WO2010015189A1 - 移动网络高速接入公网的节点、方法及系统 - Google Patents

移动网络高速接入公网的节点、方法及系统 Download PDF

Info

Publication number
WO2010015189A1
WO2010015189A1 PCT/CN2009/073075 CN2009073075W WO2010015189A1 WO 2010015189 A1 WO2010015189 A1 WO 2010015189A1 CN 2009073075 W CN2009073075 W CN 2009073075W WO 2010015189 A1 WO2010015189 A1 WO 2010015189A1
Authority
WO
WIPO (PCT)
Prior art keywords
public network
path selection
selection policy
ggsn
base station
Prior art date
Application number
PCT/CN2009/073075
Other languages
English (en)
French (fr)
Inventor
蒋铭
吕文安
杨文进
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09804489A priority Critical patent/EP2293643A4/en
Publication of WO2010015189A1 publication Critical patent/WO2010015189A1/zh
Priority to US13/007,408 priority patent/US20110110354A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/14Interfaces between hierarchically different network devices between access point controllers and backbone network device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/302Route determination based on requested QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices

Definitions

  • an end-to-end packet switching service is provided, which is mainly composed of a SGSN (Serving GPRS Support Node), a GGSN (Serving General Packet Radio Service Support Node), and a GGSN (The Gateway GPRS Support Node, such as the Gateway General Packet Radio Service Support Node, is configured to enable users to send and receive data in the end-to-end packet transmission mode.
  • SGSN Server GPRS Support Node
  • GGSN Serving General Packet Radio Service Support Node
  • the Gateway GPRS Support Node such as the Gateway General Packet Radio Service Support Node, is configured to enable users to send and receive data in the end-to-end packet transmission mode.
  • the network architecture shown in Figure 1 has the disadvantages of complex structure and many layers.
  • the user equipment User Equipment
  • the network needs to pass through multiple network element devices such as the RNC (Radio Network Controller), the SGSN, and the GGSN. This will greatly affect the transmission efficiency of the network and make it impossible to meet the application requirements of users for high-rate service transmission.
  • RNC Radio Network Controller
  • SGSN Serving GPRS Support Node
  • GGSN Gateway NodeB
  • Embodiments of the present invention provide a node, a method, and a system for a mobile network to access a public network at a high speed, which facilitates flattening processing of the network, thereby effectively improving transmission efficiency of the network.
  • An enhanced GPRS (General Packet Radio Service) support node includes a public network interface for communication with a public network, a base station interface for communication with a base station, and an information transceiving unit, wherein the information transceiving unit passes through a public network interface and a base station Interface, information transmission between the base station and the public network.
  • GPRS General Packet Radio Service
  • a method for high speed access to a public network of a mobile network comprising:
  • the enhanced GPRS support node transmits information between the base station and the public network through its public network interface for communication with the public network and its base station communication with the base station.
  • a system for high-speed access to a public network of a mobile network comprising at least one enhanced GPRS support node, wherein the enhanced GPRS support node is configured to provide an information transmission path between the base station and the public network, and between the base station and the public network. Information transfer.
  • a system for high-speed access to a public network of a mobile network comprising at least one of the above-mentioned enhanced GPRS support nodes and at least one base station,
  • the enhanced GPRS support node is configured to provide an information transmission path between the corresponding base station and the public network, and implement information transmission between the corresponding base station and the public network.
  • the technical solution provided by the foregoing embodiment of the present invention can specifically flatten the existing network by reducing the number of network element devices that the terminal needs to access the public network to reduce the transmission time. Delay, effectively improve the transmission efficiency of the network.
  • FIG. 1 is a schematic structural diagram of a 3G network in the prior art
  • FIG. 2 is a schematic diagram of a principle provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an eGSN according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a user plane data transmission path according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an application system of an eGSN according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of Embodiment 1 of an application system of an eGSN according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of Embodiment 2 of an application system of an eGSN according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of Embodiment 3 of an application system of an eGSN according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of Embodiment 4 of an application system of an eGSN according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of Embodiment 5 of an application system of an eGSN according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of Embodiment 6 of an application system of an eGSN according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of a system according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a data stream transmission process according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of Embodiment 1 of a data stream transmission process according to an embodiment of the present disclosure
  • FIG. 15 is a schematic diagram of Embodiment 2 of a data stream transmission process according to an embodiment of the present disclosure
  • FIG. 16 is a schematic diagram of a control plane information transmission path according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a process for an eGSN to acquire a path selection policy parameter according to an embodiment of the present invention. Mode for carrying out the invention
  • the embodiments of the present invention provide a technical solution for a mobile network to implement a high-rate access packet data network, which is effectively improved by a flat network structure.
  • Network transmission efficiency making it possible to make maximum use of the operator's existing network equipment, ie without the need for existing network equipment functions Under the premise of major modifications, the network transmission efficiency is improved.
  • the embodiment of the present invention introduces a new network element eGSN (Enhancement GPRS Support Node) in the existing 3G mobile network, so that the NodeB can pass the new
  • the increased network element eGSN directly accesses the public network at a high rate to reduce the intermediate transmission link of the NodeB in the process of accessing the public network, thereby meeting the requirements of the end user for high-rate service transmission.
  • the corresponding public network can be, but is not limited to, a PDN (Packet Data Network) such as the Internet (Internet) or Intranet (Intranet).
  • the specific structure of the eGSN provided by the embodiment of the present invention may include a public network interface 301 for communicating with the public network, a base station interface 302 for communicating with the base station, and an information transceiving unit 303.
  • the public network interface 301 and the base station interface 302 perform information transmission between the base station and the public network, so that the terminal under the base station can access the public network at high speed.
  • the corresponding base station interface may be an interface supporting the function of the Iub interface (standard interface between the NodeB and the RNC), for example, the Iub interface part function may be supported, so as to be connected to the network element NodeB, so that the eGSN is equivalent to the network from the perspective of the NodeB. Yuan RNC.
  • the corresponding public network interface can be an interface that supports the function of the Gi interface (the standard interface between the GGSN and the public network), for example, can support the function of the Gi interface part of the GGSN network element, so that the eGSN can directly perform high-speed communication with the public network. Communication.
  • the eGSN may further include an address translation unit 304, configured to convert a source address in a packet that needs to be sent to the public network through the public network interface to a local address of the eGSN, and a packet that needs to be sent to the terminal through the base station interface.
  • the destination address in the address is translated to the address of the terminal.
  • the eGSN can also provide an RNC interface (or called an elu interface) 305 for communication with the RNC, and the interface can support the relay forwarding function of the Iub message, and the relay conversion function can implement the RNC and the RNC.
  • the information exchange between the NodeBs enables communication between the RNC, the SGSN, and the GGSN to communicate with the public network.
  • the BPeGSN may select a path for performing user plane data flow transmission in the two user plane data flow paths shown in FIG. 4; or, in the eGSN, may also include an SGSN interface 306 for communication with the SGSN or communicate with the GGSN. GGSN interface 307.
  • one or more of the RNC interface 305 (elub interface), the SGSN interface (Iu-U interface) 306, or the GGSN interface (Iu-U interface) 307 may be specifically included in the eGSN.
  • the control plane function of the Iu interface is implemented by the RNC through the elub interface.
  • the user plane data of the Iu interface can be directly sent from the eGSN to the SGSN, and then reaches the public network through the GGSN, or, as shown in FIG. 8 and FIG. 9, the user plane data of the Iu interface. It can also be sent directly from the eGSN to the GGSN (if the GGSN interface exists on the eGSN, it can be connected to the GGSN through the Direct Tunnel Direct Tunnel) and sent to the public network.
  • the corresponding eGSN may also be disposed between the RNC and the SGSN.
  • the eGSN may be set on a unique path between the RNC and the SGSN, or may be set on a newly added path between the RNC and the SGSN. If it is set on a newly added path, between the RNC and the SGSN. Whether the communication is via eGSN can be selected according to the actual communication needs.
  • the corresponding eGSN can be independently used as one network element in the communication system, or can be combined with other network elements in the communication system, that is, the other network elements built in the communication system are combined into the same network element, for example, for example, Can be combined with RNC, can also be combined with NodeB, and so on.
