WO2008031250A1 - Cellule solaire de mémoire à puits quantiques - Google Patents

Cellule solaire de mémoire à puits quantiques Download PDF

Info

Publication number
WO2008031250A1
WO2008031250A1 PCT/CN2006/002063 CN2006002063W WO2008031250A1 WO 2008031250 A1 WO2008031250 A1 WO 2008031250A1 CN 2006002063 W CN2006002063 W CN 2006002063W WO 2008031250 A1 WO2008031250 A1 WO 2008031250A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
quantum
cell according
type
Prior art date
Application number
PCT/CN2006/002063
Other languages
English (en)
French (fr)
Inventor
Zhongmou Chen
Original Assignee
Jiangsu Sunshine Solar Electric Power Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Sunshine Solar Electric Power Co., Ltd filed Critical Jiangsu Sunshine Solar Electric Power Co., Ltd
Priority to CN2006800111949A priority Critical patent/CN101167192B/zh
Priority to EP06775381A priority patent/EP2068376A1/en
Priority to US12/312,447 priority patent/US20100018575A1/en
Priority to PCT/CN2006/002063 priority patent/WO2008031250A1/zh
Publication of WO2008031250A1 publication Critical patent/WO2008031250A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Quantum bank solar cell and preparation method thereof are Quantum bank solar cell and preparation method thereof.
  • the invention relates to a solar cell, in particular to a quantum library solar cell, and a preparation process of the novel solar cell.
  • a solar cell is a semiconductor device having a photoelectric conversion function based on a semiconductor material.
  • the principle of solar cells is to convert solar radiant energy directly into electrical energy based on the photovoltaic effect of the semiconductor.
  • the existing solar cell is generally composed of a PN junction formed by a semiconductor substrate and a diffusion layer and an electrode drawn at both ends of the PN junction, which migrates photogenerated carriers generated under illumination conditions by a self-built electric field of the PN junction.
  • a photo-generated current is formed on both sides of the PN junction to achieve the effect of photoelectric conversion.
  • the efficiency of solar cells is a matter of concern.
  • Monocrystalline silicon cells are the most efficient solar cells before conversion, and 3 ⁇ 4 can convert 16% ⁇ ?? 0% of incident light into current.
  • the reason why only a small percentage of sunlight is converted into electrical energy is due to the fact that existing solar cells cannot convert most of the sunlight into electricity.
  • the sunlight contains a wide aperture in the electric wave (0.25 ⁇ 2.2 ⁇ ), that is, from infrared light through various colors of visible light until the ultraviolet light is divided into ultraviolet light 7%, visible light 45% and infrared 47 %about.
  • the light having a wavelength of less than 1,1 ⁇ m has sufficient energy.
  • the length of the ⁇ is greater than 1,1 ⁇ long ⁇ part can not produce electricity to the ⁇ hole pair, but turned into heat. About 25% of the solar radiation can be used. For example, the energy of the light 4 produces electron-hole pairs, and the remaining energy is changed to the heat used by Qin. Add 30% of the solar unit will have ⁇ socks use.
  • the structure of the new battery enables it to perform photoelectric conversion, and it is more capable of collecting "thermal energy carriers" to generate current, forming the main current of the battery, thereby making the conversion efficiency a qualitative leap.
  • the present invention will also provide a process for the preparation of such a new structure quantum bank solar cell, enabling it to achieve large scale industrial production.
  • a quantum library solar cell comprising a semiconductor substrate, a diffusion layer and upper and lower electrodes, wherein a lightly doped epitaxial layer of the same conductivity type as the semiconductor substrate is disposed on the edge of the semiconductor substrate layer,
  • the ribs are elongated structures, including a plurality of parallel vertical ribs and at least one transverse rib, the transverse ribs are connected through a plurality of parallel vertical ribs; vertical ribs and transverse ribs
  • the interval is a rib section;
  • the elongated rib is provided with: a nano-ion implantation layer of opposite conductivity type to the epitaxial layer, and a highly doped layer of opposite conductivity type of the ion implantation layer, covered by a highly doped layer
  • the high-doped layer is covered with a metal layer;
  • the upper electrode lead is connected to the metal layer on the lateral rib;
  • the diffusion layer is disposed in the entire inter-rib
  • the epitaxial layer on the upper portion of the rib is subjected to a semiconductor process to form a nano ion implantation layer, a highly doped layer, and a metal.
  • the spread of the 4 force g is the same as that of the traditional wood solar cell structure.
  • the transverse ribs and the vertical ribs are substantially wished.
  • the quantum-bank solar cell of the present invention is constructed by connecting a solar cell chip in series with a DC power source that generates a back-field voltage.
  • the structure difference between the present invention and the conventional solar cell is: a rib and an intercostal region are divided on the epitaxial layer; and a diffusion layer is disposed in the intercostal region.
  • An ion implantation layer and a highly doped layer are disposed on the rib; the highly doped layer covers the ion implantation layer, and the ion implantation layer is sandwiched between the epitaxial layer and the highly doped layer to form a sandwich structure, and the ion implantation layer is electrically conductive.
  • the conductivity type of the type and epitaxial layer, the highly doped layer is opposite, and two PN junctions are formed in the sandwich structure.
  • a diffusion layer Between the ribs of the plurality of sandwich structures is a diffusion layer, and the conductivity type of the diffusion layer is opposite to that of the epitaxial layer and the substrate.
  • the sandwich structure on the ribs is joined to the diffusion layer provided in the intercostal region to form a reservoir well, that is, a quantum reservoir.
  • the semiconductor substrate material and the epitaxial layer described in the above scheme together constitute a semiconductor base layer.
  • the semiconductor epitaxial layer may be p-type, the diffusion layer is n + type, the ion implantation layer is n + type, and the highly doped layer is p ++ type; or
  • the semiconductor epitaxial layer may be n-type, the diffusion layer is p+ type, the ion implantation layer is p+ type, and the highly doped layer is n ++ type;
  • the ", + , ++ " in the above description indicates the degree of impurity doping in the semiconductor material, which indicates light doping, heavy doping, and overweight doping, respectively.
  • the ion implantation layer has a lift of 10 14 10 19 cm' 3 and a thickness between lnra and 100 nm.
  • the doping concentration of the highly doped layer is much higher than that of the diffusion layer in the conventional process, and the thickness of the highly doped layer can reach 10 17 to 10 21 cm - 3 and the thickness is about several thousand A.
  • the metal layer may be a commonly used metal A1 or the like.
  • the back field voltage is applied between the upper and lower electrodes, and a reverse bias voltage source is applied between the upper and lower electrodes.
  • the structure of the present invention is quite different from conventional solar cells, such as:
  • the invention is provided with an epitaxial layer having a thickness of between 15 ⁇ m and 20 ⁇ m, which plays a role in increasing the quantum reservoir capacity in the device to ensure optimum output power.
  • Conventional solar cells do not have this structure; if an epitaxial layer is placed on a conventional solar cell, it will result in an increase in the open circuit voltage and a reduction in the photoelectric conversion rate. In the structure of the present invention, it is an important structural condition for improving the transfer rate.
  • the special structure of the solar cell in the above scheme and the added reverse back-field voltage supply become the key to improve the conversion efficiency. As long as the back-field voltage is kept rated and the working state is stable, the quantum-tank solar cell can maintain an effective output power.
  • the invention has the following optimization schemes:
  • the principle of setting the reverse back-field voltage of the solar cell solar cell is: the back-field voltage is a reverse bias voltage, and the internal resistance of the reverse bias voltage DC power supply is less than/equal to the internal resistance of the load battery.
  • N where ⁇ is greater than 3, can be 3, 4, 5, etc. (not excluding non-integer ratio), the larger the ideal value, the better the effect; the value of practical industrial use is above.
  • the ratio of the back field voltage DC power supply to the internal resistance of the load battery will be close to infinity. With such a low internal resistance battery as the back field voltage direct current power supply, the conversion efficiency of the present invention can be further improved.
  • the back-field voltage is the reverse bias voltage and should be higher than the load battery voltage.
  • the reverse bias voltage is always higher than the load battery voltage of about 2V.
  • the present invention recommends the following data:
  • the back-field voltage of the fan is 1 5 V.
  • the strip-shaped vertical ribs may be arranged in a plurality of parallel dam shapes, each of which has a width of between several micrometers and ten kilometers, and a distance between adjacent two vertical ribs (ie The intercostal space width is several hundred microns.
  • Each of the vertical ribs and its adjacent intercostal zone form a strip-shaped unit, and a plurality of strip-shaped units are sequentially connected to constitute the main structure of the present invention.
  • a comb-like electrode structure is formed on the front side (negative electrode) of the battery.
  • the upper electrode connecting line may be disposed on the metal layer at the top of the transverse rib, and the horizontal rib may be set 2 pieces.
  • a highly doped electrode layer of a heavily doped polysilicon material may be provided on one side of the semiconductor epitaxial layer, and the lower electrode connection line is directly extracted from the highly doped electrode layer.
  • the thickness of the epitaxial layer is 15-20 microns, and the resistivity is 7.5 ⁇ 8.50.cm; the thickness of the ion implantation layer is 1 ⁇ 100 nm; the thickness of the highly doped layer Use on the order of submicron.
  • the back-field voltage power supply can be used without a battery, and the back-field voltage is set by a circuit composed of a transformer and a rectifier.
  • An intrinsic layer ( ⁇ ) capable of buffering may be provided between the ion implantation layer and the highly doped layer; and between the ion implantation layer and the semiconductor base layer.
  • An isolation trench is provided by diffusion at the periphery of the substrate layer.
  • the semiconductor substrate material is made of a heavily doped semiconductor material having a resistivity of less than 0.005 Q, pm.
  • the present invention described technical solution can have a variety of implementations, including various forms of prior art technique and help, for example: passivation layer, antireflection film, using the gate electrode and the like, and can be conventional
  • the solar cells are the same.
  • the output voltage of the solar panel is about to be larger than the back-field voltage, and the power supply of the back-field voltage cannot output current to the load, so during use, the voltage of the back-field voltage power supply is basically stable.
  • the invention adopts a technical scheme of increasing the ion implantation layer and the highly doped layer and the epitaxial layer, and setting the back field voltage between the semiconductor substrate and the highly doped layer, in particular, selecting a specific back-field voltage power supply.
  • the efficiency of the solar cell is greatly improved under the boundary conditions of the internal resistance ratio: the output current of the conventional solar cell is 30 mA; and the output current of the quantum solar cell of the present invention can be increased from 150 mA; the conventional solar cell The output voltage is 0.
  • the transmission voltage of the present invention is about 15V, even up to 1TV;
  • the output power of the conventional solar cell is generally 0.02W/cm 2 ;
  • the present invention i
  • the output power of the solar panel can reach 2W/ Cm 2 ; 7W/cm 2 can be achieved under the conditions of the real room.
  • the efficiency of the invention is the result of actual test and detection; the data far exceeds the limit efficiency of current solar power generation theory.
  • the self-built electric field (built-in field) of the solar cell and the external DC power source electric field (external field) ⁇ " lightly form a new electric field, and this new total electric field can expand the original space charge area by many times.
  • the disordered motion of the hot electrons is Ordered motion, the formation of current, thus greatly seeking high conversion efficiency.
  • the photoelectric conversion efficiency in the traditional sense is not suitable for estimating the conversion efficiency of the battery, because the battery mainly has thermoelectric conversion in addition to photoelectric conversion, and the surrounding heat is difficult to measure, and the battery cannot be converted by conversion efficiency. Indicates that it is represented only by the measured power. The details of its specific mechanism of action need further discussion.
  • the method for preparing a quantum library solar cell of the present invention comprises the following steps:
  • the formation of the diffusion region is oxidized on the epitaxial layer and subjected to lithography on the predetermined intercostal region, and then diffused to form a p + type or n + type diffusion region;
  • the formation of the ion-injecting layer regenerates a layer of silicon dioxide, followed by lithography: a window is formed at a position of the rib left between the diffusion regions, and the oxide layer of the window region is etched away; Or diffusing a compound of a three or five element, and annealing to advance the shield to a desired depth to form a p+ or n + ion implantation layer;
  • Formation of a highly doped layer re-grows a layer of silicon oxide on the ion implantation layer, followed by a third photolithography, engraving a window, growing polysilicon; performing a fourth photolithography, etching away the polysilicon a layer, and engraving a diffusion window, injecting or diffusing a compound of a three or five-element element by forming an ion implantation, or forming a highly doped layer by an LPCVD method;
  • the aluminum is vaporized on the surface of the highly doped layer to form a vaporized aluminum storm, and the fifth photolithography is performed to form a metal electrode interconnection;
  • the back-field voltage supply is operated in the electric room.
  • the last step in the preparation process (connecting the back-field voltage supply) can be temporarily not performed during the production phase, and the connection is made while the solar cell is in use.
  • the substrate material is a heavily doped semiconductor material, such as n ++ type or P ++ type silicon, and the resistivity is less than 0.005 ⁇ -cm;
  • the thickness of the epitaxial layer prepared is 15 ⁇ 20 ⁇ m; the resistivity is 7, 5 « 8.5 ⁇ -cm;
  • 3 ⁇ 4 moments of the process conditions are: temperature control at 30 ⁇ 50 ° C, time 3 ⁇ 5 minutes;
  • the process conditions are: temperature control at 1000 ⁇ 1200 °C, time 16 20 minutes;
  • the process conditions are as follows: injecting a tri- or five-membered element at 50 kV
  • the temperature is controlled at 1000 ° C, the time is about 3 hours, the concentration is 10 14 ⁇ 10 19 cm - 3 ; the thickness is made in Inm ⁇ 100mn, and the width is several micrometers to several tens of micrometers;
  • the conditions of the in-situ doping process are as follows: temperature control at S50 650 ° C, vacuum degree control at 10 ⁇ 5 ⁇ , heat preservation for three hours, growth of mixed polysilicon, thickness Controlled at about 1 micron; concentration 10 17 ⁇ 10 21 cm - 3 ; width from a few microns to tens of microns;
  • the conditions for evaporating the aluminum layer on the surface of the highly doped implantation region are: temperature 1148 ° C, substrate temperature 250 ° C, constant temperature 8 to 12 minutes, forming a surface on the highly doped layer Steamed aluminum layer;
  • the voltage of the back-field voltage supply is a reverse bias voltage applied between the electrodes, so that the reverse bias voltage of the device is 0.1 to 3V. If the load is a battery, the internal resistance of the DC power supply is less than / equal to 1/N of the battery, and the optimum value of N is equal to or greater than 6.
  • the invention overcomes the deficiencies of the conventional solar cell light unit area output power is too low, and provides a new structure of the quantum-bank solar cell, which can fully absorb the "thermal energy carrier" to generate current while performing photoelectric conversion, thereby forming the battery.
  • the main current so that the conversion efficiency is qualitatively leap.
  • the preparation process of the new structure quantum library solar cell provided by the invention is a mature process, and can realize large-scale industrial production.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • Fig. 2 is a schematic structural view of Embodiment 2 of the present invention.
  • Embodiment 1 a quantum-bank solar cell, which is composed of a solar cell panel and a DC power source with a back-field voltage connected in series.
  • the structure thereof is as shown in FIG. 1:
  • a metal electrode layer 14 is disposed under the over-doped n ++ type silicon substrate 1 and connected There is a lower electrode 6, n ++ fish silicon substrate 1 is provided with a lightly doped ITO-type silicon epitaxial layer 10, the epitaxial layer 10 has a thickness of 15-20 microns, and a plurality of parallel verticals are arranged thereon.
  • the section of the vertical rib 11 transverse rib 13 is a rib section 12;
  • the vertical rib 11 is provided with a p + -type ion implantation layer 3 and an n ++ type highly doped layer 4, highly doped Layer 4 covers the ion method into the layer?
  • the upper layer 4 is covered with a metal aluminum; the upper electrode is connected to the metal aluminum layer 9 of the T-shaped portion of the transverse rib 13; the inter-rib region is p + type diffusion easy 2, and the diffusion layer 2 is An oxide layer 5 is provided.
  • a power source 15 having a DC back-field voltage is externally connected between the upper and lower electrodes 7, 6 and has a back-field voltage of 15 V, and an internal resistance of less than or equal to one-sixth of the internal resistance of the load battery.
  • the ion implantation layer 3 is sandwiched between the ⁇ -type epitaxial layer 1 and the n ++ -type high-porosity layer 4, and the two junctions are formed to form a 1! ++ ⁇ + , 11-sandwich structure.
  • the + -type ion implantation layer 3 is covered by the n ++ high-porosity layer 4 and has a thickness of lrnn to 100 nm.
  • the n ++ , p + , n- sandwich structure is arranged in a rib shape, and each vertical rib 11 has a width of several micrometers to ten Between a few micrometers, which are rectangular regions formed by the p+ type diffusion layer 2, the distance between adjacent two vertical ribs 11 (i.e., the width of the intercostal zone) is several hundred micrometers.
  • the upper surface of the diffusion layer 2 is covered with an oxide layer 5 for receiving solar energy incident energy during operation.
  • the ribs 11, 13 formed by the respective n ++ , p + , n - sandwich structures are connected by the metal aluminum layer 5. Electrodes 6 and 7 are taken up from the aluminum layer 5 at the top of the sinus electrode layer 14 and the transverse ribs 13, respectively.
  • the specific preparation process of the nano quantum library solar cell of this embodiment is shown in FIG. 2, and includes the following steps:
  • the substrate is prepared by using a heavily doped ⁇ ++ huang silicon semiconductor material with a resistivity of less than 0.005 ⁇ -cm; a standard (100 ) crystal plane is selected;
  • epitaxial layer growth epitaxial growth of a layer of lightly doped n-silicon the thickness of the epitaxial layer prepared is 15 ⁇ 20 microns; resistivity 7.5 ⁇ 8.5i c;
  • the formation of the diffusion layer is about 5 parts dry oxygen plus 60 parts wet oxygen plus 5 parts dry oxygen.
  • the oxidation temperature is controlled at 1100 °C to regenerate a layer of silicon dioxide on the surface of the rT type epitaxial layer 10; the temperature is controlled at 40. °G, time 4 minutes, etch away the oxide layer of the diffusion region to form a diffusion window; temperature control at 1100 ° C, time 18 minutes, through the diffusion of boron on the rib section 12 of the n-type silicon epitaxial layer, impurity promotion a depth of micron, forming a ⁇ + diffusion layer 2;
  • the formation of the ion implantation layer about 30 minutes of wet oxygen plus 40 parts of dry oxygen, the temperature is controlled at 1050 ⁇ , and then a layer of silicon dioxide, followed by a second photolithography, vertical ribs 11 between the diffusion regions and The oxide layer is etched away from the position of the transverse rib 13; the trifluorochemical shed is injected at 50 kV, the temperature is controlled at 1000 ° C, the time is about 3 hours, and the thickness is controlled at km! ⁇ lOOrnn, concentration 10 14 ⁇ 10 19 cm ⁇ 3 , annealing to form ion implantation layer 3;
  • the third lithography of the high-doping storm the window is carved on the surface of the ion implantation layer 3, and the oxide layer is etched to grow polysilicon;
  • the fourth photolithography is performed, and the temperature is controlled at 600 ° C, the degree of vacuum Controlled at 1 (T S ⁇ , held for three hours, concentration 10 17 ⁇ 10 21 cm - 3 , arsenic doped with polysilicon, forming a highly doped layer 4;
  • the main difference between the embodiment 2 shown in FIG. 2 and the embodiment 1 is that the semiconductor substrate 1 is of the p ++ type, the epitaxial layer is p type, the diffusion layer 2 is of the n + type, and the ion implantation layer 3 is of the n + type.
  • the highly doped layer 4 is of the p ++ type.
  • the high-permeability impurity layer is doped with polysilicon, and the doped polysilicon can be used not only as a doping diffusion source, but also as a doping diffusion source.
  • the highly permeable electrode layer 8 on one side of the semiconductor epitaxial layer is directly used as the extraction electrode of the lower electrode 6. In this way, not only the extraction of the electric raft is more square, but also the planar structure can be realized, which can be produced by using single crystal silicon, and the cost is low.
  • the method for preparing a quantum-storage solar cell of the present embodiment is different from that of the first embodiment in that: in the diffusion layer forming step, boron diffusion is replaced by phosphorus diffusion; in the ion implantation layer forming step, phosphorus trifluoride ion implantation is substituted. Boron trifluoride ion implantation; in the highly doped layer formation step, growth of boron-doped polysilicon is used to grow the arsenic-doped polysilicon.
  • an intrinsic layer may be provided between the highly doped layer and the ion implantation layer, and between the ion implantation layer and the substrate.
  • a ⁇ + or ⁇ + isolation trench is provided by diffusion at the periphery of the substrate (in order to reduce the cost, the isolation trench may not be provided).

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

量子库太阳能电池及其制备方法
技术领域
本发明涉及一种太阳能电池, 具体涉及一种量子库太阳能电池, 以及这种新型太阳 能电池的制备工艺。
背景技术
太阳能电池是以半导体材料为基础的一种具有光电转换功能的半导体器件。 太阳能 电池的原理是基于半导体的光生伏特效应将太阳辐射能直接转换为电能。 现有的太阳能 电^通常由半导体衬底和扩散层形成的 PN结以及该 PN结两端引出的电极构成, 它通 过 PN结的自建电场将在光照条件下所产生的光生载流子迁徙到 PN结的两边形成光生 电流, 达到光电转换的效果。
太阳能电池的效率一真 人们关注的问题, 单晶硅电池是 II前转换效率最高的太阳 能电池, ¾可将 16%〜;? 0%的入射光线转换为电流。 太阳光之所以只有很少的百分比被 转换为电能, 原因是归结于现有的太阳能电池都不能将大部分的太阳光转操为电流。 太 阳光包含电 ^波中的一个舉宽的光旙' 围( 0.25~2.2μιη ), 即从红外线经过各种颜色的可 见光直到紫外线 ^体分为紫外线占 7%、 可见光占 45%和紅外 47%左右。 对于现 有硅电池来 ,为了产生电子窆 ¾对形成电流,波长小于 1,1μιη的光才具有足够的能量。 太阳光谱中涑长大于 1,1μιη长竑部分不能产生电于 τ空穴对, 而是转变为热量。太阳辐射 中^约有 25%的 样的 ¾能不能被利用。如光线的能量足 4产生电子-空穴对,剩余的能 量又 舞换为秦利用的热 。 加此太阳能的 30%的部會^有袜利用。 迷^个因章表侍 ^太阳能电^转採敢率牴的 要原罔 Ρ 而 JL, 就目前 ^太阳¾ ^来" ¾, 即使扭所有^^ 射的农阳 金翻舞楼成 ¾鸽, 仍然存在单偉面积输 ¾率过低, 罩需要使用太阳熊作 动力的时傢, 必需设翼大 积的太阳能电池板, 其面积之太 6绎妨碍了它的推广使用, 例如, 太阳熊汽牟等抹术均愛^限制, ^^迅速发展。 在目前的现有扶^中, 小面积高 输出功率的太阳熊电池的结构和制造技术方面, 都尚未 ii!现重; ^的^硃。
发 ¾ 条
针对 述问 ¾, 本;^明将提供一种新 论、 新结构, 新 ¾的^阳能电 *子 库太阳能电池。新电池的结构使其进行光电转换的同时, 更能够 ^分 收 "热能载流子" 产生电流, 形成本电池的主体电流, 从而使转换效率得到质的飞跃。 本发明还将提供这 种新结构量子库太阳能电池的制备工艺, 使其实现大规模工业生产。
完成 迷发明任务的支术方案是:
确 认 一种量子库太阳能电池, 由半导体衬底、 扩散层和上、 下电极构成, 其特征在于, 在所缘的半导体衬底层上设有和半导体衬底导电类型相同的轻掺杂的外延层, 在该外延 层上设有肋: 所述的肋为长条状结构, 包括多条平行的竖肋和至少有一条横肋, 横肋贯 穿连接多条平行的竖肋; 竖肋和横肋围成的区间为肋区间; 在所述的长条状的肋上设有: 和外延层导电类型相反的纳米离子注入层、 和离子注入层导电类型相反的高掺杂层, 高 掺杂层覆盖在纳米离子注入层上, 在高掺杂层上覆盖有金属层; 上电极引线连接在横肋 上的金属层上; 所述扩散层设置在整个肋间区内,其导电类型与外延层的导电类型相反, 该扩散层上设有氧化层; 同时, 在上、 下电极之间外加有背场电压。
以上方案中所逸的若干平行的、 长条状的竖肋, 以及横肋, 在外延层上形成栅格状 分布。 肋的上部的外延层经过半导体工艺处理形成纳米离子注入层、 高掺杂层以及金属 ·。 所迷的 4力间 g的扩散 与传统木阳能电池结构上的扩散层相同。 所述的横肋与竖肋 基本上垂皋设置。
换言之,本发明的量子库太阳能电池由太阳能电池芯片与产生背场电压的直流电源 串联构成。 同时, 本发明与传统太阳能电池的结构区别是: 在外延层上划分有肋和肋间 区; 扩散层设置在肋间区。 在肋上设有离子注入层、 高掺杂层; 高掺杂层覆盖在离子注 入层之上, 离子注入层夹在外延层和高掺杂层之间形成夹居结构, 离子注入层的导电类 型和外延层、 高摻杂层的导电类型相反, 在夹层结构中形成两个 PN结。 多个夹层结构 的肋之间为扩散层, 扩散层的导电类型与外延层及衬底的导电类型相反。 肋上的夹层结 构与设在肋间区的扩散层连在一起, 形成库阱, 即量子库。
以上方案中所述的半导体衬底材料和外延层共同构成半导体基础层。
所述的半导体外延层可以为 p—型, 扩散层为 n+型, 离子注入层为 n+型, 高掺杂层 为 p++型; 或者,
所述的半导体外延层可以为 n—型, 扩散层为 p+型, 离子注入层为 p+型, 高掺杂层 为 n++型;
以上说明中的 ― 、 +++表示半导体材料中的杂^掺杂程度, 分别表示轻掺杂、 重 掺杂和超重掺杂。
所述的离子注入层的舉度为 1014 1019 cm'3, 厚度在 lnra~100nm之间。
所述高掺杂层的掺杂浓度远远高于传统工艺中扩散层的浓 , 一艨可以达到 1017〜1021cm— 3, 厚度在几千个 A左右。
所述金属层可以是常用的金属 A1等。 所述上、 下电极之间外加有背场电压可以是在上、 下电极之间外加反向偏置电压电 源。
本发明的结构与传统太阳能电池的区别十分明显, 例如:
本发明设置有外延层, 其厚度为 15 μ ιη~20 μ ηι之间, 在器件中起着提高量子库容 量的作用, 确保最佳的输出功率。 传统太阳能电池上则没有这种结构; 倘若在传统太阳 能电池上设置外延层, 就会导致提高开路电压和减少光电转换率。 而在本发明的结构中, 是为提高转找 ^率的重要条件, 是一种新的结构特征。
以上方案中大阳能电池的特殊结构和外加的反向背场电压电源成为提高转换效率 的关键, 只要使背场电压保持额定, 工作状态稳定, 量子库太阳能电池就能够维持有效 的输出功率。
本发明有以下优化方案:
1、 本量子库太阳能电池反向背场电压的设置原则是: 所述的背场电压为反向偏置 电压, 该反向偏置电压直流电源的内阻小于 /等于负载蓄电池内阻的 1/N; 其中的 Ν大于 3, 可以是 3、 4、 5等(不排除非整数比), 理想状态的 Ν数值越大效果越好; 其中有实 际工业使用意义的数值为 以上。 随着低内阻甚至零内阻电池研究的进展, 背场电压直 流电源与负载蓄电池内阻的比值将可以趋近于无穷小。 采用这类低内阻电池作为背场电 压直流电源, 则本发明的转换效率还可以进一步提高。
2、 为了进一步提高输出功率, 所述的背场电压为反向偏置电压, 应高于负载蓄电 池电压。
3、 对于上述第 2条优化方案的再优化: 所述的反向偏置电压始终要高于负载蓄电 池电压 2V左右。
本发明傳荐以下数据: 所迷的背场电压采用 15V。
在传统太阳能电池上旅加 15V或更高的背场电压,会导致击穿; 而本发明中该背场 电压成为有利的边界条件之一, 以便形成量子阱。
4、 所述的条状的竖肋, 可以设置成若干平行的堤坝状, 每条竖肋的宽度在几微米 到十几孩£米之间, 相邻两条竖肋之间的距离 (即肋间区宽度) 为数百微米。 每条竖肋与 其相邻的肋间区构成一个条形单元,依次连接的若干条形单元,构成本发明的主要结构。 同时, 有至少一条同样綍构的横肋贯串所有的条形单元, 将各单^并联。 肋的顶部金属 化之后, 在电池正面 (负极)形成梳子状电极结构。
为了引线方便, 上电极连接线可以设在横肋顶部的金属层上, 所述的横肋可以设置 2条。
在半导体外延层的一侧可以设有超重掺杂多晶硅材料的高掺杂电极层, 下电极连接 线直接从该高掺杂电极层中引出。
5、 本发明推荐: 所迷的外延层厚度采用 15~20微米, 其电阻率为 7.5~8.50.cm; 所 述离子注入层的厚度采用 1〜100纳米; 所述的高掺杂层的厚度采用亚微米量级。
6、 在有网地区, 背场电压电源可以不采用蓄电池, 而通过变压器和整流器組成的 电路设置背场电压。
7、 在离子注入层和高掺杂层之间; 以及离子注入层和半导体基础层之间, 可以设 置起緩冲作用的本征层 ( π )。
8、 在所述衬底层的周边通过扩散设置隔离槽。
9、 为了袭取大的输出电流, 减小损耗, 所述的半导体衬底材料采用超重掺杂的半 导体材料, 其电阻率小于 0.005 Q,pm。
本发明 ,; 述技术方案, 可以有多种的实现方式, 包括现有技术中的多种形式和扶 术, 例如: 设置钝化层、 减反射膜、 采用栅状电极等, 均可与传统太阳能电池相同。
在以上技术方案中, 当有光照时, 太阳能电池板即将出口处的输出电压, 大于背场 电压, 背场电压的电源无法向负载输出电流, 所以在使用过程中, 背场电压电源的电压 基本稳定。
本发明采用增加离子注入层和高掺杂层与外延层 , 并在半导体衬底与高掺杂层之间 设背场电压的技术方案以后, 特别是在选择了特定的背场电压电源的小内阻比等边界条 件下, 使太阳能电池的效率大幅度提高: 传统太阳能电池的输出电流为 30mA; 而本发 明的量子库木阳能电池的输出电流从可以增加到 150 mA;传统太阳能电池的输出电压为 0. 5V; 而本发明的输 电压为 15V左右, 甚至达到 1TV; 传统太阳能电池的输出功率一 般为 0.02W/cm2; 本发明; i阳能电池板的输出功率可以达到 2W/cm2; 在实歡室的 ¾想^ 艺条件下, 可以达到 7W/cm2
本发明的效率提高的懌泉之大, 是实际试猃与检测的结果; 甚数据远远超过了目前 太阳能发电理论的极限效率。 由太阳能电池的自建电场 (内建场)与外加的直流电源电 场 (外建场) ^"輕组成一个新的电场, 这个新的总电场可使原有的空间电荷区扩大 f艮多 倍, 在光照以后经太阳激发的少子和热电转换产生的多子(包括利用日光中的红外线以 及利用光照产生的热量进行热电转换产生的多子; 以及利用周边环境热量进行热电转换 产生的多子)形成了多子传输体制, 在本发明的边界条件下, 使热电子的无序运动 为 有序运动, 形成电流, 从而大幅求錄高转换效率。 原来传统意义上的光电转化效率 不 适用于估算本电池的转换效率, 因为本电池除光电转化以外主要的还有热电转化, 而周 围的热又难以'测定, 罔而本电池无法用转化效率来表示, 仅用实测功率表示。 其具体作 用机理的细节, 需要进一步的探讨。
本发明的量子库太阳能电池的制备方法, 包括以下步骤:
1、 衬底准备 采用 w型或 P型的半导体材料;
2、 外延层的生长 生长 n—型或 P—型的外延层;
3、 扩散区的形成 在外延层上氧化及对预定的肋间区进行笫一次光刻后, 通过扩 散, 形成 p+型或 n+型扩散区;
4、 离子注 层的形成 再生长一层二氧化硅, 随后进行笫^次光刻: 在上述扩散 区之间留出的肋的位置上刻出窗口, 刻蚀掉窗口区的氧化层; 注入或扩散三或五族元素 化合物, 并退火使杂盾推进到所需的深度, 形成 p+型或 n+型离子注入层;
5、 高掺杂层的形成 在离子注入层上再生长一层 ^氧化硅, 随后进行第三次光刻, 刻出窗口, 生长多晶硅; 进行第四次光刻, 在多晶硅上面刻蚀掉氧化层, 并刻出扩散窗 口, 通过形成离子注入的办法注入或扩散三或五族元素化合物, 或通过 LPCVD方法形 成高掺杂层;
6、 金属接触和互联 在高掺杂层表面蒸铝, 形成蒸铝暴, 进行第五次光刻, 形成 金属电极互联;
8、 后部 #赛:
9、 在电 间牵操背场电压电源。
i述制备方洙中的最后一个步驟(连接背场电压电源), 在生产阶段可以暂时不进 行, 而在该太阳能电池的使用时进行连接。
以上制备方法的进一步改进, 有以下优化方案:
1、 衬底材料采用重掺杂的半导体材料, 例如 n++型或 P++型硅, 其电阻率小于 0.005 Ω-cm;
2、所¾的外延层的生长步骤中,所制备的外延层厚度为 15^20微米;电阻率 7,5«8.5 Ω-cm;
3、 所迷的工艺步骤中, ¾刻工艺的条件为: 温度控制在 30~50°C, 时间 3~5分钟;
4、所迷的扩散步驟中,工艺的条件为:温度控制在 1000~1200°C,时间 16 20分钟;
5、 所述的离子层形戍步骤中, 工艺的条件为: 在 50千伏下注入三或五族元素化合 物, 温度控制在 1000 °C , 时间约 3小时, 浓度 1014~1019cm—3; 厚度裤制在 Inm~100mn, 宽度为几微米至几十微米;
6、所述的高掺杂层形成步骤中, 采用原位掺杂工艺的条件为: 温度控制在 S50 650 °C , 真空度控制在 10·5乇, 保温三小时, 生长掺碎多晶硅, 厚度控制在 1微米左右; 浓 度 1017~1021cm— 3; 宽度为几微米至几十微米;
7、 在金属互联步骤中, 在高掺杂注入区表面蒸铝层的工艺的条件为: 温度 1148 °C , 衬底温度 250°C , 恒温 8~12分钟, 在高掺杂层上形成表面蒸铝层;
8、 在连接背场电压电源的步骤中, 背场电压电源的电压为加在电极间的反向偏置 电压, 使得器件的反向偏置电压为 0.1〜3V。 若负载为蓄电池, 直流电源内阻小于 /等于蓄 电池的 1/N, N的最佳值等于或大于 6。
本发明克服了传统太阳能电池光单位面积输出功率过低等不足,提供的新结构的量 子库太阳能电池, 在进行光电转换的同时, 更能够充分吸收 "热能载流子" 产生电流, 形成本电池的主体电流, 从而使转换效率得到质的飞跃。 本发明提供的这种新结构量子 库太阳能电池的制备工艺是成熟工艺, 可以实现大规模的工业生产。
附图说明
图 1为本发明实施例 1结构示意图;
图 2为本发明实施例 2结构示意图。
具体实施方式
实施例 1, 量子库太阳能电池, 由太阳能电池板与背场电压的直流电源串联构成, 其结构参照图 1: 超重掺杂 n++型硅衬底 1下面设有金属电极层 14, 并连接有下电极 6, n++鱼硅衬底 1上设有轻掺杂的 ιΓ型硅外延层 10, 该外延层 10的厚戽为 15~20微米, 其 上设有多条相互平行的竖 11和两条横肋 13, 竖肋 11横肋 13围成的区间为肋区间 12; 竖肋 11上设有 p+型离子注入层 3和 n++型高掺杂层 4, 高掺杂层 4覆盖离子法入层? , 在高捧杂层 4上覆盖有金属铝展 ; 上电极 Ί连接在横肋 13的 T贞部的金属铝层 9上; 肋 间区内为 p+型扩散易 2, 该扩散层 2上设有氧化层 5; 同时, 在上下电极 7、 6之间外接 有直流背场电压的电源 15, 其背场电压为 15V, 其内阻小于或等于负载蓄电池内阻的六 分之一。
离子注入层 3夹在 ιΓ型外延层 1与 n++型高渗杂层 4之间, 形 下两个 结, 构成 1!++^+、11—夹层结构。 +型离子注入层 3被 n++高渗杂层 4覆盖,厚度为 lrnn~100nm。 就电池整体而言, n++、 p+、 n—夹层结构呈肋状排列, 每条竖肋 11 的宽度在几微米到十 几微米之间, 其互相之间为 p+型扩散层 2形成的矩形区域, 相邻两条竖肋 11之间的距 离 (即肋间区宽度) 为数百微米。 扩散层 2上表面盖有氧化层 5, 工作时用以接收太阳 能入射能。 此外, 各 n++、 p+、 n—夹层结构形成的肋 11、 13为金属铝层 5所连接。 电极 6和 7分别从念暴电极层 14和横肋 13顶端的铝层 5上引出。
本实施例纳米量子库太阳能电池的具体制备工艺如图 2所示, 包括以下步骤:
1、 衬底准备 采用重掺杂的 η++皇硅半导体材料, 电阻率小于 0.005 Ω -cm; 选用标 准的 ( 100 ) 晶面;
2、 外延层的生长 外延生长一层轻掺杂的 n—硅, 所制备的外延层厚度为 15~20微 米; 电阻率 7.5~8.5i c ;
3、 扩散层的形成 约 5份干氧加 60份湿氧再加 5份干氧, 氧化温度控制在 1100 °C , 使 rT型外延层 10表面再生长一层二氧化硅; 温度控制在 40°G, 时间 4分钟, 刻蚀 掉扩散区的氧化层, 形成扩散窗口; 温度控制在 1100°C , 时间 18分钟, 通过在 n—型硅 外延层的肋区间 12上的硼扩散, 杂质推进深度为微米级, 形成 ρ+扩散层 2;
4、 离子注入层的形成 约 30分钟湿氧加 40份干氧, 温度控制在 1050Ό , 再生长 一层二氧化硅, 随后进行第二次光刻, 在各扩散区之间的竖肋 11和横肋 13的位置上刻 蚀掉氧化层; 在 50千伏下注入三氟化棚, 温度控制在 1000°C , 时间约 3小时, 厚度控 制在 km!〜 lOOrnn , 浓度 1014~1019cm~3 , 退火形成离子注入层 3;
5、 高掺舞暴的 进行第三次光刻, 在离子注入层 3表面刻出窗口, 并刻蚀掉 氧化层, 生长多晶硅; 进行第四次光刻, 温度控制在 600°C, 真空度控制在 1(TS乇, 保 温三小时, 浓度 1017~1021cm— 3, 对多晶硅摻砷, 形成高掺杂层 4;
6、 金属互联 再进行笫五次光刻, 在高摻杂层 4表面刻出窗口, 并刻蚀掉氧化层, 在温度 1148 °C ,衬底温度 250。C , 恒温 10分钟的条件下,在高掺杂居 4上表面蒸铝层 5, 形成梳状电极结构;
7、 在横肋 ^部的蒸铝层上海接上电极, 之后进行珠行减薄, 背面金属化、 划片、 装架、 封装;
8、 在电极之间连接背场电压电源。
实施例 2
图 2所示的实施例 2与实施例 1的主要区别:该半导体村底 1为 p++型,外延层为 p 一型, 扩散层 2为 n +型, 离子注入层 3为 n+型, 高掺杂层 4为 p++型。
此外, 高渗杂层采用掺杂多晶硅, 掺杂多晶硅不仅可以作为掺杂扩散源, 还可以作 为互连引线, 在半导体外延层的一侧的高渗杂电极层 8直接用作下电极 6的引出电极。 这样不仅电槔的引出更加方像, 可以实现平面结构, 用单晶硅即可制作, 成本粟低。
本实施例量子库太阳能电池的制备方法与实施例 1的不同之处是: 在扩散层形成步 骤中, 以磷扩散取代硼扩散; 在离子注入层形成步骤中, 以三氟化磷离子注入取代三氟 化硼离子注入; 在高摻杂层形成步骤中, 以生长掺硼多晶硅取代生长掺砷多晶硅。
除上述实施例外, 本发明还可以有其他变化形式。 例如, 在高掺杂层与离子注入层 之间、 以及离子注入层与衬底之间也可以设置本征层( π )起緩冲作用。 以及为了减小 漏电流, 在衬底周边通过扩散设置 ρ+或 η+隔离槽(为了降低成本, 也可不设置隔离槽)。

Claims

权 利 要 求
1、 一种糞于库太阳能电池, 由半导体衬底、 扩散层和上、 下电极构成, 其特征在 于, 在所述的半导体衬庥层上设有和半导体衬底导电类型相同的轻掺杂的外延层, 在该 外延层上设有肋: 所迷的肋为长奈状结构, 包括多奈平行的竖肋和至少有一条横肋, 横 肋贯穿连接多奈平行的竖肋; 竖肋和横肋围成的区间为肋区间; 在所述的长条状的肋上 设有: 和外延层导电类型相反的纳米离子注入层、 和离子注入层导电类型相反的高掺杂 层, 高掺杂层覆盖在纳米离子注入层上, 在高掺杂层上覆盖有金属层; 上电极引线连接 在横肋上的金属层上; 所述扩散层设置在整个肋间区内, 其导电类型与外延层的导电类 型相反, 该扩散层上设有氧化层; 同时, 在上、 下电极之间外加有背场电压。
2、 按照权利要求 1所述的量子库太阳能电池, 其特征在于, 所述的背场电压为反 向偏置电压, 该反向偏置电压的直流电源的内阻 ψ于或等 f负载蓄^^内阻 1/N; 其 中 N的数值大于 6。
3、 按照权利要求 1所述的量子库太阳能电池, 其特征在于, 所述的背场电压高于 负载蓄电池电压。
4、 按照权利要求 3所述的量子库太阳能电池, 其特征在于, 所述的背场电压始终 高于负载蓄电池电压 2V左右。
5、 按照权利每枣 3所迷的量子库太阳能电池, 其特征在于, 所述的背场电压采用
15V。
6、 按照权利要求 1所述的量子库太阳能电池, 其特征在于, 所述的每条竖肋的宽 度在几微米到十几微米之间, 相邻两条竖肋之间的距离为数百微米。 ''
7、 按照权利要求 6所述的量子库太阳能电池, 其特征在于, 所述的横肋共设置有 2 条, 上电极连接在该横肋顶部的金属层上。
8、 按照权利要求 6所述的量子库太阳能电池, 其特 在于, 在半导体外延层的一 侧设有超重掺杂多晶硅材料的高掺杂电极层, 下电极连接线直接从该高掺杂电极层中引 出。
9、 按照权利要求 1所述的量于库太阳能电池, 其特征在于, 所述的外延层厚度采 用 15~20纳米, 其电阻率为 7.5~8.5Ω cm; 所述离子注入层的厚度采用 1~100纳米, 其 掺杂浓度为 1014~1019 cm―3; 所述的高掺杂层的厚度采用亚微米量级; 其掺杂浓度为 1017〜1021cm—3
10、 按照权利要求 1所述的量子库太阳能电池, 其特征在于, 在有网地区, 背场电 压电源是通过变压器和整流器組成的背场电压电源电路。
11、 按照权利要求 1所述的量子库太阳能电池, 其特征在于, 所述的半导体衬底材 料采用超重掺杂的半导体材料, 其电阻率小于 0.0050 -cra0
12、 按照权利要求 1所述的量子库太阳能电池, 其特征在于, 所述的所述半导体衬 底为 n++型硅、 外延层为 n—型硅, 所述扩散层为 p+型硅, 所述高掺杂层为 n++型超重掺 杂多晶硅。
13、按照权利要求 1所述的量子库太阳能电池,其特征在于,所述半导体 l "底为 p++ 型硅、外延层为 p_型硅, 所述扩散层为 n+型硅, 所述高掺杂层为 P++型超重掺杂多晶硅。
14、 按照权利要求 1~13之一所述的量子库太阳能电池, 其特 在于, 在负载电路 上, 经过一个直流升压器连接有一个充电支路, 该支路连接在背场电源上。
15、 按照权利要求 1~13之一所述的量子库太阳能电池, 其特征在于, 在所述衬底 层的周边通过扩散设置有隔离槽。
16、 按照权利要求 1~13之一所述的量子库太阳能电池, 其特征在于, 在离子注入 层和高掺杂层之间; 以及离子注入层和半导体基础层之间,设置有起緩冲作用的本征层。
17、 一种权利要求 1所述的量子库太阳能电池的制备方法, 包括以下步骤:
(1)、 衬底准备 采用 n型或 P型的半导体材料;
(2)、 外延层的生长 生长 n—型或 P—型的外延层;
(3)、 扩散区的形成 在外延层 J氧化 对预定的肋间 迸行第 刻后, ¾过圹 散, 形成 p+型 n+型扩散区;
(4)、 离子注入层的形成 再生长一层二氧化硅, 随后进行第二次光刻: 在上述扩散 区之间留出的肋的位置上刻出窗口, 刻蚀掉窗口区的氧化层; 注入或扩散三或五族元素 化合物, 并退火使杂质推进到所需的深度, 形成 p+型或 n+型离子注入层;
(5)、高掺杂层的形成 在离子注入层上再生长一层 氧化硅,随后进行第三次光刻, 刻出窗口, 生长多晶硅; 进行第四次光刻, 在多晶硅上面刻蚀掉氧化层, 并刻出扩散窗 口, 通过注入或扩散三或 i槔元素化合物, 用离子注入的办法或 LPCVD方法形成超重 掺杂的高掺杂层;
(6)、 金属接触和互联 进行第五次光刻, 在高掺杂层表面蒸铝, 形成蒸铝层, 形成 金属电极互联;
(7)、 后部封装工艺; (8)、 在电极之间连接背场电压电源。
18、 按照权利要求 17所述的量子库太阳能电池的制备方法, 其特征在于, 所迷的 半导体衬底材料采用重掺杂的半导体材料, 其电阻率小于 0.005 Ω -cm;
19、 按照权利要求 17所述的量子库太阳能电池的制备方法, 其特征在于, 所述的 工艺步驟中 , 所制备的外延层厚度为 10~20纳米。
20、 按照权利要求 17所述的量子库太阳能电池的制备方法, 其特征在于, 所制备 的离子注入层, 其厚度 1〜100纳米、 浓度 1014~1019cnT3
21、 按照权利要求 17所述的 *子库太阳能电池的制备方法, 其特征在于, 所制备 的高掺杂层的掺杂浓度为 1017~1021cnr3, 厚度在 0.7μιη~0.9μηι之间。
22、 按照权利要求 15~21之一所述的量子库太阳能电池的制备方法, 其特征在于, 所述的工艺步骤中, 光刻工艺的条件为: 温度控制在 30~50 , 时间 3~5分钟; 所述的扩散步驟中, 工艺的条件为: 温度控制在 1000~1200。C , 时间 16~20分钟; 所述的离子层形成步骤中, 工艺的条件为: 在 50千伏下注入三或五族元素化合物 , 温度控制在 100Q'< ? 时间约 3小时;
所迷的高掺杂层形成步骤中, 采用原位摻杂工艺的奈件为: 温度控制在 550-6500 °c , 真空度控制在 lp— 5, 保渑 小时;
所述的金属接触和互联步 中, 在高掺杂注入区表面蒸铝屎的工艺的条件为: 温 度 1148°C , 衬底温庠:^ 0°C , 悻温 8 12分钟, 在高掺杂层上形成表面蒸铝层;
在连接背场电压电源步骤中, 背场电压电源加在电极间的背场电压为 1〜3伏, 其内 阻小于或等于外接负载蓄电池的内阻的 1/6。
23、 按照权利要求 22所述的量子库太阳能电池的制备方法, 其特征在于, 所述扩 散层形成步驟中 , 温度控制在 1100'C , 时间 18分钟, 通过在 n—型碌半导体外延材料的 扩散区上硼扩 形戍 p+型扩散层。
24、 按照权利要求 1 所 ¾的量子库太阳能电池的制备方法, 其特征在于, 所述扩 散屋形成步攀中 ,瀑度控制在 lli TC , 时间 18分钟, 通 在 ρ_型硅半导体外延材料的 扩散区上磷扩散, 形成 n+型扩 。
25、 按照权利要求 22所述的量子库太阳能电池的制备方法, 其特征在于, 所述离 子注入层形成步骤中, 所述三或五族元素化合物为三氟化硼。
26、 按照杯利要求 22所迷的量子库太阳能电池的制备方法, 其特征在于, 所述离 子注入层形成步骤中, 所述 或五族元素化合物为三氟化磷。
27、 按照权利要枣 22所述的量子库太阳能电^的制备方法, 其特征在于, 所述高 掺杂层的形成步 中, 所述超重捧杂多晶硅为超重碎摻杂多晶硅。
28、 按照权利要求 22所述的量子库太阳能电池的制备方法, 其特征在于, 所述高 摻杂层的形成步珮中, 所述超重掺杂多晶硅为超重硼掺杂多晶硅。
PCT/CN2006/002063 2006-08-14 2006-08-14 Cellule solaire de mémoire à puits quantiques WO2008031250A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800111949A CN101167192B (zh) 2006-08-14 2006-08-14 量子库太阳能电池及其制备方法
EP06775381A EP2068376A1 (en) 2006-08-14 2006-08-14 A solar cell of quantum well store
US12/312,447 US20100018575A1 (en) 2006-08-14 2006-08-14 Solar cell of quantum well store and method of preparation thereof
PCT/CN2006/002063 WO2008031250A1 (fr) 2006-08-14 2006-08-14 Cellule solaire de mémoire à puits quantiques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2006/002063 WO2008031250A1 (fr) 2006-08-14 2006-08-14 Cellule solaire de mémoire à puits quantiques

Publications (1)

Publication Number Publication Date
WO2008031250A1 true WO2008031250A1 (fr) 2008-03-20

Family

ID=39183333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002063 WO2008031250A1 (fr) 2006-08-14 2006-08-14 Cellule solaire de mémoire à puits quantiques

Country Status (4)

Country Link
US (1) US20100018575A1 (zh)
EP (1) EP2068376A1 (zh)
CN (1) CN101167192B (zh)
WO (1) WO2008031250A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347400B (zh) * 2011-08-13 2013-04-24 吴忠举 太阳能电池板自动跟踪及自动清洁装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367368A (en) * 1981-05-15 1983-01-04 University Patents Inc. Solar cell
JP2000183379A (ja) * 1998-12-11 2000-06-30 Sanyo Electric Co Ltd 太陽電池の製造方法
US6147297A (en) * 1995-06-21 2000-11-14 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Solar cell having an emitter provided with a surface texture and a process for the fabrication thereof
CN1319898A (zh) * 2001-04-11 2001-10-31 陈钟谋 纳米光-热伏电池及其制备方法
CN1341969A (zh) * 2001-10-17 2002-03-27 陈钟谋 微型高效宽光谱换能器及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936319A (en) * 1973-10-30 1976-02-03 General Electric Company Solar cell
US5410175A (en) * 1989-08-31 1995-04-25 Hamamatsu Photonics K.K. Monolithic IC having pin photodiode and an electrically active element accommodated on the same semi-conductor substrate
AU8872891A (en) * 1990-10-15 1992-05-20 United Solar Systems Corporation Monolithic solar cell array and method for its manufacture
US5747967A (en) * 1996-02-22 1998-05-05 Midwest Research Institute Apparatus and method for maximizing power delivered by a photovoltaic array

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367368A (en) * 1981-05-15 1983-01-04 University Patents Inc. Solar cell
US6147297A (en) * 1995-06-21 2000-11-14 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Solar cell having an emitter provided with a surface texture and a process for the fabrication thereof
JP2000183379A (ja) * 1998-12-11 2000-06-30 Sanyo Electric Co Ltd 太陽電池の製造方法
CN1319898A (zh) * 2001-04-11 2001-10-31 陈钟谋 纳米光-热伏电池及其制备方法
CN1341969A (zh) * 2001-10-17 2002-03-27 陈钟谋 微型高效宽光谱换能器及其制备方法

Also Published As

Publication number Publication date
US20100018575A1 (en) 2010-01-28
EP2068376A1 (en) 2009-06-10
CN101167192B (zh) 2011-07-20
CN101167192A (zh) 2008-04-23

Similar Documents

Publication Publication Date Title
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
CN102222726B (zh) 采用离子注入法制作交错背接触ibc晶体硅太阳能电池的工艺
CN104659137A (zh) 一种全固态光子增强热电子发射器件
CN110459638A (zh) 一种Topcon钝化的IBC电池及其制备方法
US20140130854A1 (en) Photoelectric device and the manufacturing method thereof
KR102547804B1 (ko) 양면 수광형 실리콘 태양전지 및 그 제조 방법
KR101179365B1 (ko) 전후면전계 태양전지 및 그 제조방법
KR101543767B1 (ko) 태양전지의 선택적 에미터 형성방법, 및 태양전지와 그 제조방법
CN103618025B (zh) 一种晶体硅背结太阳能电池制备方法
CN208722902U (zh) 一种背接触异质结太阳能电池
WO2008031250A1 (fr) Cellule solaire de mémoire à puits quantiques
CN101459206A (zh) 高效多结太阳能电池的制造方法
CN104282777A (zh) 具掺杂碳化硅层的结晶硅太阳能电池及其制造方法
KR101615611B1 (ko) 터널링 다층 양자우물구조체를 이용한 태양전지 및 그 제조방법
JP2023033940A (ja) 太陽電池セルおよび太陽電池
JPH08204214A (ja) 太陽電池
KR101162879B1 (ko) 상대적으로 낮은 표면 농도를 갖는 에미터 태양전지
JPH0636429B2 (ja) ヘテロ接合光電素子及びヘテロ接合光電装置
JP2013513965A (ja) 裏面電界型のヘテロ接合太陽電池及びその製造方法
CN105938856A (zh) 一种Si衬底GaAs单结太阳能电池结构及其制备方法
Singh Fabrication of n+-poly-Si/p+-c-Si tunnel diode using low-pressure chemical vapor deposition for photovoltaic applications
CN105826412B (zh) 一种太阳能电池及其制备方法
CN205790002U (zh) 一种Si衬底GaAs单结太阳能电池结构
KR101101438B1 (ko) 전후면전계 태양전지 및 그 제조방법
Choudhary et al. C-si Passivated Contact Solar Cell With Optimized Efficiency Of 23.50% In AM1. 5G Environment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680011194.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06775381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 2006775381

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12312447

Country of ref document: US