WO2009140917A1 - 建立用户面单隧道的方法、系统及其基站子系统 - Google Patents

建立用户面单隧道的方法、系统及其基站子系统 Download PDF

Info

Publication number
WO2009140917A1
WO2009140917A1 PCT/CN2009/071871 CN2009071871W WO2009140917A1 WO 2009140917 A1 WO2009140917 A1 WO 2009140917A1 CN 2009071871 W CN2009071871 W CN 2009071871W WO 2009140917 A1 WO2009140917 A1 WO 2009140917A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
station subsystem
user plane
interface
protocol
Prior art date
Application number
PCT/CN2009/071871
Other languages
English (en)
French (fr)
Inventor
马新友
苗立靖
蔺波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2009140917A1 publication Critical patent/WO2009140917A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/14Interfaces between hierarchically different network devices between access point controllers and backbone network device

Definitions

  • the present invention relates to the field of electronic communications, and in particular, to a method, system and base station subsystem for establishing a user plane single tunnel.
  • GPRS General Packet Radio Service
  • UMTS PS Universal Mobile Telecommunication System Packet Switch
  • NodeB a base station (NodeB), providing an air interface connection for the terminal;
  • the RNC Radio Network Controller
  • the NodeB and the RNC are collectively referred to as the RNS (Radio Network System), and the RNC and the NodeB are connected through the Iub interface. Accessing the UMTS packet domain network core network (Packet Core) through the RNS;
  • Packet Core packet domain network core network
  • the SGSN (Serving GPRS Support Node) is used to serve the GPRS support node, and is used to store the location information of the user's routing area, and is responsible for security and access control; the SGSN is connected to the RNS through the IuPS interface; the IuPS interface includes the control plane interface IuPS-C interface, User plane interface IuPS-U interface;
  • GGSN Gateway GPRS Support Node
  • gateway GPRS support node used for negative responsible for allocating the IP address of the terminal and the gateway function to the external network, and internally connecting to the SGSN through the Gn-C interface and the Gn-U interface;
  • the home location register is a home location register, which is used to store the user's subscription data and the current SGSN address, and is connected to the SGSN through the Gr interface, and is connected to the GGSN through the Gc interface.
  • the PDN Packet Data Network
  • the PDN is a packet data network, which is used to provide a packet-based service network for users, and is connected to the GGSN through a Gi interface.
  • the data transmitted in Figure 1 is divided into two types, user plane data and control plane data.
  • the user plane is mainly responsible for transmitting user service data
  • the control plane is mainly responsible for managing the user plane, including the establishment, translation, and modification of the user plane.
  • the user plane path from the UE (User Equipment, User Equipment/Terminal) to the PDN passes through at least three network elements: RNC, SGSN, and GGSN.
  • RNC User Equipment, User Equipment/Terminal
  • GGSN GGSN
  • RNC to SGSN tunnel SGSN
  • the tunnel to the GGSN is therefore called the dual tunnel scheme. Both tunnels are based on the GTP (GPRS Tunneling Protocol) protocol, which is also known as the GTP-U tunnel.
  • GTP GPRS Tunneling Protocol
  • the 3GPP the Third Generation Partnership Project
  • the user plane contains only one tunnel: from the RNC directly to the GGSN.
  • the GTP-U tunnel this scheme is called a single tunnel scheme, as shown in Figure 2.
  • the single tunneling scheme has a smaller delay in the user plane, so the data delay is smaller, which is more conducive to the transmission of multimedia services.
  • GSM Global System for Mobile
  • GPRS Global System for Mobile
  • SNDCP Subnetwork Dependence
  • Converage Protocol subnet-related convergence protocol
  • BSC Base Station Controller
  • S AE System Architecture Evolution
  • Embodiments of the present invention provide a method, system, and base station subsystem for establishing a user plane single tunnel, so as to establish a single tunnel of a user plane between a base station subsystem in a traditional GSM/GPRS network and a packet domain network/SAE network.
  • An embodiment of the present invention provides a system for establishing a user plane single tunnel between a base station subsystem and a packet domain network, including a base station subsystem, an SGSN, and a GGSN coupled to the SGSN;
  • the base station subsystem is coupled to the SGSN of the packet domain network through an enhanced packet domain network Iu control plane interface (eluPS-C); the base station subsystem passes the enhanced packet domain network Iu user plane interface (eluPS- U) is coupled to the GGSN of the packet domain network; the base station subsystem establishes a user plane single tunnel between the eluPS-U interface and the GGSN.
  • eluPS-C enhanced packet domain network Iu control plane interface
  • eluPS- U enhanced packet domain network Iu user plane interface
  • An embodiment of the present invention provides a system for establishing a user plane single tunnel by a base station subsystem and a system architecture evolution network, including: a base station subsystem, a mobility management entity (MME), and a coupling with the mobility management entity (MME) Service gateway (S-GW);
  • MME mobility management entity
  • S-GW Service gateway
  • the base station subsystem is coupled to a mobility management entity (MME) in a system architecture evolution network through an enhanced S1 control plane interface (eS1-C); the base station subsystem passes an enhanced user plane interface (eSl) -U) is coupled to a serving gateway (S-GW) in the system architecture evolution network, and the base station subsystem establishes a user plane single tunnel between the eS1-U interface and the S-GW.
  • MME mobility management entity
  • eS1-C enhanced S1 control plane interface
  • eSl enhanced user plane interface
  • S-GW serving gateway
  • the embodiment of the present invention provides a base station subsystem, configured to establish a user plane single tunnel with a packet domain network, and at least includes: a user plane interface enhancement module, configured to implement the base station subsystem to be coupled to the GGSN through an eluPS-U interface. And establish a user plane single tunnel;
  • the control plane interface enhancement module is configured to implement the base station subsystem to be coupled to the SGSN through the eluPS-C interface.
  • An embodiment of the present invention provides a base station subsystem, which is used to establish a user with a system architecture evolution network.
  • the single-plane tunnel includes at least: a user plane interface enhancement module, configured to implement the base station subsystem to be coupled to a serving gateway (S-GW) through an eS1-U interface, and establish a user plane single tunnel;
  • S-GW serving gateway
  • the control plane interface enhancement module is configured to implement the base station subsystem to be coupled to the mobility management entity (MME) through the eS1-C interface. .
  • An embodiment of the present invention provides a method for establishing a user plane single tunnel by a base station subsystem and a packet domain network, including:
  • the base station subsystem sets an enhanced packet domain network.
  • the Iu control plane interface (eluPS-C) is coupled to the SGSN of the packet domain network;
  • the Iu user plane interface (eluPS-U) is coupled to the GGSN of the packet domain network;
  • the base station subsystem establishes a user plane single tunnel between the eluPS-U interface and the GGSN.
  • An embodiment of the present invention provides a method for establishing a user plane single tunnel by a base station subsystem and a system architecture evolution network, including:
  • the base station subsystem sets an enhanced S1 control plane interface (eSl-C) coupled to the mobility management entity (MME) of the system architecture evolution network;
  • eSl-C enhanced S1 control plane interface
  • MME mobility management entity
  • an enhanced user plane interface (eSl-U) coupled to a service gateway (S-GW) of the system architecture evolution network;
  • the base station subsystem establishes a user plane single tunnel between the eS1-U interface and the serving gateway (S-GW).
  • the embodiment of the present invention implements a single tunnel for establishing a user plane between a base station subsystem in a traditional GSM/GPRS network and a GGSN of a packet domain network, and may also be a base station subsystem of the GSM/GPRS and a service gateway of the SAE (A single tunnel of the user plane is established between the S-GWs, which can reduce the user plane delay of the packet domain network and improve the transmission efficiency.
  • FIG. 1 is a schematic diagram of a dual tunnel system architecture of the prior art in UMTS/GPRS;
  • FIG. 2 is a schematic diagram of a single tunnel system architecture of a UMTS/GPRS in the prior art
  • 3 is a GSM/GPRS user plane protocol stack in the prior art
  • FIG. 4 is a block diagram of an embodiment of a system for establishing a user plane single tunnel in a base station subsystem and a packet domain network (UMTS) according to the present invention
  • FIG. 5 is an architectural diagram of an embodiment of a system for establishing a user plane single tunnel in a base station subsystem and a system architecture evolution network (SAE) according to the present invention
  • FIG. 6 is a schematic diagram of a user plane protocol stack in an embodiment of a system for establishing a user plane single tunnel in a base station subsystem and a packet domain network (UMTS) according to the present invention
  • FIG. 7 is a schematic diagram of a control plane protocol stack in an embodiment of a system for establishing a user plane single tunnel in a base station subsystem and a packet domain network (UMTS) according to the present invention
  • FIG. 8 is a schematic diagram of a control plane protocol stack of an enhanced interface in an embodiment of a base station subsystem of the present invention.
  • FIG. 9 is a schematic diagram of another control plane protocol stack of an enhanced interface in an embodiment of a base station subsystem of the present invention.
  • FIG. 10 is a schematic structural diagram of an embodiment of a base station subsystem according to the present invention.
  • FIG. 11 is a schematic diagram of a user plane protocol stack in an embodiment of a system for establishing a user plane single tunnel in a base station subsystem and a system architecture evolution network (SAE) according to the present invention
  • FIG. 12 is a schematic diagram of a control plane protocol stack in an embodiment of a system for establishing a user plane single tunnel in a base station subsystem and a system architecture evolution network (SAE) according to the present invention
  • FIG. 13 is a schematic structural diagram of another embodiment of a base station subsystem according to the present invention.
  • FIG. 14 is a schematic diagram of still another embodiment of a base station subsystem of the present invention.
  • 15 is a flow chart of one embodiment of a method for establishing a user plane single tunnel in accordance with the present invention
  • 16 is a schematic flowchart of implementing PDP context deactivation in an embodiment of a method for establishing a user plane single tunnel according to the present invention
  • FIG. 17 is a flowchart of another embodiment of a method for establishing a user plane single tunnel according to the present invention
  • FIG. 18 is a schematic diagram of a process for a source eBSS to actively transfer a BSS context to a target eBSS according to an embodiment of the present invention
  • FIG. 19 is a schematic diagram of a process for requesting a target eBSS to obtain a BSS context from a target eBSS according to an embodiment of the present invention
  • 20 is a schematic flow chart of an embodiment of the present invention for implementing handover by using an inter-BSS enhanced interface and simultaneously implementing an acquisition context;
  • Figure 21 is a flow chart showing another embodiment of the present invention for implementing a handover context when utilizing an inter-BSS enhanced interface.
  • a single tunnel is implemented by modifying a GSM/GPRS network architecture and a Gb interface protocol stack; and a single tunnel is implemented by modifying a SAE network architecture and an S1 interface protocol stack.
  • FIG. 4 it is a system architecture diagram of an embodiment of a system in which a base station subsystem of the present invention establishes a user plane single tunnel with a packet domain network.
  • the system of the embodiment of the present invention includes: a terminal (not shown), a base station subsystem (BSS), and a packet domain network (UMTS), wherein the BSS includes a base station controller (BSC) and a base transceiver station ( BST);
  • BSC base station controller
  • BST base transceiver station
  • a packet domain network (UMTS) includes at least an SGSN and a GGSN coupled to the SGSN.
  • the base station subsystem is coupled to the SGSN of the packet domain network through an enhanced packet domain network Iu control plane interface (eluPS-C); the base station subsystem passes the enhanced packet domain network Iu user plane interface (eluPS-U) and Packet domain network
  • eluPS-C enhanced packet domain network Iu control plane interface
  • eluPS-U enhanced packet domain network Iu user plane interface
  • Packet domain network The GGSN is coupled to each other; the base station subsystem establishes a user plane single tunnel between the eluPS-U interface and the GGSN, wherein the eluPS-C and eluPS-U interfaces are to the original IuPS interface (IuPS-C, IuPS-U interface) Modifications and enhancements are detailed later.
  • FIG. 5 it is a system architecture diagram of an embodiment of a system in which a base station controller and a system architecture evolution network of the present invention establish a user plane single tunnel.
  • the system of the embodiment of the present invention includes: a terminal (not shown), a base station subsystem (BSS), and a system architecture evolution network (SAE), wherein the BSS includes a base station controller (BSC) and a base transceiver station. (BST);
  • the System Architecture Evolution Network (SAE) includes at least a Mobility Management Entity (MME) and a Serving Gateway (S-GW) coupled to the MME.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the base station subsystem is coupled to a mobility management entity (MME) in the system architecture evolution network through an enhanced S1 control plane interface (eS1-C); the base station subsystem passes an enhanced user plane interface (eSl-U) And being coupled to the S-GW (Serving Gateway) in the system architecture evolution network, where the base station subsystem establishes a user plane single tunnel between the eS1-U interface and the S-GW.
  • MME mobility management entity
  • eS1-C enhanced S1 control plane interface
  • eSl-U enhanced user plane interface
  • S-GW Serving Gateway
  • FIG. 6 it is a schematic diagram of the user plane protocol stack in FIG. 4; in order to implement a user plane single tunnel, a BSS (such as a BSC therein) is required to perform user plane processing, and the SNDCP protocol and logical link control ( LLC, The Logic Link Control protocol is moved down to the BSC for processing, and the BSC is required to be able to process the GTP-U protocol. Therefore, the user plane protocol stack of the embodiment of FIG. 4 of the present invention can adopt the manner of FIG.
  • a BSS such as a BSC therein
  • LLC logical link control
  • FIG. 7 is a modified control plane protocol stack corresponding to FIG. 4 of the present invention.
  • the BSC in the BSS increases the processing of the Radio Access Network Application Part (RANAP), and the LLC moves down to the BSC for processing.
  • RANAP Radio Access Network Application Part
  • NAS Network Attached Storage
  • BSSGP Base Subsystem GPRS Protocol, base station subsystem GPRS
  • 3G NAS/RANAP Radio Access Network Application Part protocol
  • an enhanced interface may be set on the base station subsystem (BSS, Base Station Subsystem) to couple the BSS with other BSSs, and perform signaling or data transmission between the two BSSs.
  • FIG. 8 is a schematic diagram of a control plane protocol stack for setting an Iur interface on a base station subsystem
  • FIG. 9 is a schematic diagram of a control plane protocol stack for setting an X2 interface on a base station subsystem. It will be understood that the above is merely an example and that partial enhancement is not excluded to achieve the same function.
  • SNDCP is responsible for packet processing, packetization, encryption processing, LLC is responsible for encryption, retransmission, point-to-multipoint addressing, etc.
  • SNDCP is responsible for packet processing, packetization, encryption processing, LLC is responsible for encryption, retransmission, point-to-multipoint addressing, etc.
  • SNDCP is responsible for packet processing, packetization, encryption processing, LLC is responsible for encryption, retransmission, point-to-multipoint addressing, etc.
  • the protocol processing entity such as SNDCP/LLC moves to the BSS
  • the handover process between the BSSs can be completed based on the direct interface, so as to avoid the signaling load on the core network by the handover process. Reduce the delay.
  • the base station subsystem 20 includes at least a user plane interface enhancement module 200, configured to be coupled to the GGSN through the eluPS-U interface, and establish a user plane single tunnel between the two; and the control plane interface enhancement
  • the module 204 is configured to be coupled to the SGSN by using the eluPS-C interface.
  • the user plane interface enhancement module 200 includes: an SNDCP protocol processing module, a LLC protocol processing module, and a GTP-U protocol processing module, respectively configured to implement SNDCP protocol, LLC protocol, and GTP-U protocol stack processing in the base station subsystem. ability.
  • the control plane interface enhancement module 204 includes:
  • NAS layer protocol adaptation module used to implement base station subsystem NAS layer protocol and packet domain network Adaptation between NAS layer protocols
  • the RANAP protocol adaptation module is configured to implement adaptation between the BSSGP protocol of the base station subsystem and the packet domain network RANAP protocol.
  • FIG. 11 it is a schematic diagram of the user plane protocol stack in Figure 5.
  • the BSS (such as the BSC) can be processed by the user plane.
  • the SNDCP protocol and the LLC protocol need to be moved to the BSC for processing.
  • the BSC is required to be able to process the GTP-U protocol, so the user plane protocol stack of the embodiment of FIG. 5 of the present invention can adopt the manner of FIG.
  • Figure 12 is a modified control plane protocol stack corresponding to Figure 5 of the present invention.
  • the BSC in the BSS adds the processing of the S1AP (SI application protocol) protocol stack, and the LLC moves down to the BSC for processing. Due to the difference between the NAS/BSSGP protocol of 2G and the NAS/S1AP protocol of 3G SAE, the BSC needs to perform: 1) adaptation of the NAS layer protocol; 2) adaptation of the BSSGP and the S1AP protocol.
  • S1AP SI application protocol
  • Figure 13 is a schematic illustration of another embodiment of a base station subsystem of the present invention.
  • a base station subsystem of the present invention In this embodiment,
  • the base station subsystem 20 includes at least a user plane interface enhancement module 206, configured to be coupled to the service gateway (S-GW) through the eS1-U interface, and establish a user plane single tunnel between the two; and a control plane
  • the interface enhancement module 208 is configured to be coupled to the mobility management entity (MME) through the eS 1-C interface.
  • the user plane interface enhancement module 206 includes: an SNDCP protocol processing module, a LLC protocol processing module, and a GTP-U protocol processing module, respectively configured to implement the SNDCP protocol, the LLC protocol, and the GTP-U protocol stack in the base station subsystem. Processing capacity.
  • the control plane interface enhancement module 208 includes:
  • NAS layer protocol adaptation module for implementing NAS layer subsystem NAS layer protocol and system architecture evolution Adaptation between NAS layer protocols of the network
  • the S1AP protocol adaptation module is used to implement adaptation between the base station subsystem BSSGP protocol and the S1AP protocol of the system architecture evolution network.
  • the base station subsystem 20 may further include an inter-BSS interface enhancement module 210, configured to implement coupling of the BSS with other BSSs (particularly through an X2 interface), and between the two base station subsystems. Signaling or data transmission.
  • an inter-BSS interface enhancement module 210 configured to implement coupling of the BSS with other BSSs (particularly through an X2 interface), and between the two base station subsystems. Signaling or data transmission.
  • the terminal can include means for transmitting an Activate PDP Context Request message to the SGSN via the base station subsystem.
  • the SGSN may include means for transmitting a Create PDP Context Request message to the GGSN.
  • the GGSN may include: a module for receiving a create PDP context request message, and in response to the create PDP context request message, and sending a module for creating a PDP context response message to the SGSN, where the create PDP context response message includes a TEID of the GGSN (Tunnel Endpoint) Identifier, tunnel endpoint ID) and user plane address.
  • the SGSN may further include: a module for receiving a PDP context response message, and a module for sending a radio access bearer (RAB) assignment request message to the base station subsystem, where the RAB assignment request message carries TEID and user plane address information of the GGSN.
  • RAB radio access bearer
  • the base station subsystem may further include:
  • the RAB assignment request message receiving module 201 is configured to receive an RAB assignment request message from the SGSN;
  • the user plane tunnel establishing module 202 establishes a user plane single tunnel between the desired base station controller and the GGSN according to the TEID and the user plane address information of the GGSN.
  • the RAB assignment response message generating module 203 is configured to send an RAB assignment response message to the SGSN, carrying the TEID and user plane address information of the base station controller. Accordingly, in conjunction with the system of Figure 5, wherein:
  • the terminal can include means for transmitting a Activated Packet Data Protocol (PDP) Context Request message to the Mobility Management Entity (MME) in the System Architecture Evolved Network via the base station subsystem.
  • PDP Packet Data Protocol
  • MME Mobility Management Entity
  • the MME may include means for transmitting a Create PDP Context Request message to the S-GW.
  • the S-GW may include: a module for receiving a create PDP context request message, and in response to the create PDP context request message, and transmitting, to the MME, a module for creating a PDP context response message, where the create PDP context response message includes an S-GW TEID and user plane address.
  • the MME may further include: a module for receiving a PDP context response message, and a module for sending a RAB assignment request message to the base station subsystem, where the RAB assignment request message carries the TEID and the user plane address of the S-GW. information.
  • the base station subsystem can further include:
  • the RAB assignment request message receiving module is configured to receive an RAB assignment request message from the MME, where the RAB assignment request message carries the TEID and user plane address information of the serving gateway (S-GW); the user plane tunnel establishing module, according to the The TEID and user plane address information of the Serving Gateway (S-GW) establish a user plane tunnel with the Serving Gateway (S-GW).
  • S-GW serving gateway
  • S-GW Serving Gateway
  • FIG. 15 is a flowchart of an embodiment of a method for establishing a user plane single tunnel according to the present invention.
  • a PDP context activation procedure initiated by a UE is shown, and a BSC and a GGSN in the BSS are established. The process of the user facing a single tunnel. among them,
  • Step 1101 The terminal (UE) initiates a PDP (Packet Data Protocol) context request to the SGSN through the BSC.
  • PDP Packet Data Protocol
  • Step 1102 after the SGSN performs the subscription check, and then obtains the address of the GGSN.
  • the SGSN allocates user plane tunnel information, and then initiates a PDP context request to the GGSN, carrying the address of the SGSN and the allocated user plane tunnel information;
  • Step 1103 After the GGSN creates a PDP context request, the GGSN saves the address information of the SGSN and the user plane tunnel information, and creates a PDP context.
  • Step 1104 the GGSN allocates the user plane tunnel information of the GGSN end, and sends the PDP context response to the SGSN together with the address of the GGSN;
  • Step 1105 The SGSN saves the address of the GGSN and the user plane tunnel information, and then determines whether a single tunnel is used.
  • Step 1106 If the SGSN decides to adopt a single tunnel, the RAB (Radio Access Bearer) assignment process is initiated, and the BSC is instructed to establish a radio bearer.
  • the SGSN sends the GGSN address and the user plane tunnel information to the BSC. It can be understood that if the SGSN decides not to use the single tunnel, the SGSN carries the SGSN in the RAB assignment message according to the existing procedure. TEID and user plane address. This will be described later in the case where the SGSN decides to use a single tunnel.
  • RAB Radio Access Bearer
  • Step 1107 After receiving the RAB assignment request message, the BSC knows the address of the GGSN and the user plane tunnel information. The BSC continues the RAB assignment process and assigns the tunnel number at the BSC end. After success, return the RAB assignment response to the SGSN, carrying the address of the BSC and the allocated user plane tunnel information;
  • Step 1108 the SGSN determines that the single tunneling scheme is started, and sends the BSC address and the user plane tunnel information to the GGSN in the update PDP context request message.
  • Step 1109 After receiving the GGSN, the GGSN overwrites the previously saved SGSN address and user plane tunnel information with the received BSC address and user plane tunnel information. Thus, a GTP-U tunnel (ie, a single tunnel) between the BSC and the GGSN is established;
  • Step 1110 The GGSN returns an SGSN to update the PDP context response.
  • Step 1111 The SGSN returns to the terminal to activate the PDP context response, and successfully activates the PDP context.
  • step 1101 the following work should be implemented:
  • the step of coupling the enhanced packet domain network Iu control plane interface (eluPS-C) to the SGSN of the packet domain network comprises: using a NAS layer protocol in the base station subsystem and a packet domain network NAS layer protocol The step of adapting; and the step of adapting the BSSGP protocol in the base station subsystem to the packet domain network RANAP protocol.
  • the step of coupling the enhanced packet domain network Iu user plane interface (eluPS-U) to the GGSN of the packet domain network further includes: the eluPS-U performing the steps of the SNDCP protocol, the LLC protocol, and the GTP-U protocol processing.
  • the NAS layer protocol in the base station subsystem needs to be adapted to the packet layer network NAS layer protocol; and the BSSGP protocol in the base station subsystem is adapted to the packet domain network RANAP protocol.
  • FIG. 16 is a schematic flowchart of implementing PDP context deactivation in an embodiment of a method for establishing a user plane single tunnel according to the present invention.
  • a step SPDP context request initiated by the UE is shown, and the BSC and GGSN decode the radio access bearer.
  • Step 122 After receiving the deactivated PDP context request message, the SGSN sends a delete PDP context request message to the GGSN.
  • Step 123 The GGSN deletes the user plane tunnel and the stored RNC user plane address.
  • Step 124 The GGSN returns a delete PDP context response message to the SGSN.
  • Step 125 The SGSN returns to deactivate the PDP context response message.
  • Step S126 the radio access bearer (RAB) is translated and released between the BSC and the SGSN.
  • FIG. 17 is a flowchart of an embodiment of a method for establishing a user plane single tunnel according to the present invention; in the flowchart, a PDP context activation procedure initiated by a UE is shown, and a BSC establishes a user plane with the MME. The process of the tunnel. among them,
  • Step 1301 The terminal UE initiates a PDP (Packet Data Protocol) context request to the MME by using the BSC in the BSS.
  • PDP Packet Data Protocol
  • Step 1302 after the MME performs the subscription check, and then obtains the location of the serving gateway (S-GW). Address.
  • the MME allocates user plane tunnel information, and then initiates a PDP context request to the S-GW, carrying the address of the MME and the allocated user plane tunnel information;
  • Step 1303 After the S-GW creates a PDP context request, the S-GW saves the address information of the MME and the user plane tunnel information, and creates a PDP context.
  • Step 1304 the S-GW allocates the user plane tunnel information of the MME, and sends the PDP context response together with the address of the S-GW to the MME;
  • Step 1305 the MME saves the address of the S-GW and the user plane tunnel information, and then determines whether a single tunnel is used.
  • Step 1306 If the MME decides to adopt a single tunnel, the RAB (Radio Access Bearer) assignment process is initiated, and the BSC is instructed to establish a radio bearer.
  • the MME sends the S-GW address and the user plane tunnel information to the BSC in the BSS; otherwise, it carries the TEID and the user plane address of the MME.
  • Step 1307 After receiving the RAB assignment request message, the BSC knows the address of the S-GW and the user plane tunnel information. The BSC continues the RAB assignment process and assigns the tunnel number at the BSC end. After successful, return the RAB assignment response to the MME, carrying the address of the BSC and the allocated user plane tunnel information;
  • Step 1308 the MME determines that the single tunneling scheme is started, and sends the BSC address and the user plane tunnel information to the S-GW in the update PDP context request message.
  • Step 1309 After receiving the received BSC address and user plane tunnel information, the S-GW overwrites the previously stored MME address and user plane tunnel information. Thus, a GTP-U tunnel (ie, a single tunnel) between the BSC and the S-GW is established;
  • Step 1310 The S-GW returns an MME to update the PDP context response.
  • Step 1311 The MME returns to the terminal to activate the PDP context response, and successfully activates the PDP context.
  • step 1301 the following work should be implemented first:
  • the mobility management entity (MME) of the network is coupled; the enhanced user plane interface (eSl-U) is coupled to the service gateway (S-GW) of the system architecture evolution network; wherein, further, the setting is enhanced
  • the step of coupling the control plane interface (eS1-C) to the mobility management entity (MME) further comprises: a step of adapting a NAS layer protocol in the base station subsystem to a packet domain network NAS layer protocol; and The step of adapting the BSSGP protocol in the system to the packet domain network RANAP protocol.
  • the step of coupling the enhanced user plane interface (eSl-U) to the serving gateway (S-GW) further includes: the eluPS-U performing the steps of the SNDCP protocol, the LLC protocol, and the GTP-U protocol processing.
  • an enhanced BSS (eBSS) context recovery is taken as an example, and a handover procedure is used to illustrate how to implement coordination between eBSS and handover across eBSS by using the Iur interface between eBSSs.
  • eBSS enhanced BSS
  • the eBSS can obtain the context (eContext) of the eBSS through an inter-BSS enhanced interface (such as Iur or X2) between the eBSSs.
  • BSS context information element includes: an encryption key (Kc, Ciphering key), the force opening secret key sequence bad No.
  • the eBSS Context information element may be all of the above content, or may be the content of the above part.
  • the process of actively transmitting the BSS context to the target eBSS for the source eBSS may also be delivered in the manner shown in FIG. 19, where FIG. 19 is that the target eBSS requests the source eBSS to The process of getting the BSS context.
  • the target eBSS can obtain the eBSS context on the source eBSS through the enhanced inter-BSS interface with the source eBSS.
  • the information, and according to the handover indication from the source eBSS completes the process adaptation process of the cell update, the routing area update, etc., and the user coupled to the source eBSS can be switched to the target eBSS.
  • FIG. 20 a flow chart showing an embodiment of the present invention for implementing handover using an inter-BSS enhanced interface and simultaneously implementing an acquisition context is shown.
  • an inter-BSS enhanced interface between eBSSs can be utilized to implement handover across eBSS and BSS context recovery.
  • Step S210 the source eBSS decides to perform handover, and determines the target eBSS
  • Step S211 The source eBSS sends a handover request to the target eBSS, where the message may carry the eBSS context information.
  • Step S212 If the target eBSS accepts, reserve the resource
  • Step S213 The target eBSS responds to the source eBSS, and may carry the acknowledgement of the eBSS context, the radio resources allocated to the UE, the time slot, and the like in the message;
  • Step S214 The source eBSS initiates a handover command to the UE, so that it initiates the handover.
  • Step S215 The UE switches the radio resource, and initiates an access to the target eBSS.
  • Step S216 The target eBSS sends the packet physical information to the UE, and performs synchronization.
  • Step S217 The UE initiates an uplink LLC PDU, such as a cell/route update request.
  • Step S218 The target eBSS sends a handover complete message to the SGSN.
  • the relevant parameters of the eBSS side of establishing an Iu connection may be carried;
  • Step S219 The SGSN sends a handover complete response message to the target eBSS.
  • the subsequent release process of the Iu connection between the source eBSS and the SGSN may be initiated by the SGSN or the target eBSS to the source eBSS.
  • a flow chart showing another embodiment of the present invention for transmitting a context when switching is performed by using an inter-BSS enhanced interface.
  • the context information can be carried using the handover message of the eBSS to the SGSN. The method comprises the following steps:
  • Step S220 the source eBSS decides to perform handover, and determines the target eBSS;
  • Step S221 The source eBSS sends a handover request message to the SGSN, where the message can be carried in the message.
  • eBSS context With eBSS context;
  • Step S221a The SGSN sends a handover request message to the target eBSS, where the eBSS context may be carried in the message;
  • Step S222 If the target eBSS accepts, reserve the resource
  • Step S222 The target eBSS sends a handover response message to the SGSN to indicate whether access is possible.
  • Step S224 The source eBSS initiates a handover command to the UE, causing the handover to be initiated.
  • Step S225 The UE switches the radio resource, and initiates an access to the target eBSS.
  • Step S226 The target eBSS sends the packet physical information to the UE, and performs synchronization.
  • Step S227 The UE initiates an uplink LLC PDU, such as a cell/route update request.
  • Step S228 The target eBSS sends a handover complete message to the SGSN.
  • the relevant parameters of the eBSS side of establishing an Iu connection may be carried;
  • Step S229 The SGSN sends a handover complete response message to the target eBSS.
  • the subsequent release process of the Iu connection between the source eBSS and the SGSN may be initiated by the SGSN or the target eBSS to the source eBSS.
  • the SGSN does not need to participate excessively in the handover preparation phase and the execution phase, thereby avoiding the handover process bringing signaling load to the core network and reducing delay.
  • the technical solution of the invention solves the problem that the single tunnel is not supported in the traditional GSM/GPRS network. Therefore, a feasible solution for implementing a single tunnel in a conventional GSM/GPRS network is provided, which promotes network evolution and convergence, and saves and protects operator investment.
  • single tunnel technology can also be implemented in SAE, which also promotes network evolution and convergence, saving and protecting operator investment.
  • the BSC in the base station subsystem is taken as an example.
  • a person skilled in the art may understand that there may be other units in the base station subsystem that can implement the function, without affecting the essence of the present invention. It should also fall within the scope of protection of the present invention. It is used alone or in various cases with or without other features and elements of the invention.
  • the method or flowchart provided by the present invention can be implemented in a computer program, software or firmware executed by a general purpose computer or processor, wherein the computer program, software or firmware is tangibly embodied in a computer readable storage medium. .
  • Examples of the computer readable storage medium include read only memory (ROM), random access memory (RAM), registers, buffer memory, semiconductor storage devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and Optical media such as CD-ROM discs and digital versatile discs (DVDs).
  • ROM read only memory
  • RAM random access memory
  • registers buffer memory
  • semiconductor storage devices magnetic media such as internal hard disks and removable disks, magneto-optical media, and Optical media such as CD-ROM discs and digital versatile discs (DVDs).

Description

建立用户面单隧道的方法、 系统及其基站子系统 本申请要求于 2008 年 5 月 20 日提交中国专利局、 申请号为 200810028185.1 , 发明名称为"建立用户面单隧道的方法、 系统及其基站子系 统"的中国专利申请的优先权, 以及 2008年 12月 31 日提交中国专利局、 申 请号为 200810187472.7, 发明名称为"建立用户面单隧道的方法、 系统及其基 站子系统"的中国专利申请的优先权, 两件在先申请文件的内容通过引用结合 在本申请中。
技术领域
本发明涉及电子通信领域, 尤其涉及一种建立用户面单隧道的方法、 系 统及其基站子系统。
背景技术
GPRS (General Packet Radio Service, 通用分组无线业务 )是一个基于包 交换的第二代移动通信网络。到了第三代移动通信系统, GPRS 演进为 UMTS PS ( Universal Mobile Telecommunication System Packet Switch, 通用移动通信 系统分组交换)域。 如图 1 所示, 为 UMTS PS的网络架构, 该网络架构中 包含如下网元:
基站(NodeB ), 为终端提供空口连接;
RNC(Radio Network controller ), 为无线网络控制器, 主要用于管理无线 资源以及控制 NodeB, NodeB与 RNC 总称为 RNS(Radio Network System, 无线网络系统), RNC 与 NodeB之间通过 Iub接口连接,终端通过 RNS接 入 UMTS 的分组域网络核心网 (Packet Core ) ;
SGSN (Serving GPRS Support Node ), 为服务 GPRS 支持节点, 用于保存 用户的路由区位置信息, 负责安全和接入控制; SGSN通过 IuPS接口与 RNS 相连; IuPS接口包括控制面接口 IuPS-C接口、 用户面接口 IuPS-U接口;
GGSN (Gateway GPRS Support Node ), 为网关 GPRS 支持节点, 用于负 责分配终端的 IP地址和到外部网络的网关功能, 在内部通过 Gn-C接口、 Gn-U接口与 SGSN相连;
HLR ( Home Location Register ), 为归属位置寄存器, 用于保存用户的签 约数据和当前所在的 SGSN地址, 通过 Gr接口与 SGSN相连, 通过 Gc接口 与 GGSN相连;
PDN ( Packet Data Network ) , 为分组数据网络, 用于为用户提供基于分 组的业务网, 通过 Gi接口与 GGSN相连。
在图 1 中传输的数据分为两种, 用户面数据和控制面数据。 用户面主要 负责传输用户业务数据, 而控制面主要负责管理用户面, 包括用户面的建立、 译放、修改等。 在 UMTS PS 系统中从 UE ( User Equipment, 用户设备 /终端) 到 PDN 的用户面路径至少经过 3 个网元: RNC、 SGSN和 GGSN,对应地, 有两个隧道: RNC 到 SGSN 的隧道、 SGSN到 GGSN 的隧道, 因此被称为 双隧道方案。 这两个隧道都是基于 GTP (GPRS Tunneling Protocol, GPRS 隧 道协议)协议, 该隧道也被称为 GTP-U 隧道。
随着 IMS( IP Multimedia Subsystem, IP 多媒体子系统) 业务的逐步开 展以及其他多媒体业务的推广, 业务对传输层的延迟和性能要求越来越高。 于是 3GPP ( the Third Generation Partnership Project,第三代合作伙伴计划)组 织正在研究将 SGSN从用户面路径中剥离开来, 作为单独的控制面网元, 用 户面只包含一个隧道: 从 RNC 直接到 GGSN 的 GTP-U 隧道, 该方案被称 为单隧道方案, 如图 2 所示。
相对于双隧道方案来说, 单隧道方案由于在用户面少了一个节点, 因此 数据的延迟比较小, 更加有利于传输多媒体业务。
本发明人在实现本发明时发现, 如图 3 所示的一种全球移动通信系统 ( GSM, Global System for Mobile ) /GPRS用户面协议栈, 因为 Gb接口用户 面协议采用的是 SNDCP ( Subnetwork Dependence Converage Protocol, 子网相 关汇聚协议), 并且基站控制器( BSC, Base Station Controller )不处理用户面, 传统的 GSM/GPRS网络架构与分组域网络结合的网络系统中, 无法实现单隧 道, 同样的问题也存在于传统的 GSM/GPRS 网络架构与 S AE ( System Architecture Evolution, 系统架构演进) 网络结合的网络系统中。
发明内容
本发明实施例提供一种建立用户面单隧道的方法、 系统及基站子系统, 以使传统的 GSM/GPRS 网络中的基站子系统与分组域网络 /SAE 网络之间建 立用户面的单隧道。
本发明实施例提供一种基站子系统与分组域网络建立用户面单隧道的系 统, 包括基站子系统、 SGSN以及与所述 SGSN相耦接的 GGSN;
其中, 所述基站子系统通过增强的分组域网络 Iu控制面接口 (eluPS-C ) 与分组域网络的 SGSN相耦接; 所述基站子系统通过增强的分组域网络 Iu用 户面接口 ( eluPS-U )与所述分组域网络的 GGSN相耦接; 所述基站子系统通 过所述 eluPS-U接口与所述 GGSN之间建立用户面单隧道。
本发明实施例提供一种基站子系统与系统架构演进网络建立用户面单隧 道的系统, 包括: 基站子系统、 移动性管理实体(MME ) 以及与所述移动性 管理实体(MME )相耦接的服务网关(S-GW );
其中, 所述基站子系统通过增强的 S1控制面接口 (eSl-C )与系统架构 演进网络中的移动性管理实体(MME )相耦接; 所述基站子系统通过增强的 用户面接口 (eSl-U )与系统架构演进网络中的服务网关 (S-GW )相耦接, 所述基站子系统通过所述 eSl-U接口与所述 S-GW之间建立用户面单隧道。
本发明实施例提供一种基站子系统, 用于与分组域网络建立用户面单隧 道, 至少包括: 用户面接口增强模块, 用于实现所述基站子系统通过 eluPS-U 接口与 GGSN相耦接并建立用户面单隧道;
控制面接口增强模块, 用于实现所述基站子系统通过 eluPS-C接口与 SGSN相耦接。
本发明实施例提供一种基站子系统, 用于与系统架构演进网络建立用户 面单隧道, 至少包括: 用户面接口增强模块, 用于实现所述基站子系统通过 eSl-U接口与服务网关(S-GW )相耦接并建立用户面单隧道;
控制面接口增强模块, 用于实现所述基站子系统通过 eSl-C接口与移动 性管理实体 ( MME )相耦接。。
本发明实施例提供一种基站子系统与分组域网络建立用户面单隧道的方 法, 包括:
基站子系统设置增强的分组域网络 Iu控制面接口(eluPS-C )与分组域网 络的 SGSN相耦接;
设置增强的分组域网络 Iu用户面接口(eluPS-U )与分组域网络的 GGSN 相耦接;
所述基站子系统通过所述 eluPS-U接口与所述 GGSN之间建立用户面单 隧道。
本发明实施例提供一种基站子系统与系统架构演进网络建立用户面单隧 道的方法, 包括:
基站子系统设置增强的 S1控制面接口 (eSl-C ) 与系统架构演进网络的 移动性管理实体(MME )相耦接;
设置增强的用户面接口( eSl-U )与系统架构演进网络的服务网关( S-GW ) 相耦接;
所述基站子系统通过所述 eSl-U接口与所述服务网关(S-GW )之间建立 用户面单隧道。
实施本发明实施例, 实现了传统的 GSM/GPRS网络中的基站子系统与分 组域网络的 GGSN之间建立用户面的单隧道,也可以在 GSM/GPRS的基站子 系统与 SAE 的服务网关(S-GW )之间建立用户面的单隧道, 可以减少分组 域网络的用户面时延, 提高传输效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中一种 UMTS/GPRS的双隧道系统架构图;
图 2是现有技术中一种 UMTS/GPRS的单隧道系统架构图;
图 3是现有技术中 GSM/GPRS用户面协议栈;
图 4是本发明基站子系统与分组域网络( UMTS )建立用户面单隧道的系 统一个实施例的架构图;
图 5是本发明基站子系统与系统架构演进网络 ( SAE )建立用户面单隧道 的系统一个实施例的架构图;
图 6是本发明基站子系统与分组域网络( UMTS )建立用户面单隧道的系 统的一个实施例中一种用户面协议栈示意图;
图 7是本发明基站子系统与分组域网络( UMTS )建立用户面单隧道的系 统的一个实施例中一种控制面协议栈示意图;
图 8是本发明基站子系统的一个实施例中增强接口的一种控制面协议栈 示意图;
图 9是本发明基站子系统的一个实施例中增强接口的另一种控制面协议 栈示意图;
图 10是本发明基站子系统的一个实施例结构示意图;
图 11是本发明基站子系统与系统架构演进网络(SAE )建立用户面单隧 道的系统一个实施例中一种用户面协议栈示意图;
图 12是本发明基站子系统与系统架构演进网络(SAE )建立用户面单隧 道的系统一个实施例中一种控制面协议栈示意图;
图 13是本发明基站子系统的另一个实施例结构示意图;
图 14是本发明基站子系统的再一个实施例的示意图;
图 15是本发明建立用户面单隧道的方法的一个实施例的流程图; 图 16是本发明建立用户面单隧道的方法的一个实施例中实现 PDP上下文 去激活的流程示意图;
图 17是本发明建立用户面单隧道的方法的另一个实施例的流程图; 图 18是本发明实施例中为源 eBSS主动传递 BSS上下文到目标 eBSS的 过程示意图;
图 19是本发明实施例中为目标 eBSS向源 eBSS请求以获取 BSS上下文 的过程示意图;
图 20是本发明中利用 BSS间增强接口实现切换并且同时实现获取上下文 的一个实施例的流程示意图;
图 21是本发明中利用 BSS间增强接口实现切换时传递上下文的另一个实 施例的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例通过对 GSM/GPRS的网络架构和 Gb接口协议栈进行改造 来实现单隧道; 同时通过对 SAE的网络架构和 S1接口协议栈进行改造来实 现单隧道。
如图 4所示, 是本发明基站子系统与分组域网络建立用户面单隧道的系 统的一个实施例的系统架构图。 从中可以看出, 本发明实施例的系统包括: 终端 (未画出)、 基站子系统(BSS )、 分组域网络(UMTS ), 其中, BSS 包 括基站控制器 (BSC ) 以及基站收发信机(BST ); 分组域网络(UMTS ) 至 少包括 SGSN以及与所述 SGSN相耦接的 GGSN。 其中, 该基站子系统通过 增强的分组域网络 Iu控制面接口 ( eluPS-C )与分组域网络的 SGSN相耦接; 基站子系统通过增强的分组域网络 Iu用户面接口(eluPS-U )与分组域网络的 GGSN相耦接; 基站子系统通过该 eluPS-U接口与 GGSN之间建立用户面单 隧道, 其中该 eluPS-C和 eluPS-U接口是对原 IuPS接口 ( IuPS-C、 IuPS-U接 口 ) 的修改和增强, 在后文中会进行详述。
如图 5 所示, 是本发明基站控制器与系统架构演进网络建立用户面单隧 道的系统的一个实施例的系统架构图。 从中可以看出, 本发明实施例的系统 包括: 终端 (未画出)、 基站子系统(BSS )、 系统架构演进网络(SAE ), 其 中, BSS 包括基站控制器(BSC ) 以及基站收发信机(BST ); 系统架构演进 网络(SAE ) 至少包括移动性管理实体(MME ) 以及与所述 MME相耦接的 服务网关(S-GW )。 其中, 该基站子系统通过增强的 S1控制面接口 (eSl-C ) 与系统架构演进网络中的移动性管理实体(MME )相耦接; 该基站子系统通 过增强的用户面接口 ( eSl-U ) 与系统架构演进网络中的 S-GW ( Serving Gateway,服务网关)相耦接, 所述基站子系统通过该 eSl-U接口与该 S-GW 之间建立用户面单隧道。 其中该 eSl-C和 eSl-U接口是对原 S1接口 ( Sl-C、 S1-U接口) 的修改和增强, 在后文中会进行详述。
如图 6所示, 是图 4中用户面协议栈示意图; 为了实现用户面单隧道, 需要 BSS (如其中的 BSC )能进行用户面的处理, 需要将 SNDCP协议和逻辑 链路控制( LLC, Logic Link Control )协议下移到 BSC中处理, 并且要求 BSC 能够处理 GTP-U协议, 故本发明的图 4中的实施例的用户面协议栈可以采用 图 6的方式。
如图 7 所示, 是图 5 中控制面协议栈示意图; 为了支持单隧道, 对 GSM/GPRS 的网络架构和 Gb接口协议栈进行了改造, 由此带来了对控制面 的影响。 故 GSM/GPRS的控制面协议栈也需要改造, 图 7即为本发明对应于 图 4中的一种改造后的控制面协议栈。 其中, BSS中的 BSC增加了无线接入 网络应用部分 ( RANAP, Radio Access Network Application Part )十办议栈的处 理,并且 LLC下移到 BSC进行处理。由于 2G的网络附加存储( NAS, Network Attached Storage ) /BSSGP ( Base Subsystem GPRS Protocol,基站子系统 GPRS 协议 )和 3G的 NAS/RANAP ( Radio Access Network Application Part protocol, 无线接入网络应用协议) 的差异, 所以 BSC需要进行: 1 ) NAS层协议的适 配; 2 ) BSSGP与 RANAP协议的适配等。
另夕卜, 可以在基站子系统(BSS, Base Station Subsystem )上设置一个增 强接口, 以实现该 BSS与其他 BSS进行耦接, 并在该两个 BSS之间进行信令 或数据的传输。图 8所示为基站子系统上设置 Iur接口的控制面协议栈示意图; 图 9所示为基站子系统上设置 X2接口的控制面协议栈示意图。 可以理解的 是, 上述仅为举例, 不排除进行部分增强来实现相同的功能。
在 BSS之间引入这种增强接口的目的, 是基于如下的考虑:
其一、 SNDCP / LLC等协议处理实体 (SNDCP负责分组、打包、加密方式 处理, LLC负责加密、 重发、 一点对多点的寻址等)从 SGSN 下移到 BSS后, SNDCP、 LLC相关的功能, 由原来 SGSN集中处理的方式, 变成分布到各个 BSS来处理的方式。 对于跨越 BSS的移动性场景下, BSS之间需要的一些协 调, 比如 SNDCP/LLC协议处理实体负责的功能, 在 BSS之间进行协调。
其二、 由于 SNDCP/LLC等协议处理实体下移到 BSS, 在 BSS之间引入 直接接口后, 可以基于这个直接接口, 完成 BSS之间的切换过程, 避免切换 过程对核心网带来信令负荷, 减少时延。
如图 10所示,是本发明基站子系统的一个实施例示意图。在该实施例中, 基站子系统 20中至少包括用户面接口增强模块 200,用于实现通过该 eluPS-U 接口与该 GGSN相耦接并建立两者间用户面单隧道; 以及控制面接口增强模 块 204, 用于实现通过该 eluPS-C接口与该 SGSN相耦接。
其中, 用户面接口增强模块 200包括: SNDCP协议处理模块、 LLC协议 处理模块以及 GTP-U协议处理模块,分别用于在该基站子系统中实现 SNDCP 协议、 LLC协议以及 GTP-U协议栈的处理能力。
该控制面接口增强模块 204包括:
NAS层协议适配模块, 用于实现基站子系统 NAS层协议与分组域网络 NAS层协议之间的适配; 以及
RANAP协议适配模块, 用于实现基站子系统的 BSSGP协议与分组域网 络 RANAP协议之间的适配。
如 11所示, 是图 5中用户面协议栈示意图, 为了实现用户面单隧道, 需 要 BSS (如其中的 BSC ) 能进行用户面的处理, 需要将 SNDCP协议和 LLC 协议下移到 BSC中处理, 并且要求 BSC能够处理 GTP-U协议, 故本发明的 图 5中的实施例的用户面协议栈可以采用图 11的方式。
如图 12 所示, 是图 5 中控制面协议栈示意图; 为了支持单隧道, 对 GSM/GPRS 的网络架构和 Gb接口协议栈进行了改造, 由此带来了对控制面 的影响。 故 GSM/GPRS的控制面协议栈也需要改造, 图 12即为本发明对应 于图 5中的一种改造后的控制面协议栈。 其中, BSS中的 BSC增加了 S1AP ( SI application protocol, SI接口应用协议)协议栈的处理, 并且 LLC下移 到 BSC进行处理。 由于 2G的 NAS/BSSGP协议和 3G的 SAE的 NAS/S1AP 协议的差异,所以 BSC需要进行: 1 ) NAS层协议的适配; 2 ) BSSGP与 S1AP 协议的适配等。
如图 13所示, 是本发明基站子系统的另一实施例的示意图。 在该实施例 中,
基站子系统 20 中至少包括用户面接口增强模块 206, 用于实现通过该 eS 1 -U接口与该服务网关 ( S-GW )相耦接并建立两者间的用户面单隧道; 以 及控制面接口增强模块 208 ,用于实现通过该 eS 1-C接口与该移动性管理实体 ( MME )相耦接。
其中, 该用户面接口增强模块 206包括: SNDCP协议处理模块、 LLC协 议处理模块以及 GTP-U 协议处理模块, 分别用于在该基站子系统中实现 SNDCP协议、 LLC协议以及 GTP-U协议栈的处理能力。
该控制面接口增强模块 208包括:
NAS层协议适配模块,用于实现基站子系统 NAS层协议与系统架构演进 网络的 NAS层协议之间的适配;
S 1AP协议适配模块, 用于实现基站子系统 BSSGP协议与系统架构演进 网络的 S 1AP协议之间的适配。
另外, 基站子系统 20中还可包括 BSS间接口增强模块 210 , 用于实现该 BSS与其他 BSS进行耦接 (具体地通过 X2接口进行耦接), 并在所述两个基 站子系统之间进行信令或数据的传输。
进一步地, 结合图 4的系统, 其中:
该终端可包括用于经由基站子系统向 SGSN发送激活 PDP上下文请求消 息的模块。
该 SGSN可包括用于向 GGSN发送创建 PDP上下文请求消息的模块。 该 GGSN可包括: 用于接收创建 PDP上下文请求消息的模块, 以及响应 该创建 PDP上下文请求消息,和向 SGSN发送创建 PDP上下文响应消息的模 块, 该创建 PDP 上下文响应消息包括 GGSN 的 TEID ( Tunnel Endpoint Identifier, 隧道端点标识 )和用户面地址。
其中, 该 SGSN还可包括: 用于接收创建 PDP上下文响应消息的模块, 以及向基站子系统发送无线接入承载 ( RAB , Radio Access Bearer )指派请求 消息的模块, 该 RAB指派请求消息中携带有所述 GGSN的 TEID和用户面地 址信息。
并同时结合图 14所示, 该基站子系统还可包括:
RAB指派请求消息接收模块 201 ,用于接收来自 SGSN的 RAB指派请求 消息;
用户面隧道建立模块 202 , 根据所述 GGSN的 TEID和用户面地址信息, 建立所要基站控制器与 GGSN之间的用户面单隧道。
RAB指派响应消息生成模块 203 ,用于向所述 SGSN发送 RAB指派响应 消息, 携带有所述基站控制器的 TEID和用户面地址信息。 相应地, 结合图 5的系统, 其中:
该终端可包括用于经由基站子系统向系统架构演进网络中移动性管理实 体(MME )发送激活分组数据规程(PDP, Packet Data Protocol )上下文请求 消息的模块。
该 MME可包括用于向 S-GW发送创建 PDP上下文请求消息的模块。 该 S-GW可包括: 用于接收创建 PDP上下文请求消息的模块, 以及响应 该创建 PDP上下文请求消息, 和向 MME发送创建 PDP上下文响应消息的模 块, 该创建 PDP上下文响应消息包括 S-GW的 TEID和用户面地址。
其中, 该 MME还可包括: 用于接收创建 PDP上下文响应消息的模块, 以及向基站子系统发送 RAB指派请求消息的模块, 该 RAB指派请求消息中 携带有该 S-GW的 TEID和用户面地址信息。
该基站子系统可以进一步包括:
RAB指派请求消息接收模块,用于接收来自 MME的 RAB指派请求消息, 所述 RAB指派请求消息携带有服务网关( S-GW )的 TEID和用户面地址信息; 用户面隧道建立模块, 根据所述服务网关 ( S-GW ) 的 TEID和用户面地 址信息, 建立与服务网关(S-GW )之间的用户面单隧道。 为了更便于理解本发明, 下述结合具体实施例的流程来进行说明。
如图 15所示,是本发明建立用户面单隧道的方法的一个实施例的流程图; 在该流程图中,示出了由 UE发起的 PDP上下文激活程序,并且 BSS中的 BSC 与 GGSN建立用户面单隧道的过程。 其中,
步骤 1101 , 终端 (UE )通过 BSC 向 SGSN发起激活 PDP ( Packet Data Protocol, 分组数据协议)上下文请求;
步骤 1102, SGSN进行签约检查之后, 然后获得 GGSN的地址。 SGSN 分配用户面隧道信息, 然后向该 GGSN发起创建 PDP 上下文请求, 携带 SGSN的地址和所分配的用户面隧道信息; 步骤 1103 , GGSN创建 PDP上下文请求之后, 保存 SGSN的地址信息 和用户面隧道信息, 创建 PDP上下文;
步骤 1104, GGSN分配 GGSN端的用户面隧道信息, 并在创建 PDP上 下文响应中与 GGSN的地址一起发送给 SGSN;
步骤 1105 , SGSN保存 GGSN的地址和用户面隧道信息, 然后判断是否 采用单隧道;
步骤 1106 ,如果 SGSN决定采用单隧道,那么就发起 RAB ( radio Access Bearer, 无线接入承载)指配过程, 指示 BSC建立无线承载。 在 RAB 指配请 求消息中 SGSN将 GGSN的地址和用户面隧道信息发送给 BSC; 可以理解的 是, 如果 SGSN决定不采用单隧道, 则根据现有的流程, 在 RAB指配消息中 携带有 SGSN的 TEID和用户面地址。后述是以 SGSN决定采用单隧道的处理 情形进行说明。
步骤 1107, BSC收到 RAB 指配请求消息之后,于是知道了 GGSN端的 地址和用户面隧道信息。 BSC继续完成 RAB 指配过程, 并分配 BSC端的隧 道号。 成功之后, 返回 RAB 指配响应给 SGSN, 携带有 BSC的地址和分配 的用户面隧道信息;
步骤 1108, SGSN判断已经启动单隧道方案, 则将 BSC的地址和用户面 隧道信息在更新 PDP上下文请求消息中发送给 GGSN;
步骤 1109, GGSN收到之后, 用收到的 BSC的地址和用户面隧道信息覆 盖原先保存的 SGSN的地址和用户面隧道信息。 于是就建立了 BSC和 GGSN 之间的 GTP-U 隧道 (即, 单隧道);
步骤 1110, GGSN返回 SGSN更新 PDP上下文响应;
步骤 1111 , SGSN返回给终端激活 PDP上下文响应, 成功激活 PDP上 下文。
需要说明的是, 在步骤 1101之前, 应该首先实现如下工作:
在基站子系统中设置增强的分组域网络 Iu控制面接口(eluPS-C )与分组 域网络的 SGSN相耦接; 设置增强的分组域网络 Iu用户面接口 ( eluPS-U )与 分组域网络的 GGSN相耦接。 其中, 进一步地, 该设置增强的分组域网络 Iu 控制面接口 (eluPS-C )与分组域网络的 SGSN相耦接的步骤包括: 将基站子 系统中的 NAS层协议与分组域网络 NAS层协议进行适配的步骤; 以及将基 站子系统中的 BSSGP协议与分组域网络 RANAP协议进行适配的步骤。 该设 置增强的分组域网络 Iu用户面接口 ( eluPS-U )与分组域网络的 GGSN相耦 接的步骤进一步包括: 该 eluPS-U进行 SNDCP协议, LLC协议和 GTP-U协 议处理的步骤。
需要将基站子系统中的 NAS层协议与分组域网络 NAS层协议的进行适 配;以及将基站子系统中的 BSSGP协议与分组域网络 RANAP协议进行适配。
如图 16 所示, 是本发明建立用户面单隧道的方法的一个实施例中实现 PDP上下文去激活的流程示意图。 在该流程图中, 示出了由 UE发起的步骤 SPDP上下文请求, 并且 BSC与 GGSN译放无线接入承载的过程。 其中, 步骤 121 , UE向网络侧发送去激活 PDP上下文请求消息。
步骤 122, SGSN收到去激活 PDP上下文请求消息后, 向 GGSN发送删 除 PDP上下文请求消息。
步骤 123 , GGSN删除用户面隧道及存储的 RNC用户面地址;
步骤 124, GGSN向 SGSN返回删除 PDP上下文响应消息;
步骤 125, SGSN返回去激活 PDP上下文响应消息。
步骤 S126,则 BSC与 SGSN之间进行无线接入承载 ( RAB )的译放过程。 如图 17所示,是本发明建立用户面单隧道的方法的一个实施例的流程图; 在该流程图中,示出了由 UE发起的 PDP上下文激活程序,并且 BSC与 MME 建立用户面单隧道的过程。 其中,
步骤 1301 ,终端 UE通过 BSS中的 BSC 向 MME发起激活 PDP ( Packet Data Protocol, 分组数据协议)上下文请求;
步骤 1302, MME进行签约检查之后, 然后获得服务网关(S-GW )的地 址。 MME分配用户面隧道信息,然后向该 S-GW发起创建 PDP上下文请求, 携带 MME的地址和所分配的用户面隧道信息;
步骤 1303 , S-GW创建 PDP上下文请求之后, 保存 MME的地址信息 和用户面隧道信息, 创建 PDP上下文;
步骤 1304, S-GW分配 MME端的用户面隧道信息, 并在创建 PDP上 下文响应中与 S-GW的地址一起发送给 MME;
步骤 1305 , MME保存 S-GW的地址和用户面隧道信息, 然后判断是否 采用单隧道;
步骤 1306, 如果 MME决定采用单隧道, 那么就发起 RAB ( radio Access Bearer, 无线接入承载)指配过程, 指示 BSC建立无线承载。 在 RAB 指配请 求消息中 MME将 S-GW的地址和用户面隧道信息发送给 BSS中的 BSC; 否 则 , 携带有 MME的 TEID和用户面地址。
步骤 1307, BSC收到 RAB指配请求消息之后, 于是知道了 S-GW端的 地址和用户面隧道信息。 BSC继续完成 RAB 指配过程, 并分配 BSC端的隧 道号。 成功之后, 返回 RAB 指配响应给 MME, 携带有 BSC的地址和分配的 用户面隧道信息;
步骤 1308, MME判断已经启动单隧道方案, 则将 BSC的地址和用户面 隧道信息在更新 PDP上下文请求消息中发送给 S-GW;
步骤 1309, S-GW收到之后, 用收到的 BSC的地址和用户面隧道信息覆 盖原先保存的 MME的地址和用户面隧道信息。 于是就建立了 BSC和 S-GW 之间的 GTP-U 隧道 (即单隧道);
步骤 1310, S-GW返回 MME更新 PDP上下文响应;
步骤 1311 , MME返回给终端激活 PDP上下文响应, 成功激活 PDP上 下文。
需要说明的是, 在步骤 1301之前, 应该首先实现如下工作:
在基站子系统中设置增强的 S1控制面接口 (eSl-C )与系统架构演进网 络的移动性管理实体(MME )相耦接; 设置增强的用户面接口 (eSl-U ) 与 系统架构演进网络的服务网关(S-GW )相耦接; 其中, 进一步地, 该设置增 强的控制面接口 (eSl-C )与移动性管理实体(MME )相耦接的步骤进一步包 括: 将基站子系统中的 NAS层协议与分组域网络 NAS层协议进行适配的步 骤; 以及将基站子系统中的 BSSGP协议与分组域网络 RANAP协议进行适配 的步骤。 该设置增强的用户面接口 (eSl-U ) 与服务网关 (S-GW )相耦接的 步骤进一步包括: 该 eluPS-U进行 SNDCP协议, LLC协议和 GTP-U协议处 理的步骤。
下述结合图 18至图 21 , 增强 BSS ( eBSS )上下文恢复为例, 结合一个 切换流程, 来说明利用 eBSS之间的 Iur接口, 如何实现 eBSS之间的协调, 以及跨越 eBSS的切换。
eBSS可以通过 eBSS之间的 BSS间增强接口(如 Iur或者 X2 ),获取 eBSS 的上下文(Context )。 其中, BSS 上下文的信息元素主要包括: 加密键(Kc, Ciphering key )、 力口密键序歹1 J号 ( Ciphering key sequence number )、 LLC层参数 ( LLC layer parameters )、 SNDCP XID参数 ( SNDCP XID parameters )、 非连 续接收参数 ( DRX parameter )、 终端无线接入能力 (MS Radio Access Capability )、 分组数据协议上下文状态( PDP context status )、 多媒体广播组播 上下文状态( MBMS context status )、国际移动用户识别码 ( IMSI, International Mobile Subscriber Identification Number ) , 基站子系统标识 ( BSS-ID , BSS-Identification )等, 实际运行中, eBSS Context信息元素可以是上述全部 的内容, 也可以是上述部分的内容。
如图 18所示, 为源 eBSS主动传递 BSS上下文到目标 eBSS的过程; 可 选地, 也可以采用如图 19所示的方式来传递 BSS上下文, 其中, 图 19为目 标 eBSS向源 eBSS请求以获取 BSS上下文的过程。从中可以看出, 在小区更 新(Cell Update ), 路由区更新 ( Routeing Area Update )发生时, 目标 eBSS 可以通过与源 eBSS之间的 BSS间增强接口,获得源 eBSS上的 eBSS 上下文 信息, 并根据来自源 eBSS的切换指示, 来完成小区更新、 路由区更新等的流 程适配过程, 可以将耦接到源 eBSS的用户切换到目标 eBSS上。
如图 20所示,示出了本发明中利用 BSS间增强接口实现切换并且同时实 现获取上下文的一个实施例的流程示意图。 在该实施例中, 可利用 eBSS之间 的 BSS间增强接口,可实现跨越 eBSS的切换,以及 BSS 上下文恢复的过程。
在该流程中, 包括如下步骤:
步骤 S210、 源 eBSS决定进行切换, 确定目标 eBSS;
步骤 S211、 源 eBSS向目标 eBSS发送切换请求, 可以在这个消息中携带 eBSS上下文信息;
步骤 S212、 目标 eBSS如果接受, 则进行资源的预留;
步骤 S213、 目标 eBSS回应源 eBSS, 可以在这个消息中携带 eBSS上下 文的确认、 为 UE分配的无线资源、 时隙等;
步骤 S214、 源 eBSS向 UE发起切换命令, 促使其发起切换;
步骤 S215、 UE切换无线资源, 向目标 eBSS发起接入;
步骤 S216、 目标 eBSS向 UE发送包物理信息, 进行同步;
步骤 S217、 UE发起上行 LLC PDU, 比如小区 /路由更新请求;
步骤 S218、 目标 eBSS向 SGSN发送切换完成消息。 在这个消息中可以 携带建立 (目标 eBSS与 SGSN之间的 ) Iu连接的 eBSS侧的相关参数;
步骤 S219、 SGSN向目标 eBSS发送切换完成响应消息。
后续可以由 SGSN或者目标 eBSS , 向源 eBSS发起源 eBSS与 SGSN之 间的 Iu连接的释放过程。
如图 21所示,示出了本发明中利用 BSS间增强接口实现切换时传递上下 文的另一个实施例的流程示意图。在该实施例中, 可以利用 eBSS到 SGSN的 切换消息携带上下文信息。 该方法包括如下步骤:
步骤 S220、 源 eBSS决定进行切换, 确定目标 eBSS;
步骤 S221、 源 eBSS向 SGSN发送切换需求消息, 可以在这个消息中携 带 eBSS上下文;
步骤 S221a、 SGSN向目标 eBSS发送切换请求消息, 可以在这个消息中 携带 eBSS上下文;
步骤 S222、 目标 eBSS如果接受, 则进行资源的预留;
步骤 S222 a、目标 eBSS向 SGSN发送切换响应消息,表明是否可以接入; 步骤 S223、 SGSN回应源 eBSS , 可以在这个消息中携带 eBSS上下文的 确认、 为 UE分配的无线资源、 时隙等;
步骤 S224、 源 eBSS向 UE发起切换命令, 促使其发起切换;
步骤 S225、 UE切换无线资源, 向目标 eBSS发起接入;
步骤 S226、 目标 eBSS向 UE发送包物理信息, 进行同步;
步骤 S227、 UE发起上行 LLC PDU, 比如小区 /路由更新请求;
步骤 S228、 目标 eBSS向 SGSN发送切换完成消息。 在这个消息中可以 携带建立 (目标 eBSS与 SGSN之间的 ) Iu连接的 eBSS侧的相关参数;
步骤 S229、 SGSN向目标 eBSS发送切换完成响应消息。
后续可以由 SGSN或者目标 eBSS , 向源 eBSS发起源 eBSS与 SGSN之 间的 Iu连接的释放过程。
从图 20和图 21可以看出, SGSN不需要在切换准备阶段以及执行阶段过 多地进行参与, 避免切换过程对核心网带来信令负荷, 减少时延。
本发明技术方案, 解决了传统 GSM/GPRS网络中不支持单隧道的问题。 从而提供了一种在传统 GSM/GPRS网络中实现单隧道的可行方案, 促进了网 络演进和融合, 节省和保护了运营商投资。 另外, 也可以在 SAE中实现单隧 道技术, 同样促进了网络演进和融合, 节省和保护了运营商投资。
本发明实施例中以基站子系统中的 BSC为例进行了说明, 本领域普通技 术人员可以理解的是, 基站子系统中可能存在其他能实现所述功能的单元, 不影响本发明的实质, 也应落入本发明的保护范围。 况下单独使用, 或在与或不与本发明的其他特征和元素结合的各种情况下使 用。 本发明提供的方法或流程图可以在由通用计算机或处理器执行的计算机 程序、 软件或固件中实施, 其中所述计算机程序、 软件或固件是以有形的方 式包含在计算机可读存储介质中的。 关于计算机可读存储介质的实例包括只 读存储器(ROM )、 随机存取存储器(RAM )、 寄存器、 緩冲存储器、 半导体 存储设备、内部硬盘和可移动磁盘之类的磁介质、磁光介质以及 CD-ROM碟 片和数字通用光盘(DVD )之类的光介质。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也视为本发明的保护范围。

Claims

权利要求 书
1、 一种建立用户面单隧道的系统, 其特征在于, 包括基站子系统、 服务 GPRS 支持节点 SGSN以及与所述 SGSN相耦接的网关 GPRS 支持节点 GGSN; 其中, 所述基站子系统通过增强的分组域网络 Iu控制面接口 eluPS-C与分 组域网络的 SGSN相耦接; 所述基站子系统通过增强的分组域网络 Iu用户面接 口 eluPS-U 与所述分组域网络的 GGSN 相耦接; 所述基站子系统通过所述 eluPS-U接口与所述 GGSN之间建立用户面单隧道。
2、 如权利要求 1所述的系统, 其特征在于, 所述基站子系统包括: 用户面接口增强模块, 用于实现基站子系统通过所述 eluPS-U接口与所述 GGSN相耦接并建立用户面单隧道;
控制面接口增强模块,用于实现所述基站子系统通过所述 eluPS-C接口与所 述 SGSN相耦接。
3、 如权利要求 2所述的系统, 其特征在于,
所述用户面接口增强模块包括:
子网相关汇聚协议 SNDCP协议处理模块、 用于实现 SNDCP协议栈的处理 能力;
逻辑链路控制 LLC协议处理模块, 用于实现 LLC协议栈的处理能力; GTP-U协议处理模块, 用于实现 GTP-U协议栈的处理能力;
所述控制面接口增强模块包括:
网络附加存储 NAS层协议适配模块, 用于实现基站子系统 NAS层协议与 所述分组域网络的 NAS层协议之间的适配; 以及
无线接入网络应用部分 RANAP 协议适配模块, 用于实现基站子系统的 BSSGP协议与所述分组域网络的 RANAP协议之间的适配。
4、 如权利要求 1所述的系统, 其特征在于, 所述 SGSN包括:
向基站子系统发送无线接入承载 RAB指派请求消息的模块, 所述 RAB指 派请求消息中携带有所述 GGSN的隧道端点标识 TEID和用户面地址信息。
5、 如权利要求 4所述的系统, 其特征在于, 所述基站子系统包括:
RAB指派请求消息接收模块,用于接收来自所述 SGSN的所述 RAB指派请 求消息; 用户面隧道建立模块, 根据所述 GGSN的隧道端点标识 TEID和用户面地 址信息, 建立所述基站子系统与 GGSN之间的用户面单隧道;
RAB指派响应消息生成模块, 用于向所述 SGSN发送 RAB指派响应消息, 携带有所述基站子系统的 TEID和用户面地址信息。
6、 如权利要求 1至 5任一项所述的系统, 其特征在于, 所迷基站子系统进 一步包括:
基站子系统 BSS间接口增强模块, 用于实现所述基站子系统与其他基站子 系统进行耦接, 并在所述两个基站子系统之间进行信令或数据的传输。
7、 一种建立用户面单隧道的系统, 其特征在于, 包括基站子系统、 移动性 管理实体 MME以及与所述移动性管理实体 MME相耦接的 良务网关 S-GW; 其中, 所述基站子系统通过增强的 S1控制面接口 eSl-C与所述移动性管理 实体 MME相耦接; 所述基站子系统通过增强的用户面接口 eSl-U与所述服务 网关 S-GW相耦接, 所述基站子系统通过所述 eSl-U接口与所述 S-GW之间建 立用户面单隧道, 其中所述 MME以及所述 S-GW位于系统构架演进网络中。
8、 如权利要求 7所述的系统, 其特征在于, 所述基站子系统包括: 用户面接口增强模块, 用于实现所述基站子系统通过所述 eSl-U接口与所 述服务网关 S-GW相耦接并建立所述用户面单隧道;
控制面接口增强模块, 用于实现所述基站子系统通过所述 eSl-C接口与所 述移动性管理实体 MME相耦接。
9、 如权利要求 8所述的系统, 其特征在于, 其中,
所述用户面接口增强模块包括: SNDCP协议处理模块、 LLC协议处理模块 以及 GTP-U协议处理模块;
所述控制面接口增强模块包括:
NAS层协议适配模块,用于实现基站子系统 NAS层协议与所述系统架构演 进网络的 NAS层协议之间的适配;
S1接口应用协议 S1AP协议适配模块,用于实现基站子系统 BSSGP与系统 架构演进网络的 S 1AP协议之间的适配。
10、 如权利要求 7至 9任一项所述的系统, 其特征在于, 所述基站子系统 进一步包括: 基站子系统 BSS间接口增强模块, 用于实现所述基站子系统与其他基站子 系统进行耦接, 并在所述两个基站子系统之间进行信令或数据的传输。
11、 一种基站子系统, 其特征在于, 至少包括:
用户面接口增强模块,用于实现所述基站子系统通过 eluPS-U接口与 GGSN 相耦接并建立用户面单隧道;
控制面接口增强模块,用于实现所述基站子系统通过 eluPS-C接口与 SGSN 相耦接;
或者至少包括:
用户面接口增强模块, 用于实现所述基站子系统通过 eSl-U接口与服务网 关 S-GW相耦接并建立用户面单隧道;
控制面接口增强模块, 用于实现所述基站子系统通过 eSl-C接口与移动性 管理实体 MME相耦接。
12、 如权利要求 11所述的基站子系统, 其特征在于,
所述用户面接口增强模块包括: SNDCP协议处理模块、 LLC协议处理模块 以及 GTP-U协议处理模块;
所述控制面接口增强模块包括:
NAS层协议适配模块,用于实现基站子系统 NAS层协议与分组域网络或系 统架构演进网络的 NAS层协议之间的适配; 以及
RANAP协议适配模块, 用于实现基站子系统的 BSSGP协议与分组域网络 或系统架构演进网络的 RANAP协议之间的适配。
13、 如权利要求 11或 12所述的基站子系统, 其特征在于, 包括:
BSS 间接口增强模块, 用于实现所述基站子系统与其他基站子系统进行耦 接, 并在所述两个基站子系统之间进行信令或数据的传输。
14、 一种建立用户面单隧道的方法, 其特征在于, 包括:
基站子系统设置增强的分组域网络 Iu控制面接口 eluPS-C与分组域网络的 SGSN相耦接;
设置增强的分组域网络 Iu用户面接口 eluPS-U与分组域网络的 GGSN相耦 接;
所述基站子系统通过所述 eluPS-U接口与所述 GGSN之间建立用户面单隧 道。
15、 如权利要求 14所述的方法, 其特征在于, 所述设置增强的分组域网络 Iu控制面接口 eluPS-C与分组域网络的 SGSN相耦接的步骤进一步包括:
将基站子系统中的 NAS层协议与分组域网络 NAS层协议进行适配; 以及 将基站子系统中的 BSSGP协议与分组域网络 RANAP协议进行适配; 所述设置增强的分组域网络 Iu用户面接口 eluPS-U与分组域网络的 GGSN 相耦接的步骤进一步包括:
所述 eluPS-U进行 SNDCP协议, LLC协议和 GTP-U协议处理。
16、 如权利要求 14或者 15所述的方法, 其特征在于, 所述基站子系统通 过所述 eluPS-U接口与所述 GGSN之间建立用户面单隧道的步骤进一步包括: 接收来自分组域网络中 SGSN的 RAB指派请求消息 , 所述 RAB指派请求 消息携带有分组域网络中 GGSN的 TEID和用户面地址信息;
向所述 SGSN发送 AB指派响应消息, 携带有所述基站子系统的 TEID和 用户面地址信息;
根据所述 GGSN的 TEID和用户面地址信息, 建立与 GGSN之间的用户面 单隧道。
17、 如权利要求 14或者 15所述的方法, 其特征在于, 进一步包括: 设置 Iur接口实现所述基站子系统与其他基站子系统进行耦接的步驟,以在 所述两个基站子系统之间进行信令或数据的传输。
18、 如权利要求 17的方法, 其特征在于, 进一步包括:
源基站子系统通过所述 Iur接口, 向目标基站子系统传递 BSS上下文信息; 源基站子系统根据所述目标基站子系统的回应, 将耦接到所述源基站子系 统的用户终端切换到所述目标基站子系统上。
19、 一种建立用户面单隧道的方法, 其特征在于, 包括:
基站子系统设置增强的 S1控制面接口 eSl-C与系统架构演进网络的移动性 管理实体 MME相耦接;
基站子系统设置增强的用户面接口 eSl-U与系统架构演进网络的服务网关 S-GW相耦接;
所述基站子系统通过所述 eSl-U接口与所述服务网关 S-GW之间建立用户 面单隧道。
20、 如权利要求 19所述的方法, 其特征在于, 所述设置增强的控制面接口 eSl-C与移动性管理实体 MME相耦接的步骤进一步包括:
将基站子系统中的 NAS层协议与分组域网络 NAS层协议进行适配; 以及 将基站子系统中的 BSSGP协议与分组域网络 RANAP协议进行适配; 所述设置增强的用户面接口 eSl-U与服务网关 S-GW相耦接的步骤进一步 包括:
所述 eluPS-U进行 SNDCP协议, LLC协议和 GTP-U协议处理。
21、 如权利要求 19或者 20所述的方法, 其特征在于, 所述基站子系统通 过所述 eSl-U接口与所述服务网关 S-GW之间建立用户面单隧道的步骤进一步 包括:
接收来自系统架构演进网络中移动性管理实体 MME 的 RAB 指派请求消 息, 所述 RAB指派渚求消息携带有所述系统架构演进网络中服务网关 S-GW的 TEID和用户面地址信息;
根据所述服务网关 S-GW的 TEID和用户面地址信息 ,建立与所述服务网关 S-GW之间的用户面单隧道。
22、 如权利要求 19或者 20所述的方法, 其特征在于, 进一步包括: 设置 X2接口实现所述基站子系统与其他基站子系统进行耦接的步骤,以在 所述两个基站子系统之间进行信令或数据的传输。
23、 如权利要求 22的方法, 其特征在于, 进一步包括:
源基站子系统通过所述 X2接口, 向目标基站子系统传递 BSS上下文信息; 源基站子系统根据所述目标基站子系统的回应, 将耦接到所述源基站子系 统的用户终端切换到所述目标基站子系统上。
PCT/CN2009/071871 2008-05-20 2009-05-20 建立用户面单隧道的方法、系统及其基站子系统 WO2009140917A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810028185 2008-05-20
CN200810028185.1 2008-05-20
CN2008101874727A CN101588570B (zh) 2008-05-20 2008-12-31 建立用户面单隧道的方法、系统及其基站子系统
CN200810187472.7 2008-12-31

Publications (1)

Publication Number Publication Date
WO2009140917A1 true WO2009140917A1 (zh) 2009-11-26

Family

ID=41339785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071871 WO2009140917A1 (zh) 2008-05-20 2009-05-20 建立用户面单隧道的方法、系统及其基站子系统

Country Status (2)

Country Link
CN (1) CN101588570B (zh)
WO (1) WO2009140917A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102369700B (zh) * 2010-05-04 2015-06-17 华为技术有限公司 业务发起方法及系统、网关设备
EP2622900B1 (en) * 2010-09-28 2018-06-06 Telefonaktiebolaget LM Ericsson (publ) Methods and nodes for transferring a service identifier from a packet core network to a radio network
CN102548019B (zh) * 2010-12-15 2016-07-27 华为技术有限公司 公共路径的建立和使用方法、m2m的通信方法及系统
CN103369710B (zh) * 2012-03-31 2016-12-14 中国移动通信集团公司 一种建立直达通道的方法、系统及设备
CN103702312B (zh) * 2012-09-27 2017-06-16 华为技术有限公司 无线信息传输方法和设备
CN107241739B (zh) * 2016-03-29 2022-06-21 中兴通讯股份有限公司 网络节点的配置方法及装置
CN108377493B (zh) * 2016-11-21 2021-01-29 华为技术有限公司 连接建立方法、设备及系统
CN110061820B (zh) * 2018-01-19 2021-11-30 中兴通讯股份有限公司 地址发送的方法及装置、存储介质、电子装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725751A (zh) * 2004-07-20 2006-01-25 华为技术有限公司 控制面隧道端点标识符的分配方法及其系统
CN101094440A (zh) * 2006-08-18 2007-12-26 中兴通讯股份有限公司 分组域中ggsn获知sgsn启用单隧道信息的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725751A (zh) * 2004-07-20 2006-01-25 华为技术有限公司 控制面隧道端点标识符的分配方法及其系统
CN101094440A (zh) * 2006-08-18 2007-12-26 中兴通讯股份有限公司 分组域中ggsn获知sgsn启用单隧道信息的方法

Also Published As

Publication number Publication date
CN101588570A (zh) 2009-11-25
CN101588570B (zh) 2011-06-08

Similar Documents

Publication Publication Date Title
US10841858B2 (en) Data processing method and system
US8644247B2 (en) Inter-system handoffs in multi-access environments
US20070213058A1 (en) Method and apparatus for supporting handoff and serving radio network subsystem relocation procedures in a single tunnel gprs-based wireless communication system
US7079519B2 (en) Core network separation structure and signal processing method thereof in mobile communication system
US20070248064A1 (en) Method and apparatus for supporting routing area update procedures in a long term evolution general packet radio service tunneling protocol-based system
WO2009140917A1 (zh) 建立用户面单隧道的方法、系统及其基站子系统
US20080013553A1 (en) Activation of multiple bearer services in a long term evolution system
US20070213057A1 (en) Method and apparatus for supporting routing area update procedures in a single tunnel gprs-based wireless communication system
TWM319589U (en) Apparatus for supporting handoff in an LTE GTP based wireless communication system
US20050172012A1 (en) Methods of detecting protocol support in wireless communication systems
WO2013097641A1 (zh) 实现集群业务的方法、实体及系统
WO2015161411A1 (zh) 承载控制方法及系统
WO2009059552A1 (fr) Agent de station mobile, sous-système de station de base et procédé pour une adaptation réseau
WO2020173137A1 (zh) 一种数据传输方法、相关设备、程序产品以及存储介质
WO2006032213A1 (fr) Structure de reseau sans fil et procede de mise en oeuvre de transmission de donnees par application de la structure de reseau sans fil
WO2011035732A1 (zh) 本地ip接入或选定的ip流量卸载的控制方法、装置与系统
WO2011006404A1 (zh) 本地ip访问连接建立的实现方法及系统
WO2009012666A1 (fr) Procédé et système pour transmettre un message de couche de non-accès durant un transfert et station de base associée
WO2013086733A1 (zh) 软切换方法及设备
WO2014067371A1 (zh) 集群业务实现方法、系统及网元
TWM320260U (en) Wireless communication system for implementing a single tunnel combined hard hanover and serving radio network subsystem relocation
WO2020173146A1 (zh) 一种切换处理的方法、相关设备、程序产品以及存储介质
WO2008014660A1 (fr) Procédé de communication du noeud b à cn, système correspondant et dispositifs
WO2009127120A1 (zh) 切换过程中跟踪用户的方法、装置及系统
WO2014086003A1 (zh) 承载处理方法及装置、系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09749460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09749460

Country of ref document: EP

Kind code of ref document: A1