  • the eGSN may further include a path selection unit 308, configured to send, according to a predetermined path selection policy, the information transmitted by the base station through the RNC interface 305, the SGSN interface 306, the GGSN interface 307, or the public network interface 301. That is, eGSN can provide routing and encapsulation functions between the mobile packet domain and the external data network in addition to the user plane data packet, and can also select policies according to different paths.
  • the data selects another path (the path through eGSN, RNC, SGSN, and GGSN in sequence shown in FIG. 4, or the path through eGSN, SGSN, and GGSN in sequence as shown in FIG. 5, or as shown in FIG. Accessing the external data network via the path of the eGSN and the GGSN in turn, that is, accessing the corresponding public network, such as a PDN.
  • the corresponding path selection policy may at least refer to pre-established path selection mode information according to one or more of user subscription information, access point name APN, quality of service parameter or service type, that is, pre-according to user subscription information, access One or more of the point name, the quality of service parameter or the service type, which data stream selection is transmitted through the public network interface of the eGSN, or which data stream is not transmitted through the public network interface of the eGSN, etc.
  • the data flow corresponding to the service of the specified service type is transmitted through the public network interface of the eGSN, or the data flow that meets the requirements of a certain service quality is transmitted through the public network interface of the eGSN, or a user is set.
  • the data stream of a certain service type is transmitted through the public network interface of the eGSN, and the like.
  • the path selection policy acquisition unit 309 is configured to obtain a path selection policy, or obtain a path selection policy parameter, and select according to the path.
  • the policy parameter generates a corresponding path selection policy.
  • the path selection policy or the path selection policy parameter may be obtained locally in the eGSN, or the path selection policy or path selection policy parameter sent by other network elements such as the GGSN may be received, and the like.
  • the corresponding path selection policy or path selection policy parameter sent by the GGSN may be obtained from the GGSN by using a message in the PDP context activation process of the packet data protocol; wherein, the corresponding path selection policy
  • the path selection mode information may be pre-established according to at least one of user subscription information, an access point name, a quality of service parameter, or a service type; the corresponding path selection policy parameter may include user subscription information, an access point name, and a service. At least one of a quality parameter or a business type;
  • the path selection policy storage unit 310 is configured to save the path selection policy acquired by the path selection policy acquisition unit 309, and provide the path selection unit 308 to the path selection unit 308, so that the path selection unit 308 can use the path selection policy as the data transmitted to the public network.
  • the stream (message) selects the corresponding transmission path.
  • the eGSN may further include an auxiliary management unit 311, configured to send at least one of data transmitted through the public network interface 301 and data traffic transmitted through the public network interface to the SGSN or the GGSN, so as to facilitate The effective monitoring of the eGSN and the monitoring of the data traffic can be realized, and the corresponding charging function can be realized, so that the data flow directly interacted with the public network by the eGSN can be effectively managed, and the functions of charging and lawful monitoring can be realized.
  • an auxiliary management unit 311 configured to send at least one of data transmitted through the public network interface 301 and data traffic transmitted through the public network interface to the SGSN or the GGSN, so as to facilitate The effective monitoring of the eGSN and the monitoring of the data traffic can be realized, and the corresponding charging function can be realized, so that the data flow directly interacted with the public network by the eGSN can be effectively managed, and the functions of charging and lawful monitoring can be realized.
  • the elu interface of the corresponding eGSN can further expand the function on the basis of implementing the above Iub interface, so as to support the GGSN to manage and control the eGSN function through the RNC; or, the GGSN can also control and manage the eGSN through the SGSN. Alternatively, the GGSN can also directly control and manage the eGSN through its interface with the eGSN.
  • a local offload (Offload) access to the public network and a network access scheme for accessing the public network through the GGSN can be implemented on the eGSN, where the local Offload accessing the public network refers to the data on the eGSN node.
  • the implementation solution provided by the embodiment of the present invention may specifically separate the data stream that can be locally offloaded by the eGSN node under the control of the core network device such as the SGSN or the GGSN (ie, between the base station and the public network through the base station interface and the public network interface).
  • the local offload data stream can also be sent and received through the eGSN. That is, from the public network such as the external Internet or intranet, the data streams sent to the eGSN and the GGSN have two different IP addresses, so that different packet routes can be performed. And finally sent to the eGSN and GGSN.
  • the UE can access the public network through the eGSN at a high speed, and can also be compatible with the existing network structure, and select a traditional path to access the public network, so that the high-speed service can be realized while being compatible with the existing technology. Access, to meet the user's application needs for high-speed services.
  • the embodiment of the present invention further provides a corresponding system for the high speed access of the mobile network to the public network.
  • one or more eGSNs may be included in the system, so as to provide information transmission between the base station and the public network through the eGSN.
  • the path realizes high-speed transmission of information between the base station and the public network, which effectively reduces the delay of the user equipment accessing the public network and improves the access rate.
  • the GGSN in the system may also switch to the eGSN corresponding to the terminal by using the set handover management unit 101.
  • the eGSN sends a path selection policy or a path selection policy parameter, so that the switched eGSN can provide a corresponding high-speed transmission service for the terminal.
  • the system for accessing the public network of the mobile network in the embodiment of the present invention may include at least one eGSN and at least one base station, where the eGSN is configured to provide an information transmission path between the corresponding base station and the public network. , to achieve information transmission between the base station and the public network.
  • the system may further include an RNC, an SGSN, and a GGSN, where the eGSN may sequentially communicate with the public network through the RNC, the SGSN, and the GGSN; or the system may further include an SGSN and a GGSN, where the eGSN may sequentially pass the SGSN and the GGSN and the public The network communication; or, the system may further include a GGSN, and the eGSN may communicate with the public network through the GGSN.
  • the foregoing switching management unit 101 may also be configured in the corresponding GGSN for performing a corresponding handover management operation.
  • the process of information exchange between the terminal and the public network includes a process in which the terminal sends information to the public network, and a process in which the terminal receives the information received by the public network, where:
  • the process of sending information to the public network by the terminal includes:
  • Step 1 after receiving the user plane data sent by the UE, the NodeB sends the data to the eGSN.
  • Step 2 The eGSN selects a transmission path for the user plane data sent by the UE according to the predetermined path selection policy.
  • the path that can be selected by the eGSN may be two paths, that is, path A and path B, where:
  • Path A is: UE ⁇ "4NodeB ⁇ "4eGSN ⁇ €"4 external packet data network (public network);
  • Path B is: UE4 "4NodeB4" 4eGSN ⁇ "4RNC ⁇ "4SGSN ⁇ "4GGSN ⁇ "4 external packet data network (public network); or the corresponding path B may also be: UE4"4NodeB4"4eGSN ⁇ "4SGSN ⁇ "4GGSN ⁇ "4 external packet data network (public network), or, path B can also be: UE ⁇ "4NodeB ⁇ "4eGSN ⁇ €"4GGSN ⁇ €"4 external packet data network (public network), etc.; select the above path Any one of A and path B can transmit the user plane data stream to the public network through the corresponding uplink path;
  • the eGSN may specifically determine, according to the filtering rule sent by the SGSN or the GGSN, the data flow of the offload as the corresponding path selection policy, and send the data flow through the path A; the other data flows may be sent through the path B; that is, the eGSN network element can support Off load data stream function, for example, the SGSN or GGSN can control the eGSN to implement the implementation of part or all of the data flow for the same UE or not implement the Offload function.
  • the process of determining the data flow for implementing offload according to the path selection policy may be, but is not limited to, controlling the network element device eGSN according to at least one of a service type, an APN (access point name), a quality of service, or user subscription information.
  • the offload data stream is implemented to facilitate high-speed service transmission requirements of users who preferably ensure high priority and high rate; that is, the network element device eGSN can support at least one of the following processing mechanisms:
  • the network element device eGSN can control the data stream that needs offload according to the APN (that is, select the data stream sent by path A), that is, according to different APNs, different paths can be selected for the corresponding data stream to be sent;
  • Processing mechanism 2 The network element device eGSN can determine the data stream that needs to be offloaded according to the user subscription information. If the user subscription information indicates that the user's data needs to be sent through path A, the user's data is a data stream that needs to be offloaded; Processing mechanism 3: The network element device eGSN can determine the data flow that needs to be offload according to the Qos (Quality of Service) parameter. For example, if a user or a service type data stream reaches a predetermined QoS requirement, it is required to be offloaded. Data flow to prioritize high-speed transmission of high-end users or high-end services;
  • Qos Quality of Service
  • Processing mechanism 4 NE device The eGSN can determine the data stream that needs to be offload according to different service types. For example, for services with high rate requirements (such as video services), you can select path A for direct fast access, and so on.
  • the eGSN can flexibly control the data flow of the local offload function to meet different access rate requirements according to the requirements of accessing the public network.
  • Step 3 The eGSN sends the user plane data sent by the UE to the external packet data network, such as the PDN, through the selected path. If the data stream is sent through the path A, the source device eGSN can use the NAT method to source the data stream. The address is converted to the IP address of the eGSN. Thus, although the UE uses the same IP address, the data stream sent to the eGSN and the GGSN has two different IP addresses from the public network such as the external Internet or the intranet network. The public network can perform different data packet routing, and can send corresponding data streams to the eGSN and the GGSN respectively;
  • the network element device eGSN directly forwards the corresponding data stream to the RNC and transmits it to the public network along path B.
  • the process of receiving information from the public network by the terminal includes:
  • Step 1 the network element device eGSN receives the user plane data that the public network needs to send to the UE;
  • the path of the user plane data sent by the network element eGSN to the public network is also two, that is, the downlink direction of the path A and the path B;
  • Step 2 Send the received user plane data that needs to be sent to the UE to the NodeB, so as to further send the corresponding data stream (user plane data) to the UE through the NodeB;
  • the NAT process is performed on the uplink. Therefore, the NAT process is still required for the downlink data stream to modify the destination address in the data stream to the UE. IP address;
  • step 1 If the user plane data received through path B is in step 1, no NAT processing is required, and the corresponding user plane data can be directly forwarded.
  • the implementation process of selecting path A and path B respectively for the user plane data exchanged between the eGSN and the public network includes:
  • the network element eGSN determines the data flow that needs to be offloaded according to the path selection policy sent by the SGSN or the GGSN. Can receive this
  • the session or all the data packets of the user are locally NAT-transformed to convert the source address of the data packet into an address in the local IP address pool and then send it to the public network such as the Internet or intranet, that is, in the uplink direction of the eGSN.
  • the source IP address in the IP packet header is the IP address of the eGSN, and is sent upstream through the path indicated by the arrow line shown in FIG. Still referring to FIG.
  • the network element device eGSN after the network element device eGSN receives the data packet returned by the public network such as the Internet or the intranet, the network element device eGSN still needs to perform reverse NAT conversion, so that the eGSN converts the IP packet header in the downlink direction.
  • the target IP address in the IP address is the IP address of the UE, and then the data packet is sent to the terminal UE through the NodeB. It should be noted that, on the network element device eGSN, the data stream that needs to be offloaded locally may not be subjected to NAT conversion processing.
  • the corresponding path selection policy can be IP quintuple information.
  • the network element device eGSN will perform IP quintuple on the uplink data packet.
  • the matching filtering process is performed, and the data stream that is determined to be non-locally required to be offloaded after the matched filtering is further transparently transmitted to the RNC according to the path indicated by the arrow line in FIG. 15, and then sent to the PDN network through the SGSN and the GGSN in sequence.
  • the network element eGSN receives the data stream that needs to be sent to the terminal UE in the downlink direction, it does not need to perform NAT conversion processing, but directly forwards to the NodeB to continue to transmit to the terminal UE.
  • the corresponding eGSN obtains the filtering rule to establish the corresponding forwarding relationship.
  • the path of the corresponding eGSN to obtain the control plane data is as shown in FIG. 16.
  • the eGSN can specifically obtain the path selection through the PDP context activation process.
  • the policy, as shown in FIG. 17, the process of the corresponding path selection policy may specifically include:
  • Steps 1 and 2 after receiving the Activate PDP Context Request message, the SGSN continues to send the Create PDP Context Request message to the GGSN.
  • Step 3 After receiving the Create PDP Context Request message, the GGSN allocates an IP address to the UE and obtains a corresponding path selection policy parameter.
  • Step 4 The GGSN sends a Create PDP Context Response message to the SGSN, where the message carries the corresponding IP address assigned to the UE and the obtained path selection policy parameter.
  • the GGSN extension function is required in this step to support carrying the corresponding path selection policy parameters in the Create PDP Context Response message, for example, user subscription information, APN, Qos, or service type.
  • the information for example, user subscription information, APN, Qos, or service type.
  • Step 5 After receiving the Create PDP Context Response message, the SGSN extends the corresponding path selection policy parameter to the RNC in the RAB Assignment Request message.
  • Step 6 the RNC sends a corresponding path selection policy parameter to the eGSN in the Create PDP Context Request message sent to the eGSN network element through the interface with the eGSN;
  • Step 7 The eGSN receives the Create PDP Context Request message, and extracts the path selection policy parameter in the message to generate a corresponding path selection policy, and simultaneously creates a local context, a forwarding table, and establishes a forwarding relationship with the NodeB, the Internet, or the intranet, and the like.
  • the eGSN sends a Create PDP Context Response message to the RNC.
  • the eGSN can successfully obtain the filtering rule (ie, the path selection policy) applied to determine the data flow that needs to be off laod, and successfully establish with the NodeB, the Internet, or the intranet.
  • the filtering rule ie, the path selection policy
  • Step 8 Perform an interaction between the MS (mobile station) and the NodeB, and between the NodeB and the RNC, to establish an RAB setup message. Establish a corresponding radio access bearer;
  • Step 9 to step 13 the RNC may also perform a corresponding PDP context activation process with the SGSN and the GGSN, so as to subsequently establish a data transmission path between the corresponding MS (mobile station) via the NodeB, the RNC, the SGSN, and the GGSN;
  • step 8 to step 13 may be a standard active PDP context procedure in the prior art, in which the eGSN only transparently transmits the received message, and the corresponding UE, NodeB, RNC, SGSN, and GGSN do not need to be performed. Adaptive modification, and directly according to the standard process for the corresponding processing.
  • the eGSN can obtain a corresponding path selection policy, thereby providing a decision basis for the eGSN to perform a local offload function.
  • the embodiment of the present invention further provides an implementation manner of a corresponding communication process when the eGSN is replaced, including:
  • the SGSN or the GGSN can control the function of the offloaded data flow after the switched eGSN, that is, the corresponding SGSN or GGSN sends the new path selection policy or path selection policy parameter to the switched eGSN,
  • the switched eGSN can establish a corresponding path selection policy, and provide a corresponding off load data stream function for the corresponding terminal, and can perform a corresponding process of reestablishing the session connection for the corresponding offload data stream, and re-established through the process.
  • the session connection continues the subsequent business process.
  • the data stream that does not need to be off load can still be forwarded according to its corresponding forwarding mode.
  • the data stream that needs to be offloaded according to the path selection policy may also be switched to the path formed by the RNC, the SGSN, and the GGSN for forwarding.
  • the network element device eGSN can also support the corresponding charging or lawful interception function, or simultaneously support the corresponding charging and lawful monitoring functions, where:
  • the traffic generated by the network device eGSN performing the offloaded data stream may be reported, that is, the eGSN may perform offloading on the statistics.
  • the traffic generated by the data stream is sent to the SGSN or the GGSN for corresponding charging according to the statistical result;
  • the network element device eGSN may perform a copy of the offload data stream for performing the lawful interception, and simultaneously copy the copy to the local SGSN or GGSN, so that the corresponding SGSN or GGSN can learn the data information directly sent by the eGSN to the public network; the eGSN needs to notify the eGSN to receive the IP address of the interception data packet by sending a message to the eGSN, so that the eGSN can specify the IP address. The data packet of the address is monitored, and the data packet copy of the specified IP address is sent to the SGSN or the GGSN.
  • the data stream directly transmitted between the eGSN and the public network can also be monitored and managed to ensure the interests of the operator, and at the same time, the lawful interception function in the network can be ensured.
  • Reliable implementation A person skilled in the art can understand that all or part of the process of implementing the above embodiment method can be completed by a computer program to instruct related hardware, and the program can be stored in a computer readable storage medium. In execution, the flow of an embodiment of the methods as described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • the transmission efficiency of the mobile communication network is effectively improved by the flat network structure, and the user's demand for high-rate services is satisfied.
  • a session of the user terminal can access an external network (or public network) such as the Internet through the local offload function of the eGSN, or access an external network (or public network) such as a PDN network of the mobile operator through the GGSN; If the eGSN local offload function is used to access the internet, the delay of the service transmission is reduced due to the shortening of the transmission path, thereby improving the efficiency of the service transmission. Meanwhile, when the eGSN cannot implement the offload function locally, the user terminal remains.
  • An external network such as the Internet can be accessed through the GGSN to ensure flexibility of the network application and compatibility with the prior art.
  • the embodiment of the present invention can also utilize the existing network equipment of the operator to modify the communication network to a large extent, thereby effectively improving the service while avoiding major modifications to the functions of the existing network device. The efficiency of the transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

移动网络高速接入公网的节点、 方法及系统 本申请要求于 2008年 08月 05日提交中国专利局、 申请号为 200810117913. 6、 发明名称为 "移动 网络高速接入公网的节点、 方法及系统" 的中国专利申请的优先权, 其全部内容通过引用结合在本 申请中。 技术领域 本发明涉及网络通信技术领域, 尤其涉及一种移动网络高速接入公网的技术。 发明背景
随着 3G (The Third Generation, 第三代) 网络的大规模部署, 宽带接入网络和无线网络的应 用也日益得到广泛应用, 此时, 用户需要使用无线 UE (用户设备终端) 享受高速、 便捷、 低成本的 无线数据服务。
如图 1所示, 在现有的移动网络分组域的逻辑架构中, 提供的一种端到端分组交换业务, 主要由 SGSN ( Serving GPRS Support Node,服务通用分组无线业务支持节点)、 GGSN (Gateway GPRS Support Node , 网关通用分组无线业务支持节点) 等功能实体组成, 以使得用户能够在端到端分组传输模式 下发送和接收数据。
在实现本发明过程中, 发明人发现现有技术中至少存在如下问题:
图 1所示的网络架构具有结构复杂, 层次较多的缺点, 例如, 从 UE (User Equipment, 用户设备) 通过 NodeB (基站) 接入到公网, 如外部网络 PDN (Packet Data Network, 分组数据网) , 中间需要 经过 RNC (Radio Network Controller, 无线网络控制器) 、 SGSN和 GGSN等多个网元设备, 这将极大 地影响网络的传输效率, 使得无法满足用户对高速率业务传输的应用需求。 发明内容 本发明的实施例提供了一种移动网络高速接入公网的节点、 方法及系统, 便于对网络进行扁平 化处理, 从而有效提高网络的传输效率。
一种增强 GPRS (通用分组无线业务) 支持节点, 包括与公网之间通信的公网接口、 与基站之间 通信的基站接口, 以及信息收发单元, 所述信息收发单元通过公网接口及基站接口, 在基站与公网 之间进行信息传输。
一种移动网络高速接入公网的方法, 包括:
增强 GPRS支持节点通过其与公网之间通信的公网接口, 以及其与基站之间通信的基站接口, 在 基站与公网之间进行信息传输。
一种移动网络高速接入公网的系统, 包括至少一个上述的增强 GPRS支持节点, 所述增强 GPRS支 持节点用于提供基站与公网之间的信息传输路径, 实现基站与公网之间的信息传输。
一种移动网络高速接入公网的系统, 包括至少一个上述的增强 GPRS支持节点和至少一个基站, 所述增强 GPRS支持节点用于提供相应的基站与公网之间的信息传输路径, 实现相应基站与公网之间 的信息传输。
由上述本发明的实施例提供的技术方案可以看出, 其具体是通过减少终端接入公网需要经由的 网元设备的数量的方式, 对现有的网络进行扁平化处理, 以降低传输时延, 有效提升网络的传输效 率。 附图简要说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所需要使用的附图作简单 地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来 讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中 3G网络的结构示意图;
图 2为本发明实施例提供的原理示意图;
图 3为本发明实施例提供的 eGSN的结构示意图;
图 4为本发明实施例提供的用户面数据传输路径示意图;
图 5为本发明实施例提供的 eGSN的应用系统示意图;
图 6为本发明实施例提供的 eGSN的应用系统实施例一的示意图;
图 7为本发明实施例提供的 eGSN的应用系统实施例二的示意图;
图 8为本发明实施例提供的 eGSN的应用系统实施例三的示意图;
图 9为本发明实施例提供的 eGSN的应用系统实施例四的示意图;
图 10为本发明实施例提供的 eGSN的应用系统实施例五的示意图;
图 11为本发明实施例提供的 eGSN的应用系统实施例六的示意图;
图 12为本发明实施例提供的系统的示意图;
图 13为本发明实施例提供的数据流的传送过程示意图;
图 14为本发明实施例提供的数据流的传送过程实施例一的示意图;
图 15为本发明实施例提供的数据流的传送过程实施例二的示意图;
图 16为本发明实施例提供的控制面信息传输路径示意图;
图 17为本发明实施例中 eGSN获取路径选择策略参数的过程示意图。 实施本发明的方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显 然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
为了进一步地提高传输质量和效率, 满足用户日益对高速率业务的使用需求, 本发明实施例提 供了移动网络实现高速率接入分组数据网络的技术方案, 其具体通过扁平化网络结构有效提升了网 络传输效率, 使得能够最大程度地利用运营商的现有网络设备, 即在不需要对现有网络设备的功能 进行大的修改的前提下实现网络传输效率的提升。
具体地, 如图 2所示, 本发明实施例在现有的 3G移动网络中引入了一个新的网元 eGSN (Enhancement GPRS Support Node, 增强的 GPRS支持节点) , 这样, NodeB便可以通过该新增的网 元 eGSN直接高速率接入公网, 以减少 NodeB接入公网过程中的中间传输的环节, 从而满足终端用户对 高速率业务传输的要求。 相应的公网可以但不限于为 PDN (分组数据网) , 如 Internet (互联网)或 Intranet (企业内部互联网) 等。
本发明实施例提供的 eGSN的具体结构如图 3所示, 可以包括与公网之间通信的公网接口 301、 与 基站之间通信的基站接口 302, 以及信息收发单元 303, 该信息收发单元 303通过公网接口 301及基站 接口 302, 在基站与公网之间进行信息传输, 以使得基站下的终端能够高速接入公网。
相应的基站接口可以为支持 Iub接口(NodeB与 RNC之间的标准接口)功能的接口,如可以支持 Iub 接口部分功能, 以便于与网元 NodeB相连, 使得从 NodeB角度来看, eGSN相当于网元 RNC。 相应的公网 接口可以为支持 Gi接口 (GGSN与公网之间的标准接口) 功能的接口, 如可以支持 GGSN网元的 Gi接口 部分的功能, 以便于 eGSN可以直接高速与公网之间进行通信。
在 eGSN中, 还可以包括地址转换单元 304, 用于将需要通过公网接口发送给公网的报文中的源地 址转换为 eGSN的本地地址, 以及将需要通过基站接口发送给终端的报文中的目的地址转换为终端的 地址。
如图 4所示, eGSN还可以提供与 RNC之间通信的 RNC接口 (或称为 elub接口) 305, 通过该接口可 以支持 Iub消息的中继转发功能, 通过该中继转化功能能够实现 RNC和 NodeB之间的信息交互, 从而可 以通过 RNC、 SGSN及 GGSN的路径与公网之间进行通信。 BPeGSN可以在图 4所示的两条用户面数据流路 径中选择进行用户面数据流传递的路径; 或者, 在 eGSN中也可以包括与 SGSN之间通信的 SGSN接口 306 或与 GGSN之间通信的 GGSN接口 307。 这样, 进一步地, 参照图 5所示, 在 eGSN中具体可以包括 RNC接口 305 ( elub接口) 、 SGSN接口 (Iu- U接口) 306或 GGSN接口 (Iu- U接口) 307中的一个或多个; 在图 5 中, Iu接口的控制面功能由 RNC通过 elub接口实现。
具体地,参照图 6和图 7所示, Iu接口的用户面数据可以直接从 eGSN发送到 SGSN,再经过 GGSN 到达公网, 或者, 参照图 8和图 9所示, Iu接口的用户面数据还可以直接从 eGSN发送到 GGSN (若 eGSN存在 GGSN接口时, 则可以采用直连通道 Direct Tunnel连接到 GGSN), 并发送给公网。
进一步地, 如图 10和图 11所示, 相应的 eGSN还可以设置于 RNC与 SGSN之间。 此时, eGSN可 以设置于 RNC与 SGSN之间的唯一一条路径上,也可以设置于 RNC与 SGSN之间新增加的一条路径上, 若设置于新增加的一条路径上, 则 RNC与 SGSN之间的通信是否经由 eGSN则是可以根据实际的通信 需要进行选择。
具体地, 相应的 eGSN既可以独立作为通信系统中的一个网元, 也可以与通信系统中的其他网元 进行合设,即内置于通信系统的其他网元中合设成为同一网元,例如可以和 RNC合设,也可以和 NodeB 合设, 等等。
进一步地, 上述 eGSN还可以包括路径选择单元 308, 用于根据预定的路径选择策略选择通过 RNC 接口 305、 SGSN接口 306、 GGSN接口 307或公网接口 301发送基站传送来的信息。 即 eGSN除提供用户面 数据包在移动分组域和外部数据网之间的路由和封装功能外, 还可以根据不同的路径选择策略为各 数据选择另外的路径(图 4中所示的依次经由 eGSN、 RNC、 SGSN及 GGSN的路径, 或者, 图 5中所示的依 次经由 eGSN、 SGSN及 GGSN的路径,或者, 图 5中所示的依次经由 eGSN和 GGSN的路径)接入外部数据网, 即接入相应的公网, 如 PDN等。
相应的路径选择策略至少可以是指根据用户签约信息、接入点名称 APN、服务质量参数或业务类 型中的一项或多项预先建立的路径选择方式信息, 即预先根据用户签约信息、 接入点名称、 服务质 量参数或业务类型中的一项或多项设定哪些数据流选择通过 eGSN的公网接口进行传送, 或者, 设定 哪些数据流不通过 eGSN的公网接口进行传送, 等等; 例如, 设定指定业务类型的业务对应的数据流 通过 eGSN的公网接口进行传送, 或者, 设定符合某服务质量要求的数据流通过 eGSN的公网接口进行 传送, 或者, 设定某用户的某种业务类型的数据流通过 eGSN的公网接口进行传送, 等等。
为给 eGSN中的路径选择单元提供相应的路径选择策略, 在 eGSN上还可以包括以下单元: 路径选择策略获取单元 309, 用于获取路径选择策略, 或获取路径选择策略参数, 并根据该路径 选择策略参数生成相应的路径选择策略, 具体可以在 eGSN本地获取配置的路径选择策略或路径选择 策略参数, 或者, 也可以接收 GGSN等其他网元发来的路径选择策略或路径选择策略参数, 等等; 若 接收 GGSN发来的路径选择策略或路径选择策略参数,则可以通过分组数据协议 PDP上下文激活过程中 的消息从 GGSN获取相应的路径选择策略或路径选择策略参数; 其中, 相应的路径选择策略可以为指 根据用户签约信息、 接入点名称、 服务质量参数或业务类型中的至少一项预先建立的路径选择方式 信息; 相应的路径选择策略参数可以包括用户签约信息、 接入点名称、 服务质量参数或业务类型中 的至少一项;
路径选择策略存储单元 310, 用于保存路径选择策略获取单元 309获取的路径选择策略, 并提供 给上述路径选择单元 308, 以便于路径选择单元 308可以根据该路径选择策略为向公网传送的数据流 (报文)选择对应的传送路径。
可选地, 在 eGSN中还可以包括辅助管理单元 311, 用于将通过上述公网接口 301传输的数据和通 过上述公网接口传输的数据流量中的至少一项发送给 SGSN或 GGSN, 以便于可以实现针对 eGSN的有效 监听, 以及实现数据流量监控, 进而实现相应的计费功能, 便于能够对终端通过 eGSN直接与公网交 互的数据流进行有效的管理, 实现计费及合法监听等功能。 为此, 相应的 eGSN的 elub接口还可以在 实现上述 Iub接口的基础上进一步进行功能扩展, 以便于支持 GGSN通过 RNC管理和控制 eGSN的功能; 或者, GGSN也可以通过 SGSN对 eGSN进行控制管理, 或者, GGSN也可以直接通过其与 eGSN之间的接口 对 eGSN进行控制管理。
可见, 通过本发明实施例, 可以在 eGSN上实现本地卸载(Offload)访问公网和通过 GGSN接入 公网的网络接入方案, 其中, 该本地 Offload访问公网是指在 eGSN节点上将数据通过其与公网之间 的公网接口及与 NodeB之间的基站接口进行传递的处理过程。 本发明实施例提供的该实现方案具体 可以在 SGSN或 GGSN等核心网设备的控制下, 由 eGSN节点分离出可以本地 Offload的数据流(即通 过基站接口和公网接口在基站与公网之间直接交互的数据流), 并通过 NAT (网络地址转换) 方式将 该数据流的源地址 (即 UE的 IP地址) 转换为 eGSN本地分配的 IP地址, 以使得在其他数据流通过 GGSN收发的同时, 本地 offload数据流也可以通过 eGSN进行收发。即从外部 Internet或 Intranet 等公网来看,发送给 eGSN和 GGSN的数据流有两个不同的 IP地址,也就可以进行不同的数据包路由, 并最终分别发送给 eGSN和 GGSN。
通过上述实施例, 使得 UE可以一方面可以通过 eGSN高速接入公网, 也可以兼容现有网络结构, 选择传统的路径接入公网, 从而可以在兼容现有技术的情况下, 实现高速业务接入, 满足用户针对 高速业务的应用需求。
本发明实施例中还提供了相应的移动网络高速接入公网的系统, 如图 12在该系统中可以包括一 个或多个 eGSN, 以便于通过该 eGSN提供基站与公网之间的信息传输路径, 实现基站与公网之间的信 息的高速传输, 有效降低用户设备接入公网的时延, 提高接入速率。
可选地, 在该系统包括多个 eGSN时, 若终端在不同的 eGSN之间切换, 则该系统中的 GGSN还可 以通过设置的切换管理单元 101, 在终端对应的 eGSN发生切换时, 向切换后的 eGSN发送路径选择 策略或路径选择策略参数, 以便于切换后的 eGSN可以为终端提供相应的高速传输服务。
仍参照图 12所示,本发明实施例中提供的移动网络高速接入公网的系统,可以包括至少一个 eGSN 和至少一个基站, eGSN用于提供相应的基站与公网之间的信息传输路径, 实现基站与公网之间的信 息传输。
可选地, 在该系统还可以包括 RNC、 SGSN和 GGSN, eGSN可以依次通过 RNC、 SGSN和 GGSN与公网通 信; 或者, 该系统还可以包括 SGSN和 GGSN, eGSN可以依次通过 SGSN和 GGSN与公网通信; 或者, 该系 统还可以包括 GGSN, eGSN可以通过 GGSN与公网通信。 其中, 相应的 GGSN中也可以设置上述切换管理 单元 101, 以用于执行相应的切换管理操作。
下面将结合附图对本发明实施例中通过 eGSN实现与公网之间的通信的具体处理过程进行详细 说明。
(一) 通过 eGSN与公网之间进行数据流交互的过程
终端与公网之间进行信息交互的过程包括终端向公网发送信息的处理过程, 以及终端接收公网 接收信息的处理过程, 其中:
( 1 ) 如图 13所示, 终端向公网发送信息的处理过程包括:
步骤 1, NodeB接收到 UE发来的用户面数据后, 发送给 eGSN;
步骤 2, eGSN根据预定的路径选择策略为 UE发来的用户面数据选择一条传送路径; 其中, 可供 eGSN选择的路径可以有两条, 即路径 A和路径 B, 其中:
路径 A为: UE<"4NodeB<"4eGSN<€"4外部分组数据网 (公网);
路径 B为: UE4"4NodeB4"4eGSN<"4RNC<"4SGSN<"4GGSN<"4外部分组数据网 (公网); 或 者相应的路径 B也可以为: UE4"4NodeB4"4eGSN<"4SGSN<"4GGSN<"4外部分组数据网 (公网), 或者, 路径 B还可以为: UE<"4NodeB<"4eGSN<€"4GGSN<€"4外部分组数据网 (公网), 等等; 选择上述路径 A和路径 B的任一条均可以通过相应的上行方向的路径向公网进行用户面数据流 的传递;
网元设备 eGSN具体可以根据 SGSN或 GGSN下发的过滤法则作为相应的路径选择策略确定实施 offload的数据流, 并通过路径 A发送; 其他数据流则可以通过路径 B发送; 即 eGSN网元能够支持 off load数据流的功能, 例如, 通过 SGSN或 GGSN便可以控制 eGSN实施针对同一个 UE的部分或全 部数据流的实施或不实施 Offload功能。 其中, 根据路径选择策略来确定实施 offload的数据流的过程可以但不限于根据业务类型、 APN (接入点名称)、 服务质量或用户签约信息中的至少一项控制网元设备 eGSN实施或不实施 offload 数据流, 以便于具有优选保证高优先级、 高速率等特点的用户的高速的业务传输需求; 即网元设备 eGSN至少可以支持以下一种或多种处理机制:
处理机制一: 网元设备 eGSN可以根据 APN来控制其需要 offload的数据流(即选择路径 A发送 的数据流), 即根据不同的 APN可以为相应的数据流选择不同的路径进行发送;
处理机制二: 网元设备 eGSN可以根据用户签约信息确定其需要 offload的数据流, 如用户签约 信息中指明该用户的数据需要通过路径 A发送, 则该用户的数据便为需要 offload的数据流; 处理机制三: 网元设备 eGSN可以根据 Qos (服务质量) 参数确定其需要 off load的数据流, 例 如, 若某用户或某业务类型的数据流达到了预定的 QoS要求, 则将其作为需要 offload的数据流, 以优先保证高端用户或高端业务的高速传输需求;
处理机制四: 网元设备 eGSN可以根据不同的业务类型确定其需要 offload的数据流, 例如, 对 于高速率要求的业务 (如视频业务等) 便可以选择路径 A直接快速接入, 等等。
通过不同的处理机制使得 eGSN可以根据接入公网的需求,灵活控制本地执行 offload功能的数 据流, 满足不同的接入速率需求。
步骤 3, eGSN将 UE发来的用户面数据通过选择的路径发送到外部分组数据网, 如 PDN等; 若通过路径 A发送数据流,则在网元设备 eGSN可以使用 NAT方式将数据流的源地址转换为 eGSN 的 IP地址, 这样, 尽管 UE使用同一个 IP地址, 但从外部 Internet或 Intranet网络等公网来看, 发送给 eGSN和 GGSN的数据流却有两个不同的 IP地址, 相应的公网便可以进行不同的数据包路由, 并能够将相应的数据流分别发送给 eGSN和 GGSN;
若通过路径 B发送数据流, 则网元设备 eGSN直接转发相应的数据流给 RNC, 并沿着路径 B传送 到公网即可。
( 2 ) 如图 13所示, 终端接收公网发来信息的处理过程包括:
步骤 1, 网元设备 eGSN接收公网需要发送给 UE的用户面数据;
具体地, 网元设备 eGSN接收公网发来的用户面数据的路径也有两条, 即上述路径 A和路径 B的 下行方向;
步骤 2, 将接收到的需要发送给 UE的用户面数据发送给 NodeB, 以便于进一步通过 NodeB将相 应的数据流 (用户面数据) 发送给 UE;
若步骤 1中是通过路径 A接收到的用户面数据, 则由于上行时进行了 NAT处理, 故此时, 对于 下行数据流仍需要进行相应的 NAT处理, 以将数据流中的目的地址修改为 UE的 IP地址;
若步骤 1中是通过路径 B接收到的用户面数据, 则无需要进行 NAT处理, 直接转发相应的用户 面数据即可。
在通过 eGSN与公网之间进行数据流交互的过程, 相应的为通过 eGSN与公网之间交互的用户面 数据分别选择路径 A和路径 B的实现过程包括:
若相应的路径选择策略 (或称过滤法则) 为针对某会话或某用户的所有数据流时, 则网元设备 eGSN在根据 SGSN或 GGSN下发的路径选择策略确定需要实施 offload的数据流后, 可以将收到的该 会话或该用户的所有数据包均在本地进行 NAT转换处理,以将数据包的源地址转换为本地 IP地址池 中地址后发送到 Internet或 Intranet等公网中, 即在 eGSN的上行方向上转换 IP报文头中的源 IP 地址为 eGSN的 IP地址, 并通过图 14所示的箭头线所示的路径进行上行发送。 仍参照图 14所示, 当网元设备 eGSN收到 Internet或 Intranet等公网返回的数据包后, 则网元设备 eGSN仍需要进行 反向的 NAT转换, 使得 eGSN在下行方向上转换 IP报文头中的目标 IP地址为 UE的 IP地址, 之后再 通过 NodeB发送数据包到终端 UE。 需要说明的是, 在网元设备 eGSN上针对本地需要实施 offload 的数据流, 也可以不进行 NAT转换处理。
如图 15 所示, 若相应的路径选择策略只针对部分数据流, 例如, 相应的路径选择策略可以为 IP五元组信息, 此时, 网元设备 eGSN将对上行数据包进行 IP五元组匹配过滤处理, 对经过匹配过 滤后确定非本地需要 offload的数据流, 则参照图 15中箭头线所示的路径继续透传给 RNC, 再依次 经过 SGSN及 GGSN发送给 PDN网络。 仍参照图 15所示, 若网元设备 eGSN收到了下行方向需要发送 给终端 UE的数据流, 则无需进行 NAT转换处理, 而直接转发给 NodeB, 以继续传送给终端 UE即可。
(二) 获取路径选择策略的过程
相应的 eGSN获取过滤法则, 以建立相应的转发关系的处理过程中, 相应的 eGSN获取控制面数 据的路径如图 16所示, 在该路径中, eGSN具体可以通过 PDP上下文激活流程实现获取路径选择策 略, 参照图 17所示, 相应的获取路径选择策略的处理过程具体可以包括:
步骤 1、 2 , SGSN收到 Activate PDP Context Request (激活 PDP上下文请求) 消息后, 继续 向 GGSN发送该 Create PDP Context Request消息;
步骤 3, GGSN收到 Create PDP Context Request消息后为 UE分配 IP地址并获取相应的路径选 择策略参数;
步骤 4, GGSN向 SGSN发送 Create PDP Context Response (创建 PDP上下文响应) 消息, 在该 消息中携带着相应的为 UE分配的 IP地址及获取的路径选择策略参数;
即为了支持 eGSN正确地获取 offload数据的过滤法则, 在该步骤中需要 GGSN扩展功能以支持 在 Create PDP Context Response消息中携带相应的路径选择策略参数, 例如, 用户签约信息、 APN、 Qos或业务类型等信息中的一项或多项;
步骤 5, SGSN在收到 Create PDP Context Response消息后, SGSN扩展功能在 RAB Assignment Request (无线接入承载指配请求) 消息中透传相应的路径选择策略参数给 RNC;
步骤 6, RNC在通过与 eGSN之间的接口向 eGSN网元发送的 Create PDP Context Request消息 将相应的路径选择策略参数发送给 eGSN;
步骤 7, eGSN接收 Create PDP Context Request消息, 并提取消息中的路径选择策略参数生成 相应的路径选择策略, 同时创建本地上下文、 转发表以及建立与 NodeB、 Internet或 Intranet之间 的转发关系等, 之后, eGSN发送 Create PDP Context Response消息给 RNC;
这样, 在上述 PDP上下文激活流程完成以后, eGSN上便可以成功地获取到了确定需要 off laod 的数据流过程中应用到的过滤法则 (即路径选择策略), 并且成功地建立与 NodeB、 Internet 或 Intranet之间的转发关系等。
步骤 8, 在 MS (移动台) 与 NodeB, 以及 NodeB与 RNC之间进行 RAB setup消息的交互, 以建 立相应的无线接入承载;
步骤 9至步骤 13, RNC还可以与 SGSN、 GGSN之间执行相应的 PDP上下文激活处理过程, 以便于 后续建立相应的 MS (移动台) 经由 NodeB、 RNC、 SGSN及 GGSN之间的数据传输路径;
具体地,上述步骤 8至步骤 13可以为现有技术中标准的激活 PDP上下文流程,在该过程中 eGSN 仅透传收到的消息, 相应的 UE、 NodeB, RNC、 SGSN及 GGSN均不需要进行适应性修改, 而直接按照 标准流程进行相应的处理即可。
通过上述过程, eGSN可以获得相应的路径选择策略, 从而为 eGSN执行本地 offload功能提供 了决策依据。
(三) 移动性管理的处理过程
由于终端的移动性使得其对应的 eGSN会发生变化, 即需要从一个 eGSN切换到另一个 eGSN。 为 此, 本发明实施例还提供了当 eGSN发生更换时, 相应的通信过程的实现方式, 包括:
在确定 eGSN发生切换后,则 SGSN或 GGSN可以控制切换后的 eGSN实施 offload数据流的功能, 即相应的 SGSN或 GGSN会将新的路径选择策略或路径选择策略参数发送给切换后的 eGSN, 以使得切 换后的 eGSN可以建立相应的路径选择策略, 并为对应的终端提供相应的 off load数据流的功能, 针 对相应的 offload数据流可以执行相应的重新建立会话连接的过程, 并通过重新建立的会话连接继 续后续的业务处理过程。在 eGSN发生切换后, 对于不需要执行 off load的数据流, 也仍然可以按照 其对应的转发方式进行转发。
若终端移动到的网络位置上没有 eGSN, 则之前根据路径选择策略需要执行 offload的数据流也 可以切换到 RNC、 SGSN及 GGSN组成的路径上进行转发操作。
通过该移动性管理的处理过程的执行,可以方便地为移动过程中的终端通过 eGSN接入公网提供 可行地实施方案, 提高了通过 eGSN接入公网的方案的可用性。
(四) 计费和合法监听的处理过程
本发明实施例中, 网元设备 eGSN还可以支持相应的计费或合法监听功能, 或者, 同时支持相应 的计费和合法监听功能, 其中:
( 1 ) 计费功能的实现
为实现针对经由网元设备 eGSN直接发送给公网的数据流的计费功能, 则可以对网元设备 eGSN 在本地执行 offload的数据流产生的流量进行上报操作,即 eGSN可以对统计本地执行 offload的数 据流产生的流量, 并将统计结果发送给 SGSN或 GGSN, 以用于根据该统计结果进行相应的计费; ( 2 ) 合法监听功能的实现
为实现针对经由网元设备 eGSN直接发送给公网的数据流的合法监听功能, 则网元设备 eGSN可 以对于进行启动合法监听的 offload数据流,在本地执行 offload功能的同时,复制一份发送给 SGSN 或 GGSN, 以便于由相应的 SGSN或 GGSN可以获知 eGSN直接发送给公网的数据信息; eGSN需要通过 向 eGSN发送消息的方式通知 eGSN接收监听数据包的 IP地址,以便于 eGSN可以对指定 IP地址的数 据包进行监听操作, 即将指定 IP地址的数据包复制发送给 SGSN或 GGSN。
通过该计费和合法监听的处理过程的执行,使得经由 eGSN直接与公网之间传递的数据流同样能 够被监控、 管理, 以保证运营商的利益, 同时, 还可以保证网络中合法监听功能的可靠实现。 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程 序来指令相关的硬件来完成, 所述的程序可存储于一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体 (Read- Only Memory, ROM) 或随机存储记忆体 (Random Access Memory, RAM) 等。
综上所述, 本发明实施例中通过扁平化网络结构有效提升了移动通信网络的传输效率, 满足用 户对高速率业务的需求。
具体地, 用户终端的一个会话可以既可以通过 eGSN本地的 offload功能访问 internet等外部 网络(或称公网), 也可以通过 GGSN访问移动运营商的 PDN网络等外部网络(或称公网); 其中, 若 通过 eGSN本地的 offload功能访问 internet, 则由于传输路径的缩短, 使得业务传输的时延降低, 从而可以提高业务传输的效率; 同时, 当 eGSN本地无法实施 offload功能时, 则用户终端依然可以 通过 GGSN访问 internet等外部网络, 保证了网络应用的灵活性及与现有技术的兼容性。
再者, 本发明实施例还可以很大程度地利用了运营商的现有网络设备对通信网络进行改造, 从 而可以在避免对现有网络设备的功能进行大的修改的前提下, 有效提高业务传输的效率。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本 技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替换, 都应涵盖在本发明的 保护范围之内。 因此, 本发明的保护范围应该以权利要求的保护范围为准。

Claims

权利要求
1、 一种增强通用分组无线业务 GPRS支持节点, 其特征在于, 包括与公网之间通信的公网接口、 与基站之间通信的基站接口, 以及信息收发单元, 所述信息收发单元通过公网接口及基站接口, 在 基站与公网之间进行信息传输。
2、 根据权利要求 1所述的节点, 其特征在于, 该节点还包括:
地址转换单元, 用于将需要通过公网接口发送给公网的报文中的源地址转换为本地地址, 将需 要通过基站接口发送给终端的报文中的目的地址转换为终端的地址。
3、 根据权利要求 1或 2所述的节点, 其特征在于, 该节点还包括与无线网络控制器 RNC之间通信 的 RNC接口、与服务通用分组无线业务支持节点 SGSN之间通信的 SGSN接口或与网关通用分组无线业务 支持节点 GGSN之间通信的 GGSN接口中的至少一个。
4、 根据权利要求 3所述的节点, 其特征在于, 该节点还包括:
路径选择单元, 用于根据预定的路径选择策略选择通过 RNC接口、 SGSN接口、 GGSN接口或公网接 口发送基站传送来的信息。
5、 根据权利要求 4所述的节点, 其特征在于, 该节点还包括:
路径选择策略获取单元, 用于获取路径选择策略, 或者, 获取路径选择策略参数, 并根据所述 路径选择策略参数生成路径选择策略;
路径选择策略存储单元, 用于保存所述路径选择策略获取单元获取的路径选择策略, 并提供给 所述路径选择单元。
6、 根据权利要求 5所述的节点, 其特征在于, 所述路径选择策略获取单元接收 GGSN发来的路径 选择策略或路径选择策略参数, 所述路径选择策略是指根据用户签约信息、 接入点名称、 服务质量 参数或业务类型中的至少一项预先建立的路径选择方式信息, 所述的路径选择策略参数包括用户签 约信息、 接入点名称、 服务质量参数或业务类型中的至少一项。
7、 根据权利要求 6所述的节点, 其特征在于, 所述的路径选择策略获取单元通过分组数据协议 PDP上下文激活过程中的消息从所述 GGSN获取所述路径选择策略或所述路径选择策略参数。
8、 根据权利要求 1或 2所述的节点, 其特征在于, 该节点还包括:
辅助管理单元, 用于将通过所述公网接口传输的数据和通过所述公网接口传输的数据流量中的 至少一项发送给 SGSN或 GGSN。
9、 一种移动网络高速接入公网的方法, 其特征在于, 包括:
增强通用分组无线业务 GPRS支持节点通过其与公网之间通信的公网接口, 以及其与基站之间通 信的基站接口, 在基站与公网之间进行信息传输。
10、 根据权利要求 9所述的方法, 其特征在于, 所述在基站与公网之间进行信息传输包括: 增强 GPRS支持节点将需要通过公网接口发送给公网的报文中的源地址转换为本地地址后发送至 公网, 将需要通过基站接口发送给终端的报文中的目的地址转换为终端的地址后通过基站发送至终 端。
11、 根据权利要求 9或 10所述的方法, 其特征在于, 所述在基站与公网之间进行信息传输包括将 接收到的基站发来的信息发送至公网的过程, 且该过程具体包括:
增强 GPRS支持节点收到基站发来的信息后, 根据预定的路径选择策略选择通过增强 GPRS支持节 点与无线网络控制器 RNC之间通信的 RNC接口、 增强 GPRS支持节点与服务通用分组无线业务支持节点 SGSN之间通信的 SGSN接口、 增强 GPRS支持节点与网关通用分组无线业务支持节点 GGSN之间通信的 GGSN接口或公网接口发送基站传送来的信息。
12、 根据权利要求 11所述的方法, 其特征在于, 该方法还包括:
增强 GPRS支持节点从 GGSN获取并保存所述路径选择策略, 所述路径选择策略是指根据用户签约 信息、 接入点名称、 服务质量参数或业务类型中的至少一项预先建立的路径选择方式信息;
或者,
增强 GPRS支持节点从 GGSN获取路径选择策略参数, 根据所述路径选择策略参数生成并保存路径 选择策略, 所述路径选择策略参数包括用户签约信息、 接入点名称、 服务质量参数或业务类型中的 至少一项。
13、 根据权利要求 12所述的方法, 其特征在于, 所述获取包括:
增强 GPRS支持节点通过分组数据协议 PDP上下文激活过程中的消息从所述 GGSN获取所述路径选 择策略或所述路径选择策略参数。
14、 根据权利要求 9或 10所述的方法, 其特征在于, 所述增强 GPRS支持节点还将通过所述公网接 口传输的数据和通过所述公网接口传输的数据流量中的至少一项发送给 SGSN或 GGSN。
15、 一种移动网络高速接入公网的系统, 其特征在于, 包括:
至少一个权利要求 1至权利要求 8任一项所述的增强 GPRS支持节点, 所述增强通用分组无线业务 GPRS支持节点用于提供基站与公网之间的信息传输路径, 实现基站与公网之间的信息传输。
16、 根据权利要求 15所述的系统, 其特征在于, 该系统还包括网关通用分组无线业务支持节点 GGSN, 在 GGSN中设置有切换管理单元, 用于在终端对应的增强 GPRS支持节点发生切换时, 向切换后 的增强 GPRS支持节点发送路径选择策略或路径选择策略参数, 所述路径选择策略是指根据用户签约 信息、 接入点名称、 服务质量参数或业务类型中的至少一项预先建立的路径选择方式信息, 所述路 径选择策略参数包括用户签约信息、 接入点名称、 服务质量参数或业务类型中的至少一项。
17、 一种移动网络高速接入公网的系统, 其特征在于, 包括至少一个权利要求 1至权利要求 8任 一项所述的增强通用分组无线业务 GPRS支持节点及至少一个基站, 所述增强 GPRS支持节点用于提供 所述基站与公网之间的信息传输路径, 实现基站与公网之间的信息传输。
18、 根据权利要求 17所述的系统, 其特征在于,
该系统还包括无线网络控制器 RNC、服务通用分组无线业务支持节点 SGSN和网关通用分组无线业 务支持节点 GGSN, 所述增强 GPRS支持节点还依次通过 RNC、 SGSN和 GGSN与公网通信;
或者,
该系统还包括 SGSN和 GGSN, 所述增强 GPRS支持节点还依次通过 SGSN和 GGSN与公网通信; 或者,
该系统还包括 GGSN, 所述增强 GPRS支持节点通过 GGSN与公网通信。
19、 根据权利要求 17或 18所述的系统, 其特征在于, 所述增强 GPRS支持节点设置于 RNC与 SGSN 之间。
20、 根据权利要求 17或 18所述的系统, 其特征在于, 所述增强 GPRS支持节点内置设置于通信网 络中的其他网元中, 或者, 独立设置于通信系统中。
PCT/CN2009/073075 2008-08-05 2009-08-04 移动网络高速接入公网的节点、方法及系统 WO2010015189A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09804489A EP2293643A4 (en) 2008-08-05 2009-08-04 NODE, METHOD AND SYSTEM FOR QUICK ACCESS OF A MOBILE NETWORK TO A PUBLIC NETWORK
US13/007,408 US20110110354A1 (en) 2008-08-05 2011-01-14 Node, method, and system for high-rate access to public network from mobile network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810117913.6 2008-08-05
CN200810117913.6A CN101646205B (zh) 2008-08-05 2008-08-05 移动网络高速接入公网的节点、方法及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/007,408 Continuation US20110110354A1 (en) 2008-08-05 2011-01-14 Node, method, and system for high-rate access to public network from mobile network

Publications (1)

Publication Number Publication Date
WO2010015189A1 true WO2010015189A1 (zh) 2010-02-11

Family

ID=41657868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073075 WO2010015189A1 (zh) 2008-08-05 2009-08-04 移动网络高速接入公网的节点、方法及系统

Country Status (4)

Country Link
US (1) US20110110354A1 (zh)
EP (1) EP2293643A4 (zh)
CN (1) CN101646205B (zh)
WO (1) WO2010015189A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011035473A1 (zh) 2009-09-24 2011-03-31 华为技术有限公司 一种网络流量分流方法、设备及系统
CN101795478B (zh) * 2010-03-31 2012-08-08 华为技术有限公司 数据旁路的方法、网络侧设备和接入网关
CN101854663A (zh) * 2010-04-30 2010-10-06 华为技术有限公司 数据传输设备、方法以及通信系统
CN103298034A (zh) * 2010-04-30 2013-09-11 华为技术有限公司 数据传输设备、方法以及通信系统
CN102244895B (zh) 2010-05-13 2015-12-16 中兴通讯股份有限公司 一种增强移动性的分流方法及装置
CN101917479A (zh) * 2010-08-20 2010-12-15 北京新岸线网络技术有限公司 一种用于移动网络中改善分组数据业务的方法及装置
US8787303B2 (en) * 2010-10-05 2014-07-22 Cisco Technology, Inc. Methods and apparatus for data traffic offloading at a router
EP2450792B1 (en) 2010-10-22 2020-01-15 Orange Method for allowing distributed running of an application and related pre-processing unit
EP2450794B1 (en) * 2010-10-22 2018-08-29 Orange Method for allowing distributed running of an application and related device and inference engine
CN102118815B (zh) * 2011-02-28 2014-06-11 华为技术有限公司 切换方法及无线通信系统
CN103168495B (zh) * 2011-10-13 2016-03-02 华为技术有限公司 分组交换域数据卸载方法、基站和基站控制设备
CN103796246A (zh) * 2012-10-31 2014-05-14 中兴通讯股份有限公司 数据的分流方法、装置及系统
CN103945461A (zh) * 2013-01-23 2014-07-23 中兴通讯股份有限公司 数据多流传输方法及装置
CN105960782B (zh) * 2014-03-05 2019-07-23 华为技术有限公司 用于转发数据分组的接入节点设备
WO2015165075A1 (en) * 2014-04-30 2015-11-05 Hewlett-Packard Development Company, L.P. Wireless access point selection based on a connection plan
CN105847242A (zh) 2016-03-17 2016-08-10 北京佰才邦技术有限公司 基于本地卸载的数据侦听方法和装置
CN109327419B (zh) * 2017-07-31 2021-07-30 中兴通讯股份有限公司 报文传输方法及装置、无线网络控制器及存储介质
CN110971641B (zh) * 2018-09-30 2022-04-19 维沃移动通信有限公司 一种网络服务控制方法及通信设备
CN113923722B (zh) * 2021-10-11 2023-06-13 中国联合网络通信集团有限公司 数据传输方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309879A (ja) * 2002-04-17 2003-10-31 Matsushita Electric Ind Co Ltd 移動通信システム
CN1993965A (zh) * 2004-06-29 2007-07-04 诺基亚公司 因特网高速分组接入
CN101044722A (zh) * 2004-10-19 2007-09-26 艾利森电话股份有限公司 在服务通用分组无线电标准支持节点和网关通用分组无线电标准支持节点集成

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5651010A (en) * 1995-03-16 1997-07-22 Bell Atlantic Network Services, Inc. Simultaneous overlapping broadcasting of digital programs
US6438370B1 (en) * 1998-06-16 2002-08-20 Nokia Telecommunications, Oy Location update method and inter core network entity handover method
US6775553B1 (en) * 2000-01-14 2004-08-10 Qualcomm Incorporated Method of avoiding PPP time-outs during IPCP negotiations
US7412528B2 (en) * 2000-01-14 2008-08-12 Qualcomm, Incorporated Avoiding PPP time-outs during IPCP negotiations
GB2367206B (en) * 2000-09-26 2004-01-21 Motorola Inc Transmission of voice over packet-switched systems
FI114187B (fi) * 2001-12-21 2004-08-31 Nokia Corp Opastuspalvelun järjestäminen langattoman päätelaitteen avulla
US20030139180A1 (en) * 2002-01-24 2003-07-24 Mcintosh Chris P. Private cellular network with a public network interface and a wireless local area network extension
JP3738737B2 (ja) * 2002-03-04 2006-01-25 日本電気株式会社 通信システムおよび移動端末間通信方法
US7394795B2 (en) * 2002-03-26 2008-07-01 Interdigital Technology Corporation RLAN wireless telecommunication system with RAN IP gateway and methods
FI20020791A (fi) * 2002-04-24 2003-10-25 Nokia Corp Menetelmä ja järjestelmä tietoyksikköjen lähettämiseksi
GB2398968B (en) * 2003-02-27 2005-07-27 Motorola Inc Reduction in signalling load in a wireless communication system
SE0301053D0 (sv) * 2003-04-07 2003-04-07 Ericsson Telefon Ab L M Method and system in a communications network
US20040246962A1 (en) * 2003-06-06 2004-12-09 Kopeikin Roy A. Dynamically assignable resource class system to directly map 3GPP subscriber communications to a MPLS-based protocol
US7551583B1 (en) * 2003-12-16 2009-06-23 At&T Mobility Ii Llc Method and system for coordinating operation modes of a GPRS network
US8824430B2 (en) * 2004-01-31 2014-09-02 Athonet Srl Wireless mobility gateway
US7586922B2 (en) * 2004-03-12 2009-09-08 Telefonaktiebolaget Lm Ericsson (Publ) Providing higher layer packet/frame boundary information in GRE frames
CN100518391C (zh) * 2004-07-29 2009-07-22 北京三星通信技术研究有限公司 控制数据发送的方法
GB2416958A (en) * 2004-07-30 2006-02-08 Orange Personal Comm Serv Ltd Communicating internet packet data over a packet radio network
US7733822B2 (en) * 2004-11-30 2010-06-08 Sanjay M. Gidwani Distributed disparate wireless switching network
US7885185B2 (en) * 2005-03-17 2011-02-08 Toshiba America Reseach, Inc. Real-time comparison of quality of interfaces
DE202005021930U1 (de) * 2005-08-01 2011-08-08 Corning Cable Systems Llc Faseroptische Auskoppelkabel und vorverbundene Baugruppen mit Toning-Teilen
CN100505899C (zh) * 2005-08-04 2009-06-24 华为技术有限公司 第三代移动通信系统的跨域路由控制方法
WO2007023177A1 (en) * 2005-08-24 2007-03-01 Nokia Siemens Networks Gmbh & Co. Kg Method for dynamically including a micro mobility anchor into a user plane connection
US8191116B1 (en) * 2005-08-29 2012-05-29 At&T Mobility Ii Llc User equipment validation in an IP network
RU2405281C2 (ru) * 2006-02-28 2010-11-27 Нокиа Корпорейшн Хэндовер в сетях связи
US20080076425A1 (en) * 2006-09-22 2008-03-27 Amit Khetawat Method and apparatus for resource management
US20080039086A1 (en) * 2006-07-14 2008-02-14 Gallagher Michael D Generic Access to the Iu Interface
CN100591043C (zh) * 2006-10-25 2010-02-17 华为技术有限公司 在不同设备访问网络的系统、接入点、网关及其方法
US8422944B2 (en) * 2008-08-12 2013-04-16 Sony Corporation Personal function pad
US8565150B2 (en) * 2009-03-11 2013-10-22 At&T Mobility Ii Llc Architectural model for LTE (long term evolution) EPC (evolved packet core) deployment
US8693367B2 (en) * 2009-09-26 2014-04-08 Cisco Technology, Inc. Providing offloads in a communication network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309879A (ja) * 2002-04-17 2003-10-31 Matsushita Electric Ind Co Ltd 移動通信システム
CN1993965A (zh) * 2004-06-29 2007-07-04 诺基亚公司 因特网高速分组接入
CN101044722A (zh) * 2004-10-19 2007-09-26 艾利森电话股份有限公司 在服务通用分组无线电标准支持节点和网关通用分组无线电标准支持节点集成

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2293643A4 *

Also Published As

Publication number Publication date
US20110110354A1 (en) 2011-05-12
EP2293643A4 (en) 2011-09-07
CN101646205B (zh) 2014-07-09
EP2293643A1 (en) 2011-03-09
CN101646205A (zh) 2010-02-10

Similar Documents

Publication Publication Date Title
WO2010015189A1 (zh) 移动网络高速接入公网的节点、方法及系统
JP5970614B2 (ja) マルチネットワークジョイント伝送に基づくオフロード方法、システム及びアクセスネットワーク要素
WO2013097641A1 (zh) 实现集群业务的方法、实体及系统
WO2006118489A1 (en) Internetworking of cellular radio networks and wireless data networks
WO2011015147A1 (zh) 数据传输方法、装置和通信系统
WO2011026392A1 (zh) 一种路由策略的获取方法及系统
WO2011095100A1 (zh) 一种对本地ip连接的建立进行控制的方法和系统
WO2007073696A1 (fr) Procede, appareil et systeme pour acces sans fil
WO2011140927A1 (zh) 一种增强移动性的分流方法及装置
WO2012041073A1 (zh) 一种实现流迁移的方法及系统
WO2011054264A1 (zh) 一种建立本地ip访问下行数据通道的方法及系统
WO2016107404A1 (zh) 业务流传输路径优化方法、装置及mme
WO2011006404A1 (zh) 本地ip访问连接建立的实现方法及系统
WO2011143997A1 (zh) 一种实现路由选择的方法和装置
WO2013086949A1 (zh) 一种通信方法及设备
WO2010081359A1 (zh) 为移动组播业务在固网中辅助建立组播回传通道的方法及装置
CN107148061B (zh) 一种基于sdn的lte与wlan异构网络切换系统及方法
WO2011017979A1 (zh) 支持ip分流的通信系统中资源管理方法与装置
WO2012068946A1 (zh) 查询网关的方法及系统
WO2012100611A1 (zh) 接入演进分组系统的方法及系统
WO2014067371A1 (zh) 集群业务实现方法、系统及网元
WO2011144000A1 (zh) 一种实现路由选择的方法和装置
JP4181826B2 (ja) 通信方法及び通信装置
WO2012028071A1 (zh) 一种查询本地网关的方法和系统
WO2006136103A1 (fr) Reseau de communication mobile et procede de communication associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009804489

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE