WO2008023618A1 - échographe - Google Patents

échographe Download PDF

Info

Publication number
WO2008023618A1
WO2008023618A1 PCT/JP2007/065901 JP2007065901W WO2008023618A1 WO 2008023618 A1 WO2008023618 A1 WO 2008023618A1 JP 2007065901 W JP2007065901 W JP 2007065901W WO 2008023618 A1 WO2008023618 A1 WO 2008023618A1
Authority
WO
WIPO (PCT)
Prior art keywords
boundary
ultrasonic diagnostic
motion information
diagnostic apparatus
vessel wall
Prior art date
Application number
PCT/JP2007/065901
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kanai
Hideyuki Hasegawa
Takenori Fukumoto
Original Assignee
Tohoku University
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University, Panasonic Corporation filed Critical Tohoku University
Priority to DE112007001982T priority Critical patent/DE112007001982T5/de
Priority to JP2008530874A priority patent/JP4890554B2/ja
Priority to CN200780031130XA priority patent/CN101505664B/zh
Priority to US12/438,021 priority patent/US8465426B2/en
Publication of WO2008023618A1 publication Critical patent/WO2008023618A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the present invention relates to a medical ultrasonic diagnostic apparatus, and more particularly to an ultrasonic diagnostic apparatus that measures a blood vessel wall.
  • An ultrasonic diagnostic apparatus observes the inside of a subject by irradiating the subject with ultrasonic waves and analyzing information contained in the echo signal.
  • an ultrasonic diagnostic apparatus widely used obtains the structure of a subject as a tomographic image by converting the intensity of an echo signal into the luminance of a corresponding pixel. Thereby, the internal structure of the subject can be known. Since the inside of a subject can be observed noninvasively, ultrasonic diagnostic equipment is indispensable in clinical settings alongside X-ray CT and MRI.
  • IMT Inner Measure media thickness
  • IMT measurement has been performed manually! Specifically, the operator determines the positions of the intima, media and adventitia on the tomographic image obtained by the above-described method, and on the tomographic image generally equipped as standard in an ultrasonic diagnostic apparatus. The thickness is calculated using the length measurement function.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-5226
  • Non-patent document 1 Carotid artery echo, Hiroshi Furudate, Vector Core, 2004, ISBN4-938372-88-6]
  • Non-patent document 2 S. Golemati, et al "Ultrasound Med. Biol. Vol. 29, pp. 387-399, 2003
  • Non-patent document 3 J. Bang, et al" Ultrasound Med. Biol., Vol. 29, pp. 967-976, 2003
  • Non-Patent Document 4 M. Cinthio, et al., IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 52, pp. 1300-1311, 2005
  • the inner boundary of the intima that is, the boundary between the blood flow and the intima
  • the inner boundary of the intima is displayed as an image with the same level of brightness as the blood flow and the sore species when the sore species occur on the blood vessel wall.
  • the boundary between blood flow and intima is difficult to distinguish.
  • the boundary between the adventitia and the connective tissue on the body side is also difficult to distinguish on the image.
  • an interference wave called speckle is superimposed on the echo signal obtained from the subject, and the tomographic image obtained by converting the intensity of the echo signal into the luminance of the corresponding pixel is speckle. Affected by. For this reason, the boundary between the membranes constituting the blood vessel wall and the blood vessel wall may be determined by speckle. This can make it difficult to determine the exact vessel wall thickness and IMT.
  • An object of the present invention is to solve such problems of the prior art and to provide an ultrasonic diagnostic apparatus capable of obtaining an accurate vessel wall thickness and IMT.
  • the ultrasonic diagnostic apparatus of the present invention transmits ultrasonic waves to a measurement region of a subject including an arterial blood vessel wall.
  • a transmission unit that drives an ultrasonic probe for transmitting, and a reflected wave that is obtained by reflecting the ultrasonic wave to / from the subject is received using the ultrasonic probe.
  • a receiving unit that generates a received signal, a motion information calculating unit that calculates motion information in at least the axial direction of the arterial blood vessel wall based on the received signal, and in the measurement region based on the motion information.
  • a boundary position determining unit for determining a position of at least one of the blood flow intima boundary of the arterial blood vessel wall, the intima-endocardium boundary, and the connective tissue boundary on the side of the adventitia.
  • the motion information calculation unit calculates a displacement amount distribution curve obtained by calculating a distribution of the displacement amount in the axial direction along a radial direction of the arterial blood vessel wall, and the boundary position determination unit Determines the position of the at least one boundary based on the displacement distribution curve.
  • the transmission unit and the reception unit scan the measurement area with the ultrasonic waves, thereby performing the reception signal for one frame a plurality of times.
  • the motion information calculation unit repeatedly obtains the axial displacement of each measurement point in the measurement region by comparing the amplitudes of the received signals between two different frames.
  • the motion information calculation unit calculates the correlation between the amplitude information of the received signal in the first frame and the amplitude information of the received signal in the second frame. The amount of axial displacement between the two frames at each measurement point is calculated.
  • the motion information calculating unit calculates a distribution of the motion information in the axial direction along a radial direction of the arterial blood vessel wall, and the boundary position determining unit is a distribution of the motion information. And determining the position of the at least one boundary.
  • the boundary position determination unit is based on a steep rising force ⁇ position closest to the blood vessel cavity side in the displacement amount distribution curve. The position of the blood flow intima boundary is determined.
  • the boundary position determination unit is based on the position of the minimum value closest to the connective tissue side on the body side of the displacement amount distribution curve. Outside of the media Determine the position of the membrane boundary.
  • the boundary position determination unit is located at the steep falling force position closest to the connective tissue side on the body side in the displacement amount distribution curve. Based on this, the position of the connective tissue boundary on the outer membrane integral side is determined.
  • the ultrasonic diagnostic apparatus further includes a tomographic image processing unit that generates a signal indicating a tomographic image of the measurement region based on the received signal, wherein the at least one boundary is defined. It is displayed superimposed on the tomographic image.
  • the ultrasonic diagnostic apparatus further includes an elastic modulus value calculation unit that calculates an elastic modulus between measurement points in the measurement region based on the received signal, and the calculated elastic modulus. A two-dimensional mapping image of values is further displayed.
  • At least one of the blood flow intima boundary of the arterial blood vessel, the medial-endocardial boundary, and the connective tissue boundary on the side of the adventitia is determined based on the motion information in the axial direction of the arterial blood vessel. . For this reason, the thickness of the blood vessel wall and the IMT can be obtained without causing variations in the measured values by the operator.
  • FIG. 1 is a diagram for explaining the movement of the arterial wall of the carotid artery, where (a) is a schematic diagram showing the positions of measurement points set on the arterial wall, and (b) is a diagram of the subject. An electrocardiogram is shown, and (c) and (d) are graphs showing the movement amount of the measurement point during one cardiac cycle in the axial direction and the radial direction.
  • FIG. 2 is a block diagram showing an embodiment of an ultrasonic diagnostic apparatus according to the present invention.
  • FIG. 3 (a) to (c) are diagrams for explaining the procedure for calculating the amount of movement of the arterial wall.
  • FIG. 4 is a diagram for explaining measurement points in a measurement region.
  • FIG. 5 is a diagram for explaining that ultrasonic measurement is performed in units of frames.
  • FIG. 6 is a diagram for explaining a method for determining the boundary of an arterial wall from a distribution curve in the radial direction of axial displacement.
  • FIG. 7 shows an example of an image displayed on the display unit when a subject including an artery wall is measured using the ultrasonic diagnostic apparatus of FIG.
  • the arterial blood vessel expands and contracts in the radial direction in accordance with changes in blood flow and blood pressure of blood moving in the artery. For this reason, the arterial wall moves in the radial direction in synchronization with the cardiac cycle. Normally, arterial blood vessels are regarded as not moving in the axial direction in which the blood vessels extend! /, And even if the arterial wall motion analysis is not considered, axial movement is not considered.
  • Non-Patent Documents 2, 3, and 4, etc. the arterial wall of the carotid artery, which is measured as an index of arteriosclerosis in recent years, is slightly axially synchronized with the cardiac cycle. Exercise has been confirmed. This movement is thought to be caused by the carotid artery being pulled by the heart as the heart contracts.
  • FIG. 1 (a) schematically shows the measurement area of the subject measured using the ultrasonic diagnostic equipment. As shown in Fig. 1 (a), measurements are made in order from the side of the vessel wall closer to the vessel cavity. Points A, B, and C are set.
  • Fig. 1 (b) shows the electrocardiographic waveform for one cardiac cycle, and Figs. L (c) and (d) show the one-circumference of the axial and radial displacements of measurement points A, B, and C, respectively. The term is shown.
  • the horizontal axis represents time, and the movement direction toward the heart and the movement direction toward the outside of the blood vessel are set in the positive direction of the vertical axis.
  • the axial motion of the arterial wall of the carotid artery is considered to be due to the contraction of the heart
  • the axial motion in the measurement region of the subject including the arterial wall can be used to determine the boundary between the arterial wall and the vascular cavity and connective tissue on the body side that are not pulled by the heart. It is also considered that the boundaries between the tissues that make up the arterial wall can be determined by detecting axial motion.
  • the inventor of the present application has invented an ultrasonic diagnostic apparatus capable of obtaining the blood vessel wall thickness and IMT based on such knowledge.
  • FIG. 2 is a block diagram showing a configuration of an embodiment of an ultrasonic diagnostic apparatus according to the present invention.
  • the artery that can detect the boundary using the ultrasonic diagnostic apparatus of the present invention is not limited to the carotid artery, and the boundary is detected if the artery is close to the heart and contracted by the heart due to the contraction of the heart. be able to.
  • the ultrasonic diagnostic apparatus of the present embodiment includes a reception unit 101, a transmission unit 102, a delay synthesis unit 104, an orthogonal detection unit 105, a tomographic image processing unit 106, an amplitude information processing unit 107, a phase information processing unit 108, Boundary position detector 109, motion information calculator 110, elastic modulus calculator 111, thickness calculator 112 And an image composition unit 113.
  • a user interface 120 for an operator to give a command to the ultrasonic diagnostic apparatus and a control unit 121 composed of a microcomputer or the like for controlling each of these components based on the command from the user interface 120 are provided. ing.
  • each component shown in FIG. 2 is not necessarily configured by independent hardware.
  • the phase information processing unit 108, the boundary position detection unit 109, the motion information calculation unit 110, the elastic modulus calculation unit 111, the thickness calculation unit 112, and the like are configured by a microcomputer and software, and the functions of each unit are realized! It ’s okay.
  • the transmitter 103 and the receiver 101 are connected to a probe 103 for transmitting ultrasonic waves toward the subject and receiving ultrasonic echoes from the subject.
  • the ultrasonic diagnostic apparatus may be provided with a dedicated probe 103 or a general-purpose probe may be used as the probe 103.
  • a plurality of piezoelectric elements are arranged in the probe 103, and the deflection angle and focus of ultrasonic waves to be transmitted and received are controlled by selecting the piezoelectric element by the delay synthesis unit 104 and setting the timing to apply voltage to the piezoelectric transducer. To do.
  • the transmission unit 102 In response to an instruction from the control unit 121, the transmission unit 102 generates a high-voltage signal that drives the probe 103 at a designated timing.
  • the probe 103 converts the transmission signal generated by the transmission unit 102 into ultrasonic waves and irradiates the subject.
  • the ultrasonic echo reflected from the inside of the subject is converted into an electrical signal using the probe 103 and amplified by the receiving unit 101 to generate a reception signal.
  • the receiving unit 101 detects only ultrasonic waves from a predetermined position (focus) or direction (deflection angle) by selecting the piezoelectric transducer of the probe 103 by the delay synthesis unit 104. That's the power S.
  • the ultrasonic wave irradiated from the probe 103 scans the measurement region of the subject with the ultrasonic wave, and receives one frame. Get a signal. This scanning is repeated during one cardiac cycle of the subject, and received signals for a plurality of frames are obtained. For example, received signals for hundreds of frames are acquired.
  • the tomographic image processing unit 106 includes a filter, a logarithmic amplifier, a detector, and the like, and converts the received signal received from the receiving unit 101 into a signal having luminance information corresponding to the signal intensity. Thereby, a signal indicating a tomographic image in the measurement region of the subject is obtained.
  • the quadrature detection unit 105 performs quadrature detection on the received signal.
  • the amplitude information processing unit 107 obtains the received signal force amplitude information subjected to quadrature detection, and outputs it to the motion information report calculation unit 110.
  • the motion information calculation unit 110 calculates motion information in at least the axial direction of the arterial blood vessel wall based on the amplitude information of the received signal subjected to orthogonal detection. As long as motion information in the axial direction can be obtained, the motion information calculation unit 110 may obtain two-dimensional motion information or three-dimensional motion information.
  • the boundary position determination unit 109 is based on the obtained motion information, and at least one of the blood flow intima boundary of the arterial blood vessel wall in the measurement region, the medial-endocardial boundary, and the connective tissue boundary on the epicardial side. One boundary is determined, and position information in the measurement area of the determined boundary is generated.
  • the boundary position determination unit 109 determines two or more of the blood flow intima boundary of the arterial blood vessel wall, the medial-endocardial boundary, and the connective tissue boundary on the epicardial integral side. In some cases, determine the thickness (distance) between the determined boundaries.
  • Phase information processing section 108 generates phase information of the received signal subjected to quadrature detection, and outputs it to elastic modulus value calculation section 111.
  • the elastic modulus value calculation unit 111 calculates the movement amount in the radial direction of each measurement point in the measurement region from the phase information. Also, information on the blood pressure of the subject is received from the outside, and the distance between the measurement points is calculated from the thickness between the boundaries obtained from the thickness calculation unit 112, information on the blood pressure, and the amount of radial movement of each measurement point. Obtain the elastic modulus value.
  • the image composition unit 113 receives a signal indicating a tomographic image in the measurement region of the subject from the tomographic image processing unit 106. Also, the boundary position information detected from the boundary position detection unit 109 is received, and the thickness between the boundaries obtained from the thickness calculation unit 112 is received. Then, based on the position information of the boundary, an image signal in which a line indicating the determined boundary is superimposed on the tomographic image is generated and output to the display unit 114. Further, a numerical value indicating the thickness between the boundaries is generated and output to the display unit 114.
  • the image composition unit 113 receives the elastic modulus value between the measurement points, generates two-dimensional mapping data indicating the distribution of the elastic modulus in the measurement region with a color tone or tone corresponding to the elastic modulus value, Output to the display.
  • the display unit 114 displays the data output from the image composition unit 113.
  • the user interface 120 is used by an operator to give a command to the ultrasonic diagnostic apparatus. It is an input part. Specifically, the user interface 120 is an input device such as a keyboard, a track keyboard, or a mouse. The operator uses the user interface 120 to set a region of interest (ROI) for calculating the elastic modulus, the boundary determined by the boundary position determining unit 109, and the thickness between the boundaries determined by the thickness calculating unit 112. Select.
  • ROI region of interest
  • the boundary between the blood vessel cavity and the connective tissue on the body side and the artery wall and the boundary of the tissue constituting the artery wall are determined by detecting the axial movement of the subject.
  • the motion information calculation unit 110 receives the amplitude information of the received signal from the amplitude information processing unit 107, calculates the distribution of motion information in the axial direction of the subject along the radial direction of the arterial blood vessel wall, and calculates The boundary is determined based on the distribution of the motion information.
  • the motion information may be an axial motion speed or an axial displacement amount. In this embodiment, the boundary is detected using the amount of axial displacement.
  • the motion information in the axial direction of the artery can be obtained, for example, by transmitting an ultrasonic wave toward the subject in a direction non-parallel to the radial direction.
  • an ordinary ultrasonic diagnostic apparatus it is difficult to detect an axial motion component directly from a received signal because ultrasonic waves are transmitted and received in a direction parallel to the radial direction to obtain information inside the subject.
  • the received signal for one frame is repeatedly acquired a plurality of times, and the correlation between the received signals is calculated between two different frames. Therefore, the axial displacement is estimated for each measurement point.
  • a displacement distribution curve on the acoustic line of the measured ultrasonic beam is obtained.
  • the boundary between the blood vessel cavity and the connective tissue on the body side and the artery wall and the boundary of the tissue constituting the artery wall are determined from the displacement distribution curve.
  • a region of interest 21 for calculating a correlation is set in the measurement region 20 in the first frame.
  • measurement points are arranged in the measurement area 20 with! /, For example, n rows and m columns! /.
  • the reference area 21 is used to determine the amount of movement of the measurement point (s, t) (s and t are integers of n and m, respectively).
  • a correlation coefficient is obtained by calculating the correlation between the amplitude information of the corresponding received signal and the amplitude information of the received signal corresponding to the region 23 in the k-th frame using the correlation function.
  • region 23 is set for all measurement points in measurement region 20 and the correlation is calculated, as shown in Fig. 3 (b)
  • the correlation with region 21 ' is the highest and the correlation coefficient is also the maximum. . Therefore, it is estimated that the region of interest 21 has moved to the region 21 ′ in the k-th frame, and the amount of axial displacement at this time is dx.
  • a method for specifying the position of a region of interest between two frames using the correlation of received signals is disclosed in, for example, Japanese Patent Laid-Open No. 8-164139.
  • the motion information calculation unit 110 performs this calculation for each measurement point to obtain a displacement amount between two predetermined frames of all measurement points in the measurement region.
  • the amount of displacement in the radial direction need not be obtained.
  • the phase information obtained by the phase information processing unit 108 may be referred to.
  • the radial displacement of each measurement point can be determined by comparing the phase between two frames. For this reason, by calculating the correlation of only the region 23 at the position shifted in the radial direction by the amount of displacement obtained from the phase in the region 23 where the correlation is to be calculated, or the region 23 in the vicinity thereof. Region 23 where the correlation coefficient is maximum can be determined. As a result, the amount of calculation can be greatly reduced.
  • the accuracy of the calculation for obtaining the correlation depends on the size of the region of interest 21. In general, the larger the region of interest, the higher the accuracy of calculation, but the amount of calculation increases. For this reason, it is preferable to determine the size of the region of interest 21 in consideration of the calculation amount and the required calculation accuracy.
  • the axial resolution and the radial resolution of the displacement amount obtained by the above-described method are determined by the axial and radial spacings of the measurement points set in the measurement region.
  • the axial resolution is the interval 1 between the acoustic lines 23 of the ultrasonic beam.
  • the radial resolution is the interval between the measurement points 24 set on the acoustic line 23.
  • the received signal may be interpolated between two measurement points on the acoustic line 23 to generate an interpolated measurement point 24 ′.
  • the reception signal of the measurement region 20 from the first frame to the K-th frame is obtained during one cardiac cycle.
  • the axis shown in Fig. 1 (c) has the least displacement in the heart direction! /
  • the time frame and the displacement in the heart direction are the largest! /
  • the maximum displacement in the direction is obtained.
  • the timing of the axial movement of the arterial wall during one cardiac cycle varies depending on the radial position. For this reason, it is preferable to select a frame from which a radial distribution curve of the axial displacement can be obtained so that the boundary can be easily identified.
  • the motion information calculation unit 110 generates a displacement distribution curve in which the movement amount in the axial direction of each measurement point obtained by the above-described method is obtained along one acoustic line (radial direction). As shown in FIG. 6, the displacement distribution curve 61 is obtained by plotting the displacement at the measurement points arranged in the radial direction. Fig. 6 shows a schematic cross-sectional image of the corresponding measurement area.
  • the boundary position determination unit 109 determines the boundary of the artery wall using the displacement amount distribution curve obtained from the motion information calculation unit 110.
  • the steep rising force S position 62 closest to the blood vessel cavity 41 side is the difference between the blood flow in the blood vessel cavity 41 and the intima 42.
  • the position 63 of the minimum value closest to the connective tissue 45 side on the body side represents the position of the boundary 53 between the median film 43 and the epicardium 44.
  • the steep falling force ⁇ position 54 closest to the body-side connective tissue 45 side represents the position of the boundary 54 between the outer membrane 44 and the body-side connective tissue 45.
  • the displacement amount distribution curve and the boundary position of the arterial wall can be associated with each other because the blood flow and the connective tissue on the body side do not move in the axial direction, and each set constituting the arterial wall. Weaving has different elastic moduli, which is thought to be due to different axial motion characteristics.
  • the boundary position determination unit 109 uses at least one of the blood flow intima boundary, the intima-outer membrane boundary, and the connective tissue boundary on the outer membrane integral side from one displacement amount distribution curve using the above-described relationship. Determine the position of the two boundaries. Specifically, the amount of displacement with a linear measurement point is compared while shifting the measurement point in the radial direction, and the rising position, minimum value, and falling position of the curve described above are determined. Since the displacement distribution curve is obtained for each acoustic line, by defining the boundary in each displacement distribution curve, the blood flow intima boundary, the intima-endocardium boundary, or the epicardial integral side is measured in the entire measurement region. The location of the connective tissue boundary can be determined.
  • FIG. 7 shows an example of an image displayed on the display unit 114 when the subject including the artery wall is measured using the ultrasonic diagnostic apparatus of the present embodiment.
  • the display unit 114 displays a tomographic image 70 of the measurement region.
  • the tomographic image shows the arterial lumen 41, intima 42, media 43, adventitia 44, and connective tissue 45 on the body side.
  • the tomographic image 70 displays a region of interest 80, which is a region for measuring the elastic modulus!
  • the position and size of the interest area 80 can be arbitrarily set by the operator using the user interface 120 (FIG. 2).
  • the blood flow-intima boundary line 75 and the media-outer membrane boundary line 76 determined by the boundary position determination unit 109 are displayed. Which boundary is displayed can be specified by the operator using the user interface 120.
  • the inertia value in the region of interest 80 set on the tomographic image 70 is further superimposed on the tomographic image 71 and displayed in two-dimensional mapping.
  • the elastic modulus value is displayed in a color tone or a tone corresponding to the elastic modulus value indicated by the color bar 73.
  • the blood flow-intima boundary line 75 ′ and the media-outer membrane boundary line 76 ′ determined by the boundary position determination unit 109 may be displayed on the tomographic image 71.
  • the screen of the display unit 114 displays the distance between the boundary line 75 and the boundary line 76 on the cursor 81.
  • the IMT value of 77 is displayed.
  • the connective tissue boundary 45 on the outer membrane integral side is displayed! /, Na! /, But the blood flow-intima boundary line 75 and the connective tissue boundary line on the outer membrane-body side are displayed.
  • the value 78 of the vessel wall thickness is displayed.
  • At least one of the arterial blood flow intima boundary, intima-outer membrane boundary, and connective tissue boundary on the outer membrane integral side is determined based on the axial motion information of the arterial blood vessel. To do. For this reason, it is possible to obtain the vascular wall thickness and IMT without causing variations in measurement values by the operator. Further, since the amount of movement in the axial direction is determined using pattern matching of the amplitude information of the received signal, the amount of movement can be accurately calculated even if some noise is superimposed on the received signal. For this reason, it is possible to accurately determine the boundary position without being affected by speckle and the like.
  • the ultrasonic diagnostic apparatus when the ultrasonic diagnostic apparatus does not obtain the force elastic modulus including the quadrature detection unit and the phase information processing unit in order to obtain the elastic modulus distribution, these configurations are used. It does not have to be provided.
  • the amplitude information processing unit that receives the signal obtained from the tomographic image processing unit and calculates the motion information in the axial direction of the arterial wall may be provided separately from the tomographic image processing unit. .
  • the present invention is preferably used for a medical ultrasonic diagnostic apparatus, and particularly preferably used for an ultrasonic diagnostic apparatus used for diagnosis of arterial blood vessels.

Description

明 細 書
超音波診断装置
技術分野
[0001] 本発明は医療用の超音波診断装置に関し、特に血管壁を計測する超音波診断装置 に関する。
背景技術
[0002] 超音波診断装置は、超音波を被検体に照射し、そのエコー信号に含まれる情報を 解析することにより、被検体内を観察する。従来から広く用いられている超音波診断 装置は、エコー信号の強度を対応する画素の輝度に変換することにより、被検体の 構造を断層画像として得ている。これにより、被検体の内部の構造を知ることができる 。被検体内を非観血的に観察できるため、超音波診断装置は X線 CTや MRIと並ん で、臨床現場では不可欠な装置となっている。
[0003] 近年、動脈硬化を患う人が増加しており、動脈硬化を診断するために、超音波診断 装置を用いた頸動脈エコーが行われている。動脈硬化が進行すると血管壁が厚くな り血管が狭窄してくる。このため、血管壁の厚さを計測することによって動脈硬化を診 断することが可能である。頸動脈は、内側から順に内膜、中膜、外膜の 3層を有する 構造を備えていることが知られており、頸動脈エコーでは、この内膜と中膜をあわせ た厚さ(内中膜複合体厚:以下 IMTと呼ぶ)を計測し、動脈硬化の指標として!/、る。 非特許文献 1によれば、 IMTが 1. 1mm以上を異常肥厚と診断する。
[0004] 従来、 IMTの計測は手動で行われて!/、る。具体的には、操作者が、上述した方法 により得られた断層画像上において内膜、中膜および外膜の位置を判断し、超音波 診断装置に一般的に標準装備されている断層画像上の長さ計測機能を用いて厚さ が求められる。
[0005] また、近年、エレクトロニクス技術の進歩によって、超音波診断装置の測定精度を 飛躍的に向上させることも可能になってきた。これに伴って、特許文献 1に開示される ように、反射波の主に位相を解析することによって、被検体の組織の動きを精密に測 定し、組織、特に動脈血管壁の歪みや弾性率を求めることが試みられている。 [0006] 血管壁の弾性率を求める場合にも、血管壁の厚さを計測する必要がある。従来、内 膜、中膜および外膜を合わせた血管壁の厚さを、上述したように、断層画像上の長さ 計測機能を用いて、手動で計測することが行われて!/、る。
特許文献 1 :特開平 10— 5226号公報
非特許文献 1 :頸動脈エコー、古幡博、ベクトル ·コア社、 2004、 ISBN4— 938372 - 88 - 6]
非特許文献 2 : S. Golemati, et al" Ultrasound Med. Biol. vol. 29, pp. 387-399, 2003 非特許文献 3 : J. Bang, et al" Ultrasound Med. Biol., vol. 29, pp. 967-976, 2003 非特許文献 4 : M. Cinthio, et al. , IEEE Trans. Ultrason. Ferroelect. Freq. Contr., v ol. 52, pp. 1300-1311, 2005
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、断層画像に基づいて操作者が血管壁の厚さや IMTを測定する場合
、操作者により、画像の認識や識別の仕方に癖があり、操作者による計測値のばらつ きが生じる可能性がある。
[0008] また、内膜の内側の境界、つまり、血流と内膜との境界は、血管壁に粥種が生じて いると血流と粥種とは同程度の輝度で画像表示されることがあり、血流と内膜との境 界が判別しにくい。同様に、外膜と体側の結合組織との境界も画像上における判別 が困難である。
[0009] さらに、被検体から得られるエコー信号には、スペックルと呼ばれる干渉波が重畳し ており、エコー信号の強度を対応する画素の輝度に変換することにより得られる断層 画像は、スペックルの影響を受ける。このため、スペックルにより、血管壁や血管壁を 構成する各膜の境界が判別しに《なることがある。このため、正確な血管壁の厚さ や IMTを求めることが困難となる場合がある。
[0010] 本発明はこのような従来技術の課題を解決し、正確な血管壁の厚さや IMTを求め ることが可能な超音波診断装置を提供することを目的とする。
課題を解決するための手段
[0011] 本発明の超音波診断装置は、動脈血管壁を含む被検体の計測領域へ超音波を送 信するための超音波探触子を駆動する送信部と、前記超音波が前記被検体にお!/ヽ て反射することにより得られる反射波を、前記超音波探触子を用いて受信し、受信信 号を生成する受信部と、前記受信信号に基づいて、前記動脈血管壁の少なくとも軸 方向の運動情報を算出する運動情報算出部と、前記運動情報に基づいて、前記計 測領域中における前記動脈血管壁の血流 内膜境界、中膜一外膜境界および外 膜一体側の結合組織境界のうちの少なくとも 1つの境界の位置を決定する境界位置 決定部とを備える。
[0012] ある好ましい実施形態において、前記運動情報算出部は、前記軸方向の変位量の 分布を前記動脈血管壁の径方向に沿って算出した変位量分布曲線を算出し、前記 境界位置決定部は、前記変位量分布曲線に基づいて、前記少なくとも 1つの境界の 位置を決定する。
[0013] ある好まし!/、実施形態にお!/、て、前記送信部および受信部は、前記計測領域を前 記超音波で走査することにより、 1フレーム分の前記受信信号を複数回繰り返し取得 し、前記運動情報算出部は、異なる 2つのフレーム間において、前記受信信号の振 幅を比較することにより、前記計測領域内の各計測点の軸方向の変位量を算出する
[0014] ある好ましい実施形態において、前記運動情報算出部は、第 1のフレームにおける 受信信号の振幅情報と第 2のフレームにおける受信信号の振幅情報との相関を計算 することによって、前記計測領域内の各計測点の前記 2つのフレーム間における軸 方向の変位量を算出する。
[0015] ある好ましい実施形態において、前記運動情報算出部は、前記軸方向の運動情報 の分布を前記動脈血管壁の径方向に沿って算出し、前記境界位置決定部は、前記 運動情報の分布に基づいて、前記少なくとも 1つの境界の位置を決定する。
[0016] ある好まし!/、実施形態にお!/、て、前記境界位置決定部は、前記変位量分布曲線の うち、血管腔側に最も近接する急峻な立ち上力^位置に基づいて、前記血流 内膜 境界の位置を決定する。
[0017] ある好まし!/、実施形態にお!/、て、前記境界位置決定部は、前記変位量分布曲線の うち、体側の結合組織側に最も近接する極小値の位置に基づいて、前記中膜一外 膜境界の位置を決定する。
[0018] ある好まし!/、実施形態にお!/、て、前記境界位置決定部は、前記変位量分布曲線の うち、体側の結合組織側に最も近接する急峻な立ち下力り位置に基づいて、前記外 膜一体側の結合組織境界の位置を決定する。
[0019] ある好ましい実施形態において、超音波診断装置は、前記受信信号に基づいて前 記計測領域の断層画像を示す信号を生成する断層画像処理部を更に備え、前記少 なくとも 1つの境界を前記断層画像に重畳して表示する。
[0020] ある好ましい実施形態において、超音波診断装置は、前記受信信号に基づいて前 記計測領域内の計測点間の弾性率を算出する弾性率値算出部をさらに備え、前記 算出した弾性率値の二次元マッピング画像をさらに表示する。
発明の効果
[0021] 本発明によれば、動脈血管の血流 内膜境界、中膜一外膜境界および外膜一体 側の結合組織境界の少なくとも 1つを動脈血管の軸方向の運動情報に基づき決定 する。このため、操作者による計測値のばらつきが生じることなぐ血管壁の厚さや IM Tを求めることができる。
図面の簡単な説明
[0022] [図 1]頸動脈の動脈壁の運動を説明する図であって、(a)は動脈壁に設定した計測 点の位置を示す模式図であり、(b)は、被検体の心電図を示し、(c)および (d)は、計 測点の軸方向および径方向の一心周期中の移動量を示すグラフである。
[図 2]本発明による超音波診断装置の実施形態を示すブロック図である。
[図 3] (a)〜(c)は動脈壁の移動量を算出する手順を説明する図である。
[図 4]計測領域における計測点を説明する図である。
[図 5]超音波による計測がフレーム単位で行われることを説明する図である。
[図 6]軸方向変位量の径方向における分布曲線から動脈壁の境界を定める方法を説 明する図である。
[図 7]図 1の超音波診断装置を用いて動脈壁を含む被検体の計測を行った場合にお いて、表示部に表示される画像の一例を示している。
符号の説明 101 受信部
102 送信部
103 探触子
104 遅延合成部
105 直交検波部
106 断層画像処理部
107 振幅情報処理部
108 位相情報処理部
109 境界位置決定部
110 運動情報算出部
111 弾性率値演算部
112 厚さ算出部
113 画像合成部
114 表示部
120 ユーザインターフェース
121 制御部
発明を実施するための最良の形態
[0024] 動脈血管は、動脈内を移動する血液の血流および血圧変化に応じて径方向に拡 張'収縮する。このため、心周期に同期して動脈壁は径方向へ移動する。通常、動脈 血管は血管が伸びる軸方向へ運動しな!/、と見なされ、動脈壁の運動解析にぉレ、ても 、軸方向への運動は考慮されていなかった。
[0025] しかし、非特許文献 2、 3および 4などに示されているように、近年、動脈硬化の指標 として計測される頸動脈の動脈壁は、心周期に同期してわずかに軸方向へ運動する ことが確認されている。この運動は、心臓の収縮 '拡張に伴って、頸動脈が心臓に引 つ張られることにより生じるものと考えられる。
[0026] 図 1 (a)〜(d)を参照して、頸動脈の血管壁の径方向および軸方向の運動につい て説明する。図 1 (a)は超音波診断装置を用いて計測を行った被検体の測定領域を 模式的に示している。図 1 (a)に示すように、血管壁の血管腔に近い側から順に計測 点 A、 B、 Cを設定している。図 1 (b)は、一心周期分の心電波形を示しており、図 l (c )および(d)は、それぞれ計測点 A、 B、 Cの軸方向および径方向の変位量の一心周 期分を示している。図 1 (c)および (d)において、横軸は時間を示しており、心臓側へ の移動方向および血管の外側への移動方向を縦軸の正の方向にとっている。
[0027] これらの図に示すように、心臓の収縮期において血液が心臓により押し出され、血 圧が上昇することによって血管が拡張し、血管壁の計測点 A、 B、 Cが血管の外側へ 移動する。一方、血管壁は血管壁の移動の少し前から心臓の収縮によって心臓方向 に移動し、血管壁の変位量が最大となる時刻より少し遅れて心臓方向への変位量が 最大となる。また、最大変位量は、軸方向においては血管壁の内側ほど大きくなつて いる。一方、径方向においては、最大変位量は計測点 Aが最も大きぐ計測点 B、 C の最大変位量はほぼ等しくなつている。これは、頸動脈の外側は体側の結合組織に 覆われていること、動脈壁は、内膜、中膜および外膜という異なる組織によって構成 され、組織ごとに弾性率が異なることなどの理由により、動脈壁の位置によって軸方 向および径方向の変位量が異なるためと考えられる。
[0028] 前述したように、頸動脈の動脈壁の軸方向の運動は、心臓の収縮 4広張によるもの であると考えられるため、動脈壁を含む被検体の計測領域において、軸方向の運動 を検出すれば、心臓に引っ張られない血管腔および体側の結合組織と、動脈壁との 境界を決定できる。また、動脈壁を構成する各組織の境界も軸方向の運動を検出す ることにより決定できるものと考えられる。本願発明者は、このような知見に基づき、血 管壁の厚さや IMTを求めることが可能な超音波診断装置を発明した。
[0029] 以下、本発明による超音波診断装置の実施形態を詳細に説明する。図 2は、本発 明による超音波診断装置の一実施形態の構成を示すブロック図である。本発明の超 音波診断装置を用いて境界の検出が可能な動脈は頸動脈に限られず、心臓に近接 し、心臓の収縮 4広張に伴って心臓に引っ張られる動脈であれば境界を検出すること ができる。
[0030] 本実施形態の超音波診断装置は、受信部 101、送信部 102、遅延合成部 104、直 交検波部 105、断層画像処理部 106、振幅情報処理部 107、位相情報処理部 108 、境界位置検出部 109、運動情報算出部 110、弾性率算出部 111、厚さ算出部 112 および画像合成部 113を備える。また、操作者が超音波診断装置に指令を与えるた めのユーザインターフェース 120と、ユーザインターフェース 120からの指令に基づ き、これらの各構成要素を制御するマイコンなどからなる制御部 121とを備えている。
[0031] なお、図 2に示す各構成要素は必ずしも独立したハードウェアによって構成される 必要はない。例えば、位相情報処理部 108、境界位置検出部 109、運動情報算出 部 110、弾性率算出部 111および厚さ算出部 112などは、マイコンおよびソフトゥェ ァにより構成され、各部の機能が実現されて!、てもよレ、。
[0032] 送信部 102および受信部 101には超音波を被検体へ向けて送信し、被検体から超 音波エコーを受信するための探触子 103が接続される。超音波診断装置は専用の 探触子 103を備えていてもよいし、汎用の探触子を探触子 103として用いてもよい。 探触子 103内には複数の圧電素子が配置され、遅延合成部 104による圧電素子の 選択、および、圧電変換素子に電圧を与えるタイミングの設定によって、送受信する 超音波の偏向角およびフォーカスを制御する。
[0033] 送信部 102は、制御部 121の指令を受けて、指定されたタイミングで探触子 103を 駆動する高圧信号を発生する。探触子 103は、送信部 102で発生した送信信号を超 音波に変換して被検体に照射する。
[0034] 被検体内部から反射してきた超音波エコーは、探触子 103を用いて電気信号に変 換され、受信部 101により増幅されることによって受信信号が生成する。前述したよう に受信部 101は、遅延合成部 104による探触子 103の圧電変換素子の選択によつ て、定められた位置 (フォーカス)または方向(偏向角)からの超音波のみを検出する こと力 Sでさる。
[0035] 送信部 102、受信部 101および遅延合成部 104のこのような動作により、探触子 10 3から照射する超音波が被検体の計測領域を超音波で走査し、 1フレーム分の受信 信号を得る。被検体の一心周期中にこの走査を繰り返し、複数のフレーム分の受信 信号を得る。たとえば、百数十フレーム分の受信信号を取得する。
[0036] 断層画像処理部 106はフィルタ、対数増幅器および検波器などを含み、受信部 10 1から受け取った受信信号を信号強度に応じた輝度情報を有する信号に変換する。 これにより、被検体の計測領域における断層画像を示す信号が得られる。 [0037] 直交検波部 105は受信信号を直交検波する。振幅情報処理部 107は、直交検波 された受信信号力 振幅情報を求め、運動情報報算出部 110へ出力する。
[0038] 運動情報算出部 110は、直交検波された受信信号の振幅情報に基づき、動脈血 管壁の少なくとも軸方向の運動情報を算出する。軸方向の運動情報が得られる限り、 運動情報算出部 110は、二次元の運動情報を求めてもよいし、三次元の運動情報を 求めてもよい。境界位置決定部 109は、得られた運動情報に基づいて計測領域中に おける動脈血管壁の血流 内膜境界、中膜一外膜境界および外膜一体側の結合 組織境界のうちの少なくとも 1つの境界を決定し、決定した境界の計測領域中におけ る位置情報を生成する。
[0039] 厚さ算出部 112は、境界位置決定部 109が動脈血管壁の血流 内膜境界、中膜 一外膜境界および外膜一体側の結合組織境界のうちの 2つ以上を決定した場合に おいて、決定した境界間の厚さ(距離)を求める。
[0040] 位相情報処理部 108は、直交検波された受信信号の位相情報を生成し、弾性率 値算出部 111へ出力する。弾性率値算出部 111は、位相情報から、計測領域内の 各計測点の径方向における移動量を算出する。また、外部から被検体の血圧に関す る情報を受け取り、厚さ算出部 112から得られる境界間の厚さと、血圧に関する情報 と、各計測点の径方向における移動量とから各計測点間の弾性率値を求める。
[0041] 画像合成部 113は、断層画像処理部 106から被検体の計測領域における断層画 像を示す信号を受け取る。また、境界位置検出部 109から検出した境界の位置情報 を受け取り、厚さ算出部 112から求めた境界間の厚さを受け取る。そして、境界の位 置情報に基づき、決定した境界を示す線を断層画像に重畳した画像信号を生成し、 表示部 114へ出力する。さらに境界間の厚さを示す数値を生成し、表示部 114へ出 力する。
[0042] また、画像合成部 113は、各計測点間の弾性率値を受け取り、弾性率値に応じた 色調や諧調で弾性率の計測領域における分布を示す二次元マッピングデータを生 成し、表示部へ出力する。表示部 114は画像合成部 113から出力されるデータを表 示する。
[0043] ユーザインターフェース 120は、操作者が超音波診断装置に指令を与えるための 入力部である。具体的には、ユーザインターフェース 120はキーボードやトラックボー ノレ、マウスなどの入力デバイスである。操作者は、ユーザインターフェース 120を用い て、弾性率を算出するための関心領域 (ROI)を設定したり、境界位置決定部 109で 決定する境界や厚さ算出部 112で求める境界間の厚さを選択する。
[0044] 次に、運動情報算出部 110および境界位置決定部 109の動作を詳細に説明する 。前述したように、本発明では血管腔および体側の結合組織と動脈壁との境界およ び動脈壁を構成する組織の境界を被検体の軸方向の運動を検出することにより決定 する。このために、運動情報算出部 110は、振幅情報処理部 107から受信信号の振 幅情報を受け取り、被検体の軸方向の運動情報の分布を動脈血管壁の径方向に沿 つて算出し、算出した運動情報の分布に基づいて境界を決定する。運動情報は軸方 向の運動速度であってもよいし、軸方向の変位量であってもよい。本実施形態では、 軸方向の変位量を利用して境界を検出する。
[0045] 動脈の軸方向の運動情報は、例えば、被検体に向けて径方向と非平行な方向に 超音波を送信することによって得ること力できる。しかし、通常の超音波診断装置で は、径方向と平行な方向に超音波を送受信し被検体内部の情報を得るため、受信信 号から直接、軸方向の運動成分を検出することが難しい。このため、本実施形態では 、計測領域を超音波で走査することにより、 1フレーム分の受信信号を複数回繰り返 し取得し、異なる 2つのフレーム間において、受信信号の相関を計算することによつ て、軸方向の変位量を各計測点について推定する。これにより、計測を行った超音 波ビームの音響線上の変位量分布曲線が得られる。血管腔および体側の結合組織 と動脈壁との境界および動脈壁を構成する組織の境界は、変位量分布曲線から決 定される。
[0046] 図 3を参照して軸方向の変位量の算出を詳細に説明する。まず、図 3 (a)に示すよ うに、例えば第 1フレームにおける計測領域 20中に相関を計算するための関心領域 21を設定する。計測領域 20にお!/、て計測点が例えば n行 m列で配置されて!/、ると する。基準領域 21は計測点(s, t) (s、 tはそれぞれ n、 m以下の整数)の移動量を求 めるために用いられる。
[0047] 図 3 (b)に示すように、第 1フレームから所定の時間が経過した第 kフレームでは、動 脈壁が拡張することにより径方向へ dy移動するとともに心臓に引っ張られ軸方向に d X移動したとする。この場合、設定した関心領域 21は、軸方向および径方向へ移動し 、計測点(P, q)を中心とする領域 21 'へ移動している。この場合、図 3 (c)に示すよう に、第 kフレームにおいて、計測領域 20内の各計測点について基準領域 21と同じ大 きさの領域 23を設定し、第 1フレームの関心領域 21に対応する受信信号の振幅情 報と第 kフレームにおける領域 23に対応する受信信号の振幅情報との相関を相関関 数を用いて計算し、相関係数を求める。計測領域 20内のすべての計測点について 領域 23を設定し、相関を計算した場合、図 3 (b)に示すように、領域 21 'との相関が 最も高ぐ、相関係数も最大となる。したがって、関心領域 21は第 kフレームにおいて 領域 21 'へ移動したと推定され、このときの軸方向の変位量は dxとなる。受信信号の 相関を利用して 2つのフレーム間における注目する部位の位置を特定する方法は、 例えば、特開平 8— 164139号公報に開示されている。
[0048] 運動情報算出部 110は、この計算を各計測点について行うことにより、計測領域内 のすベての計測点の所定の 2つのフレーム間での変位量を求める。本発明におレ、て 動脈血管壁の境界の決定に用いるのは軸方向の変位量であるため、径方向の変位 量は求めなくてもよい。
[0049] また、相関を求める際、位相情報処理部 108において求めた位相情報を参照して もよい。位相情報を用いれば、 2つのフレーム間の位相を比較することによって、各計 測点の径方向の変位量を求めることができる。このため、相関を計算すべき領域 23 のうち、径方向については位相から求めた変位量だけ径方向にシフトした位置にある 領域 23、または、その近傍の領域 23のみの相関を計算することによって相関係数が 最大となる領域 23を決定できる。その結果、計算量を大幅に低減することができる。
[0050] 相関を求める計算の精度は、関心領域 21の大きさに依存する。一般に、関心領域 が大きくなるほど計算の精度は高くなるが、計算量が増大する。このため、計算量と 必要な計算精度とを考慮して関心領域 21の大きさを定めることが好ましい。
[0051] 上述の方法によって、求められる変位量の軸方向および径方向の分解能は、図 4 に示すように、計測領域に設定された計測点の軸方向および径方向の間隔によって 決まる。具体的には、軸方向の分解能は、超音波ビームの音響線 23の間隔 1となる。 また、径方向の分解能は、音響線 23上に設定された計測点 24の間隔 となる。間隔 1 または間隔 1が十分には小さくないため、変位量の計測精度があまり高くない場合に
1 2
は、隣接する音響線 23の受信信号を補間し、補間信号 23 'を生成してもよい。これ により軸方向の分解能を高くすることができる。また、同様に音響線 23上の 2つの計 測点間において受信信号を補間し、補間計測点 24 'を生成してもよい。
[0052] 図 5において模式的に示すように一心周期中において、第 1フレームから第 Kフレ ームまでの計測領域 20の受信信号が得られる。第 1から第 Kフレームの中力 任意 の 2つのフレームを選択することにより、選択した 2つのフレーム間に動脈壁が移動し た変位量を求めることができる。一般的には、図 1 (c)に示す心臓方向への変位が最 も少な!/、時刻のフレームおよび心臓方向への変位が最も大き!/、時刻のフレームを選 択することにより、軸方向の最大変位量が得られる。これにより、ノイズ等の影響を低 減し、以下において説明する、軸方向変位量の径方向分布曲線を精度良く得ること ができ、境界の判別精度を高めることができる。しかし、図 1 (c)に示すように、一心周 期中において動脈壁の軸方向の運動のタイミングは径方向の位置によって異なる。 このため、境界の判別がし易くなるような軸方向変位量の径方向分布曲線が得られ るフレームを選択することが好ましレ、。
[0053] 運動情報算出部 110は、上述した方法により得られた各計測点の軸方向の移動量 を 1つの音響線 (径方向)に沿って求めた変位量分布曲線を生成する。図 6に示すよ うに、径方向に配列している計測点における変位量をプロットすることにより、変位量 分布曲線 61が得られる。図 6には、対応する計測領域の断面画像を模式的に合わ せて示している。
[0054] 境界位置決定部 109は、運動情報算出部 110から得られる変位量分布曲線を用 いて動脈壁の境界を決定する。図 6に示すように、得られた変位量分布曲線 61にお いて、血管腔 41側に最も近接する急峻な立ち上力 Sり位置 62が、血管腔 41の血流と 内膜 42との境界 51の位置を表す。また、体側の結合組織 45側に最も近接する極小 値の位置 63が、中膜 43と外膜 44との境界 53の位置を表す。体側の結合組織 45側 に最も近接する急峻な立ち下力 ^位置 54は、外膜 44と体側の結合組織 45との境界 54の位置を表している。 [0055] このように変位量分布曲線と動脈壁の境界位置とを対応させることができるのは、 血流や体側の結合組織は軸方向へ運動しないこと、および、動脈壁を構成する各組 織は弾性率が異なるために、軸方向の運動特性が異なることによるものと考えられる
[0056] 境界位置決定部 109は、上述の関係を用いて、 1つの変位量分布曲線から血流 内膜境界、中膜一外膜境界および外膜一体側の結合組織境界のうちの少なくとも 1 つの境界の位置を決定する。具体的には、径方向に計測点をシフトさせながら直線 の計測点との変位量を比較し、上述した曲線の立ち上がり位置や極小値や立ち下り の位置を決定する。変位量分布曲線は、各音響線において求められるので、各変位 量分布曲線において、境界を定めることにより、計測領域全体において、血流 内 膜境界、中膜一外膜境界または外膜一体側の結合組織境界の位置を決定すること ができる。
[0057] 図 7は、本実施形態の超音波診断装置を用いて動脈壁を含む被検体の計測を行 つた場合において表示部 114に表示される画像の一例を示している。図 7に示すよう に、表示部 114には、計測領域の断層画像 70が表示される。断層画像は動脈の血 管腔 41、内膜 42、中膜 43、外膜 44および体側の結合組織 45が示されている。また 、断層画像 70には弾性率を計測する領域である関心領域 80が表示されて!/、る。関 心領域 80の位置や大きさは操作者がユーザインターフェース 120(図 2)を用いて、 任意に設定できる。
[0058] また、関心領域 80内において、境界位置決定部 109が決定した血流-内膜境界 線 75と中膜-外膜境界線 76が表示されている。どの境界を表示するかは、操作者 がユーザインターフェース 120を用いて指定できる。
[0059] 表示部 114の画面にはさらに断層画像 70上において設定した関心領域 80内の弹 性率値が断層画像 71に重畳され、二次元マッピング表示されている。弾性率値は、 カラーバー 73で示される弾性率値に応じた色調または諧調で表示されている。境界 位置決定部 109が決定した血流-内膜境界線 75'と中膜-外膜境界線 76 'を断層 画像 71上に表示してもよい。
[0060] また、表示部 114の画面にはカーソル 81上における境界線 75と境界線 76との距 離である IMTの値 77が表示される。図 7には外膜一体側の結合組織境界 45は表示 されて!/、な!/、が、血流-内膜境界線 75と外膜-体側の結合組織境界線とを表示さ せた場合には、血管壁の厚さの値 78が表示される。
[0061] 本実施形態によれば、動脈血管の血流 内膜境界、中膜一外膜境界および外膜 一体側の結合組織境界の少なくとも 1つを動脈血管の軸方向の運動情報に基づき 決定する。このため、操作者による計測値のばらつきが生じることなぐ血管壁の厚さ や IMTを求めることができる。また、軸方向の移動量を、受信信号の振幅情報のバタ ーンマッチングを利用して決定するため、多少ノイズが受信信号に重畳していても、 精度良く移動量を算出することができる。このため、スペックルなどの影響を受けにく ぐ正確に境界の位置を決定することが可能となる。
[0062] なお、上記実施形態では、超音波診断装置は弾性率の分布を求めるために直交 検波部と位相情報処理部を備えている力 弾性率を求めない場合には、これらの構 成を備えていなくてもよい。この場合、断層画像処理部から得られる信号を受け取り 運動情報算出部が動脈壁の軸方向の運動情報を算出してもよぐ振幅情報処理部 を断層画像処理部とは別に設けなくてもよい。
産業上の利用可能性
[0063] 本発明は医療用の超音波診断装置に好適に用いられ、特に、動脈血管の診断に 用いる超音波診断装置に好適に用いられる。

Claims

請求の範囲
[1] 動脈血管壁を含む被検体の計測領域へ超音波を送信するための超音波探触子を 駆動する送信部と、
前記超音波が前記被検体において反射することにより得られる反射波を、前記超 音波探触子を用いて受信し、受信信号を生成する受信部と、
前記受信信号に基づいて、前記動脈血管壁の少なくとも軸方向の運動情報を算出 する運動情報算出部と、
前記運動情報に基づいて、前記計測領域中における前記動脈血管壁の血流 内 膜境界、中膜一外膜境界および外膜一体側の結合組織境界のうちの少なくとも 1つ の境界の位置を決定する境界位置決定部と、
を備えた超音波診断装置。
[2] 前記運動情報算出部は、前記軸方向の変位量の分布を前記動脈血管壁の径方 向に沿って算出した変位量分布曲線を算出し、
前記境界位置決定部は、前記変位量分布曲線に基づいて、前記少なくとも 1つの 境界の位置を決定する請求項 1に記載の超音波診断装置。
[3] 前記送信部および受信部は、前記計測領域を前記超音波で走査することにより、 1 フレーム分の前記受信信号を複数回繰り返し取得し、
前記運動情報算出部は、異なる 2つのフレーム間において、前記受信信号の振幅 を比較することにより、前記計測領域内の各計測点の軸方向の変位量を算出する請 求項 2に記載の超音波診断装置。
[4] 前記運動情報算出部は、第 1のフレームにおける受信信号の振幅情報と第 2のフレ ームにおける受信信号の振幅情報との相関を計算することによって、前記計測領域 内の各計測点の前記 2つのフレーム間における軸方向の変位量を算出する請求項 3 に記載の超音波診断装置。
[5] 前記運動情報算出部は、前記軸方向の運動情報の分布を前記動脈血管壁の径 方向に沿って算出し、
前記境界位置決定部は、前記運動情報の分布に基づいて、前記少なくとも 1つの 境界の位置を決定する請求項 1に記載の超音波診断装置。
[6] 前記境界位置決定部は、前記変位量分布曲線のうち、血管腔側に最も近接する急 峻な立ち上力 Sり位置に基づいて、前記血流 内膜境界の位置を決定する請求項 2 に記載の超音波診断装置。
[7] 前記境界位置決定部は、前記変位量分布曲線のうち、体側の結合組織側に最も 近接する極小値の位置に基づいて、前記中膜一外膜境界の位置を決定する請求項
2に記載の超音波診断装置。
[8] 前記境界位置決定部は、前記変位量分布曲線のうち、体側の結合組織側に最も 近接する急峻な立ち下り位置に基づ!/、て、前記外膜一体側の結合組織境界の位置 を決定する請求項 2に記載の超音波診断装置。
[9] 前記受信信号に基づいて前記計測領域の断層画像を示す信号を生成する断層画 像処理部を更に備え、前記少なくとも 1つの境界を前記断層画像に重畳して表示す る請求項 1から 8のいずれかに記載の超音波診断装置。
[10] 前記受信信号に基づいて前記計測領域内の計測点間の弾性率を算出する弾性 率値算出部をさらに備え、
前記算出した弾性率値の二次元マッピング画像をさらに表示する請求項 9に記載 の超音波診断装置。
PCT/JP2007/065901 2006-08-21 2007-08-15 échographe WO2008023618A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112007001982T DE112007001982T5 (de) 2006-08-21 2007-08-15 Impuls-Echogerät
JP2008530874A JP4890554B2 (ja) 2006-08-21 2007-08-15 超音波診断装置
CN200780031130XA CN101505664B (zh) 2006-08-21 2007-08-15 超声波诊断装置
US12/438,021 US8465426B2 (en) 2006-08-21 2007-08-15 Ultrasonograph

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006224064 2006-08-21
JP2006-224064 2006-08-21

Publications (1)

Publication Number Publication Date
WO2008023618A1 true WO2008023618A1 (fr) 2008-02-28

Family

ID=39106703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065901 WO2008023618A1 (fr) 2006-08-21 2007-08-15 échographe

Country Status (5)

Country Link
US (1) US8465426B2 (ja)
JP (1) JP4890554B2 (ja)
CN (1) CN101505664B (ja)
DE (1) DE112007001982T5 (ja)
WO (1) WO2008023618A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099102A1 (ja) * 2010-02-10 2011-08-18 パナソニック株式会社 超音波診断装置および内中膜の厚さを計測する方法
JP2012090820A (ja) * 2010-10-27 2012-05-17 Ge Medical Systems Global Technology Co Llc 超音波診断装置
JP2013165880A (ja) * 2012-02-16 2013-08-29 Hitachi Aloka Medical Ltd 超音波診断装置
CN104066379A (zh) * 2012-01-19 2014-09-24 柯尼卡美能达株式会社 超声波诊断装置以及超声波诊断装置的控制方法
EP2535005A4 (en) * 2010-02-10 2015-08-19 Konica Minolta Inc ULTRASONIC DIAGNOSTIC DEVICE AND METHOD FOR MEASURING THE THICKNESS OF THE INTIMA MEDIA COMPLEX
JP2016013472A (ja) * 2015-09-17 2016-01-28 富士フイルム株式会社 超音波画像生成方法
KR20180074364A (ko) * 2016-12-23 2018-07-03 서강대학교산학협력단 대상체의 움직임을 추정하는 초음파 의료영상 장치가 적응적으로 참조 프레임을 결정하는 방법 및 그 초음파 의료영상 장치

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113900B (zh) 2010-01-05 2015-07-15 深圳迈瑞生物医疗电子股份有限公司 彩色血流动态帧相关方法和装置
JP5209026B2 (ja) * 2010-10-27 2013-06-12 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
EP2661228B1 (en) * 2011-01-05 2014-12-24 Koninklijke Philips N.V. Device and method for determining actual tissue layer boundaries of a body
JP5438722B2 (ja) * 2011-06-03 2014-03-12 富士フイルム株式会社 超音波診断装置
JP5972569B2 (ja) * 2011-12-26 2016-08-17 東芝メディカルシステムズ株式会社 超音波診断装置、超音波画像処置装置、医用画像診断装置及び超音波画像処理プログラム
JP2014236776A (ja) * 2013-06-06 2014-12-18 セイコーエプソン株式会社 超音波測定装置および超音波測定方法
EP3055507B1 (en) 2013-10-08 2020-01-01 United Technologies Corporation Rotor blade with compound lean contour and corresponding gas turbine engine
CN104665872B (zh) * 2014-12-29 2017-04-05 深圳开立生物医疗科技股份有限公司 一种基于超声图像的颈动脉内中膜厚度测量方法和装置
WO2017149027A1 (en) * 2016-03-01 2017-09-08 Koninklijke Philips N.V. Automated ultrasonic measurement of nuchal fold translucency
US10315222B2 (en) 2016-05-04 2019-06-11 Invensense, Inc. Two-dimensional array of CMOS control elements
US10445547B2 (en) 2016-05-04 2019-10-15 Invensense, Inc. Device mountable packaging of ultrasonic transducers
US10441975B2 (en) 2016-05-10 2019-10-15 Invensense, Inc. Supplemental sensor modes and systems for ultrasonic transducers
US10706835B2 (en) 2016-05-10 2020-07-07 Invensense, Inc. Transmit beamforming of a two-dimensional array of ultrasonic transducers
CN107007302B (zh) * 2017-04-27 2020-11-10 深圳开立生物医疗科技股份有限公司 超声设备、超声图像处理方法及装置
US11176345B2 (en) 2019-07-17 2021-11-16 Invensense, Inc. Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness
US11392789B2 (en) 2019-10-21 2022-07-19 Invensense, Inc. Fingerprint authentication using a synthetic enrollment image
CN115551650A (zh) 2020-03-09 2022-12-30 应美盛公司 具有非均匀厚度的接触层的超声指纹传感器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103185A1 (ja) * 2003-05-20 2004-12-02 Matsushita Electric Industrial Co., Ltd. 超音波診断装置
WO2005002446A1 (ja) * 2003-07-03 2005-01-13 Matsushita Electric Industrial Co., Ltd. 超音波診断装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143132A (en) * 1979-04-26 1980-11-08 Kuniyasu Furuhira Measuring device for medical treatment
US4721113A (en) * 1985-09-20 1988-01-26 Temple University Of The Commonwealth System Of Higher Education Method of predicting the occurrence of deep vein thrombosis by non-invasive measurement of vessel diameter
JP3544722B2 (ja) 1994-12-16 2004-07-21 株式会社東芝 超音波診断装置
JP3707882B2 (ja) * 1995-11-21 2005-10-19 株式会社東芝 超音波診断装置
JP3652791B2 (ja) 1996-06-24 2005-05-25 独立行政法人科学技術振興機構 超音波診断装置
JP2889568B1 (ja) * 1998-05-18 1999-05-10 正男 伊藤 血管膜厚測定装置及び動脈硬化診断装置
US6267728B1 (en) * 1999-06-23 2001-07-31 Steven Mark Hayden Method for evaluating atherosclerosis and its affect on the elasticity of arterial walls
WO2001047421A1 (en) * 1999-12-28 2001-07-05 Koninklijke Philips Electronics N.V. Ultrasonic image processing method and system for displaying an ultrasonic color-coded image sequence of an object having moving parts
EP1123687A3 (en) * 2000-02-10 2004-02-04 Aloka Co., Ltd. Ultrasonic diagnostic apparatus
US6508768B1 (en) * 2000-11-22 2003-01-21 University Of Kansas Medical Center Ultrasonic elasticity imaging
US7744537B2 (en) * 2001-08-20 2010-06-29 Japan Science And Technology Agency Ultrasonic method and system for characterizing arterial tissue using known elasticity data
US6817982B2 (en) * 2002-04-19 2004-11-16 Sonosite, Inc. Method, apparatus, and product for accurately determining the intima-media thickness of a blood vessel
US6835177B2 (en) * 2002-11-06 2004-12-28 Sonosite, Inc. Ultrasonic blood vessel measurement apparatus and method
JP2006510413A (ja) * 2002-12-18 2006-03-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 動脈壁の動きを決定する超音波ドップラシステム
WO2004089222A1 (ja) * 2003-04-03 2004-10-21 Matsushita Electric Industrial Co. Ltd. 超音波診断装置および超音波診断装置の制御方法
US7727153B2 (en) * 2003-04-07 2010-06-01 Sonosite, Inc. Ultrasonic blood vessel measurement apparatus and method
US7686764B2 (en) * 2003-06-25 2010-03-30 Panasonic Corporation Ultrasound diagnostic apparatus for calculating positions to determine IMT and lumen boundaries
JP4676334B2 (ja) * 2003-09-01 2011-04-27 パナソニック株式会社 生体信号モニタ装置
JP4755085B2 (ja) * 2004-03-15 2011-08-24 株式会社日立メディコ 医用画像診断装置、医用画像診断装置の作動方法、医用画像診断装置を作動するための機能をコンピュータに実行させるためのプログラム
WO2006043529A1 (ja) * 2004-10-19 2006-04-27 Matsushita Electric Industrial Co., Ltd. 超音波診断装置
US20090012399A1 (en) * 2005-02-07 2009-01-08 Kazuhiro Sunagawa Ultrasonic diagnostic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103185A1 (ja) * 2003-05-20 2004-12-02 Matsushita Electric Industrial Co., Ltd. 超音波診断装置
WO2005002446A1 (ja) * 2003-07-03 2005-01-13 Matsushita Electric Industrial Co., Ltd. 超音波診断装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CINTHIO MAGNUS: "Evaluation of an Ultrasonic Echo-Tracking Method for Measurements of Arterial Wall Movements in Two Dimensions", IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRONICS, AND FREQUENCY CONTROL, vol. 52, no. 8, August 2005 (2005-08-01), pages 1300 - 1311, XP003020272 *
NUMATA T. ET AL.: "Domyakuheki no Chojiku Hoko Hen'i Keisoku no Tame no Choonpa RF Shingo no Hokanho no Kento", TECHNICAL REPORT OF IEICE, vol. 105, no. 313, 23 September 2005 (2005-09-23), pages 43 - 47, XP003020271 *
SPYRETTA GOLEMATI ET AL.: "CAROTID ARTERY WALL MOTION ESTIMATED FROM B-MODE ULTRASOUND USING REGION TRACKING AND BLOCK MATCHING", ULTRASOUND IN MEDICINE AND BIOLOGY, vol. 29, no. 3, March 2003 (2003-03-01), pages 387 - 399, XP004420633 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2535005A4 (en) * 2010-02-10 2015-08-19 Konica Minolta Inc ULTRASONIC DIAGNOSTIC DEVICE AND METHOD FOR MEASURING THE THICKNESS OF THE INTIMA MEDIA COMPLEX
WO2011099102A1 (ja) * 2010-02-10 2011-08-18 パナソニック株式会社 超音波診断装置および内中膜の厚さを計測する方法
US8740796B2 (en) 2010-02-10 2014-06-03 Konica Minolta, Inc. Ultrasonic diagnostic device, and method for measuring intima-media thickness
US9179889B2 (en) 2010-02-10 2015-11-10 Konica Minolta, Inc. Ultrasonic diagnostic device, and method for measuring initma-media complex thickness
JP2012090820A (ja) * 2010-10-27 2012-05-17 Ge Medical Systems Global Technology Co Llc 超音波診断装置
US8475382B2 (en) 2010-10-27 2013-07-02 Ge Medical Systems Global Technology Company, Llc Ultrasound diagnostic apparatus and method for tracing movement of tissue
CN104066379B (zh) * 2012-01-19 2016-11-09 柯尼卡美能达株式会社 超声波诊断装置以及超声波诊断装置的控制方法
CN104066379A (zh) * 2012-01-19 2014-09-24 柯尼卡美能达株式会社 超声波诊断装置以及超声波诊断装置的控制方法
US9693755B2 (en) 2012-01-19 2017-07-04 Konica Minolta, Inc. Ultrasound diagnostic device and method for controlling ultrasound diagnostic device
JP2013165880A (ja) * 2012-02-16 2013-08-29 Hitachi Aloka Medical Ltd 超音波診断装置
JP2016013472A (ja) * 2015-09-17 2016-01-28 富士フイルム株式会社 超音波画像生成方法
KR20180074364A (ko) * 2016-12-23 2018-07-03 서강대학교산학협력단 대상체의 움직임을 추정하는 초음파 의료영상 장치가 적응적으로 참조 프레임을 결정하는 방법 및 그 초음파 의료영상 장치
KR101882326B1 (ko) 2016-12-23 2018-07-26 서강대학교산학협력단 대상체의 움직임을 추정하는 초음파 의료영상 장치가 적응적으로 참조 프레임을 결정하는 방법 및 그 초음파 의료영상 장치

Also Published As

Publication number Publication date
JP4890554B2 (ja) 2012-03-07
DE112007001982T5 (de) 2009-06-10
JPWO2008023618A1 (ja) 2010-01-07
CN101505664A (zh) 2009-08-12
CN101505664B (zh) 2011-08-31
US8465426B2 (en) 2013-06-18
US20100063391A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP4890554B2 (ja) 超音波診断装置
US10959704B2 (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and medical image processing method
JP4189405B2 (ja) 超音波診断装置
JP5161954B2 (ja) 超音波診断装置
JP6058295B2 (ja) 超音波診断装置、医用画像処理装置、医用画像処理方法、および医用画像処理プログラム
WO2007138751A1 (ja) 超音波診断装置、医用画像処理装置及び医用画像処理プログラム
JPWO2006082966A1 (ja) 超音波診断装置
JPWO2007122698A1 (ja) 超音波診断装置
JP2003010183A (ja) 超音波診断装置
WO2007034738A1 (ja) 超音波診断装置
JP2007006914A (ja) 超音波診断装置
US11039777B2 (en) Ultrasonic diagnostic apparatus and control method
JP4870449B2 (ja) 超音波診断装置及び超音波画像処理方法
JP4091365B2 (ja) 超音波診断装置
JP4918369B2 (ja) 超音波診断装置
JP2009039277A (ja) 超音波診断装置
WO2007080870A1 (ja) 超音波診断装置
JP5148203B2 (ja) 超音波診断装置
JP5462474B2 (ja) 超音波診断装置
JP5295684B2 (ja) 超音波診断装置及び診断パラメータ自動計測方法
JP2006523485A (ja) 心臓壁ひずみ画像法
JP4627220B2 (ja) 超音波診断装置
WO2013161228A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP2005058533A (ja) 超音波診断装置
JPWO2006126485A1 (ja) 超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031130.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530874

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120070019824

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

RET De translation (de og part 6b)

Ref document number: 112007001982

Country of ref document: DE

Date of ref document: 20090610

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 12438021

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07792536

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607