WO2008023790A1 - Dispositif de communication sans fil et procédé de codage à détection d'erreur - Google Patents

Dispositif de communication sans fil et procédé de codage à détection d'erreur Download PDF

Info

Publication number
WO2008023790A1
WO2008023790A1 PCT/JP2007/066444 JP2007066444W WO2008023790A1 WO 2008023790 A1 WO2008023790 A1 WO 2008023790A1 JP 2007066444 W JP2007066444 W JP 2007066444W WO 2008023790 A1 WO2008023790 A1 WO 2008023790A1
Authority
WO
WIPO (PCT)
Prior art keywords
error detection
ldpc
wireless communication
encoding
check matrix
Prior art date
Application number
PCT/JP2007/066444
Other languages
English (en)
French (fr)
Inventor
Kenichi Kuri
Isamu Yoshii
Akihiko Nishio
Masaru Fukuoka
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/438,679 priority Critical patent/US8225169B2/en
Priority to EP07792973A priority patent/EP2056465A4/en
Priority to JP2008530964A priority patent/JP5020247B2/ja
Publication of WO2008023790A1 publication Critical patent/WO2008023790A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6306Error control coding in combination with Automatic Repeat reQuest [ARQ] and diversity transmission, e.g. coding schemes for the multiple transmission of the same information or the transmission of incremental redundancy

Definitions

  • the present invention relates to a radio communication apparatus and an error detection encoding method.
  • the ITu— International Telecommunication Union Radio Communication Sector
  • IMT-Advanced fourth-generation mobile communication system that realizes lGbps high-speed transmission in the downstream springs! /
  • LDPC Low-Density Parity-Check
  • LDPC codes can be parallelized when LDPC codes are used as error correction codes, LDPC codes can reduce the speed of decoding processes compared to turbo codes that require repeated decoding processes in series.
  • the wireless communication device on the data receiving side receives an error detection result of received data, that is, ACK (AC nowled gment) or NACK (Negative AC Nowledgment) is reported to the data transmission side Izumisen communication device.
  • ACK AC nowled gment
  • NACK Negative AC Nowledgment
  • Some use error detection codes such as (Cyclic Redundancy Check) codes, and some use (2) syndrome values.
  • the syndrome value is a vector value generated by multiplying the LDPC code parity check matrix and the hard decision value (decoded bit string) of the received data. Is a parameter indicating the degree of data error. In error detection using syndrome values, if all syndrome values are zero, it is determined that there is no error in the received data and an ACK is reported. If any syndrome value is not zero, there is an error in the received data. Judge that it exists and report NACK.
  • Non-Patent Document 1 Low-Density Parity-Check (LDPC) Coded OFDM Systems-Coding / Decoding Over Time and Frequency Domains-, Hisashi FUTA I and Tomoaki OH TSU I, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, TECHNICAL REPORT OF IEICE, NS2001-91, RCS2001-92, pp.79-84, 2001-07
  • LDPC Low-Density Parity-Check
  • Non-Patent Document 2 Rl- 051383, "Rate-compatible LDPC codes with low complexity & de coder", Mitsubishi Electric Corporation, NTT DoCoMo, 3GPP TSG-RAN WG1 # 43 Meeting contribution, 2005/11
  • the LDPC encoded data generated by the LDPC code is composed of systematic bits and NORMAL bits.
  • the error detection code only targets systematic bits. Error detection can be performed independently only for systematic bits that have been error-corrected and decoded, and accurate error detection can be performed.
  • the error detection code is a redundant bit, which causes a decrease in throughput. In particular, when the code block size (that is, the transmission bit string length) is small, this is a major factor in reducing the error detection code power S throughput.
  • An object of the present invention is to provide a radio communication apparatus and an error detection coding method capable of accurately performing error detection while suppressing a decrease in throughput when an LDPC code is used as an error correction code. It is.
  • the wireless communication apparatus of the present invention is configured to perform error detection encoding only on bits in which the column weight of an LDPC encoding check matrix is less than a threshold in a transmission bit string, and obtain first encoded data Encoding means, second encoding means for obtaining second encoded data by performing LDPC encoding on the first encoded data using the check matrix, and transmitting means for transmitting the second encoded data
  • the structure which comprises these is taken.
  • FIG. 1 is a block configuration diagram of a wireless communication device on a data transmission side according to an embodiment of the present invention.
  • FIG. 2 is a parity check matrix according to an embodiment of the present invention.
  • FIG. 3 is a column weight distribution of a parity check matrix according to an embodiment of the present invention.
  • FIG. 4 Column weight vs. BER (simulation result) according to one embodiment of the present invention
  • FIG. 5 is a diagram showing an encoding process according to an embodiment of the present invention.
  • FIG. 6 is a block configuration diagram of a wireless communication device on the data receiving side according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing a syndrome value calculation method according to an embodiment of the present invention.
  • FIG. 8 is a process flow diagram of error detection processing according to an embodiment of the present invention.
  • FIG. 1 shows the configuration of radio communication apparatus 100 on the data transmission side according to the present embodiment.
  • a transmission bit string is input to CRC encoding section 101 in units of code block size.
  • the CRC coding unit 101 receives the column weight of the LDPC code parity check matrix (hereinafter simply referred to as the parity check matrix) from the LDPC coding part 102. Then, CRC encoding section 101 performs CRC encoding on only a part of the transmission bit string based on the column weight of the check matrix to obtain CRC encoded data. This CRC encoded data is output to LDPC encoding section 102.
  • the details of the CRC encoding process in CRC encoding section 101 will be described later.
  • LDPC encoding section 102 performs LDPC encoding on CRC encoded data using the same check matrix as the check matrix used in CRC encoding in CRC encoding section 101. Obtain LDPC encoded data. This LDPC encoded data is output to retransmission control section 103.
  • Retransmission control section 103 outputs LDPC encoded data as it is to modulation section 104 and stores it for a predetermined time. Then, when ACK is input from decoding section 109, retransmission control section 103 discards LDPC encoded data corresponding to the ACK. On the other hand, when NACK is input from decoding section 109, retransmission control section 103 outputs a part of the LDPC encoded data corresponding to the NACK to modulation section 104 again. In this way, ARQ is applied to LDPC encoded data.
  • Modulation section 104 modulates LDPC encoded data to generate a data symbol, and outputs the data symbol to radio transmission section 105.
  • Radio transmission section 105 performs transmission processing such as D / A conversion, amplification and up-conversion on the data symbol, and transmits the data symbol to radio communication apparatus on the data reception side from antenna 106
  • the wireless reception unit 107 receives a control signal transmitted from the wireless communication device on the data reception side via the antenna 106, and performs reception processing such as down-conversion and A / D conversion on the control signal. And output to demodulation section 108.
  • This control signal includes ACK or NACK reported from the wireless communication device on the data receiving side.
  • Demodulation section 108 demodulates the control signal and outputs it to decoding section 109.
  • Decoding section 109 decodes the control signal and outputs ACK or NACK included in the control signal to retransmission control section 103.
  • FIG. 2 shows an example of a 16 ⁇ 24 check matrix.
  • the parity check matrix is M rows X
  • Each column of the parity check matrix corresponds to each bit of the LDPC encoded data.
  • LDPC encoding is performed using the parity check matrix shown in Fig. 2, 24-bit LDPC encoded data can be obtained.
  • the number of '1's included in each column in the parity check matrix is referred to as column weight. Therefore, in the parity check matrix shown in Fig. 2, the ⁇ IJ weight of the first ⁇ IJ is 11, and the column weight of the second column is 9. The same applies to the third to 24th columns.
  • the distribution of column weights in the parity check matrix of FIG. 2 is as shown in FIG.
  • the first bit has a ⁇ IJ weight of 11
  • the second bit has a ⁇ IJ weight of 9.
  • Figure 4 shows the simulation results.
  • Decoding times Shows BER for each column weight when 30 times.
  • bits with small column weights are more likely to be erroneous than bits with large column weights.
  • the fourth to sixth bits with a column weight of 5 are more erroneous than the first to third bits with column weights of 11, 9, and 10, respectively. It can be said that it is easy. Therefore, in the wireless communication device on the data receiving side, if there is no error in the 4th to 6th bits, there is inevitably no error in the 1st to 3rd bits. Therefore, in this case, in the wireless communication device on the data transmission side, it is sufficient to perform CRC encoding only for the 4th to 6th bits among the 1st to 6th bits.
