WO2008026386A1 - Système de refroidissement d'accumulateur pour véhicule - Google Patents

Système de refroidissement d'accumulateur pour véhicule Download PDF

Info

Publication number
WO2008026386A1
WO2008026386A1 PCT/JP2007/063779 JP2007063779W WO2008026386A1 WO 2008026386 A1 WO2008026386 A1 WO 2008026386A1 JP 2007063779 W JP2007063779 W JP 2007063779W WO 2008026386 A1 WO2008026386 A1 WO 2008026386A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
vehicle
air
cooling
vehicle interior
Prior art date
Application number
PCT/JP2007/063779
Other languages
English (en)
French (fr)
Inventor
Toshiharu Watanabe
Kazunori Namai
Toshiyuki Motohashi
Yoshikazu Takamatsu
Original Assignee
Calsonic Kansei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corporation filed Critical Calsonic Kansei Corporation
Publication of WO2008026386A1 publication Critical patent/WO2008026386A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/003Component temperature regulation using an air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention belongs to a technical field of a vehicle battery cooling system for cooling a traveling battery installed in a vehicle such as a hybrid vehicle or an electric vehicle.
  • This conventional cooling device cools a running battery by sucking air in a vehicle compartment that is air-conditioned by an air conditioner by a cooling fan.
  • a circulation mode for returning the cooling air to the vehicle interior an exhaust mode for discharging the cooling air to the outside of the vehicle, and returning a part of the cooling air to the vehicle interior and the rest to the outside of the vehicle.
  • the circulation / exhaust mode to be discharged can be selected, and the air volume of the cooling fan and the switching position of the switching damper are controlled based on the air conditioner operating condition, the air conditioner condition in the passenger compartment, the battery temperature, etc.
  • the battery for driving is cooled while suppressing a decrease in pressure and an increase in air conditioning load (for example, see Patent Document 1).
  • Patent Document 1 Japanese Patent No. 3240973 (page 1-13, all figures)
  • the present invention has been made paying attention to the above-mentioned problems, and the object of the present invention is vehicle battery cooling that can improve the cooling efficiency of a traveling battery while suppressing noise. To provide a system.
  • a vehicle battery cooling system of the present invention is provided separately from a battery installed in a vehicle and used for traveling of the vehicle, and a vehicle interior air conditioner.
  • a blower that generates air flow
  • a heat exchanger that is provided separately from the vehicle interior air conditioner and that cools the blown air by exchanging heat with the blower sent to the battery by the blower.
  • the battery is positively cooled with wind that is cooled by using a blower and a heat exchanger that are provided separately from those for air conditioning in the vehicle. Therefore, it is possible to cool the battery with good cooling efficiency, and at that time, it is not necessary to rotate the fan at a high speed, so that noise generated from the rotation of the fan can be suppressed.
  • FIG. 1 is an explanatory diagram of a battery cooling structure in a vehicle battery cooling system according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a battery installation position in the vehicle battery cooling system of the first embodiment.
  • FIG. 3 is an explanatory diagram of an air conditioner system that cooperates with the vehicle battery cooling system of the first embodiment.
  • FIG. 4 is an explanatory diagram of a battery cooling structure in the vehicle battery cooling system of the second embodiment.
  • FIG. 5 is an explanatory diagram of a battery cooling structure in a vehicle battery cooling system according to a third embodiment of the present invention.
  • FIG. 6 is a flowchart showing a flow of control processing of the switching door 62 executed in the vehicle battery cooling system of the third embodiment.
  • FIG. 7 is a flowchart showing a flow of control processing of the switching door 62 executed in the vehicle battery cooling system of Embodiment 4 of the present invention.
  • FIG. 8 is an explanatory diagram of a battery cooling structure in the vehicle battery cooling system according to the fifth embodiment of the present invention.
  • FIG. 9 is a flowchart showing a main part of a control process flow of the switching door 52 and the switching door 62 executed in the vehicle battery cooling system of the fifth embodiment.
  • FIG. 10 is a flowchart showing the remaining part of the control process flow of the switching door 52 and the switching door 62 executed in the vehicle battery cooling system of the fifth embodiment.
  • FIG. 11 An explanatory diagram of a battery cooling structure in the vehicle battery cooling system according to the sixth embodiment of the present invention.
  • FIG. 12 An explanatory diagram of a battery cooling structure in the vehicle battery cooling system of the seventh embodiment.
  • FIG. 13 is an explanatory diagram of a battery cooling structure in the vehicle battery cooling system according to the eighth embodiment of the present invention.
  • FIG. 1 is an explanatory diagram of a battery cooling structure in the vehicle battery cooling system of the first embodiment.
  • FIG. 2 is an explanatory diagram of the installation position of the battery in the vehicle in the vehicle battery cooling system of the first embodiment.
  • the vehicle battery cooling system has a battery case 1, a traveling battery 2, an evaporator 3, a blower fan 4, an intake duct 5, and an exhaust duct 6 as main components.
  • the battery case 1 serves as a structural member for fixing the battery 2 above the vehicle panel 7 below the vehicle trunk and under the floor, and protects the battery 2 from the surroundings. Functions as a member.
  • the battery case 1 does not have to cover the entire surface of the battery 2, but supports the battery 2 directly or indirectly.
  • the battery 2 is a lithium ion battery that performs charging and discharging by exchanging lithium ions between the electrodes.
  • Lithium-ion batteries have the advantageous feature that the so-called memory effect does not occur.
  • the battery 2 used for running the vehicle is an assembled battery in which a plurality of lithium ion batteries are combined in series.
  • JP-A-2005-116427 is cited as a detailed example of an assembled battery for this traveling.
  • the structure of the assembled battery is not limited to this detailed example, and a combination of a plurality of minimum unit batteries combined with a plate-like lithium ion battery is used. The total number reaches more than several tens.
  • the evaporator 3 is provided in the middle of an intake duct 5 that sends air from the passenger compartment to the battery case 1, and exchanges heat between the refrigerant supplied and recovered by the air conditioner system and the ambient air. Is what you do.
  • the blower fan 4 is provided in the middle of the intake duct 5 for sending air from the passenger compartment to the battery case 1 and upstream of the evaporator 3, blows air to the evaporator 3, and cools the air exchanged by the evaporator 3 to the battery 2. It is intended to send.
  • the evaporator 3 and the blower fan 4 are provided in the intake duct 5 for cooling the battery, in addition to the air conditioning in the vehicle interior.
  • the air volume control of the blower fan 4 may be controlled by a controller that charges and discharges the battery, or may be controlled by a controller of the air conditioner system.
  • the intake duct 5 has a front end connected to the rear part of the vehicle interior to form an air flow path so as to suck in air in the vehicle interior, and a rear end connected to the vehicle front side of the battery case 1 for suction.
  • the vehicle interior air is sent to the battery case 1.
  • a portion for collecting intake air may be provided around or near the evaporator 3 and the blower fan 4.
  • the exhaust duct 6 has a front end connected to the vehicle rear side opposite to the vehicle front side of the battery case 1 to which the intake duct 5 is connected, and a rear end side arranged at the lower part of the vehicle to the outside of the vehicle compartment. Open. This forms an air discharge path from the inside of the battery case 1 to the outside.
  • the air conditioning system of FIG. 3 cooperates with the vehicle battery cooling system to increase the cooling capacity of the battery.
  • the high-pressure refrigerant compressed by the electric compressor 102 is sent to the capacitor 101 to cool and dissipate the heat, and the refrigerant is liquefied.
  • the liquefied refrigerant is removed and sent to the solenoid valve 8 to control the refrigerant flow to the air conditioning evaporator 106 and the battery cooling evaporator 3 and to the refrigeration line 203 to control the flow rate of the refrigerant.
  • the refrigerant is expanded to a low pressure by a valve (not shown), the refrigerant is evaporated by the air conditioning evaporator 106, the air sent by the fan 104 into the passenger compartment is cooled, and the evaporated low pressure refrigerant is recovered by the refrigerant lines 202 and 204. It is circulated by being sent to the electric compressor 102.
  • the electric compressor 102 and the electromagnetic valve 8 are controlled by a controller 105 in the air conditioner system. Sensors and the like for inputting various information to the controller 105 are well known, and their description is omitted here.
  • the controller 105 of this air conditioner system communicates with a controller of the battery 2 (not shown) through in-vehicle communication, etc., communicates necessary information and commands, and controls the refrigerant flow rate by the solenoid valve 8.
  • a valve for expanding the refrigerant to a low pressure is provided in the refrigerant line 203 but is not shown. This valve may be provided integrally with the solenoid valve 8.
  • the vehicle battery cooling system according to the first embodiment is used for a hybrid vehicle or an electric vehicle.
  • the battery 2 used for traveling the vehicle generates heat due to charging / discharging during traveling, and reaches a high temperature by repeating this charging / discharging.
  • the vehicle battery cooling system of Example 1 solves such a problem and keeps the battery at a temperature at which good performance can be exhibited by aggressive cooling, and further suppresses noise. Cool the battery with good cooling efficiency.
  • the air inside the vehicle is sucked by the blower fan 4, the sucked air is cooled by the evaporator 3, and the cooling air is sent to the battery 2 for cooling. Then, the battery 2 is cooled, and the heated air is exhausted outside the vehicle compartment and outside the battery case 1 by the exhaust duct 6.
  • the cooling air volume is Ga
  • the suction air temperature of battery case 1 is Tl
  • the exhaust air temperature from 1 is ⁇ 2, and the battery temperature is Tb.
  • the cooling performance is proportional to the product of Ga and (T2 ⁇ T1).
  • the evaporator 3 is disposed in the vicinity of the battery case 1 and cools the air in an intake duct 5 provided exclusively for battery cooling, so that the cooling efficiency is very high.
  • the evaporator 3 and the blower fan 4 are downsized.
  • cooling air is sent from the front side of the battery case 1 to the inside by the intake duct 5 and exhausted from the rear side of the battery case 1 to the outside by the exhaust duct 6, so that the cooling air is uniform and has a high cooling effect.
  • the battery 2 can be cooled by this flow.
  • the battery 2 that has generated heat due to charging and discharging during traveling is efficiently cooled by the evaporator 3 that exchanges heat with the cooling medium from the air conditioner system and the cooling air sent from the blower fan 4.
  • This aggressive cooling can keep the battery 2 at a moderate temperature, The performance can be exhibited well.
  • the temperature of the battery 2 is accurately controlled, and as a result, the life of the battery 2, that is, the reduction in capacity reduction can be improved.
  • the active cooling is performed by the evaporator 3, it is possible to reduce the size of the blower fan 4.
  • the rotational speed of the blower fan 4 can be reduced, or the maximum rotational speed of the blower fan 4 can be reduced, or the operation time can be reduced by the maximum rotational speed. Control and suppress noise.
  • the amount of cooling air can be reduced as described above. Therefore, the blower fan 4 can be downsized as described above, and the intake duct 5 and the exhaust gas can be reduced accordingly.
  • the duct cross-sectional area of duct 6 can be reduced. As a result, the overall space is reduced, and the vehicle mountability is improved.
  • the air conditioner system that supplies and recovers the refrigerant to the vehicle battery cooling system of the first embodiment is configured by the electric compressor 102 in the hybrid vehicle and does not become an engine driving load. This can reduce the impact on vehicle fuel efficiency.
  • a battery 2 installed in a vehicle and used for traveling is provided separately from a vehicle interior air conditioner, and is provided separately from a blower fan 4 that generates air to the battery 2 and a vehicle interior air conditioner.
  • Heat exchanger evaporator 3 that cools the blown air by exchanging heat between the refrigerant flowing through the unit and the blown air that is sent to the battery 2.
  • the vehicle battery cooling system according to the second embodiment is an example in which switching is possible so that cooling air from an evaporator and a blower fan provided for battery cooling is sent to the vehicle interior.
  • the configuration of the vehicle battery cooling system according to the second embodiment will be described.
  • FIG. 4 is an explanatory diagram of a battery cooling structure in the vehicle battery cooling system of the second embodiment.
  • the vehicle interior air supply portion 51 of the intake duct 5 connected to the vehicle interior from the middle of the intake duct 5 from the evaporator 3 to the battery case 1 is provided.
  • a switching door 52 is provided at a branching portion of the intake duct 5 to the vehicle interior air supply portion 51, and the force to flow the air from the upstream where the evaporator 3 and the like are installed to the vehicle interior air supply portion 51, the battery case It is possible to switch whether to flow to the 1 side.
  • the cooling air from the evaporator 3 and the blower fan 4 provided for battery cooling can be sent to the vehicle interior by switching the switching door 52.
  • Example 2 when the vehicle battery cooling system of Example 2 is used in a hybrid vehicle, the battery 2 is charged and discharged when the vehicle accelerates or decelerates, and the battery 2 generates heat. However, the battery 2 does not generate heat when traveling at a constant speed or in a traffic jam.
  • the cooling from the evaporator 3 and the blower fan 4 provided for battery cooling.
  • the draft is sent to the passenger compartment and used as a rear cooler on the rear seat side. Used as a rear spot cooler where the effect of the air conditioner is delayed. It is used to improve the temperature of the top board that cools the room while it is warmed. As a result, the air conditioning efficiency in the passenger compartment is further improved, and a more comfortable passenger compartment space can be provided.
  • the switching of the switching door 52 may be carried out in a ratio distribution such as 80% for the battery 2 and 20% for the vehicle interior. In this way, the contribution to the efficiency of air conditioning in the passenger compartment and the cooling of the battery are changed according to the situation to ensure compatibility.
  • the vehicle battery cooling system of the second embodiment has the following effects in addition to the effects (1) and (2).
  • Switching door 52 that distributes the cooling air from the blower fan 4 and the evaporator 3 to the battery 2 in a proportionate manner to the portion of the intake duct 5 and the air supply portion 51 of the vehicle interior toward the vehicle interior. Therefore, it is possible to contribute to improving the efficiency of air conditioning in the vehicle interior, and to ensure both the contribution to increasing the efficiency of air conditioning in the vehicle interior and battery cooling.
  • the vehicle battery cooling system according to the third embodiment is an example in which switching is possible so that cooling air after battery cooling by an evaporator and a blower fan provided for battery cooling is sent to the vehicle interior.
  • FIG. 5 is an explanatory diagram of a battery cooling structure in the vehicle battery cooling system of the third embodiment.
  • a vehicle interior air supply portion 61 that is branched from the middle of the exhaust duct 6 from the battery case 1 to the outside of the vehicle interior and connected to introduce air into the vehicle interior is provided.
  • a switching door 62 is provided at the branch of the exhaust duct 6 to the vehicle interior air supply portion 61 so that the battery It is possible to control whether the air that has cooled the battery 2 in the recase 1 is exhausted to the outside of the passenger compartment or flows into the passenger compartment.
  • FIG. 6 is a flowchart showing a flow of control processing of the switching door 62 executed in the vehicle battery cooling system of the third embodiment. Each step will be described below.
  • step S11 the battery temperature is measured.
  • step S12 it is determined whether or not the battery temperature is equal to or lower than a predetermined temperature. If it is equal to or lower than the predetermined temperature, the process proceeds to step S18, and if it exceeds the predetermined temperature, the process proceeds to step S13.
  • step S13 it is determined whether or not the temperature power at the outlet of the battery case 1 of the cooling air is lower than the vehicle interior temperature. If it is lower than the vehicle interior temperature, the process proceeds to step S14, and if the vehicle interior temperature is exceeded. Proceed to step S19.
  • step S14 it is determined whether or not the vehicle interior air conditioning system is in operation. If it is in operation, the process proceeds to step S15, and if it is not in operation, the process proceeds to step S20.
  • step S15 it is determined whether or not the air conditioning system for the passenger compartment is in cooling operation. If it is in cooling operation, the process proceeds to step S16, and if it is not in cooling operation!
  • step S16 the switching door 62 is controlled to introduce the air after battery cooling into the vehicle interior.
  • step S17 the vehicle battery cooling system introduces the air after battery cooling into the vehicle interior and feeds back to the vehicle interior air-conditioning system to promote more efficient operation. To finish the process.
  • step S18 the fact that there is no need for battery cooling is fed back to the vehicle interior air conditioner system to encourage more efficient driving, and the process ends.
  • step S19 the switching door 62 is controlled to exhaust the air after battery cooling to the outside of the passenger compartment, and the process is terminated.
  • step S20 the switching door 62 is controlled so as to exhaust the air after battery cooling to the outside of the passenger compartment. The process ends.
  • step S21 the switching door 62 is controlled to exhaust the air after battery cooling to the outside of the passenger compartment, and the process is terminated.
  • the battery is cooled in the battery case 1 by the cooling air from the evaporator 3 and the blower fan 4, and then the air to be exhausted is switched by the switching door 62, so that Exhaust or introduce into the passenger compartment.
  • steps S 17 and S 18 feeds back the state of the switching door 62 and the battery cooling state to the vehicle interior air conditioning system, thereby achieving more efficient air conditioning.
  • V will lead to improved fuel efficiency of the vehicle.
  • the vehicle battery cooling system of the third embodiment has the following effects in addition to the effects (1) and (2).
  • the cooling air after the battery 2 is cooled by the blower fan 4 and the evaporator 3 can be proportionally distributed between the vehicle interior air supply part 61 that goes into the passenger compartment and the outside duct, the exhaust duct 6 part. Since the switching door 62 that distributes air is provided, it is possible to contribute to the efficiency of air conditioning in the vehicle interior, which in turn can improve the fuel efficiency of the vehicle.
  • the vehicle battery cooling system according to the fourth embodiment is an example in which the cooling air that cools the battery 2 is also used for heating in the structure according to the third embodiment.
  • Example 3 Since the configuration is the same as that of Example 3, the description thereof is omitted. Hereinafter, the operation of the vehicle battery cooling system of the fourth embodiment will be described.
  • FIG. 7 is a flowchart showing a flow of control processing of the switching door 62 executed in the vehicle battery cooling system of the fourth embodiment. Each step will be described below. Note that the same processes as in FIG. 6 are denoted by the same reference numerals (step S11 to step S22), and the description thereof is omitted.
  • step S22 it is determined whether or not the vehicle interior air conditioner system is in operation. If it is in operation, the process proceeds to step S23, and if it is not in operation, the process proceeds to step S26.
  • step S23 it is determined whether or not the heating operation is performed. If the heating operation is performed, the process proceeds to step S24. If the heating operation is not performed, the process proceeds to step S27.
  • step S24 the switching door 62 is controlled so as to introduce the air after battery cooling into the vehicle interior.
  • step S25 the vehicle battery cooling system introduces the air after battery cooling into the vehicle interior! /, And feeds back to the vehicle interior air conditioner system to promote more efficient operation. The process is terminated.
  • step S26 the switching door 62 is controlled to exhaust the air after battery cooling to the outside of the passenger compartment, and the process is terminated.
  • step S27 the switching door 62 is controlled to exhaust the air after battery cooling to the outside of the passenger compartment, and the process ends.
  • the cooling air after cooling the battery has a temperature that can contribute to the cooling of the vehicle interior. Cooling air after battery cooling is introduced into the room.
  • the vehicle battery cooling system when the vehicle interior air conditioner system is heating the vehicle interior, if the temperature of the cooling air after battery cooling is higher than the temperature in the vehicle interior, the battery The cooling air after cooling is introduced into the passenger compartment and contributes to the heating of the passenger compartment.
  • spot effects include warming the rear seat and further If the feet are warmed at the same time, it will contribute not only to efficient heating of the passenger compartment temperature but also to the sensory temperature.
  • the vehicle battery cooling system of the fourth embodiment has the following effects in addition to the effects (1) and (2).
  • the vehicle battery cooling system of Example 5 is switchable so that the cooling air before the battery cooling by the evaporator and the blower fan provided for battery cooling is sent to the vehicle interior, and the cooling air after the battery cooling is supplied. This is an example of switching freely so that it can be sent to the passenger compartment. The configuration will be described.
  • FIG. 8 is an explanatory diagram of a battery cooling structure in the vehicle battery cooling system of the fifth embodiment.
  • a vehicle interior air supply portion 51 that branches from the middle of the intake duct 5 from the evaporator 3 to the battery case 1 and connects to the vehicle interior is provided. Also, a switching door 52 is provided at the branch to the vehicle interior air supply part 51, and the power to flow the air from the upstream where the evaporator 3 etc. are installed to the vehicle interior air supply part 51 should be switched to the battery case 1 side. To be able to.
  • a vehicle interior air supply portion 61 is provided which branches from the middle of the exhaust duct 6 from the battery case 1 to the outside of the vehicle interior and connects to introduce air into the vehicle interior. Also, a switching door 62 is provided at the branch to the air supply part 61 in the passenger compartment so that the air that has cooled the battery 2 in the battery case 1 is switched between exhausting outside the passenger compartment or flowing into the passenger compartment. To. Other configurations are the same as those in the first embodiment, and thus the description thereof is omitted. [0071] The operation of the vehicle battery cooling system of the fifth embodiment will be described.
  • FIG. 9 and FIG. 10 are flowcharts showing a flow of control processing of the switching door 52 and the switching door 62 executed in the vehicle battery cooling system of the fifth embodiment, and each step will be described below. Note that FIG. 9 and FIG. 10 are originally integrated and are separated into different drawings for convenience. When the process proceeds to step 10 in FIG. 9, the step 10 in FIG. The power also continues to step S49.
  • step S31 the battery temperature is measured.
  • step S32 it is determined whether or not the battery temperature is equal to or lower than a predetermined temperature. If it is equal to or lower than the predetermined temperature, the process proceeds to step S49, and if it exceeds the predetermined temperature, the process proceeds to step S33.
  • step S33 it is determined whether or not the temperature of the cooling wind at the outlet of battery case 1 is below the vehicle interior temperature. If the vehicle interior temperature is below the vehicle interior temperature, the process proceeds to step S34. Go to step S43.
  • step S34 it is determined whether or not the vehicle interior air conditioner system is in operation. If it is in operation, the process proceeds to step S35, and if it is not in operation! /, The process proceeds to step S39.
  • step S35 it is determined whether the air conditioning system for the passenger compartment is in cooling operation. If it is in cooling operation, the process proceeds to step S36, and if it is not in cooling operation! /, The process proceeds to step S40.
  • Step S36 it is determined whether or not the air volume in the vehicle interior air conditioner system is greater than or equal to a predetermined air volume. If it is greater than or equal to the predetermined air volume, the process proceeds to Step S37, and if not, the process proceeds to Step S41.
  • step S37 cooling air is sent from the switching door 52 to the vehicle interior (the first RR outlet is opened), and cooling air is discharged from the switching door 62 to the outside of the vehicle interior (second operation). RR blowout mouth closed).
  • step S38 the vehicle battery cooling system introduces air before battery cooling into the vehicle interior! /, And feeds back to the vehicle interior air conditioner system to encourage more efficient operation. The process is terminated.
  • step S39 the switching door 62 is controlled so as to exhaust the air after battery cooling to the outside of the passenger compartment. The process ends.
  • step S40 the switching door 62 is controlled to exhaust the air after battery cooling to the outside of the passenger compartment, and the process ends.
  • step S41 the switching door 52 is made to send cooling air into the battery case 1 (the first RR outlet is closed), and the switching door 62 is made to send cooling air to the vehicle interior (second RR outlet is open).
  • step S42 the vehicle battery cooling system introduces the air after battery cooling into the vehicle interior and feeds back to the vehicle interior air conditioner system to promote more efficient operation. The process is terminated.
  • step S43 it is determined whether or not the vehicle interior air conditioner system is in operation. If it is in operation, the process proceeds to step S44, and if it is not in operation, the process proceeds to step S47.
  • step S44 it is determined whether or not the vehicle interior air conditioning system is in heating operation. If it is in heating operation, the process proceeds to step S45, and if it is not in heating operation! /, The process proceeds to step S48.
  • step S45 the switching door 62 is controlled so as to introduce the air after battery cooling into the vehicle interior.
  • step S46 the vehicle battery cooling system introduces the air after battery cooling into the vehicle interior and feeds back to the vehicle interior air conditioner system to promote more efficient operation. The process is terminated.
  • step S47 the switching door 62 is controlled to exhaust the air after battery cooling to the outside of the passenger compartment, and the process ends.
  • step S48 the switching door 62 is controlled to exhaust the air after battery cooling to the outside of the passenger compartment, and the process ends.
  • step S49 it is determined whether or not the vehicle interior air conditioner system is in operation. If it is in operation, the process proceeds to step S50, and if it is not in operation, the process proceeds to step S53.
  • step S50 it is determined whether or not the air conditioning system for the passenger compartment is in the cooling operation. If the cooling operation is in progress, the process proceeds to step S51, and if not, the process proceeds to step S54. [0092] In step S51, the switching door 52 is sent to the vehicle interior (the first RR outlet is opened), and the switching door 62 is exhausted to the outside of the vehicle compartment (second operation). RR blowout mouth closed).
  • step S52 the vehicle battery cooling system feeds air before the battery is cooled into the vehicle interior! /, And feeds back to the vehicle interior air conditioner system to promote more efficient operation. The process is terminated.
  • step S53 the control not to contribute to the vehicle interior air conditioning is fed back to the vehicle interior air conditioner system to encourage more efficient driving, and the process ends.
  • step S54 the control not to contribute to the vehicle interior air conditioning is fed back to the vehicle interior air conditioner system to encourage more efficient driving, and the process ends.
  • Example 5 when the cooling air after notch cooling is higher than the air in the passenger compartment, the cooling air after cooling the battery is introduced into the passenger compartment so as to contribute to the efficiency of heating in the passenger compartment (step S44-S46).
  • the cooling air for cooling battery 2 by evaporator 3 and blower fan 4 is switched before battery cooling. Then, it is sent to the passenger compartment to contribute to the efficiency of cooling the passenger compartment (steps S50 to S52).
  • the air conditioner system in the passenger compartment is in a cooling state and the air conditioning air volume is greater than the predetermined air volume, that is, if very strong cooling is required, the cooling air before cooling the battery 2 is put into the passenger compartment. Let it be introduced.
  • the vehicle interior air conditioner system can perform more efficient operation.
  • step S37 100% switching may be performed as shown in step S37, and the air distribution ratio may be, for example, 80% introduced into the passenger compartment and 20% to battery 2. May . Further, stepwise switching may be performed.
  • the vehicle battery cooling system according to the fifth embodiment has the following effects in addition to the effects (1) and (2).
  • “Switching door 5 2 that distributes the cooling air from the blower fan 4 and the evaporator 3 in proportion to the intake duct 5 portion directed toward the battery 2 and the vehicle interior air supply portion 51 directed toward the vehicle interior.
  • the cooling air after cooling the battery 2 by the blower fan 4 and the evaporator 3 is distributed in proportion to the air supply portion 61 in the vehicle interior that goes into the vehicle interior and the exhaust duct 6 that goes out of the vehicle compartment.
  • the vehicle battery cooling system of Example 6 forms a closed system using liquid refrigerant as a refrigerant for cooling the battery, and cools the liquid refrigerant for battery cooling by the refrigerant of the air conditioning system in the vehicle interior.
  • a first heat exchanger and a second heat exchanger for generating cooling air for cooling a battery are provided.
  • FIG. 11 is an explanatory diagram of a battery cooling structure in the vehicle battery cooling system of the sixth embodiment.
  • refrigerant lines 203 and 204 from the vehicle interior air conditioner system are connected to the heat exchanger 31, and liquid such as LLC for cooling the battery is cooled by the refrigerant in the vehicle interior air conditioner system. Cool the refrigerant.
  • This liquid refrigerant circulates in the liquid refrigerant line 9 by the electric pump 81, and cools the air blown to the battery 2 by the evaporator 32 provided downstream of the blower fan 4 in the intake duct 5. Structure.
  • the cooling air generated by the power refrigerant whose temperature gradually rises due to repeated charging and discharging, causes a relatively rapid temperature change, and therefore, control for mitigating this is necessary.
  • the temperature change of the cooling wind is changed by using heat-exchanged liquid refrigerant, such as LLC, which has a low sensitivity to temperature, instead of a refrigerant that is normally in a gaseous state and undergoes a rapid temperature change. It is a gentle one that is suitable for temperature changes in (2), and proper cooling is performed even with simple control.
  • the vehicle battery cooling system of the sixth embodiment has the following effects in addition to the effect of (1).
  • the refrigerant of the evaporator 32 that cools the battery 2 is a liquid refrigerant that is circulated for cooling the battery, and the heat exchanger 31 that cools the liquid refrigerant with the refrigerant for air conditioning in the vehicle interior is provided.
  • accurate battery cooling can be performed.
  • the vehicle battery cooling system of the seventh embodiment is an example in which the battery is cooled by cooling air generated by liquid refrigerant, and switching is performed so that the cooling air before cooling the battery is introduced into the vehicle interior. explain.
  • FIG. 12 is an explanatory diagram of a battery cooling structure in the vehicle battery cooling system of the seventh embodiment.
  • the liquid refrigerant circulating in the liquid refrigerant line 9 is cooled by the heat exchanger 31 with the refrigerant of the vehicle interior air conditioner system, and the evaporator 32 generates the battery cooling air. Structure.
  • a vehicle interior air supply portion 51 of the intake duct 5 connected to the vehicle interior is provided in the middle of the intake duct 5 from the evaporator 32 to the battery case 1.
  • a switching door 52 is provided at a branching portion of the intake duct 5 to the vehicle interior air supply portion 51 so that air from the upstream where the evaporator 32 or the like is installed flows to the vehicle interior air supply portion 51, or a notch case 1 Switch between flowing to the side.
  • the liquid refrigerant for battery cooling is cooled by the refrigerant of the air conditioner system for the passenger compartment, and the rapid temperature change is suppressed. If there is little need for battery cooling! /, The cooling air before the battery cooling is sent to the vehicle interior by the switching door 52 to improve the cooling performance of the air conditioning in the vehicle interior.
  • the vehicle battery cooling system of the seventh embodiment has the following effects in addition to the effects (1) and (3).
  • the vehicle battery cooling system of the eighth embodiment is an example in which the battery is cooled by cooling air generated by liquid refrigerant, and switching is performed so that the cooling air after cooling the battery is introduced into the vehicle interior. explain.
  • FIG. 13 is an explanatory diagram of a battery cooling structure in the vehicle battery cooling system of the eighth embodiment.
  • the liquid refrigerant circulating in the liquid refrigerant line 9 is cooled by the heat exchanger 31 with the refrigerant of the air conditioner system for the vehicle interior, and the evaporator 32 generates battery cooling air. Structure.
  • a vehicle interior air supply portion 61 of the exhaust duct 6 connected to introduce air into the vehicle interior from the middle of the exhaust duct 6 from the battery case 1 to the outside of the vehicle interior is provided.
  • a switching door 62 is provided at a branching portion of the exhaust duct 6 to the air supply part 61 in the vehicle interior, and the air that has cooled the battery 2 in the battery case 1 is exhausted outside the vehicle interior or in the vehicle interior. To switch between.
  • the liquid refrigerant for cooling the battery is cooled by the refrigerant of the air conditioner system for the passenger compartment, and the rapid temperature change is suppressed, and appropriate battery cooling is performed with easy control. I do.
  • the vehicle battery cooling system according to the eighth embodiment has an effect of contributing to the efficiency of cooling in the vehicle interior air conditioning by the control process shown in FIG.
  • control process shown in FIG. 7 has the effect of contributing to the efficiency of cooling and heating in the air conditioning of the passenger compartment.
  • the effect of the vehicle battery cooling system of the eighth embodiment will be described.
  • the vehicle battery cooling system of Embodiment 8 has the following effects in addition to the effects (1) and (3).
  • the refrigerant of the evaporator 32 that cools the battery 2 is a liquid refrigerant that is circulated for battery cooling, and includes a heat exchanger 31 that cools the liquid refrigerant with a refrigerant for air conditioning in the vehicle interior.
  • the cooling door after cooling the battery 2 by the blower fan 4 and the evaporator 32 is switched to the interior air supply part 61 that goes into the passenger compartment and the exhaust duct 6 that goes outside the passenger compartment in a proportionate manner.
  • the vehicle battery cooling system of the ninth embodiment is an example in which the battery is cooled by cooling air generated by liquid refrigerant, and switching is performed so that cooling air before and after battery cooling is introduced into the vehicle interior. It is.
  • FIG. 14 is an explanatory diagram of a battery cooling structure in the vehicle battery cooling system of the ninth embodiment.
  • the vehicle battery cooling system of the ninth embodiment has a structure in which the liquid refrigerant circulating in the liquid refrigerant line 9 is cooled by the heat exchanger 31 with the refrigerant of the air conditioner system for the passenger compartment, and the evaporator 32 generates the battery cooling air. .
  • the vehicle interior air supply portion 51 of the intake duct 5 connected to the vehicle interior is provided in the middle of the air intake duct 5 from the evaporator 32 to the battery case 1, and the vehicle interior A switching door 52 is provided at the branching portion to the air portion 51 so that the air from the upstream side where the evaporator 32 or the like is installed flows between the air supply portion 51 in the vehicle compartment or the battery case 1 side.
  • the air supply of the exhaust duct 6 connected to introduce air into the vehicle interior from the middle of the exhaust duct 6 from the battery case 1 to the outside of the vehicle interior. Do you provide the part 61 and the switching door 62 at the branch to the air supply part 61 in the vehicle interior to discharge the air that has cooled the battery 2 in the battery case 1 or to flow into the vehicle interior? To switch.
  • the liquid refrigerant for battery cooling is cooled by the refrigerant of the air conditioner system for the passenger compartment, and the rapid temperature change is suppressed, and appropriate battery cooling is performed with easy control. I do.
  • the vehicle battery cooling system according to the ninth embodiment has an effect of contributing to efficiency of cooling and heating in the air conditioning of the vehicle interior by the control processing shown in FIGS.
  • the details of the action that contributes to the efficiency of cooling and heating by the control processing of the vehicle battery cooling system in FIGS. 9 and 10 are the same as those in the fifth embodiment, and thus the description thereof is omitted.
  • the effect of the vehicle battery cooling system of the ninth embodiment will be described.
  • the vehicle battery cooling system of Example 9 has the following effects in addition to the effects (1) and (3).
  • the refrigerant of the evaporator 32 that cools the 5 ⁇ battery 2 is a liquid refrigerant that is circulated for battery cooling, and is provided with a heat exchanger 31 that cools the liquid refrigerant with a refrigerant for air conditioning in the passenger compartment.
  • the switch 2 distributes the cooling air after the cooling of the battery 2 to the vehicle interior 61 to the vehicle interior and the exhaust duct 6 to the outside of the vehicle, allowing easy control. Therefore, it is possible to perform appropriate battery cooling and to contribute to cooling as a vehicle interior air conditioning, or efficiency of cooling and heating.
  • vehicle battery cooling system of the embodiment has been described as being used in a hybrid vehicle or an electric vehicle, the vehicle battery cooling system may be used in, for example, a fuel cell vehicle.

Description

明 細 書
車両用バッテリ冷却システム
技術分野
[0001] 本発明は、ハイブリッド車両や電気自動車などの車両に設置された走行用バッテリ を冷却する車両用バッテリ冷却システムの技術分野に属する。
背景技術
[0002] 従来の車両用バッテリ冷却装置としては、下記公報に記載のものが知られている。
この従来の冷却装置は、エアコンによって空調されている車室内の空気を冷却ファン によって吸引して走行用バッテリを冷却する。この冷却装置では、切換えダンバを制 御することによって、冷却風を車室内へ戻す循環モード、冷却風を車外へ排出する 排気モード、及び冷却風の一部を車室内へ戻すと共に残りを車外へ排出する循環 /排気モードが選択可能となっており、エアコンの運転状態、車室内の空調状態及 び電池温度等に基づいて冷却ファンの風量と切換えダンバの切り替え位置とを制御 し、車室内の圧力低下や空調負荷の増加を抑えながら走行用バッテリを冷却してい る(例えば、特許文献 1参照。)。
特許文献 1:特許 3240973号公報(第 1— 13頁、全図)
発明の開示
発明が解決しょうとする課題
[0003] しかしながら、従来の冷却装置にあっては、最大性能時は、風量を最大にする制御 であったため、風量の増加に伴い、冷却ファンの騒音が増加し問題となるものであつ た。
[0004] 本発明は、上記問題点に着目してなされたもので、その目的とするところは、騒音を 抑制しつつ、走行用バッテリの冷却効率を良好にすることができる車両用バッテリ冷 却システムを提供することにある。
課題を解決するための手段
[0005] 上記目的を達成するため、本発明の車両用バッテリ冷却システムは、車両に設置さ れ車両の走行に用いられるバッテリと、車室内空調用とは別に設けられてバッテリへ の送風を発生させる送風機と、車室内空調用と別に設けられて内部を流れる冷媒と 送風機によりバッテリへ送る送風との熱交換により送風を冷却する熱交換器と、を備 えることを特 ί毁とする。
発明の効果
[0006] 本発明の車両用バッテリ冷却システムにあっては、バッテリを車両内空調用とは別 にそれぞれ設けられた送風機と熱交換器とを用いて冷却した風でバッテリを積極的 に冷却するので、冷却効率を良好にバッテリを冷却することができ、その際、ファンを 高回転で回す必要がないので、ファンの回転から生じる騒音を抑制することができる 図面の簡単な説明
[0007] [図 1]本発明の実施例 1の車両用バッテリ冷却システムにおけるバッテリ冷却構造の 説明図である。
[図 2]実施例 1の車両用バッテリ冷却システムにおけるバッテリ設置位置の説明図で ある。
[図 3]実施例 1の車両用バッテリ冷却システムと協調するエアコンシステムの説明図で ある。
[図 4]実施例 2の車両用バッテリ冷却システムにおけるバッテリ冷却構造の説明図で ある。
[図 5]本発明の実施例 3の車両用バッテリ冷却システムにおけるバッテリ冷却構造の 説明図である。
[図 6]実施例 3の車両用バッテリ冷却システムで実行される切替ドア 62の制御処理の 流れを示すフローチャートである。
[図 7]本発明の実施例 4の車両用バッテリ冷却システムで実行される切替ドア 62の制 御処理の流れを示すフローチャートである。
[図 8]本発明の実施例 5の車両用バッテリ冷却システムにおけるバッテリ冷却構造の 説明図である。
[図 9]実施例 5の車両用バッテリ冷却システムで実行される切替ドア 52および切替ド ァ 62の制御処理の流れの主要部分を示すフローチャートである。 [図 10]実施例 5の車両用バッテリ冷却システムで実行される切替ドア 52および切替ド ァ 62の制御処理の流れの残りの部分を示すフローチャートである。
園 11]本発明の実施例 6の車両用バッテリ冷却システムにおけるバッテリ冷却構造の 説明図である。
園 12]実施例 7の車両用バッテリ冷却システムにおけるバッテリ冷却構造の説明図で ある。
園 13]本発明の実施例 8の車両用バッテリ冷却システムにおけるバッテリ冷却構造の 説明図である。
園 14]本発明の実施例 9の車両用バッテリ冷却システムにおけるバッテリ冷却構造の 説明図である。
符号の説明
1 バッテリケース
2 ノ ッテリ
3 エノくポレータ
4 ブロワファン
5 吸気ダクト
6 排気ダクト
7 車体パネル
8 電磁弁
9 液体冷媒ライン
31 熱交換器
32 エノ ポレータ
51 車室内送気部分
52 切替ドア
61 車室内送気部分
62 切替ドア
81 電動ポンプ
101 コンデンサ 102 電動コンプレッサ
103 リキッドタンク
104 ファン
105 コントローラ
106 空調用エバポレータ
201 冷媒ライン
202 冷媒ライン
203 冷媒ライン
204 冷媒ライン
発明を実施するための最良の形態
[0009] 本発明の実施例 1を添付の図面に基づき説明する。
実施例 1
[0010] 図 1は実施例 1の車両用バッテリ冷却システムにおけるバッテリ冷却構造の説明図 である。図 2は実施例 1の車両用バッテリ冷却システムにおけるバッテリの車両への設 置位置の説明図である。
図 1に示すように、実施例 1における車両用バッテリ冷却システムは、バッテリケース 1、走行用バッテリ 2、エバポレータ 3、ブロワファン 4、吸気ダクト 5、排気ダクト 6を主 要な構成としている。
バッテリケース 1は、図 1、図 2に示すように、車両トランクやフロア下などにおいて車 体パネル 7の上方にバッテリ 2を固定するための構造部材として、且つ周囲からバッ テリ 2を保護する保護部材として機能する。バッテリケース 1は、バッテリ 2の全面を覆 うものでなくともよいが、直接あるいは間接的にバッテリ 2を支持するものである。
[0011] ノ ッテリ 2は、リチウムイオンを極間で交換して、充電、放電を行うリチウムイオンバッ テリである。リチウムイオンバッテリには、いわゆるメモリー効果が生じないという有利 な特徴がある。
車両の走行用に用いるバッテリ 2は、リチウムイオンバッテリの複数を直列接続する よう組合せた組電池にしたものである。
この走行用に組電池にしたものの詳細例として、特開 2005— 116427を挙げてお く。組電池の構造は、この詳細例に限らないものとする力 板状のリチウムイオンバッ テリを組み合わせた最小単位のものをさらに複数組合せて用いる。その総数は数十 個以上に達する。
[0012] エバポレータ 3は、図 1に示すように、車室内からバッテリケース 1へ空気を送る吸気 ダクト 5の途中に設けられ、エアコンシステムで供給 ·回収される冷媒と周囲空気との 熱交換を行うものである。
ブロワファン 4は、車室内からバッテリケース 1へ空気を送る吸気ダクト 5の途中で、 且つエバポレータ 3の上流に設けられてエバポレータ 3に送風を行い、エバポレータ 3で熱交換した冷却空気をバッテリ 2へ送るようにするものである。
つまり、実施例 1では、車室内空調用とは別に、バッテリ冷却用に吸気ダクト 5の途 中にエバポレータ 3、ブロワファン 4を設ける。
[0013] なお、実施例 1の車両用バッテリ冷却システムにおいては、図示しないコントローラ によって、バッテリの充放電や温度管理などが成されるものとする。
エバポレータ 3の冷媒制御は、エアコンシステムのコントローラで制御することが望ま しい。
ブロワファン 4の風量制御は、バッテリの充放電等を行うコントローラにより制御して も、エアコンシステムのコントローラで制御してもよい。
[0014] 吸気ダクト 5は、車室内後部に先端部を接続して車室内の空気を吸い込むように空 気流路を形成し、その後端部をバッテリケース 1の車両前方側に接続して、吸い込ん だ車室内空気をバッテリケース 1へ送るようにする。なお、エバポレータ 3、ブロワファ ン 4の周囲もしくは近傍に吸気を溜める部分を設けるようにしてもよい。
排気ダクト 6は、吸気ダクト 5を接続したバッテリケース 1の車両前方側と反対側とな る車両後方側に先端部を接続し、後端側を車両下部等に配置して、車室外部へ開 放する。これによりバッテリケース 1の内部から外部への空気排出路を形成する。
[0015] 実施例 1では、車両用バッテリ冷却システムに図 3のエアコンシステムが協調して、 ノ ッテリの冷却能力を高めるようにしている。
このエアコンシステムは、電動コンプレッサ 102によって圧縮した高圧冷媒をコンデ ンサ 101に送って放熱冷却させ冷媒を液化し、その後リキッドタンク 103で水分ゃゴミ を除去して液化した冷媒を電磁弁 8へ送り、空調用エバポレータ 106へ向かう冷媒ラ イン 201とバッテリ冷却用のエバポレータ 3へ向力、ぅ冷媒ライン 203とへの振り分け冷 媒流量を制御する。そして、図示しない弁により冷媒を低圧に膨張させ、空調用エバ ポレータ 106で冷媒を蒸発させてファン 104が車室内に送る空気を冷却し、蒸発した 低圧冷媒を冷媒ライン 202、 204により回収して電動コンプレッサ 102に送るようにし て循環させるものである。
[0016] 電動コンプレッサ 102や電磁弁 8は、エアコンシステムにおけるコントローラ 105によ り制御される。コントローラ 105に種々の情報を入力するセンサ類等はよく知られてい るので、ここではそれらの説明は省略する。このエアコンシステムのコントローラ 105 は、車内通信等により、図示しないバッテリ 2のコントローラと通信を行い、必要な情 報、指令を通信して、電磁弁 8による冷媒流量の制御等を行うものとする。
なお、冷媒を低圧に膨張させる弁は、冷媒ライン 203に設けられるが図示しない。ま たこの弁は、電磁弁 8と一体に設けてもよい。
[0017] 実施例 1の車両用バッテリ冷却システムの作用を説明する。
[走行用バッテリの冷却作用]
実施例 1の車両用バッテリ冷却システムは、ハイブリッド車両や電気自動車に用いる ものである。
この車両の走行用に使用されるバッテリ 2は、走行時の充放電によって発熱し、この 充放電を繰り返すことにより高温に至る。
例えば、リチウムイオンバッテリでは、高温になると劣化、極間を形成する部材の剥 離、不純物の析出などを生じ、結果的にバッテリ容量が減り、寿命を迎える。また、最 悪の場合、バッテリが破損することになる。
[0018] そのため、リチウムイオンバッテリでは、略 50度以下程度に冷却して保つことが良好 なバッテリ性能の発揮のために必要となる。
他のバッテリにおいても、概ね同様の理由により冷却の必要がある。
車両が走行することにより生じる走行風や送風装置によるバッテリの空冷装置を考 えることができる力 S、車両への走行性能の要求が高くなるにつれ、バッテリの軽量化 ゃ大容量化が求められるようになり、より積極的な冷却手段が必要になっている。 [0019] 実施例 1の車両用バッテリ冷却システムは、このような問題を解決して積極的な冷 却によりバッテリを良好な性能が発揮できる温度に保ち、その上で、騒音を抑制しつ つ、冷却効率良好にバッテリを冷却する。
[0020] (a)積極的な冷却作用
実施例 1の車両用バッテリ冷却システムでは、ブロワファン 4にて車室内空気を吸い 込み、吸い込んだ空気をエバポレータ 3で冷却し、冷却風をバッテリ 2に送って冷却 を行う。そして、バッテリ 2を冷却し、温められた空気を排気ダクト 6により車室外で且 っバッテリケース 1の外部へ排気する。
ここで、冷却風量を Ga、バッテリケース 1の吸い込み空気温度を Tl、バッテリケース
1からの排出空気温度を Τ2、バッテリ温度を Tbとする。
すると、冷却性能は、 Gaと (T2— T1)の積に比例する関係とになる。
[0021] この関係において、冷却性能をアップさせるために Gaをアップさせるようにすると、 ブロワファン 4を高回転で回転させなければならず、騒音の悪化を招くことになる。そ こで、実施例 1の車両用バッテリ冷却システムでは、(T2—T1)をアップさせることに よって冷却性能を向上させる。このとき、 Tbと T1の温度差が大きいほど、 (T2-T1) も大きくなるため、 T1を低温化させることで、冷却性能を向上させる。このとき、ブロワ ファン 4の回転を抑えることができ、低騒音化が可能となる。
[0022] 一方、エバポレータ 3は、バッテリケース 1の近傍に配置され、バッテリ冷却専用に 設けた吸気ダクト 5内で送風の冷却を行うため、冷却効率が非常に高くなる。
このように冷却効率が高く得られることから、実施例 1では、エバポレータ 3、ブロワフ アン 4を小型化している。
[0023] また、バッテリケース 1の前方側から内部へ吸気ダクト 5により冷却風を送り、バッテリ ケース 1の後方側から外部へ排気ダクト 6により排気を行うため、一様で冷却効果の 高い冷却風の流れでバッテリ 2の冷却が行える。
[0024] よって、走行時の充放電によって発熱したバッテリ 2は、エアコンシステムからの冷 媒によって熱交換するエバポレータ 3とブロワファン 4から送られる冷却風とにより効 率よく冷却される。
この積極的な冷却によって、バッテリ 2を適度な温度に保つことができ、バッテリ 2の 性能を良好に発揮させることができる。
また、ノ ッテリ 2の温度が精度よく制御されることによって、結果的にバッテリ 2の寿 命、つまり容量低減抑制の向上を行うことができる。
[0025] (b)騒音を抑制する作用
実施例 1の車両用バッテリ冷却システムでは、エバポレータ 3による積極的な冷却が 行われるため、ブロワファン 4を小型化すること力 Sできる。それとともに、従来のようなフ アンのみによる冷却に比較して、ブロワファン 4の回転数の低減、あるいは、ブロワファ ン 4の最大回転数の低減、または最大回転数による運転時間の低減を図るよう制御 し、騒音を抑制する。
[0026] (c)車両搭載性の向上作用
実施例 1の車両用バッテリ冷却システムでは、上記説明のように、冷却風量を低くで きるため、上記説明のように、ブロワファン 4を小型化できるとともに、これに伴い、吸 気ダクト 5、排気ダクト 6のダクト断面積を小さくできる。これにより、全体的に省スぺー スなものとなり、車両搭載性が向上する。
これは、従来の送風のみで冷却するものに比べて、非常に省スペースなものとなる
[0027] (d)車両の燃費への影響を抑制する作用
実施例 1の車両用バッテリ冷却システムへ冷媒を供給 ·回収するエアコンシステム は、ハイブリッド車両において、電動コンプレッサ 102により構成されるようにし、ェン ジンの駆動負荷にならないため、低燃費化の促進を図ることができ、車両の燃費へ の影響を抑制する。
[0028] 次に、実施例 1の車両用バッテリ冷却システムの効果を説明する。
実施例 1の車両用バッテリ冷却システムにあっては、下記に列挙する効果を得ること ができる。
[0029] (1)車両に設置され走行に用いられるバッテリ 2と、車室内空調用と別に設けられ、 バッテリ 2への送風を発生させるブロワファン 4と、車室内空調用と別に設けられ、内 部を流れる冷媒とバッテリ 2へ送る送風との熱交換により送風を冷却する熱交換器 (ェ バポレータ 3)とを備えるため、騒音を抑制しつつ、高冷却効率で、バッテリを良好に 冷去 Pすること力 Sでさる。
[0030] (2)熱交換器は、エバポレータ 3であり、車室内空調と冷媒を共用するものであるた め、エバポレータ 3により容易に送風の低温化を行うことができ、冷媒が車室内空調と 共用化されることにより、コンプレッサやコンデンサ等を 2重に設けることなぐコストを 抑制でき、車両用バッテリ冷却システムの省スペース、軽量化を行うことができる。 実施例 2
[0031] 次に、本発明の実施例 2にっき添付の図とともに説明する。
[0032] 実施例 2の車両用バッテリ冷却システムは、バッテリ冷却用に設けたエバポレータ 及びブロワファンによる冷却風を車室内へ送るよう切り替え自在にした例である。 まず、実施例 2の車両用バッテリ冷却システムの構成を説明する。
図 4は実施例 2の車両用バッテリ冷却システムにおけるバッテリ冷却構造の説明図 である。
実施例 2の車両用バッテリ冷却システムでは、エバポレータ 3からバッテリケース 1ま での吸気ダクト 5の途中から、車室内へ接続する吸気ダクト 5の車室内送気部分 51を
1¾ る。
そして、さらに吸気ダクト 5の車室内送気部分 51への分岐部に、切替ドア 52を設け て、エバポレータ 3等を設置した上流からの空気を車室内送気部分 51へ流す力、、バ ッテリケース 1側に流すかを切り替えることができるようにする。
その他の構成は、実施例 1と同様であるので、それらの説明は省略する。
[0033] 実施例 2の車両用バッテリ冷却システムの作用を説明する。
[車室内空調の冷却性能の向上作用]
実施例 2の車両用バッテリ冷却システムでは、バッテリ冷却用に設けたエバポレータ 3、ブロワファン 4からの冷却風を切替ドア 52の切り替えにより、車室内へ送ることを可 能にしている。
例えば、実施例 2の車両用バッテリ冷却システムをハイブリッド車に用いた場合、車 両が加減速する際にバッテリ 2に充放電の負荷がかかり、バッテリ 2は発熱する。しか しながら、定速走行時や渋滞時には、バッテリ 2は発熱しない状態となる。
[0034] このような場合に、バッテリ冷却用に設けたエバポレータ 3、ブロワファン 4からの冷 却風を切替ドア 52の切り替えにより、車室内へ送り、後部座席側の後方用クーラーと して用いる、エアコンの効果が遅れる後方へのスポットクーラーとして用いる、 日射に よって高温化する天板により車室内が温められるのに対する冷却を行う天板温熱改 善に用いるなどを行う。これにより、車室内の空調効率をさらに向上させることになり、 より快適な車室内空間にすることができる。
[0035] また、切替ドア 52の切り替えは、例えばバッテリ 2へ 80%、車室内へ 20%のように、 比率配分してもよい。このようにすれば、車室内空調の効率化への寄与と、バッテリ 冷却を状況に応じて変化させて、確実に両立させる。
[0036] 実施例 2の車両用バッテリ冷却システムの効果を説明する。
実施例 2の車両用バッテリ冷却システムでは、上記 (1),(2)の効果に加えて、以下の 効果を有する。
(4)ブロワファン 4及びエバポレータ 3からの冷却風を、バッテリ 2へ向力、う吸気ダクト 5 の部分と、車室内へ向かう車室内送気部分 51とに比率自在に配風する切替ドア 52 を備えたため、車室内空調の効率化に寄与することができ、また、車室内空調の効 率化への寄与と、バッテリ冷却を確実に両立させることができる。
その他の作用効果は実施例 1と同様であるので説明を省略する。
実施例 3
[0037] 次に、本発明の第 3実施例につき添付の図面とともに説明する。
[0038] 実施例 3の車両用バッテリ冷却システムは、バッテリ冷却用に設けたエバポレータ 及びブロワファンによるバッテリ冷却後の冷却風を車室内へ送るよう切り替え自在に した例である。
まず、実施例 3の車両用バッテリ冷却システムの構成を説明する。
図 5は実施例 3の車両用バッテリ冷却システムにおけるバッテリ冷却構造の説明図 である。
実施例 3の車両用バッテリ冷却システムでは、バッテリケース 1から車室外への排気 ダクト 6の途中から分岐して車室内へ空気を導入するよう接続される車室内送気部分 61を設ける。
また、排気ダクト 6の車室内送気部分 61への分岐部に切替ドア 62を設けて、バッテ リケース 1内でバッテリ 2を冷却した空気を、車室外へ排気するか、車室内へ流すか を切り替える制御できるようにする。
その他の構成は、実施例 1と同様であるので、それらの説明は省略する。
[0039] 実施例 3の車両用バッテリ冷却システムの作用を説明する。
[車室内空調へ寄与させる制御処理]
図 6に示すのは、実施例 3の車両用バッテリ冷却システムで実行される切替ドア 62 の制御処理の流れを示すフローチャートであり、以下各ステップについて説明する。
[0040] ステップ S11では、バッテリ温度の測定を行う。
[0041] ステップ S12では、バッテリ温度が所定温度以下かどうかを判断し、所定温度以下 ならばステップ S18へ進み、所定温度を超えているならばステップ S13へ進む。
[0042] ステップ S13では、冷却風のバッテリケース 1の出口での温度力 車室内温度以下 力、どうかを判断し、車室内温度以下ならばステップ S14へ進み、車室内温度を超え ているならばステップ S 19へ進む。
[0043] ステップ S 14では、車室内用エアコンシステムが運転中かどうかを判断し、運転中 ならばステップ S15へ進み、運転中でないならばステップ S20へ進む。
[0044] ステップ S 15では、車室内用エアコンシステムが冷房運転中かどうかを判断し、冷 房運転中ならばステップ S 16へ進み、冷房運転中でな!/、ならばステップ S 21へ進む
[0045] ステップ S 16では、バッテリ冷却後の空気を車室内へ導入するよう切替ドア 62を制 御する。
[0046] ステップ S 17では、車両用バッテリ冷却システムがバッテリ冷却後の空気を車室内 へ導入して!/、ることを車室内用エアコンシステムへフィードバックし、より効率的な運 転を促すようにし、処理を終了する。
[0047] ステップ S 18では、バッテリ冷却の必要がない状態であることを車室内用エアコンシ ステムへフィードバックし、より効率的な運転を促すようにし、処理を終了する。
[0048] ステップ S 19では、バッテリ冷却後の空気を車室外へ排気するよう切替ドア 62を制 御し、処理を終了する。
[0049] ステップ S20では、バッテリ冷却後の空気を車室外へ排気するよう切替ドア 62を制 御し、処理を終了する。
[0050] ステップ S21では、バッテリ冷却後の空気を車室外へ排気するよう切替ドア 62を制 御し、処理を終了する。
[0051] [車室内空調の冷却性能の向上作用]
実施例 3の車両用バッテリ冷却システムでは、エバポレータ 3、ブロワファン 4からの 冷却風によりバッテリケース 1内でバッテリを冷却し、その後の排気する空気を切替ド ァ 62により切り替えて、車室外への排気または、車室内への導入を行う。
[0052] その際には、図 6の処理に示すように、車室内を冷房中で、車室内の温度よりバッ テリケース 1から出る空気が低い場合に、車室内への導入を行い車室内空調に寄与 させる。
この場合には、バッテリ 2を冷却し、幾分でも吸熱した空気で車室内をさらに冷却す るのであるから、排気してしまうのに比べて、熱効率は非常に向上する。
さらに、ステップ S 17、 S18の処理により、切替ドア 62の状態、バッテリ冷却状態を 車室内エアコンシステムへフィードバックすることにより、より効率的な空調となり、ひ
V、ては車両の燃費向上に繋がることになる。
[0053] 実施例 3の車両用バッテリ冷却システムの効果を説明する。
実施例 3の車両用バッテリ冷却システムでは、上記 (1),(2)の効果に加えて、以下の 効果を有する。
(5)ブロワファン 4及びエバポレータ 3によりバッテリ 2を冷却した後の冷却風を、車室 内へ向かう車室内送気部分 61と、車室外へ向力、う排気ダクト 6の部分に比率自在に 配風する切替ドア 62を備えたため、車室内空調の効率化に寄与することができ、ひ いては車両の燃費向上に繋げることができる。
その他作用効果は実施例 1と同様であるので説明を省略する。
実施例 4
[0054] 次に、本発明の実施例 4にっき添付の図面を参照しながら説明する。
[0055] 実施例 4の車両用バッテリ冷却システムは、実施例 3の構造において、バッテリ 2を 冷却した冷却風を暖房にも用いるようにした例である。
その構成は実施例 3と同様であるので、説明を省略する。 以下、実施例 4の車両用バッテリ冷却システムの作用を説明する。
[0056] [車室内空調へ寄与させる制御処理]
[0057] 図 7に示すのは、実施例 4の車両用バッテリ冷却システムで実行される切替ドア 62 の制御処理の流れを示すフローチャートで、以下各ステップについて説明する。なお 、図 6と同様の処理については、同じステップの符号を付し(ステップ S11からステツ プ S22)、説明を省略する。
[0058] ステップ S22では、車室内エアコンシステムが運転中かどうかを判断し、運転中なら ばステップ S23へ進み、運転中でないならばステップ S26へ進む。
[0059] ステップ S23では、暖房運転かどうかを判断し、暖房運転であるならばステップ S24 へ進み、暖房運転でないならばステップ S27へ進む。
[0060] ステップ S24では、バッテリ冷却後の空気を車室内へ導入するよう切替ドア 62を制 御する。
[0061] ステップ S25では、車両用バッテリ冷却システムがバッテリ冷却後の空気を車室内 へ導入して!/、ることを車室内用エアコンシステムへフィードバックし、より効率的な運 転を促すようにし、処理を終了する。
[0062] ステップ S26では、バッテリ冷却後の空気を車室外へ排気するよう切替ドア 62を制 御し、処理を終了する。
[0063] ステップ S27では、バッテリ冷却後の空気を車室外へ排気するよう切替ドア 62を制 御し、処理を終了する。
[0064] [車室内空調の冷却性能及び暖房性能の向上作用]
実施例 4の車両用バッテリ冷却システムでは、実施例 3と同様に、車室内をエアコン システムが冷却する際に、バッテリ冷却後の冷却風が車室内の冷房に寄与できる温 度の場合に、車室内にバッテリ冷却後の冷却風を導入する。
[0065] さらに、実施例 4の車両用バッテリ冷却システムでは、車室内エアコンシステムが車 室内を暖房している際に、車室内の温度よりバッテリ冷却後の冷却風の温度が高い 場合に、バッテリ冷却後の冷却風を車室内へ導入して、車室内の暖房に寄与させる こと力 Sでさる。
この場合のスポット的な作用効果としては、後部座席を暖めること、後部座席のさら に足元を暖めるなどすれば、車室内温度の暖房の効率化のみならず、体感温度へ の寄与を行うことになる。
[0066] 実施例 4の車両用バッテリ冷却システムの効果を説明する。
実施例 4の車両用バッテリ冷却システムは、上記 (1),(2)の効果に加えて、以下の効 果を有する。
(5)'ブロワファン 4及びエバポレータ 3によりバッテリ 2を冷却した後の冷却風を、車 室内へ向かう車室内送気部分 61と、車室外へ向かう排気ダクト 6の部分に比率自在 に配風する切替ドア 62を備えたため、車室内空調としての冷房及び暖房の効率化 に寄与させること力でさる。
その他の作用効果は実施例 3と同様であるので説明を省略する。
実施例 5
[0067] 次に、本発明の実施例 5にっき添付の図面を参照しながら説明する。
[0068] 実施例 5の車両用バッテリ冷却システムは、バッテリ冷却用に設けたエバポレータ 及びブロワファンによるバッテリ冷却前の冷却風を車室内へ送るよう切り替え自在に し、且つバッテリ冷却後の冷却風を車室内へ送るよう切り替え自在にした例である。 その構成を説明する。
図 8は実施例 5の車両用バッテリ冷却システムにおけるバッテリ冷却構造の説明図 である。
[0069] 実施例 5の車両用バッテリ冷却システムでは、エバポレータ 3からバッテリケース 1ま での吸気ダクト 5の途中から分岐して車室内へ接続する車室内送気部分 51を設ける 。また車室内送気部分 51への分岐部に切替ドア 52を設けて、エバポレータ 3等を設 置した上流からの空気を車室内送気部分 51へ流す力 バッテリケース 1側に流すか を切り替えることができるようにする。
[0070] さらに、実施例 5では、バッテリケース 1から車室外への排気ダクト 6の途中から分岐 して車室内へ空気を導入するよう接続する車室内送気部分 61を設ける。また、車室 内送気部分 61への分岐部に切替ドア 62を設けて、バッテリケース 1内で、バッテリ 2 を冷却した空気を、車室外へ排気するか、車室内へ流すかを切り替えるようにする。 その他の構成は、実施例 1と同様であるので、説明を省略する。 [0071] 実施例 5の車両用バッテリ冷却システムの作用を説明する。
[車室内空調へ寄与させる制御処理]
図 9,図 10に示すのは、実施例 5の車両用バッテリ冷却システムで実行される切替 ドア 52、切替ドア 62の制御処理の流れを示すフローチャートで、以下各ステップに ついて説明する。なお、図 9、図 10は本来は一体のものであって、便宜上別の図面 に分けられているのであって、図 9のステップ 32で記号丸 10へ進んだとき、図 10の 記号丸 10力もステップ S49へ続くようになつている。
[0072] ステップ S31では、バッテリ温度の測定を行う。
[0073] ステップ S32では、バッテリ温度が所定温度以下かどうかを判断し、所定温度以下 ならばステップ S49へ進み、所定温度を超えているならばステップ S33へ進む。
[0074] ステップ S33では、冷却風のバッテリケース 1の出口での温度は、車室内温度以下 力、どうかを判断し、車室内温度以下ならばステップ S34へ進み、車室内温度を超え ているならばステップ S43へ進む。
[0075] ステップ S34では、車室内用エアコンシステムが運転中かどうかを判断し、運転中 ならばステップ S 35へ進み、運転中でな!/、ならばステップ S 39へ進む。
[0076] ステップ S35では、車室内用エアコンシステムが冷房運転中力、どうかを判断し、冷 房運転中ならばステップ S 36へ進み、冷房運転中でな!/、ならばステップ S40へ進む
[0077] ステップ S36では、車室内用エアコンシステムにおける風量は所定風量以上かどう かを判断し、所定風量以上であればステップ S37へ進み、所定風量に達しないので あればステップ S41へ進む。
[0078] ステップ S37では、切替ドア 52を車室内へ冷却風を送るようにし(第 1の RR吹き出 し口が開)、切替ドア 62を車室外へ冷却風を排出するようにする(第 2の RR吹き出し 口が閉)。
[0079] ステップ S38では、車両用バッテリ冷却システムがバッテリ冷却前の空気を車室内 へ導入して!/、ることを車室内用エアコンシステムへフィードバックし、より効率的な運 転を促すようにし、処理を終了する。
[0080] ステップ S39では、バッテリ冷却後の空気を車室外へ排気するよう切替ドア 62を制 御し、処理を終了する。
[0081] ステップ S40では、バッテリ冷却後の空気を車室外へ排気するよう切替ドア 62を制 御し、処理を終了する。
[0082] ステップ S41では、切替ドア 52をバッテリケース 1内部へ冷却風を送るようにし(第 1 の RR吹き出し口が閉)、切替ドア 62を車室内へ冷却風を送るようにする(第 2の RR 吹き出し口が開)。
[0083] ステップ S42では、車両用バッテリ冷却システムがバッテリ冷却後の空気を車室内 へ導入して!/、ることを車室内用エアコンシステムへフィードバックし、より効率的な運 転を促すようにし、処理を終了する。
[0084] ステップ S43では、車室内用エアコンシステムが運転中かどうかを判断し、運転中 ならばステップ S44 進み、運転中でないならばステップ S47 進む。
[0085] ステップ S44では、車室内用エアコンシステムが暖房運転中かどうかを判断し、暖 房運転中ならばステップ S45 進み、暖房運転中でな!/、ならばステップ S48 進む
[0086] ステップ S45では、バッテリ冷却後の空気を車室内へ導入するよう切替ドア 62を制 御する。
[0087] ステップ S46では、車両用バッテリ冷却システムがバッテリ冷却後の空気を車室内 へ導入して!/、ることを車室内用エアコンシステムへフィードバックし、より効率的な運 転を促すようにし、処理を終了する。
[0088] ステップ S47では、バッテリ冷却後の空気を車室外へ排気するよう切替ドア 62を制 御し、処理を終了する。
[0089] ステップ S48では、バッテリ冷却後の空気を車室外へ排気するよう切替ドア 62を制 御し、処理を終了する。
[0090] ステップ S49では、車室内用エアコンシステムが運転中かどうかを判断し、運転中 ならばステップ S50 進み、運転中でないならばステップ S53 進む。
[0091] ステップ S50では、車室内用エアコンシステムが冷房運転中かどうかを判断し、冷 房運転中ならばステップ S 51 進み、冷房運転中でな!/、ならばステップ S 54 進む [0092] ステップ S51では、切替ドア 52を車室内へ冷却風を送るようにし(第 1の RR吹き出 し口が開)、切替ドア 62を車室外へ冷却風を排出するようにする(第 2の RR吹き出し 口が閉)。
[0093] ステップ S52では、車両用バッテリ冷却システムがバッテリ冷却前の空気を車室内 へ導入して!/、ることを車室内用エアコンシステムへフィードバックし、より効率的な運 転を促すようにし、処理を終了する。
[0094] ステップ S53では、車室内空調へ寄与させる制御をしないことを車室内用エアコン システムへフィードバックし、より効率的な運転を促すようにし、処理を終了する。
[0095] ステップ S54では、車室内空調へ寄与させる制御をしないことを車室内用エアコン システムへフィードバックし、より効率的な運転を促すようにし、処理を終了する。
[0096] [車室内空調の冷却性能及び暖房性能の向上作用]
実施例 5では、ノ ッテリ冷却後の冷却風が車室内空気より高い場合には、車室内の 暖房の効率化に寄与させるように、バッテリ冷却後の冷却風を車室内へ導入する (ス テツプ S44〜S46)。
さらに、バッテリ 2の冷却の必要性が少ない場合、つまりバッテリ 2の温度が所定温 度以下の場合には、エバポレータ 3及びブロワファン 4によるバッテリ 2の冷却用の冷 却風をバッテリ冷却前で切り替えて、車室内へ送り、車室内冷房の効率化に寄与さ せる(ステップ S50〜S52)。
[0097] さらに、バッテリ温度が所定温度を超える場合には、基本的には、バッテリ 2を冷却 後の冷却風が車室内温度より低い場合に、車室内の空調の効率化に寄与させる (ス テツプ S41)。
但し、車室内用エアコンシステムが、冷房状態であり、エアコン風量が所定風量以 上の場合、つまり、非常に強い冷却を必要としている場合には、バッテリ 2の冷却前の 冷却風を車室内に導入させる。
これにより、車室内用エアコンシステムは、より効率的な運転を行うことが可能となる
[0098] なお、その場合には、ステップ S37に示すように 100%の切替を行うようにしてもよ いし、配風の比率を例えば 80%車室内導入、 20%バッテリ 2へと言うようにしてもよい 。また、段階的な切替を行ってもよい。
その他の作用効果は実施例 1と同様であるので、説明を省略する。
[0099] 実施例 5の車両用バッテリ冷却システムの効果を説明する。
実施例 5の車両用バッテリ冷却システムにあっては、上記 (1),(2)の効果に加えて、 以下の効果を有する。
(5)"ブロワファン 4及びエバポレータ 3からの冷却風を、バッテリ 2へ向かう吸気ダク ト 5の部分と、車室内へ向かう車室内送気部分 51とに比率自在に配風する切替ドア 5 2を備え、ブロワファン 4及びエバポレータ 3によりバッテリ 2を冷却した後の冷却風を、 車室内へ向かう車室内送気部分 61と、車室外へ向かう排気ダクト 6の部分に比率自 在に配風する切替ドア 62を備え、車室内用エアコンシステムの風量が所定風量を超 え、負荷が高い場合には、バッテリ 2の冷却前の冷却風を車室内へ導入するため、バ ッテリを充分に冷却するとともに、車室内エアコンシステムの効率化に寄与することが できる。
その他の作用効果は実施例 1と同様であるので説明を省略する。
実施例 6
[0100] 本発明の実施例 6にっき添付の図面を参照しながら説明する。
[0101] 実施例 6の車両用バッテリ冷却システムは、バッテリを冷却する冷媒として液体冷媒 を用いて閉じた系を構成し、車室内のエアコンシステムの冷媒により、バッテリ冷却用 の液体冷媒を冷却する第 1の熱交換器と、バッテリを冷却する冷却風を生成するため の第 2の熱交換器を設けた例である。
その構成を説明する。
[0102] 図 11は、実施例 6の車両用バッテリ冷却システムにおけるバッテリ冷却構造の説明 図である。
実施例 6の車両用バッテリ冷却システムでは、車室内エアコンシステムからの冷媒ラ イン 203、 204を熱交換器 31に接続して、車室内エアコンシステムの冷媒により、ノ ッテリ冷却用の LLC等の液体冷媒を冷却する。
[0103] この液体冷媒は、電動ポンプ 81により液体冷媒ライン 9を循環し、吸気ダクト 5内の ブロワファン 4の下流に設けたエバポレータ 32によりバッテリ 2への送風の冷却を行う 構造である。
その他構成は実施例 1と同様であるので説明を省略する。
[0104] 実施例 6の車両用バッテリ冷却システムの作用を説明する。
[急激な温度変化の抑制]
実施例 6の車両用バッテリ冷却システムでは、熱交換器 31において、冷媒と LLC 等の液体冷媒の熱交換を行い、 LLCを冷却し、低温化した LLCを用いてエバポレー タ 32により送風空気を冷却し、バッテリ 2の冷却を行う。
[0105] バッテリ 2は、充放電の繰り返しにより、徐々に温度が上昇するものである力 冷媒 による冷却風は比較的急激な温度変化をさせるため、これを緩和する制御が必要と なる。実施例 6では、通常ガス状で、急激な温度変化をさせる冷媒に対して、温度へ の感度が鈍い LLC等の液体冷媒へ熱交換させたものを用いることによって、冷却風 の温度変化をバッテリ 2の温度変化に適した緩やかなものにし、簡素な制御でも適確 な冷却を行うようにしている。
[0106] 実施例 6の車両用バッテリ冷却システムの効果を説明する。
実施例 6の車両用バッテリ冷却システムでは、上記 (1)の効果に加えて、以下の効果 を有する。
(3)バッテリ 2を冷却するエバポレータ 32の冷媒は、バッテリ冷却用に循環させる液 体冷媒とし、液体冷媒を車室内空調用の冷媒で冷却する熱交換器 31を備えるように したため、容易な制御で、適確なバッテリ冷却を行うことができる。
その他の作用効果は実施例 1と同様であるので説明を省略する。
実施例 7
[0107] 本発明の実施例 7にっき添付の図面を参照しながら説明する。
[0108] 実施例 7の車両用バッテリ冷却システムは、液体冷媒により生成する冷却風でバッ テリを冷却し、バッテリ冷却前の冷却風を車室内へ導入するよう切り替えを行う例であ その構成を説明する。
図 12は、実施例 7の車両用バッテリ冷却システムにおけるバッテリ冷却構造の説明 図である。 [0109] 実施例 7の車両用バッテリ冷却システムは、液体冷媒ライン 9を循環する液体冷媒 を、熱交換器 31により車室内用エアコンシステムの冷媒で冷却し、エバポレータ 32 によりバッテリ冷却風を生成する構造である。
さらに実施例 7では、エバポレータ 32からバッテリケース 1までの吸気ダクト 5の途中 から、車室内へ接続する吸気ダクト 5の車室内送気部分 51を設ける。
そして、さらに吸気ダクト 5の車室内送気部分 51への分岐部に、切替ドア 52を設け て、エバポレータ 32等を設置した上流からの空気を車室内送気部分 51へ流すか、 ノ ッテリケース 1側に流すかを切り替えるようにする。
その他の構成は実施例 6と同様であるので説明を省略する。
[0110] 実施例 7の車両用バッテリ冷却システムの作用を説明する。
[急激な温度変化の抑制と車室内空調の冷却性能の向上作用]
実施例 7の車両用バッテリ冷却システムでは、車室内用エアコンシステムの冷媒に より、バッテリ冷却用の液体冷媒を冷却して、急激な温度変化の抑制を行い、容易な 制御で適確なバッテリ冷却を行い、バッテリの冷却の必要性が少な!/、場合には、切 替ドア 52によりバッテリ冷却前の冷却風を車室内へ送り車室内空調の冷却性能を向 上させる。
[0111] 実施例 7の車両用バッテリ冷却システムの効果を説明する。
実施例 7の車両用バッテリ冷却システムでは、上記 (1),(3)の効果に加えて、以下の 効果を有する。
(4)'バッテリ 2を冷却するエバポレータ 32の冷媒は、バッテリ冷却用に循環させる液 体冷媒とし、液体冷媒を車室内空調用の冷媒で冷却する熱交換器 31を備えるように し、ブロワファン 4及びエバポレータ 32からの冷却風を、バッテリ 2へ向力、う吸気ダクト 5の部分と、車室内へ向かう車室内送気部分 51とに比率自在に配風する切替ドア 5 2を備えたため、容易な制御で、適確なバッテリ冷却を行うことができ、車室内空調の 冷却性能の向上を行うことができる。
その他の作用効果は実施例 6と同様であるので説明を省略する。
実施例 8
[0112] 次に、本発明の実施例 8にっき添付の図面を参照しながら説明する。 [0113] 実施例 8の車両用バッテリ冷却システムは、液体冷媒により生成する冷却風でバッ テリを冷却し、バッテリ冷却後の冷却風を車室内へ導入するよう切り替えを行う例であ その構成を説明する。
図 13は、実施例 8の車両用バッテリ冷却システムにおけるバッテリ冷却構造の説明 図である。
[0114] 実施例 8の車両用バッテリ冷却システムは、液体冷媒ライン 9を循環する液体冷媒 を、熱交換器 31により車室内用エアコンシステムの冷媒で冷却し、エバポレータ 32 によりバッテリ冷却風を生成する構造である。
さらに実施例 8では、バッテリケース 1から車室外への排気ダクト 6の途中から、車室 内へ空気を導入するよう接続する排気ダクト 6の車室内送気部分 61を設ける。
そして、さらに排気ダクト 6の車室内送気部分 61への分岐部に、切替ドア 62を設け て、バッテリケース 1内で、バッテリ 2を冷却した空気を、車室外へ排気するか、車室 内に流すかを切り替えるようにする。
その他の構成は実施例 6と同様であるので説明を省略する。
[0115] 実施例 8の車両用バッテリ冷却システムの作用を説明する。
[急激な温度変化の抑制と車室内空調の冷却性能の向上作用]
実施例 8の車両用バッテリ冷却システムでは、車室内用エアコンシステムの冷媒に より、バッテリ冷却用の液体冷媒を冷却して、急激な温度変化の抑制を行い、容易な 制御で適確なバッテリ冷却を行う。
さらに、実施例 8の車両用バッテリ冷却システムでは、図 6に示した制御処理により 車室内空調における冷房の効率化に寄与させる作用を有する。
また、図 7に示した制御処理により、車室内空調における冷房及び暖房の効率化に 寄与させる作用も有する。
[0116] 実施例 8の車両用バッテリ冷却システムの効果を説明する。実施例 8の車両用バッ テリ冷却システムでは、上記 (1),(3)の効果に加えて、以下の効果を有する。
(5)'"バッテリ 2を冷却するエバポレータ 32の冷媒は、バッテリ冷却用に循環させる 液体冷媒とし、液体冷媒を車室内空調用の冷媒で冷却する熱交換器 31を備えるよう にし、ブロワファン 4及びエバポレータ 32によりバッテリ 2を冷却した後の冷却風を、車 室内へ向かう車室内送気部分 61と、車室外へ向かう排気ダクト 6の部分に比率自在 に配風する切替ドア 62を備えたため、容易な制御で、適確なバッテリ冷却を行うこと ができ、車室内空調としての冷房、または冷房及び暖房の効率化に寄与させることが できる。
その他の作用効果は実施例 6と同様であるので説明を省略する。
実施例 9
[0117] 次に、本発明の実施例 9にっき添付の図面を参照しながら説明する。
[0118] 実施例 9の車両用バッテリ冷却システムは、液体冷媒により生成する冷却風でバッ テリを冷却し、バッテリ冷却前、及びバッテリ冷却後の冷却風を車室内へ導入するよう 切り替えを行う例である。
図 14は、実施例 9の車両用バッテリ冷却システムにおけるバッテリ冷却構造の説明 図である。
実施例 9の車両用バッテリ冷却システムは、液体冷媒ライン 9を循環する液体冷媒 を、熱交換器 31により車室内用エアコンシステムの冷媒で冷却し、エバポレータ 32 によりバッテリ冷却風を生成する構造である。
[0119] 実施例 9の車両用バッテリ冷却システムでは、エバポレータ 32からバッテリケース 1 までの吸気ダクト 5の途中から、車室内へ接続する吸気ダクト 5の車室内送気部分 51 を設け、車室内送気部分 51への分岐部に、切替ドア 52を設けて、エバポレータ 32 等を設置した上流からの空気を車室内送気部分 51へ流すか、バッテリケース 1側に 流すかを切り替えるようにする。
[0120] さらに、実施例 9の車両用バッテリ冷却システムでは、バッテリケース 1から車室外へ の排気ダクト 6の途中から、車室内へ空気を導入するよう接続する排気ダクト 6の車室 内送気部分 61を設け、車室内送気部分 61への分岐部に、切替ドア 62を設けて、バ ッテリケース 1内で、バッテリ 2を冷却した空気を、車室外へ排気するか、車室内に流 すかを切り替えるようにする。
その他の構成は、実施例 6と同様であるので、説明を省略する。
[0121] 実施例 9の車両用バッテリ冷却システムの作用を説明する。 [急激な温度変化の抑制と車室内空調の冷却性能の向上作用]
実施例 9の車両用バッテリ冷却システムでは、車室内用エアコンシステムの冷媒に より、バッテリ冷却用の液体冷媒を冷却して、急激な温度変化の抑制を行い、容易な 制御で適確なバッテリ冷却を行う。
さらに、実施例 9の車両用バッテリ冷却システムでは、図 9,図 10に示した制御処理 により車室内空調における冷房及び暖房の効率化に寄与させる作用を有する。 図 9,図 10の車両用バッテリ冷却システムの制御処理による冷房及び暖房の効率 化に寄与させる作用の詳細は、実施例 5と同様であるので説明を省略する。
[0122] 実施例 9の車両用バッテリ冷却システムの効果を説明する。実施例 9の車両用バッ テリ冷却システムでは、上記 (1),(3)の効果に加えて、以下の効果を有する。
(5厂''バッテリ 2を冷却するエバポレータ 32の冷媒は、バッテリ冷却用に循環させ る液体冷媒とし、液体冷媒を車室内空調用の冷媒で冷却する熱交換器 31を備える ようにし、ブロワファン 4及びエバポレータ 32からの冷却風を、バッテリ 2へ向かう吸気 ダクト 5の部分と、車室内へ向かう車室内送気部分 51とに比率自在に配風する切替 ドア 52と、ブロワファン 4及びエバポレータ 3によりバッテリ 2を冷却した後の冷却風を 、車室内へ向かう車室内送気部分 61と、車室外へ向かう排気ダクト 6の部分に比率 自在に配風する切替ドア 62を備えたため、容易な制御で、適確なバッテリ冷却を行う ことができ、車室内空調としての冷房、または冷房及び暖房の効率化に寄与させるこ と力 Sできる。
その他の作用効果は実施例 6と同様であるので説明を省略する。
[0123] 以上、本発明の車両用バッテリ冷却システムを実施例 1〜実施例 9に基づき説明し てきたが、具体的な構成については、これらの実施例に限られるものではなぐ特許 請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等 は許容される。
実施例の車両用バッテリ冷却システムは、ハイブリッド車両や電気自動車に用いら れるものとして説明したが、他にも例えば、燃料電池車などに用いられるものであって あよい。

Claims

請求の範囲
[1] 車両に設置され車両の走行に用いられるバッテリと、
車室内空調用と別に設けられて前記バッテリへの送風を発生させる送風機と、 車室内空調用と別に設けられて内部を流れる冷媒と前記バッテリへ送る送風との熱 交換により送風を冷却する熱交換器と、
を備えることを特徴とする車両用バッテリ冷却システム。
[2] 請求項 1に記載の車両用バッテリ冷却システムにお!/、て、
前記熱交換器は、エバポレータであり、車室内空調と冷媒を共用するものである、 ことを特徴とする車両用バッテリ冷却システム。
[3] 請求項 1に記載の車両用バッテリ冷却システムにお!/、て、
前記バッテリを冷却する前記熱交換器の冷媒は、バッテリ冷却用に循環させる液体 冷媒とし、
前記液体冷媒を車室内空調用の冷媒で冷却する液体冷媒用熱交換器を備えるよ うにした、
ことを特徴とする車両用バッテリ冷却システム。
[4] 請求項 1ないし請求項 3のうちのいずれかに記載の車両用バッテリ冷却システムに おいて、
前記送風機及び前記熱交換器からの冷却風を、前記バッテリへ向かう送風路と、 車室内へ向かう送風路と、に比率可変に配風可能な配風手段を備えた、
ことを特徴とする車両用バッテリ冷却システム。
[5] 請求項 1ないし請求項 4のうちのいずれかに記載の車両用バッテリ冷却システムに おいて、
前記送風機及び前記熱交換器により前記バッテリを冷却した後の冷却風を、車室 内へ向かう送風路と、車室外へ向かう排風路と、に比率可変に配風可能な配風手段 を備えた、
ことを特徴とする車両用バッテリ冷却システム。
PCT/JP2007/063779 2006-08-30 2007-07-11 Système de refroidissement d'accumulateur pour véhicule WO2008026386A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-233227 2006-08-30
JP2006233227A JP2008055990A (ja) 2006-08-30 2006-08-30 車両用バッテリ冷却システム

Publications (1)

Publication Number Publication Date
WO2008026386A1 true WO2008026386A1 (fr) 2008-03-06

Family

ID=39135673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063779 WO2008026386A1 (fr) 2006-08-30 2007-07-11 Système de refroidissement d'accumulateur pour véhicule

Country Status (2)

Country Link
JP (1) JP2008055990A (ja)
WO (1) WO2008026386A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009127292A1 (de) * 2008-04-19 2009-10-22 Daimler Ag Kühlanordnung und verfahren zum kühlen eines temperaturempfindlichen aggregats eines kraftfahrzeugs
EP2728066A1 (de) * 2012-10-30 2014-05-07 Joseph Vögele AG Baumaschine mit Maschinenkomponenten
CN104417380A (zh) * 2013-08-30 2015-03-18 观致汽车有限公司 用于车辆的电池管理系统和方法、以及包括该系统的车辆
WO2016133145A1 (ja) * 2015-02-18 2016-08-25 古河電気工業株式会社 バッテリ温調装置及びバッテリ温調システム
DE102018210010A1 (de) * 2018-06-20 2019-12-24 Robert Bosch Gmbh Kühlung eines Akkumulators eines Kraftfahrzeugs
CN111731153A (zh) * 2019-03-25 2020-10-02 株式会社斯巴鲁 车辆用电池冷却系统
CN112440829A (zh) * 2019-08-28 2021-03-05 本田技研工业株式会社 排气流路结构
CN114447471A (zh) * 2022-01-07 2022-05-06 东风柳州汽车有限公司 一种汽车、汽车电池冷却系统及冷却方法
CN111731153B (zh) * 2019-03-25 2024-05-10 株式会社斯巴鲁 车辆用电池冷却系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030892B4 (de) * 2010-07-02 2012-01-26 Visteon Global Technologies, Inc. Klimatisierungssystem für Fahrzeuge mit Batteriekühlung
JP5522264B2 (ja) * 2010-10-06 2014-06-18 日産自動車株式会社 車両用空調装置
WO2015183219A1 (en) * 2014-05-29 2015-12-03 Otokar Otomotiv Ve Savunma Sanayi Anonim Şirketi Heating system of vehicle battery
JP6465082B2 (ja) * 2016-07-29 2019-02-06 トヨタ自動車株式会社 車両構造
JP6881036B2 (ja) * 2017-05-30 2021-06-02 株式会社デンソー 車両用電源装置の冷却構造
DE102020210454A1 (de) 2019-08-27 2021-05-12 Motional AD LLC (n.d.Ges.d. Staates Delaware) Kühllösungen für autonome Fahrzeuge
DE102020121532A1 (de) 2019-08-29 2021-03-04 Motional AD LLC (n.d.Ges.d. Staates Delaware) Sensorgehäuse

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306722A (ja) * 1997-03-05 1998-11-17 Toyota Motor Corp 車両用電池冷却システム
WO2003064199A1 (fr) * 2002-01-25 2003-08-07 Zexel Valeo Climate Control Corporation Refroidisseur de batterie de vehicule
JP2004131034A (ja) * 2002-10-15 2004-04-30 Denso Corp 移動体の冷却システム
JP2004255960A (ja) * 2003-02-25 2004-09-16 Denso Corp バッテリ冷却装置
JP2005053369A (ja) * 2003-08-05 2005-03-03 Denso Corp 車両用バッテリ冷却システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306722A (ja) * 1997-03-05 1998-11-17 Toyota Motor Corp 車両用電池冷却システム
WO2003064199A1 (fr) * 2002-01-25 2003-08-07 Zexel Valeo Climate Control Corporation Refroidisseur de batterie de vehicule
JP2004131034A (ja) * 2002-10-15 2004-04-30 Denso Corp 移動体の冷却システム
JP2004255960A (ja) * 2003-02-25 2004-09-16 Denso Corp バッテリ冷却装置
JP2005053369A (ja) * 2003-08-05 2005-03-03 Denso Corp 車両用バッテリ冷却システム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009127292A1 (de) * 2008-04-19 2009-10-22 Daimler Ag Kühlanordnung und verfahren zum kühlen eines temperaturempfindlichen aggregats eines kraftfahrzeugs
US9644343B2 (en) 2012-10-30 2017-05-09 Joseph Voegele Ag Construction machine with machine component
EP2728066A1 (de) * 2012-10-30 2014-05-07 Joseph Vögele AG Baumaschine mit Maschinenkomponenten
CN104417380A (zh) * 2013-08-30 2015-03-18 观致汽车有限公司 用于车辆的电池管理系统和方法、以及包括该系统的车辆
CN104417380B (zh) * 2013-08-30 2017-04-05 观致汽车有限公司 用于车辆的电池管理系统和方法、以及包括该系统的车辆
JPWO2016133145A1 (ja) * 2015-02-18 2017-11-30 古河電気工業株式会社 バッテリ温調装置及びバッテリ温調システム
WO2016133145A1 (ja) * 2015-02-18 2016-08-25 古河電気工業株式会社 バッテリ温調装置及びバッテリ温調システム
US10525786B2 (en) 2015-02-18 2020-01-07 Furukawa Electric Co., Ltd. Battery temperature control device and battery temperature control system
DE102018210010A1 (de) * 2018-06-20 2019-12-24 Robert Bosch Gmbh Kühlung eines Akkumulators eines Kraftfahrzeugs
CN111731153A (zh) * 2019-03-25 2020-10-02 株式会社斯巴鲁 车辆用电池冷却系统
CN111731153B (zh) * 2019-03-25 2024-05-10 株式会社斯巴鲁 车辆用电池冷却系统
CN112440829A (zh) * 2019-08-28 2021-03-05 本田技研工业株式会社 排气流路结构
CN112440829B (zh) * 2019-08-28 2024-03-19 本田技研工业株式会社 排气流路结构
CN114447471A (zh) * 2022-01-07 2022-05-06 东风柳州汽车有限公司 一种汽车、汽车电池冷却系统及冷却方法
CN114447471B (zh) * 2022-01-07 2024-02-20 东风柳州汽车有限公司 一种汽车、汽车电池冷却系统及冷却方法

Also Published As

Publication number Publication date
JP2008055990A (ja) 2008-03-13

Similar Documents

Publication Publication Date Title
WO2008026386A1 (fr) Système de refroidissement d'accumulateur pour véhicule
US6332497B1 (en) Vehicular air conditioner
JP2021121542A (ja) 車両用空気調和装置
JP5949522B2 (ja) 温調装置
US11001123B2 (en) Thermal management unit and system
US9517678B2 (en) High-voltage equipment cooling system for electric vehicle and high-voltage equipment cooling method for electric vehicle
US9365093B2 (en) Vehicle
WO2008018374A1 (en) Automotive battery cooling system
JP2008054379A (ja) 車両用バッテリ冷却システム
JP7300264B2 (ja) 車両用空気調和装置
CN109941117B (zh) 电动车辆
JP2006188182A (ja) 蓄電機構の冷却装置
JP6601122B2 (ja) 車両用熱管理システム
JP2008247341A (ja) 車載発熱体の冷却装置
WO2020121737A1 (ja) 車両用空気調和装置
WO2020184146A1 (ja) 車両用空気調和装置
JP2009202773A (ja) 車両用空気調和システム
WO2009096584A1 (ja) 車両用バッテリの保護装置及び方法
US10946714B2 (en) Electrically driven vehicle
JP2020069929A (ja) 車両用空気調和装置
JP2020131846A (ja) 車両用空気調和装置
JP6712400B2 (ja) 車両用空気調温システム
KR20120135537A (ko) 친환경차량의 냉방 시스템 및 그 제어 방법
CN217374081U (zh) 一种基于余热回收的新能源汽车热管理系统及新能源汽车
WO2021192760A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10-06-2009)

122 Ep: pct application non-entry in european phase

Ref document number: 07790583

Country of ref document: EP

Kind code of ref document: A1