶超合金には、 Ruを 3重量%程度まで含む第 4世代と Ruを 4重量%以上 含む第 5世代とがあり、世代が進むにつれ、第 3世代よりも更にクリープ強度が向上し ている。例えば、第 4世代の Ni基単結晶超合金には TMS— 138 (NIMS— IHI社製 、特許文献 4参照)、第 5世代の Ni基単結晶超合金には TMS— 162 (NIMS— IHI 社製、特許文献 5参照)等が知られている。
[0006] 上記第 4世代の Ni基単結晶超合金である TMS— 138及び第 5世代の Ni基単結晶 超合金である TMS— 162は、上述したようにタリープ強度を向上させた超合金であ る。し力、しな力 、 1100°C X 500時間の条件で試験片を加熱すると、重量変化量が 負の方向に大きいことがわかった。
[0007] また、上記 TMS— 138を採用したジェットエンジンの実証試験後の動翼断面の元 素マップを調査したところ、翼最表面では、 Niと Co (コバルト)の酸化物が層状に分 布しており、その下に A1や Crの酸化物が粒状に分布していた。 A1の酸化物が層状 に形成される場合には、成長が遅くかつ安定で強固であることから耐酸化保護性皮 膜となる力 S、Niと Coの酸化物は成長が速くかつ母材との密着性が A1の酸化物よりも 低いため剥離が生ずることとなる。したがって、酸化が進行するほど剥離現象が生じ 、負の重量変化量が大きくなる。すなわち、重量変化量が大きいということは耐酸化 性に優れてレ、な!/、と!/、うことを示して!/、る。
特許文献 1 :米国特許第 4, 582, 548号公報
特許文献 2 :米国特許第 4, 643, 782号公報
特許文献 3 :米国特許第 5, 366, 695号公報
特許文献 4 :米国特許第 6, 966, 956号公報
特許文献 5 :米国特許出願公開 US2006/0011271号公報 発明の開示
発明が解決しょうとする課題
[0008] 本発明は上述した問題に鑑み創案されたものであって、第 4世代及び第 5世代の N i基単結晶超合金の特徴である高いクリープ強度を維持しつつ、耐酸化性を向上さ せることができる Ni基単結晶超合金を提供することを目的とする。
課題を解決するための手段
[0009] 本願発明者らは、上記第 4世代及び第 5世代の Ni基単結晶超合金をベースにして 鋭意研究を行った結果、
(1) A1と Crと Hf (ハフニウム)を最適な範囲に設定することによりクリープ強度を維持 しつつ耐酸化性を向上させることができる、
(2)耐酸化性に優れた Crの組成比率を増大させるとともに組織安定性や TCP相の 抑制を考慮して組成比率の改良を行うことによつてもクリープ強度を維持しつつ耐酸 化性を向上させることができる、
との知見を得た。本発明は力、かる知見に基づいてなされた。
[0010] すなわち、本発明の Ni基単結晶超合金は、各成分が重量比で、 A1: 5.0重量%以 上 7.0重量%以下、 Ta:4.0重量%以上 10.0重量%以下、 Mo (モリブデン): 1.1 重量%以上 4.5重量%以下、 W:4.0重量%以上 10.0重量%以下、 Re:3.1重量 %以上 8.0重量%以下、 Hf:0.0重量%以上 2.0重量%以下、 Cr:2.5重量%以 上 8.5重量%以下、 Co:0.0重量%以上 9.9重量%以下、 Nb (ニオブ):0.0重量 %以上 4.0重量%以下、 Ru (ルテニウム): 1.0重量%以上 14.0重量%以下を含 有し、残部が Niと不可避的不純物からなる組成を有する。ここで、 Hfと Crの組成比 を、 Hf:0.0重量%以上 0.5重量%以下、 Cr:5.1重量%以上 8.5重量%以下とし てもよい。さらに Hfと Crと Moと Taの組成比を、 Hf:0.0重量%以上 0.5重量%以下 、Cr:5. 1重量%以上 8.5重量%以下、 Mo:2.1重量%以上 4.5重量%以下、 Ta :4.0重量%以上 6.0重量%以下となるようにしてもよい。
[0011] また、本発明の Ni基単結晶超合金は、 Al:5.0重量%以上 6.5重量%以下、 Ta:
4.0重量%以上 6. 5重量%以下、^ 0:2.1重量%以上 4.0重量%以下、 W:4.0 重量%以上 6.0重量%以下、 Re:4.5重量%以上 7.5重量%以下、 Hf:0. 1重量 %以上 2.0重量%以下、 Cr:2.5重量%以上 8.5重量%以下、 Co:4.5重量%以 上 9.5重量%以下、 Nb:0.0重量%以上 1.5重量%以下、 Ru:l.5重量%以上 6 .5重量%以下を含有し、残部が Niと不可避的不純物からなる組成を有する。ここで 、 Crの組成比を、 Cr:4.1重量%以上 8. 5重量%以下としてもよいし、 Cr: 5.1重 量%以上 8.5重量%以下としてもよい。
さらに、 Hfと Crの組成比を、 Hf:0.1重量%以上 0.5重量%以下、 Cr:4.1重量 %以上 8.5重量%以下としてもよいし、 Hf:0.1重量%以上 0.5重量%以下、 Cr:5 . 1重量%以上 8.5重量%以下としてもよい。
[0012] さらに、本発明の Ni基単結晶超合金は、各成分が重量比で、 A1: 5.5重量%以上
5.9重量%以下、 Ta:4.7重量%以上 5.6重量%以下、^ 0:2.2重量%以上 2.8 重量%以下、 W:4.4重量%以上 5.6重量%以下、1^3:5.0重量%以上 6.8重量 %以下、 Hf :0.1重量%以上 2.0重量%以下、 Cr:4.0重量%以上 6.7重量%以 下、 Co:5.3重量%以上 9.0重量%以下、 Nb:0.0重量%以上 1.0重量%以下、 Ru:2.3重量%以上 5.9重量%以下を含有し、残部が Niと不可避的不純物からな る組成を有する。ここで、 Hfと Crの組成比を、 Hf :0.1重量%以上 0.5重量%以下 、Cr:5. 1重量%以上 6.7重量%以下としてもよい。
[0013] また、上述した本発明の Ni基単結晶超合金の OP (Oxidation Para meter) =5.
5X [Cr (wt%)] + 15. OX [Al(wt%)] + 9.5 X [Hf (wt%) ]としたとき、 OP≥ 10 8とするのが好ましい。 OPィ直は、 OP≥ 113としてもよい。
[0014] また、上述した本発明の Ni基単結晶超合金は、重量比で 1.0重量%以下の Ti (チ タン)を含有してレ、てもよレ、。また、 B (ホウ素)、 C (炭素)、 Si (珪素)、 Y (イットリウム) 、 La (ランタン)、 Ce (セリウム)、 V (バナジウム)、 Zr (ジルコニウム)のうちの少なくとも 一つの成分を含有してレ、てもよ!/、。さらに、その個々の成分(重量比)は、 B: 0.05重 量%以下、 C:0.15重量%以下、 Si:0.1重量%以下、 Y:0.1重量%以下、 La:0 . 1重量%以下、 Ce:0.1重量%以下、 ¥:1重量%以下、 Zr:0.1重量%以下であ ること力 S好ましい。また、母相の格子定数を alとし、析出相の格子定数を a2としたとき に、 a2≤0.999alであることカ好ましく、さらに、 a2≤0.9965alであることカ好まし い。また、 P =— 200 [Cr (重量0 /0) ] +80 [Mo (重量%) ] - 20 [Mo (重量%) ] 2 + 20 0[W (重量%)]— 14[W (重量%)]2 + 30[Ta (重量%)]— 1· 5[丁&(重量%)]2 + 2 .5 [Co (重量%) ] + 1200[Α1 (重量%) ]-100[Α1 (重量%) ] 2 + 100 [Re (重量% ) ] +1000 [Hf (重量0 /0) ] - 2000 [Hf (重量0 /0) ] 2 + 700 [Hf (重量0 /0) ] 3としたとき、 P<4500にしてもよい。
発明の効果
[0015] 本発明の Ni基単結晶超合金によれば、 A1と Crと Hfを最適な範囲に設定したことに より、クリープ強度を維持しつつ耐酸化性を向上させることができる。また、 OP = 5.5 [ (重量%)] +15.0 [八1(重量%)] + 9.5X[Hf (重量0 /0)]というパラメータ を採用したことにより、容易に A1と Crと Hfを最適な範囲に設定することができる。 図面の簡単な説明
[0016] [図 1] 1100°C X lOOHr X 5サイクル後の合金の重量変化量(mg/cm2)を示す図で ある。
[図 2] 1100°C X IHr X 50サイクル後の合金の重量変化量(mg/cm2)を示す図で ある。
[図 3]図 2に示した重量変化量の計測結果と OP値との関係を示す図である。
[図 4]図 1に示した重量変化量の計測結果と OP値との関係を示す図である。
[図 5]合金のクリープラプチヤー破断時間(Hr)を計測した結果を示す図である。
[図6]1100°じ 100^¾ 5サィクル後の合金の重量変化量(11¾/。1112)を示す図で ある。
[図 7]図 6に示した重量変化量の計測結果と OP値との関係を示す図である。
[図 8]合金のクリープラプチヤー破断時間(Hr)を計測した結果を示す図である。
[図 9]900°CX100Hr後の合金の重量変化量(mg/cm2)を示す図である。
[図 10]図 9に示した重量変化量の計測結果と OP値との関係を示す図である。
発明を実施するための最良の形態
[0017] 以下、本発明の実施形態について詳細に説明する。本発明の Ni基単結晶超合金 は、 Al、 Ta、 Mo、 W、 Re、 Hf、 Cr、 Co、 Ru等の成分及び Ni (残部)を含有し、さら に不可避的不純物を含有する超合金である。
[0018] 上記の Ni基単結晶超合金は、例えば、重量比で、 A1: 5.0重量%以上 7.0重量% 以下、 Ta:4.0重量%以上 10.0重量%以下、 Mo:l.1重量%以上 4.5重量%以 下、 W:4.0重量%以上 10.0重量%以下、1^3:3.1重量%以上 8.0重量%以下、 Hf:0.0重量%以上 2.0重量%以下、 Cr:2.5重量%以上 8.5重量%以下、 Co:0 .0重量%以上 9.9重量%以下、 Nb:0.0重量%以上 4.0重量%以下、 Ru:l.0 重量%以上 14.0重量%以下を含有し、残部が Niと不可避的不純物からなる組成を 有する超合金である。
[0019] また、上記の Ni基単結晶超合金は、例えば、重量比で、 A1: 5.0重量%以上 6.5 重量%以下、 Ta:4.0重量%以上 6. 5重量%以下、^ 0:2.1重量%以上 4.0重量 %以下、 W:4.0重量%以上 6.0重量%以下、 Re:4.5重量%以上 7.5重量%以 下、 Hf:0.1重量%以上 2.0重量%以下、 Cr:2.5重量%以上 8.5重量%以下、 C o:4.5重量%以上 9.5重量%以下、 Nb:0.0重量%以上 1.5重量%以下、 Ru:l .5重量%以上 6.5重量%以下を含有し、残部が Niと不可避的不純物からなる組成 を有する超合金である。
[0020] また、上記の Ni基単結晶超合金は、例えば、重量比で、 A1: 5.5重量%以上 5.9 重量%以下、 Ta:4.7重量%以上 5.6重量%以下、^ 0:2.2重量%以上 2.8重量 %以下、 W:4.4重量%以上 5.6重量%以下、 Re:5.0重量%以上 6.8重量%以 下、 Hf :0.1重量%以上 2.0重量%以下、 Cr:4.0重量%以上 6.7重量%以下、 C o:5.3重量%以上 9.0重量%以下、 Nb:0.0重量%以上 1.0重量%以下、 Ru:2 .3重量%以上 5.9重量%以下を含有し、残部が Niと不可避的不純物からなる組成 を有する超合金である。
[0021] 上記超合金はいずれも、オーステナイト相たる γ相(母相)と、この母相中に分散析 出した中間規則相たる γ '相(析出相)とを有している。 γ '相は、主として Ni A1で表
3 される金属間化合物からなる。この γ '相により Ni基単結晶超合金の高温強度が向 上する。
[0022] 本発明は、 A1と Crと Hfを最適な範囲に設定したことを特徴とするので、最初にこれ らの成分につ!/、て説明し、続!/、て残りの成分につ!/、て説明する。
[0023] Crは耐酸化性に優れた元素であり、 Hf及び A1とともに Ni基単結晶超合金の高温 耐食性を向上させる。 Crの組成比(重量比)は、 Hfの重量比が 2. 0重量%以下のとき、より好ましくは 0. 1重量%以上 2. 0重量%以下のとき、 Cr : 2. 5重量%以上 8. 5重量%以下の範囲 が好ましぐ 4. 1重量%以上 8. 5重量%以下の範囲がより好ましぐ 4. 0重量%以上 6. 7重量%以下の範囲がより好ましぐ 5. 1重量%以上 8. 5重量%以下の範囲とす ることが最も好ましい。
また、 Hfの重量比が 0. 5重量%以下のとき、より好ましくは 0. 1重量%以上 0. 5重 量%以下のとき、 Cr : 4. 1重量%以上 8. 5重量%以下の範囲が好ましぐ 5. 1重量 %以上 8. 5重量%以下の範囲がより好ましぐ 5. 1重量%以上 6. 7重量%以下の範 囲とすること力 S最も好ましい。
Crの組成比が 2. 5重量%未満であると、所望の高温耐食性を確保することができ ないので好ましくなぐ Crの組成比が 8. 5重量%を越えると、 γ '相の析出が抑制さ れるとともに σ相や 相などの有害相が生成し、高温強度が低下するので好ましくな い。
[0024] A1は、 Niと化合し、母相中に微細均一に分散析出する γ '相を構成する Ni A1で
3 表される金属間化合物を、体積百分率で 60〜70%の割合で形成し、高温強度を向 上させる。また、 A1は耐酸化性に優れた元素であり、 Cr及び Hfとともに Ni基単結晶 超合金の高温耐食性を向上させる。
A1の組成比(重量比)は、 5. 0重量%以上 7. 0重量%以下の範囲が好ましぐ 5. 0 重量%以上 6. 5重量%以下の範囲がより好ましぐ 5. 5重量%以上 5. 9重量%以下 の範囲が最も好ましい。
A1の組成比が 5. 0重量%未満であると、 γ '相の析出量が不十分となり、所望の高 温強度 ·高温耐食性を確保することができないので好ましくなぐ A1の組成比が 7. 0 重量%を越えると、共晶 γ '相と呼ばれる粗大な γ相が多く形成され、溶体化処理が 不可能となり、高い高温強度を確保できなくなるので好ましくない。
[0025] Hfは粒界偏析元素であり、 γ相と γ '相の粒界に偏在して粒界を強化し、これによ り高温強度を向上させる。また、 Hfは耐酸化性に優れた元素であり、 Cr及び A1ととも に Ni基単結晶超合金の高温耐食性を向上させる。
Hfの組成比(重量比)は、 2. 0重量%以下であることが好ましぐ 0. 5重量%以下 であること力 Sより好ましく、 0. 1重量%以上 2. 0重量%以下の範囲がより好ましぐ 0. 1重量%以上 0. 5重量%以下の範囲とすることが最も好ましい。
Hfの組成比が 0. 01重量%未満であると、 γ '相の析出量が不十分となり、所望の 高温強度を確保できないので好ましくない。但し、必要に応じ、 Hfの組成比を 0重量 %以上 0. 01重量%未満とする場合もある。また、 Hfの組成比が 2. 0重量%を越え ると、局部溶融を引き起こして高温強度を低下させる可能性があるので好ましくない。
[0026] 上述した Cr、 Hf及び A1は、 OP = 5. 5 X [Cr (重量%) ] + 15· O X [A1 (重量0 /0) ] + 9. 5 X [Hf (重量%) ]というパラメータを用い、 OP≥108の条件、より好ましくは O P≥ 113の条件を満たすようにすることによって、最適な範囲に設定することができる
[0027] Moは、 W及び Taとの共存下にて、母相である Ί相に固溶して高温強度を増加さ せるとともに析出硬化により高温強度に寄与する。また、 Moは、後述する格子ミスフ イット及び転位網間隔に大きく寄与する。
Moの組成比は、 1. 1重量%以上 4. 5重量%以下の範囲が好ましぐ 2. 1重量% 以上 4. 5重量%以下の範囲がより好ましぐ 2. 1重量%以上 4. 0重量%以下の範囲 力はり好ましぐ 2. 2重量%以上 2. 8重量%以下の範囲とすることが最も好ましい。
Moの組成比が 1. 1重量%未満であると、所望の高温強度を確保できないので好 ましくなぐ一方、 Moの組成比が 4. 5重量%を越えても、高温強度が低下し、更には 高温耐食性も低下するので好ましくなレ、。
[0028] Wは、上記のように Mo及び Taとの共存下にて固溶強化と析出硬化の作用により、 高温強度を向上させる。
Wの組成比は、 4. 0重量%以上 10. 0重量%以下の範囲が好ましぐ 4. 0重量% 以上 6. 0重量%以下の範囲がより好ましぐ 4. 4重量%以上 5. 6重量%以下の範囲 とすること力 S最も好ましい。
Wの組成比が 4. 0重量%未満であると、所望の高温強度を確保できないので好ま しくなぐ Wの組成比が 10. 0重量%を越えると高温耐食性が低下するので好ましく ない。
[0029] Taは、上記のように Mo及び Wとの共存下にて固溶強化と析出硬化の作用により高 温強度を向上させ、また一部が γ '相に対して析出硬化し、高温強度を向上させる。
Taの組成比は、 4. 0重量%以上 10. 0重量%以下の範囲が好ましぐ 4. 0重量% 以上 6. 5重量%以下の範囲がより好ましぐ 4. 0重量%以上 6. 0重量%以下の範囲 力はり好ましぐ 4. 7重量%以上 5. 6重量%以下の範囲とすることが最も好ましい。
Taの組成比が 4. 0重量%未満であると、所望の高温強度を確保できないので好ま しくなぐ Taの組成比が 10. 0重量%を越えると、 σ相や 相が生成して高温強度が 低下するので好ましくない。
[0030] Coは、 Al、 Ta等の母相に対する高温下での固溶限度を大きくし、熱処理によって 微細な γ '相を分散析出させ、高温強度を向上させる。
Coの組成比は、 0. 0重量%以上 9. 9重量%以下の範囲が好ましぐ 4. 5重量% 以上 9. 5重量%以下の範囲がより好ましぐ 5. 3重量%以上 9. 0重量%以下の範囲 とすること力 S最も好ましい。
Coの組成比が 0. 1重量%未満であると、 γ '相の析出量が不十分となり、所望の 高温強度を確保できないので好ましくない。但し、必要に応じ、 Coの組成比を 0重量 %以上 0. 1重量%未満とする場合もある。また、 Coの組成比が 9. 9重量%を越える と、 Al、 Ta、 Mo、 W、 Hf、 Cr等の他の元素とのバランスがくずれ、有害相が析出して 高温強度が低下するので好ましくなレ、。
[0031] Reは母相である γ相に固溶し、固溶強化により高温強度を向上させる。また耐蝕 性を向上させる効果もある。一方で Reを多量に添加すると、高温時に有害相である T CP相が析出し、高温強度が低下する可能性がある。
Reの組成比は、 3. 1重量%以上 8. 0重量%以下の範囲が好ましぐ 4. 5重量% 以上 7. 5重量%以下の範囲がより好ましぐ 5. 0重量%以上 6. 8重量%以下の範囲 とすること力 S最も好ましい。
Reの組成比が 3. 1重量%未満であると、 γ相の固溶強化が不十分となって所望の 高温強度を確保できないので好ましくなぐ Reの組成比が 8. 0重量%を越えると、高 温時に TCP相が析出し、高い高温強度を確保できなくなるので好ましくない。
[0032] Ruは、 TCP相の析出を抑え、これにより高温強度を向上させる。
Ruの組成比は、 1. 0重量%以上 14. 0重量%以下の範囲が好ましぐ 1. 5重量% 以上 6. 5重量%以下の範囲がより好ましぐ 2. 3重量%以上 5. 9重量%以下の範囲 とすること力 S最も好ましい。
Ruの組成比が 1. 0重量%未満であると、高温時に TCP相が析出し、高い高温強 度を確保できなくなる。また、 Ruの組成比が 14. 0重量%を越えると、 ε相が析出し て高温強度が低下するので好ましくなレ、。
[0033] 本発明は、 A1と Crと Hfを最適な範囲に設定したことを特徴とする力 これらに加え て、 Ta、 Mo、 W、 Co、 Re及び Niの組成比を調整することにより、 γ相の格子定数と 7 '相の格子定数により算出される格子ミスフィット(後述)及び転移網間隔を最適な 範囲に設定して高温強度を向上させるとともに、 Ruを添加することにより、 TCP相の 析出を抑制すること力できる。また、特に A1と Crと Taと Moの組成比を上記のように設 定することにより、合金の製造コストを抑えることができる。さらに、疲労強度の向上や 、格子ミスフィットや転移網間隔の最適値への設定が実施可能となる。また、耐酸化 性を向上させるために Crの組成比を高めに設定した場合において、組織安定性が 損なわれる場合には Taの組成比の一部を Nbで置換してもよぐ格子ミスフィットが負 に大きくなる場合には Moの組成比を低めに設定すればよぐ TCP相をより抑制する ためには Ruの組成比を高めに設定すればよい。
[0034] また、 1273K (1000°C)から 1373K (1100°C)のような高温での使用環境におい て、母相である Ί相を構成する結晶の格子定数を alとし、析出相である γ '相を構成 する結晶の格子定数を a2としたとき、 alと a2の関係が a2≤0. 999alであることが好 ましい。すなわち、析出相の結晶の格子定数 a2が母相の結晶の格子定数 alのマイ ナス 0. 1 %以下であることが好ましい。さらに好ましくは、析出相の結晶の格子定数 a 2が母相の結晶の格子定数 alの 0. 9965以下であるとよい。この場合、上述した al と a2の関係は、 a2≤0. 9965alとなる。なお、母相の結晶の格子定数 alに対する析 出相の結晶の格子定数 a2のパーセンテージを「格子ミスフィット」と称する。
[0035] 上記格子定数 al , a2がこのような関係を有する場合、熱処理によって母相中に析 出相が析出する際に、析出相が荷重方向の垂直方向に連続して延在するように析 出するので、応力下で転位欠陥が合金組織中を移動することが少なくなり、クリープ 強度が高められる。 [0036] 上記の Ni基単結晶超合金によれば、 Ruを添加することにより、クリープ強度低下の 原因となる TCP相の高温使用時における析出が抑制される。また、他の構成元素の 組成比を最適な範囲に設定することにより、母相( Ί相)の格子定数と析出相( γ '相 )の格子定数とを最適な値にすることが可能になる。これらにより、高温下でのタリー プ強度を向上することができる。
[0037] また、上記の Ni基単結晶超合金は、 Tiをさらに含有してもよい。この場合、 Tiの組 成比は、 1.0重量%以下であることが好ましい。 Tiの組成比が 1.0重量%を超えると 、有害相が析出して高温強度が低下するので好ましくない。
[0038] また、上記の Ni基単結晶超合金は、 Nbをさらに含有してもよい。この場合、 Nbの 組成比は、 4.0重量%以下であるのが好ましぐ 1.5重量%以下であるのがより好ま しく、 1.0重量%以下であるのが最も好ましい。 Nbの組成比が 4.0重量%を超えると 、有害相が析出して高温強度が低下するので好ましくない。また、 Taと Nbと Tiの組 成比を、両者の合計 (Ta + Nb + Ti)で 4.0重量%以上 10.0重量%以下とすること によっても、高温強度を向上させることができる。
[0039] また、上記の Ni基単結晶超合金において、不可避的不純物以外に、例えば、 B、 C 、 Si、 Y、 La, Ce、 V、 Zr等を含んで! /、てもよ!/、。 B、 C、 Si、 Y、 La, Ce、 V、 Zrのうち の少なくとも一つの成分を含む場合、個々の成分の組成比は、 B:0.05重量%以下 、C:0.15重量%以下、 Si:0.1重量%以下、 Y:0.1重量%以下、 La:0. 1重量% 以下、 Ce:0.1重量%以下、 ¥:1重量%以下、 Zr:0.1重量%以下であるのが好ま しい。上記個々の成分の組成比が上記範囲を超えると、有害相が析出して高温強度 が低下するので好ましくなレ、。
[0040] また、上記の Ni基単結晶超合金において、 P=— 200[Cr (重量%)]+80[Mo (重 量%)]—20[^[0(重量%)]2 + 200[\¥(重量%)]— 14[\¥(重量%)]2 + 30[丁&( 重量%)]— 1· 5[Ta (重量%)]2 + 2· 5[Co (重量%)] +1200[八1(重量%)]— 10 0[A1 (重量%)]2+100[Re (重量%)] + 1000[Hf (重量%)]— 2000[Hf (重量%) ]2 + 700[Hf (重量%)]3で定められるパラメータ P値において、 P<4500とするの力 S 好ましい。 P値は、上記式中の組成の全体的な効果、特に高温クリープ破断強度を 予測するためのパラメータとして機能する。この P値についての説明は、特開平 10— 195565号 ίこ詳し!/、。
[0041] なお、従来の Ni基単結晶超合金には、逆分配を起こすものが存在する力 本発明 に係る Ni基単結晶超合金は、逆分配を起こさな!/、。
実施例 1
[0042] 次に、実施例を示し、本発明の効果について説明する。真空溶解炉を用いて各種 の Ni基単結晶超合金の溶湯を調整し、この合金溶湯を用いて組成の異なる複数の 合金インゴットを铸造した。各合金インゴット (参考例;!〜 4、実施例;!〜 15)の組成比 を表 1に示す。
[0043] [表 1]
Figure imgf000014_0001
[0044] 次に、合金インゴットに対して溶体化処理及び時効処理を行!/、、合金組織の状態 を走査型電子顕微鏡(SEM)で観察した。実施例;!〜 15における溶体化処理は、初 期溶体化温度を 1503K (1230°C)〜; 1573K (1300°C)とし、多段のステップを経由 し、段階的に温度を上げ、最終溶体化温度を 1583K (1310°C)〜; 1613K (1340°C )まで昇温し、 目的の組織となるまで数時間保持した後、冷却した。この溶体化処理 に要する処理時間は 6 40時間であった。また、実施例;!〜 4における時効処理は、 1273K (1000°C)〜; 1423K (1150°C)で 4時間保持する 1次時効処理のみであり、 実施例 5〜; 15における時効処理は、 1273K (1000°C)〜; 1423K (1150°C)で 4時 間保持する 1次時効処理と、 1143K (870°C)で 16時間〜 20時間保持する 2次時効 処理を連続して行った。その結果、各試料ともに、組織中に TCP相は確認されなか つた。
[0045] 次に、溶体化処理及び時効処理を施した各試料に対して、重量変化量を測定する 試験を行った。実施例 1〜実施例 4については、 1373K (1100°C)に保持した大気 圧熱処理炉に各実施例に係る合金の試験片を載置し、 100時間間隔で取り出し、 5 00時間経過後(5サイクル)の重量を計測した。その結果を図 1に示す。比較のため に、参考例 1、 3及び 4についても同様の計測を行った。
本図に示すように、参考例では「一 40mg/cm2」を超える重量変化量が見られた 1S 本発明の実施例ではいずれも参考例よりも低い値となった。実施例 2は比較的参 考例に近い値であった力 実施例 1及び 4は参考例 1及び 4の約半分の値であり、実 施例 3においては 1/10以下という値が得られた。
また、実施例 5〜実施例 15については、 1373K (1100°C)に保持した大気圧熱処 理炉に各実施例の試験片を載置し、 1時間間隔で取り出し、 50時間経過後(50サイ クル)の重量を計測した。その結果を図 2に示す。比較のために、参考例 1〜参考例 4についても同様の計測を行った。
本図に示すように、参考例では「― 14mg/cm2」を超える重量変化量が見られた 1S 本発明の実施例ではいずれも参考例よりも低い値となった。参考例のうち最も重 量変化量が小さ!/、参考例 4と各実施例とを比較すると、実施例のうち重量変化量の 大きい実施例 5及び 6でも参考例 4の約半分の値となる結果が得られた。
[0046] また、図 3は、図 2に示した重量変化量の計測結果と OP値との関係を示す図である 。ここで、縦軸は重量変化量 (mg/cm2)を示し、横軸は表 1に示した OP値を示す。 本図から明らかなように、参考例 1〜参考例 4及び実施例 5〜実施例 15について、重 量変化量と OP値との間には相関関係が見られる。具体的には、 Criteria 1と Criteri a2に分類することができ、 Criteria2の基準を超える OP値(108)以上であれば、参 考例 1〜4よりも重量変化量が少ない、すなわち耐酸化性が良い Ni基単結晶超合金 力 S得られること力 Sわ力、る。さらに高い耐酸化性が求められる場合には、 Criterialの基 準を超える OP値(113)以上の範囲にお!/、て組成を設定すればよ!/、ことがわ力、る。 また、
図 4は、図 1に示した重量変化量の計測結果と OP値との関係を示す図である。縦 軸は重量変化量 (mg/cm2)を示し、横軸は表 1に示した OP値を示す。図 4から、実 施例 1〜実施例 4についても、図 3とほぼ同様の結果が得られることがわかる。
[0047] 次に、実施例 1〜実施例 3、実施例 5〜実施例 8、実施例 10、実施例 14、実施例 1 5について、クリープラプチヤー破断時間(Hr)を計測した。その結果を図 5に示す。 比較のために、参考例 1〜参考例 4についても同様の計測を行った。
クリープラプチヤー破断時間は、 1000°C ' 245MPa及び 1100°C ' 137MPaの温度 及び応力の各条件下で各試料がクリープ破断するまでの時間(寿命)を計測したもの である。
本図に示すように、実施例 1及び実施例 2については、クリープラプチヤー破断時 間(Hr)が短い参考例 1よりも低い結果となった力 S、それ以外の実施例については参 考例 1と同等もしくはそれよりも高い結果が得られた。
[0048] また、実施例 16〜22として、組成の異なる複数の合金インゴットを、実施例;!〜 15 と同様の方法で铸造した。各合金インゴットの組成比を表 2に示す。
[0049] [表 2]
Figure imgf000016_0001
[0050] 次に、溶体化処理及び時効処理を施した各試料に対して、重量変化量を測定する 試験を行った。すなわち、実施例 16〜実施例 22について、 1373K (1100°C)に保 持した大気圧熱処理炉に各実施例に係る合金の試験片を載置し、 100時間間隔で 取り出し、 500時間経過後(5サイクル)の重量を計測した。その結果を図 6に示す。 比較のために、参考例 1、 3及び 4についても同様の計測を行った。
本図に示すように、参考例では「一 40mg/cm2」を超える重量変化量が見られた 1S 本発明の実施例では!/、ずれも参考例よりも低!/、値となった。
[0051] また、図 7は、図 6に示した重量変化量の計測結果と OP値との関係を示す図である 。ここで、縦軸は重量変化量 (mg/cm2)を示し、横軸は表 2に示した OP値を示す。 図 7から、実施例 16〜実施例 22についても、図 3及び図 4とほぼ同様の結果が得ら れること力 sゎカゝる。
[0052] 次に、実施例 16〜実施例 22について、クリープラプチヤー破断時間(Hr)を計測し た。その結果を図 8に示す。比較のために、参考例 1〜参考例 4についても同様の計 測を行った。
本図に示すように、実施例 19については、クリープラプチヤー破断時間(Hr)が短 い参考例 1よりも低い結果となった力 それ以外の実施例については参考例 1よりも 高い結果が得られた。
[0053] さらに、実施例 16〜実施例 22について、 1173K (900°C)に保持した大気圧熱処 理炉に各実施例に係る合金の試験片を載置し、 100時間経過後の重量を計測した。 その結果を図 9に示す。比較のために、参考例 1〜参考例 3についても同様の計測 を fiつた。
本図に示すように、参考例では「1. 3mg/cm2」を超える重量変化量が見られたが 、本発明の実施例では!/、ずれも参考例よりも低!/ 直となつた。
[0054] また、図 10は、図 9に示した重量変化量の計測結果と OP値との関係を示す図であ る。ここで、縦軸は重量変化量 (mg/cm2)を示し、横軸は表 2に示した OP値を示す 。図 10から、実施例 16〜実施例 22についても、図 3、図 4及び図 7とほぼ同様の結 果が得られることがわかる。
産業上の利用可能性
[0055] 本発明の Ni基単結晶超合金によれば、 A1と Crと Hfを最適な範囲に設定したことに より、クリープ強度を維持しつつ耐酸化性を向上させることができる。

Claims

請求の範囲
[1] 各成分が重量比で、 Al: 5.0重量%以上 7.0重量%以下、 Ta:4.0重量%以上 1 0.0重量%以下、 Mo:l.1重量%以上 4.5重量%以下、 W:4.0重量%以上 10. 0重量%以下、 Re:3.1重量%以上 8.0重量%以下、 Hf:0.0重量%以上 2.0重 量%以下、 Cr:2.5重量%以上 8.5重量%以下、 Co:0.0重量%以上 9.9重量% 以下、 Nb:0.0重量%以上 4.0重量%以下、 Ru:l.0重量%以上 14.0重量%以 下を含有し、残部が Niと不可避的不純物からなる組成を有する Ni基単結晶超合金。
[2] Hf:0.0重量%以上 0.5重量%以下、 Cr:5. 1重量%以上 8.5重量%以下、とし た請求項 1に記載の Ni基単結晶超合金。
[3] Hf:0.0重量%以上 0.5重量%以下、 Cr:5. 1重量%以上 8.5重量%以下、 Mo
:2. 1重量%以上 4.5重量%以下、 Ta:4.0重量%以上 6.0重量%以下、とした請 求項 1に記載の Ni基単結晶超合金。
[4] 各成分が重量比で、 A1: 5.0重量%以上 6.5重量%以下、 Ta:4.0重量%以上 6 .5重量%以下、 Mo:2.1重量%以上 4.0重量%以下、 W:4.0重量%以上 6.0重 量%以下、 Re:4.5重量%以上 7.5重量%以下、 Hf:0.1重量%以上 2.0重量% 以下、 Cr:2.5重量%以上 8.5重量%以下、 Co:4.5重量%以上 9.5重量%以下 Nb:0.0重量%以上 1.5重量%以下、 Ru:l.5重量%以上 6.5重量%以下を含 有し、残部が Niと不可避的不純物からなる組成を有する Ni基単結晶超合金。
[5] Cr:4. 1重量%以上 8.5重量%以下、とした請求項 4に記載の Ni基単結晶超合金
[6] Cr:5. 1重量%以上 8.5重量%以下、とした請求項 4に記載の Ni基単結晶超合金
[7] Hf:0.1重量%以上 0.5重量%以下、 Cr:4. 1重量%以上 8.5重量%以下、とし た請求項 4に記載の Ni基単結晶超合金。
[8] Hf:0.1重量%以上 0.5重量%以下、 Cr:5. 1重量%以上 8.5重量%以下、とし た請求項 4に記載の Ni基単結晶超合金。
[9] 各成分が重量比で、 A1: 5.5重量%以上 5.9重量%以下、 Ta:4.7重量%以上 5
.6重量%以下、^ 0:2.2重量%以上 2.8重量%以下、 W:4.4重量%以上 5.6重 量%以下、 Re:5.0重量%以上 6.8重量%以下、 Hf:0.1重量%以上 2.0重量% 以下、 Cr:4.0重量%以上 6.7重量%以下、 Co :5.3重量%以上 9.0重量%以下 、Nb:0.0重量%以上 1.0重量%以下、 Ru:2.3重量%以上 5.9重量%以下を含 有し、残部が Niと不可避的不純物からなる組成を有する Ni基単結晶超合金。
[10] Hf:0.1重量%以上 0.5重量%以下、 Cr:5. 1重量%以上 6.7重量%以下、とし た請求項 9に記載の Ni基単結晶超合金。
[11] OP (OxidationParameter) =5.5X [Cr (wt%)] + 15. OX [Al(wt%)] + 9.
5X [Hf (wt%)]としたとき、 OP≥ 108である請求項 1〜請求項 10のいずれかに記 載の Ni基単結晶超合金。
[12] OP (OxidationParameter) =5.5X [Cr (wt%)] + 15. OX [Al(wt%)] + 9.
5X [Hf (wt%)]としたとき、 OP≥ 113である請求項 1〜請求項 10のいずれかに記 載の Ni基単結晶超合金。
[13] 重量比で、 1.0重量%以下の Tiをさらに含有する請求項 1〜請求項 10のいずれか に記載の Ni基単結晶超合金。
[14] B、 C、 Si、 Y、 La、 Ce、 V、 Zrのうちの少なくとも一つの成分をさらに含有する請求 項 1〜請求項 10のいずれかに記載の Ni基単結晶超合金。
[15] 個々の成分は、重量比で、 B:0.05重量%以下、 C:0.15重量%以下、 Si:0.1 重量%以下、 Y:0.1重量%以下、 La:0. 1重量%以下、 Ce:0.1重量%以下、 V: 1重量%以下、 Zr:0.1重量%以下である請求項 14に記載の Ni基単結晶超合金。
[16] 母相の格子定数を alとし、析出相の格子定数を a2としたときに、 a2≤0.999alで ある請求項 1〜請求項 10のいずれかに記載の Ni基単結晶超合金。
[17] 母相の格子定数を alとし、析出相の格子定数を a2としたときに、 a2≤0.9965al である請求項 1〜請求項 10のいずれかに記載の Ni基単結晶超合金。
[18] P =— 200 [Cr (重量%) ] +80 [Mo (重量%) ] 20 [Mo (重量%) ] 2 + 200 [W (重 量%)]— 14[W (重量%)]2 + 30[Ta (重量%)] 1· 5[Ta (重量%)]2 + 2· 5[Co( 重量%) ] + 1200 [八1(重量%) ] 100 [八1(重量%) ] 2+ 100 [Re (重量%) ] + 100 0 [Hf (重量0 /0) ] 2000 [Hf (重量0 /0) ]2+700 [Hf (重量0 /0) ] 3としたとき、 P < 450 0である請求項 1〜請求項 10のいずれかに記載の Ni基単結晶超合金。
PCT/JP2007/067766 2006-09-13 2007-09-12 Ni-BASE SINGLE CRYSTAL SUPERALLOY WO2008032751A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008534370A JP5177559B2 (ja) 2006-09-13 2007-09-12 Ni基単結晶超合金
US12/441,017 US8771440B2 (en) 2006-09-13 2007-09-12 Ni-based single crystal superalloy
CN2007800422228A CN101652487B (zh) 2006-09-13 2007-09-12 Ni基单结晶超合金
CA2663632A CA2663632C (en) 2006-09-13 2007-09-12 Ni-based single crystal superalloy
EP07807173.5A EP2062990B1 (en) 2006-09-13 2007-09-12 Ni-BASE SINGLE CRYSTAL SUPERALLOY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006248714 2006-09-13
JP2006-248714 2006-09-13

Publications (1)

Publication Number Publication Date
WO2008032751A1 true WO2008032751A1 (en) 2008-03-20

Family

ID=39183807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067766 WO2008032751A1 (en) 2006-09-13 2007-09-12 Ni-BASE SINGLE CRYSTAL SUPERALLOY

Country Status (7)

Country Link
US (1) US8771440B2 (ja)
EP (1) EP2062990B1 (ja)
JP (1) JP5177559B2 (ja)
CN (1) CN101652487B (ja)
CA (1) CA2663632C (ja)
RU (1) RU2415190C2 (ja)
WO (1) WO2008032751A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157555A1 (ja) * 2008-06-26 2009-12-30 独立行政法人物質・材料研究機構 Ni基単結晶超合金とこれを基材とする合金部材
JP2010031299A (ja) * 2008-06-26 2010-02-12 National Institute For Materials Science Ni基単結晶超合金とそれよりえられた合金部材
JP2010037658A (ja) * 2008-08-06 2010-02-18 General Electric Co <Ge> ニッケル基超合金、その一方向凝固プロセス並びに得られる鋳造品
US20200318221A1 (en) * 2019-04-05 2020-10-08 United Technologies Corporation Nickel-Based Superalloy and Heat Treatment for Salt Environments
US20220098705A1 (en) * 2019-01-16 2022-03-31 Safran Nickel-based superalloy having high mechanical strength at a high temperature

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266772A1 (en) * 2009-04-20 2010-10-21 Honeywell International Inc. Methods of forming coating systems on superalloy turbine airfoils
RU2518838C2 (ru) 2009-08-10 2014-06-10 АйЭйчАй КОРПОРЕЙШН МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И ЛОПАТКА ТУРБИНЫ
WO2013132508A1 (en) 2012-03-09 2013-09-12 Indian Institute Of Science Nickel- aluminium- zirconium alloys
CN103382536A (zh) * 2012-05-03 2013-11-06 中国科学院金属研究所 一种高强度且组织稳定的第四代单晶高温合金及制备方法
JP6016016B2 (ja) * 2012-08-09 2016-10-26 国立研究開発法人物質・材料研究機構 Ni基単結晶超合金
US20160214350A1 (en) 2012-08-20 2016-07-28 Pratt & Whitney Canada Corp. Oxidation-Resistant Coated Superalloy
EP3031939B1 (en) * 2013-08-05 2018-04-11 National Institute for Materials Science Ni-group superalloy strengthened by oxide-particle dispersion
US20160184888A1 (en) * 2014-09-05 2016-06-30 General Electric Company Nickel based superalloy article and method for forming an article
GB2540964A (en) * 2015-07-31 2017-02-08 Univ Oxford Innovation Ltd A nickel-based alloy
DE102016202837A1 (de) 2016-02-24 2017-08-24 MTU Aero Engines AG Wärmebehandlungsverfahren für Bauteile aus Nickelbasis-Superlegierungen
TWI595098B (zh) * 2016-06-22 2017-08-11 國立清華大學 高熵超合金
FR3073527B1 (fr) 2017-11-14 2019-11-29 Safran Superalliage a base de nickel, aube monocristalline et turbomachine
FR3073526B1 (fr) 2017-11-14 2022-04-29 Safran Superalliage a base de nickel, aube monocristalline et turbomachine
CN109797433B (zh) * 2019-01-23 2021-05-25 深圳市万泽中南研究院有限公司 单晶高温合金、热端部件及设备
CN111139377B (zh) * 2020-02-10 2021-03-26 中国科学院金属研究所 一种高温合金及其制备方法
RU2748445C1 (ru) * 2020-06-09 2021-05-25 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Жаропрочный сплав на никелевой основе и изделие, выполненное из него
CN112522543A (zh) * 2020-11-18 2021-03-19 贵州工程应用技术学院 一种高浓度Re/Ru高承温能力高蠕变抗力镍基单晶超合金
CN112853156B (zh) * 2021-01-11 2022-01-18 北京科技大学 一种高组织稳定性镍基高温合金及其制备方法
CN113265563B (zh) * 2021-05-06 2022-04-29 中国联合重型燃气轮机技术有限公司 一种抗热腐蚀性好的Ni高温合金及其制备方法
RU2769330C1 (ru) * 2021-06-24 2022-03-30 Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Литейный жаропрочный никелевый сплав с монокристаллической структурой
CN115466878A (zh) * 2022-10-19 2022-12-13 沈阳工业大学 一种高浓度Re/Ru高承温能力的镍基单晶超合金及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582548A (en) 1980-11-24 1986-04-15 Cannon-Muskegon Corporation Single crystal (single grain) alloy
US4643782A (en) 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
US5366695A (en) 1992-06-29 1994-11-22 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
JPH07268520A (ja) * 1994-01-03 1995-10-17 General Electric Co <Ge> 逆分配ニッケル基超合金単結晶製品
JPH10195565A (ja) 1996-12-11 1998-07-28 United Technol Corp <Utc> 高強度、かつ高い耐酸化性を有する低Cr含有単結晶用超合金組成物及び単結晶超合金物体
JP2003049231A (ja) * 2001-05-30 2003-02-21 National Institute For Materials Science Ni基単結晶超合金
WO2003080882A1 (fr) * 2002-03-27 2003-10-02 National Institute For Materials Science Superalliage a base de ni solidifie de maniere directionnelle et superalliage a cristal unique a base de ni
WO2004053177A1 (ja) * 2002-12-06 2004-06-24 Independent Administrative Institution National Institute For Materials Science Ni基単結晶超合金
US6966956B2 (en) 2001-05-30 2005-11-22 National Institute For Materials Science Ni-based single crystal super alloy
JP2006248714A (ja) 2005-03-11 2006-09-21 Canon Inc 給紙装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719080A (en) 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
CA1315572C (en) * 1986-05-13 1993-04-06 Xuan Nguyen-Dinh Phase stable single crystal materials
US5151249A (en) * 1989-12-29 1992-09-29 General Electric Company Nickel-based single crystal superalloy and method of making
US5455120A (en) * 1992-03-05 1995-10-03 General Electric Company Nickel-base superalloy and article with high temperature strength and improved stability
DE19624056A1 (de) * 1996-06-17 1997-12-18 Abb Research Ltd Nickel-Basis-Superlegierung
FR2780983B1 (fr) 1998-07-09 2000-08-04 Snecma Superalliage monocristallin a base de nickel a resistance accrue a haute temperature
US6444057B1 (en) * 1999-05-26 2002-09-03 General Electric Company Compositions and single-crystal articles of hafnium-modified and/or zirconium-modified nickel-base superalloys
US6673308B2 (en) * 2000-08-30 2004-01-06 Kabushiki Kaisha Toshiba Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582548A (en) 1980-11-24 1986-04-15 Cannon-Muskegon Corporation Single crystal (single grain) alloy
US4643782A (en) 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
US5366695A (en) 1992-06-29 1994-11-22 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
JPH07268520A (ja) * 1994-01-03 1995-10-17 General Electric Co <Ge> 逆分配ニッケル基超合金単結晶製品
JPH10195565A (ja) 1996-12-11 1998-07-28 United Technol Corp <Utc> 高強度、かつ高い耐酸化性を有する低Cr含有単結晶用超合金組成物及び単結晶超合金物体
JP2003049231A (ja) * 2001-05-30 2003-02-21 National Institute For Materials Science Ni基単結晶超合金
US6966956B2 (en) 2001-05-30 2005-11-22 National Institute For Materials Science Ni-based single crystal super alloy
WO2003080882A1 (fr) * 2002-03-27 2003-10-02 National Institute For Materials Science Superalliage a base de ni solidifie de maniere directionnelle et superalliage a cristal unique a base de ni
WO2004053177A1 (ja) * 2002-12-06 2004-06-24 Independent Administrative Institution National Institute For Materials Science Ni基単結晶超合金
US20060011271A1 (en) 2002-12-06 2006-01-19 Toshiharu Kobayashi Ni-based single crystal superalloy
JP2006248714A (ja) 2005-03-11 2006-09-21 Canon Inc 給紙装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATO A. ET AL.: "Senshin Ni-ki Chogokin'yo Coating no Kaihatsu (DEVELOPMENT OF NEW COATINGS FOR ADVANCED NI-BASE SUPERALLOYS)", JOURNAL OF THE JAPAN INSTITUTE OF METALS, vol. 70, no. 2, 20 February 2006 (2006-02-20), pages 192 - 195, XP003003313 *
SATO A. ET AL.: "Taisankasei to Creep Kyodo ni Sugureru Dai 5 Sedai Ni-ki Tankessho Chogokin (A 5th Generation Ni-Base Single Crystal Superalloy Designed for the Combination of Excellent Oxidation Resistance and Creep Strength at Elevated Temperatures)", JOURNAL OF THE JAPAN INSTITUTE OF METALS, vol. 70, no. 2, 20 February 2006 (2006-02-20), pages 196 - 199, XP003021586 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157555A1 (ja) * 2008-06-26 2009-12-30 独立行政法人物質・材料研究機構 Ni基単結晶超合金とこれを基材とする合金部材
JP2010031299A (ja) * 2008-06-26 2010-02-12 National Institute For Materials Science Ni基単結晶超合金とそれよりえられた合金部材
JP2010031298A (ja) * 2008-06-26 2010-02-12 National Institute For Materials Science Ni基単結晶超合金とこれを基材とする合金部材
EP2305846A1 (en) * 2008-06-26 2011-04-06 National Institute for Materials Science Ni-BASED SINGLE CRYSTAL SUPERALLOY AND ALLOY MEMBER OBTAINED FROM THE SAME
CN102076877A (zh) * 2008-06-26 2011-05-25 独立行政法人物质·材料研究机构 Ni基单晶超合金及以其为基材的合金构件
CN103498078A (zh) * 2008-06-26 2014-01-08 独立行政法人物质·材料研究机构 Ni基单晶超合金和由其得到的合金构件
EP2305846A4 (en) * 2008-06-26 2014-10-29 Nat Inst For Materials Science MONOCRYSTALLINE SUPERALLIAGE BASED ON Ni AND ALLOY MEMBER OBTAINED THEREFROM
EP2305845A4 (en) * 2008-06-26 2015-05-13 Nat Inst For Materials Science MONOCRYSTALLINE SUPERALLIAGE BASED ON Ni AND ALLOY ELEMENT USING THE SAME AS BASE
CN102076877B (zh) * 2008-06-26 2015-12-16 独立行政法人物质·材料研究机构 Ni基单晶超合金及以其为基材的合金构件
JP2010037658A (ja) * 2008-08-06 2010-02-18 General Electric Co <Ge> ニッケル基超合金、その一方向凝固プロセス並びに得られる鋳造品
US20220098705A1 (en) * 2019-01-16 2022-03-31 Safran Nickel-based superalloy having high mechanical strength at a high temperature
US20200318221A1 (en) * 2019-04-05 2020-10-08 United Technologies Corporation Nickel-Based Superalloy and Heat Treatment for Salt Environments

Also Published As

Publication number Publication date
RU2415190C2 (ru) 2011-03-27
EP2062990A4 (en) 2014-12-17
US8771440B2 (en) 2014-07-08
CA2663632C (en) 2014-04-15
US20100143182A1 (en) 2010-06-10
RU2009113022A (ru) 2010-10-20
CN101652487B (zh) 2012-02-08
EP2062990A1 (en) 2009-05-27
JPWO2008032751A1 (ja) 2010-01-28
CN101652487A (zh) 2010-02-17
EP2062990B1 (en) 2016-01-13
CA2663632A1 (en) 2008-03-20
JP5177559B2 (ja) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2008032751A1 (en) Ni-BASE SINGLE CRYSTAL SUPERALLOY
US7169241B2 (en) Ni-based superalloy having high oxidation resistance and gas turbine part
JP3814662B2 (ja) Ni基単結晶超合金
EP2305845B1 (en) Ni-BASED SINGLE CRYSTAL SUPERALLOY AND ALLOY MEMBER USING THE SAME AS BASE
JP5467307B2 (ja) Ni基単結晶超合金とそれよりえられた合金部材
JP4036091B2 (ja) ニッケル基耐熱合金及びガスタービン翼
EP2420584B1 (en) Nickel-based single crystal superalloy and turbine blade incorporating this superalloy
RU2518838C2 (ru) МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И ЛОПАТКА ТУРБИНЫ
US20090317288A1 (en) Ni-Base Superalloy and Method for Producing the Same
EP1262569B1 (en) Ni-based single crystal super alloy
US20080240926A1 (en) Cobalt-Free Ni-Base Superalloy
JP2007162041A (ja) 高強度高延性Ni基超合金と、それを用いた部材及び製造方法
JP5226846B2 (ja) 高耐熱性、高強度Rh基合金及びその製造方法
US6982059B2 (en) Rhodium, platinum, palladium alloy
JP7223878B2 (ja) コバルト基合金製造物およびその製造方法
JP6982172B2 (ja) Ni基超合金鋳造材およびそれを用いたNi基超合金製造物
EP1760164B1 (en) Nickel-base superalloy
CN116529459A (zh) 具有高抗氧化性、高耐腐蚀性和良好可加工性的基于镍的超级合金
KR20190058195A (ko) 니켈기 단결정 초내열합금 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042222.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2663632

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008534370

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007807173

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009113022

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12441017

Country of ref document: US