  • CRC encoding section 101 transmits the input transmission according to the distribution of column weights shown in FIG. CRC coding is performed only for bits in the bit string whose check matrix column weight is less than the threshold. More specifically, the CRC encoding unit 101 performs CRC encoding shown in FIG. 5 on the transmission bit string.
  • the transmission bit string length (that is, the code block size) is assumed to be 6 bits to simplify the description.
  • CRC encoding section 101 has the column weight of the parity check matrix (FIG. 2) out of transmission bit sequence '101101'.
  • the threshold here is obtained by (C + C) / 2 (rounded down to the nearest decimal point) max mm
  • the C and C are the maximum max mm of the column weights corresponding to each bit of the transmitted bit sequence.
  • x 2 + x + 1 is used as a generator polynomial in CRC encoding.
  • LDPC encoding section 102 performs LDPC encoding using the parity check matrix shown in FIG. 2 on CRC encoded data '10110110', and an LDPC code composed of systematic bits and parity bits Encoded data, specifically, LDPC encoded data (second encoded data) shown in FIG. 5 is obtained.
  • the CRC bit is added only in the systematic bit and not in the NORMAL bit. Therefore, the radio communication apparatus on the data receiving side performs error correction decoding. It is possible to perform error detection independently for only systematic bits. Therefore, in a situation where there is an error in the parity bit, but there is no error in the systematic bit, that is, there is no need for retransmission, a NACK is reported to the wireless communication device 100 on the data transmission side and a wasteful retransmission is performed. Can be prevented. Therefore, according to the present embodiment, it is possible to prevent a decrease in throughput due to the occurrence of useless retransmissions.
  • one of the transmission bit strings in which the column weight of the check matrix is small is small.
  • CRC coding is performed for only a part of bits, that is, bits that are prone to error, so that the number of CRC bits can be reduced compared with the case where CRC coding is performed for all transmission bit strings. . Therefore, according to the present embodiment, since it is possible to reduce the overhead of CRC bits, a decrease in throughput due to the addition of CRC bits can be minimized.
  • bits with large column weights are not prone to error
  • bits that are prone to error according to the distribution of column weights of the check matrix, that is, the degree of error occurrence are not prone to error
  • bits that are prone to error according to the distribution of column weights of the check matrix that is, the degree of error occurrence, as in this embodiment. Even if CRC coding is performed only on the target, the error detection rate does not decrease and accurate error detection can be performed.
  • parity check matrix shown in FIG. 2 is an example, and the parity check matrix that can be used to implement the present invention is not limited to the parity check matrix shown in FIG.
  • the threshold value set in CRC encoding section 101 is not limited to the above, and the threshold value may be set based on, for example, a simulation result.
  • FIG. 6 shows the configuration of radio communication apparatus 600 on the data receiving side according to the present embodiment.
  • wireless reception unit 602 receives the data symbol, which is also transmitted from wireless communication device 100 on the data transmission side (FIG. 1), via antenna 601 and receives the received data. Then, it performs reception processing such as down-conversion and A / D conversion, and outputs the result to the decoding unit 603.
  • Demodulation section 603 demodulates the received data and outputs it to LDPC decoding section 604.
  • LDPC decoding section 604 uses the same check matrix IJ (Fig. 2) as the check matrix used in LDPC encoding section 102 of radio communication apparatus 100 (Fig. 1) on the data transmission side for received data. LDPC decoding is performed to obtain a systematic bit string.
  • the LDPC decoding unit 604 performs iterative decoding according to an LDPC decoding algorithm such as Sum-product decoding or Min-Sum decoding.
  • the systematic bit string subjected to hard decision after decoding is output to error detection section 605.
  • LDPC decoding section 604 multiplies the check matrix and the decoded bit string (systematic bit + nority bit) after hard decision obtained in each iteration. To calculate the syndrome value. Here, 16 syndrome values are obtained. LDPC decoding section 604 obtains the sum of these syndrome values and outputs the sum to error detection section 605.
  • LDPC decoding section 604 outputs the column weight of the check matrix to error detection section 605.
  • Error detection section 605 performs error detection by CRC on systematic bits.
  • the error detection unit 605 generates a NACK when the error is detected in the systematic bit as a result of the error detection and outputs it to the encoding unit 606, and generates an ACK when there is no error in the systematic bit.
  • the data is output to the encoding unit 606.
  • Error detection section 605 outputs a systematic bit string as a received bit string. Note that details of the error detection processing in the error detection unit 605 will be described later.
  • Encoding section 606 encodes ACK or NACK and outputs the result to modulation section 607.
  • Modulation section 607 modulates ACK or NACK to generate a control signal and outputs the control signal to radio transmission section 608.
  • Radio transmission section 608 performs transmission processing such as D / A conversion, amplification and up-conversion on the control signal, and transmits the result from antenna 601 to radio communication apparatus 100 on the data transmission side (Fig. 1).
  • error detection section 605 performs error detection processing according to the flowchart shown in FIG.
  • the sum of syndrome values is compared with a predetermined threshold A.
  • This threshold value A is determined according to the length of the systematic bit string, and a larger value is set as the systematic bit string length becomes longer. For example, systematic bit string length A threshold value A obtained by multiplying by a predetermined value 0.025 is set.
  • NACK is generated without performing error detection.
  • the time can be reduced and the retransmission delay can be reduced.
  • error detection is performed only on some bits of the systematic bit string that have a small column weight of the check matrix, that is, bits that are prone to error, so that systematic Compared to error detection for all bits, the processing time required for error detection can be reduced and the ARQ RTT (Round Trip Time) can be reduced.
  • radio communication apparatus 600 on the data reception side can be used not only when the wireless communication apparatus performs CRC coding on only a part of the transmission bit string, but also when CRC coding is performed on the entire transmission bit string.
  • the sum of syndrome values may be calculated by the LDPC decoding unit 604, and the error detection unit 605 may obtain the sum of syndrome values instead of the LDPC decoding unit 604.
  • the threshold A and the threshold B set in the error detection unit 605 are not limited to those described above. For example, thresholds may be set based on simulation results.
  • the error detection code usable in the present invention is not limited to a CRC code.
  • the radio communication device 100 (Fig. 1) on the data transmission side is provided in the radio communication base station device
  • the radio communication device 600 (Fig. 6) on the data reception side is provided in the radio communication mobile station device.
  • the wireless communication device 100 (FIG. 1) on the data transmission side may be provided in the wireless communication mobile station device
  • the wireless communication device 600 (FIG. 6) on the data reception side may be provided in the wireless communication base station device.
  • the radio communication mobile station apparatus may be referred to as UE, and the radio communication base station apparatus may be referred to as Node B.
  • Each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Here, it may be called IC, system LSI, super LSI, unoretra LSI, depending on the difference in power integration of LSI.
  • circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • FPGA Field Programmable Gate Array
  • a usable processor may be used.
  • the present invention can be applied to a mobile communication system and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

明 細 書
無線通信装置および誤り検出符号化方法
技術分野
[0001] 本発明は、無線通信装置および誤り検出符号化方法に関する。
背景技術
[0002] 第 3世代の移動体通信サービスの開始に伴い、最近、データ通信や映像通信など のマルチメディア通信が盛んになりつつある。よって今後はさらにデータサイズが増 大することが予想され、移動体通信サービスに対するデータレートの高速化への要 求は高まってくるものと予想される。
[000J] そ で、 ITu— (International Telecommunication Union Radio Communication Se ctor)では、下り回泉での lGbpsの高速伝送を実現すベぐ IMT-Advancedと呼ばれる 第 4世代移動体通信システムが検討されて!/、る。
[0004] このような高速伝送を実現するための誤り訂正符号として、 LDPC (Low-Density Pa rity-Check;低密度パリティ検査)符号が注目されて!/、る(非特許文献 1参照)。誤り 訂正符号として LDPC符号を用いると復号処理を並列化できるため、 LDPC符号は 、復号処理を直列的に繰り返し行う必要があるターボ符号に比べ復号処理を高速化 すること力 Sでさる。
[0005] また、 1つの符号化器および 1つの復号器によって複数の符号化率に対応できる Ra te-Compatible LDPC符号につ!/、ての検討も行われて!/、る(非特許文献 2参照)。
[0006] 一方、移動体通信に ARQ (Automatic Repeat reQuest)を適用する場合、データ受 信側の無線通信装置は、受信データの誤り検出結果、すなわち、 ACK (AC nowled gment)または NACK (Negative AC nowledgment)をデータ送信側の無泉通信装置 へ報告する。
[0007] ここで、誤り訂正符号に LDPC符号を用いた場合の誤り検出方法として、(l) CRC
(Cyclic Redundancy Check)符号等の誤り検出符号を用いるものと、(2)シンドローム 値を利用したものとがある。シンドローム値とは、 LDPC符号の検査行列と受信デー タの硬判定値 (復号ビット列)とを掛け合わせて生成されるベクトル値であり、受信デ ータの誤りの度合いを示すパラメータである。シンドローム値を利用した誤り検出では 、すべてのシンドローム値がゼロであった場合に受信データに誤りが無いと判定して ACKを報告し、いずれかのシンドローム値がゼロでない場合に受信データに誤りが 有ると判定して NACKを報告する。
非特許文献 1 : Low-Density Parity-Check (LDPC) Coded OFDM Systems - Coding/ Decoding Over Time and Frequency Domains -, Hisashi FUTA I and Tomoaki OH TSU I, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNIC ATION ENGINEERS, TECHNICAL REPORT OF IEICE, NS2001-91, RCS2001-92, pp.79-84, 2001-07
非特許文献 2 : Rl- 051383, "Rate-compatible LDPC codes with low complexity & de coder", Mitsubishi Electric Corporation, NTT DoCoMo, 3GPP TSG-RAN WG1 #43 Meeting寄書, 2005/11
発明の開示
発明が解決しょうとする課題
[0008] ここで、 LDPC符号により生成される LDPC符号化データはシステマチックビットと ノ リティビットとから構成される。
[0009] 誤り訂正符号に LDPC符号を用い、誤り検出方法に誤り検出符号によるものを採 用した場合、誤り検出符号はシステマチックビットのみを対象とするため、データ受信 側の無線通信装置では、誤り訂正復号されたシステマチックビットのみに対して独立 に誤り検出を行うことができ、正確な誤り検出を行うことができる。一方で、誤り検出符 号は冗長ビットであるため、スループットを低下させる原因となる。特に、コードブロッ クサイズ (つまり、送信ビット列長)が小さい場合には、誤り検出符号力 Sスループット低 下の大きな要因となる。
[0010] これに対し、誤り訂正符号に LDPC符号を用い、誤り検出方法にシンドローム値を 利用したものを採用した場合、誤り検出符号は不要となるため、スループットの低下 を防ぐことができる。また、データ受信側の無線通信装置では、誤り訂正復号と誤り検 出とを同時に行うことができるため、処理効率を高めることができる。一方で、 LDPC 符号ではシステマチックビットおよびパリティビットの双方を用いて復号処理が行われ るため、誤り検出方法にシンドローム値を利用したものを採用した場合には、システマ チックビットのみに対して独立に誤り検出を行うことはできない。よって、ノ リティビット には誤りが有る力 システマチックビットには誤りが無い状況、すなわち、再送の必要 がなレ、状況におレ、て、データ送信側の無線通信装置へ NACKが報告され無駄な再 送が発生してしまう。この結果、スループットが低下してしまう。
[0011] 本発明の目的は、誤り訂正符号に LDPC符号を用いた場合に、スループットの低 下を抑えつつ精度良く誤り検出を行うことができる無線通信装置および誤り検出符号 化方法を提供することである。
課題を解決するための手段
[0012] 本発明の無線通信装置は、送信ビット列のうち LDPC符号化の検査行列の列重み が閾値未満のビットのみに対して誤り検出符号化を行って第 1符号化データを得る第 1符号化手段と、前記第 1符号化データに対して前記検査行列を用いた LDPC符号 化を行って第 2符号化データを得る第 2符号化手段と、前記第 2符号化データを送信 する送信手段と、を具備する構成を採る。
発明の効果
[0013] 本発明によれば、誤り訂正符号に LDPC符号を用いた場合に、スループットの低下 を抑えつつ精度良く誤り検出を行うことができる。
図面の簡単な説明
[0014] [図 1]本発明の一実施の形態に係るデータ送信側の無線通信装置のブロック構成図 [図 2]本発明の一実施の形態に係る検査行列
[図 3]本発明の一実施の形態に係る検査行列の列重みの分布
[図 4]本発明の一実施の形態に係る列重み対 BER (シミュレーション結果)
[図 5]本発明の一実施の形態に係る符号化処理を示す図
[図 6]本発明の一実施の形態に係るデータ受信側の無線通信装置のブロック構成図 [図 7]本発明の一実施の形態に係るシンドローム値の算出方法を示す図
[図 8]本発明の一実施の形態に係る誤り検出処理の処理フロー図
発明を実施するための最良の形態 [0015] 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
[0016] 本実施の形態に係るデータ送信側の無線通信装置 100の構成を図 1に示す。
[0017] データ送信側の無線通信装置 100において、 CRC符号化部 101には、コードプロ ックサイズを単位として送信ビット列が入力される。また、 CRC符号化部 101には、 L DPC符号化部 102より LDPC符号の検査行列(以下、単に検査行列という)の列重 みが入力される。そして、 CRC符号化部 101は、検査行列の列重みに基づいて、送 信ビット列の一部のみに対して CRC符号化を行って CRC符号化データを得る。この CRC符号化データは LDPC符号化部 102に出力される。なお、 CRC符号化部 101 での CRC符号化処理の詳細については後述する。
[0018] LDPC符号化部 102は、 CRC符号化部 101での CRC符号化の際に用いられた検 查行列と同一の検査行列を用いて、 CRC符号化データに対して LDPC符号化を行 つて LDPC符号化データを得る。この LDPC符号化データは再送制御部 103に出 力される。
[0019] 再送制御部 103は、 LDPC符号化データを変調部 104にそのまま出力するとともに 所定時間だけ保存する。そして、再送制御部 103は、復号部 109より ACKが入力さ れた場合にはその ACKに対応する LDPC符号化データを廃棄する。一方、復号部 109より NACKが入力された場合には、再送制御部 103は、その NACKに対応す る LDPC符号化データの一部を再び変調部 104に出力する。このようにして LDPC 符号化データに対して ARQを適用する。
[0020] 変調部 104は、 LDPC符号化データを変調してデータシンボルを生成し、無線送 信部 105に出力する。
[0021] 無線送信部 105は、データシンボルに対し D/A変換、増幅およびアップコンバー ト等の送信処理を行ってアンテナ 106からデータ受信側の無線通信装置へ送信する
[0022] 一方、無線受信部 107は、データ受信側の無線通信装置から送信された制御信号 をアンテナ 106を介して受信し、その制御信号に対しダウンコンバート、 A/D変換 等の受信処理を行って復調部 108に出力する。この制御信号には、データ受信側の 無線通信装置から報告された ACKまたは NACKが含まれている。 [0023] 復調部 108は、制御信号を復調して復号部 109に出力する。
[0024] 復号部 109は、制御信号を復号し、制御信号に含まれている ACKまたは NACK を再送制御部 103に出力する。
[0025] 次いで、 CRC符号化部 101での CRC符号化処理の詳細について説明する。
[0026] 図 2に 16行 X 24列の検査行列を一例として示す。このように、検査行列は M行 X
N列の行列で表され、 ' 1 'と' 0'とから構成される。
[0027] また、検査行列の各列は LDPC符号化データの各ビットに対応する。つまり、図 2に 示す検査行列を用いて LDPC符号化を行うと、 24ビットの LDPC符号化データが得 られる。
[0028] また、検査行列において各 1列に含まれる' 1 'の個数は列重みと称される。よって、 図 2に示す検査行列においては、 1歹 IJ目の歹 IJ重みは 11となり、 2列目の列重みは 9と なる。 3列目〜24列目についても同様である。
[0029] よって、図 2の検査行列における列重みの分布は図 3に示すようになる。つまり、 24 ビットの LDPC符号化データのうち、 1ビット目の歹 IJ重みは 11となり、 2ビット目の歹 IJ重 みは 9となる。 3ビット目〜24ビット目についても同様である。
[0030] ここで、本発明者が行ったシミュレーションにより、列重みが大きいビットほど BER(B it Error Rate)特性が良好で誤りにくいことが判明した。シミュレーション結果を図 4に 示す。図 4のシミュレーション結果は、上記非特許文献 2記載の LDPC符号において 、送信ビット列長: 1044ビット,符号化率 R= l/3,評価 E /N =0.5dB,最大繰返 b 0
し復号回数: 30回としたときの各列重みに対する BERを示すものである。
[0031] このシミュレーション結果より、列重みが小さいビットは列重みが大きいビットより誤り やすいといえる。例えば、図 2に示す検査行列を用いた場合、列重みが 5である 4ビッ ト目〜6ビット目は、列重みがそれぞれ 11,9, 10である 1ビット目〜3ビット目よりも誤り やすいといえる。よって、データ受信側の無線通信装置では、 4ビット目〜 6ビット目 に誤りが無いならば、必然的に 1ビット目〜 3ビット目にも誤りが無いことになる。よって 、この場合、データ送信側の無線通信装置では、 1ビット目〜6ビット目のうち、 4ビット 目〜6ビット目のみを対象として CRC符号化を行えば足りる。
[0032] そこで、 CRC符号化部 101は、図 3に示す列重みの分布に従い、入力される送信 ビット列のうち検査行列の列重みが閾値未満のビットのみに対して CRC符号化を行う 。より具体的には、 CRC符号化部 101は送信ビット列に対し図 5に示す CRC符号化 を行う。以下の説明では、説明を簡単にするために、送信ビット列長(つまり、コード ブロックサイズ)を 6ビットとする。
[0033] 図 5に示すように CRC符号化部 101に送信ビット列' 101101 'が入力された場合、 CRC符号化部 101は、送信ビット列 ' 101101 'のうち検査行列(図 2)の列重みが閾 値 = 8未満の 4ビット目〜 6ビット目 ' 101,のみに対して CRC符号化を行い、 4ビット 目〜 6ビット目 ' 101 'のみに対する CRCビット' 10'を送信ビット列に付加する。よつ て、 CRC符号化データ(第 1符号化データ)は ' 10110110'となる。
[0034] ここでの閾値は(C + C ) /2 (小数点以下切り捨て)により求められたものであ max mm
る。 C および C はそれぞれ、送信ビット列の各ビットに対応する列重みのうちの最 max mm
大値および最小値を示す。よって、例えば、送信ビット列が' 101101 'であり、各ビッ トに対応する列重みが図 5に示すように 11,9,10,5,5,5である場合、 C = 11、 C
max mm
= 5であるため、閾ィ直 = 8となる。
[0035] また、図 5に示す例では、 CRC符号化での生成多項式として x2 + x+ lを用いた。
[0036] そして、 LDPC符号化部 102は、 CRC符号化データ' 10110110'に対して図 2に 示す検査行列を用いた LDPC符号化を行ってシステマチックビットとパリティビットと から構成される LDPC符号化データ、具体的には、図 5に示す LDPC符号化データ (第 2符号化データ)を得る。
[0037] このように、本実施の形態によれば、 CRCビットは、システマチックビットにおいての み付加され、ノ リティビットにおいては付加されないため、データ受信側の無線通信 装置では、誤り訂正復号されたシステマチックビットのみに対して独立に誤り検出を fiうことカできる。よって、パリティビットには誤りが有るが、システマチックビットには誤 りが無い状況、すなわち、再送の必要がない状況において、データ送信側の無線通 信装置 100へ NACKが報告されて無駄な再送が発生してしまうことを防ぐことができ る。よって、本実施の形態によれば、無駄な再送の発生によるスループットの低下を 防ぐこと力 Sできる。
[0038] また、本実施の形態によれば、送信ビット列のうち、検査行列の列重みが小さい一 部のビット、すなわち、誤りが発生しやすいビットのみを対象として CRC符号化を行う ため、送信ビット列すベてを対象として CRC符号化を行う場合に比べ、 CRCビットの 数を少なくすること力できる。よって、本実施の形態によれば、 CRCビットのオーバー ヘッドを小さくすること力 Sできるため、 CRCビットの付加によるスループットの低下を最 小限に抑えることができる。
[0039] また、列重みが大きいビットは誤りが発生しにくいため、本実施の形態のように、検 查行列の列重みの分布、すなわち、誤りの発生度合いに応じ、誤りが発生しやすい ビットのみを対象として CRC符号化を行っても、誤り検出率は低下せず、正確な誤り 検出を行うことができる。
[0040] なお、図 2に示す検査行列は一例であり、本発明の実施に使用可能な検査行列は 図 2に示す検査行列に限定されない。
[0041] また、 CRC符号化部 101に設定される閾値は上記のものに限定されず、例えばシ ミュレーシヨン結果等を踏まえて閾値を設定してもよい。
[0042] 次レ、で、本実施の形態に係るデータ受信側の無線通信装置につ!/、て説明する。本 実施の形態に係るデータ受信側の無線通信装置 600の構成を図 6に示す。
[0043] データ受信側の無線通信装置 600において、無線受信部 602は、データ送信側の 無線通信装置 100 (図 1)力も送信されたデータシンボルをアンテナ 601を介して受 信し、その受信データに対しダウンコンバート、 A/D変換等の受信処理を行って復 調部 603に出力する。
[0044] 復調部 603は、受信データを復調して LDPC復号部 604に出力する。
[0045] LDPC復号部 604は、データ送信側の無線通信装置 100 (図 1)の LDPC符号化 部 102で用いられた検査行列と同一の検査行歹 IJ (図 2)を用いて受信データに対する LDPC復号を行ってシステマチックビット列を得る。 LDPC復号部 604は、例えば Su m-product復号法や Min-Sum復号法等の LDPC復号アルゴリズムに従った繰返し復 号を行う。復号後の硬判定されたシステマチックビット列は誤り検出部 605に出力さ れる。
[0046] また、 LDPC復号部 604は、図 7に示すように、検査行列と、繰返し復号の各回で 得られる硬判定後の復号ビット列(システマチックビット +ノ リティビット)とを掛け合わ せる行列演算を行ってシンドローム値を求める。ここでは、 16個のシンドローム値が 得られる。そして、 LDPC復号部 604は、これらのシンドローム値の総和を求めて誤り 検出部 605に出力する。
[0047] さらに、 LDPC復号部 604は、検査行列の列重みを誤り検出部 605に出力する。
[0048] 誤り検出部 605は、システマチックビットに対して CRCによる誤り検出を行う。誤り検 出部 605は、誤り検出の結果、システマチックビットに誤りが有る場合には NACKを 生成して符号化部 606に出力し、システマチックビットに誤りが無い場合には ACKを 生成して符号化部 606に出力する。また、誤り検出部 605は、システマチックビット列 を受信ビット列として出力する。なお、誤り検出部 605での誤り検出処理の詳細につ いては後述する。
[0049] 符号化部 606は ACKまたは NACKを符号化して変調部 607に出力する。
[0050] 変調部 607は ACKまたは NACKを変調して制御信号を生成し、無線送信部 608 に出力する。
[0051] 無線送信部 608は、制御信号に対し D/A変換、増幅およびアップコンバート等の 送信処理を行ってアンテナ 601からデータ送信側の無線通信装置 100 (図 1)へ送 信する。
[0052] 次いで、誤り検出部 605での誤り検出処理の詳細について説明する。
[0053] 本発明者が行ったシミュレーションにより、シンドローム値の総和が小さい場合に、 ノ リティビットには誤りが有るがシステマチックビットには誤りが無いという現象と、パリ ティビットおよびシステマチックビットの双方に誤りが有るという現象とが混在して発生 すること力 S判明した。また、シンドローム値の総和が小さくなるほど、パリティビットには 誤りが有るがシステマチックビットには誤りが無いという現象が生じやすくなることが判 明した。また、シンドローム値の総和が大きいほどシステマチックビットに誤りが有る確 率が高いことが判明した。
[0054] そこで、誤り検出部 605は、図 8に示すフロー図に従って誤り検出処理を行う。
[0055] まず、 ST (ステップ) 801では、シンドローム値の総和と所定の閾値 Aとを比較する。
この閾ィ直 Aはシステマチックビット列長に応じて決められるものであり、システマチック ビット列長が長くなるほど大きい値が設定される。例えば、システマチックビット列長に 所定値 0.025を乗算して求めた閾値 Aが設定される。
[0056] ST801においてシンドローム値の総和が閾値 A以上の場合は(ST801 : NO)、シ ステマチックビットに誤りが有る確率が高いため、誤り検出を行わず、 ST802におい て NACKを生成する。
[0057] 一方、 ST801においてシンドローム値の総和が閾値 A未満の場合は(ST801 : YE S)、システマチックビットに誤りが有る可能性もあるため、 ST803において CRCによ る誤り検出を行う。つまり、シンドローム値の総和が閾値 A未満の場合にのみ、システ マチックビットに対する誤り検出を行う。さらに、この際、システマチックビット列のうち 検査行列の列重みが閾値 B未満のビットのみに対して誤り検出を行う。この閾値 Bは 、データ送信側の無線通信装置(図 1 )の CRC符号化部 101に設定される閾値と同 じ値にするのが好ましい。
[0058] そして、 ST803での誤り検出の結果、誤りが有る場合は ST802において NACKを 生成し、誤りが無レ、場合は ST804にお!/、て ACKを生成する。
[0059] このように、本実施の形態によれば、 LDPC復号とは別に CRCによりシステマチック ビットのみを対象とした誤り検出を行うため、パリティビットには誤りが有るが、システマ チックビットには誤りが無い状況、すなわち、再送の必要がない状況において NACK が生成されたしまうことを防止できる。よって、無駄な再送によるスループットの低下を 防ぐこと力 Sできる。
[0060] また、本実施の形態によれば、シンドローム値の総和が大きくシステマチックビット に誤りが有ることが確実な状況では、誤り検出を行うことなく NACKを生成するため、 誤り検出に要する処理時間を削減することができるとともに、再送遅延を減少させるこ と力 Sできる。
[0061] さらに、本実施の形態によれば、システマチックビット列のうち検査行列の列重みが 小さい一部のビット、すなわち、誤りが発生しやすいビットのみを対象として誤り検出 を行うため、システマチックビットすベてを対象として誤り検出を行う場合に比べ、誤り 検出に要する処理時間を削減することができるとともに、 ARQの RTT (Round Trip Ti me)を短縮すること力 Sできる。
[0062] なお、本実施の形態に係るデータ受信側の無線通信装置 600は、データ送信側の 無線通信装置が送信ビット列の一部のみに対して CRC符号化を行う場合だけでなく 、送信ビット列のすべてに対して CRC符号化を行う場合にも使用することができる。
[0063] また、上記説明ではシンドローム値の総和の算出を LDPC復号部 604にて行った 力 S、 LDPC復号部 604の代わりに誤り検出部 605がシンドローム値の総和を求めても よい。また、誤り検出部 605に設定される閾値 Aおよび閾値 Bは上記のものに限定さ れず、例えばシミュレーション結果等を踏まえて閾値を設定してもよレ、。
[0064] 以上説明したように、本実施の形態によれば、誤り訂正符号に LDPC符号を用いた 場合に、スループットの低下を抑えつつ精度良く誤り検出を行うことができる。
[0065] 以上、本発明の実施の形態について説明した。
[0066] なお、上記実施の形態では、誤り検出符号として CRC符号を用いた場合について 説明したが、本発明において使用可能な誤り検出符号は CRC符号に限られない。
[0067] また、移動体通信システムにおいて、データ送信側の無線通信装置 100 (図 1)を 無線通信基地局装置に備え、データ受信側の無線通信装置 600 (図 6)を無線通信 移動局装置に備えることができる。また、データ送信側の無線通信装置 100 (図 1)を 無線通信移動局装置に備え、データ受信側の無線通信装置 600 (図 6)を無線通信 基地局装置に備えることもできる。これにより、上記同様の作用 ·効果を奏する無線通 信基地局装置および無線通信移動局装置を実現することができる。
[0068] また、無線通信移動局装置は UE、無線通信基地局装置は Node Bと称されることが ある。
[0069] また、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説 明した力 本発明はソフトウェアで実現することも可能である。
[0070] また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路で ある LSIとして実現される。これらは個別に 1チップ化されてもよいし、一部または全て を含むように 1チップ化されてもよい。ここでは、 LSIとした力 集積度の違いにより、 I C、システム LSI、スーパー LSI、ゥノレトラ LSIと呼称されることもある。
[0071] また、集積回路化の手法は LSIに限るものではなぐ専用回路または汎用プロセッ サで実現してもよい。 LSI製造後に、プログラムすることが可能な FPGA (Field Progra mmable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフ ィギユラブル.プロセッサーを利用してもよい。
[0072] さらには、半導体技術の進歩または派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行って もよい。ノ ィォ技術の適用等が可能性としてありえる。
[0073] 2006年 8月 25曰出願の特願 2006— 229810の曰本出願に含まれる明細書、図 面および要約書の開示内容は、すべて本願に援用される。
産業上の利用可能性
[0074] 本発明は、移動体通信システム等に適用することができる。

Claims

請求の範囲
[1] 送信ビット列のうち LDPC符号化の検査行列の列重みが閾値未満のビットのみに 対して誤り検出符号化を行って第 1符号化データを得る第 1符号化手段と、
前記第 1符号化データに対して前記検査行列を用いた LDPC符号化を行って第 2 符号化データを得る第 2符号化手段と、
前記第 2符号化データを送信する送信手段と、
を具備するデータ送信側の無線通信装置。
[2] 前記第 1符号化手段は、前記列重みが閾値未満のビットのみに対する CRCビットを 前記送信ビット列に付加する前記誤り検出符号化を行う、
請求項 1記載の無線通信装置。
[3] 受信データに対し LDPC復号を行って復号ビット列を得るとともに、前記復号ビット 歹 IJと前記 LDPC復号の検査行列とからシンドローム値を求める復号手段と、
前記シンドローム値の総和が閾値未満の場合にのみ前記復号ビット列のシステマ チックビットに対する誤り検出を行う誤り検出手段と、
を具備するデータ受信側の無線通信装置。
[4] 前記誤り検出手段は、前記検査行列の列重みが閾値未満のシステマチックビットの みに対して前記誤り検出を行う、
請求項 3記載の無線通信装置。
[5] 請求項 1記載の無線通信装置を具備する無線通信基地局装置。
[6] 請求項 1記載の無線通信装置を具備する無線通信移動局装置。
[7] 請求項 3記載の無線通信装置を具備する無線通信基地局装置。
[8] 請求項 3記載の無線通信装置を具備する無線通信移動局装置。
[9] LDPC符号化がなされる送信ビット列に対する誤り検出符号化方法であって、 前記送信ビット列のうち LDPC符号化の検査行列の列重みが閾値未満のビットの みに対して誤り検出符号化を行う、
誤り検出符号化方法。
PCT/JP2007/066444 2006-08-25 2007-08-24 Dispositif de communication sans fil et procédé de codage à détection d'erreur WO2008023790A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/438,679 US8225169B2 (en) 2006-08-25 2007-08-24 Radio communication apparatus and error detecting encoding method
EP07792973A EP2056465A4 (en) 2006-08-25 2007-08-24 WIRELESS COMMUNICATION DEVICE AND ERROR DETECTION CODING METHOD
JP2008530964A JP5020247B2 (ja) 2006-08-25 2007-08-24 無線通信装置および誤り検出符号化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-229810 2006-08-25
JP2006229810 2006-08-25

Publications (1)

Publication Number Publication Date
WO2008023790A1 true WO2008023790A1 (fr) 2008-02-28

Family

ID=39106871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066444 WO2008023790A1 (fr) 2006-08-25 2007-08-24 Dispositif de communication sans fil et procédé de codage à détection d'erreur

Country Status (5)

Country Link
US (1) US8225169B2 (ja)
EP (1) EP2056465A4 (ja)
JP (1) JP5020247B2 (ja)
CN (1) CN101502002A (ja)
WO (1) WO2008023790A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103338045A (zh) * 2008-07-02 2013-10-02 松下电器产业株式会社 通信装置、终端装置和通信方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8181084B1 (en) * 2008-08-14 2012-05-15 Marvell International Ltd. Detecting insertion/deletion using LDPC code
CN102130745B (zh) * 2011-04-07 2013-04-17 山东大学 一种改进的ldpc码的线性规划译码方法
US9166663B2 (en) * 2012-12-14 2015-10-20 Futurewei Technologies, Inc. System and method for open-loop MIMO communications in a SCMA communications system
KR20180063475A (ko) 2016-12-02 2018-06-12 삼성전자주식회사 반도체 장치의 오류 검출 코드 생성 회로, 이를 포함하는 메모리 컨트롤러 및 반도체 메모리 장치
CN106559180B (zh) * 2016-12-08 2019-08-02 西安烽火电子科技有限责任公司 基于速率兼容ldpc码的arq短报文通信方法
TWI652677B (zh) * 2017-11-29 2019-03-01 群聯電子股份有限公司 解碼方法、記憶體儲存裝置及記憶體控制電路單元
CN114050889B (zh) * 2021-11-06 2023-09-26 东南大学 一种带权错误检测的低功耗广域网抗干扰方法
CN115037415B (zh) * 2022-05-31 2024-02-09 江苏屹信航天科技有限公司 基于crc的纠错编码的方法、装置、终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946321A (ja) * 1995-08-01 1997-02-14 Fujitsu Ltd データ通信方法及び装置
JP2000004171A (ja) * 1998-06-15 2000-01-07 Oki Electric Ind Co Ltd 移動体通信方法
JP2004253017A (ja) * 2003-02-18 2004-09-09 Fujitsu Ltd 記録媒体再生装置、記録媒体再生方法およびハードディスクコントローラ
JP2005039585A (ja) * 2003-07-16 2005-02-10 Science Univ Of Tokyo 情報送信方法及び装置
JP2006229810A (ja) 2005-02-21 2006-08-31 Seiko Epson Corp 複数画素ずつコード化しながら画像を出力する画像出力システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7184486B1 (en) * 2000-04-27 2007-02-27 Marvell International Ltd. LDPC encoder and decoder and method thereof
US20030152158A1 (en) * 2002-02-11 2003-08-14 Vocal Technologies, Ltd. Method of asymmetrical forward error correction in a communication system. application to wireless local area networks (WLAN) using turbo codes and low density parity check codes
WO2004006443A1 (en) * 2002-07-03 2004-01-15 Hughes Electronics Corporation Bit-interleaved coded modulation using low density parity check (ldpc) codes
US7103825B2 (en) * 2003-08-19 2006-09-05 Mitsubishi Electric Research Laboratories, Inc. Decoding error-correcting codes based on finite geometries
JP2006060695A (ja) 2004-08-23 2006-03-02 Science Univ Of Tokyo 情報復号方法、情報符号化方法、情報通信方法、情報復号装置、送信装置及び情報通信システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946321A (ja) * 1995-08-01 1997-02-14 Fujitsu Ltd データ通信方法及び装置
JP2000004171A (ja) * 1998-06-15 2000-01-07 Oki Electric Ind Co Ltd 移動体通信方法
JP2004253017A (ja) * 2003-02-18 2004-09-09 Fujitsu Ltd 記録媒体再生装置、記録媒体再生方法およびハードディスクコントローラ
JP2005039585A (ja) * 2003-07-16 2005-02-10 Science Univ Of Tokyo 情報送信方法及び装置
JP2006229810A (ja) 2005-02-21 2006-08-31 Seiko Epson Corp 複数画素ずつコード化しながら画像を出力する画像出力システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HISASHI FUTAKI; TOMOAKI OHTSUKI, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, TECHNICAL REPORT OF IEICE, July 2001 (2001-07-01), pages 79 - 84
See also references of EP2056465A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103338045A (zh) * 2008-07-02 2013-10-02 松下电器产业株式会社 通信装置、终端装置和通信方法
CN103338045B (zh) * 2008-07-02 2017-06-23 松下电器(美国)知识产权公司 通信装置、终端装置和通信方法
US10454613B2 (en) 2008-07-02 2019-10-22 Panasonic Intellectual Property Corporation Of America Transmitting apparatus with erasure correction coding, receiving apparatus with erasure correction decoding, transmitting method with erasure correction coding, and receiving method with erasure correction decoding
US11063693B2 (en) 2008-07-02 2021-07-13 Panasonic Intellectual Property Corporation Of America Transmitting device with erasure correction coding and transmitting method with erasure correction coding
US11742984B2 (en) 2008-07-02 2023-08-29 Panasonic Intellectual Property Corporation Of America Transmitting method with error correction coding

Also Published As

Publication number Publication date
CN101502002A (zh) 2009-08-05
US20100241934A1 (en) 2010-09-23
JPWO2008023790A1 (ja) 2010-01-14
EP2056465A4 (en) 2010-07-21
EP2056465A1 (en) 2009-05-06
JP5020247B2 (ja) 2012-09-05
US8225169B2 (en) 2012-07-17

Similar Documents

Publication Publication Date Title
JP5020247B2 (ja) 無線通信装置および誤り検出符号化方法
EP1531552B1 (en) Channel encoding apparatus and method using a parallel concatenated low density parity check code
JP3911263B2 (ja) 適応的ハイブリッド自動再伝送要求方法及び装置
WO2017156773A1 (en) Hybrid automatic repeat request (harq) with polar coded transmissions
US7600172B2 (en) Method and device for decoding packets of data within a hybrid ARQ scheme
JP2019515588A (ja) 進化型外部符号化のための方法およびシステム
JP6871396B2 (ja) 情報を処理するための方法および装置、通信デバイス、ならびに通信システム
US20060190801A1 (en) Apparatus and method for generating low density parity check code using zigzag code in a communication system
JPWO2008126422A1 (ja) 再送方法、通信システム、および送信装置
US10454625B2 (en) System and method for employing outer codes with non-equal length codeblocks field
US8386877B2 (en) Communication system, transmitter, error correcting code retransmitting method, and communication program
US8402338B2 (en) Method of error control
US20230208555A1 (en) Permutated extension and shortened low density parity check codes for hybrid automatic repeat request
Mutlu et al. Performance analyses of hybrid-ARQ in fifth generation new radio
WO2024114812A1 (zh) 编码方法、译码方法以及通信装置
Lee et al. Rateless-coded hybrid ARQ
CN101232346A (zh) 低密度奇偶校验码译码方法和译码装置
Mahindra Umbarkar Performance Analysis of Twin Concatenated Coding Scheme for Communication System
JP2010028770A (ja) 通信システム、受信装置、送信装置、通信方法及びプログラム
KR101531184B1 (ko) 상하위 계층 간의 연동을 이용한 복호화 방법 및 장치와 그를 이용하여 데이터 송수신 시스템
TW202425543A (zh) 編碼方法、譯碼方法以及通信裝置
Nithya et al. Analysis of BER and energy efficiency of raptor codes under BEC for wireless sensor network
JP2009088720A (ja) 無線受信装置
JPWO2018008084A1 (ja) 無線通信システム、無線通信装置および無線通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028898.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792973

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530964

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007792973

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12438679

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU