RU2170615C1 - Способ приготовления катализатора паровой конверсии оксида углерода и катализатор паровой конверсии оксида углерода - Google Patents

Способ приготовления катализатора паровой конверсии оксида углерода и катализатор паровой конверсии оксида углерода Download PDF

Info

Publication number
RU2170615C1
RU2170615C1 RU2000122324/04A RU2000122324A RU2170615C1 RU 2170615 C1 RU2170615 C1 RU 2170615C1 RU 2000122324/04 A RU2000122324/04 A RU 2000122324/04A RU 2000122324 A RU2000122324 A RU 2000122324A RU 2170615 C1 RU2170615 C1 RU 2170615C1
Authority
RU
Russia
Prior art keywords
catalyst
iron oxide
compound
iron
oxide
Prior art date
Application number
RU2000122324/04A
Other languages
English (en)
Inventor
А.Ю. Калиневич (RU)
А.Ю. Калиневич
Федор Владимирович Калинченко (UA)
Федор Владимирович Калинченко
Л.Г. Данилова (RU)
Л.Г. Данилова
Лариса Петровна Кубрак (UA)
Лариса Петровна Кубрак
Original Assignee
Довганюк Владимир Федорович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Довганюк Владимир Федорович filed Critical Довганюк Владимир Федорович
Priority to RU2000122324/04A priority Critical patent/RU2170615C1/ru
Application granted granted Critical
Publication of RU2170615C1 publication Critical patent/RU2170615C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к производству катализаторов паровой конверсии оксида углерода в процессах получения водорода и азотоводородной смеси в химической и нефтехимической отраслях промышленности. Сущность изобретения заключается в смешении соединения железа с водным раствором хромовой кислоты и солью марганца с последующим формованием гранул, их сушкой и прокаливанием, при этом получают катализатор паровой конверсии, содержащий оксиды хрома и марганца. В водный раствор хромовой кислоты дополнительно вводят по меньшей мере одно соединение щелочноземельного металла, выбранного из группы, включающей Mg, Ca, и по меньшей мере одно соединение редкоземельного металла, выбранного из группы, включающей Ce, La, Nd, Pr, и необязательно соединение меди, а в качестве соединения железа используют оксид железа. Катализатор дополнительно содержит по меньшей мере один оксид щелочноземельного металла общей формулы MeO, выбранного из группы Mg, Ca, и по меньшей мере один оксид редкоземельного металла общей формулы Ln2O3, выбранного из группы Ce, La, Nd, Pr. Технический результат состоит в повышении стабильности катализатора при сохранении высокой активности. 2 с. и 5 з.п. ф-лы, 1 табл.

Description

Изобретение относится к области производства катализаторов паровой конверсии оксида углерода в процессах получения водорода и азотоводородной смеси в химической и нефтехимической промышленности.
Известен способ получения катализатора паровой конверсии оксида углерода, содержащего 7,2 мас.% Cr2O3, смешением оксида железа Fe2O3 с хромовой кислотой, с последующими формованием, сушкой и прокаливанием. Активность катализатора, выраженная через константу скорости реакции оксида углерода с водяным паром при температуре 350oC, составляет 1,35-1,55 см3/(г • с). (А.с. СССР N 651838, МПК В 01 J 37/04, опубл. 15.03.79).
Известен способ получения катализатора, отличающийся дополнительным введением магнетита - Fe3O4 в количестве 15 - 100% от массы оксида железа. Получают катализатор с активностью 1,22-1,35 см3/(г • с). (А.с. РФ N 1790064 Ф1, МПК В 01 J 37/04, 23/86, опубл. 20.05.96).
Недостатком известных способов является невысокая активность получаемых с их помощью катализаторов.
Известен катализатор паровой конверсии оксида углерода на основе оксида железа, содержащий 6,5 - 7,5 мас.% Cr2O3, 2 - 10 мас.% CuO и 1 - 4 мас.% Al2O3. Катализатор получают смешением карбоната железа - FeCO3 с раствором нитрата меди - Cu(NO3)2 или аммиачно-карбонатного соединения меди - Cu(NH4)4CO3, нитрата алюминия - Al2(NO3)3 или гидроокиси алюминия - Al(OH)3 и хромовой кислотой - H2CrO4 с последующим или промежуточным (перед введением хромовой кислоты) прокаливанием. (Патент РФ N 2059430 C1, МПК В 01 J 23/885, опубл. 10.05.96).
Недостатком известного катализатора является низкая стабильность, что выражается в потере активности после перегрева в реакционной среде, содержащей водород и пар (Red/Ox среде). Термин "стабильность" является характеристикой эксплуатационных качеств катализатора (Э.Л. Фурен, З.В. Комова и др. Исследование стабильности елезохромового катализатора конверсии оксида углерода. Сб. Катализ и катализаторы. Киев. - Наукова Думка, 1985, вып. 23, с. 90-93).
Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ приготовления катализатора, включающий смешение соединения железа с водным раствором хромовой кислоты и солью марганца, с последующими формованием, сушкой и прокаливанием. Катализатор, полученный по этому способу, содержит 6,5 - 7,5 мас.% Cr2O3, 1,6 - 1,7 мас.% MnO2 и 0,9 - 1,0 мас.% K2O, Fe2O3 остальное и имеет достаточно высокую активность - 2,5-3,5 см3/г•с). (А.с. СССР N 518941 A, МПК В 01 J 37/04, опубл. 07.07.84).
Недостатком катализатора, полученного по этой технологии, является низкая стабильность.
Технической задачей, решаемой предлагаемым изобретением, является создание катализатора паровой конверсии оксида углерода с повышенными активностью и стабильностью в процессе эксплуатации.
Данная техническая задача решается в способе приготовления катализатора паровой конверсии оксида углерода, включающем смешение соединения железа с водным раствором хромовой кислоты и солью марганца, с последующим формованием гранул, их сушкой и прокаливанием, в котором в водный раствор хромовой кислоты дополнительно вводят по меньшей мере одно соединение щелочноземельного металла, выбранного из группы Mg, Ca, и по меньшей мере одно соединение редкоземельного металла, выбранного из группы, включающей Ce, La, Nd, Pr, и необязательно соединение меди, а в качестве соединения железа используют оксид железа.
При приготовлении катализатора в качестве соединений металлов, выбранных из группы Mg, Ca, Ce, La, Nd, Pr, Cu, используют по меньшей мере одно соединение из ряда: оксид, гидроксид, карбонат, хромат, бихромат, а также используют оксид железа, содержащий магнетит - Fe3O4 и/или хромит железа - Fe[CrFe] O4 в количестве 5-50% от массы оксида железа. При смешении в катализаторную массу дополнительно вводят раствор хромата карбамида - 2 CO(NH2)2 • H2CrO4 или карбамид в количестве 0,5 - 1,5% от массы оксида железа и/или углеродсодержащий материал в количестве 1,0 - 4,0 мас.% от массы оксида железа. В качестве углеродсодержащего компонента применяют активированный уголь марки БАУ и/или коллоидный графит. По данному способу получают катализатор паровой конверсии оксида углерода, содержащий оксиды железа, хрома и марганца, который дополнительно содержит по меньшей мере один оксид щелочноземельного металла общей формулы MeO, выбранного из группы Mg, Ca, и по меньшей мере один оксид редкоземельного металла общей формулы Ln2O3, выбранного из группы Ce, La, Nd, Pr, при следующем содержании компонентов, мас.%:
Cr2O3 - 7,0 - 12,0
MnO2 - 0,2 - 1,0
MeO - 0,1 - 0,8
Ln2O3 - 0,05 - 1,0
Оксид железа - Остальное.
Катализатор также дополнительно содержит 1,0 - 3,0 мас.% оксида меди CuO.
Основные отличительные признаки предлагаемого изобретения заключаются в том, что при приготовлении катализатора в водный раствор хромовой кислоты дополнительно вводят по меньшей мере одно соединение щелочноземельного металла, выбранного из группы, включающей Mg, Ca, и по меньшей мере одно соединение редкоземельного металла, выбранного из группы, включающей Ce, La, Nd, Pr, и необязательно соединение меди, а в качестве соединения железа используют оксид железа. Катализатор дополнительно содержит по меньшей мере один оксид щелочноземельного металла общей формулы MeO, выбранного из группы Mg, Ca, и по меньшей мере один оксид редкоземельного металла общей формулы Ln2O3, выбранного из группы Ce, La, Nd, Pr, при следующем содержании компонентов, мас.%:
Cr2O3 - 7,0 - 12,0
MnO2 - 0,2 - 1,0
MeO - 0,1 - 0,8
Ln2O3 - 0,05 - 1,0
Оксид железа - Остальное
Дополнительными отличительными признаками является то, что при приготовлении катализатора в качестве соединений металлов, выбранных из группы Mg, Ca, Ce, La, Nd, Pr, Cu, используют по меньшей мере одно соединение из ряда: оксид, гидроксид, карбонат, хромат, бихромат, а также используют оксид железа, содержащий магнетит - Fe3O4, и/или хромит железа - Fe[CrFe]O4 в суммарном количестве 5 - 50% от массы оксида железа. При смешении в катализаторную массу дополнительно вводят раствор хромата карбамида - 2 CO(NH2)2 • H2CrO4 или карбамид в количестве 0,5 - 1,5% от массы оксида железа и/или углеродсодержащий материал в количестве 1,0 - 4,0 мас.% от массы оксида железа. В качестве углеродсодержащего компонента применяют активированный уголь марки БАУ и/или коллоидный графит. Катализатор дополнительно содержит 1,0 - 3,0 мас.% оксида меди CuO.
Предлагаемая совокупность признаков для способа получения катализатора паровой конверсии оксида углерода соответствует условию патентноспособности "Изобретательский уровень", исходя из следующего. Из уровня техники на дату подачи заявки на настоящее изобретение не было известно, что предлагаемая совокупность признаков приводит к решению вышеуказанной задачи, а именно, что введение в водный раствор хромовой кислоты, по меньшей мере, одного соединения щелочноземельного металла, выбранного из группы, включающей Mg, Ca, и по меньшей мере одно соединение редкоземельного металла, выбранного из группы, включающей Ce, La, Nd, Pr, Mn, и необязательно соединение меди, при смешении этого раствора с оксидом железа, обеспечивает повышение стабильности катализатора паровой конверсии оксида углерода при одновременном сохранении его высокой активности. Проведенные исследования показывают, что промотирование катализатора паровой конверсии оксида углерода ионами щелочноземельных металлов (Mg, Ca), переходных металлов (Mn, Cr, Cu), лантанидов (Ce, La, Nd, Pr) позволяет стабилизировать соотношение Fe2+/Fe3+ на оптимальном уровне.
Пример 1.
В водном растворе хромовой кислоты H2CrO4 растворяют карбонат марганца, оксид магния, карбонат неодима и карбамид.
Катализатор готовят смешением 350 г оксида железа с 85 см3 приготовленного водного раствора хромовой кислоты, содержащего, в пересчете на оксиды: 40 г CrO3, 1,0 г MnO2, 1,2 г MgO, 0,45 г Nd2O3 и 4 г карбамида. Катализаторную массу перемешивают в течение 1,5 ч, добавляют 6,0 г коллоидного графита и перемешивание продолжают еще 1 ч. Сформованные гранулы сушат при температуре до 100oC и прокаливают при температуре 450oC в течение 3 ч.
Получают катализатор, содержащий Cr2O3 - 7,8 мас.%, MnO2 - 0,26 мас.%, MgO - 0,3 маc.%, Nd2O3 - 0,12 мас.%, оксид железа остальное.
Активность катализатора, выраженную константой скорости реакции первого порядка по оксиду углерода (см3 CO/г•с), определяют по ТУ 113-03-317 в реакции паровой конверсии газа, содержащего 50 об.% CO и 50 об.% N2, при атмосферном давлении, объемной скорости 6000 ч-1, молярном отношении вода/газ 3,0, при температуре 350oC.
Для определения стабильности проводят обработку катализатора пароводородной смесью с молярным отношением H2O/H2 = 2,26, при атмосферном давлении, объемной скорости по водороду 8000 ч-1 при температуре 500oC в течение 4 ч, с последующим определением активности, как указано выше. Стабильность выражают безразмерной величиной как отношение активности после пароводородной термообработки к активности исходного катализатора.
Результаты определения активности и стабильности получаемых по примерам 1-8 катализаторов, а также содержание в них промотирующих компонентов и добавок к оксиду железа приведены в таблице.
Пример 2.
Катализатор готовят как в примере 1, но раствор хромовой кислоты содержит в пересчете на оксиды: 41 г CrO3, 1,0 г MnO2, 1,2 г CaO, 0,4 г MgO, 1,1 г Ln2O3 и 0,2 г CeO2. При приготовлении раствора используют карбонат марганца, хроматы кальция и магния, гидроксиды лантана и церия. К катализаторной массе после перемешивания 1,5 ч добавляют 6,0 г молотого активированного угля марки БАУ.
Получают катализатор, содержащий Cr2O3 - 8,1 мас.%, MnO2 - 0,26 мас.%, CaO - 0,3 мас.%, MgO - 0,1 мас.%, La2O3 - 0,29 мас.%, Ce2O3 - 0,05 мас.%, оксид железа - остальное.
Пример 3.
Катализатор готовят как в примере 1, но оксид железа содержит 18% хромита железа, раствор хромовой кислоты содержит в пересчете на оксиды: 41 г CrO3, 1,0 г MnO2, 1,2 г MgO, 1,0 г Pr2O3 и 3,7 г карбамида (1,1% от массы оксида железа). При приготовлении раствора используют карбонат марганца, гидроксиды магния и празеодима. К катализаторной массе после перемешивания в течение 1,5 ч добавляют 6,0 г коллоидного графита и 6,0 г молотого активированного угля марки БАУ.
Получают катализатор, содержащий Cr2O3 - 8,1 мас.%, MnO2 - 0,26 мас.%, MgO - 0,3 мас.%, Pr2O3 - 0,26 мас.%, оксид железа остальное.
Пример 4.
Катализатор готовят как в примере 1, но оксид железа содержит 10% магнетита, а раствор хромовой кислоты содержит в пересчете на оксиды: 45 г CrO3, 2 г MnO2, 0,5 г CaO, 0,5 г MgO, 2,0 г Ln2O3 и 10 г CuO. При приготовлении раствора используют карбонат марганца, оксиды кальция и магния, карбонат лантана и бихромат меди. К катализаторной массе после перемешивания в течение 1,5 ч добавляют 5 г карбамида.
Получают катализатор, содержащий Cr2O3 - 8,5 мас.%, MnO2 - 0,50 мас.%, CaO - 0,1 мас.%, MgO - 0,1 мас.%, La2O3 - 0,5 мас.%, CuO - 2,5 мас.%, оксид железа остальное.
Пример 5.
Катализатор готовят как в примере 1, но оксид железа содержит 15% магнетита и 5% хромита железа, а раствор хромовой кислоты содержит в пересчете на оксиды: 42 г CrO3, 1 г MnO2, 0,5 г CaO, 40,6 г La2O3 и 10 г CuO. При приготовлении раствора используют карбонат марганца, оксид кальция, карбонат лантана и карбонат меди. К катализаторной массе после перемешивания в течение 1,5 ч добавляют 1,8 г карбамида.
Получают катализатор содержащий: Cr2O3 - 8,5 мас.%, MnO2 - 0,26, CaO - 0,1 мас.%, La2O3 - 0,15 мас.%, CuO - 2,5 мас.%, оксид железа остальное.
Пример 6 (с предельным содержанием компонентов).
Катализатор готовят как в примере 1, но раствор хромовой кислоты содержит в пересчете на оксиды: 36 г CrO3, 0.85 г MnO2, 3 г CaO, 4 г CeO2 и 4 г CuO. При приготовлении раствора используют карбонат марганца, оксиды кальция и церия и карбонат меди.
Получают катализатор, содержащий Cr2O3 - 7,0 мас.%, MnO2 - 0,2, CaO - 0,8 мас.%, CeO2 - 1,0 мас.%, CuO - 1,0 мас.%, оксид железа - остальное.
Пример 7 (ближайший аналог).
Катализатор готовят как в примере 1, но раствор хромовой кислоты содержит в пересчете на оксиды: 38 г CrO3, 6,5 г MnO2
Получают катализатор, содержащий Cr2O3 - 7,5 мас.%, MnO2 - 1,7 мас.%.
Из сравнения примеров 1-5 с примером 6 (ближайшим аналогом) видно, что получаемый по примерам 1-5 катализатор обладает повышенной стабильностью, в сравнении с ближайшим аналогом, при сохранении его высокой активности.
Пример 8 (с запредельным содержанием компонентов).
Катализатор готовят как в примере 1, но раствор хромовой кислоты содержит в пересчете на оксиды: 36 г CrO3, 1,0 г MnO2, 3,5 г CaO, 4,5 г La2O3. При приготовлении раствора используют карбонат марганца, оксид кальция, карбонат лантана.
Получают катализатор, содержащий Cr2О3 - 7,4 мас.%, MnO2 - 0,27, CaO - 0,82 мас.%, La2O3 - 1,2 мас.%, оксид железа остальное.
Как видно из результатов испытаний, при выходе за пределы содержания оксидов щелочноземельных (MeO) и редкоземельных (Ln2O3) металлов резко снижается активность катализатора, хотя стабильность остается высокой.
Промышленная применимость
Предлагаемое изобретение может быть реализовано с помощью известных средств и использовано в химической и нефтехимической промышленности для производства катализаторов паровой конверсии оксида углерода.

Claims (6)

1. Способ приготовления катализатора паровой конверсии оксида углерода, включающий смешение соединения железа с водным раствором хромовой кислоты и солью марганца, последующее формование гранул, их сушку и прокаливание, отличающийся тем, что в водный раствор хромовой кислоты дополнительно вводят по меньшей мере одно соединение щелочноземельного металла, выбранного из группы, включающей Mg, Ca и по меньшей мере одно соединение редкоземельного металла, выбранного из группы, включающей Ce, La, Nd, Pr, и необязательно, соединение меди, в качестве соединения железа используют оксид железа.
2. Способ приготовления катализатора по п.1, отличающийся тем, что в качестве соединений металлов, выбранных из группы Mg, Ca, Ce, La, Nd, Pr, Cu, используют по меньшей мере одно соединение из ряда: оксид, гидроксид, карбонат, хромат, бихромат.
3. Способ приготовления катализатора по п.1, отличающийся тем, что используют оксид железа, содержащий дополнительно магнетит Fe3O4 и/или хромит железа Fe-[CrFe]O4 в количестве 5 - 50% от массы оксида железа.
4. Способ приготовления катализатора по п.1, отличающийся тем, что в катализаторную массу при смешении дополнительно вводят раствор хромата карбамида 2CO(NH2)2H2CrO4 или карбамид в количестве 0,5 - 1,5% от массы оксида железа и/или углеродсодержащий компонент в количестве 1,0 - 4,0 мас.% от массы оксида железа.
5. Способ приготовления катализатора по п.1, отличающийся тем, что в качестве углеродсодержащего компонента используют активированный уголь марки БАУ и/или коллоидный графит.
6. Катализатор паровой конверсии оксида углерода, содержащий оксиды хрома и марганца, отличающийся тем, что он дополнительно содержит по меньшей мере один оксид щелочноземельного металла общей формулы МеО, выбранного из группы Mg, Са, и по меньшей мере один оксид редкоземельного металла общей формулы Ln2O3, выбранного из группы Ce, La, Nd, Pr, при следующем содержании компонентов, мас.%:
Cr2O3 - 7,0 - 12,0
MnO2 - 0,2 - 1,0
MeO - 0,1 - 0,8
Ln2O3 - 0,05 - 1,0
Оксид железа - Остальное
7. Катализатор по п.6, отличающийся тем, что он дополнительно содержит 1,0 - 3,0 мас.% оксида меди CuO.
RU2000122324/04A 2000-08-24 2000-08-24 Способ приготовления катализатора паровой конверсии оксида углерода и катализатор паровой конверсии оксида углерода RU2170615C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000122324/04A RU2170615C1 (ru) 2000-08-24 2000-08-24 Способ приготовления катализатора паровой конверсии оксида углерода и катализатор паровой конверсии оксида углерода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000122324/04A RU2170615C1 (ru) 2000-08-24 2000-08-24 Способ приготовления катализатора паровой конверсии оксида углерода и катализатор паровой конверсии оксида углерода

Publications (1)

Publication Number Publication Date
RU2170615C1 true RU2170615C1 (ru) 2001-07-20

Family

ID=20239499

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000122324/04A RU2170615C1 (ru) 2000-08-24 2000-08-24 Способ приготовления катализатора паровой конверсии оксида углерода и катализатор паровой конверсии оксида углерода

Country Status (1)

Country Link
RU (1) RU2170615C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008030140A2 (fr) 2006-09-06 2008-03-13 Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk Catalyseur de conversion de monoxyde de carbone par la vapeur, procédé de sa fabrication et procédé de son utilisation
RU2677650C1 (ru) * 2017-12-27 2019-01-18 Акционерное общество "Ангарский завод катализаторов и органического синтеза" (АО "АЗКиОС") Железохромовый катализатор для паровой конверсии оксида углерода

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008030140A2 (fr) 2006-09-06 2008-03-13 Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk Catalyseur de conversion de monoxyde de carbone par la vapeur, procédé de sa fabrication et procédé de son utilisation
LT5649B (lt) 2006-09-06 2010-04-26 Institut Kataliza Imeni G. K. Boreskova Sibirskogo Otdelenia Rossiiskoi Akademii Nauk Katalizatorius. skirtas anglies monoksido garų konversijai, jo gavimo ir panaudojimo būdai
RU2677650C1 (ru) * 2017-12-27 2019-01-18 Акционерное общество "Ангарский завод катализаторов и органического синтеза" (АО "АЗКиОС") Железохромовый катализатор для паровой конверсии оксида углерода

Similar Documents

Publication Publication Date Title
US4122110A (en) Process for manufacturing alcohols, particularly linear saturated primary alcohols, from synthesis gas
US5580536A (en) Composite oxide having oxygen absorbing and desorbing capability and method for preparing same
JP4259612B2 (ja) 脱水素触媒及び方法
KR100361059B1 (ko) 큰입자 탈수소화 촉매 및 방법
JPS6347693B2 (ru)
US8361925B2 (en) Exhaust gas-purifying catalyst
JPH10156185A (ja) アクリロニトリルへのプロピレンのアンモ酸化のための触媒
KR20120009687A (ko) 혼성 망간 페라이트가 코팅된 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
US4533650A (en) Process for manufacturing a catalyst containing iron, chromium and potassium oxides and at least one rare earth metal oxide, for use in dehydrogenation reactions
JPS6233540A (ja) 二価金属−アルミネ−ト触媒
JP2008520431A (ja) 低チタン濃度を有する高活性および高安定性の酸化鉄系脱水素化触媒およびこの製造ならびに使用
CA2298227A1 (en) Catalyst for the dehydrogenation of ethylbenzene to styrene
JPS6332769B2 (ru)
JP2003507292A5 (ru)
RU2170615C1 (ru) Способ приготовления катализатора паровой конверсии оксида углерода и катализатор паровой конверсии оксида углерода
WO2010031247A1 (zh) 一种铁基氨合成催化剂及其制备方法
TWI283238B (en) Catalysts for the oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
JPS647974B2 (ru)
CN113164927B (zh) 制备铁酸锌类催化剂的方法和由其制备的铁酸锌类催化剂
RU2677694C1 (ru) Способ приготовления катализатора среднетемпературной конверсии оксида углерода водяным паром
JPH01201030A (ja) スピネル構造の酸化物をベースとした組成物と、その触媒としての応用と、その製造方法
SU988327A1 (ru) Катализатор дл синтеза аммиака
JPH0616851B2 (ja) 酸素欠陥型ペロブスカイト触媒
JP2004122063A (ja) Coシフト反応用触媒
JPS6377546A (ja) 一酸化炭素転化用触媒及びその製造方法

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20041112

PC4A Invention patent assignment

Effective date: 20061012

PC4A Invention patent assignment

Effective date: 20090401

MM4A The patent is invalid due to non-payment of fees

Effective date: 20140825