WO2008019627A1 - Procédé, système et dispositif de traitement d'invalidation d'un tunnel de données inter-réseaux en liaison descendante - Google Patents

Procédé, système et dispositif de traitement d'invalidation d'un tunnel de données inter-réseaux en liaison descendante Download PDF

Info

Publication number
WO2008019627A1
WO2008019627A1 PCT/CN2007/070475 CN2007070475W WO2008019627A1 WO 2008019627 A1 WO2008019627 A1 WO 2008019627A1 CN 2007070475 W CN2007070475 W CN 2007070475W WO 2008019627 A1 WO2008019627 A1 WO 2008019627A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel
core network
user plane
downlink data
data
Prior art date
Application number
PCT/CN2007/070475
Other languages
English (en)
French (fr)
Inventor
Weihua Hu
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39081958&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008019627(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to ES07800951T priority Critical patent/ES2373998T3/es
Priority to EP07800951A priority patent/EP2037633B1/en
Priority to AT07800951T priority patent/ATE531164T1/de
Publication of WO2008019627A1 publication Critical patent/WO2008019627A1/zh
Priority to US12/369,431 priority patent/US8125889B2/en
Priority to US13/357,366 priority patent/US8867339B2/en
Priority to US14/484,133 priority patent/US9848450B2/en
Priority to US15/831,631 priority patent/US10721780B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection

Definitions

  • the present invention relates to mobile communication technologies, and in particular to a single tunnel in a third generation mobile communication system
  • HSPA High-speed Packet Access
  • IMS Internet Protocol Multimedia Subsystem
  • 3GPP 3rd Generation Partnership Project
  • RNC Radio Network Control
  • GGSN Gateway General Packet Radio Service Support Node
  • the SGSN (Serving GPRS Support Node) and the two tunnels between the SGSN and the GGSN strip the user plane function of the SGSN node to save the operator's investment in SGSN user plane expansion in response to the increase in network user plane traffic brought by HSPA.
  • One Tunnel can be summarized as a flattening of the user plane level, the core network retains a layer of user plane nodes, and a tunnel is established between the access network and the user plane entity of the core network.
  • the data transmission between the access network and the core network user plane uses the GPRS Tunneling Protocol (GTP) technology.
  • GTP GPRS Tunneling Protocol
  • the GTP tunnel receives the packet data sent by the peer end, it will use the tunnel end identifier information (TEID) in the GTP header of the outer layer of the packet data.
  • TEID tunnel end identifier information
  • Tunnel End ID locates the context of the user plane and forwards the data according to the routing information saved in the context. If a node is reset or other abnormality, the node at one end of the GTP tunnel may release the user plane context. Therefore, when it receives the data sent from the opposite end of the GTP tunnel, the corresponding user plane context cannot be located, so it cannot be normal. Forward the received packet data and discard only the received data.
  • the packet if the GTP packet is received but the user plane context cannot be located, the packet must be sent to the peer to send an error message (Errors Indication) to notify the peer that the tunnel has expired.
  • the tunnel sends data.
  • the data tunnel of the user plane has only one segment, which is established between the RNC and the GGSN.
  • the RNC releases the user's air interface resources and the context due to an abnormality, such as a reset, the downlink data tunnel between the relevant RNC and the GGSN is invalidated. If the GGSN sends data to the RNC through the failed downlink data tunnel, the RNC must be received. Returns an error message response, which is an error indication.
  • the GGSN activates the Packet Data Protocol (PDP) context at this time, causing the entire IP bearer to be released. For subsequent users to resume data transmission, the PDP must be reactivated to establish an IP bearer.
  • PDP Packet Data Protocol
  • the embodiment of the invention provides a processing method after the downlink data tunnel between the networks fails, which can improve the speed of recovering the data transmission after the downlink data tunnel fails.
  • the embodiment of the present invention provides a processing system after a downlink data tunnel failure between networks, which can improve the speed of recovering data transmission after a downlink data tunnel fails.
  • Embodiments of the present invention provide a processing device after a downlink data tunnel failure between networks, which can improve the speed of recovering data transmission after a downlink data tunnel fails.
  • a method for processing a downlink data tunnel after a network fails includes: the core network user plane anchor receives a data tunnel error indication from the access network device, and determines that the user plane corresponding to the error indication adopts a single tunnel technology Notifying the relevant core network control plane to request to resume the downlink data tunnel;
  • the core network control plane recovers the downlink data tunnel, and notifies the core network user plane anchor point to update the user plane information.
  • a processing system after a downlink data tunnel failure between networks comprising: a core network control plane and a core network user plane anchor point;
  • the core network user plane anchor point is configured to receive a data tunnel error indication from the access network device, and notify the core network control plane request when determining that the user plane corresponding to the error indication adopts a single tunnel technology Restore the downlink data tunnel;
  • the core network control plane is configured to recover a downlink data tunnel, and notify the core network user plane anchor point to update user plane information.
  • a processing device after a downlink data tunnel failure between networks is a GGSN, and includes: a receiving unit and a sending unit;
  • the receiving unit is configured to receive a data tunnel error indication from the access network device, where the sending unit is configured to notify the relevant core network control plane when determining that the user plane corresponding to the error indication adopts a single tunneling technology , request to resume the downlink data tunnel.
  • the core network user plane anchor receives the data tunnel error indication from the access network device, and determines the user plane corresponding to the error indication.
  • the single tunnel technology is used to notify the relevant core network control plane to request recovery of the downlink data tunnel, and the core network control plane restores the downlink data tunnel, and notifies the core network user plane to update the user plane information; after the downlink data tunnel fails, the core network
  • the user plane anchor does not release the corresponding PDP context, but notifies the core network control plane to re-establish the downlink data tunnel, which speeds up the recovery of data transmission after the downlink data tunnel fails, and avoids the adverse effect of the PDP requiring reactivation on data transmission recovery.
  • Figure 1 is a schematic diagram of the composition of an existing One Tunnel architecture
  • FIG. 3 is a flowchart of a user activating a PDP context to establish an IP bearer in a first preferred embodiment of the method according to the present invention
  • FIG. 4 is a flowchart of processing after a user plane downlink data tunnel fails in the first preferred embodiment of the method of the present invention
  • FIG. 5 is a flowchart of a user activating a PDP context to establish an IP bearer in a second preferred embodiment of the method according to the present invention
  • FIG. 6 is a flowchart of processing after a user plane downlink data tunnel fails in a second preferred embodiment of the method of the present invention
  • FIG. 7 is a schematic structural diagram of a system embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an embodiment of an apparatus according to the present invention. Mode for carrying out the invention
  • the core network user plane anchor receives the data tunnel error indication from the access network device, and determines that the corresponding user plane adopts a single tunnel technology, and notifies the relevant core network control plane to request recovery. Downlink data tunnel; The core network control plane recovers the downlink data tunnel, and notifies the core network user plane to update the user plane information.
  • the present invention can be applied to existing 3GPP systems as well as to evolved 3GPP systems.
  • the One Tunnel technology involved in the existing 3GPP system includes two solutions.
  • One solution is that the SGSN still retains the user plane function, such as a roaming user and a prepaid user, in order to reduce the anchor point of the core network user, that is, The GGSN changes, instead of using the One Tunnel method to establish the user plane, but continues to establish the user plane in the traditional way.
  • Figure 1 shows the composition of the existing One Tunnel architecture. As shown in Figure 1, most of the traffic on the user plane is directly transmitted between the RNC and the GGSN through the tunnel using the One Tunnel technology, as shown by the thick solid line in Figure 1. The small part is still transmitted between the RNC and the GGSN through the SGSN. As shown by the thin solid line in Figure 1.
  • this scheme is simply referred to as the One Tunnel scheme in which the SGSN retains the user plane.
  • the implementation of the One Tunnel technology is basically similar to the above-mentioned complete One Tunnel solution, except that the specific entity is slightly different from the existing 3GPP system, such as the function of the core network control plane, that is, the above complete
  • the functionality implemented by the SGSN in the One Tunnel solution will be implemented by the mobility management entity; the functionality of the above RNC will be implemented by the E-NodeB.
  • FIG. 2 is a general flow chart of an embodiment of a method of the present invention. As shown in Figure 2, the following steps are included:
  • Step 201 The GGSN determines, according to the received error indication from the RNC, that the user plane corresponding to the error indication adopts a single tunneling technology, and then informs the relevant SGSN to resume the downlink data tunnel.
  • Step 202 The SGSN sends a re-establishment radio access bearer request to the corresponding RNC, where the request carries the tunnel resource information allocated by the GGSN for receiving uplink data.
  • Step 203 The RNC completes the radio access bearer reestablishment, and returns the tunnel resource information allocated by the RNC for receiving the downlink data to the SGSN, and the SGSN further informs the GGSN to update the PDP context by using the tunnel resource information for receiving the downlink data allocated by the RNC. .
  • Step 204 The GGSN updates the corresponding PDP context according to the received tunnel resource information of the received RNC, and restores the downlink data tunnel.
  • the One Tunnel technology is supported according to whether the SGSN and the GGSN support the One Tunnel information may be used. If the determination is adopted, the One Tunnel technology is recorded in the PDP context of the GGSN.
  • the GGSN can further transmit the downlink data to the RNC through the SGSN before the downlink data tunnel between the RNC and the RNC is restored.
  • the recovery speed of downlink data transmission and reduce the requirements for GGSN cache data.
  • FIG. 3 is a flowchart of a user activating a PDP context to establish an IP bearer according to a first preferred embodiment of the method of the present invention. As shown in Figure 3, the following steps are included: Step 301: The mobile user's terminal sends an activation PDP context request to the SGSN. Step 302a: The SGSN selects the GGSN and sends a Create PDP Context Request to the selected GGSN.
  • the request carries the permanent identity of the user, the mobile phone number, the quality of service (QoS, Quaility of Service) requested by the user, the access point name (APN, Access Point Name) required to be activated, and the downlink data allocated by the SGSN.
  • Information such as the user plane IP address and the GTP tunnel end identifier TEID.
  • Step 302b The GGSN creates a PDP context, and returns a PDP context response message to the SGSN.
  • the response message carries information such as the negotiated QoS, the user plane IP address allocated by the GGSN for receiving the uplink data, the GTP tunnel end identifier TEID, and the indication of whether the GGSN can support the One Tunnel.
  • the SGSN creates a PDP context response message according to the GGSN. Update the corresponding PDP context.
  • Step 303 The SGSN determines whether to use the One Tunnel to establish a user plane according to the subscription information of the user, the roaming status, and whether the GGSN can support the One Tunnel.
  • Step 304a The SGSN sends an RAB assignment request to the RNC.
  • the request message carries the user plane IP address and the tunnel end identifier information allocated by the GGSN for receiving the uplink data. If the One Tunnel is not used, the normal user plane process is performed, and the RAB assignment request message is performed. The user plane IP address and the tunnel end identification information allocated by the SGSN for receiving uplink data are included.
  • Step 304b The RNC allocates resources for the newly established context and returns a RAB Assign Response message.
  • the response message carries the user plane IP address and GTP tunnel end identifier TEID information allocated by the RNC for receiving downlink data, and the licensed QoS.
  • Step 305a If the user plane established by the One Tunnel is used, or the SGSN determines The QoS sent by the RNC through the RAB Assignment Response message is changed relative to the GGSN through the corresponding QoS of the Create PDP Context Response message, and the SGSN needs to initiate a request to update the PDP context to the GGSN.
  • the update PDP context request message carries the user plane IP address, the GTP tunnel end identifier TEID information, and the user plane using the One Tunnel, which are allocated by the RNC, and the single tunnel. Identification; if the QoS changes, the Update PDP Context Request message carries the QoS returned by the RNC.
  • Step 305b The GGSN updates the corresponding information in the PDP context according to the received request information, and returns an update PDP context response message.
  • the SGSN After receiving the update PDP context response message, the SGSN updates the corresponding PDP context according to the information therein.
  • the GGSN also saves an information mark in the PDP context of successful creation to indicate that the user plane is established by using One Tunnel.
  • Step 306 The SGSN sends an activation PDP context accept message to the mobile user's terminal, where the message carries the IP address allocated by the GGSN and the QoS determined by the final negotiation.
  • FIG. 4 is a flowchart of processing after the downlink data tunnel of the user plane fails in the first preferred embodiment of the method. As shown in Figure 4, the steps include the following steps:
  • Step 401 After receiving the downlink data packet of the user, the GGSN locates the corresponding PDP context, and performs GTP encapsulation on the data packet according to the routing information in the saved PDP context, and sends the data packet to the corresponding GTP tunnel.
  • Step 402 The RNC receives the downlink GTP data packet, fails to locate the user plane context, and returns an error prompt message to the GTP tunnel source end that sends the GTP data packet.
  • Step 403 The GGSN receives the error message returned by the RNC, and determines that the corresponding PDP context is the user plane established by the One Tunnel, according to the PDP context.
  • the SGSN information carried in the saved control plane information is sent to the corresponding SGSN.
  • the GGSN receives the error message returned by the RNC, it determines that the corresponding PDP context is not the user plane established by the One Tunnel, and directly releases the PDP context.
  • Step 404a After receiving the user plane establishment request, the SGSN allocates a user plane IP address for receiving downlink data and a GTP tunnel end identifier TEID, and carries the allocated information in the update PDP context request message to notify the GGSN, and the message is in the message. Indicates that the PDP context does not use the One Tunnel to establish a user plane.
  • the SGSN sends an update PDP Context Request message to the GGSN.
  • the purpose is to establish a GTP tunnel between the SGSN and the GGSN. Therefore, the message indicates that the PDP context is a user plane that is not established by the One Tunnel.
  • Step 404b The GGSN updates the corresponding PDP context according to the information in the request message, and returns an update PDP context response message to the SGSN.
  • the GGSN forwards the received downlink user data to the SGSN through the GTP tunnel between the updated GGSN and the SGSN; the SGSN buffers the downlink data forwarded by the GGSN.
  • Step 405a After receiving the user plane request from the GGSN, or after receiving the downlink data forwarded by the GGSN through the updated GTP tunnel, the SGSN may initiate an RAB assignment process to the RNC, that is, send an RAB assignment request message to the RNC.
  • the message carries the downlink data recorded in the PDP context of the SGSN and allocated by the GGSN for the SGSN to not receive the GGSN, or the GGSN forwards the flow.
  • Step 405b The RNC returns a RAB Assignment Response message.
  • the message carries the user plane IP address and the GTP tunnel end identifier TEID information that the RNC allocates for receiving the downlink data, or further carries the tunnel resource information such as QoS. If the SGSN has the cached data, the SGSN sends the tunnel resource information specified by the RNC to the RNC.
  • Step 406a The SGSN initiates an update PDP context request message to the GGSN.
  • the message carries the user plane IP address and the GTP tunnel end identifier TEID information allocated by the RNC for receiving the downlink data, and the user plane adopts the indication of the One Tunnel.
  • the QoS returned by the RNC changes relative to the corresponding QoS from the GGSN, the Update PDP Context Request message will also carry the QoS returned by the RNC.
  • Step 406b The GGSN updates the corresponding information in the PDP context according to the received request information, updates the tunnel between the GGSN and the SGSN to the GGSN and the RNC, and returns an update PDP context response message to the SGSN.
  • the downlink data tunnel between the GGSN and the RNC is restored, and data can be sent to the user through the downlink data tunnel.
  • FIG. 5 is a flowchart of a user activating a PDP context to establish an IP bearer in a second preferred embodiment of the method according to the present invention. As shown in FIG. 5, the following steps are specifically included:
  • Step 501 The mobile user's terminal sends an activation PDP context request to the SGSN.
  • Step 502a The SGSN selects the GGSN, and sends a Create PDP Context Request message to the selected GGSN.
  • the message carries the user's permanent identity, the mobile phone number, the QoS requested by the user, the APN required to be activated, the user plane IP address for receiving downlink data allocated by the SGSN, and the GTP tunnel end identifier TEID, and whether the SGSN can support One Tunnel Instructions and other information.
  • Step 502b The GGSN according to the received information in the Create PDP Context Request message Create a PDP context for the user and return to create a PDP context response message to the SGSN.
  • the response message carries the negotiated QoS, the user plane IP address allocated by the GGSN for receiving uplink data, the GTP tunnel end identifier TEID information, and the indication information of whether the GGSN can support the One Tunnel.
  • Step 503 If the SGSN determines that both the GGSN and the GGSN can support the One Tunnel, it is decided to use the One Tunnel to establish the user plane; otherwise, the One Tunnel is not used to establish the user plane.
  • Step 504a The SGSN sends an RAB assignment request to the RNC.
  • the RAB assignment request message carries the user plane IP address and the tunnel end identifier information allocated by the GGSN for receiving the uplink data; otherwise, the normal user plane process is performed, and the RAB assignment request is performed.
  • the message carries the user plane IP address and the tunnel end identification letter allocated by the SGSN for receiving the uplink data.
  • Step 504b After receiving the RAB assignment request, the RNC allocates resources for the newly created PDP context, and returns an RAB assignment response message to the SGSN.
  • the response message carries the user plane IP address and GTP tunnel end identifier TEID information allocated by the RNC for receiving downlink data, and the licensed QoS.
  • Step 505a If the user plane is established by using the One Tunnel, or the QoS returned by the RNC changes with respect to the corresponding QoS from the GGSN, the SGSN needs to initiate an update PDP context request message to the GGSN.
  • the message carries the user plane IP address and the GTP tunnel end identifier TEID information allocated by the RNC for receiving the downlink data. If the QoS returned by the RNC changes with respect to the QoS returned by the GGSN, the message carries There is QoS returned by the RNC.
  • Step 505b The GGSN updates the corresponding information in the PDP context according to the received update PDP context request information, and returns a response message.
  • the GGSN can determine whether to use the One Tunnel to establish a user plane according to whether the SGSN supports the One Tunnel information according to whether the SGSN supports the One Tunnel or not, and the One Tunnel is used to establish the user plane.
  • the user plane, the information flag is saved in the created PDP context to indicate that the user plane is established by using One Tunnel.
  • Step 506 The SGSN sends an activation PDP context accept message to the mobile user's terminal.
  • the message carries the IP address assigned by the GGSN to the user and the QoS determined by the final negotiation.
  • FIG. 6 is a flowchart of processing after the user plane fails the data tunnel in the second preferred embodiment of the method.
  • the method includes the following steps: Step 601: After receiving the downlink data packet of the user, the GGSN locates the corresponding PDP context, and performs GTP encapsulation on the data packet according to the routing information in the saved PDP context. After that, it is sent to the corresponding GTP tunnel.
  • Step 602 The RNC receives the downlink GTP data packet, fails to locate the user plane context, and returns an error prompt message to the GTP tunnel source end that sends the GTP data packet.
  • Step 603 The GGSN receives the error message returned by the RNC, and determines that the corresponding PDP context is the user plane established by the One Tunnel, and sends the user plane according to the SGSN information carried in the control plane information saved in the PDP context. Request to the corresponding SGSN.
  • the GGSN receives the error message returned by the RNC, it determines that the corresponding PDP context is not the user plane established by the One Tunnel, and directly releases the PDP context.
  • Step 604a The SGSN initiates an RAB assignment process to the RNC, that is, sends an RAB Assignment Request message to the RNC.
  • the message carries the GGSN-allocated reception saved in the PDP context of the SGSN.
  • Step 604b The RNC returns a RAB Assignment Response message.
  • the message carries the user plane IP address and GTP tunnel end identifier TEID information allocated by the RNC for receiving downlink data, and the licensed QoS.
  • Step 605a The SGSN sends an Update PDP Context Request message to the GGSN.
  • the message carries the user plane IP address and the GTP tunnel end identifier TEID information that the RNC allocates for receiving downlink data. If the QoS returned by the RNC changes relative to the QoS from the GGSN, the message also carries the QoS returned by the RNC.
  • Step 605b The GGSN updates the corresponding information in the PDP context according to the received update PDP context request information, updates the data tunnel between the GGSN and the SGSN to the GGSN and the RNC, and returns an update PDP context response message.
  • FIG. 7 is a schematic structural diagram of a system embodiment of the present invention.
  • the system includes: a core network control plane 701 and a core network user plane anchor point 702; a core network user plane anchor point 702, configured to receive a data tunnel error indication from the access network device, and determine When the error indicates that the corresponding user plane adopts a single tunneling technology, the core network control plane 701 is notified to request to resume the downlink data tunnel;
  • the core network control plane 701 is configured to recover the downlink data tunnel, and notify the core network user plane anchor point 702 to update the user plane information.
  • the system further includes: an access network device 703, configured to send a data tunnel error indication to the core network user plane anchor 702 according to the determined data tunnel failure information, and perform wireless according to a command from the core network control plane 701.
  • the access bearer is reconstructed, and the radio access bearer completion information is sent to the core network control plane 701.
  • the core network control plane 701 may be an SGSN
  • the core network user plane anchor point 702 may be a GGSN
  • the access network equipment 703 may be an RNC:
  • the SGSN sends the tunnel resource information allocated by the GGSN for receiving uplink data to RNC, and sending tunnel resource information from the RNC for receiving downlink data to the GGSN;
  • the GGSN updates the PDP context according to the tunnel resource information allocated by the RNC from the SGSN for receiving the downlink data, and restores the downlink data tunnel between the GGSN and the RNC;
  • the RNC allocates tunnel resource information for receiving downlink data according to the received tunnel resource information for receiving uplink data allocated by the GGSN of the SGSN, and transmits the tunnel resource information allocated by itself to the SGSN.
  • the SGSN may further allocate tunnel resource information for receiving downlink data according to the tunnel resource information allocated by the GGSN stored in the PDP context for receiving the uplink data, and establish a relationship with the GGSN. And the data received and buffered by the data tunnel between the SGSN and the GGSN is sent to the RNC according to the tunnel resource information from the RNC for receiving the downlink data.
  • the SGSN may further determine whether to use the One Tunnel to establish a user plane according to the subscription information of the user, the roaming status, and whether the GGSN can support the One Tunnel, in the process of the user activating the PDP context. Or in the complete One Tunnel solution, it is determined whether the One Tunnel is used to establish a user plane according to whether the GGSN and the GGSN can support the One Tunnel.
  • FIG. 8 is a schematic structural diagram of an embodiment of an apparatus according to the present invention.
  • the device is a GGSN device, and specifically includes: a receiving unit 801 and a sending unit 802;
  • the receiving unit 801 is configured to receive a data tunnel error indication from the access network device, where the sending unit 802 is configured to notify the core network control plane to request to resume downlink when determining that the user plane corresponding to the error indication adopts a single tunneling technology Data tunnel.
  • the device further includes: a storage unit 803, configured to update the PDP context according to the tunnel resource information allocated by the access network device received by the receiving unit 801, and restore the downlink between the access network device and the access network device. Data tunnel.
  • the control plane and the user plane of the core network are separated, and the user plane of the core network has only one layer, including the core network user plane entity (UPE, User Plan Entity) and the error point of different access systems (IASA).
  • UPE core network user plane entity
  • IASA error point of different access systems
  • Inter Access System Anchor which is the same network entity in the future evolution network architecture, and may be referred to as a core network user plane anchor point, and the specific execution function is basically the same as that performed by the GGSN; and the control plane of the core network In the specification, it is called Mobility Management Entity (MME), which is an entity, and its specific functions are basically the same as those performed by the SGSN in the complete One Tunnel solution.
  • MME Mobility Management Entity
  • the E-NodeB implements the functions of the foregoing RNC; therefore, the above described method and system of the present invention are applicable not only to the One Tunnel architecture of the 3GPP system prior to Rd7, but also to the evolved 3GPP system.
  • the function of the downlink data tunnel recovery performed by the core network user plane anchor carrying the UPE and IASA functions is similar to that of the GGSN, and the downlink data tunnel recovery performed by the control plane of the core network is performed.
  • the function of the E-NodeB is similar to that of the RNC.
  • the specific signaling name may be different from the second embodiment.
  • the specific processing implementation is basically the same. Detailed.

Description

网络间下行数据隧道失效后的处理方法、 系统及设备 技术领域
本发明涉及移动通信技术, 特别涉及第三代移动通信系统中单隧道
( One Tunnel/Direct Tunnel )架构下, 接入网和核心网之间的用户面下 行数据隧道失效后的恢复处理方法、 系统及设备。 发明背景
随着高速分组数据接入 ( HSPA, High Speed Packet Access )和因特 网协议多媒体子系统( IMS , IP Multimedia Subsystem ) 弓 )入第三代合作 项目 (3GPP, 3rd Generation Partnership Project ) 网络, 未来几年用户面 数据流量会有比较大的增长。 为提高 3GPP系统的数据传输性能和减少 运营商的网络投资, 3GPP组织在研究一种称作单隧道, 规范称作" One Tunnel"或者" Direct Tunnel"的网络架构 , 本文以下简称为 One Tunnel, 即通过在无线网络控制器(RNC, Radio Network Control )和网关通用 分组无线业务支持节点(GGSN, Gateway GPRS Support Node )之间直 接建立用户面隧道, 取代现有的 RNC和服务通用分组无线业务支持节 点 ( SGSN, Serving GPRS Support Node ) 以及 SGSN和 GGSN之间的 两段隧道, 剥离 SGSN节点的用户面功能, 以节省运营商为应对 HSPA 带来的网络用户面流量增长对 SGSN用户面扩容的投资。简而言之, One Tunnel可以概括为用户面层次的扁平化, 核心网保留一层用户面节点, 接入网和核心网的用户面实体之间建立一段隧道。
3GPP 系统内部, 接入网和核心网用户面之间的数据传输, 采用的 是 GPRS隧道协议 ( GTP )技术。 当 GTP隧道一端收到对端发来的分组 数据时, 会根据分组数据外层的 GTP头中的隧道端标识信息 (TEID, Tunnel End ID )定位到用户面的上下文, 再根据上下文中保存的路由信 息, 将数据转发。 如果因为节点复位或者其它异常, GTP隧道一端的节 点可能释放了用户面上下文,这样, 当其接收到从 GTP隧道对端发来的 数据时, 就无法定位到对应的用户面上下文, 因此无法正常转发收到的 分组数据, 只能将收到的数据丢弃。根据 GTP协议要求,如果收到 GTP 数据包却无法定位用户面上下文, 在丢弃数据包的同时, 还需要向对端 发送错误提示 ( Errors Indication ) 消息, 通知对端隧道已经失效, 不要 再向本隧道发送数据。
在 One Tunnel架构下, 用户面的数据隧道只有一段, 建立在 RNC 和 GGSN之间。 当 RNC因为异常, 如复位, 释放了用户的空口资源和 上下文, 会导致相关的 RNC和 GGSN之间的下行数据隧道失效, 如果 GGSN通过失效的下行数据隧道下发数据给 RNC, 必然收到 RNC返回 错误提示消息应答, 即错误指示。 按照目前的处理机制, GGSN此时去 激活分组数据协议 ( PDP, Packet Data Protocol )上下文, 导致整个 IP 承载被释放, 后续用户要恢复数据传输, 必须重新激活 PDP以建立 IP 承载。
上述处理过程中, 在 RNC和 GGSN之间的下行数据隧道失效后, 用户需要重新激活 PDP建立 IP承载来恢复数据传输, 这无疑影响了用 户恢复数据传输的速度, 并且有悖于 3GPP支持用户永久在线的思想; 此外 , 由于重新激活 PDP建立的 IP承载的 IP地址无法保证不变, 应用 程序也将因为 IP地址的改变而中断。 发明内容
本发明实施例提供网络间下行数据隧道失效后的处理方法, 能够在 下行数据隧道失效后提高恢复数据传输的速度。 本发明实施例提供网络间下行数据隧道失效后的处理系统, 能够在 下行数据隧道失效后提高恢复数据传输的速度。
本发明实施例提供网络间下行数据隧道失效后的处理设备, 能够在 下行数据隧道失效后提高恢复数据传输的速度。
本发明实施例的技术方案是这样实现的:
一种网络间下行数据隧道失效后的处理方法, 该方法包括: 核心网用户面锚点接收来自接入网设备的数据隧道错误指示, 确定 出所述错误指示对应的用户面采用单隧道技术后 , 通知相关的核心网控 制面请求恢复下行数据隧道;
所述核心网控制面恢复下行数据隧道, 并通知所述核心网用户面锚 点更新用户面信息。
一种网络间下行数据隧道失效后的处理系统, 该系统包括: 核心网 控制面和核心网用户面锚点;
所述核心网用户面锚点, 用于接收来自接入网设备的数据隧道错误 指示, 并在确定出所述错误指示对应的用户面采用了单隧道技术时, 通 知所述核心网控制面请求恢复下行数据隧道;
所述核心网控制面, 用于恢复下行数据隧道, 并通知所述核心网用 户面锚点更新用户面信息。
一种网络间下行数据隧道失效后的处理设备, 该设备为 GGSN, 包 括: 接收单元以及发送单元;
所述接收单元, 用于接收来自接入网设备的数据隧道错误指示; 所述发送单元 , 用于在确定出所述错误指示对应的用户面采用了单 隧道技术时, 通知相关核心网控制面, 请求恢复下行数据隧道。
可见, 采用本发明实施例的技术方案, 核心网用户面锚点接收来自 接入网设备的数据隧道错误指示, 确定出所述错误指示对应的用户面采 用了单隧道技术, 通知相关的核心网控制面请求恢复下行数据隧道, 核 心网控制面恢复下行数据隧道, 并通知核心网用户面锚点更新用户面信 息;在下行数据隧道失效后,核心网用户面锚点不释放对应 PDP上下文, 而是通知核心网控制面重新建立下行数据隧道 , 加快了在下行数据隧道 失效后恢复数据传输的速度,避免了 PDP需要重新激活对数据传输恢复 的不利影响。 附图简要说明
下面将通过参照附图详细描述本发明的示例性实施例 , 使本领域的 普通技术人员更清楚本发明的上 其它特征和优点 , 附图中:
图 1为现有 One Tunnel架构的组成示意图;
图 2为本发明方法实施例的总体流程图;
图 3为本发明方法第一个较佳实施例中用户激活 PDP上下文建立 IP 承载的流程图;
图 4为本发明方法第一个较佳实施例中用户面下行数据隧道失效后 的处理流程图;
图 5为本发明方法第二个较佳实施例中用户激活 PDP上下文建立 IP 承载的流程图;
图 6为本发明方法第二个较佳实施例中用户面下行数据隧道失效后 的处理流程图;
图 7为本发明系统实施例的组成结构示意图;
图 8为本发明设备实施例的组成结构示意图。 实施本发明的方式
为使本发明的目的、 技术方案和优点更加清楚, 下面结合附图对本 发明作进一步的详细描述。
在本发明的实施方式中, 核心网用户面锚点接收来自接入网设备的 数据隧道错误指示, 确定出该错误指示对应的用户面采用单隧道技术 后, 通知相关的核心网控制面请求恢复下行数据隧道; 核心网控制面恢 复下行数据隧道, 并通知核心网用户面锚点更新用户面信息。
本发明可以应用于现有的 3GPP系统以及演进的 3GPP系统中。 现有的 3GPP系统涉及到的 One Tunnel技术包括两种方案, 一种方 案为 SGSN仍然保留用户面的功能,如漫游用户、预付费用户等场景下, 为减少对核心网用户面锚点, 即 GGSN的改动, 不采用 One Tunnel方式 建立用户面, 而是继续采用传统的方式建立用户面。 图 1 为现有 One Tunnel 架构的组成示意图。 如图 1 所示, 用户面大部分流量通过采用 One Tunnel技术的隧道在 RNC与 GGSN之间直接传输, 如图 1中粗实 线所示; 小部分仍然通过 SGSN在 RNC和 GGSN之间传输, 如图 1中 的细实线所示。 以下将这种方案简称为 SGSN保留用户面的 One Tunnel 方案。
在单隧道技术中,另外一种方案彻底地把 SGSN用户面功能剥离掉, 所有场景都采用 RNC和 GGSN之间的隧道传输数据。如果采用此方案, 图 1中所示的 RNC-SGSN-GGSN之间的 GTP用户面 ( GTPU ) 隧道将 不再存在。 以下将这种方案简称为完全的 One Tunnel方案。
在演进的 3GPP系统中, One Tunnel技术的实现与上述完全的 One Tunnel方案基本相似, 只是其中的具体实体与现有的 3GPP系统略有差 别, 如其中的核心网控制面的功能, 即上述完全的 One Tunnel 方案中 SGSN 实现的功能将由移动性管理实体实现; 而上述 RNC 的功能将由 E-NodeB来实现。
以下以应用在现有 3GPP系统中为例, 对本发明方案进行进一步地 伴细说明。
图 2为本发明方法实施例的总体流程图。 如图 2所示, 包括以下步 骤:
步骤 201: GGSN根据接收的来自 RNC的错误指示, 确定出所述错 误指示对应的用户面采用单隧道技术后, 通知相关的 SGSN恢复下行数 据隧道。
步骤 202: SGSN向对应的 RNC发送重建无线接入承载请求, 请求 中携带有 GGSN分配的用于接收上行数据的隧道资源信息。
步骤 203: RNC完成无线接入承载重建, 并将自身分配的用于接收 下行数据的隧道资源信息返回给 SGSN,由 SGSN再以 RNC分配的用于 接收下行数据的隧道资源信息通知 GGSN更新 PDP上下文。
步骤 204: GGSN根据接收的 RNC分配的隧道资源信息更新对应的 PDP上下文, 恢复下行数据隧道。
此外, 在用户激活 PDP上下文的过程中, 可以根据 SGSN、 GGSN 是否支持 One Tunnel的信息确定是否采用 One Tunnel技术,如果确定采 用则在 GGSN的 PDP上下文中记录采用了 One Tunnel技术。
在上述 SGSN保留用户面的 One Tunnel方案中, 当 RNC与 GGSN 之间的下行数据隧道失效后, GGSN可以在与 RNC之间的下行数据隧 道恢复前, 通过 SGSN向 RNC发送下行数据, 从而进一步加快下行数 据传输的恢复速度, 并降低对 GGSN緩存数据的要求。
以下通过较佳实施例对上述两种 One Tunnel 方案分别进行详细说 明。
本发明方法的第一个较佳实施例中采用 SGSN保留用户面的 One Tunnel方案。图 3为本发明方法第一个较佳实施例中用户激活 PDP上下 文建立 IP承载的流程图。 如图 3所示, 包括如下步骤: 步骤 301: 移动用户的终端向 SGSN发送激活 PDP上下文请求。 步骤 302a: SGSN选择 GGSN, 并向所选择的 GGSN发送创建 PDP 上下文请求。
该请求中携带有用户的永久身份标识、 手机号码、 用户请求的服务 质量(QoS, Quaility of Service ),要求激活的接入点名称( APN, Access Point Name )、 SGSN分配的接收下行数据用的用户面 IP地址和 GTP隧 道端标识 TEID等信息。
步骤 302b: GGSN创建 PDP上下文, 并向 SGSN返回创建 PDP上 下文响应消息。
该响应消息中携带有协商后的 QoS、 GGSN为接收上行数据分配的 用户面 IP地址、 GTP隧道端标识 TEID 以及 GGSN是否能支持 One Tunnel的指示等信息, SGSN根据 GGSN返回的创建 PDP上下文响应消 息更新对应的 PDP上下文。
步骤 303: SGSN根据用户的签约信息、 漫游状态以及 GGSN是否 能支持 One Tunnel等信息决定是否采用 One Tunnel建立用户面。
步骤 304a: SGSN向 RNC下发 RAB指派请求。
如果采用 One Tunnel, 则该请求消息中携带有 GGSN分配的用于接 收上行数据的用户面 IP地址和隧道端标识信息;如果不采用 One Tunnel, 则执行正常建立用户面流程, 在 RAB指派请求消息中包括 SGSN分配 的用于接收上行数据的用户面 IP地址和隧道端标识信息。
步骤 304b: RNC为新建立的上下文分配资源, 并返回 RAB指派响 应消息。
该响应消息中携带有 RNC分配的用于接收下行数据的用户面 IP地 址和 GTP隧道端标识 TEID信息 , 以及许可的 QoS。
步骤 305a: 如果是采用 One Tunnel建立的用户面,或者 SGSN确定 出 RNC通过 RAB指派响应消息发送的 QoS相对于 GGSN通过对应的 创建 PDP上下文响应消息上 ^艮的 QoS有变化, SGSN需要再向 GGSN 发起更新 PDP上下文的请求。
如果是采用 One Tunnel建立的用户面,更新 PDP上下文请求消息中 携带有 RNC分配的用于接收下行数据的用户面 IP地址、 GTP隧道端标 识 TEID信息和用户面采用 One Tunnel的指示,即单隧道标识;如果 QoS 有变化, 更新 PDP上下文请求消息中携带有 RNC返回的 QoS。
步骤 305b: GGSN根据收到的请求信息, 更新 PDP上下文中的相 应信息 , 并返回更新 PDP上下文响应消息。
SGSN接收到更新 PDP上下文响应消息后, 根据其中的信息更新对 应的 PDP上下文。 这里如果用户面采用 One Tunnel建立, 则 GGSN在 创建成功的 PDP上下文中也保存了信息标记以指示用户面是采用 One Tunnel建立的。
步骤 306: SGSN向移动用户的终端下发激活 PDP上下文接受消息, 该消息中携带有 GGSN分配的 IP地址和最终协商确定的 QoS。
通过图 3所示流程建立 IP承载后,图 4为本发明方法第一个较佳实 施例中用户面的下行数据隧道失效后的处理流程图。 如图 4所示, 具体 包括如下步骤:
步骤 401: GGSN收到用户的下行数据报文后, 定位相应的 PDP上 下文, 并根据保存的 PDP上下文中的路由信息, 将数据报文进行 GTP 封装后, 发往对应的 GTP隧道。
步骤 402: RNC收到下行的 GTP数据包, 定位用户面上下文失败, 向发送该 GTP数据包的 GTP隧道源端, 返回错误提示消息。
步骤 403: GGSN收到 RNC返回的错误提示消息, 确定出对应的 PDP上下文是采用 One Tunnel建立的用户面后, 根据该 PDP上下文中 保存的控制面信息中携带有的 SGSN信息, 发送用户面建立请求给相应 的 SGSN。
这里, 如果 GGSN收到 RNC返回的错误提示消息, 确定出对应的 PDP上下文不是采用 One Tunnel建立的用户面后, 直接释放 PDP上下 文。
步骤 404a: SGSN接收到用户面建立请求后, 分配用于接收下行数 据的用户面 IP地址和 GTP隧道端标识 TEID,并将分配的信息携带在更 新 PDP上下文请求消息中通知给 GGSN, 同时消息中指示 PDP上下文 不采用 One Tunnel建立用户面。
这里, SGSN发送更新 PDP上下文请求消息给 GGSN的目的是, 建 立 SGSN和 GGSN间的 GTP隧道, 故消息中指示 PDP上下文是不采用 One Tunnel建立的用户面。
步骤 404b: GGSN根据请求消息中的信息更新对应的 PDP上下文, 之间, 并向 SGSN返回更新 PDP上下文响应消息。
此后, GGSN把接收到的下行用户数据, 通过更新后的 GGSN和 SGSN之间的 GTP隧道, 转发给 SGSN; SGSN緩存 GGSN转发的下行 数据。
步骤 405a: SGSN可以在收到 GGSN的建立用户面请求后, 或者在 通过更新后的 GTP隧道收到 GGSN转发的下行数据后, 向 RNC发起 RAB指派过程 , 即向 RNC发送 RAB指派请求消息。
该消息中携带有 SGSN的 PDP上下文中记录的、 GGSN分配的用于 如果 SGSN没有收到 GGSN的建立用户面请求或 GGSN转发的下行 数据, 则结束流程。 步骤 405b: RNC返回 RAB指派响应消息。
该消息中携带有 RNC为接收下行数据分配的用户面 IP地址和 GTP 隧道端标识 TEID信息, 或进一步携带有 QoS 等隧道资源信息。 如果 SGSN有緩存数据,则 SGSN通过上述 RNC返回信息指定的隧道资源信 息, 下发给 RNC。
步骤 406a: SGSN向 GGSN发起更新 PDP上下文请求消息。
该消息中携带有 RNC分配的用于接收下行数据的用户面 IP地址和 GTP隧道端标识 TEID信息, 以及用户面采用了 One Tunnel的指示。 另 外, 如果 RNC返回的 QoS相对来自 GGSN的对应 QoS有变化, 更新 PDP上下文请求消息中还将携带有 RNC返回的 QoS。
步骤 406b: GGSN根据收到的请求信息, 更新 PDP上下文中的相 应信息, 将 GGSN和 SGSN之间的隧道又更新到 GGSN和 RNC之间, 并向 SGSN返回更新 PDP上下文响应消息。
在执行完图 4所示流程后, 就恢复了 GGSN和 RNC之间的下行数 据隧道, 进而可以通过该下行数据隧道向用户发送数据。
本发明方法的第二较佳实施例中采用完全的 One Tunnel方案。 图 5 为本发明方法第二个较佳实施例中用户激活 PDP上下文建立 IP承载的 流程图。 如图 5所示, 具体包括如下步骤:
步骤 501: 移动用户的终端向 SGSN发送激活 PDP上下文请求。 步骤 502a: SGSN选择 GGSN, 并发送创建 PDP上下文请求消息给 选择的 GGSN。
该消息中携带有用户的永久身份标识、手机号码、用户请求的 QoS、 要求激活的 APN、 SGSN分配的接收下行数据用的用户面 IP地址和 GTP 隧道端标识 TEID, 以及 SGSN是否能支持 One Tunnel的指示等信息。
步骤 502b: GGSN根据接收的创建 PDP上下文请求消息中的信息 为用户创建 PDP上下文, 并返回创建 PDP上下文响应消息给 SGSN。 该响应消息中携带有协商后的 QoS、 GGSN分配的用于接收上行数 据的用户面 IP地址、 GTP隧道端标识 TEID信息, 以及 GGSN是否能 支持 One Tunnel的指示信息。
步骤 503: 如果 SGSN确定出自身和 GGSN都能支持 One Tunnel, 则决定采用 One Tunnel建立用户面;否则不采用 One Tunnel建立用户面。
步骤 504a: SGSN下发 RAB指派请求给 RNC。
如果 SGSN决定采用 One Tunnel建立用户面, 则 RAB指派请求消 息中携带的是 GGSN分配的用于接收上行数据的用户面 IP地址和隧道 端标识信息; 否则执行正常建立用户面流程, 在 RAB指派请求消息中 携带 SGSN分配的用于接收上行数据的用户面 IP地址和隧道端标识信 步骤 504b: RNC接收到 RAB指派请求后, 为新建的 PDP上下文分 配资源, 并向 SGSN返回 RAB指派响应消息。
该响应消息中携带有 RNC分配的用于接收下行数据的用户面 IP地 址和 GTP隧道端标识 TEID信息 , 以及许可的 QoS。
步骤 505a:如果采用 One Tunnel建立用户面,或者 RNC返回的 QoS 相对来自 GGSN的对应 QoS有变化, 则 SGSN需要再向 GGSN发起更 新 PDP上下文请求消息。
如果是采用 One Tunnel建立的用户面, 该消息中携带有 RNC为接 收下行数据分配的用户面 IP地址和 GTP隧道端标识 TEID信息; 如果 RNC返回的 QoS相对 GGSN返回的 QoS有变化, 消息中携带有 RNC 返回的 QoS。
步骤 505b: GGSN根据收到的更新 PDP上下文请求信息,更新 PDP 上下文中的相应信息, 并返回响应消息。 由于 GGSN能够根据自身是否支持 One Tunnel的信息, 和步骤 502 中 SGSN通过创建 PDP上下文请求中包括的该 SGSN是否支持 One Tunnel的信息, 确定是否采用 One Tunnel建立用户面, 因此这里如果采 用 One Tunnel建立用户面, 则创建成功的 PDP上下文中保存了信息标 记以指示用户面是采用 One Tunnel建立的。
步骤 506: SGSN向移动用户的终端下发激活 PDP上下文接受消息。 该消息中携带有 GGSN为该用户分配的 IP地址和最终协商确定的 QoS。
在建立 IP承载后,图 6为本发明方法第二个较佳实施例中用户面下 行数据隧道失效后的处理流程图。 如图 6所示, 具体包括如下步骤: 步骤 601: GGSN收到用户的下行数据报文后, 定位到相应的 PDP 上下文,并根据保存的 PDP上下文中的路由信息,将数据报文进行 GTP 封装后, 发往对应的 GTP隧道。
步骤 602: RNC收到下行的 GTP数据包, 定位用户面上下文失败, 向发送该 GTP数据包的 GTP隧道源端, 返回错误提示消息。
步骤 603: GGSN收到 RNC返回的错误提示消息, 确定出对应的 PDP上下文是采用 One Tunnel建立的用户面后, 根据该 PDP上下文中 保存的控制面信息中携带有的 SGSN信息, 发送用户面建立请求给相应 的 SGSN。
这里, 如果 GGSN收到 RNC返回的错误提示消息, 确定出对应的 PDP上下文不是采用 One Tunnel建立的用户面后, 直接释放 PDP上下 文。
步骤 604a: SGSN向 RNC发起 RAB指派过程,即向 RNC发送 RAB 指派请求消息。
该消息中携带有 SGSN的 PDP上下文中保存的、 GGSN分配的接收 上行数据的用户面 IP地址和 GTP隧道端标识 TEID信息。
步骤 604b: RNC返回 RAB指派响应消息。
该消息中携带有 RNC分配的用于接收下行数据的用户面 IP地址和 GTP隧道端标识 TEID信息 , 以及许可的 QoS。
步骤 605a: SGSN向 GGSN发送更新 PDP上下文请求消息。
该消息中携带有 RNC为接收下行数据分配的用户面 IP地址和 GTP 隧道端标识 TEID信息。 如果 RNC返回的 QoS相对来自 GGSN的 QoS 有变化, 则该消息还携带有 RNC返回的 QoS。
步骤 605b: GGSN根据收到的更新 PDP上下文请求信息,更新 PDP 上下文中的相应信息, 将 GGSN 和 SGSN 之间的数据隧道又更新到 GGSN和 RNC之间, 并返回更新 PDP上下文响应消息。
基于上述方法, 图 7为本发明系统实施例的组成结构示意图。 如图 7所示, 该系统包括: 核心网控制面 701和核心网用户面锚点 702; 核心网用户面锚点 702, 用于接收来自接入网设备的数据隧道错误 指示, 并在确定出该错误指示对应的用户面采用了单隧道技术时, 通知 核心网控制面 701请求恢复下行数据隧道;
核心网控制面 701 , 用于恢复下行数据隧道, 并通知核心网用户面 锚点 702更新用户面信息。
该系统中还进一步包括: 接入网设备 703, 用于根据确定出的数据 隧道失效信息, 向核心网用户面锚点 702发送数据隧道错误指示, 并根 据来自核心网控制面 701的命令进行无线接入承载重建, 以及向核心网 控制面 701发送无线接入承载完成信息。
实际应用中, 上述核心网控制面 701可以为 SGSN, 核心网用户面 锚点 702可以为 GGSN, 接入网设备 703可以为 RNC:
SGSN将 GGSN分配的用于接收上行数据的隧道资源信息发送给 RNC , 并将来自 RNC 的用于接收下行数据的隧道资源信息发送给 GGSN;
GGSN根据来自 SGSN的 RNC分配的用于接收下行数据的隧道资 源信息更新 PDP上下文, 恢复 GGSN与 RNC之间的下行数据隧道;
RNC根据接收的来自 SGSN的 GGSN分配的用于接收上行数据的 隧道资源信息, 分配用于接收下行数据的隧道资源信息, 并将自身分配 的隧道资源信息发送给 SGSN。
在 SGSN保留用户面功能的 One Tunnel方案中, SGSN可以进一步 根据 PDP上下文中保存的 GGSN分配的用于接收上行数据的隧道资源 信息, 分配用于接收下行数据的隧道资源信息, 建立与 GGSN之间的数 据隧道; 以及根据来自 RNC 的用于接收下行数据的隧道资源信息, 将 通过 SGSN与 GGSN之间的数据隧道接收并緩存的数据发送给 RNC。
SGSN还可以进一步在用户激活 PDP上下文的流程中,在 SGSN保 留用户面功能的 One Tunnel方案中根据用户的签约信息、漫游状态以及 GGSN是否能支持 One Tunnel等信息决定是否采用 One Tunnel建立用户 面;或在完全的 One Tunnel方案中根据自身和 GGSN是否都能支持 One Tunnel的信息决定是否采用 One Tunnel建立用户面。
图 8为本发明设备实施例的组成结构示意图。 如图 8所示, 该设备 为 GGSN设备, 具体包括: 接收单元 801以及发送单元 802;
接收单元 801 , 用于接收来自接入网设备的数据隧道错误指示; 发送单元 802, 用于在确定出所述错误指示对应的用户面采用了单 隧道技术时, 通知核心网控制面请求恢复下行数据隧道。
此外, 该设备中进一步包括: 存储单元 803, 用于根据接收单元 801 接收到的来自核心网控制面的接入网设备分配的隧道资源信息更新 PDP 上下文, 恢复与接入网设备之间的下行数据隧道。 在后续演进的 3GPP系统中, 核心网的控制面和用户面分离, 核心 网的用户面只有一层,包括核心网用户面实体( UPE , User Plan Entity ) 和不同接入系统的错点 (IASA , Inter Access System Anchor ), 在未来 演进网络架构中合为同一网络实体, 可称为核心网用户面锚点, 其具体 执行的功能与上述 GGSN所执行的功能基本相同; 而核心网的控制面, 在规范中称为移动性管理实体(MME, Mobility Management Entity ), 独立为一个实体, 其具体执行的功能与完全的 One Tunnel方案中 SGSN 所执行的功能基本相同; 此外, 在后续演进的 3GPP 系统中, E-NodeB 实现上述 RNC的功能;因此本发明以上所述方法和系统不仅适用于 Rd7 以前的 3GPP系统的 One Tunnel架构, 而且适用于上述演进的 3GPP系 统。 则本发明应用于 3GPP系统后, 携带有 UPE和 IASA功能的核心网 用户面锚点所执行的关于下行数据隧道恢复的功能与 GGSN类似,而核 心网的控制面所执行的关于下行数据隧道恢复的功能与 SGSN 类似, E-NodeB所执行的关于下行数据隧道恢复的功能与 RNC类似, 相对于 上述第二实施例只是具体的信令名称可能不同, 其具体的处理实现基本 相同, 这里不再详述。
以上是对本发明具体实施例的说明, 在具体的实施过程中可对本发 明的方法进行适当的改进,以适应具体情况的具体需要。 因此可以理解, 根据本发明的具体实施方式只是起示范作用, 并不用以限制本发明的保 护范围。

Claims

权利要求书
1、 一种网络间下行数据隧道失效后的处理方法, 其特征在于, 该 方法包括:
核心网用户面锚点接收来自接入网设备的数据隧道错误指示, 确定 出所述错误指示对应的用户面采用单隧道技术后 , 通知相关的核心网控 制面请求恢复下行数据隧道;
所述核心网控制面恢复下行数据隧道, 并通知所述核心网用户面锚 点更新用户面信息。
2、根据权利要求 1所述的方法, 其特征在于, 所述核心网控制面恢 复下行数据隧道, 并通知所述核心网用户面锚点更新用户面信息的方法 包括:
所述核心网控制面向接入网中的接入网设备发送重建无线接入承载 请求, 请求中携带有所述核心网用户面锚点分配的用于接收上行数据的 隧道资源信息;
所述接入网设备完成无线接入承载重建, 将自身分配的用于接收下 行数据的隧道资源信息返回给所述核心网控制面, 由所述核心网控制面 以所述接入网设备分配的隧道资源信息通知所述核心网用户面锚点更 新分组数据协议 PDP上下文;
所述核心网用户面锚点根据所述接收的接入网设备分配的隧道资源 信息更新对应的 PDP上下文,恢复与所述接入网设备之间的下行数据隧 道。
3、根据权利要求 1所述的方法, 其特征在于, 所述核心网控制面恢 复下行数据隧道, 并通知所述核心网用户面锚点更新用户面信息的方法 包括:
所述核心网控制面分配用于接收下行数据的隧道资源信息 , 并以所 分配的隧道资源信息通知所述核心网用户面锚点更新 PDP上下文; 所述核心网用户面锚点才 据所述核心网控制面分配的隧道资源信 息, 将下行数据隧道更新至核心网用户面锚点与所述核心网控制面之 间。
4、 根据权利要求 3所述的方法, 其特征在于, 该方法进一步包括: 所述核心网用户面锚点接收下行用户数据 , 将所述下行用户数据通 过所述核心网用户面锚点与所述核心网控制面之间的隧道发送给所述 核心网控制面 , 所述核心网控制面緩存接收到的下行用户数据。
5、 根据权利要求 4所述的方法, 其特征在于, 该方法进一步包括: 所述核心网控制面向接入网中的接入网设备发送重建无线接入承载 请求, 请求中携带有所述核心网用户面锚点分配的用于接收上行数据的 隧道资源信息;
所述接入网设备完成无线接入承载重建, 将自身分配的用于接收下 行数据的隧道资源信息返回给所述核心网控制面, 由所述核心网控制面 以所述接入网设备分配的隧道资源信息通知所述核心网用户面锚点更 新分组数据协议 PDP上下文;
所述核心网用户面锚点根据所述接收的接入网设备分配的隧道资源 信息更新对应的 PDP上下文,恢复与所述接入网设备之间的下行数据隧 道。
6、根据权利要求 5所述的方法, 其特征在于, 所述核心网控制面接 收到所述接入网设备分配的隧道资源信息之后, 该方法进一步包括: 如 果所述核心网控制面緩存有下行用户数据 , 所述核心网控制面根据所述 隧道资源信息向所述接入网设备发送所述核心网控制面緩存的下行用 户数据。
7、根据权利要求 3所述的方法, 其特征在于, 所述核心网控制面通 知所述核心网用户面锚点更新 PDP上下文的消息中进一步携带有通知 用户面不采用单隧道建立的信息。
8、 根据权利要求 1所述的方法, 其特征在于, 所述的核心网用户 面锚点为 GGSN或核心网用户面实体;所述核心网控制面为 SGSN或移 动管理实体; 所述接入网用户设备为 RNC或 E-NodeB。
9、根据权利要求 1或 8所述的方法, 其特征在于, 所述核心网用户 面锚点接收来自接入网设备的数据隧道错误指示之前, 进一步包括: 在激活用户上下文过程中 , 当所述核心网控制面确定采用单隧道建 立用户面时, 在所述的核心网用户面锚点和所述的接入网设备间, 采用 单隧道建立用户面。
10、 根据权利要求 9所述的方法, 其特征在于, 所述核心网控制面 确定采用单隧道建立用户面的因素包括:
核心网用户面锚点是否支持单隧道、核心网控制面是否支持单隧道、 用户的签约数据, 以及用户的漫游状态。
11、 根据权利要求 9所述的方法, 其特征在于, 所述核心网控制面 确定采用单隧道建立用户面的因素包括:
核心网用户面锚点是否支持单隧道、 用户的签约数据, 以及用户的 漫游状态。
12、 根据权利要求 2或 3所述的方法, 其特征在于, 所述隧道资源 信息包括: 用户面的 IP地址和 GTP隧道端标识。
13、 一种网络间下行数据隧道失效后的处理系统, 其特征在于, 该 系统包括: 核心网控制面和核心网用户面锚点;
所述核心网用户面锚点, 用于接收数据隧道错误指示, 并在确定出 所述错误指示对应的用户面采用单隧道技术时, 通知所述核心网控制面 请求恢复下行数据隧道; 所述核心网控制面, 用于恢复下行数据隧道, 并通知所述核心网用 户面锚点更新用户面信息。
14、根据权利要求 13所述的系统, 其特征在于, 该系统中进一步包 括: 接入网设备, 用于根据确定出的数据隧道失效信息, 向所述核心网 用户面锚点发送数据隧道错误指示, 并根据来自所述核心网控制面的命 令进行无线接入承载重建, 向所述核心网控制面发送无线接入承载完成 信息。
15、根据权利要求 14所述的系统, 其特征在于, 所述核心网控制面 为 SGSN, 所述核心网用户面锚点为 GGSN, 所述接入网设备为 RNC; 发送给所述 RNC , 并将来自所述 RNC的用于接收下行数据的隧道资源 信息发送给所述 GGSN;
所述 GGSN根据来自所述 SGSN的 RNC分配的用于接收下行数据 的隧道资源信息更新 PDP上下文, 恢复与所述 RNC之间的下行数据隧 道;
所述 RNC根据接收的来自所述 SGSN的 GGSN分配的用于接收上 行数据的隧道资源信息, 分配用于接收下行数据的隧道资源信息, 并将 分配的隧道资源信息发送给所述 SGSN。
16、 根据权利要求 15所述的系统, 其特征在于, 所述 SGSN进一 步用于, 分配用于接收下行数据的隧道资源信息, 建立与所述 GGSN之 间的数据隧道; 并根据来自所述 RNC 的用于接收下行数据的隧道资源 信息,将通过 SGSN与 GGSN之间的数据隧道接收并緩存的数据发送给 所述 RNC。
17、根据权利要求 13所述的系统, 其特征在于, 所述系统应用于演 进的 3GPP技术, 所述的核心网控制面为移动性管理实体; 所述接入网 设备为 E-NodeB。
18、一种网络间下行数据隧道失效后的处理设备,该设备为 GGSN, 其特征在于, 该设备包括: 接收单元以及发送单元;
所述接收单元, 用于接收来自接入网设备的数据隧道错误指示; 所述发送单元 , 用于在确定出所述错误指示对应的用户面采用了单 隧道技术时, 通知所述核心网控制面请求恢复下行数据隧道。
19、根据权利要求 18所述的设备, 其特征在于, 该设备中进一步包 括: 存储单元, 用于根据所述接收单元接收到的来自所述核心网控制面 的接入网设备分配的隧道资源信息更新 PDP上下文,恢复与所述接入网 设备之间的下行数据隧道。
PCT/CN2007/070475 2006-08-15 2007-08-14 Procédé, système et dispositif de traitement d'invalidation d'un tunnel de données inter-réseaux en liaison descendante WO2008019627A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES07800951T ES2373998T3 (es) 2006-08-15 2007-08-14 Método de proceso para la invalidación del túnel de datos del enlace descendente entre redes, sistema de comunicaciones y dispositivo.
EP07800951A EP2037633B1 (en) 2006-08-15 2007-08-14 A processing method,system and device of invalidation of downlink data tunnel among networks
AT07800951T ATE531164T1 (de) 2006-08-15 2007-08-14 Verfahren, system und gerät zum abbruch eines downlinkdatentunnels zwischen netzwerken
US12/369,431 US8125889B2 (en) 2006-08-15 2009-02-11 Method, system and device for recovering invalid downlink data tunnel between networks
US13/357,366 US8867339B2 (en) 2006-08-15 2012-01-24 Method, system and device for recovering invalid downlink data tunnel between networks
US14/484,133 US9848450B2 (en) 2006-08-15 2014-09-11 Method, system and device for recovering invalid downlink data tunnel between networks
US15/831,631 US10721780B2 (en) 2006-08-15 2017-12-05 Method, system and device for recovering invalid downlink data tunnel between networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610115276.X 2006-08-15
CN200610115276A CN101128041B (zh) 2006-08-15 2006-08-15 接入网和核心网间下行数据隧道失效后的处理方法和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/369,431 Continuation US8125889B2 (en) 2006-08-15 2009-02-11 Method, system and device for recovering invalid downlink data tunnel between networks

Publications (1)

Publication Number Publication Date
WO2008019627A1 true WO2008019627A1 (fr) 2008-02-21

Family

ID=39081958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070475 WO2008019627A1 (fr) 2006-08-15 2007-08-14 Procédé, système et dispositif de traitement d'invalidation d'un tunnel de données inter-réseaux en liaison descendante

Country Status (6)

Country Link
US (4) US8125889B2 (zh)
EP (1) EP2037633B1 (zh)
CN (1) CN101128041B (zh)
AT (1) ATE531164T1 (zh)
ES (1) ES2373998T3 (zh)
WO (1) WO2008019627A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280173A1 (en) * 2009-01-23 2011-11-17 Samsung Electronics Co., Ltd. Apparatus and method for providing multimedia broadcast/multicast service in mobile communication system
WO2016154804A1 (zh) * 2015-03-27 2016-10-06 华为技术有限公司 数据传输方法、接入网设备和通信系统

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758223B2 (en) 2005-04-08 2010-07-20 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
CN101128041B (zh) 2006-08-15 2010-05-12 华为技术有限公司 接入网和核心网间下行数据隧道失效后的处理方法和系统
CN100486381C (zh) 2006-08-18 2009-05-06 中兴通讯股份有限公司 分组域中ggsn获知sgsn启用单隧道信息的方法
CN101094152B (zh) * 2006-11-07 2010-08-18 中兴通讯股份有限公司 一种分组域单隧道无线网络控制器错误的处理方法
CN101409951B (zh) * 2007-10-11 2010-08-25 华为技术有限公司 承载建立方法及相关装置
JP4569683B2 (ja) 2007-10-16 2010-10-27 東芝ライテック株式会社 発光素子ランプ及び照明器具
JP5353216B2 (ja) 2008-01-07 2013-11-27 東芝ライテック株式会社 Led電球及び照明器具
WO2009157285A1 (ja) 2008-06-27 2009-12-30 東芝ライテック株式会社 発光素子ランプ及び照明器具
CN102171664B (zh) * 2008-08-06 2014-12-03 莫维克网络公司 无线电接入网(ran)中的内容高速缓存
JP5333758B2 (ja) 2009-02-27 2013-11-06 東芝ライテック株式会社 照明装置および照明器具
JP5348410B2 (ja) 2009-06-30 2013-11-20 東芝ライテック株式会社 口金付ランプおよび照明器具
JP2011049527A (ja) 2009-07-29 2011-03-10 Toshiba Lighting & Technology Corp Led照明装置
CN102577458B (zh) * 2009-08-12 2016-07-06 黑莓有限公司 适应混合ipv4v6网络支持
JP2011071242A (ja) 2009-09-24 2011-04-07 Toshiba Lighting & Technology Corp 発光装置及び照明装置
JP2011091033A (ja) 2009-09-25 2011-05-06 Toshiba Lighting & Technology Corp 発光モジュール、電球形ランプおよび照明器具
CN102032479B (zh) 2009-09-25 2014-05-07 东芝照明技术株式会社 灯泡型灯以及照明器具
CN102032481B (zh) 2009-09-25 2014-01-08 东芝照明技术株式会社 附带灯口的照明灯及照明器具
US8678618B2 (en) 2009-09-25 2014-03-25 Toshiba Lighting & Technology Corporation Self-ballasted lamp having a light-transmissive member in contact with light emitting elements and lighting equipment incorporating the same
US8112062B2 (en) 2009-12-22 2012-02-07 Cellco Partnership System and method for sending threshold notification in real time
CN102550006A (zh) * 2010-02-12 2012-07-04 莫维克网络公司 移动网络中的无线接入网络缓存
JP5257622B2 (ja) 2010-02-26 2013-08-07 東芝ライテック株式会社 電球形ランプおよび照明器具
CN102598628A (zh) 2010-03-15 2012-07-18 莫维克网络公司 用于多媒体传送的自适应分块和内容感知同步设备及方法
US8565076B2 (en) 2010-09-24 2013-10-22 Movik Networks Destination learning and mobility detection in transit network device in LTE and UMTS radio access networks
US8565068B2 (en) * 2011-03-24 2013-10-22 Telefonaktiebolaget L M Ericsson (Publ) System and method for preventing deadlock in direct tunnel release
KR101791533B1 (ko) * 2011-04-28 2017-10-30 삼성전자 주식회사 이동통신 시스템에서 자원 예약 방법 및 시스템
CN102858008B (zh) * 2011-06-28 2017-04-12 中兴通讯股份有限公司 直连隧道的移动性管理方法、网元及系统
CN102857905B (zh) * 2011-06-28 2017-07-21 中兴通讯股份有限公司 建立直接隧道的实现方法、网元及系统
US9271313B2 (en) * 2011-07-01 2016-02-23 Telefonaktiebolaget L M Ericsson (Publ) Service frequency based 3GDT
US9204329B2 (en) 2011-07-21 2015-12-01 Movik Networks Distributed RAN information collection, consolidation and RAN-analytics
US9001682B2 (en) 2011-07-21 2015-04-07 Movik Networks Content and RAN aware network selection in multiple wireless access and small-cell overlay wireless access networks
US8908507B2 (en) 2011-07-21 2014-12-09 Movik Networks RAN analytics, control and tuning via multi-protocol, multi-domain, and multi-RAT analysis
EP2557890B1 (en) * 2011-08-12 2019-07-17 BlackBerry Limited Simplified ue + enb messaging
CN103369592B (zh) * 2012-03-27 2016-06-22 中国移动通信集团公司 分组域中的报文传输方法及相关设备
WO2015018038A1 (zh) 2013-08-08 2015-02-12 华为技术有限公司 一种隧道建立的方法及装置
WO2015123347A1 (en) 2014-02-11 2015-08-20 Yaana Technologies, LLC Mathod and system for metadata analysis and collection with privacy
US9693263B2 (en) 2014-02-21 2017-06-27 Yaana Technologies, LLC Method and system for data flow management of user equipment in a tunneling packet data network
US10447503B2 (en) 2014-02-21 2019-10-15 Yaana Technologies, LLC Method and system for data flow management of user equipment in a tunneling packet data network
US10334037B2 (en) 2014-03-31 2019-06-25 Yaana Technologies, Inc. Peer-to-peer rendezvous system for minimizing third party visibility and method thereof
US9992692B2 (en) * 2014-10-03 2018-06-05 Telefonaktiebolaget Lm Ericsson (Publ) Network node, a mobility management node and methods therein for handling GTP tunnel failures in a radio communications network
US10285038B2 (en) 2014-10-10 2019-05-07 Yaana Technologies, Inc. Method and system for discovering user equipment in a network
WO2016060483A1 (en) * 2014-10-16 2016-04-21 Lg Electronics Inc. Method and apparatus for handling e-rab switch problem for dual connectivity in wireless communication system
US10542426B2 (en) 2014-11-21 2020-01-21 Yaana Technologies, LLC System and method for transmitting a secure message over a signaling network
US9572037B2 (en) * 2015-03-16 2017-02-14 Yaana Technologies, LLC Method and system for defending a mobile network from a fraud
US10257248B2 (en) 2015-04-29 2019-04-09 Yaana Technologies, Inc. Scalable and iterative deep packet inspection for communications networks
CN106714133B (zh) 2015-08-14 2020-09-15 中兴通讯股份有限公司 网关的恢复处理方法及装置
EP3375155A4 (en) 2015-11-13 2019-08-14 Yaana Technologies, LLC SYSTEM AND METHOD FOR DISCOVERING INTERNET PROTOCOL (IP) NETWORK ADDRESS LINKS AND PORT TRANSLATION
CN106961748B (zh) * 2016-01-08 2022-07-26 北京三星通信技术研究有限公司 控制ue上下文和ue连接的方法和设备
CN107041017A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 Ue上下文信息恢复方法、装置和系统
CN107295570B (zh) * 2016-04-12 2019-11-12 大唐移动通信设备有限公司 下行数据的传输方法和核心网设备
CN106900081B (zh) * 2016-08-23 2019-06-25 中国移动通信有限公司研究院 接入网节点粒度的用户面数据隧道传输的方法及装置
CN110024423B (zh) * 2016-11-30 2021-06-01 华为技术有限公司 一种错误指示的处理方法、设备及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030021256A1 (en) * 2001-07-09 2003-01-30 Samsung Electronics Co., Ltd. Packet data transmitting method in a CDMA mobile communication system
US7054945B2 (en) 2001-04-09 2006-05-30 Nokia Corporation Technique for providing announcements in mobile-originated calls

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574266B1 (en) 1999-06-25 2003-06-03 Telefonaktiebolaget Lm Ericsson (Publ) Base-station-assisted terminal-to-terminal connection setup
FI108491B (fi) * 2000-02-11 2002-01-31 Nokia Corp Palvelevan verkkoelementin uudelleen sijoitus
US8218535B1 (en) * 2000-07-04 2012-07-10 Nokia Corporation Method and device for attaching a user equipment to a telecommunication network
US7103002B2 (en) * 2000-07-12 2006-09-05 Telefonktiebolaget Lm Ericsson (Publ) Communication management in networks having split control planes and user planes
US6766482B1 (en) * 2001-10-31 2004-07-20 Extreme Networks Ethernet automatic protection switching
WO2003105493A2 (en) 2002-06-06 2003-12-18 Thomson Licensing S.A. Wlan as a logical support node for hybrid coupling in an interworking between wlan and a mobile communications system
JP3903826B2 (ja) * 2002-04-01 2007-04-11 日本電気株式会社 Gprsシステム、在圏ノード装置及びそれらに用いるベアラ設定方法並びにそのプログラム
KR100827136B1 (ko) * 2002-05-17 2008-05-02 삼성전자주식회사 이동통신시스템에서의 시그널링 연결 설정방법
JP4034782B2 (ja) * 2003-04-24 2008-01-16 富士通株式会社 リング間接続装置、及びデータ転送制御方法
WO2004102853A2 (en) * 2003-05-06 2004-11-25 Overture Networks, Inc. Protected switching ring
US7558205B1 (en) * 2003-08-01 2009-07-07 Foundry Networks, Inc. System and method for detecting and isolating a remote loop
US7440459B2 (en) * 2004-02-02 2008-10-21 Lucent Technologies Inc. Methods of detecting protocol support in wireless communication systems
CN1671119A (zh) * 2004-03-15 2005-09-21 阿扎尔网络公司 用于透明、安全地将wlan无线电接入网与gprs/gsm核心网络互连的方法和系统
JP2005269059A (ja) * 2004-03-17 2005-09-29 Fujitsu Ltd データ中継装置、データ中継方法およびデータ中継プログラム
CN101189838B (zh) * 2005-03-31 2014-09-10 日本电气株式会社 环形网络系统、故障恢复方法和节点
EP1727313A1 (en) * 2005-05-25 2006-11-29 Siemens Aktiengesellschaft Ring network and method for automatic protection switching
CN101502166B (zh) * 2005-06-07 2012-08-22 北方电讯网络有限公司 在接入网关节点中提供一种数据功能
CN1941730A (zh) * 2005-09-26 2007-04-04 华为技术有限公司 实现rpr桥冗余保护的方法
US8817696B2 (en) * 2006-05-22 2014-08-26 Cisco Technology, Inc. Enhanced unlicensed mobile access network architecture
CN101128041B (zh) 2006-08-15 2010-05-12 华为技术有限公司 接入网和核心网间下行数据隧道失效后的处理方法和系统
CN100512564C (zh) * 2006-08-21 2009-07-08 中兴通讯股份有限公司 一种分组域网关支持节点错误的处理方法
EP2122963B1 (en) * 2006-12-22 2016-06-22 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement relating to communications network services request activation
WO2008080717A1 (en) * 2006-12-29 2008-07-10 Nokia Corporation Direct tunnel error handling
FI20075062A0 (fi) * 2007-02-01 2007-02-01 Nokia Corp Menetelmä, laite, järjestelmä, tietokoneohjelmatuote ja tietokoneohjelman jakeluväline
US8630315B2 (en) * 2010-02-17 2014-01-14 Ciena Corporation Ethernet network synchronization systems and methods
US8908533B2 (en) * 2010-06-10 2014-12-09 Infinera Corporation Supporting OAM on protecting connections in shared mesh protection environment
US8467363B2 (en) * 2011-08-17 2013-06-18 CBF Networks, Inc. Intelligent backhaul radio and antenna system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054945B2 (en) 2001-04-09 2006-05-30 Nokia Corporation Technique for providing announcements in mobile-originated calls
US20030021256A1 (en) * 2001-07-09 2003-01-30 Samsung Electronics Co., Ltd. Packet data transmitting method in a CDMA mobile communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and Sytsem Aspects; One Tunnel Functional description; (Release 7)", 3GPP TR 23.809 V0.3.0, 31 July 2006 (2006-07-31), pages 26 - 27, XP002493526 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280173A1 (en) * 2009-01-23 2011-11-17 Samsung Electronics Co., Ltd. Apparatus and method for providing multimedia broadcast/multicast service in mobile communication system
US8665791B2 (en) * 2009-01-23 2014-03-04 Samsung Electronics Co., Ltd. Apparatus and method for providing multimedia broadcast/multicast service in mobile communication system
WO2016154804A1 (zh) * 2015-03-27 2016-10-06 华为技术有限公司 数据传输方法、接入网设备和通信系统
US10477610B2 (en) 2015-03-27 2019-11-12 Huawei Technologies Co., Ltd. Data transmission method, access network device, and communication system

Also Published As

Publication number Publication date
US20090147670A1 (en) 2009-06-11
ES2373998T3 (es) 2012-02-10
EP2037633A4 (en) 2009-07-29
US8125889B2 (en) 2012-02-28
US20140376506A1 (en) 2014-12-25
US9848450B2 (en) 2017-12-19
US8867339B2 (en) 2014-10-21
CN101128041A (zh) 2008-02-20
EP2037633B1 (en) 2011-10-26
EP2037633A1 (en) 2009-03-18
US20180098365A1 (en) 2018-04-05
US20120120788A1 (en) 2012-05-17
ATE531164T1 (de) 2011-11-15
US10721780B2 (en) 2020-07-21
CN101128041B (zh) 2010-05-12

Similar Documents

Publication Publication Date Title
US10721780B2 (en) Method, system and device for recovering invalid downlink data tunnel between networks
US8190149B2 (en) Dynamic GGSN relocation in a GPRS network
WO2009121255A1 (zh) 承载挂起的方法、承载恢复的方法及网关代理
CN113473567A (zh) 支持数据传输的方法和设备
WO2009049529A1 (fr) Procédé d'établissement de support de charge et dispositif associé
WO2011110025A1 (zh) 无线通信系统中终端切换的方法及系统
WO2012136097A1 (zh) 分组数据网络网关及终端移动性管理的系统
TWM319589U (en) Apparatus for supporting handoff in an LTE GTP based wireless communication system
JP2014534720A (ja) Iratハンドオーバ中ipコンテキストのロスを最小化するためのシステムおよび方法
WO2009132550A1 (zh) 一种切换方法及通讯系统以及相关设备
WO2010031353A1 (zh) 服务请求的处理方法、装置及系统
WO2010111814A1 (zh) 用于以最小包损失移动wcdma移动台的装置和方法
WO2009121237A1 (zh) 一种激活状态下用户设备跨接入网切换的实现方法
WO2012136098A1 (zh) 一种移动性管理、及为终端创建上下文和建立通道的方法
WO2011006404A1 (zh) 本地ip访问连接建立的实现方法及系统
WO2008113283A1 (fr) Procédé et équipement de suivi de signalisation
WO2009132582A1 (zh) 一种删除承载的方法与装置
WO2009140917A1 (zh) 建立用户面单隧道的方法、系统及其基站子系统
WO2013104111A1 (zh) 业务恢复方法和移动管理网元
EP2061264B1 (en) A method and system for acquiring that sgsn has started single tunnel by ggsn in a packet domain
WO2013091170A1 (zh) 一种处理设备故障的方法、装置及系统
WO2014086003A1 (zh) 承载处理方法及装置、系统
CN108307465B (zh) 一种轻连接用户设备的连接控制的方法及设备
WO2009152757A1 (zh) 一种数据报文发送方法、装置及通信系统
WO2009129697A1 (zh) 一种删除控制平面隧道的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07800951

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007800951

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU