WO2008022555A1 - Procédé, système et appareil permettant de déterminer une antenne d'émission - Google Patents

Procédé, système et appareil permettant de déterminer une antenne d'émission Download PDF

Info

Publication number
WO2008022555A1
WO2008022555A1 PCT/CN2007/002465 CN2007002465W WO2008022555A1 WO 2008022555 A1 WO2008022555 A1 WO 2008022555A1 CN 2007002465 W CN2007002465 W CN 2007002465W WO 2008022555 A1 WO2008022555 A1 WO 2008022555A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
transmitting
transmit
mode
base station
Prior art date
Application number
PCT/CN2007/002465
Other languages
English (en)
French (fr)
Inventor
Hufei Zhu
Xuan Wang
Jianfei Tong
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2008022555A1 publication Critical patent/WO2008022555A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to communication technologies, and more particularly to a method, system and apparatus for determining a transmit antenna. BACKGROUND OF THE INVENTION According to information theory, the use of multiple antenna arrays at base stations and/or mobile terminals can greatly increase the transmission bit rate of the system.
  • FIG. 1 shows a wireless communication system with a space-time architecture in which a multi-antenna array is simultaneously used at a base station and a mobile terminal.
  • This system also known as MIMO (Multiple Input Multiple Output) system, operates in a Rayleigh scattering environment, and the elements of the channel matrix can be approximated as statistically independent.
  • a data sequence can be divided into N uncorrelated symbol subsequences, each subsequence being transmitted by one of the N transmit antennas.
  • the N subsequences may be received by the L receiving antennas at the mobile terminal after being influenced by a channel whose channel matrix is H.
  • the transmit signals ..., 1 ⁇ 2 can be transmitted by N different antenna elements a-1, ..., aN, respectively, and the corresponding received signals ⁇ , ..., respectively from L different antenna elements b-1. ., bL reception.
  • the number N of transmitting antenna units is at least 2
  • the number L of receiving antenna units is at least N.
  • the channel matrix H is a matrix of LxN, and the elements of the i-th row and the j-column in the matrix represent the coupling of the i-th receiving antenna and the j-th transmitting antenna through the transmission channel.
  • Received signal ⁇ 1.., ⁇ ⁇ is processed to generate a transmission signal recovery in the digital signal processor.
  • the figure also shows the summation components c-1, c-2, cL, which represent the unavoidable noise w , . . . , ⁇ , which are added to the receiving antenna elements bl, b-2, respectively. ..,bL received signal.
  • a communication scheme with antenna selection can be used.
  • SINR received signal to interference-to-noise ratio
  • the vector of the above N transmitted signals is composed?
  • the resulting vector may be obtained by multiplying a matrix or more than one matrix, and then transmitting the result vectors by respective transmit antennas.
  • S-PARC Selective-per-antenna-rate-control
  • S-PARC Selective Per Antenna Rate Control
  • the mobile terminal selects the transmitting antennas in the respective transmitting modes by using the subset attributes, and sequentially records the transmitting antennas in the respective transmitting modes, and sequentially records the respective transmitting antennas as the antenna processing order (an antenna processing order)
  • the signal-to-interference ratio of the newly added transmitting antenna in each transmitting mode is sequentially recorded.
  • the signal-to-interference ratio of the newly added transmitting antenna in each of the recorded transmission modes is converted into a CQI (Channel Quality Indicator), and the converted CQI and the antenna processing sequence are fed back to the base station.
  • CQI Channel Quality Indicator
  • the base station 106 includes a transmit antenna, a processing unit 110, a serial to parallel conversion unit 112, and multiple codes.
  • the mobile terminal 104 includes a receiving unit 130, a processing unit 131, and a transmitting unit 138.
  • the various units of the base station 106 are briefly described below.
  • the transmit antennas 120-1, 120-2 120-N are used to transmit signals to the receiving unit 130 of the mobile terminal 104.
  • the processing unit 110 processes the feedback signal 102b received by the receiving unit 140 from the mobile terminal 104 (ie, the channel quality indicator CQI and the antenna processing sequence), and then the mode K signal, the rate control signal, and the optimal antenna set selection signal, They are output to the serial-to-parallel conversion unit 112, the encoder, and the transmit antenna mapping unit 118, respectively.
  • the processing unit 110 includes a transmission rate calculator 144, a transmission rate modifier 146, a transmission mode selector 148, an antenna selector 150, and a method and principle for processing the feedback signal 102b by the processing unit 110, a detailed description of which will be described in the following paragraphs. Given.
  • the various units of the mobile terminal 104 are briefly described below.
  • the receiving unit 130 is configured to receive a transmit signal of a base station.
  • the processing unit 131 processes the transmission signal received by the receiving unit 130 and generates a feedback signal 102b according to the received transmission signal.
  • the sending unit 138 sends the inverse generated by the processing unit 131.
  • the feed signal 102b is sent to the base station 106.
  • the feedback signal 102b includes M transmission rates and an antenna processing sequence.
  • FIG. 3 illustrates the steps of selecting a transmit antenna and determining the transmission rate of each selected transmit antenna in the prior art.
  • the method and principle of generating the feedback signal 102b by the mobile terminal 104, and the base station are described in detail below with reference to FIGS. 2 and 3. 106.
  • Based on the feedback signal 102b a method and principle of selecting a transmit antenna and determining a transmission rate for each selected transmit antenna.
  • Step 1 the receiving unit 130 of the mobile terminal 104 receives N signals of the base station 106, and the N signals are respectively transmitted by the N transmitting antennas 120-1, 120-2 120-N of the base station 106;
  • the processing unit 131 performs channel estimation using the received signal to obtain a channel matrix H composed of channel coefficients between the transmitting antenna and the receiving antenna.
  • Step 2 The processing unit 131 of the mobile terminal 104 selects mode 1, mode 2 mode M according to the channel condition of the current time, that is, by using the channel matrix H, from all possible transmit antenna selection schemes according to the criteria of a certain communication scheme.
  • the optimal new transmit antenna has a total of M new transmit antennas.
  • the order of the M newly added transmitting antennas and the CQI (Channel Quality Indicator) of the newly added transmitting antenna are transmitted to the base station 106.
  • the feedback signals corresponding to the M transmission modes generated by the processing unit 131 of the mobile terminal 104 include: M CQIs, that is, M transmission rates; and an antenna processing sequence for indicating the selection of each transmission mode.
  • the optimal transmit antenna, and the order in which the transmit antennas are detected on the mobile terminal side. The generation process of the feedback signal will be described in detail below.
  • the total transmit power of each transmit mode is equal. Since the number of transmit antennas used in each transmit mode is different, the transmit power of the transmit antenna is different for different transmit modes. For example, in transmission modes 1, 2, 3, and 4, the number of antennas used is 1, 2, 3, and 4, respectively.
  • the total transmit power remains the same, assuming P, and the power is evenly distributed between the transmit antennas used.
  • transmission mode 1 one transmitting antenna is used, and the transmitting power of the antenna is ⁇ P; in transmitting mode 2, two transmitting antennas are used, wherein the transmitting power of each antenna is P/2; in transmitting mode 3, use 3 transmitting antennas, wherein the transmitting power of each transmitting antenna is P/3; in transmitting mode 4, 4 transmitting antennas are used, wherein the transmitting power of each transmitting antenna is P/4.
  • the process of selecting a new transmit antenna in each mode by the mobile terminal will now be described, when mode m-1
  • the next optimal transmit antenna selection scheme has been determined, i.e., m-1 transmit antennas are selected; then in transmit mode m, the mobile terminal 104 uses an antenna selection scheme that conforms to the subset property, ie, transmits
  • the transmitting antenna in mode m includes m-1 transmitting antennas selected in transmission mode m-1, and then a signal-to-interference ratio maximum transmitting antenna is selected from the remaining transmitting antennas as a newly added transmitting antenna in mode m.
  • the following is an example of a total of four transmit antennas to illustrate the process of selecting a new transmit antenna in mode 1, mode 2 mode M.
  • the transmission mode 1 it is necessary to select an antenna for data transmission, and measure the received SINR of the four antennas in the transmission mode 1, and select one antenna corresponding to the maximum received SINR as the newly added transmitting antenna, for example, the third antenna.
  • the signal sum of the newly added transmitting antenna 3 is recorded as SINR(3), so that the antenna 3 is selected to transmit data in the transmission mode 1.
  • the SI R(3) is the SINR of the first detected transmit antenna in transmit mode 1, also referred to as the first step SINR in transmit mode 1.
  • the antenna measures the SINR values of the remaining unused antennas 1, 2, 4, respectively, and selects one remaining antenna corresponding to the largest SINR value as the newly added transmitting antenna. For example, for the second antenna, the signal-to-interference ratio of the newly added transmitting antenna is recorded as SINR(2), so that the two antennas selected in the transmission mode 2 are ⁇ 3, 2 ⁇ dron
  • the SI R(2) is the transmission mode.
  • the first SINR (the first stage SINR) is the SI R of the first detected transmit antenna in transmit mode 2.
  • the SINR value a remaining antenna corresponding to the maximum SINR value is selected as the newly added transmitting antenna.
  • SINR(4) the signal-to-interference ratio of the newly added transmit antenna is recorded as SINR(4), and the antenna ⁇ 3, 2, 4 ⁇ is selected in the transmit mode 3.
  • the SINR(4) is the first stage SINR in the transmission mode 3, that is, the SINR of the first detected transmitting antenna in the transmission mode 3.
  • the SINR (1) is the transmission The first stage SINR in mode 4, that is, the SINR of the first detected transmit antenna in transmission mode 1.
  • Table 1 shows the received SINR for each antenna in each mode, where a blank entry indicates that the antenna is not being used in the corresponding mode.
  • the processing unit 131 of the mobile terminal 104 can set SIN (3), SINR (2), SINR (4), SINR (1), that is, the first SINR (the first stage SINR) under the transmission modes 1, 2, 3, 4. ), respectively quantized into 4 CQI values, and then fed back to the base station 106 through the transmitting unit 138, and also feed back an antenna processing sequence ⁇ 3, 2, 4, 1 ⁇ .
  • the quantization is usually based on an MCS (Modulation and Channel Coding Scheme) table known to both the base station 106 and the mobile terminal 104, and the SINR value is mapped to an item in the MCS table, indicating the SINR.
  • MCS Modulation and Channel Coding Scheme
  • the base station 106 transmits a signal according to the modulation and channel coding scheme indicated by the item in the MCS table, and the probability that the mobile terminal 104 correctly receives the transmitted signal is greater than a given value.
  • the modulation and channel coding scheme used for transmitting the signal the data transmission rate can be obtained, and the cylinder is called the transmission rate, indicating how much data is transmitted.
  • Step 3 The receiving unit of the base station 106 receives the feedback signal from the mobile terminal 104, that is, the M CQI values and the antenna selection order fed back by the mobile terminal 104. Then, the transmission rate calculator 144 of the processing unit 110 of the base station 106 processes the feedback.
  • the transmission rate modifier 146 of the processing unit 110 of the base station 106 corrects the at least based on factors of power allocation or spreading code assignment for a certain signal a derived transmission rate indicator; a transmission mode selector 148 of the processing unit 110 of the base station 106 selects a transmission mode K based on the at least one corrected transmission rate indication; an antenna selector 150 of the processing unit 110 of the base station 106 selects a set of transmit antennas to transmit signals using the selected transmit antenna, below The case of four transmit antennas is taken as an example to illustrate the process of determining the transmit antenna in mode 1, mode 2 mode M.
  • the base station 106 can obtain the respective transmit antennas used in each of the modes 1, 2, 3, .4 according to the four CQI values and the antenna selection order fed back by the mobile terminal 104, and the respective transmit antennas used.
  • Receiving SINTL For example, according to the order of antenna processing ⁇ 3, 2, 4, 1 ⁇ fed back by the mobile terminal 104, the base station 106 can know that the mode 1 uses the antenna 3, the mode 2 uses the antennas 3, 2, and the mode 3 uses the antennas 3, 2 4, and mode 4 uses antennas 3, 2, 4, 1.
  • the base station 106 can obtain the modes 1, 2, 3, and 4 according to the four CQI values fed back by the mobile terminal 104, that is, the quantized values of SINR(3), SI R(2), SINR(4), and SINR(1).
  • Receive SINR for all transmit antennas used in each mode (as shown in Table 1).
  • the base station 106 selects a mode in which the channel capacity or the channel throughput is the largest according to the received SINR of all the transmitting antennas used in each mode, and the channel capacity or channel throughput of each mode can be used by the mode.
  • the received SINR of all transmit antennas is calculated.
  • the method for the base station to select a mode using the channel capacity or the channel throughput is as follows: the base station calculates the transmission rate in the transmission mode 1; the total transmission rate in the transmission mode 2, ..., the total transmission rate in the transmission mode M Where M is the number of transmit antennas of the base station, the total transmission rate in each transmission mode, that is, the sum of the transmission rates of the selected transmit antennas in the transmission mode; and the base station selects the largest total transmission from the total transmission rate in each of the above transmission modes.
  • the transmission mode corresponding to the maximum total transmission rate is a determined transmission mode
  • the transmit antenna corresponding to the transmission mode is a determined transmit antenna.
  • the base station 106 corrects the at least one derived transmission rate indication is described below.
  • the transmit power of the base station 106 is assumed. Since the actual transmit power used by the base station 106 may be different from that assumed by the mobile terminal 104, the base station 106 may respond to the feedback of the mobile terminal 104.
  • the CQI value derives the received SINR of the mobile terminal 104 at the new transmit power (this is an important possible case).
  • the mobile terminal 104 assumes that the transmit power of the base station 106 is P, and calculates the quantized values of SIN (3), SINR (2), SINR (4), and SINR (1) in Table 1 and feeds back, while the base station 106
  • the actual transmit power is c times P, i.e., c P, then the base station 106 can infer that at this power, the receive SIN of the mobile terminal 104 is approximately: Mode ⁇ Antenna Antenna 3 Antenna 2 ⁇ ' ⁇ - Antenna 4 Antenna 1 Mode 1 SINR(3) c
  • the bit stream is input to the serial to parallel conversion unit 112, which is converted into one or more substreams 124-1, 124-2 . . . 124-K.
  • the actual number of substreams is controlled by the mode signal, which is sent by the processing unit 110 to the serial to parallel conversion unit 112.
  • the substreams 124-1, 124-2 . . . 124-K output by the serial to parallel conversion unit 112 are processed by the corresponding encoder and symbol mapper/spreader.
  • Each of the substreams 124-1, 124-2, ..., 124-K is sent by the processing unit 110 to a corresponding encoder for encoding.
  • the processing unit 110 sends to the transmit antenna mapping unit 118 an optimal antenna set selection signal for determining a specific subset of the transmit antennas, that is, selecting to transmit the encoded substreams 124-1, 124-2, ..., a specific subset of 124-K antennas 120-1, 120-2 120-N.
  • the launch mode ⁇ must be less than or equal to ⁇ .
  • Step 4 The mobile terminal device 104 receives one of the data substreams 1, 2 ⁇ transmitted by the base station 106. After determining the transmission mode, the base station 106 may also notify the mobile terminal 104 of the adopted transmission mode, so that the mobile terminal 104 sequentially detects the transmission signals of the respective transmitting antennas by using the interference cancellation technology according to the antenna processing sequence obtained by the transmission mode. Step 4 It is the mobile terminal 104 that determines the transmission mode adopted by the transmitting end according to the received signal, and then uses the interference cancellation technology to sequentially detect the transmission signals of the respective transmitting antennas.
  • the sequence of antenna processing returned by the mobile terminal 104 is ⁇ 3, 2, 4, 1 ⁇ , and then the mobile terminal 104 is After knowing the mode used by the base station 106, the detection sequence that the antenna and the mobile terminal 104 used in the mode should follow is obtained, that is, the mode 1 uses the antenna 3; the mode 2 uses the antennas 3 and 2, and the detection sequence is 2, 3; Mode 3 uses antennas 3, 2, 4, the order of detection is 4, 2, 3; and Mode 4 uses antennas 3, 2, 4, 1 , the order of detection is 1, 4, 2, 3 .
  • the mobile terminal 104 uses the interference cancellation technique, that is, the mobile terminal 104 detects the transmitted signal of one transmit antenna at a time, and then eliminates the received signal.
  • the interference of the signal transmitted by the transmitting antenna has been detected; the mobile terminal 104 detects the signal transmitted by the next transmitting antenna, and then cancels the interference of the signal transmitted by the transmitting antenna that has been detected in the received signal; ... cyclically performs the above steps, The signals transmitted by all m transmit antennas have been detected.
  • the interference cancellation technique when the first transmitting antenna is detected, there are interferences of the remaining m-1 transmitting antennas; and when the second transmitting antenna is detected, because the first detected transmitting antenna is used
  • the interference has been eliminated in the received signal, and there is only interference from the remaining m-2 transmit antennas; in general, when detecting the i-th transmit antenna, since the first to the i-th is common - the interference of one of the transmitted transmit antennas has been eliminated in the received signal, so there is only interference from the remaining mi transmit antennas; and when the last m transmit antennas are detected, there are no other transmit antennas interference.
  • the following is a description of a case where the mobile terminal 104 receives the transmission signal by using the interference cancellation technique, taking a case where there are a total of four transmitting antennas as an example.
  • the transmission signal of the antenna 3 can be directly detected.
  • the mobile terminal 104 In transmission mode 2, the mobile terminal 104 first detects the transmitting antenna 2, then cancels the interference of the transmitting antenna 2, and then detects the transmitting antenna 3 (ie, the antenna determined in the transmission mode 1), which is the last detected one in the transmission mode 2. Antenna, that is, in transmission mode 2, when detecting the antenna determined in transmission mode 1, such as antenna 3, there is no interference from other transmitting antennas, and considering the transmission power of each transmitting antenna in mode 1. It is twice the transmission power of each transmitting antenna in mode 2, so that in mode 2, the receiving SINR of antenna 3 is (1/2) x SINR(3).
  • the mobile terminal 104 In transmission mode 3, the mobile terminal 104 first detects the transmitting antenna 4, then cancels the interference of the transmitting antenna 4, detects the transmitting antenna 2, then cancels the interference of the transmitting antenna 2, and finally detects the transmitting antenna 3. Since the transmitting antenna 2 is detected, there is interference of the transmitting antenna 3, which is the same as in the case of mode 2, and it is considered that the transmitting power of each transmitting antenna in mode 2 is the transmitting power of each transmitting antenna in mode 3.
  • the received SINR of antenna 2 is approximately g - j (2/3) xSINR(2);
  • the transmit power of each transmit antenna in mode 1 is three times the transmit power of each transmit antenna in mode 3, so that in mode 3, the received SINR of antenna 3 is (1/3) xSINR(3).
  • the mobile terminal 104 In transmission mode 4, the mobile terminal 104 first detects the transmitting antenna 1, then cancels the interference of the transmitting antenna 1, detects the transmitting antenna 4, then cancels the interference of the transmitting antenna 4, detects the transmitting antenna 2, and then cancels the interference of the transmitting antenna 2, Finally, the transmitting antenna 3 is detected. Similar to the principle described in the previous steps, it is easy to see that in mode 4, the received SINRs of antennas 3, 2, and 4 are (1/4) xSINR(3), (2/4) xSINR(2), respectively. /4) xS earn (4).
  • the feedback load is M CQI values and an antenna processing sequence. This is done by using the subset feature. If each CQI value needs to use 5 bits, then the usual feedback load is The second item " lQg M '')"l represents the number of bits required to feed back an antenna processing sequence, and
  • Embodiments of the present invention provide a method and system for determining a transmit antenna, which can make the amount of data fed back by the terminal less.
  • the embodiment of the invention discloses a method for feeding back transmission antenna selection information, including: The terminal obtains transmit antenna selection information, where the transmit antenna selection information includes a channel quality indicator of each transmit antenna;
  • the terminal sends a feedback signal to the base station, where the feedback signal includes channel quality indications of the respective transmit antennas, and does not include an antenna processing sequence.
  • the embodiment of the invention further discloses a method for determining a transmitting antenna, comprising:
  • the base station determines an antenna processing sequence according to the size relationship of the channel quality indications of the respective transmitting antennas, determines a transmission mode to be used, and determines a transmitting antenna in each transmission mode.
  • An embodiment of the present invention further discloses a system for determining a transmit antenna, where the system includes: a terminal, configured to obtain a channel quality indicator of each transmit antenna, and send the channel quality indicator to a base station;
  • a base station configured to determine an antenna processing sequence according to a relationship between channel quality indications of the respective transmit antennas fed back by the terminal, determine a transmission mode to be used, and determine a transmit antenna in each transmit mode.
  • the embodiment of the invention further discloses a terminal, including:
  • a receiving unit configured to receive a transmit signal of the base station
  • a processing unit configured to perform channel estimation according to the received signal, and determine a channel quality indicator of each transmit antenna
  • a sending unit configured to send a channel quality indicator of each of the transmitting antennas to the base station, and does not send an antenna processing sequence.
  • the embodiment of the invention further discloses a base station, comprising:
  • a receiving unit configured to receive a channel quality indicator of each of the transmitting antennas
  • a sequence processing unit configured to determine an antenna processing sequence according to a size relationship of channel quality indications of the respective transmitting antennas
  • a mode selection unit configured to determine a total transmission rate in each transmission mode according to the antenna processing order, and determine a transmission mode to be used according to a total transmission rate in the respective transmission modes.
  • a transmitting unit configured to transmit a day corresponding to a transmission mode determined by the mode selection unit
  • the line transmits a signal to the terminal.
  • FIG. 1 is a schematic diagram showing a MIMO wireless communication system in the prior art
  • FIG. 2 is a schematic diagram showing a prior art wireless communication system
  • Figure 3 shows a flow chart for determining a transmitting antenna in the prior art
  • FIG. 4 is a schematic diagram of a wireless communication system according to Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart of determining a transmitting antenna according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram showing a wireless communication system according to Embodiment 4 of the present invention.
  • the transmit antenna selection information fed back by the mobile terminal to the base station does not include the transmit antenna processing sequence. In this way, the amount of feedback information is reduced, and under the same channel bandwidth condition, the ability of the channel to transmit data is improved, and the performance of the entire system is increased.
  • This embodiment describes the base station 406 determining the antenna processing order based on the CQI fed back by the mobile terminal 404.
  • the first SINR (the first stage SINR) of each newly added transmit antenna in the transmit mode 1, 2 M may be quantized into M CQIs fed back to the transmit end, which corresponds to the M transfer rates.
  • the M CQIs respectively correspond to M different transmit antennas, and the correspondence between the M CQIs and the M transmit antennas is usually determined by which control word of each CQI and the relative position in the control word.
  • Table 3 the format of the feedback CQI is shown in the case of a total of four transmit antennas, wherein two feedback control words are used to feed back four CQI values, that is, the first control.
  • the word height 4 bits and the lower 4 bits are the CQI values of the transmitting antenna 1 and the transmitting antenna 2, respectively, and the second control
  • the N2007/002465 word height 4 bits and the lower 4 bits are the CQI values of the transmitting antenna 3 and the transmitting antenna 4, respectively, that is, the feedback control word is:
  • the above transmitting antenna is a virtual antenna or an effective antenna.
  • the virtual antenna in the embodiment of the present invention refers to a vector composed of a transmitted signal first multiplied by a matrix or more than one matrix to obtain a result vector, and then each result antenna is respectively transmitted by each transmitting antenna.
  • the matrix described may be an orthogonal matrix or a non-orthogonal matrix. Since the non-orthogonal matrix can also be included, the virtual antenna mentioned in the embodiment of the present invention has a slightly larger range than the virtual antenna proposed in 3GPP TR 25.876 V1.7.1.
  • the received SINR of the four antennas is first measured, and one antenna corresponding to the maximum received SINR, for example, the third antenna, which is denoted as SINR ⁇ ), is selected in the transmission mode.
  • antenna 3 is selected to transmit data.
  • the SINRs of other transmit antennas are 8 ⁇ (1), SINRi(2), SINR ⁇ ), respectively, where the right subscript of the SINR indicates the corresponding transmit mode, then according to the antenna selection rule, there must be SI.
  • the two antennas selected in transmission mode 2 include antennas determined in transmission mode 1, such as antenna 3. Considering the interference of the antenna 3, the SINR values of the remaining unused antennas 1, 2, and 4 are respectively measured, and one remaining antenna corresponding to the maximum SINR value is selected. For example, for the second antenna, the signal-to-interference ratio of the newly added transmit antenna is recorded as SINR 2 (2). Assume that in transmit mode 2, the SINRs of the other transmit antennas 1, 4 are SI R 2 (1), SINR 2 (4, respectively). ), then according to the antenna selection rule, there must be SINR 2 (2) SINR 2 (1), SINR 2 (2) ⁇ SINR 2 (4) 0
  • each of the selected transmitting antennas uses the same transmission power P.
  • the SINR of a certain transmit antenna i that is not selected by transmit mode 1 in transmit mode 1, ie SINR!(i), is necessarily greater than its SINR in transmit mode 2, ie SINR 2 (i), because the calculation of SINR ⁇ When i), there is no interference from other antennas, and when SIN(i) is calculated, there is interference from the transmitting antenna selected by the transmission mode 1, and the interference increases, and the SINR is inevitably small.
  • the SI R of the transmitting antenna i that is not selected by the transmitting modes 1, 2, ..., m-1 in the transmitting mode m-1 is SINR ⁇ G), which is necessarily greater than its transmission mode m.
  • the SINR is SI R m (i). This is because when SINR m-1 (i) is calculated, there is only interference of m-2 antennas selected in transmission mode m-2, and when SINR m (i) is calculated, There is interference of m-1 transmit antennas selected by transmit mode m-1, and note that m-1 transmit antennas selected by transmit mode m-1, including m-2 antennas selected by transmit mode m-2 .
  • the transmit powers used in the transmit modes 1, 2, 3, and 4 are P, ( 1/2) P, (1/3) P, respectively.
  • (1/4) P the above relationship is still true, that is, the SINR of a certain transmit antenna i that is not selected by the transmission mode l, 2, ..., ml in the transmission mode m-1 It must be greater than its SINR in the transmit mode m, ie SINR m (i).
  • each selected transmit antenna in the S-PARC scheme in the transmit modes 1, 2, 3, 4 is P, ( 1/2 ) P, ( 1/3 ) P, ( 1 /4)
  • the effect of this factor on the received SINR of each antenna in each transmission mode that is, if the SINR of an antenna in transmission mode 1 is SI R! i), then each antenna in transmission mode 2
  • the transmit power is 1/2 of the transmit power of each antenna in transmit mode 1, which is also (1/2) P, then after such power adjustment, the SIN ⁇ (1/2) SINR of the antenna in transmit mode 2 ⁇
  • Transmit Mode 3 and Transmit Mode 4 there will be similar changes.
  • the right subscript is added to each SINR in Table 1, and the lower right side indicates the transmission mode corresponding to the SINR, and Table 4 is obtained.
  • the last row of Table 4 satisfies the decreasing relationship from left to right; while the diagonal of Table 4 from the upper left to the lower right also satisfies the decreasing relationship from the upper left to the lower right; more generally, the table Lines 2 through 5 of 4 are numbered 1st, 2nd, 3rd, and 4th, respectively, from top to bottom, and each item in the table is larger than the line whose row number is greater than or equal to the item in the right column. Number of items. Therefore, another implementation may be to feed back the quantized values of any one of the corresponding items in the table of each antenna, and only need to ensure that the line numbers of the items in the right column are the total of the items in the returned table. Is the line number of the item in the column to the left. For example, another implementation could be to feed back the items in line 4.
  • the base station 406 After receiving the quantized values of SINR(1), SI R(2), SINR(3), and SINR(4) fed back by the mobile terminal 404, the base station 406 can sort the sizes according to the size to obtain the existing S-PARC technology. The sequence of antenna processing fed back by the mobile terminal 404 is described. Still taking the exemplified case as an example, since the base station 406 sorts, there must be SINR(3)>SIN(2)>SIN(4)>SINR(1), so that the order of antenna processing can be obtained ⁇ 3, 2, 4 , 1 ⁇ , the meaning is exactly the same as the order of antenna processing fed back by the mobile terminal 404 described in the S-PARC technique, but it is no longer necessary to include this order in the feedback signal, thereby reducing the amount of feedback.
  • a further embodiment of the present invention provides a wireless communication system.
  • the wireless communication system includes a base station 406 and a mobile terminal 404.
  • the base station 406 includes a processing unit 410.
  • the serial to parallel conversion unit 412, the plurality of encoders, the plurality of symbol mappers or spreaders, the transmit antenna mapping unit 418 and the plurality of transmit antennas 420-1, 420-2 420-N includes receiving Unit 430, processing unit 431, and transmitting unit 438.
  • the various units of base station 406 are briefly described below.
  • the transmit antennas 420-1, 420-2 420-N are used to transmit signals to the receiving unit 430 of the mobile terminal 404.
  • the processing unit 410 processes the feedback signal 402b (ie, channel quality indicator (CQI)) received by the receiving unit 440 from the mobile terminal 404, and then outputs the mode K signal, the rate control signal, and the optimal antenna set selection signal, respectively.
  • the serial to parallel conversion unit 412, the encoder, and the transmit antenna mapping unit 418 are briefly described below.
  • the processing unit 410 includes: a comparator 900 (for comparing the relative magnitude relationship of M transmission rates fed back by the mobile terminal), a transmission rate calculator 444, a transmission rate modifier 446, a transmission mode selector 448, and an antenna selector 450. , The method and principle of processing unit 410 processing feedback signal 402b, a detailed description of which will be given in the following paragraphs.
  • the various units of the mobile terminal 404 are briefly described below.
  • the receiving unit 430 is configured to receive a transmission signal of the base station.
  • the processing unit 431 processes the transmission signal received by the receiving unit 430 and generates a feedback signal 402b based on the received transmission signal.
  • the transmitting unit 438 transmits the feedback signal 402b generated by the processing unit 431 to the base station 406.
  • the feedback signal 402b includes M transmission rates.
  • Yet another embodiment of the present invention provides a method of determining a transmit antenna, which is described below in connection with Figures 4 and 5.
  • Step 51 The receiving unit 430 of the mobile terminal 404 receives N signals of the base station 406, where the N signals are respectively transmitted by the N transmitting antennas 420-1, 420-2 420-N of the base station 406;
  • the processing unit 431 performs channel estimation using the received signal to obtain a channel matrix H composed of channel coefficients between the transmitting antenna and the receiving antenna.
  • Step 52 The processing unit 431 of the mobile terminal 404 selects the mode 1, the mode 2 mode according to the channel condition of the current time, that is, using the channel matrix H, from all possible transmit antenna selection schemes according to the preset communication scheme criteria.
  • the CQI (Channel Quality Indicator) of the M newly added transmit antennas is then sent to the base station 406. More specifically, the feedback signals corresponding to the M transmission modes generated by the processing unit 431 of the mobile terminal 404 include: M CQIs, that is, M transmission rates, excluding the antenna processing order.
  • Step 53 The receiving unit 440 of the base station 406 receives the feedback signal from the mobile terminal 404, that is, M CQI values fed back by the mobile terminal 404, that is, M transmission rates. Then, the comparator 900 of the processing unit 410 of the base station 406 compares the mobile terminals. The relative magnitude relationship of the M transmission rates fed back, deriving the transmit antennas that the base station 406 should use in modes 1, 2 M, respectively.
  • the M transmission rates both The quantized CQI values of the first SINR (the first stage SINR) of each newly added transmit antenna in the transmit modes 1, 2, ..., M are also M CQI values corresponding to M different transmit antennas, respectively. As mentioned before, the correspondence between the M CQIs and the M transmit antennas is usually determined by which control word of each CQI and the relative position in the control word.
  • the comparator 900 of the processing unit 410 of the base station 406 cooperates with the transmission rate calculator 444 to process the feedback signal to derive at least one CQI that is not included in the feedback signal, the detailed processing of which is as follows: Comparator 900 from M transmission rates Finding a maximum transmission rate, the transmission antenna corresponding to the transmission rate is one transmission antenna selected in the transmission mode 1, and the transmission rate corresponds to the first step SIKR in the transmission mode 1; and according to the subset attribute, This antenna must also be used for modes 2, 3, ...,
  • the comparator 900 finds a maximum transmission rate from the remaining M-1 transmission rates, and the transmission antenna corresponding to the transmission rate is the first detected transmission among the two selected transmission antennas selected by the transmission mode 2. Antenna, at the same time, the transmission rate corresponds to the first SINR in transmission mode 2; and according to the subset attribute, the antenna is also used for mode 3, 4 M, and the antenna is used for mode 3, 4 M transmission rate, The transmission rate calculator 444 is calculated based on the above transmission rate.
  • the comparator 900 finds a maximum transmission rate from the remaining Mm transmission rates, and the transmission antenna corresponding to the transmission rate is the first one of the m+1 transmission antennas selected in the transmission mode m+1.
  • Transmitting antenna and the transmission rate corresponds to the first SINR in the transmission mode m+1; and according to the subset attribute, the antenna is also used for the mode m+2 M, and the antenna is used for the transmission of the mode m+2 M
  • the rate is calculated by the transmission rate calculator 444 based on the above transmission rate.
  • the transmitting antenna corresponding to the last one transmission rate is the first transmitting antenna of the M transmitting antennas selected by the transmitting mode M, and the transmission rate corresponds to the first SINR in the transmitting mode M.
  • the above procedure can also be expressed as comparator 900 inferring an antenna processing sequence (ie, The serial number of the transmitting antenna is newly added in each transmission mode, that is, information on which one of the newly added transmitting antennas is transmitted in each transmission mode, and is input to the transmission rate calculator 444 together with the M CQIs fed back.
  • an antenna processing sequence ie, The serial number of the transmitting antenna is newly added in each transmission mode, that is, information on which one of the newly added transmitting antennas is transmitted in each transmission mode, and is input to the transmission rate calculator 444 together with the M CQIs fed back.
  • comparator 900 infers an antenna processing sequence
  • the comparator 900 finds a maximum transmission rate from the M transmission rates, and the transmission antenna corresponding to the transmission rate is one transmission antenna selected in the transmission mode 1, and the transmission rate corresponds to the first in the transmission mode 1. Step SINR.
  • the comparator 900 finds a maximum transmission rate from the remaining M-1 transmission rates, and the transmission antenna corresponding to the transmission rate is the first detected transmission among the two selected transmission antennas selected by the transmission mode 2.
  • the antenna that is, the new transmit antenna of transmit mode 2 relative to transmit mode 1, while the transmission rate corresponds to the first SINR in transmit mode 2.
  • the comparator 900 finds a maximum transmission rate from the remaining Mm transmission rates, and the transmission antenna corresponding to the transmission rate is the first one of the m+1 transmission antennas selected in the transmission mode m+1 is detected.
  • the transmit antenna that is, the transmit mode m+1 relative to the transmit mode m, is newly added, and the transmission rate corresponds to the first SINR in the transmit mode m+1.
  • the transmitting antenna corresponding to the last remaining transmission rate is the transmitting antenna of the first of the M transmitting antennas selected by the transmitting mode M, that is, the newly added transmitting mode M relative to the transmitting mode M-1.
  • the antenna at the same time, corresponds to the first SI R in the transmission mode M.
  • the transmission rate modifier 446 of the processing unit 410 of the base station 406 corrects the at least one derived transmission rate indication according to a factor of power allocation or spreading code allocation for a certain signal; the processing unit 410 of the base station 406
  • the transmit mode selector 448 selects one transmit mode K based on the at least one corrected transmission rate indication; the antenna selector 450 of the processing unit 410 of the base station 406 selects a set of transmit antennas to transmit signals using the selected transmit antennas; Base station 406 is used The set of antennas selected in the steps and the transmit data rate of each selected antenna determined according to the selected transmit mode transmit signals.
  • the base station 406 can obtain the received SINR of each transmit antenna in each transmission mode according to the CQI quantized value of the newly added transmit antenna in each mode fed back by the mobile terminal 404. For example, taking four transmit antennas as an example, the base station 406 can obtain the CQI* value of the newly added transmit antenna according to the four transmit modes fed back by the mobile terminal 404, and can be used for each of the modes 1, 1, 3, and 4.
  • the base station 106 can obtain the transmission modes 1, 2, 3, 4 according to the four CQI values fed back by the mobile terminal 404, that is, the quantized values of SINR(3), SI R(2), SI(4), and SINR(1).
  • the received SINR of all transmit antennas used in each of the modes (as shown in Table 1).
  • the base station 406 selects a mode in which the channel capacity or the channel throughput is the largest according to the received SINR of all the transmitting antennas used in each mode, and the channel capacity or channel throughput of each mode can be used by the mode.
  • the received SINR of all transmit antennas is calculated.
  • the following describes the process by which the transmission rate modifier of the base station 406 corrects the at least one derived transmission rate indication based on the power allocation to one signal or the factor of the spreading code allocation.
  • the transmit power of the base station 406 is assumed, and the actual transmit power used by the base station 406 may be different from that assumed by the mobile terminal 404.
  • the base station 406 may respond to the four feedbacks of the mobile terminal 404.
  • the CQI value which is derived from the received SINR of the mobile terminal 404 at the new transmit power.
  • the mobile terminal 404 assumes that the transmit power of the base station 406 is P, calculates the quantized values of SINR(3), SI R(2), SI(4), SIN(1) in Table 1 and feeds back, and the base station 406
  • the actual transmit power is c times P, i.e., cP, then the base station 406 can infer that the received SINR of the mobile terminal 404 at this power is approximately the received SINR shown in Table 5.
  • the bit stream is input to the serial to parallel conversion unit 412, which is converted into one or more substreams 424-1, 424-2 . . . 424-K.
  • the actual number of substreams is controlled by the mode signal, which is sent by the processing unit 410 to the serial to parallel conversion unit 412.
  • the substreams 424-1, 424-2 . . . 424- ⁇ output by the serial to parallel conversion unit 412 are processed by the corresponding encoder and symbol mapper/spreader.
  • Each of the substreams 424-1, 424-2, ..., 424- ⁇ is sent by the processing unit 410 to the corresponding encoder for encoding.
  • the processing unit 410 sends to the transmit antenna mapping unit 418 an optimal antenna set selection signal for determining a specific subset of the transmit antennas, that is, selecting to transmit the encoded substreams 424-1, 424-2, ..., a specific subset of 424- ⁇ antennas 420-1, 420-2 420- ⁇ .
  • the launch mode ⁇ must be less than or equal to ⁇ .
  • Step 54 The mobile terminal device 404 receives one of the data substreams 1, 2 ⁇ transmitted by the base station 406. After determining the transmission mode, the base station 406 may also notify the mobile terminal 404 of the adopted transmission mode, so that the mobile terminal 404 determines the antenna processing sequence according to the transmission mode, so as to sequentially detect the transmission signals of the respective transmitting antennas by using the interference cancellation technology; It is the mobile terminal 404 that determines the transmission mode adopted by the transmitting end according to the received signal, and then sequentially detects the transmission signals of the respective transmitting antennas by using an interference cancellation technique.
  • the base station 406 notifies the mobile terminal 404 of the adopted transmission mode to the mobile terminal 404.
  • the sequence of antenna processing fed back by the mobile terminal 404 is ⁇ 3, 2, 4, 1 ⁇ , and then the mobile terminal 404 knows the base station 406.
  • the detection sequence that the transmitting antenna and the mobile terminal 404 used in the transmission mode should follow can be obtained, that is, the mode 1 uses the antenna 3; the mode 2 uses the antenna 3, 2, the order of detection is 2, 3; mode 3 uses antennas 3, 2, 4, the order of detection is 4, 2, 3; and mode 4 uses antennas 3, 2, 4, 1 , the order of detection is 1, 4, 2, 3.
  • the feedback load is M CQI values. If each CQI value requires 5 bits, then the usual feedback load is M CQI values. If each CQI value requires 5 bits, then the usual feedback load is M CQI values. If each CQI value requires 5 bits, then the usual feedback load is M CQI values. If each CQI value requires 5 bits, then the usual feedback load is M CQI values. If each CQI value requires 5 bits, then the usual feedback load is M CQI values. If each CQI value requires 5 bits, then the usual feedback load is
  • N h 5M
  • Yet another embodiment of the present invention provides another system for determining a transmit antenna, which is described below in connection with FIG.
  • the system for determining a transmit antenna in this embodiment includes: a terminal 610, configured to obtain a channel quality indicator of each transmit antenna, and send the channel quality indicator to a base station; and a base station 620, configured to use, according to the transmit antenna, each transmit antenna
  • the size relationship of the channel quality indication determines the antenna processing order, determines the transmission mode to be used, and determines the transmitting antenna in each transmission mode.
  • the terminal 610 includes: a receiving unit 611, configured to receive a transmit signal of the base station; a processing unit 612, configured to perform channel estimation according to the signal received by the receiving unit, and determine a channel quality indicator of each transmit antenna; And transmitting, to the base station, a channel quality indicator of each of the transmit antennas.
  • the base station 620 includes: a receiving unit 621, configured to receive a channel quality indicator of each of the transmitting antennas, and a sequence processing unit 622, configured to determine an antenna processing sequence according to a size relationship of the channel quality indicators of the respective transmitting antennas. a mode selection unit 623, configured to determine a total transmission rate in each transmission mode according to the antenna processing order, and determine a transmission mode to be used according to a total transmission rate in each of the transmission modes; a transmitting unit 624, configured to The transmitting antenna corresponding to the transmission mode determined by the mode selecting unit transmits a signal to the terminal.
  • the transmitting antenna may include a physical antenna and/or a virtual antenna.
  • the feedback processing signal sent by the mobile terminal to the base station does not include the antenna processing sequence, thereby reducing the amount of feedback information, improving the channel transmission data capability and increasing the performance of the entire system under the same channel bandwidth condition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种确定发射天线的方法、 系统和装置
技术领域 本发明涉及一种通信技术, 尤其涉及一种确定发射天线的方法、 系统和 装置。 背景技术 根据信息论, 在基站和 /或移动终端使用多天线阵列可以极大的提高系统 的传输比特率。
图 1示出了在基站和移动终端同时使用多天线阵列的具有空 -时架构的 无线通信系统。 该系统也称为 MIMO (多输入多输出) 系统, 其工作在瑞利 散射环境, 信道矩阵的各个元素可以近似看作是统计独立的。 在图 1所示的 系统中, 一个数据序列可被分成 N个不相关的码元子序列, 每个子序列由 N 个发射天线中的一个发射。 N个子序列在经过一个信道矩阵为 H的信道的影 响后, 在移动终端可由 L个接收天线接收。 发射信号 ..., ½可分别通过 N 个不同的天线单元 a-1, ...,a-N发射, 相应的接收信号 χι,..., 分别从 L个不 同的天线单元 b-1 ..,b-L接收。在该通信系统中,发射天线单元数 N最少是 2, 而接收天线单元数 L最少是 N。 信道矩阵 H是一个 LxN的矩阵, 矩阵中第 i 行 j列的元素表示第 i个接收天线和第 j个发射天线通过传输信道的耦合。 接 收信号 χ 1 . ., χΛ在数字信号处理器中被处理以产生恢复的发射信号 。 此图中也显示了求和成分 c-1 , c-2 , c-L, 它们代表包含的无法避免的噪 声 w , . . . , ^,这些噪声分别加入到接收天线单元 b-l,b-2,...,b-L接收到的 信号中。用向量形式表示发射信号? = h s2½Γ ,其中 表示向量的转置, 接收信号 = h J , 噪声 = [w} w2 … wL Y , 那么在图 1所示的系 统中, 发射信号向量与接收信号向量之间满足关系式 i = HS + 。 在图 1所示的 MIMO系统中, 可以使用具有天线选择的通信方案。 在有天 线选择的 MIMO系统中,需要在所有的发射天线中选择若干个发射天线用于发 射信号。 在发射天线的选择过程中, 需要比较各种发射天线选择方案下所选 择的各发射天线的接收信号与干扰噪声比(SINR, Signal to Interference-Noise Ratio ) , 并根据比较结果, 按照一定准则确定天线选择方案; 在某些情况下, 比如基站采用自适应调制的情况下, 还需要计算所确定采用的发射天线选择 方案下被选择的各发射天线的接收 SINR, 以确定被选择的各发射天线采用的 调制方式。 所述 SINR是用信号功率除以噪声功率与其它信号干扰功率之和所 得到的比值。
在图 1所示的系统中, 上述的 N个发射信号 组成的向量?可以先 与一个矩阵或者一个以上矩阵相乘得到结果向量后, 然后由各个发射天线分 别发射所述各项结果向量。 在 3GPP TR 25.876 V1.7.1中提出了虚拟天线 ( Virtual Antenna )的技术,该技术提供了多个虚拟天线端口,发射信号 S] , s2 , . . . , sN分别送到各个虚拟天线端口后,对发射信号向量依次乘以一个矩阵 T和一个 矩阵 u得到结果向量 = u.T.s的各项再分别送到各个物理天线端口发射。在这 种情况下, 表示多个发射信号与多个接收信号之间的关系的等效信道矩阵为 ή = Η .υ . τ。 此时, 接收信号向量为 S = H .U .T .S+ = fiS + 。 因此, 虚拟天线 技术中的接收信号向量与发射信号向量之间的关系 i = ή + , 与物理天线情 况下的接收信号向量与发射信号向量之间的关系 = HS + 具有完全相同的形 式。
在爱立信(ERICSSON )公司的公开号为 20050250544, 题目为 "Base station, mobile terminal device and method for implementing a
selective-per-antenna-rate-control (S-PARC) technique in a wireless
communications network" 的美国专利申请中, 给出了一种称为选择天线速率 控制 (Selective Per Antenna Rate Control, S-PARC)的技术, 该技术已被提交 到 3GPP 的文献 3GPP TR 25.876 VI.7.1 (2005-10)中的提案 7中。在该技术中, 把使用发射天线总数 N中的 m个发射天线的情况称为 "mode m" , 即发射模 式 m, 而使用最大数目发射天线的情况称为 "mode M" , 即发射模式 M, 从 而容易看出其中 m M, M N。 M N表示所使用发射天线的最大数目 M必 须小于或等于基站的发射天线数目 N, 而通常情况下所使用发射天线的最大 数目 M等于基站的发射天线数目 N, 而 m=l、 2 M。在 S-PARC技术中, 移动终端通过采用子集属性选择各个发射模式下的发射天线, 并依次记录各 个发射模式下的发射天线,将依次记录的各个发射天线作为天线处理顺序 ( an antenna processing order ) ; 同时依次记录各个发射模式下的新添发射天线的 信干比。 然后将记录的各个发射模式下新添发射天线的信干比换算为 CQI ( Channel Quality Indicator: 信道质量指示), 并将换算的 CQI及天线处理顺 序反馈给基站。
图 2是无线通信系统的示意图, 所述无线通信系统包括基站 106和移动终 端 104, 如图 2所示, 所述的基站 106包括发射天线、 处理单元 110, 串并转换 单元 112 , 多个编码器, 多个符号映射器或扩频器, 发射天线映射单元 118和 多个发射天线 120-1、 120-2 120-N。所述的移动终端 104包括接收单元 130、 处理单元 131和发送单元 138。
下面简述基站 106的各个单元。 所述的发射天线 120-1、 120-2 120-N 用于向移动终端 104的接收单元 130发射信号。 所述的处理单元 110处理接收单 元 140从移动终端 104接收到的反馈信号 102b (即信道质量指示 CQI和天线处理 顺序), 然后将模式 K信号, 速率控制信号, 以及最佳天线集合选择信号, 分 别输出到串并转换单元 112, 编码器, 和发射天线映射单元 118。 所述处理单 元 110包括发射速率计算器 144、 发射速率修正器 146、 发射模式选择器 148、 天线选择器 150 , 处理单元 110处理反馈信号 102b的方法和原理, 其详细描述 将在后面的段落中给出。
下面简述移动终端 104的各个单元。 所述的接收单元 130用于接收基站的发 射信号。 所述的处理单元 131处理接收单元 130接收的发射信号, 并根据接收 的发射信号产生反馈信号 102b。 所述的发送单元 138将处理单元 131产生的反 馈信号 102b发送到基站 106。 所述的反馈信号 102b包括 M个传输速率和一个天 线处理顺序。
图 3介绍了在现有技术中选择发射天线和确定所选择的每个发射天线的传 输速率的步骤, 下面结合图 2和图 3详细描述移动终端 104产生反馈信号 102b的 方法和原理, 以及基站 106根据所述反馈信号 102b, 选择发射天线和确定所选 择的每个发射天线的传输速率的方法和原理。
步驟 1、 移动终端 104的接收单元 130接收基站 106的 N个信号, 所述 N个信 号分别由基站 106的 N个发射天线 120-1、 120-2 120-N发射; 所述移动终 端 104的处理单元 131利用接收信号进行信道估计, 得到由发射天线和接收天 线之间的信道系数组成的信道矩阵 H。
步骤 2、 移动终端 104的处理单元 131根据当前时刻的信道情况, 即利用信 道矩阵 H, 从所有可能的发射天线选择方案中, 依照某通信方案的准则, 分别 选择模式 1、模式 2 模式 M下最优的新添发射天线, 共有 M个新添发射天 线。然后,将 M个新添发射天线的顺序和新添发射天线的 CQI (信道质量指示) 发给基站 106。 更具体的, 移动终端 104的处理单元 131产生的对应于 M个发射 模式的反馈信号包括: M个 CQI, 即 M个传输速率; 以及天线处理顺序, 其用 于指示每一发射模式所选择的最优发射天线, 以及在移动终端侧对发射天线 的检测顺序。 所述反馈信号的产生过程将在下面详细说明。
一般来说, 各个发射模式的发射总功率是相等的, 由于各个发射模式下 所使用的发射天线数目不同, 因此, 不同的发射模式, 发射天线的发射功率 是不同的。 例如, 在发射模式 1、 2、 3、 4下, 所使用天线的数目分别是 1、 2、 3、 4根。 而总发射功率保持不变, 假设为 P, 并且功率在所使用的发射天线之 间均匀分配。从而,发射模式 1下,使用 1根发射天线, 该天线的发射功率^ P; 发射模式 2下,使用 2根发射天线,其中每根天线的发射功率是 P/2; 发射模式 3 下, 使用 3根发射天线, 其中每根发射天线的发射功率是 P/3; 发射模式 4下, 使用 4根发射天线, 其中每根发射天线的发射功率是 P/4。
现在描述移动终端在各个模式下选择新添发射天线的过程, 当模式 m-1 下最优的发射天线选择方案已经确定, 即, 选择好了 m-1根发射天线; 那么在 发射模式 m下, 移动终端 104使用符合子集属性(subset property )的天线选择 方案, 即, 发射模式 m下发射天线包括发射模式 m-1所选的 m-1根发射天线, 再从剩余的发射天线中选择一根信干比最大发射天线作为模式 m下的新添发 射天线。 下面以总共有 4根发射天线的情况为例来说明在模式 1、 模式 2 模式 M下选择新添发射天线的过程„
在发射模式 1时, 即需要选取一根天线进行数据传输, 分别测量 4根天线 在发射模式 1的接收 SINR, 选取最大接收 SINR所对应的一根天线作为新添发 射天线, 例如第 3根天线, 新添发射天线 3的信千比记为 SINR(3), 以便在发射 模式 1时选取天线 3传输数据。 所述 SI R(3)就是发射模式 1下第一个被检测的 发射天线的 SINR, 也称作发射模式 1下的首步 SINR(the first stage SINR)。
在发射模式 2时, 即需要选取两根天线进行数据传输, 根据发射模式 1时 得到的结论, 由于这两根天线包括发射模式 1中决定的天线, 例如天线 3, 在 考虑发射模式 1中决定的天线, 即上面的例子中所述天线 3干扰的情况下, 分 別测量剩余的未使用天线 1 , 2, 4的 SINR值, 选取 SINR值最大所对应的一根 剩余天线作为新添发射天线。 例如第二根天线, 新添发射天线的信干比记为 SINR(2), 从而在发射模式 2时所选择的两根天线是 {3, 2}„ 所述 SI R(2)就是 发射模式 2下的首步 SINR(the first stage SINR),即发射模式 2下第一个被检测的 发射天线的 SI R。
在发射模式 3时, 需要选取 3根天线, 它们包括发射模式 2时已经选择的天 线 {2, 3} , 在考虑天线 2, 3干扰的情况下, 分别测量剩余的未使用天线 1 , 4 的 SINR值, 选取 SINR值最大所对应的一根剩余天线作为新添发射天线。 例如 第 4根天线, 新添发射天线的信干比记为 SINR(4), 则在发射模式 3时选择天线 {3, 2, 4}。 所述 SINR(4)就是发射模式 3下的首步 SI R(the first stage SINR), 即发射模式 3下第一个被检测的发射天线的 SINR。
发射模式 4时, 依次类推, 选择天线 {3, 2, 4, 1} , 在存在天线 3、 2、 4 的干扰的情况下, 测量天线 1的 SINR值, 记为 SI R(1)。 所述 SINR(1)就是发射 模式 4下的首步 SI (the first stage SINR),即发射模式 1下第一个被检测的发射 天线的 SINR。
综上所述, 表 1示出各个天线在各个模式下的接收 SINR, 其中, 空白项表 示该天线在相应的模式下没有被使用。
Figure imgf000008_0001
Figure imgf000008_0002
移动终端 104的处理单元 131可把 SIN (3)、 SINR(2)、 SINR(4)、 SINR(l), 即发射模式 1、 2、 3、 4下的各个首步 SINR(the first stage SINR), 分别量化为 4 个 CQI值, 再通过发送单元 138反馈给基站 106, 同时还反馈一个天线处理的顺 序 {3 , 2, 4, 1}。 所述的量化, 通常是根据一个基站 106和移动终端 104都知 道的 MCS ( Modulation and Channel Coding Scheme: 调制和信道编码方案)表 格,把 SINR值映射到 MCS表格中的一项,表示在该 SINR下,基站 106依照 MCS 表格中的该项所表示的调制和信道编码方案发射信号, 则移动终端 104正确接 收发射信号的概率大于一个给定的值。 而根据发射信号所采用的调制和信道 编码方案, 可以得到其数据传输率, 筒称为传输率, 表示所传输数据的多少。
步骤 3、 基站 106的接收单元接收来自移动终端 104的反馈信号, 即移动终 端 104反馈的 M个 CQI值和所述天线选择顺序; 然后, 基站 106的处理单元 110 的发射速率计算器 144处理反馈信号以推导出至少一个没有包括在反馈信号 中的 CQI; 此后, 基站 106的处理单元 110的发射速率修正器 146, 根据对某个 信号的功率分配或者扩频码分配的因素, 校正所述至少一个推导出的传输速 率指示; 基站 106的处理单元 110的发射模式选择器 148根据所述至少一个校正 后的传输速率指示, 选择一个发射模式 K; 基站 106的处理单元 110的天线选择 器 150选择一组发射天线, 以便使用选择的发射天线发射信号, 下面以总共有 4根发射天线的情况为例来说明在模式 1、 模式 2 模式 M下确定发射天线 的过程。
基站 106根据移动终端 104反馈的 4个 CQI值和所述天线选择顺序, 可以得 到模式 1、 2、 3、 .4中的每个模式所使用的各个发射天线, 以及所使用的各个 发射天线的接收 SINTL 例如, 根据移动终端 104反馈的天线处理的顺序 {3 , 2, 4, 1 } , 基站 106可以知道, 模式 1使用天线 3 , 模式 2使用天线 3、 2, 模式 3使 用天线 3、 2、 4, 而模式 4使用天线 3、 2、 4、 1。 并且基站 106根据移动终端 104 反馈的 4个 CQI值, 即 SINR(3)、 SI R(2)、 SINR(4)、 SINR(1)的量化值, 可以 得到模式 1、 2、 3、 4中的每个模式下所使用的所有发射天线的接收 SINR (如 表格 1所示) 。 基站 106根据各个模式下所使用的所有发射天线的接收 SINR选 择使用信道容量或者信道吞吐量最大的一种模式, 所述的各个模式的信道容 量或者信道吞吐量, 可以由该模式下所使用的所有发射天线的接收 SINR计算 得到。
所述的基站选择使用信道容量或者信道吞吐量最大的一种模式的方法如 下, 基站计算发射模式 1下传输速率; 发射模式 2下的总传输速率, ..., 发射 模式 M下总传输速率, 其中, M为基站的发射天线数目, 各发射模式下的总传 输速率, 即该发射模式所选各发射天线的传输速率的和; 基站从上述各个发 射模式下总传输速率选择最大的总传输速率, 该最大总传输速率所对应的发 射模式为确定的发射模式, 该发射模式对应的发射天线为确定的发射天线。
下面的叙述基站 106校正所述至少一个推导出的传输速率指示的过程。 移动终端 104反馈 4个 CQI值时会假设了基站 106的发射功率,由于基站 106 发射时所使用的实际的发射功率可能与移动终端 104假定的不同, 基站 106可 以根据移动终端 104反馈的 4个 CQI值推算出在新的发射功率下移动终端 104的 接收 SINR (这是一个重要的可能情况)。 比如, 移动终端 104假设基站 106的发 射功率为 P, 计算出了表格 1中的 SIN (3)、 SINR(2)、 SINR(4)、 SINR(l)的量化 值并反馈, 而基站 106的实际发射功率为 P的 c倍, 即 c P, 那么基站 106可以 推算出在这个功率下, 移动终端 104的接收 SIN 近似为: 模式 \天线 天线 3 天线 2 ■'■ - 天线 4 天线 1 模式 1 SINR(3) c
模式 2 ( 1/2 ) SINR(3) x c SINR(2) x c
模式 3 ( 1/3 ) SINR(3) x c ( 2/3 ) SINR(2) x c SINR(4) c
模式 4 ( 1/4 ) SINR(3) x c ( 2/4 ) SINR(2) x c ( 3/4 ) SIN (4) x c SINR(l) x c 当基站 106确定发射天线后, 可向移动终端发射信号, 结合图 2, 基站 106 向移动终端 104发射信号的流程如下。
比特流输入到串并转换单元 112 , 串并转换为一个或者多个子流 124-1, 124-2 . . . 124-K。 实际子流数目 Κ由模式 Κ信号控制, 所述的模式 Κ信号由处理 单元 110发到串并转换单元 112。 串并转换单元 112输出的子流 124-1, 124-2 . . . 124-K由相应的编码器和符号映射器 /扩频器处理。子流 124-1、 124-2、 ...、 124-K 中的每一个子流由处理单元 110发到相应编码器进行编码。 然后, 编码后的子 流 124-1, 124-2 . . . 124-K由发射天线 120-1、 120-2、 …、 120-N的一个子集发射 到移动终端 104。 处理单元 110发给发射天线映射单元 118—个最佳天线集合选 择信号, 用来决定所述发射天线的一个特定子集, 即选择用来发射编码后的 子流 124-1、 124-2、 …、 124-K的天线 120-1、 120-2 120-N的一个特定子 集。 发射模式 Κ必须小于等于 Ν。
步骤 4: 移动终端装置 104接收基站 106发射的 Κ个数据子流 1、 2 Κ。 基站 106确定发射模式后, 还可以将所采用发射模式通知移动终端 104, 以便移动终端 104根据发射模式求得的天线处理顺序, 采用干扰消除技术依次 检测各个发射天线的发射信号; 步骤 4也可以是移动终端 104根据接收信号判 断发射端所采用的发射模式, 然后采用干扰消除技术, 依次检测各个发射天 线的发射信号。
下面以基站 106将所采用发射模式通知移动终端 104的情况为例举例说 明, 移动终端 104反馈的天线处理的顺序 {3 , 2, 4, 1} , 那么移动终端 104在 知道基站 106所釆用的模式后, 可以得到该模式下所使用的天线和移动终端 104应该遵循的检测顺序, 即: 模式 1使用天线 3; 模式 2使用天线 3、 2, 检测 的先后顺序为 2、 3; 模式 3使用天线 3、 2、 4, 检测的先后顺序为 4、 2、 3; 而 模式 4使用天线 3、 2、 4、 1 , 检测的先后顺序为 1、 4、 2、 3。
下面描述移动终端 104使用干扰消除技术依次检测各个发射信号的过程。 即, 假设基站 106共使用 N个发射天线中的 m个发射天线发射信号, 移动终端 104使用干扰消除技术, 即: 移动终端 104每次检测 1个发射天线所发射信号, 然后在接收信号中消除已经检测的这个发射天线所发射信号的干扰; 移动终 端 104再检测下一个发射天线所发射信号, 然后在接收信号中消除已经检测的 这个发射天线所发射信号的干扰; …循环执行上述的步骤, 直到所有的 m个发 射天线所发射信号都已经被检测。 因为使用了干扰消除技术, 所以在检测第 1 个发射天线的时候, 存在其余的 m-1个发射天线的干扰; 而在检测第 2个发射 天线的时候, 因为第 1个被检测的发射天线的干扰已经在接收信号中被消除, 只存在其余的 m-2个发射天线的干扰; 一般的, 在检测第 i个发射天线的时候, 因为从第 1个到第 i- 1个的共 i- 1个已被检测的发射天线的干扰已经在接收信号 中被消除, 所以只存在其余的 m-i个发射天线的干扰; 而在检测最后的第 m个 发射天线的时候, 不存在其它发射天线的干扰。
下面以总共有 4根发射天线的情况为例来说明移动终端 104采用干扰消除 技术接收发射信号的过程。
在发射模式 1时, 由于只使用一根天线, 如, 可直接检测天线 3的发射信 号。
在发射模式 2时, 移动终端 104先检测发射天线 2 , 然后消除发射天线 2的 干扰, 再检测发射天线 3 (即发射模式 1中决定的天线) , 在发射模式 2下是最 后被检测的一个天线, 也就是说, 在发射模式 2下, 当检测发射模式 1中决定 的天线的时候, 例如天线 3时, 不存在其它发射天线的干扰, 同时考虑到模式 1下每个发射天线的发射功率是模式 2下每个发射天线的发射功率的 2倍, 从而 在模式 2下, 天线 3的接收 SINR是(1/2 ) x SINR(3)。 在发射模式 3时, 移动终端 104先检测发射天线 4, 然后消除发射天线 4的 干扰, 再检测发射天线 2, 然后消除发射天线 2的干扰, 最后检测发射天线 3。 因为检测发射天线 2时, 存在发射天线 3的干扰, 与模式 2的情况相同, 同时考 虑到模式 2下每个发射天线的发射功率是模式 3下每个发射天线的发射功率的
3/2倍, 所以模式 3下, 天线 2的接收 SINR近似是 g - j (2/3) xSINR(2); 同理, 当检测天线 3时, 不存在其它发射天线的干扰, 同时考虑到模式 1下每个发射 天线的发射功率是模式 3下每个发射天线的发射功率的 3倍, 从而在模式 3下, 天线 3的接收 SINR是( 1/3 ) xSINR(3)„
发射模式 4时, 移动终端 104先检测发射天线 1, 然后消除发射天线 1的干 扰, 再检测发射天线 4, 然后消除发射天线 4的干扰, 再检测发射天线 2, 然后 消除发射天线 2的干扰, 最后检测发射天线 3。 与前面的步驟所述原理类似, 容易看出,模式 4下, 天线 3, 2, 4的接收 SINR分别是( 1/4) xSINR(3)、 (2/4) xSINR(2), (3/4) xS赚 (4)。
综上所述, 当有 M个发射天线的时候, 反馈的负荷是 M个 CQI值以及一个 天线处理的顺序。 这是通过使用子集特性实现的。 如果每个 CQI值需要使用 5 个比特, 那么通常反馈的负荷是
Figure imgf000012_0001
其中第 2项「lQg M'')"l表示反馈一个天线处理的顺序所需要的比特数, 而
(M!)表示整数 M的阶乘。 例如, 当 M = 4, 则(M!) = 4x3x2xl = 24, 总共需要反 馈的比特数是「lGg2(MW = 5比特。然而,上述技术方案需要反馈的数据量较多, 不利于实际系统实现。 发明内容
本发明实施例提供了一种确定发射天线的方法和系统, 可使终端反馈的 数据量较少。
本发明实施例公开了一种反馈发射天线选择信息的方法, 包括: 终端获得发射天线选择信息, 所迷发射天线选择信息包括各个发射天线 的信道质量指示;
终端向基站发送反馈信号, 所述反馈信号包括所述各个发射天线的信道 质量指示, 且不包括天线处理顺序。
本发明实施例还公开了一种确定发射天线的方法 , 包括:
基站接收终端反馈的各个发射天线的信道质量指示;
基站根据所述各个发射天线的信道质量指示的大小关系确定天线处理顺 序, 确定要使用的发射模式, 确定各个发射模式下的发射天线。
本发明实施例还公开了一种确定发射天线的系统, 所迷的系统包括: 终端, 用于获得各个发射天线的信道质量指示, 并将所述信道质量指示 发给基站;
基站, 用于根据所述终端反馈的各个发射天线的信道质量指示的大小关 系确定天线处理顺序, 确定要使用的发射模式, 确定各个发射模式下的发射 天线。
本发明实施例还公开了一种终端, 包括:
接收单元, 用于接收基站的发射信号;
处理单元, 用于根据所述接收信号进行信道估计, 并确定各个发射天线 的信道质量指示;
发送单元, 用于将所述各个发射天线的信道质量指示发送给基站, 且不 发送天线处理顺序。
本发明实施例还公开了一种基站, 包括:
接收单元, 用于接收所述终端发送的各个发射天线的信道质量指示; 顺序处理单元, 用于根据所述各个发射天线的信道质量指示的大小关系 确定天线处理顺序;
模式选择单元, 用于根据所述天线处理顺序确定各个发射模式下的总传 输速率, 并根据所述各个发射模式下的总传输速率确定要使用的发射模式。
发射单元, 用于根据所述模式选择单元确定的发射模式所对应的发射天 线向终端发射信号。
根据本发明实施例提供的上述方法、 系统和装置, 由于终端向基站的反 馈信号中不包括天线处理顺序, 从而减少了反馈的信息量, 在同样信道带宽 条件下, 提高信道传输数据的能力, 增加整个系统的性能。 附图说明 ' 图 1示出了现有技术中 MIMO无线通信系统的示意图;
图 2示出了现有技术的无线通信系统的示意图;
图 3示出了现有技术中确定发射天线的流程图;
图 4示出了本发明实施例二所述的无线通信系统的示意图;
图 5示出了本发明实施例三所述的确定发射天线的流程图;
图 6示出了本发明实施例四的无线通信系统的示意图。 具体实施方式 在本发明实施例中, 移动终端向基站反馈的发射天线选择信息中不包括 发射天线处理顺序。 这样, 减小了反馈信息量, 在同样信道带宽条件下, 提 高了信道传输数据的能力, 增加了整个系统的性能。
实施例一
以下结合图 4介绍本发明的一个实施例。 该实施例描述了基站 406根据移 动终端 404反馈的 CQI确定天线处理顺序。
可将把发射模式 1、 2 M下的各个新添发射天线的首步 SINR(the first stage SINR)量化为 M个 CQI反馈给发射端, 其对应所述 M个传输速率。 而这 M 个 CQI分别对应于 M个不同的发射天线, 而 M个 CQI与 M个发射天线的——对 应关系, 通常是由各个 CQI在哪一个控制字以及在控制字中的相对位置确定 的。 例如在 IEEE 802.20标准现阶段的提案中, 如表 3示出了在总共有 4根发射 天线情况下反馈 CQI的格式, 其中, 采用两个反馈控制字反馈 4个 CQI值, 即 第 1个控制字高 4位和低 4位分别为发射天线 1和发射天线 2的 CQI值,而第 2个控 N2007/002465 制字高 4位和低 4位分别为发射天线 3和发射天线 4的 CQI值, 即反馈的控制字 为:
Figure imgf000015_0002
注意在提案中, 上述发射天线是虚拟天线或者有效天线。
需要说明的是: 本发明实施例中所说的虚拟天线, 是指发射信号组成的 向量先与一个矩阵或者一个以上矩阵相乘得到结果向量后, 由各个发射天线 分别发射各项结果向量, 所述的矩阵, 可以是正交矩阵或者非正交矩阵。 因 为还可以包括非正交矩阵,因此本发明实施例中所提到的虚拟天线比 3GPP TR 25.876 V1.7.1中提出的虚拟天线的范围略大。
由 S- ARC方案可知,在发射模式 1时,首先分别测量 4根天线的接收 SINR, 选取最大接收 SINR所对应的一根天线, 例如第 3根天线, 记为 SINR^), 则在 发射模式 1时选取天线 3传输数据。假设在发射模式 1下, 其它发射天线的 SINR 分别为 8ΙΝ (1)、 SINRi(2), SINR^), 其中 SINR的右下标表示所对应的发射 模式, 那么根据天线选择规则, 必然有 SI ^^l ^ SINRi l) , SINRi(3) ^ SINR!(2), 以及 SINR^^^SIN ^),
发射模式 2所选取两根天线包括发射模式 1中决定的天线, 例如天线 3。 在 考虑天线 3干扰的情况下, 分别测量剩余的未使用天线 1, 2, 4的 SINR值, 选 取 SINR值最大所对应的一根剩余天线。 例如第二根天线, 新添发射天线的信 干比记为 SINR2(2), 假设在发射模式 2下, 其它发射天线 1、 4的 SINR分别为 SI R2(1)、 SINR2(4), 那么根据天线选择规则, 必然有 SINR2(2) SINR2(1), SINR2(2)^SINR2(4)0
同理, 假设发射模式 3选定的发射天线为 4 , 那么必然有 SIN¾(4)
Figure imgf000015_0001
假设在发射模式 1、 2、 3、 4下, 每个被选用发射天线都使用相同的发射 功率 P。 某一根没有被发射模式 1选中的发射天线 i在发射模式 1下的 SINR即 SINR!(i), 必然大于其在发射模式 2下的 SINR即 SINR2(i), 这是因为计算 SINR^i)时, 不存在其它天线的干扰, 而计算 SIN (i)时, 存在被发射模式 1选 中的发射天线的干扰, 而干扰增加, SINR必然变小。 同理, 某一个没有被发 射模式 1,2, ... ,m- 1选中的发射天线 i在发射模式 m- 1下的 SI R即 SINR^G) ,必然 大于其在发射模式 m下的 SINR即 SI Rm(i), 这是因为计算 SINRm-1(i)时, 只存 在发射模式 m-2所选定的 m-2个天线的干扰, 而计算 SINRm(i)时, 存在被发射 模式 m-1选中的 m-1个发射天线的干扰, 并注意到发射模式 m-1选中的 m-1个发 射天线, 包含发射模式 m-2所选定的 m-2个天线。 很显然, 当在 S-PARC方案中 每个被选用发射天线在发射模式 1、2、3、4下所使用的发射功率分别为 P、 ( 1/2) P、 (1/3) P、 (1/4) P时, 上述关系仍然成立, 即, 某一个没有被发射模式 l,2,...,m-l选中的发射天线 i在发射模式 m-1下的 SINR即
Figure imgf000016_0001
必然大于其 在发射模式 m下的 SINR即 SINRm(i)。
考虑实际上 S-PARC方案中每个被选用发射天线在发射模式 1、 2、 3、 4下 所使用的发射功率分别为 P、 ( 1/2 ) P、 ( 1/3 ) P、 ( 1/4 ) P这个因素对各个 发射模式下每个天线的接收 SINR的影响, 即, 假如发射模式 1下某个天线的 SINR是 SI R! i),那么由于在发射模式 2下的每个天线的发射功率是发射模式 1 下每个天线的发射功率 1/2, 也是(1/2) P, 那么在这样的功率调整后, 在发 射模式 2下该天线的 SIN ^ (1/2) SINR^ 同理, 在发射模式 3和发射模式 4 下, 也会类似的变化。
因此, 存在下述关系:
( 1/2 ) SINR, ( 3 ) (1/2)SIN 1(2)> SINR2(2);
( 2/3 ) S匿 2 (2) ^ (2/3) SIN 2(4)> SINR3(4);
(3/4) SINR3(4)^ (3/4) SI 3(1)> SIN 4(1)。
即:
( 1/2 ) SINR!(3)> SINR2(2); ( 2/3 ) SINR2(2) > SINR3(4); . "
( 3/4 ) SINR3(4) > SIN 4(1),
所以最终有 (l/^SINR^ ^ (2/4) SIN¾(2) >(3/4) SINR3(4) > SINR4(1), 那 么也必然有:
SINRi(3)> SINR2(2) > SINR3(4) > SINR4(1)。
为表 1中的各项 SINR加上右下标, 所述的右下表示该项 SINR所对应的发 射模式, 得到表 4。
Figure imgf000017_0001
Figure imgf000017_0002
参照表 4, 表 4的最后一行从左至右满足依次递减的关系; 而表 4从左上到 右下的对角线, 从左上到右下也满足依次递减的关系; 更一般的, 把表 4的第 2行至第 5行从上到下分别编号为第 1 , 2, 3 , 4行, 则表格中的每一项, 都大 于其右边的列中的行号大于等于该项的行号的项。 所以, 另一种实现可以是 反馈各个天线在表格中对应的各项中的任意一项的量化值, 只需要保证所反 馈的表格中的各项中, 右边的列中的项的行号总是大于等于左边的列中的项 的行号。 例如, 另一种实现可以是反馈第 4行的各项。
基站 406收到移动终端 404反馈的 SINR(1)、 SI R(2)、 SINR(3)、 SINR(4) 的量化值以后, 可以对其按照大小排序, 以得到现有的 S-PARC技术中所述的 移动终端 404反馈的天线处理的顺序。 仍以例举的情况为例, 因为基站 406排 序后, 必然有 SINR(3)> SIN (2)>SIN (4)>SINR( 1 ) , 从而可以得到天线处理的 顺序 {3 , 2, 4, 1} , 其意义与 S-PARC技术中所述的移动终端 404反馈的天线 处理的顺序完全相同, 但在反馈信号中可以不再需要包括这个顺序, 从而减 少了反馈量。 可将所有的线性 SINR值转换为 dB的 SINR值再反馈。 而通过表 4的对角线 元素 SINR, (3) 、 SINR2(2) 、 SINR3(4) 、 SINR4 (1) , 可减少量化后 出 现 (^{101(¾1(){8ΙΝΪ (3)} }=(5{101οβΐ(){8Ι (2)}}}之类的情况发生的概率。 这是因 为:
( 1/4 ) SINR(3) > ( 2/4 ) SIN (2) > ( 3/4 ) SINR(4)> SIN (l)
把所有的线性 SINR值转换为 dB的 SINR值, 有
101og10{ ( 1/4 ) SINR(3)} >101og10{ ( 2/4 ) SI R(2)} >101og10{ ( 3/4 ) SINR(4)}> 101ogl0{SINR(l)},即
101og10{SINR(3)}-6>101og10{SINR(2)}-3>101og1o{SIN (4)}-1.2>101og1o{SIN ( 1)}
从而有
101og10{SINR(3)}>101og]0{SINR(2)}+3
101og10{SINR(2)}>101og10{SINR(4)}+1.8
101og10{S腿 (4)} >101og]0{SINR(l)}+ 1.2
实施例二
本发明的又一实施例提供了一种无线通信系统, 如图 4所示, 所述无线通 信系统包括基站 406和移动终端 404, 如图 4所示, 所述的基站 406包括处理单 元 410, 串并转换单元 412, 多个编码器, 多个符号映射器或扩频器, 发射天 线映射单元 418和多个发射天线 420-1、 420-2 420-N„ 所述的移动终端 404 包括接收单元 430、 处理单元 431和发送单元 438。
下面简述基站 406的各个单元。 所述的发射天线 420-1、 420-2 420-N 用于向移动终端 404的接收单元 430发射信号。 所述的处理单元 410处理接收单 元 440从移动终端 404接收到的反馈信号 402b (即信道质量指示( CQI ) ) , 然 后将模式 K信号, 速率控制信号, 以及最佳天线集合选择信号, 分别输出到串 并转换单元 412, 编码器, 和发射天线映射单元 418。 所述处理单元 410包括: 比较器 900(用于比较移动终端反馈的 M个传输速率的相对大小关系)、 发射速 率计算器 444、 发射速率修正器 446、 发射模式选择器 448、 天线选择器 450, 处理单元 410处理反馈信号 402b的方法和原理, 其详细描述将在后面的段落中 给出。
下面简述移动终端 404的各个单元。 所述的接收单元 430用于接收基站的发 射信号。 所述的处理单元 431处理接收单元 430接收的发射信号, 并根据接收 的发射信号产生反馈信号 402b。 所述的发送单元 438将处理单元 431产生的反 馈信号 402b发送到基站 406。 所述的反馈信号 402b包括 M个传输速率。 下面详细描述移动终端 404产生反馈信号 402b的方法和原理, 以及基站 406 根据所述反馈信号 402b选择发射天线和确定所选择的每个发射天线的传输速 率的方法和原理。
实施例三
本发明的又一实施例提供了一种确定发射天线的方法, 下面结合图 4和图 5描述该方法。
步骤 51、 移动终端 404的接收单元 430接收基站 406的 N个信号, 所述 N个 信号分别由基站 406的 N个发射天线 420-1、 420-2 420-N发射; 所述移动 终端 404的处理单元 431利用接收信号进行信道估计, 得到由发射天线和接收 天线之间的信道系数组成的信道矩阵 H。
步骤 52、 移动终端 404的处理单元 431根据当前时刻的信道情况, 即利用 信道矩阵 H,从所有可能的发射天线选择方案中,依照预设的通信方案的准则 , 分别选择模式 1、 模式 2 模式 M下最优的新添发射天线。 然后将 M个新添 发射天线的 CQI (信道质量指示)发给基站 406。 更具体的, 移动终端 404的处 理单元 431产生的对应于 M个发射模式的反馈信号包括: M个 CQI, 即 M个传输 速率, 不包括天线处理顺序。
步骤 53、 基站 406的接收单元 440接收来自移动终端 404的反馈信号, 即移 动终端 404反馈的 M个 CQI值, 即 M个传输速率; 然后, 基站 406的处理单元 410 的比较器 900比较移动终端反馈的 M个传输速率的相对大小关系, 推导出基站 406分别在模式 1、 2 M下应当使用的发射天线。 所述 M个传输速率, 既 是发射模式 1、 2、 ...、 M下的各个新添发射天线的首步 SINR(the first stage SINR) 的量化 CQI值, 也是分别对应于 M个不同发射天线的 M个 CQI值。 如前所述, M个 CQI与 M个发射天线的——对应关系, 通常是由各个 CQI在哪一个控制字 以及在控制字中的相对位置确定的。
基站 406的处理单元 410的比较器 900与发射速率计算器 444协同处理反馈 信号,以推导出至少一个没有包括在反馈信号中的 CQI,其详细处理方法如下: 比较器 900从 M个传输速率中找到最大值的 1个传输速率, 该传输速率所 对应的发射天线, 就是发射模式 1所选择的 1个发射天线, 同时该传输速率对 应发射模式 1下的首步 SIKR;而根据子集属性,该天线也必然用于模式 2、 3、...、
M, 而该天线用于模式 2、 3 M时的传输率, 由发射速率计算器 444根据 上述传输速率计算得到。
比较器 900从余下的 M-1个传输速率中找到最大值的 1个传输速率,该传输 速率所对应的发射天线, 就是发射模式 2所选择的 2个发射天线中第一个被检 测的发射天线, 同时该传输速率对应发射模式 2下的首步 SINR; 而根据子集属 性, 该天线也必然用于模式 3、 4 M, 而该天线用于模式 3、 4 M时 的传输率, 由发射速率计算器 444根据上述传输速率计算得到。 比较器 900从余下的 M-m个传输速率中找到最大值的 1个传输速率, 该传 输速率所对应的发射天线就是发射模式 m+1所选择的 m+1个发射天线中第一 个被检测的发射天线, 同时该传输速率对应发射模式 m+1下的首步 SINR; 而 根据子集属性, 该天线也必然用于模式 m+2 M, 而该天线用于模式 m+2 M时的传输率, 由发射速率计算器 444根据上述传输速率计算得到。 余下的最后 1个传输速率所对应的发射天线, 就是发射模式 M所选择的 M 个发射天线中第一个被检测的发射天线 ,同时该传输速率对应发射模式 M下的 首步 SINR。
上面的操作过程也可以表达成比较器 900推理出一个天线处理顺序 (即, 各个发射模式下新添发射天线的序号, 也就是说, 关于各个发射模式下新添 发射天线是哪一个的信息) , 与反馈的 M个 CQI—起, 输入到发射速率计算器 444。
而比较器 900推理出一个天线处理顺序的过程写为:
比较器 900从 M个传输速率中找到最大值的 1个传输速率, 该传输速率所 对应的发射天线, 就是发射模式 1所选择的 1个发射天线, 同时该传输速率对 应发射模式 1下的首步 SINR。
比较器 900从余下的 M-1个传输速率中找到最大值的 1个传输速率,该传输 速率所对应的发射天线, 就是发射模式 2所选择的 2个发射天线中第一个被检 测的发射天线, 也即发射模式 2相对于发射模式 1的新添发射天线, 同时该传 输速率对应发射模式 2下的首步 SINR。 比较器 900从余下的 M-m个传输速率中找到最大值的 1个传输速率, 该传 输速率所对应的发射天线,就是发射模式 m+1所选择的 m+1个发射天线中第一 个被检测的发射天线, 也即发射模式 m+1相对于发射模式 m的新添发射天线, 同时该传输速率对应发射模式 m+1下的首步 SINR。 余下的最后 1个传输速率所对应的发射天线, 就是发射模式 M所选择的 M 个发射天线中第一个被检测的发射天线,也即发射模式 M相对于发射模式 M-1 的新添发射天线, 同时该传输速率对应发射模式 M下的首步 SI R。
这样我们就求得了需要使用的天线处理顺序。
其后的操作过程叙述如下。
此后, 基站 406的处理单元 410的发射速率修正器 446, 根据对某个信号的 功率分配或者扩频码分配的因素, 校正所述至少一个推导出的传输速率指示; 基站 406的处理单元 410的发射模式选择器 448根据所述至少一个校正后的传 输速率指示选择一个发射模式 K; 基站 406的处理单元 410的天线选择器 450选 择一组发射天线, 以便使用选择的发射天线发射信号; 最后, 基站 406使用上 述步驟所择的一组天线和根据所选择的发射模式决定的各个被选择的天线的 发射数据率发射信号。
基站 406根据移动终端 404反馈的各个模式下新添发射天线的 CQI量化值, 可以得到各个发射模式下的各个发射天线的接收 SINR。例如, 以 4根发射天线 为例, 基站 406根据移动终端 404反馈的 4个发射模式下新添发射天线的 CQI* 化值, 可以得到模式 1、 1、 3、 4中的每个模式所使用的各个发射天线, 以及 所使用的各个发射天线的接收 例如, 根据移动终端 404反馈的 4个 CQI 的量化值, 基站 406可以知道, 模式 1使用天线 3 , 模式 2使用天线 3、 2, 模式 3 使用天线 3、 2、 4, 而模式 4使用天线 3、 2、 4、 1。 并且基站 106根据移动终端 404反馈的 4个 CQI值, 即 SINR(3)、 SI R(2)、 SI (4)、 SINR(l)的量化值, 可 以得到发射模式 1、 2、 3、 4中的每个模式下所使用的所有发射天线的接收 SINR (如表 1所示)。 基站 406根据各个模式下所使用的所有发射天线的接收 SINR 选择使用信道容量或者信道吞吐量最大的一种模式, 所述的各个模式的信道 容量或者信道吞吐量, 可以由该模式下所使用的所有发射天线的接收 SINR计 算得到。
下面的叙述基站 406的传输率修正器根据对一个信号的功率分配或者扩 频码分配的因素校正所述至少一个推导出的传输速率指示的过程。
移动终端 404反馈 4个 CQI值时假设基站 406的发射功率,而基站 406发射时 所使用的实际的发射功率可能与移动终端 404假定的不同, 这时基站 406可以 根据移动终端 404反馈的 4个 CQI值, 推算出在新的发射功率下移动终端 404的 接收 SINR。 比如, 移动终端 404假设基站 406的发射功率为 P, 计算出了表格 1 中的 SINR(3)、 SI R(2)、 SI (4)、 SIN (1)的量化值并反馈, 而基站 406的实 际发射功率为 P的 c倍, 即 cP, 那么基站 406可以推算出在这个功率下移动终端 404的接收 SINR近似为表 5所示的接收 SINR。 模式 \天线 天线 3 天线 2 天线 4 天线 1 模式 1 SINR(3) c
模式 2 ( 1/2 ) SINR(3) x c SINR(2) x c
模式 3 ( 1/3 ) SINR(3) x c ( 2/3 ) SINR(2) x c SINR(4) x c
模式 4 ( 1/4 ) SINR(3) x c ( 2/4 ) SINR(2) x c ( 3/4 ) SINR(4) x c SINR(l) x c 当基站 406确定发射天线后, 可向移动终端发射信号, 结合图 4, 基站 406 向移动终端 404发射信号的流程如下。
比特流输入到串并转换单元 412 , 串并转换为一个或者多个子流 424-1, 424-2 . . . 424-K。 实际子流数目 Κ由模式 Κ信号控制, 所述的模式 Κ信号由处理 单元 410发到串并转换单元 412。 串并转换单元 412输出的子流 424-1, 424-2 . . . 424-Κ由相应的编码器和符号映射器 /扩频器处理。子流 424-1、424-2、 ...、 424-Κ 中的每一个由处理单元 410发到相应编码器进行编码。 然后, 编码后的子流 424-1,424-2 . . . 424-Κ由发射天线 420-1、 420-2、 ...、 420-Ν的一个子集发射到 移动终端 404。 处理单元 410发给发射天线映射单元 418—个最佳天线集合选择 信号, 用来决定所述发射天线的一个特定子集, 即选择用来发射编码后的子 流 424-1、 424-2、 …、 424-Κ的天线 420-1、 420-2 420-Ν的一个特定子集。 发射模式 Κ必须小于等于 Ν。
步骤 54: 移动终端装置 404接收基站 406发射的 Κ个数据子流 1、 2 Κ。 基站 406确定发射模式后, 还可以将所采用发射模式通知移动终端 404, 以便移动终端 404根据发射模式求得天线处理顺序, 以便采用干扰消除技术依 次检测各个发射天线的发射信号; 步骤 54也可以是移动终端 404根据接收信号 判断发射端所采用的发射模式, 然后采用干扰消除技术依次检测各个发射天 线的发射信号。
下面以基站 406将所采用发射模式通知移动终端 404的情况为例举例说 明, 移动终端 404反馈的天线处理的顺序 {3 , 2, 4, 1 } , 那么移动终端 404在 知道基站 406所采用的发射模式后, 可以得到该发射模式下所使用的发射天线 和移动终端 404应该遵循的检测顺序, 即: 模式 1使用天线 3; 模式 2使用天线 3、 2, 检测的先后顺序为 2、 3; 模式 3使用天线 3、 2、 4, 检测的先后顺序为 4、 2、 3; 而模式 4使用天线 3、 2、 4、 1 , 检测的先后顺序为 1、 4、 2、 3。
综上所述, 当有 M个发射天线的时候, 反馈的负荷是 M个 CQI值。 如果每 个 CQI值需要使用 5个比特, 那么通常反馈的负荷是
Nh = 5M 现有技术反馈一个天线处理的顺序所需要的「lQg2(MW个比特被省略。 例如, 当 M = 4, 则(M!) = 4x3x 2xl = 24 , 总共节约的比特数是「log2 = 5比特。
如前面所举的例子所述, 虽然有( 1/4 ) SINR(3) > ( 2/4 ) SI R(2) > ( 3/4 ) SIN (4)> SINR(l), 但是量化后, 可能在不等式中相邻的 2项中出现相等的情 况, 例如, 如果 CQI(2)=CQI(4), 那么基站 406无法分辨天线处理的顺序是 {3, 4, 2, 1}还是 {3, 2, 4, 1} , 为了消除这个问题, 可采用下述 3种处理方法中 的任意一种:
1、 因为量化后, 不等式中相邻的 2项中变为相等发生的概率较小, 所以 在发生时, 基站 406虽然无法分辨出一个确定的天线处理顺序, 则从可能的所 有情况中任选一种。 因为这种情况发生的概率较小, 对系统的性能没有大的 影响。
2、 使移动终端 404所反馈的 4个 CQI值各不相同, 并且保持原有的相对大 小关系。 例如, 如果量化前, SINR(3)> SINR(2)>SINR(4)>SINR(1), 用 Q{.} 表示量化的过程, 那么反馈 Q{ SIN (1)}、 Q{ SI R(4)}+1、 Q{ SIN (2)}+2、 Q{SINR(3)}+3。 这样可以保证移动终端 404所反馈的 4个 CQI值各不相同。 基 站 406收到反馈以后, 按照大小排序, 再减去相应的值即可, 即, 最大的 CQI 值减掉 3,次大的 CQI值减掉 2,第三大的 CQI值减掉 1,最小的 CQI值保持不变。 这个方案的代价是, 比如原来的 4bit的 CQI值可以表示 32个粒度, 那么现在只 可以表示 32-3=29个粒度。
3、 设置一个额外的比特, 表示两个相等的量化 CQI值对应的实际大小关 系。例如,量化前, SINR(3)> SINR(2)>SI R(4)>SI R(1),量化后, Q{ SINR(3)}= Q { SINR(2)},那么用 1个额外的比特,取零表示在两个相等的量化 CQI值对应的 两个天线中, 序号小的天线 CQI值大, 取 1表示序号小的天线 CQI值小, 在这 个例子中则取 1表示序号小的天线 2的 CQI值小。 因为有两个以上相等的量化 CQI值的情况发生的概率更小, 所以不需要考虑。 实施例四
本发明的又一实施例提供了另一种确定发射天线的系统, 下面结合图 6描 述该系统。
本实施例的确定发射天线的系统包括: 终端 610, 用于获得各个发射天线 的信道质量指示, 并将所述信道质量指示发给基站; 基站 620, 用于根据所述 终端反馈的各个发射天线的信道质量指示的大小关系确定天线处理顺序, 确 定要使用的发射模式, 确定各个发射模式下的发射天线。
所述终端 610包括: 接收单元 611, 用于接收基站的发射信号; 处理单元 612, 用于根据所述接收单元接收的信号进行信道估计, 并确定各个发射天线 的信道质量指示; 发送单元 613 , 用于将所述各个发射天线的信道质量指示发 送给基站。
所述基站 620包括: 接收单元 621 , 用于接收所述终端发送的各个发射天 线的信道质量指示; 顺序处理单元 622, 用于根据所述各个发射天线的信道质 量指示的大小关系确定天线处理顺序; 模式选择单元 623, 用于根据所述天线 处理顺序确定各个发射模式下的总传输速率, 并根据所述各个发射模式下的 总传输速率确定要使用的发射模式; 发射单元 624, 用于根据所述模式选择单 元确定的发射模式所对应的发射天线向终端发射信号。
其中, 所述发射天线可以包括物理天线和 /或虚拟天线。
根据本发明实施例, 由于移动终端向基站发送的反馈信号中, 不包括天 线处理顺序, 从而减少了反馈的信息量, 在同样信道带宽条件下, 提高信道 传输数据的能力, 增加整个系统的性能。
虽然通过实施例描绘了本发明, 但本领域普通技术人员知道, 在不脱离 本发明的精神和实质的情况下, 就可使本发明有许多变形和变化, 本发明的 范围由所附的权利要求来限定。

Claims

权利要求
1、 一种反馈发射天线选择信息的方法, 其特征在于, 包括:
终端获得发射天线选择信息, 所述发射天线选择信息包括各个发射天线 的信道质量指示;
终端向基站发送反馈信号, 所述反馈信号包括所述各个发射天线的信道 质量指示, 且不包括天线处理顺序。
2、 根据权利要求 1所述的方法, 其特征在于, 所述各个发射天线的信道 质量指示是各个发射模式下新添发射天线的信道质量指示。
3、 根据权利要求 2所述的方法, 其特征在于, 所述终端获得发射天线选 择信息具体包括:
终端测量单天线发射模式下各个发射天线的信干比, 选取最大信干比对 应的发射天线作为单天线发射模式的新添发射天线, 并记录该新添发射天线 的^"干比;
终端根据除前一发射模式下选择的发射天线外的各个发射天线的信干 比, 选取最大信干比对应的天线作为本发射模式的新添发射天线, 并记录该 新添发射天线的信干比;
将所述各个天线的信干比量化为信道质量指示。
4、 根据权利要求 1所述的方法, 其特征在于, 所述各个发射天线的信道 质量指示是采用最大发射天线数的发射模式下各个发射天线的信道质量指 示。
5、 根据权利要求 1所述的方法, 其特征在于, 所述发射天线包括物理天 线和 /或虛拟天线。
6、 一种确定发射天线的方法, 其特征在于, 包括:
基站接收终端反馈的各个发射天线的信道质量指示;
基站根据所述各个发射天线的信道质量指示的大小关系确定天线处理顺 序, 确定要使用的发射模式, 确定各个发射模式下的发射天线。
7、 根据权利要求 6所述的方法, 其特征在于, 所述各个发射天线的信道 质量指示是各个发射模式下新添发射天线的信道质量指示。
8、 根据权利要求 6所述的方法, 其特征在于, 所述各个发射天线的信道 质量指示是采用最大发射天线数的发射模式下各个发射天线的信道质量指 示。
9、 根据权利要求 6所述的方法, 其特征在于, 所述确定各个发射模式下 的发射天线具体为:
基站根据所述各个发射天线的信道质量指示的大小关系, 或根据所述天 线处理顺序确定各个发射模式下的发射天线。
10、 根据权利要求 6所述的方法, 其特征在于, 所述确定要使用的发射模 式具体包括:
基站根据所述各个发射天线的信道质量指示的大小关系, 或根据所述天 线处理顺序确定各个发射模式下的总传输速率;
基站确定最大总传输速率所对应的发射模式为要使用的发射模式。
11、 根据权利要求 10所述的方法, 其特征在于, 所述确定各个发射模式 下的发射天线具体为:
基站根据所述各个发射天线的信道质量指示的大小关系和所述要使用的 发射模式确定各个发射模式下的发射天线。
12、 一种确定发射天线的系统, 其特征在于, 所述的系统包括: 终端, 用于获得各个发射天线的信道质量指示, 并将所述信道质量指示 发给基站;
基站, 用于根据所述终端反馈的各个发射天线的信道质量指示的大小关 系确定天线处理顺序, 确定要使用的发射模式, 确定各个发射模式下的发射 天线。
13、 根据权利要求 12所述的系统, 其特征在于, 所述终端包括: 接收单元, 用于接收基站的发射信号;
处理单元, 用于根据所述接收 号进行信道估计, 并确定各个发射天线 的信道质量指示;
发送单元, 用于将所述各个发射天线的信道质量指示发送给基站。
14、 根据权利要求 12所述的系统, 其特征在于, 所述基站包括: 接收单元, 用于接收所述终端发送的各个发射天线的信道质量指示; 顺序处理单元, 用于才艮据所述各个发射天线的信道质量指示的大小关系 确定天线处理顺序;
模式选择单元, 用于根据所述天线处理顺序确定各个发射模式下的总传 输速率, 并根据所述各个发射模式下的总传输速率确定要使用的发射模式; 发射单元, 用于根据所述模式选择单元确定的发射模式所对应的发射天 线向终端发射信号。
15、 根据权利要求 12所述的系统, 其特征在于, 所述发射天线包括物理 天线和 /或虛拟天线。
16、 一种终端, 其特征在于, 包括:
接收单元, 用于接收基站的发射信号;
处理单元, 用于根据所述接收信号进行信道估计, 并确定各个发射天线 的信道质量指示;
发送单元, 用于将所述各个发射天线的信道质量指示发送给基站, 且不 发送天线处理顺序。
17、 一种基站, 其特征在于, 包括:
接收单元, 用于接收所述终端发送的各个发射天线的信道质量指示; 顺序处理单元, 用于根据所述各个发射天线的信道质量指示的大小关系 确定天线处理顺序;
模式选择单元, 用于根据所述天线处理顺序确定各个发射模式下的总传 输速率, 并根据所述各个发射模式下的总传输速率确定要使用的发射模式; 发射单元, 用于根据所述模式选择单元确定的发射模式所对应的发射天 线向终端发射信号。
PCT/CN2007/002465 2006-08-16 2007-08-15 Procédé, système et appareil permettant de déterminer une antenne d'émission WO2008022555A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006101098375A CN101127550B (zh) 2006-08-16 2006-08-16 一种确定发射天线的方法和系统
CN200610109837.5 2006-08-16

Publications (1)

Publication Number Publication Date
WO2008022555A1 true WO2008022555A1 (fr) 2008-02-28

Family

ID=39095500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002465 WO2008022555A1 (fr) 2006-08-16 2007-08-15 Procédé, système et appareil permettant de déterminer une antenne d'émission

Country Status (2)

Country Link
CN (1) CN101127550B (zh)
WO (1) WO2008022555A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112512110A (zh) * 2020-11-19 2021-03-16 合肥工业大学 智能变电站可靠性需求约束的无线发射功率预测控制方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854233B (zh) * 2009-04-03 2013-01-23 电信科学技术研究院 一种信道质量指示信息的处理方法及设备
CN101572941B (zh) * 2009-06-09 2011-09-14 华为技术有限公司 基于多天线的信号发送方法及装置
CN101997650B (zh) 2009-08-28 2014-07-30 华为技术有限公司 多天线系统数据信号的发射方法、装置和系统
CN102064870A (zh) * 2010-12-30 2011-05-18 中兴通讯股份有限公司 数据发送方法及装置
CN102932926B (zh) * 2011-08-12 2015-04-29 华为技术有限公司 天线选择的方法、基站和用户设备
CN103825642B (zh) * 2013-12-24 2017-06-09 清华大学 三维多天线传输中发射天线选择的优化方法和系统
KR20170048583A (ko) * 2014-10-17 2017-05-08 후아웨이 테크놀러지 컴퍼니 리미티드 무선 통신 방법 및 시스템
CN105592197B (zh) * 2014-10-20 2019-10-01 南京中兴软件有限责任公司 一种选择发射终端的方法及主终端
WO2017193366A1 (zh) * 2016-05-13 2017-11-16 华为技术有限公司 一种信息反馈方法及站点

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1387327A (zh) * 2001-05-07 2002-12-25 三星电子株式会社 更多信道容量和更少反馈信息的无线电通信装置及其方法
CN1578192A (zh) * 2003-07-11 2005-02-09 Lg电子株式会社 移动通信系统中的发射分集设备和方法
CN1604497A (zh) * 2004-11-19 2005-04-06 清华大学 一种适合于分布式系统的下行发送天线的选择方法
WO2005076758A2 (en) * 2004-02-11 2005-08-25 Lg Electronics Inc. A method and system for transmitting and receiving data streams
US20050250544A1 (en) * 2004-05-07 2005-11-10 Stephen Grant Base station, mobile terminal device and method for implementing a selective-per-antenna-rate-control (S-PARC) technique in a wireless communications network
CN1805304A (zh) * 2005-01-11 2006-07-19 松下电器产业株式会社 具有自适应能力的多天线系统及其跨层方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1387327A (zh) * 2001-05-07 2002-12-25 三星电子株式会社 更多信道容量和更少反馈信息的无线电通信装置及其方法
CN1578192A (zh) * 2003-07-11 2005-02-09 Lg电子株式会社 移动通信系统中的发射分集设备和方法
WO2005076758A2 (en) * 2004-02-11 2005-08-25 Lg Electronics Inc. A method and system for transmitting and receiving data streams
US20050250544A1 (en) * 2004-05-07 2005-11-10 Stephen Grant Base station, mobile terminal device and method for implementing a selective-per-antenna-rate-control (S-PARC) technique in a wireless communications network
CN1604497A (zh) * 2004-11-19 2005-04-06 清华大学 一种适合于分布式系统的下行发送天线的选择方法
CN1805304A (zh) * 2005-01-11 2006-07-19 松下电器产业株式会社 具有自适应能力的多天线系统及其跨层方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112512110A (zh) * 2020-11-19 2021-03-16 合肥工业大学 智能变电站可靠性需求约束的无线发射功率预测控制方法
CN112512110B (zh) * 2020-11-19 2022-03-15 合肥工业大学 智能变电站可靠性需求约束的无线发射功率预测控制方法

Also Published As

Publication number Publication date
CN101127550B (zh) 2012-02-29
CN101127550A (zh) 2008-02-20

Similar Documents

Publication Publication Date Title
WO2008022555A1 (fr) Procédé, système et appareil permettant de déterminer une antenne d'émission
JP4908500B2 (ja) 通信装置およびレート選択方法
JP5484473B2 (ja) ダウンリンクマルチ入力マルチ出力モードアダプティブ切替の方法とシステム
US7983223B2 (en) Apparatus and method for reporting channel quality indicator in wireless communication system
AU2011304258B2 (en) Method for reporting channel information based on link adaptation in wireless local area network and the apparatus for the same
US20070054633A1 (en) Data transmission scheme in wireless communication system
US9979508B2 (en) Communication device and communication method
US20140038661A1 (en) Power loading in mu-mimo
WO2012067093A1 (ja) 無線通信システム、及び無線通信方法
KR20070086267A (ko) 멀티 안테나 전송에서의 재송 방법 및 송신 방법
WO2006080352A1 (ja) 無線基地局装置及び端末装置
JP5809130B2 (ja) Mimoネットワークにおいて通信するための方法
KR100713336B1 (ko) 이동통신시스템에서의 신호 검출 순서 결정방법
JP2004166232A (ja) データシンボルのストリームを送信するための方法及びシステム
US20200195315A1 (en) Integrity and quality monitoring and signaling for sounding and reduced feedback
TW200913536A (en) A method for communicating in a MIMO context
WO2010081412A1 (zh) 预编码反馈方法及系统、用户设备和基站
JP5567673B2 (ja) 信号伝送方法及びユーザ端末
WO2009107635A1 (ja) 無線通信システム、送信装置および通信制御方法
JP5121368B2 (ja) 受信装置
WO2009107656A1 (ja) 無線通信システム、送信装置および通信制御方法
WO2005008931A1 (ja) 送信装置、受信装置、無線通信システム
JP2005137003A (ja) 無線通信システムにおいて送信ダイバーシチ利得を高める方法及び無線送信機
JP2007529164A (ja) 通信リソースを制御するための方法、コントローラ及びコンピュータソフトウェア
JP2017011568A (ja) 送信装置及び送受信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07800700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07800700

Country of ref document: EP

Kind code of ref document: A1