WO2008026245A1 - Pile à combustible - Google Patents

Pile à combustible Download PDF

Info

Publication number
WO2008026245A1
WO2008026245A1 PCT/JP2006/316931 JP2006316931W WO2008026245A1 WO 2008026245 A1 WO2008026245 A1 WO 2008026245A1 JP 2006316931 W JP2006316931 W JP 2006316931W WO 2008026245 A1 WO2008026245 A1 WO 2008026245A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
methanol
fuel
protective film
positive electrode
Prior art date
Application number
PCT/JP2006/316931
Other languages
English (en)
French (fr)
Inventor
Masami Tsutsumi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/316931 priority Critical patent/WO2008026245A1/ja
Publication of WO2008026245A1 publication Critical patent/WO2008026245A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention generally relates to a fuel cell, and more particularly to a highly safe fuel cell using methanol as a fuel.
  • the battery serving as a driving power source has also been reduced in size and weight, but the performance and functions of the portable information device have been improved. Along with the improvement, the battery is simultaneously demanded to increase its capacity.
  • lithium-ion battery which is characterized by high drive voltage and battery capacity, as a drive power source.
  • a fuel cell is actually a power generator, which generates electrons and protons by supplying fuel to the negative electrode, and reacts the protons thus formed with oxygen supplied to the positive electrode. Generate electricity.
  • a fuel cell it is possible to generate power continuously for a long time by supplying fuel and oxygen.
  • the fuel cell is replenished to recharge the secondary battery. It can be used as a drive power source for equipment like batteries
  • Fuel cells have hitherto been put into practical use as power supplies for spacecraft, and have been studied for application to distributed power supplies and large-capacity power supplies such as electric vehicles. The application of information equipment to ultra-compact drive power supplies has been studied. [0009] In such a drive power source for portable information devices, it is advantageous to use methanol that can be easily obtained as a fuel and handled easily, and it is advantageous to use direct methanol that generates electricity by direct oxidation of methanol. Fuel cells are being researched.
  • FIG. 1 shows a configuration of a direct methanol fuel cell 10 according to the related art of the present invention.
  • a direct methanol fuel cell 10 has a power generation unit 11A, 11B called MEA (membrane electrode assembly) configured as shown in FIG. 2 connected to a methanol tank 12A in a housing 10A.
  • the vaporization unit 12B has a structure arranged on both sides of the vaporization unit 12B so as to face the vaporization unit 12B.
  • the vaporization unit 12B is supplied with pure methanol or high-concentration methanol from the methanol tank 12A.
  • Methanol passage 12b and a fuel vaporization film 12c formed on the methanol passage 12b so as to face the MEA 11A or 11B and vaporize the methanol to convert it into methanol gas.
  • the fuel vaporization film 12c is made of a polymer isotropic having alcohol resistance such as methanol, for example, a non-porous material such as silicone, or a porous material such as fluorine resin.
  • air passages 10a and 10b are formed between the housing 10A and the MEA 11A and between the housing 10B and the MEA 11B, respectively. Air is introduced into the air passages 10a and 10b from a large number of openings 10c formed in the housing 10A.
  • MEA 11A, 11B includes a proton conductive solid electrolyte layer 11a, and a fuel electrode catalyst layer formed on the solid electrolyte layer 11a on the side facing the vaporization section 12B.
  • the air electrode current collector layer 1 le formed on the air electrode catalyst layer 1 Id, and the solid electrolyte layer 11 a includes, for example, a strong acid group such as a sulfone group and a phosphate group, a carboxyl group and the like.
  • Solid electrolytic phospholipids with weak acid groups, proton-conducting and non-electron-conducting are used.
  • a solid electrolyte layer 1 la a polyperfluorosulfonic acid-based resin membrane is used. Can be used.
  • the fuel electrode catalyst layer ib has a configuration in which Pt or Pt—Ru alloy fine particles are coated on a porous medium such as carbon paper together with carbon powder and a polymer that forms the electrolyte layer.
  • a Pt—Ru alloy-supported catalyst is used, and a metal mesh such as stainless steel or Ni is used for the negative electrode current collecting layer 11c.
  • the air electrode catalyst layer 1 Id has a configuration in which Pt or Pt—Ru alloy fine particles are coated on a porous medium such as carbon paper together with a carbon powder and a polymer forming an electrolyte layer.
  • a Ru alloy supported catalyst is used, and a metal mesh such as stainless steel or Ni is used for the positive electrode current collecting layer.
  • oxygen in the air supplied through the air passages 10a, 10b is a circuit between the negative current collector layer 11c and the positive current collector layer id. Is closed to oxygen ions by electrons flowing from the negative electrode middle current layer 1 lc to the positive electrode current collector layer 1 Id to generate power. Further, the oxygen ions thus formed react with protons that have passed through the solid electrolyte layer 1 la and have reached the air electrode catalyst layer 1 Id to produce water.
  • the methanol is vaporized by the fuel vaporization film 12c and supplied to the fuel electrode catalyst layer 1 lb in the form of methanol gas.
  • the problem of crossover in which methanol gas passes through the solid electrolyte layer 11a without reacting with the fuel electrode catalyst layer ib is effectively suppressed, and efficient power generation becomes possible.
  • the present invention provides a housing, a positive electrode disposed in the housing and reducing at least oxygen as an active material, and disposed in the housing, and oxidizing methanol fuel. And a solid electrolyte layer sandwiched between the positive electrode and the negative electrode, and a protective film having an opening is formed on the opposite side of the solid electrolyte layer contact surface of the positive electrode.
  • a fuel cell is provided.
  • the present invention by forming a protective film on the surface of the negative electrode, even in the case where methanol fuel wraps around the negative electrode side for some reason in the fuel cell, methanol or Even when a combustible material such as gasoline enters the negative electrode side from the outside, contact of the combustible material with the negative electrode surface, and accompanying heat generation on the negative electrode surface and ignition of the combustible material.
  • This problem can be solved without substantially impeding the contact of air with the negative electrode surface, and a highly safe fuel cell can be provided.
  • it is possible to prevent an ignition accident particularly when the detachable fuel tank is attached to or detached from the fuel cell main body.
  • FIG. 1 is a diagram showing a configuration of a direct methanol fuel cell according to a related technique of the present invention.
  • FIG. 2 is a diagram showing the configuration of the MEA used in the direct methanol fuel cell of FIG.
  • FIG. 3 is a diagram illustrating a problem that occurs in the fuel cell of FIG. 1.
  • FIG. 4A is a diagram (part 1) showing the configuration of the direct methanol fuel cell according to the first embodiment of the present invention.
  • FIG. 4B is a diagram showing the configuration of a direct methanol fuel cell according to the first embodiment of the present invention 2).
  • FIG. 4C is a diagram (No. 3) showing the configuration of the direct methanol fuel cell according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a first embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a second embodiment of the present invention.
  • 4A to 4C show the configuration of the direct methanol fuel cell 20 according to the first embodiment of the present invention.
  • the direct methanol fuel cell 20 includes ME A21A, 21B having the configuration shown in FIG. 4B in the case 20A in which the opening 20c shown in FIG. 4C is formed.
  • 1A, 21B force It is configured to be disposed on both sides of the vaporization section 22B detachably connected to an external methanol tank 22A so as to face the vaporization section 22B, and the vaporization section 22B includes:
  • the methanol passage 22b is supplied with pure methanol or high-concentration methanol from the methanol tank 22A, and is formed on the methanol passage 22b so as to face the MEA 21A or 21B. It consists of a fuel vaporization film 22c that converts to gas.
  • the fuel vaporization film 22c is a non-porous material, such as silicone, having high polymer isotropic strength such as methanol.
  • porous material such as fluorine resin.
  • air passages 20a and 20b are formed in the casing 20A, respectively.
  • the external air is introduced into the air passages 20a and 20b through the openings 20c.
  • MEA 21A, 21B includes a proton conductive solid electrolyte layer 2 la, and a fuel electrode catalyst layer (on the solid electrolyte layer 21a facing the vaporization section 22B) Negative electrode) 21b, a negative electrode current collecting layer 21c formed on the fuel electrode catalyst layer 21b, and an air electrode catalyst layer (positive electrode) formed on the solid electrolyte layer 21a on the side facing the vaporization portion 22B.
  • the solid electrolyte layer 21a for example, a solid electrolytic phospholipid having a strong acid group such as a sulfone group and a phosphoric acid group, and a weak acid group such as a force lpoxyl group, and having proton conductivity and no electron conductivity.
  • a solid electrolyte layer 21a a polyperfluorosulfonic acid-based resin membrane can be used.
  • a commercially available resin film as a registered trademark NaflonNF112 from DuPont is used as the solid electrolyte layer 21a.
  • the fuel electrode catalyst layer 21b has a configuration in which Pt or Pt—Ru alloy fine particles are coated on a porous medium such as carbon paper together with carbon powder and a polymer forming the electrolyte layer.
  • a Pt—Ru alloy supported catalyst electrode is used, and a metal mesh such as stainless steel or Ni is used for the negative electrode current collecting layer 21c.
  • TEC61E54 is used as the fuel electrode catalyst layer 21b.
  • the air electrode catalyst layer 21d a Pt-supported catalyst having a configuration in which Pt fine particles are coated on a porous medium such as carbon paper together with a carbon powder and a polymer forming an electrolyte layer is used.
  • a metal mesh such as stainless steel or Ni is used.
  • TEC1070TPM a catalyst electrode available as a trade name TEC1070TPM from Tanaka Kikinzoku Kogyo Co., Ltd. is used as the air electrode catalyst layer 21d.
  • methanol fuel having a methanol concentration of 90% or more is used.
  • methanol vaporized in the fuel vaporization film 22c is oxidized in the fuel electrode catalyst layer 2lb, and only protons generated as a result are proton conduction. Passes through the conductive solid electrolyte layer 21a and reaches the air electrode catalyst layer 21d, while electrons are collected in the negative electrode current collecting layer 21c.
  • oxygen in the air supplied through the air passages 20a and 20b closes the circuit between the negative electrode current collection layer 21c and the positive electrode current collection layer 21d.
  • the electrons flowing from the negative electrode current collecting layer 21c to the positive electrode current collecting layer 21d are reduced to oxygen ions to generate power.
  • the oxygen ions thus formed react with protons that have passed through the solid electrolyte layer 21a and reached the air electrode catalyst layer 21d to generate water.
  • the external air is forced into the air passages 20a and 20b by natural convection through the opening 20c.
  • the air passages 20a and 20b are forcibly exhausted by an exhaust means (not shown). Forcibly introduce air into the air passages 20a and 20b.
  • FIG. 5 shows in more detail the configuration of the protective film 21f in the MEA 21A or 21B shown in FIG. 4B.
  • the protective film 21f is 10 to 200 / ⁇ ⁇ , preferably on the air electrode catalyst layer 2 Id through a mesh-like positive electrode current collecting layer 21e (not shown).
  • a large number of openings 21g with a diameter of 0.5 mm, for example, in the form of a matrix It is formed.
  • FIG. 5 shows a state in which the protective film 21f covers the air electrode catalyst layer 21d through a gap in the mesh-shaped positive electrode current collecting layer 21e! / Speak.
  • Table 1 shows the results of investigating the output of the fuel cell and the presence or absence of ignition when such openings 21f are formed in the PTFE protective film 21f with various densities and accordingly with an opening ratio. It is a summary. However, as mentioned earlier, the experiment in Table 1 uses 100% methanol as the fuel. Further, in the experiment of Table 1, 100% concentration of methanol was dropped on the protective film 21f in an amount of 1 ml to check for ignition.
  • the experiment in which the aperture ratio is 100% is actually the case where the protective film 21f is not provided, but it is ignited as expected, and therefore the air electrode catalyst layer 21d of methanol droplets. It can be seen that heat is generated due to contact with the. Further, when the diameter of the opening 21g is 1. Omm, even when the opening ratio is 30 to 70%, ignition occurs regardless of the provision of the protective film 21f. Furthermore, even if the diameter of the opening 21g is 0.5 mm, it is obvious that ignition occurs at an opening ratio of 70%.
  • the opening 21g is formed with a diameter of 0.5 mm and an opening ratio of 30% or 50%, no ignition occurs. Since the ignition point of methanol is 65 ° C, the PTFE protective film 21 in which the opening 21g having a diameter of 0.5 mm is formed with an opening ratio of 30% or 50% is used in the air electrode catalyst layer 21d. It can be seen that the heat generation is suppressed to 65 ° C or less. When the aperture ratio is 30%, the output power of the fuel cell is slightly reduced.
  • the present invention in the fuel cell having the structure in which the external methanol tank 22A is detachably provided in the fuel cell main body, to prevent an ignition accident when the tank is attached or detached, or a powerful fuel This is useful for preventing ignition accidents when the battery is operated in an environment where flammable gas is handled.
  • FIG. 6 shows the configuration and operation of the protective film 41f according to the second embodiment of the present invention.
  • the same reference numerals are assigned to the portions corresponding to the portions described above, and the description is omitted.
  • the protective film 41f is a polybutyl alcohol, or a film having a property of absorbing methanol and swells, such as polyvinyl bidonididone.
  • An opening 41g similar to the opening 21g is formed.
  • the protective film 41f prevents contact between the methanol droplet and the air electrode catalyst layer 21d, and heat generation and ignition of methanol are avoided.
  • the protective film 21f or 41f can be formed not only in the form of a film but also in the form of a non-woven fabric.
  • a silicone leveling agent having oil repellency may be used as the protective film 21f.
  • the protective film 21f is formed by a coating method.
  • the present invention is particularly suitable for an external methanol tank 22 as shown in FIG. 4A.
  • a fuel cell having a structure in which A is detachably attached to the fuel cell body is useful for preventing accidents when the tank is attached or detached.

Description

明 細 書
燃料電池
技術分野
[0001] 本発明は一般に燃料電池に係り、特にメタノールを燃料とする安全性の高い燃料 電池に関する。
背景技術
[0002] 携帯電話やラップトップコンピュータなどの最近の携帯情報機器では、小型化およ び軽量化と共に、性能の向上および機能の拡大が急激に進んでいる。
[0003] このような携帯情報機器の小型化および軽量ィ匕に伴 、、駆動電源となる電池も小 型化および軽量ィ匕が図られているが、携帯情報機器の性能の向上および機能の向 上に伴い、電池には、容量増大の要請が同時に課せられている。
[0004] このような事情で、現在の携帯情報機器では、高 、駆動電圧と電池容量を特徴と するリチウムイオン電池を駆動電源として使うことが多 、。
[0005] しかし、リチウムイオン電池の性能向上にも限界があり、将来の携帯情報機器の駆 動電源に要求される、さらなる小型化、軽量化、大出力容量の要件を満たすことは困 難である。
[0006] このような状況で、リチウムイオン電池に代わる新たな駆動電源として、燃料電池が 注目されている。
[0007] 燃料電池は実際には発電装置であり、負極に燃料を供給することで電子とプロトン を生成し、このようにして形成されたプロトンを正極に供給された酸素と反応させるこ とで発電を行う。燃料電池では、燃料および酸素を供給することで長時間、連続して 発電を行うことが可能で、リチウムイオン電池のような二次電池における充電の代わり に、燃料を補給することで、二次電池と同様に機器の駆動電源として使うことができる
[0008] 燃料電池は従来、宇宙機の電源として実用化され、さらに分散電源や、電気自動 車などの大容量電源などへの応用が研究されてきた力 今日では、上記のように携 帯型情報機器の超小型駆動電源への応用が研究されて 、る。 [0009] このような携帯型情報機器の駆動電源では、燃料として容易に入手でき、取扱!、も 容易なメタノールを使うことが有利であり、メタノールの直接酸ィ匕により発電を行う直 接メタノール燃料電池が研究されて ヽる。
発明の開示
発明が解決しょうとする課題
[0010] 図 1は、本発明の関連技術による直接メタノール燃料電池 10の構成を示す。
[0011] 図 1を参照するに、直接メタノール燃料電池 10は、図 2に示す構成の MEA (membr ane electrode assembly)と称する発電部 11 A, 11Bを筐体 10A中、メタノールタンク 1 2Aに連結された気化部 12Bの両側に、前記気化部 12Bに対面するように配設した 構成を有しており、前記気化部 12Bは、前記メタノールタンク 12Aより純粋なメタノー ルあるいは高濃度メタノールが供給されるメタノール通路 12bと、前記メタノール通路 12b上に、前記 MEA11Aあるいは 11Bに対面するように形成され、前記メタノール を気化させてメタノールガスに変換する燃料気化膜 12cとより構成される。ここで、前 記燃料気化膜 12cは、メタノール等のアルコール耐性を有する高分子等力 なる例 えばシリコーンなどの非多孔質材料、あるいはフッ素榭脂などの多孔質材料よりなる
[0012] また前記筐体 10A中、前記筐体 10Aと前記 MEA11Aとの間、および前記筐体 10 Bと前記 MEA11Bとの間には、それぞれ空気通路 10a、 10bが形成されており、前 記空気通路 10a、 10bには、前記筐体 10Aに形成された多数の開口部 10cより空気 が導入される。
[0013] 図 2を参照するに、 MEA11A, 11Bは、プロトン伝導性の固体電解質層 11aと、前 記固体電解質層 11 a上、前記気化部 12Bに対面する側に形成された燃料極触媒層 l ibと、前記燃料極触媒層 l ib上に形成された負極集電層 11cと、前記固体電解質 層 11a上、前記気化部 12Bに対面する側に形成された空気極触媒層 l idと、前記空 気極触媒層 1 Id上に形成された空気極集電層 1 leとよりなり、前記固体電解質層 11 aとしては、例えばスルホン基、リン酸基などの強酸基や、カルボキシル基等の弱酸 基を有する、プロトン伝導性で、電子伝導性を有さない固体電解榭脂質が使われる。 このような前記固体電解質層 1 laとして、ポリパーフルォロスルホン酸系の榭脂膜を 使うことができる。
[0014] 一方、前記燃料極触媒層 l ibとしては、カーボンペーパーなどの多孔質媒体上に Ptあるいは Pt— Ru合金微粒子を、炭素粉末および電解質層を形成する高分子と共 に塗布した構成を有する Pt— Ru合金担持触媒が使われ、前記負極集電層 11cとし ては、ステンレススチールや Niなどの金属メッシュが使われる。同様に前記空気極触 媒層 1 Idとしては、カーボンペーパーなどの多孔質媒体上に Ptあるいは Pt—Ru合 金微粒子を、炭素粉末および電解質層を形成する高分子と共に塗布した構成を有 する Pt— Ru合金担持触媒が使われ、前記正極集電層 l ieとしては、ステンレススチ ールゃ Niなどの金属メッシュが使われる。
[0015] このような構成の直接メタノール燃料電池 10では、前記燃料気化膜 12cで気化し たメタノールが前記燃料極触媒層 1 lbにお ヽて酸化され、その結果生成したプロトン のみが、前記プロトン伝導性固体電解質層 1 laを通過して前記空気極触媒層 1 Idに 到達し、一方、電子は前記負極集電層 11cに回収される。
[0016] 一方、前記空気極触媒層 l idにおいては、前記空気通路 10a, 10bを介して供給 された空気中の酸素が、前記負極集電層 11cと正極集電層 l idの間の回路を閉じる ことにより前記負極中電層 1 lcから前記正極集電層 1 Idへと流れた電子により酸素ィ オンに還元され、発電が生じる。さらにこのようにして形成された酸素イオンは前記固 体電解質層 1 laを通過して前記空気極触媒層 1 Idに到達したプロトンと反応して水 を生じる。
[0017] このような直接メタノール酸ィ匕反応を使う直接メタノール燃料電池では、前記メタノ ールを前記燃料気化膜 12cで気化させ、メタノールガスの形で前記燃料極触媒層 1 lbに供給することにより、メタノールガスが前記固体電解質層 11aを、前記燃料極触 媒層 l ibで反応することなく通過するクロスオーバーの問題が効果的に抑制され、効 率的な発電が可能となる。
[0018] 一方、このような直接メタノール燃料電池において、図 3に示すように、何らかの原 因で、前記気化部 12Bで気化したメタノールガス力 前記空気通路 10aに回り込み、 前記 MEA11Aある ヽは 11Bの空気極触媒層 1 Idに接触すると前記空気通路 10a 中の空気と発熱反応を生じ、その結果生じる熱により、前記メタノールガスに引火して しまう恐れがある。メタノールの発火点は 65°Cである。また、かかる構成では、図 3に 示すように、前記筐体 10Aの開口部 10cを介してメタノールあるいはガソリンなどの引 火性物質が前記空気通路 10a, 10bに外部から導入されると、前記空気極触媒層 1 Idの触媒作用により、前記引火性物質の発火が生じる恐れがある。
[0019] このようメタノール燃料の発火の危険は、特にメタノールタンク 12Aを着脱自在に形 成し、燃料を必要に応じて補給できる構成の燃料電池にぉ ヽて深刻である。
課題を解決するための手段
[0020] 一の側面によれば本発明は、筐体と、前記筐体中に配設され、少なくとも酸素を活 物質として還元する正極と、前記筐体中に配設され、メタノール燃料を酸化する負極 と、前記正極と前記負極とに挟持された固体電解質層と、よりなる燃料電池であって 、前記正極の前記固体電解質層接触面の反対側に、開口部を有する保護膜が形成 されたことを特徴とする燃料電池を提供する。
発明の効果
[0021] 本発明によれば、前記負極の表面に保護膜を形成することにより、燃料電池中に ぉ 、てメタノール燃料が何らかの理由で負極側に回り込んだような場合でも、またメタ ノールやガソリンなどの可燃性物質が外部から前記負極側に侵入したような場合でも 、これらの可燃性物質の前記負極表面への接触、およびこれに伴う前記負極表面に おける発熱および前記可燃性物質の発火の問題が、前記負極表面への空気の接触 が実質的に妨げられることなく解消され、安全性の高い燃料電池を提供することが可 能になる。本発明によれば、特に着脱式の燃料タンクを燃料電池本体に着脱する際 の発火事故を防止することが可能となる。
図面の簡単な説明
[0022] [図 1]本発明の関連技術による直接メタノール燃料電池の構成を示す図である。
[図 2]図 1の直接メタノール燃料電池で使われる MEAの構成を示す図である。
[図 3]図 1の燃料電池で発生する問題を説明する図である。
[図 4A]本発明の第 1の実施形態による直接メタノール燃料電池の構成を示す図(そ の 1)である。
[図 4B]本発明の第 1の実施形態による直接メタノール燃料電池の構成を示す図(そ の 2)である。
[図 4C]本発明の第 1の実施形態による直接メタノール燃料電池の構成を示す図(そ の 3)である。
[図 5]本発明の第 1の実施形態を説明する図である。
[図 6]本発明の第 2の実施形態を説明する図である。
符号の説明
[0023] 10, 20 直接メタノール燃料電池
10A, 20 A 筐体
10a, 10b, 20a, 20b 空気通路
10c, 20c 開口部
11 A, 11B, 21A, 21B MEA
11a, 21a プロトン伝導性固体電解質
l ib, 21b 燃料極触媒層 (負極)
11c, 21c 負極集電体
l id, 21d 空気極触媒層(正極)
l ie, 21e 正極集電体
12A, 22A メタノールタンク
12B, 22B 気化部
12b, 22b 燃料通路
12c, 22c 気化膜
21f, 41d 保護膜
21g, 41g 開口部
発明を実施するための最良の形態
[0024] [第 1の実施形態]
図 4A〜4Cは、本発明の第 1の実施形態による直接メタノール燃料電池 20の構成 を示す。
[0025] 図 4Aを参照するに、前記直接メタノール燃料電池 20は、図 4Bに示す構成の ME A21A, 21Bを、図 4Cに示す開口部 20cが形成された筐体 20A中に、前記 MEA2 1A, 21B力 外部のメタノールタンク 22Aに着脱自在に連結された気化部 22Bの両 側に、前記気化部 22Bに対面するように配設した構成を有しており、前記気化部 22 Bは、前記メタノールタンク 22Aより純粋なメタノールあるいは高濃度メタノールが供 給されるメタノール通路 22bと、前記メタノール通路 22b上に、前記 MEA21Aあるい は 21Bに対面するように形成され、前記メタノールを気化させてメタノールガスに変換 する燃料気化膜 22cとより構成される。ここで、前記燃料気化膜 22cは、メタノール等 のアルコール耐性を有する高分子等力 なる例えばシリコーンなどの非多孔質材料
、あるいはフッ素榭脂などの多孔質材料よりなる。
[0026] また前記筐体 20A中、前記筐体 20Aと前記 MEA21Aとの間、および前記筐体 20 Bと前記 MEA21Bとの間には、それぞれ空気通路 20a、 20b力 前記筐体 20Aに形 成された多数の開口部 20cに連通して形成されており、前記空気通路 20a, 20bに は前記開口部 20cを介して、外部の空気が導入される。
[0027] 図 4Bを参照するに、 MEA21A, 21Bは、プロトン伝導性の固体電解質層 2 laと、 前記固体電解質層 21a上、前記気化部 22Bに対面する側に形成された燃料極触媒 層 (負極) 21bと、前記燃料極触媒層 21b上に形成された負極集電層 21cと、前記固 体電解質層 21a上、前記気化部 22Bに対面する側に形成された空気極触媒層(正 極) 21dと、前記空気極触媒層 21d上に形成された正極集電層 21eとよりなり、さらに 前記空気極触媒層 21dは、前記正極集電層 21e上に、約 100 mの厚さで形成さ れた PTFEよりなる保護膜 21fにより覆われている。
[0028] 前記固体電解質層 21aとしては、例えばスルホン基、リン酸基などの強酸基や、力 ルポキシル基等の弱酸基を有する、プロトン伝導性で、電子伝導性を有さない固体 電解榭脂質が使われる。このような前記固体電解質層 21aとして、ポリパーフルォロ スルホン酸系の榭脂膜を使うことができる。本実施形態では、デュポン社より登録商 標 NaflonNF112として市販の榭脂膜を前記固体電解質層 21aとして使用する。
[0029] 一方、前記燃料極触媒層 21bとしては、カーボンペーパーなどの多孔質媒体上に Ptあるいは Pt— Ru合金微粒子を、炭素粉末および電解質層を形成する高分子と共 に塗布した構成を有する Pt—Ru合金担持触媒電極が使われ、また前記負極集電 層 21cとしては、ステンレススチールや Niなどの金属メッシュが使われる。本実施形 態では、前記燃料極触媒層 21bとして、田中貴金属工業株式会社より商品名 TEC6 1E54として入手可能な触媒電極を使って 、る。
[0030] 同様に前記空気極触媒層 21dとしては、カーボンペーパーなどの多孔質媒体上に Pt微粒子を、炭素粉末および電解質層を形成する高分子と共に塗布した構成を有 する Pt担持触媒が使われ、前記正極集電層 21eとしては、ステンレススチールや Ni などの金属メッシュが使われる。本実施形態では、前記空気極触媒層 21dとして、田 中貴金属工業株式会社より商品名 TEC1070TPMとして入手可能な触媒電極を使 つている。
[0031] さらに本実施形態の直接メタノール燃料電池 20では、メタノール濃度が 90%以上 のメタノール燃料を使って 、る。
[0032] このような構成の直接メタノール燃料電池 20では、前記燃料気化膜 22cで気化し たメタノールが前記燃料極触媒層 2 lbにおいて酸ィ匕され、その結果生成したプロトン のみが、前記プロトン伝導性固体電解質層 21aを通過して前記空気極触媒層 21dに 到達し、一方、電子は前記負極集電層 21cに回収される。
[0033] 一方、前記空気極触媒層 21dにおいては、前記空気通路 20a, 20bを介して供給 された空気中の酸素が、前記負極集電層 21cと正極集電層 21dの間の回路を閉じる ことにより前記負極集電層 21cから前記正極集電層 21dへと流れた電子により酸素ィ オンに還元され、発電が生じる。さらにこのようにして形成された酸素イオンは前記固 体電解質層 21aを通過して前記空気極触媒層 21dに到達したプロトンと反応して水 を生じる。なお、上記の構成では、外部の空気は前記空気通路 20a, 20bに前記開 口部 20cを介して自然対流により導入される力 前記空気通路 20a、 20bを図示しな い排気手段により強制排気し、空気を前記空気通路 20a, 20bに強制的に導入して ちょい。
[0034] このような直接メタノール酸ィ匕反応を使う直接メタノール燃料電池では、前記メタノ ールを前記燃料気化膜 22cで気化させ、メタノールガスの形で前記燃料極触媒層 2 lbに供給することにより、メタノールガスが前記固体電解質層 21aを、前記燃料極触 媒層 21bで反応することなく通過するクロスオーバーの問題が効果的に抑制され、効 率的な発電が可能となる。 [0035] 図 5は、前記図 4Bの MEA21Aあるいは 21Bにおける前記保護膜 21fの構成をより 詳細に示す。
[0036] 図 5を参照するに、前記保護膜 21fは、メッシュ状の正極集電層 21e (図示せず)を 介して前記空気極触媒層 2 Id上に、 10〜200 /ζ πι、好ましくは 100 /z m以下の厚さ に形成された、メタノールやガソリンなどの引火性物質に対して大きな接触角を示す PTFE膜よりなり、例えば径が 0. 5mmの開口部 21gが多数、例えばマトリクス状に形 成されている。ここで図 5は、前記保護膜 21fが、前記メッシュ状の正極集電層 21eの 隙間を介して、前記空気極触媒層 21dを覆って ヽる状態を示して!/ヽる。
[0037] そこで、このような保護膜 21fを空気極触媒層 21d上に有する構成の直接メタノー ル燃料電池において、メタノールあるいはガソリンなどの引火性物質が外部力 前記 空気通路 20aあるいは 20bに侵入した場合でも、前記引火性物質は前記保護膜 21f 上において、 90° を超える接触角を有する液滴 2 lhを形成し、前記開口部 21fに侵 入することができない。
[0038] その結果、前記引火性物質が空気極触媒層 21dに接触して発熱し、発火を生じる 問題が解決される。
[0039] 以下の表 1は、このような開口部 21fを前記 PTFE保護膜 21f中に、様々な密度、 従って開口率で形成した場合の、燃料電池の出力と発火の有無を調べた結果をまと めたものである。ただし先にも述べたように、表 1の実験では、燃料として 100%濃度 のメタノールを使用している。また表 1の実験では、前記保護膜 21f上に 100%濃度 のメタノールを lmlの量だけ滴下して発火の有無を調べている。
[0040] [表 1]
穴径 (mm) 開口率 (%) 個数 出力 (mW/cm2) 発火の有無 なし 100 一 36.0 有
Φ 0.5 30 1375 31.5 無
if 50 2290 34.3 冊 /"、 if 70 3210 35.8 有
Φ 1.0 30 344 32.5 有
if 50 573 35.0 有
〃 70 803 35.9 有
表 1を参照するに、開口率を 100%とした実験は、実際には前記保護膜 21fを設け なかった場合であるが、予期されたように発火、従ってメタノール液滴の空気極触媒 層 21dへの接触による発熱を生じているのがわかる。また前記開口部 21gの径を 1. Ommとした場合には、開口率が 30〜70%のいずれの場合においても、前記保護膜 21fを設けているにもかかわらず発火が生じている。さらに前記開口部 21gの径が 0. 5mmであっても、開口率が 70%では、発火が生じているのがわ力る。
[0041] これに対し、前記開口部 21gを 0. 5mmの径で、かつ 30%あるいは 50%の開口率 で形成した場合には発火は生じていない。メタノールの発火点は 65°Cであることから 、このように径が 0. 5mmの開口部 21gを 30%あるいは 50%の開口率で形成した P TFE保護膜 21では、空気極触媒層 21dにおける発熱が 65°C以下に抑制されている ことがわかる。前記開口率が 30%の場合、燃料電池の出力は多少低下する力 その 程度はわずかである。
[0042] 本発明は特に、図 4Aに示したように、外部メタノールタンク 22Aを燃料電池本体に 着脱自在に設けた構成の燃料電池においてタンク着脱時の発火事故を防ぐのに、 あるいは力かる燃料電池を、可燃性ガスを取り扱う環境下において運転する場合に 発火事故を防ぐのに、有用である。 [第 2の実施形態]
図 6は、本発明の第 2の実施形態による保護膜 41fの構成および作用を示す。ただ し図 6中、先に説明した部分に対応する部分には同一の参照符号を付し、説明を省 略する。
[0043] 図 6を参照するに、前記保護膜 41fは、ポリビュルアルコールある ヽはポリビニルビ 口リドンなど、メタノールを吸収して膨潤する性質を有する膜であり、前記保護膜 41f 中には、前記開口部 21gと同様な開口部 41gが形成されている。
[0044] 従って、メタノール液滴 21hが前記保護膜 41f上に落下した場合、前記保護膜 41f は膨潤を生じ、その部分において開口部 41fが塞がれる。
[0045] これにより、前記保護膜 41fはメタノール液滴と空気極触媒層 21dの接触を阻止し、 発熱およびメタノールの発火が回避される。
[0046] なお上記の各実施形態にぉ 、て、前記保護膜 21fあるいは 41fは、フィルム形状の みならず、不織布の形で形成することも可能である。
[0047] なお、本発明において前記保護膜 21fとして、撥油性を有するシリコーン系レベリン グ剤を使うことも可能である。この場合には、前記保護膜 21fは、コーティング法により
、 以上、 10 m以下の厚さに形成するのが好ましい。
[0048] 先にも述べたように、本発明は特に、図 4Aに示したように、外部メタノールタンク 22
Aを燃料電池本体に着脱自在に設けた構成の燃料電池にぉ 、て、タンク着脱時の 事故を防ぐのに有用である。
[0049] 以上、本発明を好ましい実施形態について説明したが、本発明は力かる特定の実 施形態に限定されるものではなく、特許請求の範囲に記載した要旨内にお 、て様々 な変形 '変更が可能である。

Claims

請求の範囲
[I] 筐体と、
前記筐体中に配設され、少なくとも酸素を活物質として還元する正極と、 前記筐体中に配設され、メタノール燃料を酸化する負極と、
前記正極と前記負極とに挟持された固体電解質層と、
よりなる燃料電池であって、
前記正極の前記固体電解質層接触面の反対側に、開口部を有する保護膜が形成 されたことを特徴とする燃料電池。
[2] 前記保護膜は、前記メタノール燃料に対する接触角が 90° 以上である請求項 1記 載の燃料電池。
[3] 前記保護膜は、ポリテトラフルォロエチレン膜よりなる請求項 1記載の燃料電池。
[4] 前記保護膜中、前記開口部の占める割合は、面積で 50%以下、 30%以上である 請求項 1記載の燃料電池。
[5] 前記保護膜は、撥油性シリコーン系レべリング剤である請求項 1記載の燃料電池。
[6] 前記保護膜は、メタノールを吸収する膜である請求項 1記載の燃料電池。
[7] 前記保護膜は、ポリビュルアルコールあるいはポリビュルピロリドンよりなることを特 徴とする請求項 6記載の燃料電池。
[8] 前記メタノール燃料は、メタノール濃度が 90%以上である請求項 1記載の燃料電池
[9] 前記メタノール燃料は、前記筐体内に設けられたメタノール通路に、外部のタンク から供給され、前記外部のタンクは前記メタノール通路に対して着脱自在に設けられ て ヽることを特徴とする請求項 1記載の燃料電池。
[10] 前記メタノール通路は、前記筐体中、前記負極に対向して形成され、前記メタノー ル燃料を気化させる気化膜を担持することを特徴とする請求項 9記載の燃料電池。
[II] 前記筐体は、空気導入開口部が形成されており、前記正極は、前記空気導入開口 部に面して形成されていることを特徴とする請求項 1記載の燃料電池。
PCT/JP2006/316931 2006-08-29 2006-08-29 Pile à combustible WO2008026245A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/316931 WO2008026245A1 (fr) 2006-08-29 2006-08-29 Pile à combustible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/316931 WO2008026245A1 (fr) 2006-08-29 2006-08-29 Pile à combustible

Publications (1)

Publication Number Publication Date
WO2008026245A1 true WO2008026245A1 (fr) 2008-03-06

Family

ID=39135537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316931 WO2008026245A1 (fr) 2006-08-29 2006-08-29 Pile à combustible

Country Status (1)

Country Link
WO (1) WO2008026245A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115003A1 (en) * 2018-12-06 2020-06-11 Widex A/S A direct alcohol fuel cell
US20220029186A1 (en) * 2018-12-06 2022-01-27 Widex A/S A direct alcohol fuel cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274174A (ja) * 1991-03-01 1992-09-30 Aisin Aw Co Ltd 燃料電池
WO2003069709A1 (en) * 2002-02-14 2003-08-21 Hitachi Maxell, Ltd. Liquid fuel cell
WO2003071627A1 (en) * 2002-02-19 2003-08-28 Mti Microfuel Cells, Inc. Simplified direct oxidation fuel cell system
JP2003282131A (ja) * 2002-03-20 2003-10-03 Samsung Sdi Co Ltd 通気型直接メタノール燃料電池セルパック
JP2004108609A (ja) * 2002-09-13 2004-04-08 Hitachi Taga Technol Co Ltd 空気清浄機
JP2006156014A (ja) * 2004-11-26 2006-06-15 Konica Minolta Holdings Inc 燃料電池用燃料シート及び燃料電池用燃料シート包装体並びに燃料電池用燃料シートを用いた燃料電池発電システム
JP2006190673A (ja) * 2004-12-31 2006-07-20 Samsung Sdi Co Ltd 直接液体燃料電池及び直接液体燃料電池を備えた携帯用の電子装置
WO2006075595A1 (ja) * 2005-01-11 2006-07-20 Kabushiki Kaisha Toshiba 燃料電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274174A (ja) * 1991-03-01 1992-09-30 Aisin Aw Co Ltd 燃料電池
WO2003069709A1 (en) * 2002-02-14 2003-08-21 Hitachi Maxell, Ltd. Liquid fuel cell
WO2003071627A1 (en) * 2002-02-19 2003-08-28 Mti Microfuel Cells, Inc. Simplified direct oxidation fuel cell system
JP2003282131A (ja) * 2002-03-20 2003-10-03 Samsung Sdi Co Ltd 通気型直接メタノール燃料電池セルパック
JP2004108609A (ja) * 2002-09-13 2004-04-08 Hitachi Taga Technol Co Ltd 空気清浄機
JP2006156014A (ja) * 2004-11-26 2006-06-15 Konica Minolta Holdings Inc 燃料電池用燃料シート及び燃料電池用燃料シート包装体並びに燃料電池用燃料シートを用いた燃料電池発電システム
JP2006190673A (ja) * 2004-12-31 2006-07-20 Samsung Sdi Co Ltd 直接液体燃料電池及び直接液体燃料電池を備えた携帯用の電子装置
WO2006075595A1 (ja) * 2005-01-11 2006-07-20 Kabushiki Kaisha Toshiba 燃料電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115003A1 (en) * 2018-12-06 2020-06-11 Widex A/S A direct alcohol fuel cell
US20220029186A1 (en) * 2018-12-06 2022-01-27 Widex A/S A direct alcohol fuel cell

Similar Documents

Publication Publication Date Title
JP4637596B2 (ja) 燃料電池システム
WO2009139370A1 (ja) 燃料電池および燃料電池層
JPWO2004075331A1 (ja) 燃料電池およびその製造方法
WO2003069709A1 (en) Liquid fuel cell
JP5256678B2 (ja) 燃料電池
JP4959671B2 (ja) 燃料電池システムおよびそれを備えた電子機器
WO2008026245A1 (fr) Pile à combustible
JP2004127672A (ja) 燃料電池および燃料電池の駆動方法
JP2008243572A (ja) 集電体及び燃料電池
JP2004127833A (ja) 燃料電池
WO2010109917A1 (ja) 固体高分子形燃料電池スタック
JP2006244715A (ja) 複合膜およびそれを用いた燃料電池
JP2004172111A (ja) 液体燃料電池およびそれを用いた発電装置
JP2004095208A (ja) 燃料電池
WO2004027916A1 (ja) 液体燃料供給型燃料電池
JP4839625B2 (ja) 燃料電池
JP4608958B2 (ja) 燃料電池
JP4678108B2 (ja) 直接ジメチルエーテル形燃料電池
JP2006344414A (ja) 燃料電池システムおよび燃料カートリッジ
JP2012014873A (ja) 膜電極接合体および燃料電池
KR100599684B1 (ko) 연료 전지용 개질기 및 이를 포함하는 연료 전지 시스템
JP4982951B2 (ja) 燃料電池
JP5504498B2 (ja) 燃料電池、燃料電池システムおよび発電方法
JP2010160934A (ja) 燃料電池システムおよび電子機器
JP2004362966A (ja) 燃料電池および燃料供給方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06796911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06796911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP