WO2017193366A1 - 一种信息反馈方法及站点 - Google Patents

一种信息反馈方法及站点 Download PDF

Info

Publication number
WO2017193366A1
WO2017193366A1 PCT/CN2016/082006 CN2016082006W WO2017193366A1 WO 2017193366 A1 WO2017193366 A1 WO 2017193366A1 CN 2016082006 W CN2016082006 W CN 2016082006W WO 2017193366 A1 WO2017193366 A1 WO 2017193366A1
Authority
WO
WIPO (PCT)
Prior art keywords
combinations
combination
station
sta
channel capacity
Prior art date
Application number
PCT/CN2016/082006
Other languages
English (en)
French (fr)
Inventor
牛勇
冯子奇
冯薇
李德建
陈佳民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680063795.8A priority Critical patent/CN108353059A/zh
Priority to PCT/CN2016/082006 priority patent/WO2017193366A1/zh
Publication of WO2017193366A1 publication Critical patent/WO2017193366A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an information feedback method and a site.
  • stations In the field of millimeter wave wireless communication technology, stations (STAs) need to configure antennas with analog beamforming capabilities, such as phased array antennas or a set of antennas with switchable beam directions to increase antenna gain and increase communication distance.
  • analog beamforming capabilities such as phased array antennas or a set of antennas with switchable beam directions to increase antenna gain and increase communication distance.
  • two receiving STAs respectively configure multiple antenna arrays (Antenna Arrays) or configure a single antenna array with multiple RF chains, and there are multiple analog beam combinations between two receiving STAs, it is required before the two STAs communicate.
  • the analog beam combination for multiple-input multiple-output (MIMO) communication between two STAs is selected by analog beamforming training to establish an effective channel.
  • MIMO multiple-input multiple-output
  • each antenna array can generate multiple analog beams, so that there are multiple transmission beams between the two STAs.
  • the STA used for transmitting the data frame can obtain the analog domain beam combining or the digital domain beamforming precoding by using the channel measurement result of the simulated beamforming training.
  • the STA that receives the data frame needs to send the information of each of the beam pairs determined by the analog beamforming training to the STA for transmitting the data frame, or send the channel state information of all the beam combinations to the STA.
  • the STA that transmits the data frame is such that the amount of data that the STA for receiving the data frame transmits to the STA for transmitting the data frame is large.
  • the embodiment of the invention discloses an information feedback method and a site for reducing the data volume overhead of information sent by an STA for receiving a data frame to an STA for transmitting a data frame.
  • the first aspect discloses an information feedback method, where the method is applied to a first STA, and measures channel state information of N beam combinations, and receives an information acquisition request that is sent by a second STA and includes a first threshold, according to a channel of each beam combination. Status information, the beam combination with the largest channel capacity among the N beam combinations The target beam combination is determined, and the K beam combinations with the highest channel capacity are selected from the N beam combinations according to the channel capacity of the target beam combination and the first threshold, and the first information of the K beam combinations is sent to the second STA.
  • Each of the beam combinations corresponds to one MIMO effective channel, and the N beam combinations are all or part of a beam combination between the first STA and the second STA, where N is an integer greater than 1, and K is greater than or equal to 1, and less than N.
  • the integer refers to the receiver of the data frame, and the second STA refers to the sender of the data frame.
  • channel coefficients of a plurality of beam pairs consisting of one transmitting sector and one receiving sector may be measured first, and then each channel is constructed according to channel coefficients.
  • the channel state information may be an effective channel matrix measured during the analog beamforming training process, and one sector is a beam, and the beam combination may also be referred to as a sector combination.
  • the sector combinations may be represented by a combination of receiving sectors or a combination of transmission sectors, respectively, and each sector combination/beam combination corresponds to one MIMO link.
  • the transmitting sector refers to a sector on the second STA
  • the receiving sector refers to a sector on the first STA.
  • the signal strength gain of each beam combination may be calculated according to the channel matrix. Selecting M beam combinations from the N beam combinations, calculating a channel capacity of each of the M beam combinations; determining a beam combination having the largest channel capacity among the M beam combinations as the target beam combination.
  • the signal strength gain is obtained according to the sum of the modes of the elements of the channel matrix (ie, the channel coefficients) or the square of the modulus, and the M beam combinations are the M signal strength gains corresponding to the largest of the N signal strength gains.
  • Beam combination, M is an integer greater than or equal to 1, and less than N. Since only the channel capacity of the partial beam combination (i.e., M beam combinations) needs to be calculated, generally, M is much smaller than N, and therefore, the number of calculations of the channel capacity can be greatly reduced.
  • a determinant of a channel matrix of each of the N beam combinations may be calculated, and a determinant selected from the N beam combinations is not less than the first Predetermined L beam combinations, and M beam combinations are selected from L beam combinations, L is an integer greater than or equal to 1, and less than N, and M is less than or equal to L. Therefore, the beam combination with a small channel capacity can be removed by calculating the determinant of the effective channel matrix to narrow the selection range of the beam combination, and the calculation amount required to calculate the channel capacity can be further reduced.
  • each of the first STA and the second STA when each of the first STA and the second STA includes only one antenna array, one antenna array is connected to at least one radio frequency chain, and each radio frequency chain is connected to all antenna elements of one antenna array, according to each beam
  • the combined channel state information when determining the beam combination with the largest channel capacity among the N beam combinations as the target beam combination, determining the signal to noise ratio of each beam pair, selecting P beam pairs from all beam pairs, and calculating P beams
  • the second beam pair having the largest signal to noise ratio is selected from the P beam pairs, and the signal to noise ratio of the third beam pair is set to 0 to obtain all the beam pairs after setting, from the setting A beam pair is selected from all the beam pairs, and I is equal to P.
  • the transmit beams in the I beam pairs belong to different RF chains in the second STA, and the receive beams in the I beam pairs belong to the first STA respectively.
  • each beam pair of the I beam pair is the beam pair with the largest signal-to-noise ratio in the first beam pair, and the second channel capacity of the beam combination formed by the one beam pair is calculated, and the first channel capacity is obtained.
  • P is the larger of the number of the first STA radio frequency chain and the second STA radio frequency chain.
  • the transmit beams in the P beam pairs belong to different RF chains in the second STA, and the P pairs are in the P pairs.
  • the receiving beams respectively belong to different RF chains in the first STA, and each of the P beam pairs is the beam pair with the largest signal to noise ratio in the first beam pair, and the first beam pair is a radio frequency chain of the first STA and the first All beam pairs between one RF chain of the two STAs, and the third beam pair includes a beam with a number of beams between any one of the second beam pairs not greater than a second preset value. Since only the channel capacity of the two beam combinations needs to be calculated, the number of calculations of the channel capacity can be reduced.
  • the second threshold may be determined according to the channel capacity of the target beam combination and the first threshold.
  • the threshold is selected from the M beam combinations, and the beam combination whose channel capacity is greater than the second threshold is selected, so that the amount of data that the first STA feeds back to the second STA can be reduced.
  • the channel state information of the target beam combination or the channel state information of the K beam combinations may be sent to the second STA according to the information acquisition request. Therefore, the second STA may obtain the digital domain according to the channel state information.
  • a beamforming precoding matrix and a transmit beam combination of an analog domain wherein a target beam combination of the transmitted K beam combinations is used as a most preferred beam combination for the first STA and the second STA, and other K-1 beam combinations Used as a backup beam combination between the first STA and the second STA, when the target beam combination is occluded due to part or all of the beam pair/beam link, causing the corresponding MIMO link quality to deteriorate, the first STA and the second STA Can be synchronized, quickly switch to pre-store A backup beam is stored on the combination.
  • the first information may include the transmit beam information of each of the K beam combinations, and the transmit beam information includes a transmit sector number and a number of the transmit antenna to which the transmit sector belongs, where the number of the transmit antenna may also be The number of the radio frequency chain of the transmitting antenna is indicated to indicate that the second STA selects the transmitting sector according to the transmitting beam information, and transmits the data according to the specified transmission beam combination.
  • each beam combination can also be embodied as a combination of transmit beams or a combination of receive beams.
  • the first information may further include second information, where the second information is used to indicate a transmit beam or a beam pair in which the second STA in the target beam combination can perform beam tracing, or each of the K beam combinations.
  • the second STA can perform beam tracking of the transmit beam or beam pair, and the transmit beam or beam pair that the second STA can perform beam tracking is the channel state information of the first STA according to the target beam combination or each of the K beam combinations. Determining, wherein the transmit beam or beam pair that the second STA can perform beam tracking refers to a transmit beam or beam pair that the second STA can independently perform beam tracking.
  • the first STA according to the target beam combination or the effective channel matrix of each of the K beam combinations, if one column vector of the effective channel matrix is orthogonal to all other column vectors, the first STA is The channel response of a given transmit antenna is orthogonal to the channel response of other transmit antennas. That is, when beam tracking is performed, separately adjusting the transmit beam/beam pair corresponding to a given transmit antenna does not interfere with other transmit beams/beam pairs. .
  • the training sequence (such as the AGC field and/or the TRN field of the BRP packet) sent by different transmit antennas/RF chains of the second STA adopts an orthogonal sequence (for example, an AGC subfield and/or a TRN sub-for BRP packet).
  • the field uses an orthogonal mask to orthogonalize the training sequence, or different transmit antennas use orthogonal polarization.
  • beam tracking separately adjust the transmit beam/beam pair corresponding to a given transmit antenna.
  • the transmit beam/beam pair causes interference. Therefore, the second STA can perform beam tracking accurately, flexibly, and separately for the transmit beam or beam pair capable of performing beam tracking independently in the target beam combination, without affecting the transmission of other beam or beam pairs that are not beam-tracking.
  • the second information fed back by the first STA may include, in addition to the transmit beam or beam pair that the second STA can perform beam tracking separately, the number of sectors or sector ranges allowed to be measured in the adjacent sector, where, the neighboring Sector can be the target beam group
  • the adjacent sectors in the spatial dimension such as the azimuth angle and the elevation angle of the transmit beam capable of beam tracking in the combined or K beam combinations may also be combined with the target beam or K beams.
  • the second STA can only perform beam tracking in the adjacent 3 sectors of the transmit beam or beam pair capable of beam tracking.
  • the second STA also determines the number of adjacent transmit sectors or sector ranges that are allowed to be measured during beam tracking based on the channel state information of the beam combination.
  • the second aspect discloses an STA, including:
  • a measuring unit configured to measure channel state information of N beam combinations, where N is an integer greater than 1;
  • a communication unit configured to receive an information acquisition request sent by the second STA, where the information acquisition request includes a first threshold
  • a determining unit configured to determine, according to channel state information of each of the beam combinations measured by the measuring unit, a beam combination having a largest channel capacity among the N beam combinations as a target beam combination;
  • a selecting unit configured to select K beam combinations with the highest channel capacity from the N beam combinations according to a channel capacity of the target beam combination determined by the determining unit and a first threshold received by the communication unit, where the K Is an integer greater than or equal to 1, and less than the N;
  • the communication unit is further configured to send the first information of the K beam combinations to the second STA.
  • the measuring unit is specifically configured to:
  • a channel matrix of each of the beam combinations is constructed based on the channel coefficients.
  • the determining unit is specifically configured to:
  • M beam combinations from the N beam combinations, the M beam combinations being beam combinations corresponding to a maximum of M signal strength gains of the N of the signal strength gains, where the M is greater than or equal to 1, and less than the integer of N;
  • a beam combination having the largest channel capacity among the M beam combinations is determined as a target beam combination.
  • the determining unit selects M beam combinations from the N beam combinations, specifically:
  • the L beam combinations that are not less than a first preset value, the L being greater than or equal to 1, and less than an integer of the N;
  • the one antenna array is connected to at least one radio frequency chain and each of the radio frequency chains is connected to all of the one antenna array.
  • the determining unit is specifically configured to:
  • the selecting unit is specifically configured to:
  • the communication unit is further configured to send, according to the information acquisition request, channel state information of the target beam combination or channel state information of the K beams combined to the second STA.
  • the first information may include transmit beam information of each of the K beam combinations, and the transmit beam information may include a transmit sector number and a transmit antenna to which the transmit sector belongs. Numbering.
  • the first information may further include second information, where the second information is used to indicate that the second STA of the target beam combination or the K beam combinations is capable of performing beam tracking transmission.
  • the second information is used to indicate that the second STA of the target beam combination or the K beam combinations is capable of performing beam tracking transmission.
  • a beam or beam pair and/or for indicating a number of sectors or sector ranges allowed to be measured in a neighboring sector, the neighboring sector being combined with the target beam or capable of performing beaming in the K beam combinations Tracking the azimuth, pitch angle, or sector adjacent to the sector number of the transmitted beam.
  • a third aspect discloses a STA, including a processor, a memory, and a transceiver, wherein:
  • a set of program code is stored in the memory, and the processor is used to call the program code stored in the memory to perform the following operations:
  • a transceiver configured to receive an information acquisition request sent by the second STA, where the information acquisition request includes a first threshold
  • the processor is also used to call program code stored in memory to perform the following operations:
  • K is an integer greater than or equal to 1, and less than N;
  • the transceiver is further configured to send the first information of the K beam combinations to the second STA.
  • a fourth aspect discloses a computer readable storage medium storing information feedback by a STA for performing the first aspect or any of the possible implementations of the first aspect
  • the program code for the method is not limited to:
  • the partial beam combination is selected from the measured beam combination according to the first threshold sent by the second STA and the channel state information of each beam combination, and The information of the part of the beam combination is sent to the second STA, and the information of all the beam combinations or the information of all the measured beam pairs is not required to be sent to the second STA, and the first STA is sent to the second STA.
  • the amount of data for the message is not required to be sent to the second STA.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of another network architecture disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a STA according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of an information feedback method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another STA according to an embodiment of the present invention.
  • the embodiment of the invention discloses an information feedback method and an STA, which are used for reducing the amount of data of information sent by the first STA to the second STA. The details are described below separately.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • the network architecture includes a first STA and a second STA, where the first STA and the second STA respectively include at least two antenna arrays, and each antenna array includes at least two beams (ie, sectors), where FIG. 1 only illustrates the case where both the first STA and the second STA include two antenna arrays, each of which includes eight beams.
  • Each antenna array is connected to only one RF chain, and the antenna arrays of the first STA or the second STA are separated by a certain distance.
  • Each antenna array produces a codebook based beam by adjusting the phase of the antenna elements (ie, analog beamforming training). From the baseband of both ends of the transceiver, the two antenna arrays of the first STA and the second STA form a low-dimensional Multiple-Input Multiple-Output (MIMO), that is, 2x2 MIMO.
  • MIMO Multiple-Input Multiple-Output
  • the channel matrix between the antenna elements of the first STA and the second STA is H
  • the first STA and the second STA complete the analog beamforming training
  • the first STA and the first STA The effective channel matrix between the antenna arrays of the two STAs is H eff .
  • the codebook of the second STA as C Tx , j 1 and j 2 respectively indicating the number of the transmit beam on the first and second transmit antennas in the second STA, for example, the sector number in the 802.11ad standard can be used.
  • the first STA codebook as C Rx , i 1 and i 2 respectively represent the numbers of the receive beams on the first and second receive antennas of the first and second first STAs, for example, the 802.11ad standard can be used.
  • the sector number in , and with The antenna weight vectors of the ith 1 and i 2 receive beams on the 1st and 2nd receive antennas of the 1st and 2nd first STAs, respectively. Therefore, the first STA analog beamforming coding matrix W Rx, RF can be expressed as
  • H eff (i 1 , i 2 , j 1 , j 2 ) W Rx,RF (i 1 ,i 2 )HF Tx,RF (j 1 ,j 2 )
  • H eff (i 1 , i 2 , j 1 , j 2 ) represents a beam in which the second STA selects numbers i 1 and i 2 , and the first STA selects an effective channel matrix when the numbers are j 1 and j 2 beams.
  • FIG. 2 is a schematic diagram of another network architecture disclosed in an embodiment of the present invention.
  • the network architecture includes a first STA and a second STA.
  • Each of the first STA and the second STA deploys only one antenna array.
  • the antenna array includes at least one RF chain, and each RF chain is output/input. After the signal passes through the phase shifter, it is connected to all the antenna elements of the antenna array by superposition.
  • the antenna array can generate a codebook based beam. Defining C Tx as the second STA codebook, and Wherein j 1 represents the first second STA antenna weight vector, J 2 represents the first of the second STA antenna weight vector. Therefore, the beam matrix F Tx,RF of the second STA can be expressed as
  • the receiver codebook is defined as C Rx , and Where i 1 represents a first end of the receiving antenna weight vector, I 2 indicates where the first end of the receiving antenna weight vector. Therefore, the first STA beam matrix W Rx,RF can be expressed as
  • the element h in the matrix H eff is the channel coefficient between the transmit beam and the receive beam.
  • FIG. 3 is a diagram of a STA according to an embodiment of the present invention. Schematic diagram of composition.
  • the STA is the first STA.
  • the STA includes a processor 301, a memory 302, a transceiver 303, and a bus 304.
  • the processor 301 can be a general purpose central processing unit (CPU), a plurality of CPUs, a microprocessor, an application-specific integrated circuit (ASIC), or one or more of the programs for controlling the execution of the program of the present invention. integrated circuit.
  • CPU general purpose central processing unit
  • ASIC application-specific integrated circuit
  • the memory 302 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • Memory 302 may be present independently and coupled to processor 301 via bus 304.
  • the memory 302 can also be integrated with the processor 301.
  • the transceiver 303 is configured to communicate with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), and the like.
  • Bus 304 can include a path for communicating information between the components described above.
  • the memory 302 stores a set of program codes, and the processor 301 is configured to call the program code stored in the memory 302 to perform the following operations:
  • the transceiver 303 is configured to receive an information acquisition request sent by the second STA, and send the information to the processor 301, where the information acquisition request includes a first threshold;
  • the processor 301 is further configured to call the program code stored in the memory to perform the following operations:
  • K is an integer greater than or equal to 1, and less than N;
  • the transceiver 303 is further configured to send the first information of the K beam combinations to the second STA.
  • the manner in which the processor 301 measures channel state information of the N beam combinations is:
  • the transmitting sector is a sector on the second STA
  • the receiving sector is a sector on the STA
  • a channel matrix for each beam combination is constructed from the channel coefficients.
  • the processor 301 determines, according to the channel state information of each beam combination, a beam combination with the largest channel capacity among the N beam combinations as the target beam combination:
  • the signal strength gain is obtained according to the sum of the modules of the elements in the channel matrix or the sum of the squares of the modes;
  • the M beam combinations are beam combinations corresponding to the largest M signal strength gains among the N signal strength gains, and M is an integer greater than or equal to 1, and less than N;
  • the beam combination with the largest channel capacity among the M beam combinations is determined as the target beam combination.
  • the processor 301 selects M beam combinations from the N beam combinations as follows:
  • both the STA and the second STA include only one antenna array, one antenna array is connected to at least one radio frequency chain, and each radio frequency chain is connected to all antenna elements of one antenna array, the processor 301 is configured according to each The channel state information of the combined beam, and the method of determining the beam combination with the largest channel capacity among the N beam combinations as the target beam combination is:
  • P is the larger of the number of the second STA RF chains and the number of STA RF chains, and the transmit beams in the P beam pairs belong to different RF chains in the second STA respectively.
  • the receiving beams in the P beam pairs belong to different RF chains in the STA, and each of the P beam pairs is the beam pair with the largest signal to noise ratio in the first beam pair, and the first beam pair is the second STA. All beam pairs between one RF chain and one RF chain of the STA;
  • the third beam pair includes a number of beams between any one of the second beam pairs not greater than a second preset value.
  • I is equal to P
  • the transmit beams in the I beam pairs belong to different RF chains in the second STA
  • the receive beams in the I beam pairs belong to the STA respectively.
  • each of the I beam pairs is the beam pair with the largest signal to noise ratio in the first beam pair;
  • a beam combination corresponding to a larger one of the first channel capacity and the second channel capacity is determined as the target beam combination.
  • the processor 301 selects, according to the channel capacity of the target beam combination and the first threshold, the K beam combinations with the highest channel capacity from the N beam combinations:
  • a beam combination having a channel capacity greater than a second threshold is selected from the M beam combinations.
  • the transceiver 303 is further configured to send the channel state information of the target beam combination or the channel state information of the K beam combinations to the second STA according to the information acquisition request.
  • the first information may include transmit beam information of each of the K beam combinations, and the transmit beam information includes a transmit sector number and a number of the transmit antenna to which the transmit sector belongs.
  • the first information may further include second information, where the second information is used to indicate a target beam combination or a transmit beam or a beam pair of the K beam combinations in which the second STA can perform beam tracking, and/or Used to indicate the number of sectors or sectors in the neighboring sectors that are allowed to be measured.
  • the neighboring sector is the azimuth, elevation, or sector number of the transmit beam that can be beam-tracked in combination with the target beam or in K beam combinations. Adjacent sectors.
  • the STA may further include an input device 305 and an output device 306.
  • the output device 306 is in communication with the processor 301, and the information may be displayed in various manners.
  • the output device 306 can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • Input device 305 is in communication with processor 301 and can accept user input in a variety of ways.
  • the input device 305 can be a mouse, a keyboard, or a touch screen. Equipment or sensing equipment, etc.
  • FIG. 4 is a flowchart of an information feedback method according to an embodiment of the present invention.
  • the information feedback method is described from the perspective of the first STA, and the first STA and the second STA adopt hybrid beamforming.
  • the information feedback method may include the following steps.
  • the first STA and the second STA need to first measure the channel state of the N beam combinations by using analog beamforming training in order to determine beam combination for performing communication.
  • Information for example, the first STA first measures a plurality of channel coefficients between all transmitting antennas and all receiving antennas, each channel coefficient corresponding to a beam pair consisting of one transmitting sector and one receiving sector, and then according to a plurality of channel coefficients A channel matrix of N beam combinations is constructed. Wherein each beam combination corresponds to one effective channel matrix H eff /MIMO link, and N is an integer greater than 1.
  • the beam combination includes a set of a transmit beam and a receive beam, and each beam combination corresponds to a MIMO channel matrix, and the transmit beams in the transmit beam set respectively belong to different RF chains in the second STA, that is, the number of transmit beams in the transmit beam set is equal to the first
  • the number of radio frequency chains in the two STAs, and each radio frequency chain in the second STA uniquely includes one transmit beam in the transmit set, and the receive beam in the receive beam set is similar to the definition of the transmit beam in the transmit beam set, and is not Let me repeat.
  • the first STA obtains a channel coefficient between each transmit beam and a receive beam between each pair of transmit and receive antennas by measuring a preamble or an analog domain beamforming training sequence of the physical layer protocol data unit.
  • analog domain beamforming training can be accomplished by beamforming training in the beam optimization protocol phase.
  • Multiple Sector Identifier (MID) sub-phase and/or Beam Combining (BC) sub-phase Multi-Sector Identification Capture (MIDC) sub-phase through the beam optimization protocol stage Measurement the first STA can get accurate multiple channel coefficients.
  • the second STA further obtains information about a plurality of beam combinations having a high channel capacity, and/or uses the result of the simulated beamforming training. Obtaining a digital domain beamforming precoding matrix, the second STA will send to the first STA An information acquisition request including a first threshold. Wherein, the second STA acquires information of multiple beam combinations with high channel capacity, and the beam combination with the highest channel capacity can be used as an alternative MIMO chain, except that the beam combination having the highest channel capacity is determined as the current MIMO link.
  • the path is used for the backup beam combination corresponding to the MIMO link that is quickly switched to the backup in synchronization with the first STA after being occluded in the current MIMO link communication.
  • the first threshold is a significant number greater than 0 and less than 1, indicating a relative threshold.
  • the information acquiring request sent by the second STA to the first STA is used to indicate that the first STA determines the optimal number of transmit beam combinations actually fed back according to the first threshold.
  • the first threshold may be a link quality threshold subfield of a beam optimization protocol request field carried in a beam optimization protocol frame, and the link quality threshold subfield indicates a proportion of a channel capacity of a MIMO link having a maximum channel capacity.
  • the length of the link quality threshold subfield is 2 bits. When the link quality threshold field is 0, 1, 2, 3 respectively, the first STA will have all channel capacity greater than or equal to the MIMO link with the largest channel capacity.
  • All transmit beam combinations corresponding to 1/2, 2/3, 3/4 or 4/5 MIMO links of the channel capacity, and/or channel state information corresponding to each transmit beam combination are fed back to the second STA .
  • another implementation manner of the first threshold is a channel capacity threshold field, and the channel capacity threshold field length is 2 bits. When the channel capacity threshold field is 3, 2, 1, respectively, the channel capacity threshold field indicates the request.
  • a STA feedback channel capacity is greater than or equal to 90%, 80%, 70% of the beam combining/transmission beam combination of the beam capacity of the beam combination having the highest channel capacity; when the channel capacity threshold field is 0, indicating that the request is first
  • the STA only feeds back the beam combining/transmitting beam combination with the highest channel capacity, ie only feedbacks one optimal beam combining/transmitting beam combination.
  • the link quality threshold field or channel capacity threshold field may be carried in a reserved field within a directional multi-gigabit (DMG) beam optimization element or a new EDMG (Enhanced DMG, EDMG) beam Optimized in the element.
  • DMG directional multi-gigabit
  • EDMG Enhanced DMG, EDMG
  • the target beam combination with the largest channel capacity is determined from the N beam combinations according to the channel state information of the beam combination.
  • the received signal strength gain corresponding to each beam combination may be calculated according to the effective channel matrix of each beam combination, and M is selected from the N beam combinations according to the received signal strength gain/signal-to-noise ratio.
  • the beam combination is combined, and then the channel capacity of each of the M beam combinations is calculated, and the beam combination with the largest channel capacity among the M beam combinations is determined as the target beam combination, which can reduce the number of times the channel capacity is calculated.
  • the signal strength gain of the beam combination is obtained according to the sum of the modulus of the elements in the beam combination channel matrix or the square of the mode, and the M beam combinations are the beams corresponding to the M signal strength gains among the N signal strength gains.
  • M is an integer greater than or equal to 1, and less than N.
  • calculating the channel capacity is to perform water injection power and singular value decomposition on the channel matrix.
  • the second STA has L T radio frequency chains
  • the first STA has L R radio frequency chains.
  • the second STA uses a beam combination of The beam combination used by the first STA is Can get the effective channel matrix as
  • the (u,v) element is h uv
  • the signal strength gain of the beam combination Can be expressed as
  • the received signal strength gain corresponding to the beam combination is:
  • the second STA has two transmit antenna arrays
  • the first STA has two receive antenna arrays
  • each antenna array may be in the form of a phased array antenna array or a directional antenna array
  • each The antenna arrays form a transmit or receive beam of an analog domain.
  • the beam combinations of different transmit antenna arrays or receive antenna arrays correspond to different MIMO links.
  • one transmit beam combination or one receive beam combination respectively corresponds to one MIMO link.
  • the receive vector Y as
  • S is the emission vector
  • I the effective channel matrix between the first STA and the second STA baseband module
  • h 11 , h 12 , h 21 , h 22 are elements of the effective channel matrix
  • Z is the noise vector
  • Y is the address vector.
  • the method for performing beam combination primary selection according to the received signal strength gain is equivalent to the method for selecting beam combination according to the average signal to noise ratio on the receiving antenna array.
  • the determinant of the channel matrix of each beam combination can be calculated, from N Selecting L beam combinations whose determinant is not less than the first preset value in the beam combination, that is, removing the beam combination whose determinant is smaller than the first preset value from the N beam combinations, and then selecting M from the L beam combinations Beam combination, L is an integer greater than or equal to 1, and less than N, and M is less than or equal to L. Therefore, the beam combination with a smaller channel capacity can be removed by calculating the determinant of the effective channel matrix to narrow the selection range of the beam combination.
  • both the first STA and the second STA include only one antenna array
  • one antenna array is connected to at least one radio frequency chain
  • each radio frequency chain is connected to all antenna array elements of the antenna array, That is, when the structure of the first STA and the second STA is as shown in FIG. 2, when the beam combination with the largest channel capacity among the N beam combinations is determined as the target beam combination according to the channel state information of each beam combination, each of the first beam combinations may be determined first.
  • the receiving beams respectively belong to different RF chains in the first STA, and each of the P beam pairs is the beam pair with the largest signal to noise ratio in the first beam pair, and the first beam pair is an RF chain of the second STA and the first All beam pairs between one RF chain of a STA, the third beam pair includes a beam with a number of beams between any one of the second beam pairs not greater than a second preset value, I equals P, and one beam pair
  • the transmit beams are respectively in different radio frequency chains in the second STA.
  • the receive beams in the I beam pairs belong to different RF chains in the first STA, and each of the I beam pairs is the first beam pair.
  • the beam pair with the largest noise ratio is respectively belong to different RF chains in the first STA.
  • the N beams are obtained according to the channel capacity of the target beam combination and the first threshold.
  • the K beam combinations with the highest channel capacity are selected in the combination, that is, the second threshold is determined according to the channel capacity of the target beam combination and the first threshold, and then the beam combination whose channel capacity is greater than the second threshold is selected from the M beam combinations.
  • K is an integer greater than or equal to 1, and less than N.
  • the first STA will A combination of beams having a channel capacity greater than or equal to C thresh in the M beam combinations is selected as the K beam combinations having the highest channel capacity.
  • the first information may include the transmit beam information of each of the K beam combinations, and the transmit beam information includes the transmit sector number and the transmit antenna/RF chain to which the transmit sector belongs. Number so that the second STA can determine the optimal beam combination and the backup beam combination based on the information of these transmit beams. Since the second STA only needs to know the information of the transmit beam/transmission sector, when the first STA feeds back the transmit beam information of the K beam combinations, it is not necessary to feed back the information of the receive beam/receiving sector, but only the feedback transmit beam/send The information of the sector, for example, the number of all transmitting sectors in the transmission sector combination and the corresponding antenna/RF chain number.
  • the first STA may further send the channel state information of the target beam combination or the channel state information of the K beam combinations to the second STA according to the information acquisition request, so that the second STA determines the target beam combination or K.
  • Beam-combined digital domain beamforming precoding matrix The channel state information may be a valid channel matrix, or a digital domain beamforming feedback matrix obtained from a valid channel matrix.
  • the first information may further include second information, where the second information is used to indicate a target beam combination or a transmit beam or a beam pair in which the second STA can perform beam tracking, and/or The number of sectors or sectors in the neighboring sector that are allowed to be measured, and the transmit beam or beam pair that the second STA can perform beam tracking is the channel state of the first STA according to the target beam combination or each of the K beam combinations. Information is determined. Therefore, when the link quality of the MIMO link corresponding to the beam combination is degraded, the second STA can selectively perform beam tracking only for the beam link (beam pair) with deteriorated link quality during beam tracking.
  • the neighboring sector is a sector adjacent to the target beam or the azimuth, elevation or sector number of the transmit beam capable of beam tracking in the K beam combination.
  • steps 401, 403 and 404 can be performed by the processor 301 in FIG. 3 calling the program code stored in the memory 302, and the steps 402 and 405 can be performed by the transceiver in FIG.
  • the first threshold sent by the second STA and the channel state information of each beam combination are combined from the measured beam. Selecting a partial beam combination, and transmitting the information of the partial beam combination to the second STA, without transmitting all the information of the beam combination to the second STA, may reduce the information sent by the first STA to the second STA. capacity. This is because when the first STA and the second STA have multiple antenna/RF chains, and each antenna/RF chain has multiple beams/sectors, the number of beam combinations existing between the first STA and the second STA is large. The first STA and the second STA can select the K beam combination with the highest channel capacity through the complex beam selection algorithm.
  • the first STA and the second STA cannot predict the MIMO link quality corresponding to the K beam combinations.
  • An information request-information feedback method based on the relative channel capacity threshold of the target beam combination can consider the link quality/channel capacity of the MIMO link corresponding to the beam combination while greatly reducing the number of feedback beam combinations.
  • the two STAs can request only the beam combinations satisfying the link quality/channel capacity requirement from the first STA, and further reduce the beam combination with poor link quality/channel capacity fed back by the first STA.
  • FIG. 5 is a schematic structural diagram of a STA according to an embodiment of the present invention.
  • the STA is the first STA.
  • the STA may include:
  • a measuring unit 501 configured to measure channel state information of N beam combinations, where N is an integer greater than one;
  • the communication unit 502 is configured to receive an information acquisition request sent by the second STA, where the information acquisition request includes a first threshold;
  • a determining unit 503 configured to determine, according to channel state information of each beam combination measured by the measuring unit 501, a beam combination having a largest channel capacity among the N beam combinations as a target beam combination;
  • the selecting unit 504 is configured to select K beam combinations with the highest channel capacity from the N beam combinations according to the channel capacity of the target beam combination determined by the determining unit 503 and the first threshold received by the communication unit 502, where K is greater than or equal to 1 And an integer less than N;
  • the communication unit 501 is further configured to send the first information of the K beam combinations selected by the selecting unit 504 to the second STA.
  • the communication unit 501 is further configured to: send the channel state information of the target beam combination or the channel state information of the K beam combinations to the second STA according to the information acquisition request.
  • the STA 500 is presented in the form of a functional unit.
  • a "unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the functionality described above.
  • ASIC application-specific integrated circuit
  • the STA 500 can take the form shown in FIG.
  • the communication unit 501 can be implemented by the transceiver of FIG. 3, and the measurement unit 501, the determination unit 503, and the selection unit 504 can be implemented by the processor and the memory of FIG.
  • the transmitting and receiving ends are placed in an indoor space of 10 m*8 m, and the channel matrix H is composed of the LOS component and the first-order wall reflection component.
  • Each line array is arranged to include 8 antenna elements, the number of beams of each array is 16, the distance between the two line arrays of the second STA is 10 cm, and the distance between the two line arrays of the first STA is 20 cm.
  • the second STA is placed at (2, 4), the first STA is randomly placed in 10 locations in the space, and the comparison results obtained by the exhaustive beam selection method and the improved beam selection method are averaged as follows:
  • the channel capacity obtained by the improved beam selection method can obtain the channel capacity obtained by the optimal beam selection (exhaustive beam selection method) regardless of whether the LOS path is occluded.
  • the difference between the improved beam selection method and the exhaustive method decreases. Taking the sum of the squares of the modules or the squares of the modules as the criterion in the algorithm, the obtained performance difference is small. To reduce the complexity, it is recommended to use the sum of the modes as the criterion.
  • the improved beam selection method only requires M singular value decomposition and a small number of summation operations, which greatly reduces the implementation complexity.
  • the method in this embodiment may also be performed by the second STA, that is, the first STA and the second STA exchange roles.
  • the second STA performs beamforming training and channel measurement as a receiver of beamforming training in beamforming training before transmitting the data frame, and the first STA sends an information acquisition request to the second STA, and the second STA performs Information feedback described in this embodiment.
  • a computer readable storage medium storing one or more programs, the one or more programs comprising instructions that, when executed by a site, cause a site to perform the method corresponding to FIG.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息反馈方法及站点,该方法应用于第一站点,该方法包括:测量N个波束组合的信道状态信息,N为大于1的整数;接收第二站点发送的信息获取请求,该信息获取请求包含第一门限;根据每个波束组合的信道状态信息,将N个波束组合中信道容量最大的波束组合确定为目标波束组合;根据目标波束组合的信道容量和第一门限,从N个波束组合中选取信道容量最高的K个波束组合,K为大于或等于1,且小于N的整数;将K个波束组合的第一信息发送给第二站点。本发明实施例,可以降低第一站点发送给第二站点的信息的容量。

Description

一种信息反馈方法及站点 技术领域
本发明涉及通信技术领域,尤其涉及一种信息反馈方法及站点。
背景技术
在毫米波无线通信技术领域,站点(Station,STA)需要配置具有模拟波束赋形能力的天线,例如:相控阵天线或一组可切换波束方向的天线,以提高天线增益和扩大通信距离。当两个接收STA分别配置多个天线阵列(Antenna Array)或配置含有多个射频链的单个天线阵列,且两个接收STA间存在多个模拟波束组合时,在两个STA进行通信之前,需要通过模拟波束赋形训练选择出两个STA间用于进行多输入多输出(Multiple-Input Multiple-Output,MIMO)通信的模拟波束组合,以建立有效信道。而如果两个STA分别配置了含有大量的天线阵元(Antenna element)的多个天线阵列时,每个天线阵列可以产生多个模拟波束,从而使两个STA之间存在多个由一个发送波束和一个接收波束构成的波束对,以及由多个波束对构成的多个波束组合。目前,混合波束赋形训练中的模拟波束赋形训练之后,为了使用于发送数据帧的STA能够通过模拟波束赋形训练的信道测量结果得到模拟域波束组合或数字域波束赋形预编码,用于接收数据帧的STA需要将通过模拟波束赋形训练确定的所有波束组合中的每一个波束对的信息均发送给用于发送数据帧的STA,或者将所有波束组合的信道状态信息发送给用于发送数据帧的STA,以致用于接收数据帧的STA发送给用于发送数据帧的STA的信息的数据量较大。
发明内容
本发明实施例公开了一种信息反馈方法及站点,用于降低用于接收数据帧的STA发送给用于发送数据帧的STA的信息的数据量开销。
第一方面公开一种信息反馈方法,该方法应用于第一STA,测量N个波束组合的信道状态信息,接收第二STA发送的包含第一门限的信息获取请求,根据每个波束组合的信道状态信息,将N个波束组合中信道容量最大的波束组合 确定为目标波束组合,根据目标波束组合的信道容量和第一门限从N个波束组合中选取信道容量最高的K个波束组合,并将K个波束组合的第一信息发送给第二STA。其中,每一个波束组合都对应一个MIMO有效信道,N个波束组合是第一STA与第二STA间的全部或部分波束组合,N为大于1的整数,K为大于或等于1,且小于N的整数。其中,第一STA是指数据帧的接收方,第二STA是指数据帧的发送方。
在一个实施例中,当测量N个波束组合的信道状态信息时,可以先测量多个由一个发送扇区(sector)与一个接收扇区组成的波束对的信道系数,之后根据信道系数构建每个波束组合的信道矩阵。其中,信道状态信息可以是在模拟波束赋形训练过程中测量得到的有效信道矩阵,一个扇区即一个波束,波束组合也可称为扇区组合。对于第一STA或第二STA,扇区组合可以分别由接收扇区组合或发送扇区组合来表示,而且每一个扇区组合/波束组合对应一个MIMO链路。其中,发送扇区是指第二STA上的扇区,接收扇区是指第一STA上的扇区。
在一个实施例中,根据每个波束组合的信道状态信息,将N个波束组合中信道容量最大的波束组合确定为目标波束组合时,可以先根据信道矩阵计算每个波束组合的信号强度增益,从N个波束组合中选择M个波束组合,计算M个波束组合中每个波束组合的信道容量;将M个波束组合中信道容量最大的波束组合确定为目标波束组合。其中,信号强度增益是根据信道矩阵中所有元素(即信道系数)的模之和或模的平方之和得到的,M个波束组合是N个信号强度增益中最大的M个信号强度增益对应的波束组合,M为大于或等于1,且小于N的整数。由于只需要计算部分波束组合(即M个波束组合)的信道容量,一般地,M远远小于N,因此,可以大幅减少信道容量的计算次数。
在一个实施例中,从N个波束组合中选择M个波束组合时,可以计算N个波束组合中每个波束组合的信道矩阵的行列式,从N个波束组合中选择行列式不小于第一预设值的L个波束组合,并从L个波束组合中选择M个波束组合,L为大于或等于1,且小于N的整数,M小于或等于L。因此,可以通过计算有效信道矩阵的行列式来去除信道容量较小的波束组合,以缩小波束组合的选择范围,可以进一步降低需要计算信道容量的计算量。
在一个实施例中,当第一STA和第二STA均只包括一个天线阵列、一个天线阵列连接至少一个射频链且每个射频链连接一个天线阵列的所有的天线阵元时,根据每个波束组合的信道状态信息,将N个波束组合中信道容量最大的波束组合确定为目标波束组合时,确定每个波束对的信噪比,从所有波束对中选择P个波束对,计算P个波束对构成的波束组合的第一信道容量,从P个波束对中选择信噪比最大的第二波束对,将第三波束对的信噪比设置为0得到设置后的所有波束对,从设置后的所有波束对中选择I个波束对,I等于P,I个波束对中的发送波束分别属于第二STA中的不同射频链,I个波束对中的接收波束分别属于第一STA中的不同射频链,I个波束对中每个波束对是第一波束对中信噪比最大的波束对,计算I个波束对构成的波束组合的第二信道容量,将第一信道容量和第二信道容量中较大值对应的波束组合确定为目标波束组合。其中,P为第一STA射频链个数和第二STA射频链个数中的较大值,P个波束对中的发送波束分别属于第二STA中的不同射频链,P个波束对中的接收波束分别属于第一STA中的不同射频链,P个波束对中每个波束对是第一波束对中信噪比最大的波束对,第一波束对是第一STA的一个射频链和第二STA的一个射频链间的全部波束对,第三波束对包括与第二波束对中任一波束之间的波束的数量不大于第二预设值的波束。由于只需要计算两个波束组合的信道容量,因此,可以减少信道容量的计算次数。
在一个实施例中,根据目标波束组合的信道容量和第一门限从N个波束组合中选取信道容量最高的K个波束组合时,可以先根据目标波束组合的信道容量和第一门限确定第二门限,之后从M个波束组合中选取信道容量大于第二门限的波束组合,从而可以减少第一STA反馈给第二STA的数据量。
在一个实施例中,还可以根据信息获取请求,将目标波束组合的信道状态信息或K个波束组合的信道状态信息发送给第二STA,因此,第二STA可以根据这些信道状态信息得到数字域波束赋形预编码矩阵和模拟域的发送波束组合,其中,发送的K个波束组合中的目标波束组合用作第一STA和第二STA最优选的波束组合,其它的K-1个波束组合用作第一STA和第二STA之间的备份波束组合,当目标波束组合因部分或全部波束对/波束链路被遮挡,造成对应的MIMO链路质量下降时,第一STA和第二STA可以同步、快速切换到预先存 储的一个备份波束组合上。
本实施例中,第一信息可以包括K个波束组合中每个波束组合的发送波束信息,发送波束信息包括发送扇区编号和发送扇区所属发送天线的编号,其中,发送天线的编号也可由发送天线的射频链的编号来表示,以指示第二STA根据发送波束信息选择发送扇区,按指定的发送波束组合发送数据。对于第一STA或第二STA,每一个波束组合也可体现为发送波束的组合或接收波束的组合。
在一个实施例中,第一信息还可以包括第二信息,第二信息用于指示目标波束组合中第二STA能够进行波束追踪的发送波束或波束对,或者K个波束组合中每个波束组合下第二STA能够进行波束追踪的发送波束或波束对,第二STA能够进行波束追踪的发送波束或波束对是第一STA根据目标波束组合或K个波束组合中每个波束组合的信道状态信息确定的,其中,第二STA能够进行波束追踪的发送波束或波束对是指第二STA能够独立进行波束追踪的发送波束或波束对。具体地,第一STA根据目标波束组合或K个波束组合中每个波束组合的有效信道矩阵,如果有效信道矩阵的一个列矢量与其它所有的列矢量之间正交,则说明第一STA针对一个给定发送天线的信道响应与其它发送天线的信道响应之间正交,即波束追踪时,单独调整给定发送天线对应的发送波束/波束对不会对其它的发送波束/波束对造成干扰。另外,当第二STA的不同发送天线/射频链发送的训练序列(如BRP包的AGC字段和/或TRN字段)采用了正交的序列(例如针对BRP包的AGC子字段和/或TRN子字段采用正交掩码以使上述训练序列正交化),或者不同发送天线采用正交的极化方式,波束追踪时,单独调整给定发送天线对应的发送波束/波束对也不会对其它的发送波束/波束对造成干扰。因此,第二STA可以针对目标波束组合中能够独立进行波束追踪的发送波束或波束对,准确、灵活以及单独进行波束追踪,且不会影响到其它未做波束追踪的波束或波束对的传输。
在一个波束组合对应的MIMO链路的链路质量下降时,可以在波束追踪时,只针对选择的链路质量恶化的波束链路(波束对)进行准确波束追踪,而无需针对所有的发送波束/波束对进行波束追踪。第一STA反馈的第二信息,除了包含第二STA能够单独进行波束追踪的发送波束或波束对之外,还可以包含邻近扇区中允许测量的扇区个数或扇区范围,其中,邻近扇区可以是与目标波束组 合或K个波束组合中能够进行波束追踪的发送波束的方位角(azimuth angle)、俯仰角(elevation angle)等空间维度上相邻的扇区,还可以是与目标波束组合或K个波束组合中能够进行波束追踪的发送波束的扇区编号相邻的扇区。例如,当允许测量的扇区范围为3时,第二STA只能在能够进行波束追踪的发送波束或波束对的相邻的3个扇区内进行波束追踪。按照上述确定能够单独进行波束追踪的发送波束/波束对的方法,第二STA同样依据波束组合的信道状态信息,确定在波束追踪时所允许测量的邻近发送扇区个数或扇区范围。
第二方面公开一种STA,包括:
测量单元,用于测量N个波束组合的信道状态信息,所述N为大于1的整数;
通信单元,用于接收所述第二STA发送的信息获取请求,所述信息获取请求包含第一门限;
确定单元,用于根据所述测量单元测量的每个所述波束组合的信道状态信息,将所述N个波束组合中信道容量最大的波束组合确定为目标波束组合;
选取单元,用于根据所述确定单元确定的目标波束组合的信道容量和所述通信单元接收的第一门限,从所述N个波束组合中选取信道容量最高的K个波束组合,所述K为大于或等于1,且小于所述N的整数;
所述通信单元,还用于将所述K个波束组合的第一信息发送给所述第二STA。
在一个实施例中,所述测量单元具体用于:
测量由一个发送扇区与一个接收扇区组成的波束对的信道系数,所述发送扇区是所述第二STA上的扇区,所述接收扇区是所述STA上的扇区;
根据所述信道系数构建每个所述波束组合的信道矩阵。
在一个实施例中,所述确定单元具体用于:
根据所述信道矩阵计算每个所述波束组合的信号强度增益,所述信号强度增益是根据所述信道矩阵中元素的模之和或模的平方之和得到的;
从所述N个波束组合中选择M个波束组合,所述M个波束组合是所述N个所述信号强度增益中最大的M个信号强度增益对应的波束组合,所述M为大于或等于1,且小于所述N的整数;
计算所述M个波束组合中每个波束组合的信道容量;
将所述M个波束组合中信道容量最大的波束组合确定为目标波束组合。
在一个实施例中,所述确定单元从所述N个波束组合中选择M个波束组合具体为:
针对所述N个波束组合中每个波束组合,计算所述波束组合的信道矩阵的行列式;
从所述N个波束组合中选择所述行列式不小于第一预设值的L个波束组合,所述L为大于或等于1,且小于所述N的整数;
从所述L个波束组合中选择M个波束组合,所述M小于或等于所述L。
作为一种可能的实施方式,当所述STA和所述第二STA均只包括一个天线阵列、所述一个天线阵列连接至少一个射频链且每个所述射频链连接所述一个天线阵列的所有天线阵元时,所述确定单元具体用于:
确定每个所述波束对的信噪比;
从所有所述波束对中选择P个波束对,所述P为第二STA射频链个数和STA射频链个数中的较大值,所述P个波束对中的发送波束分别属于所述第二STA中的不同射频链,所述P个波束对中的接收波束分别属于所述STA中的不同射频链,所述P个波束对中每个波束对是第一波束对中信噪比最大的波束对,所述第一波束对是所述第二STA的一个射频链和所述STA的一个射频链间的全部波束对;
计算所述P个波束对构成的波束组合的第一信道容量;
从所述P个波束对中选择信噪比最大的第二波束对;
将第三波束对的信噪比设置为0,以获得设置后的所有波束对,所述第三波束对包括与所述第二波束对中任一波束之间的波束的数量不大于第二预设值的波束;
从所述设置后的所有波束对中选择I个波束对,所述I等于所述P,所述I个波束对中的发送波束分别属于所述第二STA中的不同射频链,所述I个波束对中的接收波束分别属于所述STA中的不同射频链,所述I个波束对中每个波束对是所述第一波束对中信噪比最大的波束对;
计算所述I个波束对构成的波束组合的第二信道容量;
将所述第一信道容量和所述第二信道容量中较大值对应的波束组合确定 为目标波束组合。
在一个实施例中,所述选取单元具体用于:
根据所述目标波束组合的信道容量和所述第一门限确定第二门限;
从所述M个波束组合中选取信道容量大于所述第二门限的波束组合。
在一个实施例中,所述通信单元,还用于根据所述信息获取请求,将所述目标波束组合的信道状态信息或所述K个波束组合的信道状态信息发送给所述第二STA。
在一个实施例中,所述第一信息可以包括所述K个波束组合中每个波束组合的发送波束信息,所述发送波束信息可以包括发送扇区编号和所述发送扇区所属发送天线的编号。
在一个实施例中,所述第一信息还可以包括第二信息,所述第二信息用于指示所述目标波束组合或所述K个波束组合中所述第二STA能够进行波束追踪的发送波束或波束对,和/或用于指示邻近扇区中允许测量的扇区个数或扇区范围,所述邻近扇区是与所述目标波束组合或所述K个波束组合中能够进行波束追踪的发送波束的方位角、俯仰角或扇区编号相邻的扇区。
第三方面公开一种STA,包括处理器、存储器和收发器,其中:
存储器中存储有一组程序代码,处理器用于调用存储器中存储的程序代码执行以下操作:
测量N个波束组合的信道状态信息,N为大于1的整数;
收发器,用于接收第二STA发送的信息获取请求,信息获取请求包含第一门限;
处理器还用于调用存储器中存储的程序代码执行以下操作:
根据每个波束组合的信道状态信息,将N个波束组合中信道容量最大的波束组合确定为目标波束组合;
根据目标波束组合的信道容量和第一门限,从N个波束组合中选取信道容量最高的K个波束组合,K为大于或等于1,且小于N的整数;
收发器,还用于将K个波束组合的第一信息发送给第二STA。
第四方面公开一种计算机可读存储介质,该计算机可读存储介质存储了STA用于执行第一方面或第一方面的任一种可能实现方式所公开的信息反馈 方法的程序代码。
本发明实施例中,第一STA测量得到波束组合的信道状态信息之后,将根据第二STA发送的第一门限和各个波束组合的信道状态信息,从测量的波束组合中选取部分波束组合,并将这部分波束组合的信息发送给第二STA,而不需要将所有的波束组合的信息或者所有测量的波束对的信息全部发送给第二STA,可以大幅降低第一STA发送给第二STA的信息的数据量。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种网络架构示意图;
图2是本发明实施例公开的另一种网络架构示意图;
图3是本发明实施例公开的一种STA的结构示意图;
图4是本发明实施例公开的一种信息反馈方法的流程示意图;
图5是本发明实施例公开的M=1时穷举波束选择法与改进的波束选择法得到的信道容量的仿真结果;
图6是本发明实施例公开的M=3时穷举波束选择法与改进的波束选择法得到的信道容量的仿真结果;
图7是本发明实施例公开的M=5时穷举波束选择法与改进的波束选择法得到的信道容量的仿真结果;
图8是本发明实施例公开的另一种STA的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种信息反馈方法及STA,用于降低第一STA发送给第二STA的信息的数据量。以下分别进行详细说明。
为了更好地理解本发明实施例公开的一种信息反馈方法及STA,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种网络架构示意图。如图1所示,该网络架构包括第一STA和第二STA,第一STA和第二STA分别包括至少两个天线阵列,每个天线阵列包括至少两个波束(即扇区),其中,图1只示意出了第一STA和第二STA均包括两个天线阵列,每个天线阵列包括八个波束的情况。每个天线阵列只连接一条射频链,第一STA或第二STA的天线阵列间间隔一定距离。每个天线阵列通过调节天线阵元的相位(即模拟波束赋形训练)产生基于码本的波束。从收发两端的基带看来,第一STA和第二STA的两个天线阵列形成了低维度的多出入多输出(Multiple-Input Multiple-Output,MIMO),即2x2MIMO。
以图1所示的架构为例,记第一STA与第二STA的天线阵元之间的信道矩阵为H,第一STA与第二STA完成模拟波束赋形训练后,第一STA与第二STA的天线阵列之间的有效信道矩阵为Heff。定义第二STA的码本为CTx,j1和j2分别表示第二STA中第1个和第2个发送天线上的发送波束的编号,例如:可以用802.11ad标准中的扇区编号来表示,
Figure PCTCN2016082006-appb-000001
Figure PCTCN2016082006-appb-000002
分别表示第二STA中第1个和第2个发送天线上的第j1和j2个发送波束的天线权重矢量(Antenna Weight Vector,AWV)。因此,第二STA的模拟波束成形编码矩阵FTx,RF可表示为
Figure PCTCN2016082006-appb-000003
其中,j1,j2=1,...,|CTx|,|CTx|表示发送码本中的码字数量。定义第一STA码本为CRx,i1和i2分别表示第1个和第2个第一STA中第1个和第2个接收天线上的接收波束的编号,例如可以用802.11ad标准中的扇区编号来表示,且
Figure PCTCN2016082006-appb-000004
Figure PCTCN2016082006-appb-000005
分别表示第1个和第2个第一STA中第1个和第2个接收天线上的第i1和i2个接收波束的天线权重矢量。因此,第一STA模拟波束成形编码矩阵WRx,RF可表示为
Figure PCTCN2016082006-appb-000006
其中,i1,i2=1,...,|CRx|,|CRx|表示接收码本中的码字数量。因此,Heff与H之间的关系为
Heff(i1,i2,j1,j2)=WRx,RF(i1,i2)HFTx,RF(j1,j2)
其中,Heff(i1,i2,j1,j2)表示第二STA选择编号为i1和i2的波束,第一STA选择编号为j1和j2波束时的有效信道矩阵。
请参阅图2,图2是本发明实施例公开的另一种网络架构示意图。如图2所示,该网络架构包括第一STA和第二STA,第一STA和第二STA均只部署了一个天线阵列,该天线阵列包括至少一个射频链,每个射频链的输出/输入信号经过移相器后,通过叠加的方式连接到该天线阵列所有的天线阵元上。通过调节调相器参数,天线阵列可生成基于码本的波束。定义CTx为第二STA码本,且
Figure PCTCN2016082006-appb-000007
表示其中第j1个第二STA的天线权重矢量,
Figure PCTCN2016082006-appb-000008
表示其中第j2个第二STA的天线权重矢量。因此,第二STA的波束矩阵FTx,RF可表示为
Figure PCTCN2016082006-appb-000009
其中,j1,j2=1,...,|CTx|。类似地,定义接收端码本为CRx,且
Figure PCTCN2016082006-appb-000010
表示其中第i1个接收端的天线权重矢量,
Figure PCTCN2016082006-appb-000011
表示其中第i2个接收端的天线权重矢量。因此,第一STA波束矩阵WRx,RF可表示为
Figure PCTCN2016082006-appb-000012
其中,i1,i2=1,...,|CRx|。同样,Heff与H之间的关系为
Figure PCTCN2016082006-appb-000013
其中,矩阵Heff中的元素h是发送波束与接收波束间的信道系数。
基于上述网络架构,请参阅图3,图3是本发明实施例公开的一种STA的结 构图示意图。其中,该STA为第一STA。如图3所示,该STA包括处理器301、存储器302、收发器303和总线304。处理器301可以是一个通用中央处理器(CPU),多个CPU,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。存储器302可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以是独立存在,通过总线304与处理器301相连接。存储器302也可以和处理器301集成在一起。收发器303,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。总线304可包括一通路,在上述组件之间传送信息。
其中,存储器302中存储有一组程序代码,处理器301用于调用存储器302中存储的程序代码执行以下操作:
测量N个波束组合的信道状态信息,N为大于1的整数;
收发器303,用于接收第二STA发送的信息获取请求并发送给处理器301,信息获取请求包含第一门限;
处理器301还用于调用存储器中存储的程序代码执行以下操作:
根据每个波束组合的信道状态信息,将N个波束组合中信道容量最大的波束组合确定为目标波束组合;
根据目标波束组合的信道容量和第一门限,从N个波束组合中选取信道容量最高的K个波束组合,K为大于或等于1,且小于N的整数;
收发器303,还用于将K个波束组合的第一信息发送给第二STA。
作为一种可能的实施方式,处理器301测量N个波束组合的信道状态信息的方式为:
测量由一个发送扇区与一个接收扇区组成的波束对的信道系数,发送扇区是第二STA上的扇区,接收扇区是STA上的扇区;
根据信道系数构建每个波束组合的信道矩阵。
作为一种可能的实施方式,处理器301根据每个波束组合的信道状态信息,将N个波束组合中信道容量最大的波束组合确定为目标波束组合的方式为:
根据信道矩阵计算每个波束组合的信号强度增益,信号强度增益是根据信道矩阵中元素的模之和或模的平方之和得到的;
从N个波束组合中选择M个波束组合,M个波束组合是N个信号强度增益中最大的M个信号强度增益对应的波束组合,M为大于或等于1,且小于N的整数;
计算M个波束组合中每个波束组合的信道容量;
将M个波束组合中信道容量最大的波束组合确定为目标波束组合。
作为一种可能的实施方式,处理器301从N个波束组合中选择M个波束组合的方式为:
针对N个波束组合中每个波束组合,计算波束组合的信道矩阵的行列式;
从N个波束组合中选择行列式不小于第一预设值的L个波束组合,L为大于或等于1,且小于N的整数;
从L个波束组合中选择M个波束组合,M小于或等于L。
作为一种可能的实施方式,当STA和第二STA均只包括一个天线阵列、一个天线阵列连接至少一个射频链且每个射频链连接一个天线阵列的所有天线阵元时,处理器301根据每个波束组合的信道状态信息,将N个波束组合中信道容量最大的波束组合确定为目标波束组合的方式为:
确定每个波束对的信噪比;
从所有波束对中选择P个波束对,P为第二STA射频链个数和STA射频链个数中的较大值,P个波束对中的发送波束分别属于第二STA中的不同射频链,P个波束对中的接收波束分别属于STA中的不同射频链,P个波束对中每个波束对是第一波束对中信噪比最大的波束对,第一波束对是第二STA的一个射频链和STA的一个射频链间的全部波束对;
计算P个波束对构成的波束组合的第一信道容量;
从P个波束对中选择信噪比最大的第二波束对;
将第三波束对的信噪比设置为0,以获得设置后的所有波束对,第三波束对包括与第二波束对中任一波束之间的波束的数量不大于第二预设值的波束;
从设置后的所有波束对中选择I个波束对,I等于P,I个波束对中的发送波束分别属于第二STA中的不同射频链,I个波束对中的接收波束分别属于STA中的不同射频链,I个波束对中每个波束对是第一波束对中信噪比最大的波束对;
计算I个波束对构成的波束组合的第二信道容量;
将第一信道容量和第二信道容量中较大值对应的波束组合确定为目标波束组合。
作为一种可能的实施方式,处理器301根据目标波束组合的信道容量和第一门限,从N个波束组合中选取信道容量最高的K个波束组合的方式为:
根据目标波束组合的信道容量和第一门限确定第二门限;
从M个波束组合中选取信道容量大于第二门限的波束组合。
作为一种可能的实施方式,收发器303,还用于根据信息获取请求,将目标波束组合的信道状态信息或K个波束组合的信道状态信息发送给第二STA。
作为一种可能的实施方式,第一信息可以包括K个波束组合中每个波束组合的发送波束信息,发送波束信息包括发送扇区编号和发送扇区所属发送天线的编号。
作为一种可能的实施方式,第一信息还可以包括第二信息,第二信息用于指示目标波束组合或K个波束组合中第二STA能够进行波束追踪的发送波束或波束对,和/或用于指示邻近扇区中允许测量的扇区个数或扇区范围,邻近扇区是与目标波束组合或K个波束组合中能够进行波束追踪的发送波束的方位角、俯仰角或扇区编号相邻的扇区。
在具体实现中,作为一种可能的实施方式,该STA还可以包括输入装置305和输出装置306,输出设备306和处理器301通信,可以以多种方式来显示信息。例如,输出设备306可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备305和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设 备或传感设备等。
基于上述网络架构,请参阅图4,图4是本发明实施例公开的一种信息反馈方法的流程图。其中,该信息反馈方法是从第一STA的角度来描述的,第一STA与第二STA采用混合波束赋形。如图4所示,该信息反馈方法可以包括以下步骤。
401、测量N个波束组合的信道状态信息。
本实施例中,当第一STA和第二STA进行通信前,第一STA与第二STA为了确定用于进行通信的波束组合,首先需要通过模拟波束赋形训练测量N个波束组合的信道状态信息,例如,第一STA先测量所有发送天线和所有接收天线之间的多个信道系数,每个信道系数对应由一个发送扇区与一个接收扇区组成的波束对,之后根据多个信道系数构建N个波束组合的信道矩阵。其中,每个波束组合对应一个有效信道矩阵Heff/MIMO链路,N为大于1的整数。波束组合包括发送波束和接收波束的集合,每一个波束组合对应一个MIMO信道矩阵,发送波束集合中的发送波束分别属于第二STA中的不同射频链,即发送波束集合中发送波束的数量等于第二STA中射频链的数量,且第二STA中的每个射频链唯一包括发送集合中的一个发送波束,接收波束集合中的接收波束与发送波束集合中的发送波束的定义类似,在此不再赘述。
本实施例中,第一STA通过对物理层协议数据单元的前导或模拟域波束赋形训练序列的测量,得到各个收发天线对之间的各个发送波束和接收波束之间的信道系数。准确地,模拟域波束赋形训练可以通过波束优化协议阶段的波束赋形训练完成。通过波束优化协议阶段的多扇区识别(Multiple Sector Identifier,MID)子阶段和/或波束绑定(Beam Combining,BC)子阶段的多扇区识别捕获(Multiple Sector Identifier Capture,MIDC)子阶段的测量,第一STA可以得到准确的多个信道系数。
402、接收第二STA发送的包含第一门限的信息获取请求。
本实施例中,在第一STA和第二STA完成模拟波束赋形训练后,第二STA为了获取多个具有高信道容量的波束组合的信息,和/或使用模拟波束赋形训练的结果进一步得到数字域波束赋形预编码矩阵,第二STA将向第一STA发送 包括第一门限的信息获取请求。其中,第二STA获取多个具有高信道容量的波束组合的信息,除了将具有最高信道容量的波束组合确定为当前MIMO链路之外,其它高信道容量的波束组合可以作为备选的MIMO链路,以便用于当前MIMO链路通信过程中被遮挡造成链路质量下降后,与第一STA同步快速地切换到备份的MIMO链路对应的备份波束组合。其中,第一门限为大于0且小于1的有效数,表示相对门限。
本实施例中,第二STA向第一STA发送的信息获取请求用于指示第一STA根据第一门限,确定实际所反馈的最优的发送波束组合个数。其中,第一门限可以为携带于波束优化协议帧内的波束优化协议请求字段的链路质量门限子字段,链路质量门限子字段表示具有最大信道容量的MIMO链路的信道容量的比例。例如,链路质量门限子字段的长度为2比特,当链路质量门限字段分别取值为0,1,2,3时,第一STA将所有信道容量大于或等于具有最大信道容量MIMO链路的信道容量的1/2,2/3,3/4或4/5的MIMO链路所对应的所有发送波束组合,和/或每个发送波束组合对应的信道状态信息都反馈给第二STA。再例如:第一门限的另一种实现方式为信道容量门限字段,信道容量门限字段长度为2比特,当信道容量门限字段取值分别为3,2,1时,信道容量门限字段表示请求第一STA反馈信道容量大于或等于具有最高信道容量的波束组合的信道容量的90%,80%,70%的波束组合/发送波束组合;当信道容量门限字段取值为0时,表示请求第一STA只反馈具有最高信道容量的波束组合/发送波束组合,即只反馈一个最优的波束组合/发送波束组合。链路质量门限字段或信道容量门限字段可以携带于定向多千兆位(directional multi-gigabit,DMG)波束优化元素(DMG Beam Refinement element)内的保留字段或者新的EDMG(Enhanced DMG,EDMG)波束优化元素中。
403、根据每个波束组合的信道状态信息,将N个波束组合中信道容量最大的波束组合确定为目标波束组合。
本实施例中,接收到第二STA发送的包含第一门限的信息获取请求之后,将根据波束组合的信道状态信息,从N个波束组合中确定信道容量最大的目标波束组合。可以是先根据每个波束组合的有效信道矩阵计算每个波束组合对应的接收信号强度增益,根据接收信号强度增益/信噪比从N个波束组合中选择M 个波束组合,之后计算M个波束组合中每个波束组合的信道容量,并将M个波束组合中信道容量最大的波束组合确定为目标波束组合,可以减少计算信道容量的次数。其中,波束组合的信号强度增益是根据波束组合信道矩阵中元素的模之和或模的平方之和得到的,M个波束组合是N个信号强度增益中最大的M个信号强度增益对应的波束组合,M为大于或等于1,且小于N的整数。其中,计算信道容量就是对信道矩阵进行注水功率和奇异值分解。
举例说明,假设第二STA有LT个射频链,第一STA有LR个射频链。当第二STA采用的波束组合为
Figure PCTCN2016082006-appb-000014
第一STA采用的波束组合为
Figure PCTCN2016082006-appb-000015
可以得到有效信道矩阵为
Figure PCTCN2016082006-appb-000016
Figure PCTCN2016082006-appb-000017
的(u,v)元素为huv,则波束组合的信号强度增益
Figure PCTCN2016082006-appb-000018
可以表达为
Figure PCTCN2016082006-appb-000019
Figure PCTCN2016082006-appb-000020
其中,对于2x2MIMO,波束组合对应的接收信号强度增益为:
Figure PCTCN2016082006-appb-000021
Figure PCTCN2016082006-appb-000022
举例说明,假设一个2x2的MIMO系统,第二STA有2个发送天线阵列,第一STA有2个接收天线阵列,每个天线阵列可以是相控阵天线阵列或者定向天线阵列等形态,并且每个天线阵列形成一个模拟域的发送波束或者接收波束。不同的发送天线阵列或接收天线阵列的波束组合对应不同的MIMO链路。对于第一STA和第二STA,一个发送波束组合或者一个接收波束组合分别对应一个MIMO链路。定义接收矢量Y为
Figure PCTCN2016082006-appb-000023
其中,S是发射矢量,
Figure PCTCN2016082006-appb-000024
是第一STA和第二STA基带模块之间的有效信道矩阵,h11,h12,h21,h22是有效信道矩阵的元素,Z是噪声矢量,Y是接号矢量。定义每个接收天线处的信噪比(Signal Noise Ratio,SNR)为
Figure PCTCN2016082006-appb-000025
其中,
Figure PCTCN2016082006-appb-000026
Figure PCTCN2016082006-appb-000027
分别定义了第一个和第二个发送天线阵列的平均功率,
Figure PCTCN2016082006-appb-000028
是复值噪声矢量Z的元素方差(
Figure PCTCN2016082006-appb-000029
是实部或者的方差)。假设
Figure PCTCN2016082006-appb-000030
则所有接收天线阵列上的平均信噪比SNR可以使用弗罗贝尼乌斯Frobenius矩阵范数的定义来引入:
Figure PCTCN2016082006-appb-000031
Figure PCTCN2016082006-appb-000032
从上式可以看出,当发送信号能量
Figure PCTCN2016082006-appb-000033
时,
Figure PCTCN2016082006-appb-000034
就等于第一STA的接收信号的总强度。当接收机噪声能量固定不变时,最大化
Figure PCTCN2016082006-appb-000035
等价于最大化所有接收天线阵列上的平均信噪比SNR。因此,本实施例依据接收信号强度增益进行波束组合初选的方法,等效于依据接收天线阵列上的平均信噪比进行选择波束组合的方法。
本实施例中,当第一STA和第二STA的结构如图2所示时,从N个波束组合中选择M个波束组合时,可以计算每个波束组合的信道矩阵的行列式,从N个波束组合中选择行列式不小于第一预设值的L个波束组合,即将行列式小于第一预设值的波束组合从N个波束组合中剔除,之后从L个波束组合中选择M个波束组合,L为大于或等于1,且小于N的整数,M小于或等于L。因此,可以通过计算有效信道矩阵的行列式来去除信道容量较小的波束组合,以缩小波束组合的选择范围。
本实施例中,当第一STA和第二STA均只包括一个天线阵列、一个天线阵列连接至少一个射频链、每个射频链连接这个天线阵列的所有的天线阵元,也 即是第一STA和第二STA的结构如图2所示时,根据每个波束组合的信道状态信息将N个波束组合中信道容量最大的波束组合确定为目标波束组合时,可以先确定每个波束对的信噪比,从所有波束对中选择P个波束对,计算P个波束对构成的波束组合的第一信道容量,从P个波束对中选择信噪比最大的第二波束对,将第三波束对的信噪比设置为0得到设置后的所有波束对,从设置后的所有波束对中选择I个波束对,计算I个波束对构成的波束组合的第二信道容量,将第一信道容量和第二信道容量中较大值对应的波束组合确定为目标波束组合。其中,P为第一STA射频链个数和第二STA射频链个数中的较大值,P个波束对中的发送波束分别属于第二STA中的不同射频链,P个波束对中的接收波束分别属于第一STA中的不同射频链,P个波束对中每个波束对是第一波束对中信噪比最大的波束对,第一波束对是第二STA的一个射频链和第一STA的一个射频链间的全部波束对,第三波束对包括与第二波束对中任一波束之间的波束的数量不大于第二预设值的波束,I等于P,I个波束对中的发送波束分别属于第二STA中的不同射频链,I个波束对中的接收波束分别属于第一STA中的不同射频链,I个波束对中每个波束对是第一波束对中信噪比最大的波束对。
404、根据目标波束组合的信道容量和第一门限,从N个波束组合中选取信道容量最高的K个波束组合。
本实施例中,根据每个波束组合的信道状态信息,将N个波束组合中信道容量最大的波束组合确定为目标波束组合之后,根据目标波束组合的信道容量和第一门限,从N个波束组合中选取信道容量最高的K个波束组合包括,即先根据目标波束组合的信道容量和第一门限确定第二门限,之后从M个波束组合中选取信道容量大于第二门限的波束组合。其中,K为大于或等于1,且小于N的整数。例如,如果目标波束组合的信道容量为Cmax,作为相对门限的第一门限指示的值为a,则作为绝对门限的第二门限为Cthresh=Cmax·a,此时,第一STA将把M个波束组合中信道容量大于或等于Cthresh的波束组合选择出来,作为具有最高信道容量的K个波束组合。
405、将K个波束组合的第一信息发送给第二STA。
本实施例中,第一信息可以包括K个波束组合中每个波束组合的发送波束信息,发送波束信息包括发送扇区编号和发送扇区所属发送天线/射频链的编 号,以便第二STA可以根据这些发送波束的信息确定最优的波束组合和备份的波束组合。由于第二STA只需要知晓发送波束/发送扇区的信息,因此第一STA反馈K个波束组合的发送波束信息时,无需反馈接收波束/接收扇区的信息,而只需反馈发送波束/发送扇区的信息,例如:发送扇区组合中的所有发送扇区的编号及其对应的天线/射频链的编号。在一个实施例中,第一STA还可以根据信息获取请求,将目标波束组合的信道状态信息或K个波束组合的信道状态信息发送给第二STA,以便第二STA确定目标波束组合或K个波束组合的数字域波束赋形预编码矩阵。信道状态信息可以为有效信道矩阵,或根据有效信道矩阵获得的数字域波束赋形反馈矩阵。
本实施例中,第一信息还可以包括第二信息,第二信息用于指示目标波束组合或K个波束组合中第二STA能够进行波束追踪的发送波束或波束对,和/或用于指示邻近扇区中允许测量的扇区个数或扇区范围,第二STA能够进行波束追踪的发送波束或波束对是第一STA根据目标波束组合或K个波束组合中每个波束组合的信道状态信息确定的。因此,第二STA在波束组合对应的MIMO链路的链路质量下降时,可以在波束追踪时,有选择性地只针对链路质量恶化的波束链路(波束对)进行波束追踪。其中,邻近扇区是与目标波束组合或K个波束组合中能够进行波束追踪的发送波束的方位角、俯仰角或扇区编号相邻的扇区。
其中,步骤401、403和404可以由图3中的处理器301调用存储器302中存储的程序代码执行,步骤402和405可以由图3中的收发器执行。
在图4所描述的信息反馈方法中,第一STA测量得到多个波束组合的信道状态信息之后,将根据第二STA发送的第一门限和各个波束组合的信道状态信息,从测量个波束组合中选取部分波束组合,并将这部分波束组合的信息发送给第二STA,而不需要将所有的波束组合的信息全部发送给第二STA,可以降低第一STA发送给第二STA的信息的容量。这是因为,当第一STA和第二STA具有多个天线/射频链,每个天线/射频链具有多个波束/扇区时,第一STA和第二STA之间存在的波束组合数量很多,而第一STA经过复杂的波束选择算法,可以选择出信道容量最高的K个波束组合,但第一STA和第二STA无法预知K个波束组合对应的MIMO链路质量,采用本实施例的在第一STA和第二STA之 间基于目标波束组合的相对信道容量门限的信息请求-信息反馈方法,可以在大幅减少反馈的波束组合个数的同时,考虑波束组合所对应的MIMO链路的链路质量/信道容量,使第二STA能够向第一STA仅请求那些满足链路质量/信道容量需求的波束组合,进一步减少了第一STA反馈的链路质量/信道容量较差的波束组合。
基于上述网络架构,请参阅图5,图5是本发明实施例公开的一种STA的结构图示意图。其中,该STA为第一STA。如图5所示,该STA可以包括:
测量单元501,用于测量N个波束组合的信道状态信息,N为大于1的整数;
通信单元502,用于接收第二STA发送的信息获取请求,信息获取请求包含第一门限;
确定单元503,用于根据测量单元501测量的每个波束组合的信道状态信息,将N个波束组合中信道容量最大的波束组合确定为目标波束组合;
选取单元504,用于根据确定单元503确定的目标波束组合的信道容量和通信单元502接收的第一门限,从N个波束组合中选取信道容量最高的K个波束组合,K为大于或等于1,且小于N的整数;
通信单元501,还用于将选取单元504选取的K个波束组合的第一信息发送给第二STA。
作为一种可能的实施方式,通信单元501,还用于根据信息获取请求,将目标波束组合的信道状态信息或K个波束组合的信道状态信息发送给第二STA。
在本实施例中,STA500是以功能单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到STA500可以采用图3所示的形式。通信单元501可以通过图3的收发器来实现,测量单元501、确定单元503和选取单元504可以通过图3的处理器和存储器来实现。
举例说明,当第一STA和第二STA的结构如图1所示时,考虑收发两端置 于一个10m*8m的室内空间中,信道矩阵H由LOS分量和一阶墙面反射分量构成。设置每个线阵包含8个天线单元,每个阵列的波束个数为16,第二STA两个线阵之间间距为10cm,第一STA两个线阵之间间距为20cm。仿真中N0=kTBF,其中k为玻尔兹曼常数,T=300K为操作温度,B=2.16GHz为带宽,F=10dB为噪声系数。由于障碍物遮挡会造成强链路衰减,考虑LOS径未被遮挡和LOS径被遮挡两种情况。将第二STA摆放在(2,4),第一STA随机摆放在空间内10个位置,将穷举波束选择法和改进的波束选择法得到的信道容量作平均后得到的比较结果如下,其中,M=1时的仿真结果如图6所示,M=3时的仿真结果如图7所示,M=5时的仿真结果如图8所示,
从上述仿真结果可看出,无论LOS径是否被遮挡,由改进的波束选择法得到的信道容量都能得到接近于最优波束选择(穷举波束选择法)得到的信道容量。当M增大时,改进的波束选择法与穷举法的差距减小。以模之和或模的平方和为算法中的判定准则,所得到的性能差距很小,为降低复杂度,建议采用模之和作为准则即可。与穷举法相比,改进的波束选择法只需要M次奇异值分解和少量的求和运算,大大降低了实现复杂度。例如,当采用穷举波束选择法来找到容量最高的波束组合,需要遍历所有可能的波束组合且针对每个波束组合采用发送端数字域预编码和注水功率分配来计算信道容量,计算时需要较多次奇异值分解而导致复杂度很高,对于发射端有LT个天线阵,接收端有LR个天线阵的情况,穷举波束选择法需要完成
Figure PCTCN2016082006-appb-000036
次奇异值分解,而本发明只需要M次奇异值分解。对于2x2MIMO,当波束赋形码本含有16个波束码字时,本实施例与穷举波束选择法的复杂度对比(用奇异值分解次数表示)如表1所示。
表1 2x2MIMO码本含有16个波束时的选择算法复杂度比较
Figure PCTCN2016082006-appb-000037
需要指出的是,尽管本实施例是从第一STA(数据帧的接收方)的角度举例来描述的,但当第二STA(数据帧的发送方)与第一STA之间的信道具有互易性(reciprocity)时,由于波束赋形训练的结果无需区分第一STA或第二STA,因此,本实施例的方法也可由第二STA执行,即第一STA与第二STA互换角色,由第二STA在发送数据帧之前的波束赋形训练中作为波束赋形训练的接收方进行波束赋形训练和信道测量,而第一STA向第二STA发送信息获取请求,以及第二STA执行本实施例描述的信息反馈。
在一个实施例中,一种存储一个或多个程序的计算机可读存储介质,一个或多个程序包括指令,指令当被站点执行时使站点可以执行如图4所对应的方法。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的信息反馈方法及站点进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (18)

  1. 一种信息反馈方法,其特征在于,所述方法应用于第一站点,包括:
    测量N个波束组合的信道状态信息,所述N为大于1的整数;
    接收所述第二站点发送的信息获取请求,所述信息获取请求包含第一门限;
    根据每个所述波束组合的信道状态信息,将所述N个波束组合中信道容量最大的波束组合确定为目标波束组合;
    根据所述目标波束组合的信道容量和所述第一门限,从所述N个波束组合中选取信道容量最高的K个波束组合,所述K为大于或等于1,且小于所述N的整数;
    将所述K个波束组合的第一信息发送给所述第二站点。
  2. 根据权利要求1所述的方法,其特征在于,所述测量N个波束组合的信道状态信息包括:
    测量由一个发送扇区与一个接收扇区组成的波束对的信道系数,所述发送扇区是所述第二站点上的扇区,所述接收扇区是所述第一站点上的扇区;
    根据所述信道系数构建每个所述波束组合的信道矩阵。
  3. 根据权利要求2所述的方法,其特征在于,所述根据每个所述波束组合的信道状态信息,将所述N个波束组合中信道容量最大的波束组合确定为目标波束组合包括:
    根据所述信道矩阵计算每个所述波束组合的信号强度增益,所述信号强度增益是根据所述信道矩阵中元素的模之和或模的平方之和得到的;
    从所述N个波束组合中选择M个波束组合,所述M个波束组合是所述N个所述信号强度增益中最大的M个信号强度增益对应的波束组合,所述M为大于或等于1,且小于所述N的整数;
    计算所述M个波束组合中每个波束组合的信道容量;
    将所述M个波束组合中信道容量最大的波束组合确定为目标波束组合。
  4. 根据权利要求3所述的方法,其特征在于,所述从所述N个波束组合中 选择M个波束组合包括:
    针对所述N个波束组合中每个波束组合,计算所述波束组合的信道矩阵的行列式;
    从所述N个波束组合中选择所述行列式不小于第一预设值的L个波束组合,所述L为大于或等于1,且小于所述N的整数;
    从所述L个波束组合中选择M个波束组合,所述M小于或等于所述L。
  5. 根据权利要求2所述的方法,其特征在于,当所述第一站点和所述第二站点均只包括一个天线阵列、所述一个天线阵列连接至少一个射频链且每个所述射频链连接所述一个天线阵列的所有天线阵元时,所述根据每个所述波束组合的信道状态信息,将所述N个波束组合中信道容量最大的波束组合确定为目标波束组合包括:
    确定每个所述波束对的信噪比;
    从所有所述波束对中选择P个波束对,所述P为第二站点射频链个数和第一站点射频链个数中的较大值,所述P个波束对中的发送波束分别属于所述第二站点中的不同射频链,所述P个波束对中的接收波束分别属于所述第一站点中的不同射频链,所述P个波束对中每个波束对是第一波束对中信噪比最大的波束对,所述第一波束对是所述第二站点的一个射频链和所述第一站点的一个射频链间的全部波束对;
    计算所述P个波束对构成的波束组合的第一信道容量;
    从所述P个波束对中选择信噪比最大的第二波束对;
    将第三波束对的信噪比设置为0,以获得设置后的所有波束对,所述第三波束对包括与所述第二波束对中任一波束之间的波束的数量不大于第二预设值的波束;
    从所述设置后的所有波束对中选择I个波束对,所述I等于所述P,所述I个波束对中的发送波束分别属于所述第二站点中的不同射频链,所述I个波束对中的接收波束分别属于所述第一站点中的不同射频链,所述I个波束对中每个波束对是所述第一波束对中信噪比最大的波束对;
    计算所述I个波束对构成的波束组合的第二信道容量;
    将所述第一信道容量和所述第二信道容量中较大值对应的波束组合确定为目标波束组合。
  6. 根据权利要求3或4所述的方法,其特征在于,所述根据所述目标波束组合的信道容量和所述第一门限,从所述N个波束组合中选取信道容量最高的K个波束组合包括:
    根据所述目标波束组合的信道容量和所述第一门限确定第二门限;
    从所述M个波束组合中选取信道容量大于所述第二门限的波束组合。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    根据所述信息获取请求,将所述目标波束组合的信道状态信息或所述K个波束组合的信道状态信息发送给所述第二站点。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一信息包括所述K个波束组合中每个波束组合的发送波束信息,所述发送波束信息包括发送扇区编号和所述发送扇区所属发送天线的编号。
  9. 根据权利要求8所述的方法,其特征在于,所述第一信息还包括第二信息,所述第二信息用于指示所述目标波束组合或所述K个波束组合中所述第二站点能够进行波束追踪的发送波束或波束对,和/或用于指示邻近扇区中允许测量的扇区个数或扇区范围,所述邻近扇区是与所述目标波束组合或所述K个波束组合中能够进行波束追踪的发送波束的方位角、俯仰角或扇区编号相邻的扇区。
  10. 一种站点,其特征在于,包括处理器、存储器和收发器,其中:
    所述存储器中存储有一组程序代码,所述处理器用于调用所述存储器中存储的程序代码执行以下操作:
    测量N个波束组合的信道状态信息,所述N为大于1的整数;
    所述收发器,用于接收所述第二站点发送的信息获取请求,所述信息获取 请求包含第一门限;
    所述处理器还用于调用所述存储器中存储的程序代码执行以下操作:
    根据每个所述波束组合的信道状态信息,将所述N个波束组合中信道容量最大的波束组合确定为目标波束组合;
    根据所述目标波束组合的信道容量和所述第一门限,从所述N个波束组合中选取信道容量最高的K个波束组合,所述K为大于或等于1,且小于所述N的整数;
    所述收发器,还用于将所述K个波束组合的第一信息发送给所述第二站点。
  11. 根据权利要求10所述的站点,其特征在于,所述处理器测量N个波束组合的信道状态信息的方式为:
    测量由一个发送扇区与一个接收扇区组成的波束对的信道系数,所述发送扇区是所述第二站点上的扇区,所述接收扇区是所述站点上的扇区;
    根据所述信道系数构建每个所述波束组合的信道矩阵。
  12. 根据权利要求11所述的站点,其特征在于,所述处理器根据每个所述波束组合的信道状态信息,将所述N个波束组合中信道容量最大的波束组合确定为目标波束组合的方式为:
    根据所述信道矩阵计算每个所述波束组合的信号强度增益,所述信号强度增益是根据所述信道矩阵中元素的模之和或模的平方之和得到的;
    从所述N个波束组合中选择M个波束组合,所述M个波束组合是所述N个所述信号强度增益中最大的M个信号强度增益对应的波束组合,所述M为大于或等于1,且小于所述N的整数;
    计算所述M个波束组合中每个波束组合的信道容量;
    将所述M个波束组合中信道容量最大的波束组合确定为目标波束组合。
  13. 根据权利要求11所述的站点,其特征在于,所述处理器从所述N个波束组合中选择M个波束组合的方式为:
    针对所述N个波束组合中每个波束组合,计算所述波束组合的信道矩阵的 行列式;
    从所述N个波束组合中选择所述行列式不小于第一预设值的L个波束组合,所述L为大于或等于1,且小于所述N的整数;
    从所述L个波束组合中选择M个波束组合,所述M小于或等于所述L。
  14. 根据权利要求11所述的站点,其特征在于,当所述站点和所述第二站点均只包括一个天线阵列、所述一个天线阵列连接至少一个射频链且每个所述射频链连接所述一个天线阵列的所有天线阵元时,所述处理器根据每个所述波束组合的信道状态信息,将所述N个波束组合中信道容量最大的波束组合确定为目标波束组合的方式为:
    确定每个所述波束对的信噪比;
    从所有所述波束对中选择P个波束对,所述P为第二站点射频链个数和站点射频链个数中的较大值,所述P个波束对中的发送波束分别属于所述第二站点中的不同射频链,所述P个波束对中的接收波束分别属于所述站点中的不同射频链,所述P个波束对中每个波束对是第一波束对中信噪比最大的波束对,所述第一波束对是所述第二站点的一个射频链和所述站点的一个射频链间的全部波束对;
    计算所述P个波束对构成的波束组合的第一信道容量;
    从所述P个波束对中选择信噪比最大的第二波束对;
    将第三波束对的信噪比设置为0,以获得设置后的所有波束对,所述第三波束对包括与所述第二波束对中任一波束之间的波束的数量不大于第二预设值的波束;
    从所述设置后的所有波束对中选择I个波束对,所述I等于所述P,所述I个波束对中的发送波束分别属于所述第二站点中的不同射频链,所述I个波束对中的接收波束分别属于所述站点中的不同射频链,所述I个波束对中每个波束对是所述第一波束对中信噪比最大的波束对;
    计算所述I个波束对构成的波束组合的第二信道容量;
    将所述第一信道容量和所述第二信道容量中较大值对应的波束组合确定为目标波束组合。
  15. 根据权利要求3或4所述的站点,其特征在于,所述处理器根据所述目标波束组合的信道容量和所述第一门限,从所述N个波束组合中选取信道容量最高的K个波束组合的方式为:
    根据所述目标波束组合的信道容量和所述第一门限确定第二门限;
    从所述M个波束组合中选取信道容量大于所述第二门限的波束组合。
  16. 根据权利要求10-15任一项所述的站点,其特征在于,所述收发器,还用于根据所述信息获取请求,将所述目标波束组合的信道状态信息或所述K个波束组合的信道状态信息发送给所述第二站点。
  17. 根据权利要求10-16任一项所述的站点,其特征在于,所述第一信息包括所述K个波束组合中每个波束组合的发送波束信息,所述发送波束信息包括发送扇区编号和所述发送扇区所属发送天线的编号。
  18. 根据权利要求17所述的站点,其特征在于,所述第一信息还包括第二信息,所述第二信息用于指示所述目标波束组合或所述K个波束组合中所述第二站点能够进行波束追踪的发送波束或波束对,和/或用于指示邻近扇区中允许测量的扇区个数或扇区范围,所述邻近扇区是与所述目标波束组合或所述K个波束组合中能够进行波束追踪的发送波束的方位角、俯仰角或扇区编号相邻的扇区。
PCT/CN2016/082006 2016-05-13 2016-05-13 一种信息反馈方法及站点 WO2017193366A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680063795.8A CN108353059A (zh) 2016-05-13 2016-05-13 一种信息反馈方法及站点
PCT/CN2016/082006 WO2017193366A1 (zh) 2016-05-13 2016-05-13 一种信息反馈方法及站点

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082006 WO2017193366A1 (zh) 2016-05-13 2016-05-13 一种信息反馈方法及站点

Publications (1)

Publication Number Publication Date
WO2017193366A1 true WO2017193366A1 (zh) 2017-11-16

Family

ID=60266873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082006 WO2017193366A1 (zh) 2016-05-13 2016-05-13 一种信息反馈方法及站点

Country Status (2)

Country Link
CN (1) CN108353059A (zh)
WO (1) WO2017193366A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729457A (zh) * 2008-10-17 2010-06-09 上海交通大学 动态子载波关联有限比特反馈和调度方法
CN101783776A (zh) * 2009-01-15 2010-07-21 华为技术有限公司 预编码反馈方法及系统、用户设备和基站
CN101990307A (zh) * 2010-12-01 2011-03-23 西安电子科技大学 Mu-mimo下动态门限减小隐式反馈开销方法
US20130163457A1 (en) * 2011-12-27 2013-06-27 Industry-Academic Cooperation Foundation, Korea National University of Transportation Channel state information feedback apparatus and method in wireless communication system operating in fdd mode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127550B (zh) * 2006-08-16 2012-02-29 华为技术有限公司 一种确定发射天线的方法和系统
US8250423B2 (en) * 2009-03-24 2012-08-21 Clear Wireless Llc Method and system for improving performance of broadcast/multicast transmissions
CN108777589B (zh) * 2013-09-09 2021-08-13 华为技术有限公司 一种波束追踪的方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729457A (zh) * 2008-10-17 2010-06-09 上海交通大学 动态子载波关联有限比特反馈和调度方法
CN101783776A (zh) * 2009-01-15 2010-07-21 华为技术有限公司 预编码反馈方法及系统、用户设备和基站
CN101990307A (zh) * 2010-12-01 2011-03-23 西安电子科技大学 Mu-mimo下动态门限减小隐式反馈开销方法
US20130163457A1 (en) * 2011-12-27 2013-06-27 Industry-Academic Cooperation Foundation, Korea National University of Transportation Channel state information feedback apparatus and method in wireless communication system operating in fdd mode

Also Published As

Publication number Publication date
CN108353059A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
US11234139B2 (en) MIMO training method and wireless device
US11652535B2 (en) Beamforming device for antenna arrays
KR102088529B1 (ko) 통신 시스템에서 빔 훈련 방법 및 장치
US20160087695A1 (en) Method and Apparatus of Beam Training for MIMO Operation and Multiple Antenna Beamforming Operation
JP2017539130A (ja) 高周波無線ネットワーク用の効率的なビーム走査
WO2015184927A1 (zh) 一种下行导频信号的处理方法及系统
US8861635B2 (en) Setting radio frequency (RF) beamformer antenna weights per data-stream in a multiple-input-multiple-output (MIMO) system
TWI420844B (zh) Mimo-ofdm無線網路中天線映射選擇方法及裝置
WO2019008806A1 (en) WIRELESS COMMUNICATION SYSTEM AND WIRELESS TRANSMISSION METHOD USING BEAM FORMATION AND DIVERSITY SCHEMES
US11075677B2 (en) Method and device for sending beam refinement protocol packet
JP5567673B2 (ja) 信号伝送方法及びユーザ端末
JP2010166316A (ja) Mimo通信システム
CN115278723A (zh) 用于多链路设备网络的优化高效he探测
TWI620423B (zh) 用於多輸入多輸出操作的平衡拼圖天線波束搜尋方法
CN108476422B (zh) 一种波束追踪的方法、设备及系统
WO2017193366A1 (zh) 一种信息反馈方法及站点
Hadji et al. Channel estimation based on low‐complexity hierarchical codebook design for millimeter‐wave MIMO systems
WO2020194428A1 (ja) 下位無線基地局および空間多重ストリーム数の制御方法
KR102215381B1 (ko) 무선랜에서 이종의 간섭정렬 기법에 기초하여 무선 통신을 수행하는 방법 및 장치
KR200430280Y1 (ko) 안테나 맵핑을 최적화하기 위한다중-입력/다중-출력(mimo) 무선 송신/수신 유닛
US10111253B2 (en) Method and apparatus for interference alignment and multi-antenna signal process in wireless network
KR20200011803A (ko) 위상 배열 안테나를 캘리브레이션하기 위한 장치 및 방법
JP6172670B2 (ja) Mu−mimoシステムとmu−mimoの通信方法
TWI836059B (zh) 無線通訊設備和無線通訊方法
WO2024108385A1 (zh) 一种用于通信的方法、装置、存储介质、程序产品及通信系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901321

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901321

Country of ref document: EP

Kind code of ref document: A1