WO2008030140A2 - Catalyseur de conversion de monoxyde de carbone par la vapeur, procédé de sa fabrication et procédé de son utilisation - Google Patents

Catalyseur de conversion de monoxyde de carbone par la vapeur, procédé de sa fabrication et procédé de son utilisation Download PDF

Info

Publication number
WO2008030140A2
WO2008030140A2 PCT/RU2007/000470 RU2007000470W WO2008030140A2 WO 2008030140 A2 WO2008030140 A2 WO 2008030140A2 RU 2007000470 W RU2007000470 W RU 2007000470W WO 2008030140 A2 WO2008030140 A2 WO 2008030140A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
iron
chromium
carbon monoxide
aqueous solution
Prior art date
Application number
PCT/RU2007/000470
Other languages
English (en)
French (fr)
Other versions
WO2008030140A9 (fr
WO2008030140A3 (fr
Inventor
Tamara Mikhailovna Jurieva
Margarita Petrovna Demeshkina
Alexandr Alexandrovich Khasin
Tatyana Petrovna Minjukova
Ljudmila Mikhailovna Plyasova
Natalya Alekseevna Baronskaya
Marina Valerievna Lebedeva
Irina Dmitrievna Reznichenko
Leonid Gennadievich Volchatov
Alexandr Petrovich Bocharov
Marina Ivanovna Tseljutina
Olga Mikhailovna Posokhova
Tatyana Ivanovna Andreeva
Original Assignee
Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk filed Critical Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk
Priority to EP07834984A priority Critical patent/EP2077152A2/en
Priority to EA200900346A priority patent/EA013871B1/ru
Priority to US12/439,871 priority patent/US20100196260A1/en
Priority to EEP200900023A priority patent/EE200900023A/xx
Publication of WO2008030140A2 publication Critical patent/WO2008030140A2/ru
Publication of WO2008030140A3 publication Critical patent/WO2008030140A3/ru
Publication of WO2008030140A9 publication Critical patent/WO2008030140A9/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • Carbon monoxide vapor conversion catalyst method for preparing it and method for using it
  • the invention relates to a method for producing hydrogen by steam reforming of carbon monoxide and to catalysts for this process and may find application in various industries.
  • the steam reforming reaction of carbon monoxide is a step in the process of producing hydrogen from natural gas.
  • the steam reforming reaction of CO is exothermic, the conversion depth is determined by thermodynamic equilibrium, which is uniquely related to the temperature of the gas mixture at the outlet of the catalyst layer.
  • steam conversion of carbon monoxide is carried out in two stages: in the temperature range (1) 350-500 0 C on the iron-chromium catalyst and (2) 190-300 0 C on the copper-zinc-aluminum catalyst [Catalysts used in the nitrogen industry. Under the total. Edited by A.M. Alekseev. Cherkasy. NIITEhim. 1979].
  • the most promising catalysts at the 1st stage of the process are currently catalysts based on iron-chromium and iron-chromium-copper compounds.
  • the main requirements for them are: (1) sulfur content not more than 0.03 wt.%, (2) chromium content 6+ not more than 0.05 wt.%, (3) catalyst activity, which ensures the process at temperatures at the beginning of the layer less than 350 0 C , for example at 320-330 0 C, (4) environmental safety of cooking technology.
  • the sulfur content in the catalyst is limited due to the fact that under the reaction medium conditions, sulfur compounds present in the known catalysts in the form of sulfates are converted to gaseous H 2 S and CS 2 and poison the copper-containing catalyst for low-temperature steam reforming of CO.
  • the best way to reduce the sulfur content is to use raw materials that do not contain sulfur or contain a small amount of sulfur, which decreases during the preparation of the catalyst (deposition, washing of the catalyst mass).
  • Environmental safety of cooking technology means the minimum formation of NO and NO 2 and their sanitary absorption, the absence of chromium 6+ and copper 2+ in the effluent, or their content within the accepted sanitary standards.
  • a known method of producing a catalyst for steam conversion of carbon monoxide (SU 651838, B01J37 / 04, 03/15/79), containing 7.2 wt.% Cr 2 O 3 , mixing iron oxide Fe 2 O 3 with chromic acid, followed by molding, drying and annealing.
  • a known method of producing a catalyst (SU 1790064, BOlJ 37/04,
  • 07/20/01 obtained by mixing iron oxide with an aqueous solution of chromic acid and a manganese salt, followed by molding of granules, drying and calcining them. Before calcination, additionally administered compounds of Mg, or Ca, Nd or Pr.
  • the disadvantages include the high cost of the resulting catalyst.
  • an iron-chromium catalyst (RU 2275963, B01J37 / 03, 05/10/06) by mixing chromic anhydride with iron compounds prepared by precipitating the iron hydroxide compound with a solution of ammonia or sodium carbonate from iron sulfate solutions, followed by washing, molding and calcining at 280- 420 0 C.
  • the use of iron sulfate as a raw material requires a large amount of water and a long time to remove sulfur.
  • the disadvantages include the high chromium content 6+ and the relatively low activity of the catalyst in the entire temperature range, especially at temperatures below 35O 0 C (see the prototype described in example 6).
  • Variants of this invention involve the mixing of chromic anhydride with hydroxyl compounds of iron and calcining the resulting mixture at 50-200 ° C before molding the catalyst, which does not allow to avoid the above-mentioned disadvantages, but additionally leads to severe shrinkage of the catalyst during its use.
  • iron-chromium carbon monoxide conversion catalyst for water vapor [RO 100112, B01J23 / 08, 08/14/1990], obtained by heating in air at 25O 0 C the precursor, which is obtained using solutions of iron (III) nitrates, chromium (III) and a suitable alkaline agent (ammonia solution, sodium hydroxide).
  • the disadvantages of the catalyst include its low activity and high chromium content 6+. The increased content of Cr +6 is a consequence of calcination in air.
  • the use of nitrate salts as a raw material leads to a high cost of the catalyst.
  • the catalyst is obtained by mixing with a solution of ammonia, purged with CO 2 , solutions of iron (III) nitrates, chromium (III) and copper nitrate, followed by drying and calcination in air at 350-450 0 C.
  • Iron nitrates (III) and Cr (III) are obtained by dissolution in 23 wt.% nitric acid of metallic scrap and chromium hydrochloric anhydride with a purge of air at 40-60 0 C.
  • the disadvantages of the known catalyst are:
  • the narrow temperature range of the catalyst is 300-360 0 C.
  • the invention solves the problem of developing a catalyst with high activity in the steam reforming reaction in the temperature range of 250—35O 0 C.
  • the present invention proposes to solve the problem a steam conversion catalyst of carbon monoxide, containing in its composition the phase of the hydroxy compound of iron 3+ and chromium 3+ with the structure of goethite (FeOOH, Pbpm (2 / m 2 / m 2 / m), ICSD 28247, 6.1. 1.2) and / or hydrohematite FeO (1 5- Q Sx) (OH) x [E. Wolska, Zeitschh. f ⁇ g Kristallogg. V154, Nl / 2, 1981, p. 69-71].
  • the atomic ratio of iron to chromium in it is more than 1.
  • the catalyst may additionally contain more than 1.0 wt.% Copper.
  • the catalyst containing one of the above hydroxide phases has activity in the steam reforming reaction in the temperature range of 250-350 0 C, significantly exceeding the known analogues, containing mainly the phase with the structure of hematite Ot-Fe 2 O 3 or magnetite Fe 3 O 4 , as this is illustrated by the examples below.
  • the present invention also provides a method for producing a catalyst using metallic iron or a composition containing metallic iron as a raw material, a chromium 6+ compound or its aqueous solution, a copper 2+ compound or its aqueous solution and an aqueous solution of nitric acid.
  • the proposed method for the preparation of a carbon monoxide conversion catalyst containing iron and chromium includes a sequence of actions: mixing metallic iron or a composition containing metallic iron with a chromium 6+ compound or its aqueous solution and an aqueous solution of nitric acid with an initial concentration of 6.0-46 wt .% at temperatures below 4O 0 C; bubbling the resulting mixture with air at a temperature of 40-60 0 C, mixing the resulting solution and an aqueous solution of carbonate and / or ammonium hydroxide and / or potassium and / or sodium, washing the precipitate from the mother liquor with water, filtering the precipitate and drying it.
  • the method allows to obtain hydroxo compounds with the above structures
  • composition containing metallic iron As a composition containing metallic iron, cast iron or steel is used.
  • the specific structure of the resulting compounds is determined by the preparation parameters, such as the temperature of mixing of the raw materials, the pH of the mother liquor solution and others.
  • a composition of metallic iron products of metallurgical industries, as well as scrap metal or waste from engineering industries, can be used, however, the use of gray cast iron is preferable.
  • Gray cast iron has a low content of 5 sulfur (it is actually possible to achieve a content of 0.02 wt.%) And phosphorus.
  • Carbon and silicon contained in cast iron do not impair the performance of the catalyst, but can improve its formability.
  • Manganese contained in cast iron can have a positive effect on the catalytic properties (as the use of manganese as a promoting additive is proposed
  • the present invention also provides a method for carrying out a CO steam reforming process using the above catalysts at temperatures above 25 0 0 C.
  • the advantages of the proposed catalyst are: a wide range of operating temperatures with high activity in the range of 250-350 0 C, sulfur content of not more than 0.03 wt.%; the content of chromium (VI) is not more than 0.05 wt.%
  • the advantages of the proposed method for the preparation of the catalyst are: the absence of emission of NO and NO 2 ; lack of chromium (VI) in the effluent; fast 0 washing, good filterability of sediment.
  • the advantage of the method for implementing the process of steam conversion of carbon monoxide is the ability to carry out the process in a wide temperature range. Including at a temperature in the initial catalyst layer is lower than for a conventional catalyst.
  • Example 1 The catalyst composition Fe 0 9 Cr 0 1 with the structure of goethite.
  • pH (8.0-8.5) and temperature (68-70 0 C) are kept constant.
  • the precipitate is washed by decantation.
  • the catalyst mass is dried at 9O 0 C and calcined in a stream of a mixture of nitrogen and steam for 1 h at 25O 0 C.
  • the diffractogram of the obtained catalyst is shown in FIG. 1.
  • the diffractogram is obtained on a D-500 diffractometer (Siemeps company) in Cu-K 0 radiation with a graphite monochromator on the reflected beam at a voltage of 35 kV and a current strength of 35 mA.
  • the IR spectrum of the obtained catalyst is shown in FIG. 2.
  • the IR spectrum is obtained in the range of 250-4000 cm ′′ on a VoetMM-102 Fourier spectrometer. The samples are prepared by pressing in a KBr matrix.
  • Figure 1 also shows the data of the ⁇ - model diffraction pattern
  • FeOOH (goethite) calculated according to ICSD 28247.
  • the observed diffractogram and IR spectrum indicate that the obtained catalyst is a Fe 3+ O (OH) compound with goethite structure - orthorhombic syngony, space group Pb ⁇ m (2 / m 2 / m 2 / m), given a class. 6.1.1.2.].
  • Example 2 The catalyst composition Fe 0 9 Cr 0 l with the structure of hydrohematite.
  • the catalyst is prepared analogously to example 1, however, the mixture of cast iron, chromic anhydride and an aqueous solution of nitric acid is carried out at 15 ° C for 2 hours, the mixture is bubbled with air at 55 ° C, and precipitation is carried out at pH (7.5-8.0) . Calcination of the dry catalyst mass is carried out at 35 O 0 C. 1 mass% of graphite is added to the resulting mass and tabletted into 5 mm x 5 mm cylindrical tablets. The diffraction pattern of the obtained catalyst before the introduction of graphite into it is shown in FIG. 3. The IR spectrum of the obtained catalyst is shown in FIG. four.
  • the diffractogram of the catalyst contains two broad reflections at d of about 2.7 A and 2.5 A, characterizing the compound as a strongly disordered phase with a cubic structure.
  • the IR spectrum of the obtained catalyst in the region of natural vibrations is close to hydrohematite (E. Wolska, Zeitskhg. Fur Kgistallogr. V.154, N. 1/2, 1981, p. 69-71).
  • the IR spectrum contains an absorption band in the region of 920 cm "1 , which is distinctive for hydrohematites from OFe 2 O 3 oxide, hematite.
  • the IR spectrum contains absorption bands in the region of water vibrations (3400 cm “ 1 and 1630 cm “ 1 ) and impurity anions CO 3 and NO 3 in the region of 1340-1540 cm “1 .
  • the phase transition of a catalyst with a hydrohematite structure to a hematite structure occurs exothermically only in the temperature range 560-590 0 C.
  • the catalyst calcined at 600 0 C in a stream of nitrogen has the structure of well crystallized hematite.
  • Example 3 The catalyst composition Feo .89 Cro.o 9 Cuo . o 2 with goethite structure
  • the catalyst is prepared analogously to example 1, however, 0.35 g of CuO and 2 g of a 15 wt.% nitric acid solution are additionally added to the mixture of iron, chromium and nitric acid compounds.
  • the diffractogram of the obtained catalyst is shown in FIG. 5.
  • Figure 5 also shows the data of the model diffraction pattern of FeOOH (goethite) calculated according to ICSD 28247.
  • the observed diffraction pattern indicates that the obtained catalyst is a compound Fe 3+ O (OH) with the structure of goethite - orthorhombic syngonium, space group ⁇ b ⁇ m (2 / m 2 / m 2 / m), Dana class. 6.1.1.2.].
  • Characteristic data on the catalytic properties of the obtained catalyst are presented in the table.
  • Example 4 The catalyst composition Fe O 89 Cr 0 O gCu 0 O2 with the structure of hydrohematite.
  • the catalyst is prepared analogously to example 2, however, as a composition containing metallic iron, 8.8 g of steel filings are used, and 0.35 g of CuO and 2 g of 15 wt.% Nitric are additionally added to a mixture of iron, chromium and nitric acid compounds acids.
  • the diffraction pattern of the obtained catalyst before the introduction of graphite into it is shown in FIG. 6.
  • the IR spectrum of the obtained catalyst is shown in FIG. 7.
  • the IR spectrum of the obtained Fe — Cr — Cu catalyst in the region of natural vibrations closely matches the spectrum of hydrohematite (E. Wolska, Zeitschr. Fur Ktistallogr. V. 154, N. 1/2, 1981, pp. 69-71).
  • the band in the region of 920 cm '1 which is observed in the spectra of hydrohematites and distinguishes them from hematite, is well pronounced.
  • the IR spectrum contains absorption bands in the region of water vibrations (3400 cm “1 and 1630 cm “ 1 ) and impurity anions CO 3 and NO 3 in the region 1340-1540 cm “1 .
  • Example 5 The catalyst composition Fe 0 73 Cr 007 C u 02 with the structure of hydrohematite.
  • the catalyst is prepared analogously to example 2, however, a mixture of compounds of iron, chromium and nitric acid is additionally introduced 4.2 g of CuO and 24 g of 15 wt.% Nitric acid.
  • the IR spectrum of the obtained catalyst is shown in FIG. 8.
  • the IR spectrum of the obtained Fe-Cr-Cu catalyst in the region of natural vibrations closely matches the spectrum of hydrohematite (E. Wolska, Zeitschr. Fur Kristallogr. V. 154, N. 1/2, 1981, p. 69-71).
  • the band in the region of 920 cm “1 which is observed in the spectra of hydrohematites and distinguishes them from hematite, is well defined.
  • the IR spectrum contains absorption bands in the region of water vibrations (3400 cm “ 1 and 1630 cm “ ) and CO 3 impurity anions and NO 3 in the region of 1340-1540 cm “1 . Characteristic data on the catalytic properties of the obtained catalyst are presented in the table.
  • the catalyst composition Fe 09 Cr 0 1 with the structure of hematite is prepared according to the patent RU 2275963, by sequentially performing (1) precipitation of the iron (II) compound from a solution of iron (II) sulfate with a mixture of carbonate and sodium hydroxide solutions, (2) washing the precipitate by decantation, (3) calcining at 25O 0 C, (4) sequential washing with a calcined mass by decantation and on a filter; (5) mixing the washed mass with chromic anhydride, (6) molding into extrudates with a diameter of 3 mm, (7) heat treatment at a temperature of 35O 0 C.
  • a diffractogram of the obtained catalyst is shown in FIG. 9.
  • the IR spectrum of the obtained catalyst is shown in FIG. 10.
  • FIG. Figure 9 also shows the data of the model diffraction pattern of Qj-Fe 2 O 3 (hematite) calculated according to ICSD 64599.
  • the catalyst composition Fe O 89 Cr O o 9 Cu 0 O2 with a hematite structure Fe O 89 Cr O o 9 Cu 0 O2 with a hematite structure.
  • the catalyst is prepared according to patent RU 2275963, analogously to example 6, however, the deposition is carried out from a mixture of solutions of iron (II) sulfate and copper (II) sulfate in proportions corresponding to the composition of the catalyst; graphite is added to the catalyst to facilitate molding.
  • the diffractogram of the obtained catalyst is shown in FIG. 11.
  • the data presented in FIG. 11 indicate that the resulting catalyst has the structure of ⁇ -Fe 2 O 3 (hematite).
  • the reaction rate constants of the steam reforming of CO on the catalyst fraction 0.25-0.5 mm
  • the ratio of pap: gaz 0.8.
  • the activation of the catalysts was carried out in two stages: (1) raising the temperature to 200 0 C in a stream of nitrogen; (2) raising the temperature to 300- 32O 0 C in a stream of wet reaction mixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

Катализатор паровой конверсии монооксида углерода, способ его приготовления и способ его использования
Изобретение относится к способу получения водорода паровой конверсией монооксида углерода и катализаторам для этого процесса и может найти применение в разных отраслях промышленности. Реакция паровой конверсии монооксида углерода является стадией процесса получения водорода из природного газа. Реакция паровой конверсии СО экзотермическая, глубина превращения определяется термодинамическим равновесием, которое однозначно связано с температурой газовой смеси на выходе из слоя катализатора. Традиционно паровая конверсия монооксида углерода осуществляется в две стадии: в области температур (1) 350-5000C на железо-хромовом катализаторе и (2) 190-3000C на медно-цинк-алюминиевом катализаторе [Катализаторы, применяемые в азотной промышленности. Под общ. Редакцией А.М.Алексеева. Черкассы. НИИТЭхим. 1979].
Наиболее перспективными катализаторами на 1 стадии процесса в настоящее время являются катализаторы на основе железо-хромовых и железо- хром-медных соединений. Основными требованиями к ним являются: (1) содержание серы не более 0.03 мac.%, (2) содержание хрома 6+ не более 0.05 мac.%, (3) активность катализатора, обеспечивающая осуществление процесса при температурах в начале слоя менее 3500C, например при 320-3300C, (4) экологическая безопасность технологии приготовления.
(1) Содержание серы в катализаторе ограничивается в связи с тем, что в условиях реакционной среды соединения серы, присутствующие в известных катализаторах в виде сульфатов, превращаются в газообразные H2S и CS2 и отравляют медьсодержащий катализатор низкотемпературной паровой конверсии СО. Для снижения содержания серы в реакционном газе перед началом эксплуатации рекомендуется проводить «oтдyвкy» катализатора от серы в течение 8-10 ч (операция, значительно ухудшающая экономические показатели процесса), однако и при этом полного удаления серы не достигается [Очистка технологических газов./ Под ред. Т.А. Семеновой и И.Л. Лейтеса. M., Химия, 1977, 488с]. Безусловно, лучшим способом снижения содержания серы является использование сырья, не содержащего серу или содержащего незначительное количество серы, снижающееся в процессе приготовления катализатора (осаждения, отмывки катализаторной массы).
(2) Ограничение содержания в катализаторе соединений хрома 6+ (не более 0.05 мac.% - современное требование к промышленному катализатору) диктуется условиями безопасной работы при загрузке и выгрузке катализатора в аппарат и опасностью загрязнения окружающей среды при хранении и утилизации отработанного катализатора.
(3) При использовании адиабатических аппаратов, снижение температуры в начале слоя реактора обеспечивает снижение температуры газового потока на выходе из реактора и, следовательно, увеличение глубины превращения СО, например - до остаточного содержания СО 2-2,5 oб.% и менее.
(4) Под экологической безопасностью технологии приготовления понимается минимальное образование NO и NO2 и санитарное поглощение их, отсутствие хрома 6+ и меди 2+ в стоках или их содержание в пределах принятых санитарных норм.
Известен способ получения катализатора паровой конверсии оксида углерода (SU 651838, B01J37/04, 15.03.79), содержащего 7,2 мac.% Cr2O3, смешением оксида железа Fe2O3 с хромовой кислотой, с последующим формованием, сушкой и прокаливанием. Известен способ получения катализатора (SU 1790064, BOlJ 37/04,
20.05.96), отличающийся дополнительным введением магнетита Fe3O4 в количестве 15-100% от массы оксида железа.
Недостатками этих способов является относительно невысокая активность получаемых с их помощью катализаторов. Известен способ получения катализатора (RU 2170615, B01J23/881,
20.07.01), получаемый смешением оксида железа с водным раствором хромовой кислоты и солью марганца, с последующим формованием гранул, их сушкой и прокаливанием. Перед прокаливанием дополнительно вводят соединения Mg, или Ca, Nd или Pr. К недостаткам относится высокая стоимость получаемого катализатора.
Известен способ получения железо-хромового катализатора (RU 2275963, B01J37/03, 10.05.06) путем смешения хромового ангидрида с соединениями железа, приготовленными осаждением гидрооксосоединения железа раствором аммиака или карбоната натрия из растворов сульфата железа с последующей отмывкой, формованием и прокаливанием при 280-4200C. Использование сульфата железа в качестве сырья требует большого количества воды и длительного времени для удаления серы. К недостаткам относится также высокое содержание хрома 6+ и сравнительно низкая активность катализатора во всей области температур, особенно при температурах ниже 35O0C (см. прототип, описанный в примере 6). Варианты этого изобретения предполагают смешение хромового ангидрида с гидроксосоединениями железа и прокаливание полученной смеси при 50-2000C перед формованием катализатора, что не позволяет избежать вышеупомянутых недостатков, однако дополнительно приводит к сильной усадке катализатора в ходе его использования.
Известен также железо-хромовый катализатор конверсии оксида углерода водяным паром [RO 100112, B01J23/08, 14.08.1990], полученный прогреванием на воздухе при 25O0C предшественника, который получают, используя растворы нитратов железа (III), хрома (III) и подходящий щелочной агент (раствор аммиака, гидроксида натрия). К недостаткам катализатора относится его низкая активность и повышенное содержание хрома 6+. Повышенное содержание Cr+6 является следствием прокаливания на воздухе. Кроме того, использование азотнокислых солей в качестве сырья приводит к высокой стоимости катализатора.
Улучшение экономических показателей при использовании не содержащих серу реагентов достигается получением нитратов в рамках технологии приготовления катализатора с использованием дешевого сырья, например металлического железа и хромового ангидрида, путем получения нитратов железа 2+ и 3+ и хрома 3+ окислительно-восстановительным взаимодействием металлического железа, хромового ангидрида с азотной кислотой. Наиболее близким к предлагаемому изобретению является изобретение [BG 62040, B01J23/702, 9.01.1999], в котором описан метод получения железо- хром-медного катализатора паровой конверсии СО с высоким гидроксильным покрытием поверхности, работающего при 300-3600C. Катализатор получают путем смешения с раствором аммиака, продуваемого CO2, растворов нитратов железа (III), хрома (III) и нитрата меди с последующими сушкой и прокаливанием на воздухе при 350-4500C. Нитраты жeлeзa(Ш) и Cr(III) получают растворением в 23 мac.% азотной кислоте металлического железного лома и хромового ангидрида с продувкой воздуха при 40-600C. Недостатками известного катализатора являются:
1. Невозможность получения катализатора с содержанием хрома 6+ не более 0.05 мac.% (современные требования к промышленному катализатору), поскольку катализатор в изобретении прокаливают на воздухе при 350- 45O0C. При этих температурах в среде, содержащей кислород, наблюдается высокая скорость окисления Cr3+ в Cr6+ [T. В. Роде «Kиcлopoдныe соединения xpoмa», Изд-во АН СССР, Москва, 1962 г].
2. Предлагаемые условия получения нитратов железа и хрома (23 мac.% кислота, воздух и температура 40-600C) обеспечивают отсутствие выделения оксидов азота NO и NO2 в ходе получения нитратов, но не полноту восстановления Cr6+ до Cr3+. Невосстановившийся хром остается в фильтрате после выделения катализаторной массы из суспензии, полученной при осаждении, и переходит в стоки. Полнота восстановления хрома в патенте не рассматривается.
3. Узкая температурная область работы катализатора - 300-3600C. Изобретение решает задачу разработки катализатора, обладающего высокой активностью в реакции паровой конверсии в температурной области 250— 35O0C.
Настоящее изобретение предлагает для решения поставленной задачи катализатор паровой конверсии монооксида углерода, содержащий в своем составе фазу гидроксосоединения железа 3+ и хрома 3+ со структурой гётита (FeOOH, Рbпm (2/m 2/m 2/m), ICSD 28247, 6.1.1.2) и/или гидрогематита FeO(1 5- Q Sx)(OH)x [Е.Wоlskа, Zеitsсhг. fαг Кristаllоgг. V154, Nl/2, 1981, р. 69-71]. Атомное соотношение содержания железа к содержанию хрома в нём составляет более 1.
Катализатор может дополнительно содержит более 1.0 мac.% меди. Катализатор, содержащий одну из названных выше гидроксидных фаз, обладает активностью в реакции паровой конверсии в температурной области 250-3500C, значительно превышающей известные аналоги, содержащие преимущественно фазу со структурой гематита Ot-Fe2O3 или магнетита Fe3O4, как это иллюстрируют примеры, приводимые ниже.
Настоящее изобретение предлагает также способ получения катализатора с использованием в качестве сырья металлического железа или композиции, содержащей металлическое железо, соединения хрома 6+ или его водного раствора, соединения меди 2+ или его водного раствора и водного раствора азотной кислоты.
Предлагаемый способ получения катализатора конверсии монооксида углерода, содержащего железо и хром, включает в себя последовательность действий: смешение металлического железа или композиции, содержащей металлическое железо, с соединением хрома 6+ или его водным раствором и водным раствором азотной кислоты с начальной концентрацией 6.0-46 мac.% при температуре ниже 4O0C; барботаж полученной смеси воздухом при температуре 40-600C, смешение полученного раствора и водного раствора карбоната и/или гидроксида аммония, и/или калия, и/или натрия, отмывка осадка от маточного раствора водой, фильтрация осадка и его сушка. Способ позволяет получать гидроксосоединения с указанными выше структурами
В качестве композиции, содержащей металлическое железо, используют чугун или сталь.
В смесь соединений железа, хрома и азотной кислоты дополнительно вводят соединения Cu2+ или его водного раствора,
Можно дополнительно проводить стадии смешения осадка с графитом и формования или таблетирования, а также стадии прокаливания катализатора при температуре 150-2500C в токе воздуха и/или 150-4500C в токе инертного газа, азота или смеси их с паром.
Конкретная структура получаемых соединений определяется параметрами приготовления, такими как температура смешения сырья, рН маточного раствора и другими. В качестве композиции металлического железа можно использовать продукцию металлургических производств, а также железный лом или отходы машиностроительных производств, однако предпочтительным является использование серого чугуна. Серый чугун имеет низкое содержание 5 серы (реально возможно достижение содержания 0,02 мac.%) и фосфора. Содержащиеся в чугуне углерод и кремний не ухудшают показателей катализатора, но могут улучшать его формуемость. Содержащийся в чугуне марганец может оказывать положительное влияние на каталитические свойства (так использование марганца в качестве промотирующей добавки предлагается
Ю в патентах RU 2170615, B01J37/04. 20.07.01 и RU 2275963, B01J37/03, 10.05.06).
Настоящее изобретение предлагает также способ осуществления процесса паровой конверсии СО с использованием указанных выше катализаторов в области температур выше 25O0C.
15 Достоинствами предлагаемого катализатора являются: широкая область рабочих температур с высокой активностью в области 250-3500C, содержание серы не более 0.03 мac.%; содержание xpoмa(VI) не более 0.05 мac.% Достоинствами предлагаемого способа приготовления катализатора являются: отсутствие выделения NO и NO2; отсутствие хрома (VI) в стоках; быстрая 0 отмывка, хорошая фильтруемость осадка. Достоинством способа осуществления процесса паровой конверсии монооксида углерода является возможность осуществления процесса в широком интервале температур. В том числе при температуре в начальном слое катализатора ниже, чем для традиционного катализатора.
25 Возможность получения гидроксосоединений со структурами гетита и гидрогематита, а также возможность и эффективность их использования в процессе паровой конверсии СО иллюстрируется примерами.
Определение структуры гидроксосоединений и их различие от гидроксоединения со структурой лепидокрокита (γ-FеООН, Аmаm (2/m 2/m
30 2/m), ICSD 27846, Дана класс. 6.1.2.2.), а также оксидов железа со структурами гематита (Fe2O3, R Зс (3 2/m), ICSD 64599, Дана класс. 4.3.1.2) и магнетита (Fe3O4, F dЗm (4/m 3 2/m), Дана класс. 7.2.2.3) может быть однозначно проведено по данным рентгеновской дифракции и ИК-спектроскопии, как иллюстрируется примерами.
Пример 1. Катализатор состава Fe0 9Cr0 1 со структурой гетита.
В реакторе, снабженном лопастной мешалкой и инжектором газового потока, смешивают 9,26 г крошки чугуна с содержанием железа 0,94 мае. долей, 1 ,62 г хромового ангидрида CrO3, 157 г воды, 84,7 г 46 мac.% водного раствора азотной кислоты и перемешивают при 350C в течение 1,5 ч, затем включают барботаж смеси воздухом, повышают температуру до 450C и интенсивно перемешивают в течение 30 мин. Полученный раствор азотнокислых солей смешивают с 10% раствором карбоната натрия, путем подачи растворов солей и осадителя двумя потоками при непрерывном перемешивании в раствор буфера. В ходе осаждения поддерживают постоянными рН (8,0-8,5) и температуру (68-700C). Осадок промывают декантацией. Катализаторную массу сушат при 9O0C и прокаливают в токе смеси азота и пара в течение 1 ч при 25O0C.
Дифрактограмма полученного катализатора представлена на Фиг. 1. Дифрактограмму получают на дифрактометре D-500 (фирма Siеmепs) в Cu-K0 излучении с графитовым монохроматором на отраженном пучке при напряжении 35 kV и силе тока 35 mА. Регистрацию дифракционной картины проводят сцинтиляционным счетчиком методом сканирования с шагом 0,05 градусов 2Θ и временем накопления 5 сек в каждой точке в интервале углов 2Θ = 10-75 град. ИК-спектр полученного катализатора приведен на Фиг. 2. ИК- спектр получают в области 250-4000cм"' на Фурье-спектрометре ВоmеmМВ- 102. Образцы готовят методом прессования в матрицу KBr. На Фиг 1 также приведены данные модельной дифрактограммы α-
FeOOH (гетита), рассчитанные согласно ICSD 28247. Наблюдаемые дифрактограмма и ИК-спектр свидетельствуют, что полученный катализатор представляет собой соединение Fe3+O(OH) со структурой гетита - орторомбическая сингония, пространственная группа Рbпm (2/m 2/m 2/m), Дана класс. 6.1.1.2.].
Характеристические данные о каталитических свойствах полученного катализатора представлены в таблице.
Пример 2. Катализатор состава Fe0 9Cr0 л со структурой гидрогематита. Катализатор готовят аналогично примеру 1, однако смешение чугуна, хромового ангидрида и водного раствора азотной кислоты проводят при 150C в течение 2 ч, барботаж смеси воздухом проводят при 550C, а осаждение - при рН (7,5-8,0). Прокаливание сухой катализаторной массы проводят при 35O0C. В полученную массу добавляют 1 мac.% графита и таблетируют в цилиндрические таблетки 5 мм х 5 мм. Дифрактограмма полученного катализатора до введения в него графита представлена на Фиг. 3. ИК-спектр полученного катализатора приведен на Фиг. 4.
На дифрактограмме катализатора присутствуют два широких рефлекса при d около 2.7 А и 2.5 А, характеризуя соединение как сильно разупорядоченную фазу с кубической структурой. ИК-спектр полученного катализатора в области собственных колебаний близок к гидрогематиту (Е.Wоlskа, Zеitsсhг. fur Кгistаllоgr. V.154, N. 1/2, 1981, р. 69-71). В ИК-спектре содержится полоса поглощения в области 920 см"1, которая является отличительной для гидрогематитов от оксида OFe2O3, гематита. Дополнительно, в ИК-спектре содержатся полосы поглощения в области колебаний воды (3400 см"1 и 1630 см"1) и примесных анионов CO3 и NO3 в области 1340-1540 см"1. Фазовый переход катализатора со структурой гидрогематита в структуру гематита происходит экзотермически только в области температур 560-5900C. Катализатор, прокаленный при 6000C в токе азота, имеет структуру хорошо окристаллизованного гематита.
Характеристические данные о каталитических свойствах полученного катализатора представлены в таблице.
Пример 3. Катализатор состава Feo.89Cro.o9Cuo.o2 со структурой гетита Катализатор готовят аналогично примеру 1, однако в смесь соединений железа, хрома и азотной кислоты дополнительно вводят 0,35 г CuO и 2 г 15 мac.% раствора азотной кислоты. Дифрактограмма полученного катализатора представлена на Фиг. 5.
На Фиг 5 также приведены данные модельной дифрактограммы о FeOOH (гетита), рассчитанные согласно ICSD 28247. Наблюдаемая дифрактограмма свидетельствует, что полученный катализатор представляет собой соединение Fe3+O(OH) со структурой гетита - орторомбическая сингония, пространственная группа Рbпm (2/m 2/m 2/m), Дана класс. 6.1.1.2.]. Характеристические данные о каталитических свойствах полученного катализатора представлены в таблице.
Пример 4. Катализатор состава FeO 89Cr0 OgCu0 O2 со структурой гидрогематита. Катализатор готовят аналогично примеру 2, однако в качестве композиции, содержащей металлическое железо, используют стальные опилки в количестве 8,8 г, а в смесь соединений железа, хрома и азотной кислоты дополнительно вводят 0,35 г CuO и 2 г 15 мac.% азотной кислоты. Дифрактограмма полученного катализатора до введения в него графита представлена на Фиг. 6. ИК-спектр полученного катализатора приведен на Фиг. 7.
ИК-спектр полученного Fe-Cr-Cu катализатора в области собственных колебаний близко соответствует спектру гидрогематита (Е.Wоlskа, Zеitsсhr. fur Ктistаllоgr. V. 154, N. 1/2, 1981, р. 69-71). Полоса в области 920 см'1, которая наблюдается в спектрах гидрогематитов и отличает их от гематита, хорошо выражена. Дополнительно, в ИК-спектре содержатся полосы поглощения в области колебаний воды (3400 см"1 и 1630 см"1) и примесных анионов CO3 и NO3 в области 1340-1540 см"1.
Характеристические данные о каталитических свойствах полученного катализатора представлены в таблице.
Пример 5. Катализатор состава Fe0 73Cr007C u02 со структурой гидрогематита.
Катализатор готовят аналогично примеру 2, однако смесь соединений железа, хрома и азотной кислоты дополнительно вводят 4,2 г CuO и 24 г 15 мac.% азотной кислоты. ИК-спектр полученного катализатора приведен на Фиг. 8.
ИК-спектр полученного Fe-Cr-Cu катализатора в области собственных колебаний близко соответствует спектру гидрогематита (Е.Wоlskа, Zеitsсhr. fur Кristаllоgr. V. 154, N. 1/2, 1981, р. 69-71). Полоса в области 920 см"1, которая наблюдается в спектрах гидрогематитов и отличает их от гематита, хорошо выражена. Дополнительно, в ИК-спектре содержатся полосы поглощения в области колебаний воды (3400 см"1 и 1630 см" ) и примесных анионов CO3 и NO3 в области 1340-1540 см"1. Характеристические данные о каталитических свойствах полученного катализатора представлены в таблице.
Пример 6 (для сравнения).
Катализатор состава Fe09Cr0 1 со структурой гематита. Катализатор готовят согласно патенту RU 2275963, путем последовательно проведенных операций (1) осаждения соединения железа (II) из раствора сульфата железа (II) смесью растворов карбоната и гидроксида натрия, (2) промывки осадка декантацией, (3) прокаливания при 25O0C, (4) последовательной промывки прокаленной массой декантацией и на фильтре; (5) смешения промытой массы с хромовым ангидридом, (6) формования в экструдаты диаметром 3 мм, (7) термообработки при температуре 35O0C. Дифрактограмма полученного катализатора представлена на Фиг. 9. ИК- спектр полученного катализатора приведен на Фиг. 10. На Фиг. 9 также приведены данные модельной дифрактограммы Qj-Fe2O3 (гематита), рассчитанные согласно ICSD 64599.
Данные, представленные на Фиг 9 и Фиг 10, свидетельствуют, что полученный катализатор имеет структуру 0!-Fe2O3 (гематита).
Характеристические данные о каталитических свойствах полученного катализатора представлены в таблице. Пример 7 (для сравнения).
Катализатор состава FeO 89CrO o9Cu0 O2 со структурой гематита.
Катализатор готовят согласно патенту RU 2275963, аналогично примеру 6, однако осаждение ведут из смеси растворов сульфата железа (II) и сульфата меди (II) в пропорциях, соответствующих составу катализатора; для облегчения формования в катализатор добавляют графит. Дифрактограмма полученного катализатора представлена на Фиг. 11. Данные, представленные на Фиг 11 , свидетельствуют, что полученный катализатор имеет структуру α- Fe2O3 (гематита).
Характеристические данные о каталитических свойствах полученного катализатора представлены в таблице. Таблица.
Константы скорости реакции паровой конверсии СО на фракции катализаторов 0,25-0,5 мм. Состав сухой газовой смеси, oб.%: СО - 9,6, CO2 - 7,9, H2 - 82,5. Соотношение пap:гaз = 0,8. Активация катализаторов проведена в два этапа: (1) подъем температуры до 2000C в токе азота; (2) подъем температуры до 300- 32O0C в токе влажной реакционной смеси.
Figure imgf000013_0001

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Катализатор паровой конверсии монооксида углерода, содержащий железо и хром, отличающийся тем, что он содержит в своём составе фазу гидроксосоединения железа и хрома со структурой типа гётита и/или гидрогематита.
2. Катализатор по п. 1, отличающийся тем, что атомное соотношение содержания железа к содержанию хрома в нём составляет более 1.
3. Катализатор по п. 1, отличающийся тем, что он дополнительно содержит более 1.0 мае. % меди.
4. Способ получения катализатора паровой конверсии монооксида углерода, содержащего железо и хром с использованием металлического железа, отличающийся тем, что способ включает в себя последовательность действий: смешение металлического железа или композиции, содержащей металлическое железо, с соединением хрома 6+ или его водным раствором и водным раствором азотной кислоты с начальной концентрацией 6.0-46 мac.% при температуре ниже 4O0C; барботаж полученной смеси воздухом при температуре 40-600C, смешение полученного раствора и водного раствора карбоната и/или гидроксида аммония, и/или калия, и/или натрия, отмывка осадка от маточного раствора водой, фильтрация осадка и его сушка.
5. Способ по п. 4, отличающийся тем, что в смесь соединений железа, хрома и азотной кислоты дополнительно вводят соединения Cu2+ или его водного раствора.
6. Способ по п. 4, отличающийся тем, что в качестве композиции, содержащей металлическое железо, используют чугун или сталь.
7. Способ по п. п. 4, 5, отличающийся тем, что дополнительно проводят стадии прокаливания катализатора при температуре 150-2500C в токе воздуха и/или 150-4500C в токе инертного газа, азота или смеси их с паром.
8. Способ по п. 7 отличающийся тем, что дополнительно проводят стадии смешения осадка с графитом и формования или таблетирования.
9. Способ паровой конверсии монооксида углерода с использованием катализатора, содержащего железо и хром, отличающийся тем, что его осуществляют с использованием катализатора по п. п. 1-3.
10. Способ паровой конверсии монооксида углерода по п. 9, отличающийся тем, что его осуществляют в области температур выше
25O0C.
PCT/RU2007/000470 2006-09-06 2007-08-23 Catalyseur de conversion de monoxyde de carbone par la vapeur, procédé de sa fabrication et procédé de son utilisation WO2008030140A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07834984A EP2077152A2 (en) 2006-09-06 2007-08-23 Catalyst for vapour conversion of carbon monoxide methods for the production and for the use thereof
EA200900346A EA013871B1 (ru) 2006-09-06 2007-08-23 Катализатор паровой конверсии монооксида углерода, способ его приготовления и способ его использования
US12/439,871 US20100196260A1 (en) 2006-09-06 2007-08-23 Catalyst for vapour conversion of carbon monoxide methods for the production and for the use thereof
EEP200900023A EE200900023A (et) 2006-09-06 2007-08-23 Süsinikmonooksiidi aurkonversiooni katalüsaator, meetod selle valmistamiseks ja kasutamiseks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2006132151 2006-09-06
RU2006132151/04A RU2314870C1 (ru) 2006-09-06 2006-09-06 Катализатор паровой конверсии моноксида углерода, способ его приготовления и способ его использования

Publications (3)

Publication Number Publication Date
WO2008030140A2 true WO2008030140A2 (fr) 2008-03-13
WO2008030140A3 WO2008030140A3 (fr) 2008-04-24
WO2008030140A9 WO2008030140A9 (fr) 2009-05-22

Family

ID=39108545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2007/000470 WO2008030140A2 (fr) 2006-09-06 2007-08-23 Catalyseur de conversion de monoxyde de carbone par la vapeur, procédé de sa fabrication et procédé de son utilisation

Country Status (8)

Country Link
US (1) US20100196260A1 (ru)
EP (1) EP2077152A2 (ru)
EA (1) EA013871B1 (ru)
EE (1) EE200900023A (ru)
LT (1) LT5649B (ru)
RU (1) RU2314870C1 (ru)
UA (1) UA92263C2 (ru)
WO (1) WO2008030140A2 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2445160C1 (ru) * 2011-04-05 2012-03-20 Государственное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" Способ приготовления катализатора среднетемпературной конверсии оксида углерода водяным паром
RU2677650C1 (ru) * 2017-12-27 2019-01-18 Акционерное общество "Ангарский завод катализаторов и органического синтеза" (АО "АЗКиОС") Железохромовый катализатор для паровой конверсии оксида углерода

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU651838A1 (ru) 1977-07-14 1979-03-15 Предприятие П/Я В-2609 Способ приготовлени катализатора дл конверсии окиси углерода
RO100112A2 (ro) 1987-12-03 1990-08-14 Combinatul Chimic Craiova Jude Procedeu de obtinere a unui catalizator pentru conversia oxidului de carbon
SU1790064A1 (ru) 1990-11-11 1996-05-20 Кемеровское производственное объединение "Азот" Способ получения катализатора для конверсии монооксида углерода
BG62040B1 (bg) 1995-05-05 1999-01-29 Атанас Андреев метод за получаване на желязо-хром-мед оксиден катализатор за конверсия на въглероден оксид с водна пара
RU2170615C1 (ru) 2000-08-24 2001-07-20 Довганюк Владимир Федорович Способ приготовления катализатора паровой конверсии оксида углерода и катализатор паровой конверсии оксида углерода
RU2275963C2 (ru) 2004-04-13 2006-05-10 Общество с ограниченной ответственностью "Алвиго-М" Способ приготовления железохромового катализатора (варианты)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3318131A1 (de) * 1983-05-18 1984-11-22 Süd-Chemie AG, 8000 München Eisenoxid-chromoxid-katalysator fuer die hochtemperatur-co-konvertierung
EP0466338B1 (en) * 1990-06-26 1995-12-20 Toda Kogyo Corp. Spindle-shaped magnetic iron based alloy particles and process for producing the same
US5830425A (en) * 1993-02-09 1998-11-03 Sud-Chemie Ag Chromium-free catalyst based on iron oxide for conversion of carbon monoxide
RU2059430C1 (ru) * 1993-04-30 1996-05-10 Государственный научно-исследовательский и проектный институт азотной промышленности и продуктов органического синтеза Катализатор для паровой конверсии оксида углерода
GB9407512D0 (en) * 1994-04-15 1994-06-08 Ici Plc Catalysts
JPH10510524A (ja) * 1994-12-14 1998-10-13 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 大粒子の脱水素化触媒および方法
US7939463B1 (en) * 2002-05-15 2011-05-10 Sud-Chemie Inc. Preparation of iron oxides
US7037876B2 (en) * 2002-05-15 2006-05-02 Sud-Chemie Inc. High temperature shift catalyst prepared with a purity iron precursor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU651838A1 (ru) 1977-07-14 1979-03-15 Предприятие П/Я В-2609 Способ приготовлени катализатора дл конверсии окиси углерода
RO100112A2 (ro) 1987-12-03 1990-08-14 Combinatul Chimic Craiova Jude Procedeu de obtinere a unui catalizator pentru conversia oxidului de carbon
SU1790064A1 (ru) 1990-11-11 1996-05-20 Кемеровское производственное объединение "Азот" Способ получения катализатора для конверсии монооксида углерода
BG62040B1 (bg) 1995-05-05 1999-01-29 Атанас Андреев метод за получаване на желязо-хром-мед оксиден катализатор за конверсия на въглероден оксид с водна пара
RU2170615C1 (ru) 2000-08-24 2001-07-20 Довганюк Владимир Федорович Способ приготовления катализатора паровой конверсии оксида углерода и катализатор паровой конверсии оксида углерода
RU2275963C2 (ru) 2004-04-13 2006-05-10 Общество с ограниченной ответственностью "Алвиго-М" Способ приготовления железохромового катализатора (варианты)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Catalysts used in nitrogen industry", 1979, NIITEKHIM.
"Purification of technical gases", 1977, pages: 488
E. WBLSKA, ZEITSCHR. FUR KRISTALLOGR., vol. 154, no. 1/2, 1981, pages 69 - 71
E. WOLSKA, ZEITSCHR. FUR KRISTALLOGR., vol. 154, no. L/2, 1981, pages 69 - 71
T. V. RODE: "Oxygen chromium compounds", 1962, USSR AS PUB. HOUSE

Also Published As

Publication number Publication date
EE200900023A (et) 2009-06-15
LT2009016A (en) 2009-12-28
WO2008030140A9 (fr) 2009-05-22
US20100196260A1 (en) 2010-08-05
EP2077152A2 (en) 2009-07-08
LT5649B (lt) 2010-04-26
EA013871B1 (ru) 2010-08-30
WO2008030140A3 (fr) 2008-04-24
RU2314870C1 (ru) 2008-01-20
EA200900346A1 (ru) 2009-06-30
UA92263C2 (ru) 2010-10-11

Similar Documents

Publication Publication Date Title
US8475684B2 (en) Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
JP5666777B2 (ja) 一酸化炭素転換用触媒およびそれを用いた一酸化炭素変成方法
US7964114B2 (en) Iron-based water gas shift catalyst
JPS60147244A (ja) 変性された銅および亜鉛含有触媒組成物の製造方法並びに該触媒組成物を使用するメタノールの製造方法
EP1663855A1 (en) High temperature shift catalyst prepared with a high purity iron precursor
Maboudi et al. Effect of mesoporous nanocrystalline supports on the performance of the Ni–Cu catalysts in the high-temperature water-gas shift reaction
CN107635661B (zh) 铁基催化剂的制备方法和用该方法制备的铁基催化剂制备烃类的方法
CN114405511A (zh) 一种制取合成气并联产co和氢的氧载体及其制备方法和应用
RU2314870C1 (ru) Катализатор паровой конверсии моноксида углерода, способ его приготовления и способ его использования
WO2023237892A1 (en) Catalyst composition, methods for its production and use thereof
CN112569988B (zh) 含沉淀型ε/ε’碳化铁和θ碳化铁的组合物及制备方法、催化剂和应用及费托合成的方法
CN117545554A (zh) 用于制备水煤气变换催化剂的方法、催化剂和用于降低一氧化碳含量的方法
JP2009241036A (ja) 一酸化炭素転換触媒用組成物からなる一酸化炭素転換用触媒、それを用いた一酸化炭素除去方法
Zhang et al. The role of CO2 over different binary catalysts in methanol synthesis
CN112569977B (zh) 含沉淀型χ碳化铁和θ碳化铁的组合物及制备方法、催化剂和应用及费托合成的方法
JPH0371174B2 (ru)
Gerzeliev et al. Partial oxidation of lower alkanes by active lattice oxygen of metal oxide systems: 2. Synthesis of solid contacts and syngas production in a pilot plant with a riser reactor
CN112569975B (zh) 含沉淀型多物相碳化铁的组合物及制备方法、催化剂和应用及费托合成的方法
CN112569980B (zh) 含沉淀型ε/ε’碳化铁和χ碳化铁的组合物及制备方法、催化剂和应用及费托合成的方法
CN112569989B (zh) 含χ碳化铁和θ碳化铁的组合物及制备方法、催化剂和应用及费托合成的方法
CN112569994B (zh) 含多物相碳化铁的组合物及制备方法、催化剂和应用及费托合成的方法
JP5760981B2 (ja) 排ガス浄化用触媒及びその製造方法
CN116059990A (zh) 二氧化碳甲烷化催化剂及其制备方法与应用
WO2023237326A1 (en) Water-gas shift reaction catalysts
AU2022315453A1 (en) Steam reforming catalyst for heavy hydrocarbon feeds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07834984

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: LT2009016

Country of ref document: LT

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200900346

Country of ref document: EA

Ref document number: 2007834984

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12439871

Country of ref document: US