WO2014067371A1 - 集群业务实现方法、系统及网元 - Google Patents

集群业务实现方法、系统及网元 Download PDF

Info

Publication number
WO2014067371A1
WO2014067371A1 PCT/CN2013/084070 CN2013084070W WO2014067371A1 WO 2014067371 A1 WO2014067371 A1 WO 2014067371A1 CN 2013084070 W CN2013084070 W CN 2013084070W WO 2014067371 A1 WO2014067371 A1 WO 2014067371A1
Authority
WO
WIPO (PCT)
Prior art keywords
cluster
service
terminal
lte
utran
Prior art date
Application number
PCT/CN2013/084070
Other languages
English (en)
French (fr)
Inventor
万强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014067371A1 publication Critical patent/WO2014067371A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/10Push-to-Talk [PTT] or Push-On-Call services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a cluster service implementation method, system, and network element (the network element herein includes a terminal, a base station, and a cluster core network scheduling subsystem (DSS)).
  • the network element herein includes a terminal, a base station, and a cluster core network scheduling subsystem (DSS)).
  • DSS cluster core network scheduling subsystem
  • the trunking communication system is a dedicated wireless communication system developed for industrial users' command and dispatching needs for specific industry applications. A large number of wireless users share a small number of wireless channels in the system, and the command and dispatch is the main application. It is a multi-purpose and high-efficiency system. Wireless communication system.
  • the trunked communication system has undergone a similar development process as cellular mobile communication systems.
  • the first generation cluster system is an analog trunking communication system that mainly supports voice communication.
  • the second-generation cluster system is a narrow-band digital trunking communication system, which emerged in the 1990s. It is the most widely used cluster communication in China and has become the development trend of the entire wireless communication.
  • the trunking communication system will also be developed in the direction of system IP, service diversification, data broadband, and terminal multi-mode.
  • the LTE adopts a flat network architecture
  • the E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the E-UTRAN includes a plurality of Node eNBs (evolved Node Bs).
  • the eNB is connected to the Evolved Packet Internet Core (EPC) through the S1 interface.
  • EPC Evolved Packet Internet Core
  • the user plane of the S1 interface terminates on the Serving GateWay (S-GW), and the control plane of the SI interface terminates on the mobility management entity MME.
  • S-GW Serving GateWay
  • MME Mobility Management Entity
  • LTE eNB functions including physical layer functions, MAC (Media Access Control) layer functions (including HARQ (Hybrid Automatic Repeat Request, hybrid) RLC (Radio Link Control) layer (including ARQ (Automatic Repeat-ReQuest (ARQ) function), PDCP (Packet Data Convergence Protocol) Functions, RRC (Radio Resource Control), radio resource control (including radio resource control), scheduling, radio access admission control, access mobility management, and inter-cell radio resource management functions.
  • MAC Media Access Control
  • RLC Radio Link Control
  • ARQ Automatic Repeat-ReQuest
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • radio resource control including radio resource control
  • scheduling radio access admission control
  • access mobility management access mobility management
  • inter-cell radio resource management functions including inter-cell radio resource management functions.
  • Radio resource management functions such as radio bearer control, radio admission control, connection mobility control, and dynamic resource allocation (ie, scheduling) of the uplink and the downlink;
  • the MME to which the UE is attached is selected;
  • ETWS earthquake and tsunami warning system
  • the MME is the control core of the SAE and is mainly responsible for the processing of control signaling such as user access control, service bearer control, paging, and handover control.
  • Idle state UE reachability (including control and execution of paging signal retransmission);
  • the bearer management function including the dedicated bearer establishment
  • the S-GW is mainly responsible for the following functions: transmitting data information between the base station and the public data gateway; providing buffer for downlink data packets; user-based charging.
  • PDN Gateway (P-GW) function PDN Gateway (P-GW) function:
  • the public data gateway P-GW serves as the anchor point for data bearers and provides the following functions: packet forwarding, packet parsing, lawful interception, service-based charging, QOS control of services, and interconnection between non-3GPP networks.
  • Packet filtering per user eg, by means of deep packet probing
  • AMBR aggregate maximum bit rate
  • control plane protocol structure is shown in Figure 2:
  • the PDCP terminates at the eNB on the network side, and needs to complete the encryption and integrity protection of the control plane.
  • the RLC and MAC terminate at the eNB on the network side, and there is no difference in performing functions on the user plane and the control plane.
  • the RRC terminates at the eNB on the network side, and mainly implements broadcast, paging, RRC connection management, RB control, mobility function, measurement reporting and control functions of the UE.
  • the NAS control protocol terminates at the MME on the network side, and mainly implements EPS bearer management, authentication, ECM (EPS connectivity management) mobility processing in idle state, initiation of paging in ECM idle state, and security control functions.
  • EPS bearer management mainly implements EPS bearer management, authentication, ECM (EPS connectivity management) mobility processing in idle state, initiation of paging in ECM idle state, and security control functions.
  • ECM EPS connectivity management
  • the user plane protocol structure is shown in Figure 3:
  • the user planes PDCP, RLC, and MAC are terminated on the eNB on the network side, mainly implementing header compression, encryption, scheduling, ARQ, and HARQ functions.
  • the commonly used LTE cluster network architecture is based on the original LTE standard network element, does not change the terminal, E-UTRAN, EPC network architecture, and uses the enhanced function to join the cluster function. This method has the following problems:
  • This solution couples the LTE application with the cluster application, resulting in a high degree of coupling between the cluster service and the public network LTE common service, which adversely affects the networking and service separation. For example, if you add clustering function to the original LTE network, you must upgrade the EPC.
  • the cluster core network is integrated with LTE EPC, the function is more complicated, which is not conducive to device miniaturization. It is not conducive to the low-cost requirements of the private network cluster, because the private network cluster also needs to configure EPC;
  • the LTE EPC is affected by the cluster users and affects the stability. For example, when multicasting, the EPC sends the same media plane packet to a large number of eNBs, which may cause the EPC to be overloaded and affect the public network. User experience.
  • the technical problem to be solved by the present invention is to provide a cluster service implementation method, system, and network element to solve the problem that the cluster service affects the existing LTE service.
  • the present invention provides a cluster service implementation method, the system based on the method comprising an E-UTRAN and a cluster core network scheduling subsystem (DSS) separated from an evolved packet core network (EPC), the method Includes:
  • RRC connection establishment step the E-UTRAN establishes an RRC connection with the cluster service said terminal; the cluster service context establishment step, the E-UTRAN and the cluster core network scheduling subsystem
  • the E-UTRAN performs a cluster air interface configuration on the cluster service terminal and the cluster service listening terminal;
  • a paging step the E-UTRAN paging the listening terminal according to a paging message of the cluster core network scheduling subsystem
  • the E-UTRAN forwards the group service data according to the cluster service air interface configuration.
  • the method further includes an authentication authentication step, the cluster core network scheduling subsystem (DSS) speaking to the cluster by the E-UTRAN pair
  • DSS cluster core network scheduling subsystem
  • the cluster service performs authentication, capability query or security authentication.
  • the system further includes an evolved packet core network (EPC) configured separately from the cluster core network scheduling subsystem (DSS).
  • EPC evolved packet core network
  • DSS cluster core network scheduling subsystem
  • An LTE service context establishing step the E-UTRAN establishing an LTE service context with an evolved packet core network (EPC);
  • EPC evolved packet core network
  • the E-UTRAN forwards the LTE service data.
  • the method further includes an authentication authentication step, where the EPC performs authentication, capability query, or security on the LTE service of the terminal by using the E-UTRAN. Certification.
  • the E-UTRAN triggers the cluster service context establishment based on an RRC connection setup request or a cluster service request sent by the terminal; and the LTE service context setup is triggered by the terminal-based RRC connection setup request or the LTE service request.
  • the interface between the eNB and the DSS is a T1 interface
  • the control plane protocol of the T1 interface uses a flow control transmission protocol (SCTP)
  • the user plane protocol uses a user plane layer GPRS tunneling protocol (GTP). -U ).
  • SCTP flow control transmission protocol
  • GTP user plane layer GPRS tunneling protocol
  • the present invention provides a terminal that supports cluster services and
  • An RRC connection establishing module is configured to: establish an RRC connection with the eNB when an RRC connection is not established between the terminal and the eNB;
  • the service request module is configured to: determine, when the RRC connection is successfully established, send a cluster service request or an LTE service request to the eNB;
  • the configuration module is configured to: receive cluster air interface configuration information or RRC reconfiguration information sent by the eNB.
  • the present invention provides a base station, where the base station includes:
  • An RRC connection establishment module is configured to: establish an RRC connection with a cluster service said terminal (UE);
  • the context establishing module is configured to: interact with the cluster core network scheduling subsystem to establish a cluster service context; the cluster core network scheduling subsystem is separated from the evolved packet core network (EPC); and the configuration module is configured to: The cluster service listening terminal performs cluster air interface configuration;
  • EPC evolved packet core network
  • the paging module is configured to: page the listening terminal according to the paging message of the cluster core network scheduling subsystem; and the data forwarding module is configured to: forward the cluster service data according to the cluster service air interface configuration.
  • DSS cluster core network scheduling subsystem
  • EPC evolved packet core network
  • Cluster Server set to: media face and control plane processing of cluster services through E-UTRAN;
  • the home register (PHR) is set to: provide registration of group and group members, provide local information of group members, and provide cluster service authentication, statistics, and accounting functions;
  • the dispatcher server is configured to: perform a scheduling management operation in interaction with the PDS and the PHR.
  • the present invention provides a trunking communication system, where the system includes: a terminal, configured to: support a cluster service function;
  • E-UTRAN set to: include several eNBs to provide over-the-air radio bearers for cluster services; one or more independent cluster core network scheduling subsystems (DSS), set to: separate from the evolved packet core network (EPC), The cluster service is provided to the terminal through E-UTRAN.
  • DSS cluster core network scheduling subsystems
  • EPC evolved packet core network
  • the cluster communication system architecture provided by the embodiment of the present invention can provide a specialized cluster service based on the LTE flat network architecture, and support the access network sharing; on the one hand, the LTE and the cluster service can be separated, and the flexible network can be configured.
  • the mutual interference is small, which facilitates the smooth and independent evolution of the existing cluster system, and meets the networking requirements of low cost, service separability, and independent evolution.
  • Figure 1 is a logical architecture diagram of the overall system of the LTE communication system
  • FIG. 3 is a media plane protocol stack diagram of an LTE communication system
  • FIG. 4 is a network architecture diagram of an LTE trunking private network system of a cluster service implementation system according to an embodiment of the present invention
  • Figure 5-7 shows the network architecture of the LTE cluster co-network system of the cluster service implementation system
  • Figure 8 is the control plane protocol stack diagram of the LTE trunking communication system
  • Figure 9 is a user plane protocol stack diagram of the LTE trunking communication system
  • 10 is a protocol stack diagram of a T1 interface control plane of an LTE trunking communication system
  • 11 is a diagram of a user plane protocol stack of an LTE trunking communication system T1 interface
  • Embodiment 12 is a schematic flowchart of Embodiment 1 of a method for implementing a cluster service according to the present invention
  • FIG. 13 is a schematic flowchart of another embodiment of a method for implementing a cluster service according to the present invention.
  • FIG. 14 is a schematic diagram of a method for implementing a cluster service according to an embodiment of the present invention.
  • FIG. 15 is a schematic flowchart of implementing an LTE service after the implementation of the cluster service according to the embodiment of the present invention
  • FIG. 16 is a schematic structural diagram of a module of the terminal according to the embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a module of a base station according to an embodiment of the present invention. Preferred embodiment of the invention
  • the cluster service implementation system of the present invention has two architectures, namely, an LTE cluster private network system and an LTE cluster common network system, which are respectively described below:
  • the implementation system framework of the LTE cluster private network communication system is shown in Figure 4.
  • the wireless E-UTRAN, the cluster core network DSS separated from the existing evolved packet core network (EPC), and the terminal supporting the cluster service function completely eliminate the public network core network EPC, and the E-UTRAN only works with the cluster core network.
  • the DS S is connected, and the cluster terminal directly goes to the DSS to perform the cluster registration/registration process.
  • the terminal, E-UTRAN, and DSS work together to complete the various cluster business processes.
  • LTE EPC can be configured without simplification and cost savings.
  • the eNB is connected to the DSS that is integrated with the M-PDS and the C-PDS.
  • the network device is more compact, and it is convenient to provide a small-scale cluster private network system and equipment.
  • the PDS media plane and the control plane separation strategy are adopted, and the eNB is connected to the DSS including multiple media planes M-PDS and one C-PDS.
  • LTE cluster co-network system (with both LTE service and cluster service)
  • the implementation system framework of the LTE cluster common network communication system is shown in Figure 5. It consists of a wireless E-UTRAN, a cluster core network DSS, EPC, and a terminal supporting cluster services and LTE services separated from the existing evolved packet core network (EPC).
  • the terminals complete common LTE and cluster-related on the EPC and DSS respectively. Registration/registration process.
  • the eNB connects to the LTE EPC and the DSS at the same time.
  • the eNodeB is connected to the DSS of the M-PDS and the C-PDS in a common scenario, and the network device is more compact, and it is convenient to provide a miniaturized cluster private network system and equipment.
  • the strategy of separating the PDS media plane and the control plane is adopted, and the eNB is connected to the DSS including multiple media planes M-PDS and one C-PDS.
  • Wireless E-UTRAN which is linked to LTE EPC and DSS, respectively, provides over-the-air radio bearers for LTE services and cluster services.
  • the LTE radio interface E-UTRAN needs to add a number of uplink and downlink logical channels to meet the following requirements: User terminal cluster status reporting;
  • Point-to-point signaling bearer between the terminal associated with the trunking service and the eNB;
  • Point-to-point signaling bearer between the terminal related to the cluster service and the PDS;
  • the cluster group call control signaling is sent;
  • DSS Disatch Subsystem
  • the DSS system consists of: PDS (Cluster Server), PHR (Home Register), and DAS (Dispatch Agent Server).
  • Cluster Server Implements media and control plane processing of cluster services through E-UTRAN, including cluster user registration, authentication, cluster service management, cluster bearer management, cluster paging, cluster mobility management, cluster media circulation Send and other functions.
  • the cluster server can be further divided into a media plane (M-PDS) and a control plane (C-PDS).
  • M-PDS media plane
  • C-PDS control plane
  • Control Surface is mainly responsible for the following functions related to control signaling:
  • Paging including normal LTE service paging and cluster service paging
  • M-PDS Media Side
  • the eNodeB is connected to the DSS that is integrated with the M-PDS and the C-PDS.
  • the network device is simpler and more convenient to provide a small-scale cluster private network system and equipment.
  • the PDS media plane and control plane separation strategy are adopted, and the eNB is connected to a DSS including multiple media planes M-PDS and one C-PDS.
  • the common LTE service and the cluster service are isolated from each other.
  • the cluster terminal can concurrently perform normal LTE services and cluster services.
  • This networking architecture advantageously reduces the impact of the LTE EPC of the cluster user and ensures the stability of the LTE service network.
  • PHR Home Registration Register
  • DAS scheduling proxy server
  • the scheduling client logs in to the DAS server site, and interacts with the PDS and PHR through the DAS. Perform scheduling management operations.
  • the operator can log in to the DAS as a super user to perform operation and maintenance management on the DAS.
  • one LTE EPC + multiple cluster core networks can be used. Different cluster core networks can be independently operated and maintained.
  • an interface between the DSS and the HSS (Home Subscriber Server) in the EPC may be added to transmit cluster related user information and security data, and the group information management process is enhanced.
  • the link between the DSS and the E-UTRAN is divided into T1-C and T1-U interfaces, corresponding to the cluster control plane interface and the cluster user plane interface.
  • the architecture of the cluster private network is shown in Figure 5, which does not include LTE EPC.
  • control plane protocol stack structure of the network architecture is as shown in FIG. 8.
  • a cluster-related signaling is added at the RRC layer, and a corresponding group of NAS messages related to the cluster is also required at the NAS layer.
  • the user plane protocol stack as shown in Figure 9, has the same structure as the air interface user plane protocol stack of the LTE service.
  • the T1 port is described in detail below.
  • the T1 interface is the interface between the eNB and the DSS.
  • the control plane interface is named T1-C
  • the user plane interface is named Tl-U
  • the T1 interface protocol stack structure is the same as the protocol stack of the LTE S1 interface
  • the control plane protocol is SCTP (flow).
  • the Control Channel Protocol (Stream Control Transmission Protocol) and the user plane protocol use GTP-U (GPRSTunnelling Protocol for the user plane--user-level GPRS tunneling protocol).
  • IP protocol uses IPV6 or IPV4.
  • IPV6 needs to comply with IETF RFC 2460.
  • IPV4 needs to comply with IETF RFC 791, and should also support DSCP (IETF RFC 2474) to better support QoS-related functions.
  • the T1 control plane protocol stack is shown in Figure 10.
  • the T1 user plane protocol stack is shown in Figure 11.
  • terminals supporting both normal services and trunk services need to initiate two registration procedures, which are registered in the EPC and DSS respectively.
  • Embodiment 1 The following describes the service implementation process based on the foregoing cluster service implementation system with reference to the accompanying drawings: Embodiment 1
  • Step 1001 First, the terminal initiates an RRC connection establishment, and establishes an RRC connection with the eNB.
  • Step 1002 The eNB learns that the terminal needs to initiate a group call, and sends a group call setup request message to the DSS (refer to the initial UE message of the LTE protocol).
  • the cluster core network identifier is configured in the RRC connection setup complete message sent by the terminal, so that the eNB can learn that the terminal needs to initiate a group call and send a tenant setup request to which cluster core network.
  • the terminal may also send the RRC connection setup request message and the RRC connection setup complete message with the new message identifier, so that the eNB learns that the terminal needs to initiate the group according to the new (different from the existing message identifier) message identifier.
  • the caller sends a tenant setup request to which cluster core network.
  • Step 1003 In the DSS, the PDS and the PHR perform a group user authentication process.
  • Step 1004 After authenticating, the DSS sends a cluster initial context establishment request message to the eNB.
  • Step 1005 Capability query process (refer to the capability query process defined by the LTE protocol)
  • Step 1006 Security process (refer to the security process defined by the LTE protocol)
  • Step 1007 The terminal channel configuration process is referred to (refer to the reconfiguration process defined by the LTE protocol).
  • Step 1009 Send a paging message to the eNB by the DSS.
  • Step 1010 The eNB sends a paging message to the listening terminal, and the terminal returns a paging response to the eNB, and the eNB forwards the paging response to the DSS.
  • Steps 1009-1010 are procedures for paging the listening terminal. Obviously, the listening terminal does not need to establish an RRC connection.
  • Step 1011 The cluster listening terminal configuration process sends the cluster shared channel information to the listening terminal. Step 1011 is similar to the reconfiguration process in the LTE service setup process.
  • Step 1012 The DSS sends an authorization and a notification to the terminal through the NAS message, and informs the user that the user can speak.
  • the eNB of the E-UTRAN forwards the cluster service data sent by the terminal according to the cluster service air interface configuration.
  • Step 1101 The terminal and the system have established an RRC connection, and are in a service connection state.
  • Step 1102 When the terminal needs to initiate a cluster call and judges that the RRC connection has been successfully established, the terminal sends a cluster service request message to the eNodeB.
  • Step 1103 The eNB sends a group call setup request message to the DSS.
  • Step 1104 The PDS and the PHR perform a group user authentication process. After the authentication, the DSS sends a cluster initial context establishment request message to the eNB.
  • Step 1105 Capability query process (refer to the capability query process defined by the LTE protocol)
  • Step 1106 Security process (refer to the security process defined by the LTE protocol)
  • Step 1107 Say the user channel configuration process (refer to the reconfiguration process defined by the LTE protocol).
  • Step 1108 The eNB sends a cluster initial context setup response message to the PDS.
  • Step 1109 After the call is established, the PDS sends an authorization and a notification to the terminal through the NAS message, and informs the user that the user can speak.
  • the process of paging the terminal is the same as that in Embodiment 1.
  • the eNB of the E-UTRAN forwards the cluster service data sent by the terminal according to the cluster service air interface configuration.
  • the cluster service establishment process shown in Embodiments 1 and 2 is as shown in FIG. 14, and includes the following steps: Step 1201: RRC connection establishment step, and the E-UTRAN establishes an RRC connection with the cluster service said terminal;
  • Step 1202 A cluster service context establishing step, where the E-UTRAN and the cluster core network are adjusted Degree subsystem (DSS) establishes a cluster business context;
  • DSS Degree subsystem
  • the E-UTRAN triggers the establishment of the cluster service context based on an RRC connection setup request (Embodiment 1) or a cluster service request (Embodiment 2) sent by the terminal;
  • Step 1203 The configuration step, the E-UTRAN performs a cluster air interface configuration for the cluster service speaking terminal and the cluster service listening terminal;
  • Step 1204 The paging step, the E-UTRAN paging the listening terminal according to the paging message of the cluster core network scheduling subsystem;
  • Step 1205 The cluster service data forwarding step, the E-UTRAN forwards the cluster service data according to the cluster service air interface configuration.
  • the method further includes an authentication authentication step, the cluster core network scheduling subsystem (DSS) speaking the cluster of the cluster to the cluster by using the E-UTRAN
  • DSS cluster core network scheduling subsystem
  • one or more types of security authentication in the clustering terminal and capability query are performed according to specific requirements.
  • Step 1301 The terminal (including the terminal and the listening terminal) and the system have established a cluster service connection, and are in a cluster service connection state;
  • Step 1302 When the terminal needs to initiate the LTE service and judges that the RRC connection has been successfully established, the terminal sends an LTE service request message to the eNodeB.
  • the group listening user does not need to establish an RRC connection with the eNB. Therefore, before step 2, the terminal first determines whether an RRC connection has been established, and if not, needs to be established. The RRC connection establishment procedure is initiated, and if it is established, the LTE service request message is directly sent to the eNB.
  • the eNB of the E-UTRAN triggers the LTE service context establishment based on the RRC connection setup request or the LTE service request of the terminal.
  • Step 1304 The EPC sends an initial context setup request message to the eNB.
  • Step 1305 Capability query process (refer to the capability query process defined by the LTE protocol)
  • Step 1306 Security process (refer to the security process defined by the LTE protocol)
  • Step 1307 The user channel configuration process is referred to (refer to the reconfiguration process defined by the LTE protocol).
  • the eNB of the E-UTRAN forwards the LTE service data.
  • one or more of the LTE service terminal is authenticated and the capability query is used for security authentication according to specific requirements.
  • the terminal needs to initiate two registration procedures, which are registered in the EPC and the DSS, respectively.
  • the terminal of the present invention supports the cluster service and the LTE service or only supports the cluster service, as shown in Figure 16, including but not limited to:
  • the RRC connection establishing module is configured to establish an RRC connection with the eNB when the RRC connection is not established between the terminal and the eNB, and the service requesting module is configured to send the cluster service request or the LTE service to the eNB when the RRC connection is successfully established.
  • a configuration module configured to receive cluster air interface configuration information or RRC reconfiguration information sent by the eNB.
  • the RRC connection establishment module sends an RRC connection setup complete message, and configures the cluster core network identifier in the RRC connection setup complete message.
  • the RRC connection setup module sends an RRC connection setup request message with a new message identifier and an RRC connection setup complete message.
  • the base station (eNB) of the E-UTRAN of the present invention includes:
  • An RRC connection establishing module configured to establish an RRC connection with a cluster service said terminal (UE); a context establishing module, configured to interact with a cluster core network scheduling subsystem to establish a cluster service context; wherein, the cluster core network scheduling subsystem ( DSS) is separated from the evolved packet core network (EPC);
  • DSS cluster core network scheduling subsystem
  • EPC evolved packet core network
  • the cluster service air interface is configured to forward cluster service data.
  • the interface between the eNB and the DSS is a T1 interface, the control plane protocol of the T1 interface uses a flow control transmission protocol (SCTP), and the user plane protocol uses a user plane layer GPRS tunneling protocol (GTP-U). .
  • SCTP flow control transmission protocol
  • GTP-U user plane layer GPRS tunneling protocol
  • the RRC connection establishing module of the base station is further configured to establish an RRC connection with the LTE service terminal;
  • the context establishing module of the base station is further configured to establish an LTE service context by interacting with an evolved packet core network (EPC) based on the established RRC connection;
  • EPC evolved packet core network
  • the configuration module is further configured to reconfigure the LTE service terminal.
  • the data forwarding module is also used to forward LTE service data.
  • the context establishing module of the base station triggers the cluster service context establishment based on an RRC connection setup request or a cluster service request sent by the terminal; the context establishment module of the base station is based on the RRC of the terminal.
  • the connection establishment request or the LTE service request (corresponding to method embodiment 3) triggers the LTE service context establishment.
  • the trunking communication system of the present invention includes a terminal, an E-UTRAN, and a cluster core network scheduling subsystem (DSS), wherein, in the cluster private network system:
  • DSS cluster core network scheduling subsystem
  • Terminal used to support cluster service functions
  • E-UTRAN including several eNBs, for providing airborne radio bearers for trunking services;
  • the cluster core network scheduling subsystem (DSS) is separated from the evolved packet core network (EPC) and is used to provide cluster services for the terminal through E-UTRAN.
  • EPC evolved packet core network
  • the system further includes: an evolved packet core network (EPC), configured to provide an LTE service to the terminal by using E-UTRAN;
  • EPC evolved packet core network
  • the terminal is also used to support LTE service functions; the E-UTRAN is also used to provide an over-the-air radio bearer for the LTE service.
  • the terminal, base station, and cluster core network scheduling subsystem have the functional module structure described above. I will not repeat them here.
  • the DSS is connected to an EPC Home Subscriber Server (HSS) for transmitting cluster related user information and security data.
  • HSS EPC Home Subscriber Server
  • the system further includes a core network of other services (other than the cluster service and the LTE service), and the other service core network is configured to provide other services to the terminal by using the E-UTRAN, E-UTRAN is also used to provide over-the-air radio bearers for other services.
  • a core network of other services other than the cluster service and the LTE service
  • the other service core network is configured to provide other services to the terminal by using the E-UTRAN
  • E-UTRAN is also used to provide over-the-air radio bearers for other services.
  • the trunking communication system architecture provided by the present invention can provide a professional cluster service and support access based on the LTE flat network architecture.
  • Network sharing On the one hand, LTE and cluster services can be separated, flexible networking, and mutual interference are small, which facilitates the smooth and independent evolution of existing cluster systems, and meets the networking requirements of low-cost, service-separable, and independent evolution.
  • the network architecture of the trunking communication system combined with the LTE-related protocol standards, solves some of the problems affecting the ordinary LTE services after the cluster system is introduced.

Abstract

一种集群业务实现方法、系统、终端、基站及集群核心网调度子系统(DSS),该方法包括:RRC连接建立步骤;集群业务上下文建立步骤,所述E-UTRAN与集群核心网调度子系统(DSS)建立集群业务上下文;配置步骤,所述E-UTRAN对集群业务说终端、集群业务听终端进行集群空口配置;寻呼步骤,所述E-UTRAN根据集群核心网调度子系统的寻呼消息寻呼听终端;集群业务数据转发步骤,所述E-UTRAN根据集群业务空口配置转发集群业务数据。本发明实施例集群业务实现方法、系统及网元可以提供专业化集群服务而不受LTE业务影响。

Description

集群业务实现方法、 系统及网元
技术领域
本发明涉及移动通信技术领域, 尤其涉及一种集群业务实现方法、 系统 及网元(这里所说的网元包括终端、基站及集群核心网调度子系统( DSS ) )。
背景技术
集群通信系统是为了满足行业用户指挥调度需求而开发的、 面向特定行 业应用的专用无线通信系统, 系统中大量无线用户共享少量无线信道, 以指 挥调度为主体应用, 是一种多用途、 高效能的无线通信系统。
集群通信系统经历了与蜂窝移动通信系统类似的发展历程。 第一代集群 系统是模拟集群通信系统, 主要支持语音通信。 第二代集群系统是窄带数字 集群通信系统, 兴起于 20世纪 90年代, 是当前国内应用最广泛的集群通信 成为整个无线通信的发展趋势。 相应地, 集群通信系统在技术上也将向系统 IP化、 业务多样化、 数据宽带化、 终端多模化的方向发展。
针对集群通信系统的发展趋势, 基于 LTE(Long Term Evolution,长期演 进))系统基础上开发集群系统, 成为业界关注的重点。
下面先介绍 LTE系统网络架构:
如图 1 , LTE釆用扁平化的网络架构,接入网 E-UTRAN(evolved universal terrestrial radio access network, 演进的通用陆基无线接入网)包含多个节点 eNB(evolved Node B , 演进型基站), eNB又和演进型分组核心网 ( Evolved Packet Internet Core , EPC )通过 S 1接口相连。 S 1接口的用户面终止在服务 网关 (Serving GateWay, S-GW )上, SI接口的控制面终止在移动性管理实 体 MME上。 图 1中各网元节点的功能划分如下:
eNB功能:
LTE的 eNB功能, 包括物理层功能、 MAC ( Media Access Control, 媒 体访问控制)层功能(包括 HARQ ( ( Hybrid Automatic Repeat Request, 混 合自动重传请求)、 RLC ( Radio Link Control, 无线链路控制)层(包括 ARQ (自动重传请求( Automatic Repeat-reQuest, ARQ )功能)、 PDCP( Packet Data Convergence Protocol,分组数据汇聚协议)功能、 RRC( Radio Resource Control, 无线资源控制功能(包括无线资源控制功能) 、 调度、 无线接入许可控制、 接入移动性管理以及小区间的无线资源管理功能等。 具体包括有:
无线资源管理: 无线承载控制、 无线接纳控制、 连接移动性控制、 上下 行链路的动态资源分配(即调度)等功能;
IP头压缩和用户数据流的加密;
当从提供给 UE的信息无法获知到 MME的路由信息时, 选择 UE附着 的 MME;
路由用户面数据到 S-GW;
调度和传输从 MME发起的寻呼消息;
调度和传输从 MME或 0&M发起的广播信息;
用于移动性和调度的测量和测量上 ^的配置;
调度和传输从 MME发起的 ETWS (即地震和海嘯预警系统) 消息。
MME功能:
MME是 SAE的控制核心, 主要负责用户接入控制、 业务承载控制、 寻 呼、 切换控制等控制信令的处理。
NAS信令;
NAS信令安全;
AS 安全控制;
3GPP无线网络的网间移动信令;
idle状态 UE的可达性(包括寻呼信号重传的控制和执行) ;
跟踪区列表管理;
P-GW和 S-GW 的选择;
切换中需要改变 MME时的 MME选择; 切换到 2G或 3GPP网络时的 SGSN选择;
漫游;
鉴权;
包括专用承载建立的承载管理功能;
支持 ETWS信号传输;
S-GW功能:
S-GW作为本地基站切换时的锚定点, 主要负责以下功能: 在基站和公 共数据网关之间传输数据信息;为下行数据包提供緩存;基于用户的计费等。
eNB间切换时, 本地的移动性锚点;
3GPP系统间的移动性锚点;
E-UTRAN idle状态下, 下行包緩冲功能、 以及网络触发业务请求过程的 初始化;
合法侦听;
包路由和前转;
上、 下行传输层包标记;
运营商间的计费时, 基于用户和 QCI粒度统计;
分别以 UE、 PDN、 QCI为单位的上下行计费;
PDN网关 (P-GW )功能:
公共数据网关 P-GW作为数据承载的锚定点, 提供以下功能: 包转发、 包解析、合法监听、基于业务的计费、业务的 QOS控制,以及负责和非 3GPP 网络间的互联等。
基于每用户的包过滤(例如借助深度包探测方法) ;
合法侦听;
UE 的 IP地址分配;
下行传输层包标记;
上下行业务级计费、 门控和速率控制; 基于聚合最大比特速率 (AMBR ) 的下行速率控制;
下面再介绍一下 LTE网络协议栈结构。
控制面协议结构如图 2所示:
PDCP在网络侧终止于 eNB, 需要完成控制面的加密、 完整性保护等功
•6匕
匕。
RLC和 MAC在网络侧终止于 eNB , 在用户面和控制面执行功能没有区 别。
RRC在网络侧终止于 eNB, 主要实现广播、 寻呼、 RRC连接管理、 RB 控制、 移动性功能、 UE的测量上报和控制功能。
NAS控制协议在网络侧终止于 MME , 主要实现 EPS承载管理、 鉴权、 ECM ( EPS连接性管理 ) idle状态下的移动性处理、 ECM idle状态下发起寻 呼、 安全控制功能。
用户面协议结构如图 3所示:
用户面 PDCP、 RLC、 MAC在网络侧均终止于 eNB, 主要实现头压缩、 加密、 调度、 ARQ和 HARQ功能。
常用的 LTE集群网络架构, 是在原有 LTE标准网元基础上, 不改变终 端、 E-UTRAN、 EPC网络架构, 釆用功能增强的方式加入集群功能, 这种方 式存在下面的问题:
这种方案将 LTE应用与集群应用耦合在一起,导致集群业务与公网 LTE 普通业务的高度耦合,从而给组网、业务分离带来不利影响。比如在原有 LTE 网络中增加集群功能, 则必须要升级 EPC;
因为集群核心网与 LTE EPC合一, 功能较复杂, 不利于设备小型化。 不利于专网集群低成本要求, 因为专网集群也需要配置 EPC;
上述集群核心网系统的演进, 会影响到普通 LTE业务。
LTE EPC会受到集群用户冲击, 影响稳定性, 比如在组播的时候, EPC 向大量 eNB发送相同的媒体面报文, 会导致 EPC负荷过重, 影响到公网用 户体验。
发明内容
本发明要解决的技术问题是提供一种集群业务实现方法、 系统及网元, 以解决集群业务对现有 LTE业务带来影响的问题。
为解决上述技术问题, 本发明提供了一种集群业务实现方法, 该方法基 于的系统包括 E-UTRAN和与演进型分组核心网 ( EPC )分离的集群核心网 调度子系统(DSS ) , 该方法包括:
RRC连接建立步骤, E-UTRAN与集群业务说终端建立 RRC连接; 集群业务上下文建立步骤, 所述 E-UTRAN 与集群核心网调度子系统
( DSS )建立集群业务上下文;
配置步骤, 所述 E-UTRAN对集群业务说终端、 集群业务听终端进行集 群空口配置;
寻呼步骤, 所述 E-UTRAN根据集群核心网调度子系统的寻呼消息寻呼 听终端;
集群业务数据转发步骤, 所述 E-UTRAN根据集群业务空口配置转发集 群业务数据。
优选地, RRC连接建立步骤之后, 集群业务上下文建立步骤之前, 该方 法还包括鉴权认证步骤, 所述集群核心网调度子系统 (DSS ) 通过所述 E-UTRAN对所述, 对集群说终端的集群业务进行鉴权、 能力查询或安全认 证。
优选地, 该系统还包括与集群核心网调度子系统(DSS )分离设置的演 进型分组核心网 (EPC ) , RRC连接建立步骤后, 所述集群终端发起 LTE业 务时, 该方法还包括以下步骤:
LTE业务上下文建立步骤,所述 E-UTRAN与演进型分组核心网( EPC ) 建立 LTE业务上下文;
LTE业务数据转发步骤, 所述 E-UTRAN转发 LTE业务数据。 可选地, RRC连接建立步骤之后, LTE业务上下文建立步骤之前, 该方 法还包括鉴权认证步骤, 所述 EPC通过所述 E-UTRAN对所述终端的 LTE 业务进行鉴权、 能力查询或安全认证。
优选地,所述 E-UTRAN基于终端发送的 RRC连接建立请求或集群业务 请求触发所述集群业务上下文建立; 基于终端的 RRC连接建立请求或 LTE 业务请求触发所述 LTE业务上下文建立。
优选地, 所述 eNB与所述 DSS之间的接口为 T1接口, 所述 T1接口的 控制面协议釆用流控制传输协议 (SCTP), 用户面协议釆用用户面层的 GPRS 隧道协议( GTP-U ) 。
为解决上述技术问题, 本发明提供了一种终端, 该终端支持集群业务和
LTE业务或仅支持集群业务, 包括:
RRC连接建立模块,设置为:当终端与 eNB之间没有建立 RRC连接时, 与所述 eNB建立 RRC连接;
业务请求模块, 设置为: 判断 RRC连接已成功建立时, 向 eNB发送集 群业务请求或 LTE业务请求;
配置模块, 设置为: 接收 eNB发送的集群空口配置信息或 RRC重配置 信息。
为解决上述技术问题, 本发明提供了一种基站, 所述基站包括:
RRC连接建立模块, 设置为: 与集群业务说终端 (UE ) 交互建立 RRC 连接;
上下文建立模块, 设置为: 与集群核心网调度子系统交互建立集群业务 上下文; 所述集群核心网调度子系统与演进型分组核心网 (EPC )分离; 配置模块, 设置为: 对集群业务说终端、 集群业务听终端进行集群空口 配置;
寻呼模块,设置为:根据集群核心网调度子系统的寻呼消息寻呼听终端; 数据转发模块, 设置为: 根据集群业务空口配置转发集群业务数据。 为解决上述技术问题,本发明提供了一种集群核心网调度子系统( DSS ) , 所述 DSS与演进型分组核心网 (EPC )分离, 包括:
集群服务器(PDS ) , 设置为: 通过 E-UTRAN实现集群业务的媒体面 和控制面处理;
归属寄存器 (PHR ) , 设置为: 提供群组和群组成员的注册、 提供群组 成员的本地信息, 提供集群业务鉴权、 统计及计费功能;
调度台服务器(DAS ) , 设置为: 与所述 PDS、 PHR交互执行调度管理 操作。
为解决上述技术问题, 本发明提供了一种集群通信系统, 该系统包括: 终端, 设置为: 支持集群业务功能;
E-UTRAN, 设置为: 包括若干个 eNB, 为集群业务提供空中无线承载; 一个或多个独立的集群核心网调度子系统(DSS ) , 设置为: 与演进型 分组核心网 ( EPC )分离, 通过 E-UTRAN为所述终端提供集群业务。
釆用本发明实施例所给的集群通信系统架构,一方面可以基于 LTE扁平 化网络架构, 提供专业化集群服务, 支持接入网共享; 一方面能实现 LTE和 集群业务分离, 灵活组网, 相互干扰小, 方便现有集群系统单独平滑演进, 满足低成本、 业务可分可合、 独立演进的组网需求。 附图概述
图 1 是 LTE通信系统整体系统逻辑架构图;
图 2 是 LTE通信系统控制面协议栈图;
图 3 是 LTE通信系统媒体面协议栈图;
图 4 是是本发明实施例集群业务实现系统之 LTE集群专网系统的网络 架构图;
图 5 -7是集群业务实现系统之 LTE集群共网系统的网络架构图; 图 8是 LTE集群通信系统控制面协议栈图;
图 9 是 LTE集群通信系统用户面协议栈图;
图 10 是 LTE集群通信系统 T1接口控制面协议栈图; 图 11 是 LTE集群通信系统 Tl接口用户面协议栈图;
图 12是本发明集群业务实现方法实施例 1的流程示意图;
图 13是本发明集群业务实现方法实施例 2的另一流程示意图; 图 14是本发明实施例集群业务实现方法的示意图;
图 15是本发明实施例集群业务实现后实现 LTE业务的流程示意图; 图 16是本发明实施例终端的模块结构示意图;
图 17是本发明实施例基站的模块结构示意图。 本发明的较佳实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述。 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 非全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出 创造性劳动的前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明集群业务实现系统有两种架构,分别是 LTE集群专网系统和 LTE 集群共网系统, 以下分别进行说明:
LTE集群专网系统(仅有集群业务)
LTE集群专网通信系统的实施系统框架,如图 4所示。由无线 E-UTRAN、 与现有演进型分组核心网 (EPC )分离的集群核心网 DSS、 支持集群业务功 能的终端组成,完全省去了公网核心网 EPC , E-UTRAN只与集群核心网 DS S 相连,集群终端直接到 DSS上进行集群注册 /登记过程。由终端、 E-UTRAN、 DSS共同配合完成各项集群业务过程。
在这种组网场景下, 可以不配置 LTE EPC, 达到简化系统、 节约成本的 目的。
普通专网场景下, eNB与 M-PDS和 C-PDS合一的 DSS相连, 网络设备 更为简洁, 便于提供小型化集群专网系统及设备。 大规模专网场景下, 釆用 PDS媒体面和控制面分离的策略, eNB 与包含多个媒体面 M-PDS 和一个 C-PDS的 DSS连接。 LTE集群共网系统(同时有 LTE业务和集群业务)
LTE集群共网通信系统的实施系统框架,如图 5所示。由无线 E-UTRAN、 与现有演进型分组核心网 (EPC )分离的集群核心网 DSS、 EPC、 支持集群 业务和 LTE业务的终端组成, 终端分别在 EPC和 DSS上完成普通 LTE和集 群相关的注册 /登记过程。
在 LTE和集群公网的场景下, eNB同时连接 LTE EPC和 DSS。 同样, 根据集群群组及用户容量,普通场景下, eNodeB与 M-PDS和 C-PDS合一的 DSS相连, 网络设备更为简洁, 便于提供小型化集群专网系统及设备。 大规 模专网场景下, 釆用 PDS媒体面和控制面分离的策略, eNB与包含多个媒体 面 M-PDS和一个 C-PDS的 DSS连接。
无线 E-UTRAN, 分别与 LTE EPC和 DSS链接, 为 LTE业务和集群业 务分别提供空中无线承载。 为满足集群业务的需求和在公网的兼容性, LTE 无线接口 E-UTRAN需要新增加若干上下行逻辑信道, 以满足如下需求: 用户终端集群状态上报;
集群业务相关的终端与 eNB之间的点-点信令承载;
集群业务相关的终端与 PDS之间的点-点信令承载;
集群组呼控制信令下发;
集群业务承载建立和控制;
基站向 DSS的数据路由;
在传统的 LTE通信系统网络架构中, 增加了独立的网元 DSS(Dispatch Subsystem调度子系统)。
如图 4-7所示, DSS系统由: PDS (集群服务器)、 PHR (归属寄存器) 和 DAS (调度代理服务器, Dispatch Agent Server )组成。
集群服务器(PDS ) : 通过 E-UTRAN实现集群业务的媒体面和控制面 处理, 包括负责集群用户注册、 鉴权, 集群业务管理, 集群承载管理, 集群 寻呼, 集群移动性管理, 集群媒体流转发等功能。 为应对不同的组网场景的要求和 LTE扁平化组网结构 ,集群服务器( PDS ) 更进一步的还可分成媒体面 (M-PDS )和控制面 (C-PDS ) 。
控制面 (C-PDS )主要负责控制信令相关如下功能:
集群用户的注册和鉴权;
集群业务的管理;
位置区的更新;
建立 /释放 /修改 UE上下文;
激活 /修改 /去激活专用 /集群承载;
Paging, 包括普通 LTE业务寻呼和集群业务寻呼;
T1接口移动性管理;
业务承载 QoS管理。
媒体面 (M-PDS )主要负责用户数据相关如下功能:
激活 /修改 /去激活专用 /集群承载;
T1接口切换;
媒体流的转发。
根据集群群组及用户容量, 普通场景下, eNodeB 与 M-PDS 和 C-PDS 合一的 DSS相连,网络设备更为简洁,便于提供小型化集群专网系统及设备。 大规模专网场景下,釆用 PDS媒体面和控制面分离的策略, eNB与包含多个 媒体面 M-PDS和一个 C-PDS的 DSS连接。普通 LTE业务与集群业务相互隔 离, 集群终端可以同时并发进行普通 LTE业务与集群业务。 此种组网架构, 有利的减少了集群用户 LTE EPC的冲击, 保障了 LTE业务网络稳定性。
归属寄存器 (PHR ) : 提供群组和群组成员的注册, 提供群组成员的本 地信息, 提供集群成员的业务权限鉴别, 执行统计和计费功能。
调度代理服务器(DAS ) , 用于与所述 PDS、 PHR交互执行调度管理操 作, 釆用主流 PC服务器, 基于典型 B/S架构( Browser/Server, 浏览器 /服务 器模式) 建立一个面向调度客户端的站点。
调度客户端登录到 DAS服务器站点, 通过 DAS与 PDS、 PHR的交互, 执行调度管理操作。 同时, 运营商可以通过超级用户身份登录到 DAS , 对 DAS的进行操作维护管理。
如图 6所示,根据组网场景和要求, 可以釆用一个 LTE EPC + 多个集群 核心网的方式, 不同集群核心网可以独立运营和维护。
如图 7所示, 如果后续有其它新型业务, 也可以釆用新增支持此种业务 独立核心网网元的方法, 如 LTE EPC + 集群核心网 +其它业务独立核心网的 组网方式, 从而共享接入网和 LTE EPC, 业务相对隔离, 方便业务扩展。
进一步, 为了实现用户管理信息共享, 可以增加 DSS与 EPC中 HSS (归 属用户服务器, Home Subscriber Server )接口, 用于传输集群相关用户信息和 安全性数据等, 增强群组信息的管理过程。
DSS与 E-UTRAN之间的链路, 分成 T1-C和 T1-U接口 , 分别对应集群 控制面接口和集群用户面接口。
集群专网的架构如图 5所示, 其中不包括 LTE EPC。
进一步, 网络架构的控制面协议栈结构如图 8, 在 RRC层增加集群相关 的一组信令, 相对应的在 NAS层也需要增加集群相关的一组 NAS消息。
用户面协议栈,如图 9所示,和 LTE业务的空口用户面协议栈结构相同。 下面对 T1口做详细描述。
T1接口为 eNB和 DSS间的接口,控制面接口命名为 T1-C, 用户面接口 命名为 Tl-U, T1接口协议栈结构与 LTE S1接口的协议栈相同,控制面协议 釆用 SCTP (流控制传输协议, Stream Control Transmission Protocol ) , 用户 面协议釆用 GTP-U ( GPRSTunnellingProtocolfortheuserplane--用户层面的 GPRS隧道协议 ) 。
IP协议釆用 IPV6或者 IPV4, IPV6需要遵循 IETF RFC 2460, IPV4需 要遵循 IETF RFC 791 , 而且还应支持 DSCP ( IETF RFC 2474 ) , 以更好的 支持 QoS相关功能。
T1控制面协议栈如图 10所示, T1用户面协议栈如图 11所示。 此外 , 在这种既有 LTE EPC和 DSS的网络架构下 , 同时支持普通业务 和集群业务的终端需要发起两次登记过程, 分别在 EPC和 DSS登记。
以下结合附图,对基于前述集群业务实现系统的业务实现流程进行说明: 实施例 1
只有集群业务的组呼流程见图 12, 具体的流程包括:
步骤 1001 : 首先是说终端发起 RRC连接建立, 与 eNB交互建立 RRC 连接。
步骤 1002: eNB获知说终端需要发起组呼, 则给 DSS发送组呼建立请 求消息 (参考 LTE协议的初始 UE消息)
终端发送的 RRC连接建立完成消息中配置集群核心网标识,从而可使得 eNB获知说终端需要发起组呼以及向哪个集群核心网发送租户建立请求。
可选地,终端也可通过发送带有新的消息标识的 RRC连接建立请求消息 和 RRC连接建立完成消息, 使得 eNB根据该新 (不同于现有消息标识) 的 消息标识获知说终端需要发起组呼以及向哪个集群核心网发送租户建立请求。
步骤 1003: DSS内, PDS和 PHR进行组用户鉴权过程
步骤 1004: 通过鉴权后, DSS给 eNB发送集群初始上下文建立请求消 息;
步骤 1005: 能力查询过程 (参考 LTE协议定义的能力查询过程) 步骤 1006: 安全过程 (参考 LTE协议定义的安全过程 )
步骤 1007: 说终端信道配置过程 (参考 LTE协议定义的重配置流程) 步骤 1008: eNB给 DSS发送集群初始上下文建立应答消息;
步骤 1009: 由 DSS给 eNB发送寻呼消息;
步骤 1010: eNB将寻呼消息发送给听终端,终端回寻呼响应给 eNB, eNB 将寻呼响应转给 DSS;
步骤 1009-1010是寻呼听终端的过程, 可理解地, 听终端无需建立 RRC 连接。
步骤 1011 : 集群听终端配置过程, 将集群共享信道信息发送给听终端。 步骤 1011类似于 LTE业务建立过程中的重配置过程。
步骤 1012: 由 DSS通过 NAS消息, 给终端发送授权及通知, 告知说用 户可以说话。
步骤 1012之后, E-UTRAN的 eNB根据集群业务空口配置转发说终端发 送的集群业务数据。
实施例 2
在已经有 LTE连接的时候, 再起呼集群业务流程见图 13 , 下面描述具 体的流程, 为了简化, 只包含起呼用户:
步骤 1101 : 说终端和系统已经建立 RRC连接, 处于业务连接态; 步骤 1102: 说终端需要发起集群呼叫且判断 RRC连接已成功建立时, 则终端给 eNodeB发送集群业务请求消息;
步骤 1103 : eNB给 DSS发送组呼建立请求消息。
步骤 1104: PDS和 PHR进行组用户鉴权过程,通过鉴权后, DSS给 eNB 发送集群初始上下文建立请求消息;
步骤 1105: 能力查询过程 (参考 LTE协议定义的能力查询过程) 步骤 1106: 安全过程 (参考 LTE协议定义的安全过程 )
步骤 1107: 说用户信道配置过程 (参考 LTE协议定义的重配置流程 ) 步骤 1108: eNB给 PDS发送集群初始上下文建立应答消息;
步骤 1109: 在被呼建立后, 由 PDS通过 NAS消息, 给终端发送授权及 通知, 告知说用户可以说话; 其中, 寻呼听终端的过程与实施例 1相同。 步骤 1109之后, E-UTRAN的 eNB根据集群业务空口配置转发说终端发 送的集群业务数据。 实施例 1和 2给出的集群业务建立过程如图 14所示,都包括了以下步骤: 步骤 1201 : RRC连接建立步骤, E-UTRAN与集群业务说终端建立 RRC 连接;
步骤 1202: 集群业务上下文建立步骤, 所述 E-UTRAN与集群核心网调 度子系统(DSS )建立集群业务上下文;
其中, 所述 E-UTRAN基于终端发送的 RRC连接建立请求(实施例 1 ) 或集群业务请求 (实施例 2 )触发所述集群业务上下文建立;
步骤 1203: 配置步骤, 所述 E-UTRAN对集群业务说终端、 集群业务听 终端进行集群空口配置;
步骤 1204: 寻呼步骤, 所述 E-UTRAN根据集群核心网调度子系统的寻 呼消息寻呼听终端;
步骤 1205: 集群业务数据转发步骤, 所述 E-UTRAN根据集群业务空口 配置转发集群业务数据。
优选地在 RRC连接建立步骤之后,集群业务上下文建立步骤之前,该方 法还包括鉴权认证步骤, 所述集群核心网调度子系统 (DSS ) 通过所述 E-UTRAN对所述集群说终端的集群业务进行鉴权、 能力查询或安全认证。
可选地, 具体实现时, 根据具体需求中对集群说终端进行鉴权、 能力查 询中安全认证的一种或多种。
实施例 3
在已经有集群连接的时候, 再建立 LTE业务流程见图 15, 下面描述具 体的流程, 为了简化, 只包含起呼用户:
步骤 1301 :终端(包括说终端和听终端)和系统已经建立集群业务连接, 处于集群业务连接态;
步骤 1302: 终端需要发起 LTE业务且判断 RRC连接已成功建立时, 则 终端给 eNodeB发送 LTE业务请求消息;
可理解地,如上文实施例所述,在集群业务中,组呼听用户不需要与 eNB 之间建立 RRC连接, 因此步骤 2之前, 终端先判断是否已建立 RRC连接, 若未建立, 则需要发起 RRC连接建立流程, 如已建立则直接发送 LTE业务 请求消息给 eNB。
具体地, E-UTRAN的 eNB基于终端的 RRC连接建立请求或 LTE业务 请求触发所述 LTE业务上下文建立。 步骤 1303: eNB给 EPC发送初始 UE消息。
步骤 1304: EPC给 eNB发送初始上下文建立请求消息;
步骤 1305: 能力查询过程 (参考 LTE协议定义的能力查询过程) 步骤 1306: 安全过程 (参考 LTE协议定义的安全过程 )
步骤 1307: 说用户信道配置过程 (参考 LTE协议定义的重配置流程 ) 步骤 1308: eNB给 EPC发送初始上下文建立应答消息, LTE业务建立 流程完成。
之后, E-UTRAN的 eNB转发 LTE业务数据。
可选地, 具体实现时, 根据具体需求中对 LTE业务终端进行鉴权、 能力 查询中安全认证的一种或多种。
在这种本发明网络架构下, 终端需要发起两次登记过程, 分别在 EPC和 DSS登记。
以下基于上述方法实施例对本发明终端、 基站及系统的模块结构进行说 明:
本发明终端支持集群业务和 LTE业务或仅支持集群业务, 如图 16, 包 括但不限于:
RRC连接建立模块, 当终端与 eNB之间没有建立 RRC连接时, 用于与所 述 eNB建立 RRC连接; 业务请求模块, 判断 RRC连接已成功建立时, 用于向 eNB发送集群业务 请求或 LTE业务请求; 配置模块, 用于接收 eNB发送的集群空口配置信息或 RRC重配置信息。 当终端发起集群业务时, RRC连接建立模块发送 RRC连接建立完成消息, 并在 RRC连接建立完成消息中配置集群核心网标识。 当终端发起集群业务时, RRC连接建立模块发送带有新的消息标识的 RRC连接建立请求消息和 RRC连接建立完成消息。 在集群专网结构中, 本发明 E-UTRAN的基站(eNB ) , 如图 17所示, 包括:
RRC连接建立模块,用于与集群业务说终端( UE )交互建立 RRC连接; 上下文建立模块, 用于与集群核心网调度子系统交互建立集群业务上下 文; 其中, 所述集群核心网调度子系统 (DSS)与演进型分组核心网 (EPC )分 离;
配置模块,用于对集群业务说终端、集群业务听终端进行集群空口配置; 寻呼模块, 用于根据集群核心网调度子系统的寻呼消息寻呼听终端; 数据转发模块, 用于根据根据集群业务空口配置转发集群业务数据。 所述 eNB与所述 DSS之间的接口为 T1接口, 所述 T1接口的控制面协 议釆用流控制传输协议 (SCTP), 用户面协议釆用用户面层的 GPRS隧道协议 ( GTP-U ) 。
在 LTE集群共网结构中,所述基站的 RRC连接建立模块,还用于与 LTE 业务终端交互建立 RRC连接;
所述基站的上下文建立模块,还用于基于建立的 RRC连接与演进型分组 核心网 (EPC ) 交互建立 LTE业务上下文;
配置模块, 还用于对 LTE业务终端进行重配置;
数据转发模块, 还用于转发 LTE业务数据。
对应于方法实施例 1和方法实施例 2, 所述基站的上下文建立模块基于 终端发送的 RRC 连接建立请求或集群业务请求触发所述集群业务上下文建 立; 所述基站的上下文建立模块基于终端的 RRC连接建立请求或 LTE业务 请求(对应于方法实施例 3 )触发所述 LTE业务上下文建立。
如上文所述, 本发明集群通信系统如图 4 所示, 包括终端, E-UTRAN 和集群核心网调度子系统(DSS ) , 其中, 在集群专网系统中:
终端, 用于支持集群业务功能;
E-UTRAN, 包括若干个 eNB , 用于为集群业务提供空中无线承载; 集群核心网调度子系统(DSS ) , 与演进型分组核心网 (EPC )分离, 用于通过 E-UTRAN为所述终端提供集群业务。
在 LTE集群共网系统中, 如图 5-7所示, 所述系统还包括: 演进型分组 核心网(EPC), 用于通过 E-UTRAN为所述终端提供 LTE业务;
所述终端还用于支持 LTE业务功能; 所述 E-UTRAN还用于为 LTE业 务提供空中无线承载。
更具体地, 所述终端、 基站及集群核心网调度子系统(DSS )具有上文 所述的功能模块结构。 在此不再赘述。
优选地, 所述 DSS与 EPC的归属用户服务器(HSS )通过接口连接, 用 于传输集群相关用户信息和安全性数据。
可选地, 所述系统还包括其他业务 (除集群业务和 LTE业务之外的其他 新型业务 )核心网, 该其他业务核心网, 用于通过 E-UTRAN为所述终端提 供其他业务, 所述 E-UTRAN还用于为其他业务提供空中无线承载。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
通过以上发明实施例可以看出, 通过釆用本发明所给的集群通信系统架 构, 一方面可以基于 LTE扁平化网络架构, 提供专业化集群服务, 支持接入 网共享; 一方面能实现 LTE和集群业务分离, 灵活组网, 相互干扰小, 方便 现有集群系统单独平滑演进, 满足低成本、 业务可分可合、 独立演进的组网 需求。
本集群通信系统网络架构, 结合 LTE相关协议标准, 解决了集群系统引 入后对普通 LTE业务影响的部分问题。

Claims

权 利 要 求 书
1、 一种集群业务实现方法,该方法基于的系统包括 E-UTRAN和与演进 型分组核心网(EPC )分离的集群核心网调度子系统(DSS ) , 该方法包括:
RRC连接建立步骤, E-UTRAN与集群业务说终端建立 RRC连接; 集群业务上下文建立步骤, 所述 E-UTRAN 与集群核心网调度子系统
( DSS )建立集群业务上下文;
配置步骤, 所述 E-UTRAN对集群业务说终端、 集群业务听终端进行集 群空口配置;
寻呼步骤, 所述 E-UTRAN根据集群核心网调度子系统的寻呼消息寻呼 听终端;
集群业务数据转发步骤, 所述 E-UTRAN根据集群业务空口配置转发集 群业务数据。
2、 如权利要求 1所述的方法, 其中, RRC连接建立步骤之后, 集群业 务上下文建立步骤之前, 该方法还包括鉴权认证步骤, 所述集群核心网调度 子系统(DSS )通过所述 E-UTRAN对所述, 对集群说终端的集群业务进行 鉴权、 能力查询或安全认证。
3、 如权利要求 1 所述的方法, 其中, 该系统还包括与集群核心网调度 子系统(DSS )分离设置的演进型分组核心网 (EPC ) , RRC连接建立步骤 后, 所述集群终端发起 LTE业务时, 该方法还包括以下步骤:
LTE业务上下文建立步骤,所述 E-UTRAN与演进型分组核心网( EPC ) 建立 LTE业务上下文;
LTE业务数据转发步骤, 所述 E-UTRAN转发 LTE业务数据。
4、 如权利要求 3所述的方法, 其中, RRC连接建立步骤之后, LTE业 务上下文建立步骤之前, 该方法还包括鉴权认证步骤, 所述 EPC通过所述 E-UTRAN对所述终端的 LTE业务进行鉴权、 能力查询或安全认证。
5、 如权利要求 1或 3所述的方法,其中,所述 E-UTRAN基于终端发送 的 RRC连接建立请求或集群业务请求触发所述集群业务上下文建立;基于终 端的 RRC连接建立请求或 LTE业务请求触发所述 LTE业务上下文建立。
6、 如权利要求 1所述的方法, 其中, 所述 eNB与所述 DSS之间的接口 为 T1接口, 所述 T1接口的控制面协议釆用流控制传输协议 (SCTP), 用户面 协议釆用用户面层的 GPRS隧道协议( GTP-U ) 。
7、 一种终端, 其中, 该终端支持集群业务和 LTE业务或仅支持集群业 务, 包括:
RRC连接建立模块, 设置为: 当终端与 eNB之间没有建立 RRC连接时, 与所述 eNB建立 RRC连接; 业务请求模块, 设置为: 判断 RRC连接已成功建立时, 向 eNB发送集群 业务请求或 LTE业务请求; 配置模块, 设置为: 接收 eNB发送的集群空口配置信息或 RRC重配置信 息。
8、 如权利要求 7所述的终端, 其中, RRC连接建立模块设置为: 当终端发起集群业务时, 发送 RRC连接建立 完成消息, 并在 RRC连接建立完成消息中配置集群核心网标识。
9、 如权利要求 7所述的终端, 其中,
RRC连接建立模块设置为: 当终端发起集群业务时, 发送带有新的消息 标识的 RRC连接建立请求消息和 RRC连接建立完成消息。
10、 一种基站, 所述基站包括:
RRC连接建立模块, 设置为: 与集群业务说终端 (UE ) 交互建立 RRC 连接;
上下文建立模块, 设置为: 与集群核心网调度子系统交互建立集群业务 上下文; 所述集群核心网调度子系统与演进型分组核心网 (EPC )分离; 配置模块, 设置为: 对集群业务说终端、 集群业务听终端进行集群空口 配置;
寻呼模块,设置为:根据集群核心网调度子系统的寻呼消息寻呼听终端; 数据转发模块, 设置为: 根据集群业务空口配置转发集群业务数据。
11、 如权利要求 10所述的基站, 其中,
所述基站的上下文建立模块,还设置为:基于建立的 RRC连接与演进型 分组核心网 (EPC ) 交互建立 LTE业务上下文;
数据转发模块, 还设置为: 转发 LTE业务数据。
12、 如权利要求 11 所述的基站, 其中, 所述基站的上下文建立模块设 置为:基于终端发送的 RRC连接建立请求或集群业务请求触发所述集群业务 上下文建立; 基于终端的 RRC连接建立请求或 LTE业务请求触发所述 LTE 业务上下文建立。
13、 如权利要求 10所述的基站, 其中, 所述 eNB与所述 DSS之间的接 口为 T1接口, 所述 T1接口的控制面协议釆用流控制传输协议 (SCTP), 用户 面协议釆用用户面层的 GPRS隧道协议( GTP-U ) 。
14、 一种集群核心网调度子系统(DSS ) , 其中, 所述 DSS与演进型分 组核心网 (EPC )分离, 包括:
集群服务器(PDS ) , 设置为: 通过 E-UTRAN实现集群业务的媒体面 和控制面处理;
归属寄存器 (PHR ) , 设置为: 提供群组和群组成员的注册、 提供群组 成员的本地信息, 提供集群业务鉴权、 统计及计费功能;
调度台服务器(DAS ) , 设置为: 与所述 PDS、 PHR交互执行调度管理 操作。
15、 如权利要求 14所述的 DSS,其中,所述 E-UTRAN包括若干个 eNB, 所述 PDS与所述 eNB之间的接口为 T1接口, 所述 T1接口的控制面协议釆 用流控制传输协议 (SCTP) , 用户面协议釆用用户面层的 GPRS 隧道协议 ( GTP-U ) 。
16、 如权利要求 14所述的 DSS, 其中, 所述集群服务器(PDS ) 包括 一个或若干个媒体面处理实体以及一个控制面处理实体。
17、 一种集群通信系统, 该系统包括:
终端, 设置为: 支持集群业务功能;
E-UTRAN, 设置为: 包括若干个 eNB, 为集群业务提供空中无线承载; 一个或多个独立的集群核心网调度子系统(DSS ) , 设置为: 与演进型 分组核心网 ( EPC )分离, 通过 E-UTRAN为所述终端提供集群业务。
18、 如权利要求 17所述的系统, 其中, 该系统还包括:
演进型分组核心网(EPC),设置为:通过 E-UTRAN为所述终端提供 LTE 业务;
所述终端还设置为: 支持 LTE业务功能; 所述 E-UTRAN还设置为: 为 LTE业务提供空中无线承载。
19、 如权利要求 17所述的系统, 其中, 所述终端具有权利要求 7-9中 任一项所述的特征。
20、 如权利要求 17 所述的系统, 其中, 所述基站具有权利要求 10-13 中任一项所述的特征。
21、 如权利要求 17所述的系统, 其中, 所述 DSS具有权利要求 14-16 中任一项所述的特征。
22、 如权利要求 17所述的系统, 其中, 所述 DSS设置为: 与 EPC的 归属用户服务器(HSS )通过接口连接, 传输集群相关用户信息和安全性数 据。
23、 如权利要求 17所述的系统, 其中, 所述系统还包括其他业务核心 网,该其他业务核心网,设置为:通过 E-UTRAN为所述终端提供其他业务, 所述 E-UTRAN还设置为: 为其他业务提供空中无线承载。
PCT/CN2013/084070 2012-10-31 2013-09-24 集群业务实现方法、系统及网元 WO2014067371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210428124.0A CN103796176A (zh) 2012-10-31 2012-10-31 集群业务实现方法、系统及网元
CN201210428124.0 2012-10-31

Publications (1)

Publication Number Publication Date
WO2014067371A1 true WO2014067371A1 (zh) 2014-05-08

Family

ID=50626451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084070 WO2014067371A1 (zh) 2012-10-31 2013-09-24 集群业务实现方法、系统及网元

Country Status (2)

Country Link
CN (1) CN103796176A (zh)
WO (1) WO2014067371A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015006633T5 (de) * 2015-06-19 2018-03-08 Hytera Communications Corp., Ltd. Gleichkanal-Netzwerkverfahren und eine Vorrichtung basierend auf einem Trunking-Dienst
CN106533635A (zh) * 2015-09-10 2017-03-22 中兴通讯股份有限公司 数据处理方法和装置
CN106792259A (zh) * 2016-11-23 2017-05-31 北京坦达信息科技有限公司 基于3.3GHz频段LTE无线宽带网的视频传输系统
CN110139360B (zh) 2018-02-08 2022-04-01 大唐移动通信设备有限公司 一种寻呼策略确定方法、装置、ran网元及核心网网元
CN111918301B (zh) * 2019-05-07 2022-11-11 成都鼎桥通信技术有限公司 一种集群对接场景下的资源分配方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060056361A1 (en) * 2004-06-30 2006-03-16 James Jiang Global open trunking system for CDMA wireless communication
CN101060664A (zh) * 2006-04-21 2007-10-24 中兴通讯股份有限公司 一种基于td-scdma技术的无线集群通信系统
CN101707744A (zh) * 2009-11-23 2010-05-12 中兴通讯股份有限公司 一种在集群通信系统中控制呼叫的方法和装置
CN102137337A (zh) * 2010-01-27 2011-07-27 普天信息技术研究院有限公司 数字集群通信系统中快速建立组呼的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100544467C (zh) * 2005-09-09 2009-09-23 中兴通讯股份有限公司 一种集群通信系统及其集群业务的实现方法
CN101784123B (zh) * 2009-01-19 2013-07-03 中兴通讯股份有限公司 集群终端及其呼叫建立方法、系统、以及基站子系统
CN102123460B (zh) * 2010-01-07 2014-11-05 普天信息技术研究院有限公司 集群移动通信系统中实现组呼业务切换的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060056361A1 (en) * 2004-06-30 2006-03-16 James Jiang Global open trunking system for CDMA wireless communication
CN101060664A (zh) * 2006-04-21 2007-10-24 中兴通讯股份有限公司 一种基于td-scdma技术的无线集群通信系统
CN101707744A (zh) * 2009-11-23 2010-05-12 中兴通讯股份有限公司 一种在集群通信系统中控制呼叫的方法和装置
CN102137337A (zh) * 2010-01-27 2011-07-27 普天信息技术研究院有限公司 数字集群通信系统中快速建立组呼的方法

Also Published As

Publication number Publication date
CN103796176A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
Yang et al. Solving the data overload: Device-to-device bearer control architecture for cellular data offloading
JP5970614B2 (ja) マルチネットワークジョイント伝送に基づくオフロード方法、システム及びアクセスネットワーク要素
CN103609150B (zh) 基于apn专有或者非apn专有信息经由本地网络进行流量分流
WO2014005536A1 (zh) 临近终端的通信方法及装置、系统
WO2010015189A1 (zh) 移动网络高速接入公网的节点、方法及系统
TW200931992A (en) Wireless communication methods and components that implement handoff in wireless local area networks
WO2013097641A1 (zh) 实现集群业务的方法、实体及系统
WO2011015147A1 (zh) 数据传输方法、装置和通信系统
WO2019057072A1 (zh) 数据传输的方法及装置
WO2011026392A1 (zh) 一种路由策略的获取方法及系统
WO2011134434A1 (zh) 数据传输设备、方法以及通信系统
WO2017219355A1 (zh) 多连接通信方法和设备
WO2010130174A1 (zh) 一种实现本地访问控制的方法及相应的通信系统
EP2389018B1 (en) Method and apparatus for assisting setting up multicast backhaul channels in the fixed network for mobile multicast service
WO2016141545A1 (zh) 业务流分流的方法和装置
WO2012116623A1 (zh) 一种移动通信系统和组网方法
WO2011015124A1 (zh) 实现本地ip访问控制的方法、通知方法及系统
WO2014067371A1 (zh) 集群业务实现方法、系统及网元
WO2014101677A1 (zh) 一种发送rrc信令的方法、基站和系统
WO2009065321A1 (fr) Procédé, système et dispositif pour traiter le service d'un domaine à commutation de circuits
WO2013182049A1 (zh) 一种集群业务实现方法及其装置
WO2012051892A1 (zh) 一种数据路由控制方法及系统
WO2012155681A1 (zh) 一种csg信息的传输方法和设备
WO2012028071A1 (zh) 一种查询本地网关的方法和系统
WO2006136103A1 (fr) Reseau de communication mobile et procede de communication associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015/05309

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: IDP00201503136

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13851297

Country of ref document: EP

Kind code of ref document: A1