WO2015161411A1 - 承载控制方法及系统 - Google Patents

承载控制方法及系统 Download PDF

Info

Publication number
WO2015161411A1
WO2015161411A1 PCT/CN2014/075819 CN2014075819W WO2015161411A1 WO 2015161411 A1 WO2015161411 A1 WO 2015161411A1 CN 2014075819 W CN2014075819 W CN 2014075819W WO 2015161411 A1 WO2015161411 A1 WO 2015161411A1
Authority
WO
WIPO (PCT)
Prior art keywords
access network
access node
mme
network access
air interface
Prior art date
Application number
PCT/CN2014/075819
Other languages
English (en)
French (fr)
Inventor
靳维生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP23194589.0A priority Critical patent/EP4304294A3/en
Priority to CN201910467782.2A priority patent/CN110337150B/zh
Priority to CN201480000646.8A priority patent/CN105379402B/zh
Priority to EP14890344.6A priority patent/EP3128802B1/en
Priority to PCT/CN2014/075819 priority patent/WO2015161411A1/zh
Publication of WO2015161411A1 publication Critical patent/WO2015161411A1/zh
Priority to US15/298,463 priority patent/US10201024B2/en
Priority to US16/243,516 priority patent/US10772136B2/en
Priority to US17/006,206 priority patent/US11382146B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/66Policy and charging system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a bearer control method and system. Background technique
  • a terminal device such as a user equipment (English: User Equipment, abbreviation: UE) to a packet data gateway (English: Public Data Network Gateway, abbreviation: PGW)
  • UE User Equipment
  • PGW Public Data Network Gateway
  • Bearer End-to-end bearer
  • LTE Long Term Evolution
  • a UE-to-PGW bearer determines the data transmission connection between the UE and the PGW, and the UE-to-PGW bearer is mapped to multiple segments between different network nodes.
  • the bearer is connected to each other.
  • Each bearer is distinguished by Quality of Service (QoS: QoS).
  • QoS Quality of Service
  • the data stream filter can be used to filter the service data flow to different bearers to enable service data flows with the same QoS requirements. Can be aggregated to the same bearer for transmission.
  • the process of establishing, modifying, or deleting end-to-end bearers based on the QoS of the terminal equipment and service data flows is part of the session management.
  • mobility management for terminal devices is also an important part of the cellular network. In mobility management, it mainly includes the update of the location area of the terminal device and the paging of the terminal device.
  • LTE and GSM/Wideband Code Division Multiple Access (WCDMA) are respectively managed by different core network mobility management entities.
  • GSM Global System for Mobile communications
  • WCDMA Wideband Code Division Multiple Access
  • the core network gateway establishes an end-to-end bearer according to the QoS requirement, and maps the service data flow of the terminal device to the bearer, and the core network gateway does not grasp the resources of the access network.
  • Source status when the QoS requirements of the service data flow change, the end-to-end bearer needs to be modified.
  • the end-to-end bearer is bound to the access technology, and cannot support the multi-access technology to jointly transmit the service data flow of the terminal device and dynamically utilize the resource according to the resource status.
  • Mode of accessing technical resources paging needs to be sent by the core network gateway to the mobility management entity, and the mobility management entity initiates paging to the access network device in the location area registered by the terminal device.
  • the technical problem to be solved by the present invention is how to implement flexible control of a bearer and implement a multi-access technology to jointly transmit a service data stream of a terminal device.
  • a bearer control method is provided, which is applied to a network architecture supporting multiple access technologies, including:
  • establishing a packet data network PDN connection includes:
  • the QoS information Before the QoS information is differentiated and transmitted on the air interface bearer between the UE and the access network access node, the QoS information includes:
  • the access network access node receives the QoS information sent by the PCRF, or the access network access node receives the QoS information sent by the PCRF by using the MME;
  • the access network access node performs radio resource control RRC connection reconfiguration between the QoS information and the UE, and allocates air interface resources for the air interface bearer.
  • the access network access node and the UE perform radio resource control protocol RRC connection reconfiguration , including:
  • the access network access node sends an RRC connection reconfiguration message to the UE, and allocates the air interface resource to the air interface bearer;
  • the access network access node receives an RRC connection reconfiguration success response from the UE, where the RRC connection reconfiguration message includes a mapping relationship between the service data flow of the UE and the air interface bearer, and the air interface An identifier of the resource, where the identifier is used to indicate an air interface resource used by the UE to transmit the service data flow on the air interface bearer.
  • the core network gateway includes a serving gateway and/or a packet data gateway, where the access node and the core network gateway are used by the access network Before the transport tunnel is transmitted between the service data streams, it includes:
  • the MME selects the core network gateway according to the APN and the subscription information of the UE; the MME sends a create session request to the core network gateway, where the service session gateway carries the service gateway as the PDN Connecting the allocated first channel information, where the first channel information includes an IP address and a port number of the first channel allocated by the access network access node to the UE, where the first channel information is used to establish the The first between the serving gateway and the packet data gateway aisle;
  • the core network gateway returns a create session response to the MME, where the create session response carries the second channel information allocated by the packet data gateway for the PDN connection, and the second channel information includes the core network gateway And the second channel information is used to establish the second channel between the packet data gateway and the serving gateway;
  • the first channel and the second channel form the transmission tunnel, and are used to transmit the service data flow between the access network access node and the core network gateway.
  • the access network access node detects The service data stream of the UE further includes:
  • the access network access node sends a service detection report to the PCRF, and receives the QoS information returned by the PCRF;
  • the access network access node sends a service detection report to the PCRF through the MME, and receives the QoS information returned by the PCRF by using the MME;
  • the access network access node allocates the service data flow of the UE to the air interface bearer according to the QoS information.
  • the access network access node detects In the case that the UE does not have a service data flow in the first preset time length, the method further includes:
  • the first connection information is at least one of a mapping relationship between the service data flow of the UE and the air interface bearer, and the air interface resource allocated by the access network access node to the UE One.
  • the access network access node detects If the UE does not have the service data flow, the method further includes: releasing the RRC connection and the second connection information between the access network access node and the serving gateway, where And storing the context of the UE in the MME, and buffering downlink data of the UE in the serving gateway,
  • the second connection information is at least one of intermediate data generated by the service network data stream and the occupied memory, port, and computing resources between the access network access node and the serving gateway;
  • the context of the UE includes at least one of a service data flow of the UE, the QoS information, the air interface resource occupied by the UE, and a location area of the UE.
  • the method when the UE has a new service data stream, the method further includes:
  • the access network access node allocates the new service data flow to the air interface bearer according to the QoS information according to the stored context of the UE;
  • the access network access node allocates the air interface resource to the air interface bearer, so that the new service data stream is transmitted on the air interface bearer.
  • the access network access node adds or modifies a dedicated air interface bearer according to the QoS information, and the dedicated air interface bearer is configured according to at least one of scheduling priority, delay, packet loss rate, and bandwidth requirement in the QoS information.
  • the dedicated air interface carries the matching information carried by the service data flow and the dedicated air interface.
  • the context of the UE includes the service data flow of the UE, the QoS information, the mapping relationship between the service data flow of the UE and the air interface bearer, the air interface resource occupied by the UE, and at least the location area of the UE.
  • the new MME retrieves the context of the UE from the MME;
  • the new MME updates the location area registered by the UE according to the location change of the UE.
  • a location area of the UE is managed by the access network access node, and the MME manages that the UE is different in the access
  • the node identifier when the network access node moves, when the location of the UE changes the method further includes: sending, by the UE, the identifier of the MME to a new access network access node;
  • the new access network access node sends its own identifier, the temporary identifier allocated by the MME to the UE, and the identifier of the MME to the new MME;
  • the new MME determines whether the UE is registered
  • the new MME searches for the identifier of the access network access node by using the context of the UE, and notifies the access network access node to delete the access node according to the identifier of the access network access node.
  • the new MME finds the MME according to the received identifier of the MME, and searches for the context of the registered UE in the MME, and searches for the access network through the context of the UE.
  • the new access network access node updates the UE registered bit according to the location change of the UE Set the zone.
  • the location area of the UE is managed by the access network access node, where the MME manages The node identifier of the UE when moving between different access nodes of the access network, when the location of the UE changes, the method further includes:
  • the new access network access node determines, according to the identifier of the MME, whether the MME is the new MME registered by the new access network access node;
  • the new access network access node sends its own identifier and the temporary identifier allocated by the MME to the UE to the new MME, and the new MME searches for the access by using the context of the UE.
  • the new access network access node sends its own identifier, the temporary identifier allocated by the MME to the UE, and the identifier of the MME to the new MME, according to the received new MME. Identifying, by the MME, the MME, searching for a context of the registered UE in the MME, searching for an identifier of the access network access node by using a context of the UE, and according to the access network The identifier of the access node notifying the access network access node to delete the location area registered by the UE;
  • the new access network access node updates the location area registered by the UE according to the location change of the UE.
  • the access network access node receives the downlink data of the UE, or receives downlink data sent by the serving gateway, and initiates paging to the UE in a location area where the UE is registered.
  • the method further includes:
  • the access network access node receives the paging message, and initiates paging to the UE in a location area registered by the UE.
  • the present invention provides a bearer control system for supporting a multi-access technology network architecture, including:
  • Access network access node
  • Mobility management entity MME Mobility management entity MME
  • a transmission module configured to distinguish and transmit a service data flow of the UE on an air interface bearer between the UE and the access network access node according to the obtained quality of service QoS information, by using the access network access node Transmitting the service data flow with a transmission tunnel between the core network gateway, or directly transmitting the service data flow to the packet data network by using the access network access node.
  • the establishing module includes:
  • An adding unit configured to add the PDN connection policy session in an access network control session between the access network access node and the PCRF; or between the access network access node and the MME And adding the PDN connection policy session to the MME and the PCRF respectively.
  • the access network access node includes: a receiving unit, configured to receive QoS information sent by the PCRF, or receive, by using the MME, the QoS information sent by the PCRF;
  • the reconfiguration unit is configured to be connected to the receiving unit, configured to perform radio resource control RRC connection reconfiguration between the UE and the UE according to the QoS information, and allocate an air interface resource for the air interface bearer.
  • the access network access node further includes:
  • a sending unit configured to send an RRC connection reconfiguration message to the UE, and allocate the air interface resource to the air interface bearer
  • the receiving unit is further configured to receive an RRC connection reconfiguration success response from the UE, where the RRC connection reconfiguration message includes a mapping relationship between the service data flow of the UE and the air interface bearer, and the air interface resource.
  • the identifier is used to indicate an air interface resource used by the UE to transmit the service data flow on the air interface bearer.
  • the core network gateway includes a serving gateway and/or a packet data gateway, where the MME includes:
  • a receiving unit configured to receive a PDN connection establishment request sent by the UE, where the PDN connection establishment request carries a PDN identifier access point name APN;
  • a selecting unit configured to be connected to the receiving unit, configured to select the core network gateway according to the subscription information of the APN and the UE;
  • a sending unit configured to be connected to the selecting unit, configured to send a create session request to the core network gateway, where the create session request carries first channel information that is allocated by the serving gateway to the PDN connection, where the first The channel information includes an IP address and a port number of the first channel allocated by the access network access node to the UE, where the first channel information is used to establish a location between the serving gateway and the packet data gateway. Said first channel;
  • the receiving unit is further configured to receive a create session response from the core network gateway, where the create session response carries second channel information that is allocated by the packet data gateway to the PDN connection,
  • the second channel information includes an IP address and a port number of the second channel allocated by the core network gateway to the UE, where the second channel information is used to establish the between the packet data gateway and the serving gateway.
  • the first channel and the second channel form the transmission tunnel, and are used to transmit the service data flow between the access network access node and the core network gateway.
  • the access network access node detects When the service data stream of the UE,
  • the sending unit of the access network access node is further configured to send a service detection report to the PCRF, or send a service detection report to the PCRF through the MME;
  • the receiving unit of the access network access node is further configured to receive the QoS information returned by the PCRF, or receive the QoS information returned by the PCRF by using the MME;
  • the access network access node further includes:
  • an allocating unit configured to allocate, according to the QoS information, the service data flow of the UE to the air interface bearer.
  • the access network access node further includes a unit, when the access network access node detects that the UE has no service data flow within a first preset time length,
  • the releasing unit is configured to use the first connection information between the access network access node and the UE, and store the context of the UE in the access network access node, where the UE is The downlink data is buffered in the access network access node,
  • the first connection information is at least one of a mapping relationship between the service data flow of the UE and the air interface bearer, and the air interface resource allocated by the access network access node to the UE
  • the access network access node detects If the UE does not have a service data flow exceeding the first preset time length
  • the releasing unit is further configured to release the RRC connection and the second connection information between the access network access node and the serving gateway, and store the context of the UE in the MME, where The downlink data of the UE is cached in the serving gateway,
  • the second connection information is at least one of intermediate data generated by the service network data stream and the occupied memory, port, and computing resources between the access network access node and the serving gateway;
  • the context of the UE includes at least one of a service data flow of the UE, the QoS information, the air interface resource occupied by the UE, and a location area of the UE.
  • the receiving unit of the access network access node is further configured to receive a recovery request sent by the UE;
  • the allocating unit is further configured to: according to the stored context of the UE, the new service data flow according to the QoS Information is allocated to the air port bearer;
  • the allocating unit is further configured to allocate the air interface resource to the air interface bearer, so that the new service data stream is transmitted on the air interface bearer.
  • the access network access node further includes: a modifying unit, configured to add or modify a dedicated air interface bearer according to the QoS information, where the dedicated air interface bearer is established according to at least one of a scheduling priority, a delay, a packet loss rate, and a bandwidth requirement in the QoS information, where The dedicated air interface carries the matching information carried by the service data flow and the dedicated air interface.
  • a modifying unit configured to add or modify a dedicated air interface bearer according to the QoS information, where the dedicated air interface bearer is established according to at least one of a scheduling priority, a delay, a packet loss rate, and a bandwidth requirement in the QoS information, where The dedicated air interface carries the matching information carried by the service data flow and the dedicated air interface.
  • the zoning area is managed by the MME, and the context of the UE is stored in the MME, when the location of the UE changes,
  • the sending unit of the MME is further configured to send a context release command to the access network access node, to instruct the access network access node to release the context of the UE, and forward the context of the UE to the MME,
  • the context of the UE includes a service data flow of the UE, the QoS information, a mapping relationship between the service data flow of the UE and the air interface bearer, an air interface resource occupied by the UE, and a location of the UE. At least one of the districts;
  • the new MME includes:
  • a retrieval unit configured to retrieve a context of the UE from the MME
  • an update unit configured to be connected to the retrieval unit, configured to update the location area registered by the UE according to the location change of the UE.
  • the location area of the UE is managed by the access network access node, and the MME manages that the UE is different in the access
  • the node identifier when the network access node moves, when the location of the UE changes, the new access network access node includes:
  • a receiving unit configured to receive an identifier of the MME from the UE
  • the sending unit is connected to the receiving unit, and configured to send the identifier of the MME, the temporary identifier allocated by the MME to the UE, and the identifier of the MME to a new MME;
  • the new MME further includes:
  • a determining unit configured to determine whether the UE is registered
  • the ingress node deletes the location area registered by the UE; if it is determined to be absent, the method is used to find the MME according to the received identifier of the MME, and look up the registered in the MME.
  • Context of the UE searching for an identifier of the access network access node by using a context of the UE, and notifying the access network access node of the location of the access node to delete the location where the UE is registered according to the identifier of the access network access node Area;
  • the new access network access node further includes:
  • an updating unit configured to update the location area registered by the UE according to the location change of the UE.
  • the location area of the UE is managed by the access network access node, where the MME manages a node identifier when the UE moves between different access network access nodes, when the location of the UE changes,
  • the new access network access node further includes:
  • a determining unit configured to determine, according to the identifier of the MME, whether the MME is the new MME registered by the new access network access node;
  • the sending unit of the new access network access node is further configured to send the identifier of the MME and the temporary identifier allocated by the MME to the UE to the new MME, if the determination result is yes;
  • the sending unit of the new access network access node is further configured to send its own identifier, the temporary identifier allocated by the MME to the UE, and the identifier of the MME to a new one. MME.
  • the receiving unit of the access network access node is further configured to receive downlink data of the UE, or receive downlink data sent by the serving gateway, and initiate paging to the UE in a location area where the UE is registered.
  • the receiving unit of the MME is further configured to receive downlink data of the UE from the serving gateway. Notifying that the sending unit of the MME is further configured to send the homing to the access network access node. Calling a message to instruct the access network access node to initiate paging to the UE; or
  • the receiving unit of the access network access node is further configured to receive the paging message, and initiate paging to the UE in a location area where the UE is registered.
  • the layered management of the bearer between the UE and the network is simplified, and the function of the MME is simplified.
  • the access network access node controls the transmission of the service data flow on the air interface bearer according to the QoS information, and the access network is added.
  • the access node manages the status of the air interface resources, and further improves the efficiency and capacity of network resource management, reduces power consumption, and provides a basis for the evolution of the mobile network.
  • FIG. 1 is a flow chart showing a bearer control method according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing a bearer control method according to Embodiment 2 of the present invention.
  • FIG. 3 is a scene diagram showing a bearer control method according to Embodiment 3 of the present invention.
  • FIG. 4 is a scene diagram showing a bearer control method according to Embodiment 4 of the present invention.
  • FIG. 5 is a flowchart showing a bearer control method according to Embodiment 5 of the present invention.
  • 6a-6c are diagrams showing a bearer control method according to Embodiment 6 of the present invention.
  • FIG. 7 is a scene diagram showing a bearer control method according to Embodiment 7 of the present invention.
  • FIG. 8 is a block diagram showing the structure of a bearer control system according to Embodiment 8 of the present invention.
  • FIG. 9 is a block diagram showing the structure of a bearer control system according to Embodiment 9 of the present invention.
  • Figure 10 is a block diagram showing the structure of a bearer control system according to Embodiment 10 of the present invention.
  • Figure 11 is a block diagram showing the structure of a bearer control system according to Embodiment 11 of the present invention
  • 12a-12c are block diagrams showing the structure of a new MME and/or a new access network access node according to Embodiment 12 of the present invention
  • Figure 13 is a block diagram showing the structure of a bearer control system according to Embodiment 13 of the present invention. detailed description
  • FIG. 1 is a flow chart showing a bearer control method according to a first embodiment of the present invention.
  • the bearer control method may mainly include:
  • Step 100 Establish a packet data network PDN connection when the terminal device UE accesses the network.
  • the network registration is first performed, and the UE is authenticated by acquiring the subscription information between the UE and the network.
  • the subscription information may be stored in the home subscriber server (English: Home Subscriber) Server, abbreviated: HSS), the above-mentioned network registration process of the UE is the attach procedure. After the attaching process, the UE has access to the network, but in order to complete the corresponding user service with data transmission between the network, it is also necessary to establish a PDN connection between the UE and the network by adding a PDN policy session.
  • HSS is to save the user signing letter
  • the database of the information, the subscription information may include the classification of the user agreed by the user and the operator, the service usage authority, the quality of service level, the charging method, and the like.
  • Step 120 Differentiate and transmit a service data flow of the UE on an air interface bearer between the UE and an access network access node according to the obtained quality of service QoS information, by using the access network access node and the core network
  • the transport channel between the gateways transmits the traffic data stream, or directly transmits the service data stream to the packet data network through the access network access node.
  • the UE may receive QoS information from the policy and Charing Rule Function (PCRF) in the network through the PDN connection.
  • the service data stream of the UE can be distinguished according to the requirements of the QoS information.
  • the data path of the PDN connection granularity may include an air interface bearer portion and a transport tunnel portion.
  • the air interface bears the transmission channel between the UE and the access network access node (such as the eNodeB), and can distinguish the service data flow of the UE according to the requirements of the received QoS information, and respectively match the service data flows that meet the requirements of different QoS information.
  • the access network access node may allocate air interface resources for different air interface bearers to transmit the service data stream of the UE.
  • the transmission tunnel part is a transmission tunnel between the access network access node and the PCRF, and can be used to transmit the service data flow between the access network access node and the PCRF, and does not need to distinguish the service data flow according to the QoS information requirement.
  • the access network access node may directly send the service data stream received from the UE through the air interface bearer to the packet data network.
  • the data path of the PDN connection granularity established between the access network access node and the core network gateway carries uplink and downlink data of all the PDN connections of the UE.
  • the data path may delete and release the context information of the UE saved in each network node to improve the resource utilization of the network, and
  • the data path between the original access network access node and the core network gateway may be deleted when the UE initiates a location update at the other access network access node; when the UE initiates the service request, the service data flow needs to be transmitted.
  • the UE can initiate the connection of the service request initiated by the UE.
  • the access network access node may be an Evolved NodeB (eNB) in LTE, or a base station in a Universal Mobile Telecommunications System (UMTS). (NodeB) and wireless network controller
  • eNB Evolved NodeB
  • UMTS Universal Mobile Telecommunications System
  • Radio Network Controller RNC
  • Base Transceiver Station BTS
  • Base Station Controller BSC
  • GSM Global System for Mobile Communications
  • the SRC is an access network device that integrates a multi-standard radio network controller or coordinator
  • the access network may include LTE, UMTS, Code Division Multiple Access (Code Division Multiple Access), CDMA) 2000, GSM and other access technology type networks, where LTE belongs to the 4th Generation Mobile Communication (4G) technology, UMTS and CDMA2000 belong to the 3rd Generation Mobile Communication (3G) Technology, GSM belongs to the 2nd Generation Mobile Communication (2G) technology;
  • the core network gateway can be the gateway GPRS support node of the General Packet Radio Service (GPRS) core network.
  • GPRS General Packet Radio Service
  • Mobility Management Entity can be LTE Mobility Management Entity (MME) servicing GPRS Support Node (SGSN) of UMTS and GSM, Core Network Controller (CC) independent of access technology.
  • MME LTE Mobility Management Entity
  • SGSN GPRS Support Node
  • CC Core Network Controller
  • the bearer control method in this embodiment simplifies the function of the MME by hierarchically managing the bearer between the UE and the network; the access network access node controls the transmission of the service data flow on the air interface bearer according to the QoS information, and increases
  • the access network access node manages the status of the air interface resources, and further improves the efficiency and capacity of network resource management, reduces power consumption, and provides a new evolution for mobile networks. Foundation.
  • FIG. 2 is a flow chart showing a bearer control method according to Embodiment 2 of the present invention.
  • the steps in FIG. 2 having the same reference numerals as in FIG. 1 have the same functions, and a detailed description of these steps will be omitted for the sake of brevity.
  • the step 100 may specifically include:
  • Step 200 Establish a PDN connection policy session between the access network access node and the policy and charging rule function decision point PCRF.
  • step 200 may be implemented in any one of the following two possible implementation manners: Mode 1: Adding the PDN in an access network control session between the access network access node and the PCRF Connection strategy session; or
  • Manner 2 Add the PDN connection policy session between the access network access node and the mobility management entity MME and/or between the MME and the PCRF.
  • each node in the network may save the identification information of the UE.
  • each node in the network such as an access network access node or MME, can also save the identification information of the PDN.
  • the access network access node or the MME may discover the corresponding PCRF in the network and initiate a PDN connection policy session by using the saved identity information of the UE and the identifier information of the PDN.
  • the mode 1 may be used to add a PDN connection policy session in the access network control session between the access network access node and the PCRF; if all PDN connections of the UE are The PDN connection policy session is established between the access network access node and the MME by the MME and the PCRF, and the PDN connection policy session between the MME and the PCRF is established by the MME and the PCRF.
  • the bearer control method may further include: Step 210: The access network access node receives the QoS information sent by the PCRF, or the access network access node receives the QoS information sent by the PCRF by using the MME.
  • Step 220 The access network access node performs a radio resource control RRC connection reconfiguration between the QoS information and the UE, and allocates an air interface resource for the air interface bearer.
  • the access network access node may directly receive the QoS information from the PCRF through the foregoing transmission channel, or may receive the QoS information from the PCRF through the MME, and the access node may use the QoS information to distinguish the service data of the UE according to the QoS information.
  • the flow completes the Radio Resource Control (RRC) connection reconfiguration with the UE.
  • RRC Radio Resource Control
  • the access network access node may distinguish the service data flow of the UE according to the requirements of the QoS information, and establish a mapping relationship between different service data flows and air interface bearers that satisfy different QoS information. Allocating air interface resources for different air interface bearers, that is, air interface resources used when different service data streams are transmitted on different air interface bearers.
  • Step 220 can also include:
  • Step 221 The access network access node sends an RRC connection reconfiguration message to the UE, and allocates the air interface resource to the air interface bearer.
  • Step 222 The access network access node receives an RRC connection reconfiguration success response from the UE.
  • the RRC connection reconfiguration message includes a mapping relationship between the service data flow of the UE and the air interface bearer, and an identifier of the air interface resource, where the identifier of the air interface resource is used to indicate that the UE transmits on the air interface bearer.
  • the access network access node may receive an RRC connection reconfiguration success response from the UE, and complete the RRC connection reconfiguration process.
  • the access network access node may also obtain QoS information (such as bandwidth, priority, delay, and packet loss rate) of the service data flow by using the uplink and downlink data streams of the UE that it identifies. Further, if the UE performs the transmission of the service data stream through the foregoing data channel, the context of the UE may be saved in a node (such as an MME) in the network, including in the context.
  • the access network access node can obtain the mapping between the service data flow and the QoS information in the context from the MME, and allocate the uplink and downlink resources (especially the air interface radio resources) to the UE, and map to the air interface bearer. And transmitting, by the RRC connection reconfiguration message, the mapping relationship between the service data flow and the air interface bearer, and the air interface resource used by the UE to transmit the service data flow on the air interface bearer.
  • the core network gateway may include a serving gateway SGW and/or a packet data gateway PGW.
  • the bearer control method may further include:
  • Step 230 The MME receives a PDN connection establishment request sent by the UE, where the PDN connection establishment request carries a PDN identifier access point name APN.
  • the UE may send a PDN connection establishment request to the MME on the air interface connection, where the PDN connection is
  • the establishment request may carry the PDN identifier access point name (English: Access Point Name, abbreviation: APN), and the APN may be used to indicate the PDN network used by the UE.
  • APN Access Point Name
  • the PDN connection establishment request may also be an attach request, and the MME may perform authentication on the UE according to the UE subscription information saved in the HSS, to ensure network security, and the specific information of the subscription information.
  • the bearer control method in Embodiment 1 of the present invention.
  • Step 240 The MME selects the core network gateway according to the APN and the subscription information of the UE.
  • Step 250 The MME sends a create session request to the core network gateway, where the create session request carries the first channel information that is allocated by the service gateway to the PDN connection, where the first channel information includes the An IP address and a port number of the first channel allocated by the access network access node to the UE, where the first channel information is used to establish the first channel between the serving gateway and the packet data gateway;
  • Step 260 The core network gateway returns a create session response to the MME, where the creation session Transmitting, in the response, the second channel information that is allocated by the packet data gateway to the PDN connection, where the second channel information includes an IP address and a port number of the second channel allocated by the core network gateway to the UE, where The second channel information is used to establish the second channel between the packet data gateway and the serving gateway;
  • the first channel and the second channel form the transmission tunnel, and are used to transmit the service data flow between the access network access node and the core network gateway.
  • the MME may select a core network gateway for the UE according to the received subscription information of the APN and the UE, where the core network gateway may include a packet data gateway and a serving gateway, and send a create session request to the serving gateway, and then send the packet to the packet through the serving gateway.
  • the data gateway sends the first session information that is allocated by the serving gateway to the PDN connection that needs to be established, and the first channel information may include the first allocated by the access network access node for the UE.
  • the IP address and port number of the channel are used to establish the first channel between the serving gateway and the packet data gateway in the PDN connection. In this way, the first channel between the packet data gateway and the serving gateway has been established.
  • the packet data gateway can send the downlink data transmitted by the UE on the PDN connection to the serving gateway, and the downlink data. Can be temporarily cached in the service gateway.
  • the packet data gateway sends a creation session response to the serving gateway, where the creation session response may carry the second channel information allocated by the packet data gateway for the PDN connection, where the first channel information may include the first allocation of the core network gateway to the UE.
  • the IP address and port number of the second channel are used to establish a second channel between the packet data gateway and the serving gateway in the PDN connection.
  • the service gateway may send the creation session response to the MME, where the creation session response may carry the first channel information allocated by the service gateway for the PDN connection.
  • the MME may send a PDN connection channel establishment request and downlink channel information to the access network access node, where the downlink channel information may include an IP address and a port number allocated to the UE, etc., for establishing the MME and the connection.
  • the access network access node feeds back the PDN connection channel establishment response to the MME, and may carry the access network access node as the PDN connection point in the PDN connection channel establishment response.
  • the uplink channel information, the uplink channel information may include an IP address and a port number allocated to the UE, and is used to establish an uplink channel between the MME and the access node of the access network.
  • the UE feeds back to the MME that the PDN connection establishment is complete. At this time, the UE may send uplink data to the packet data gateway, and the downlink data that may be buffered in the serving gateway may also be sent to the UE at this time.
  • an initial air interface bearer may be established between the UE and the access network access node, and the initial air interface bearer may include a dedicated air interface bearer.
  • the dedicated air interface bearer may be added or modified according to the requirements of the QoS information, and the dedicated air interface bearer is according to the scheduling priority, the delay, the packet loss rate, and the bandwidth requirement in the QoS information.
  • the dedicated air interface carries the matching information carried by the service data flow and the dedicated air interface.
  • the bearer control method in this embodiment simplifies the function of the MME by hierarchically managing the bearer between the UE and the network; the access network access node controls the transmission of the service data flow on the air interface bearer according to the QoS information, and increases
  • the access network access node manages the status of the air interface resources, and further improves the efficiency and capacity of network resource management, reduces power consumption, and provides a basis for the evolution of the mobile network.
  • FIG. 3 is a diagram showing a scene of a bearer control method according to Embodiment 3 of the present invention.
  • the service data flow of the UE may change.
  • the service data flows of the UE may be different at different times, and the access network access node may perform service identification on the service of the UE.
  • the service data flow of the UE is detected.
  • the bearer control method may include:
  • Step 300 The access network access node sends a service detection report to the PCRF, or the access network access node sends a service detection report to the PCRF through the MME;
  • Step 310 The access network access node receives the QoS information returned by the PCRF, or the access network access node receives the QoS information returned by the PCRF by using the MME; 320.
  • the access network access node sends the service data of the UE according to the QoS information. The flow is distributed to the air port bearer.
  • the service flow detection report may be generated, and the service flow detection report is reported to the PCRF.
  • the access network access node may directly send the service detection report to the PCRF, in another possibility.
  • the access network access node may send a service detection report to the PCRF through the MME. After receiving the service flow detection report, the PCRF can provide QoS information to the access network access node.
  • the access network access node may directly receive the QoS information returned by the PCRF, in another possible In an implementation manner, the access network access node may receive the QoS information returned by the PCRF through the MME.
  • other nodes in the network may also have the function of service identification.
  • the service flow detection may also be sent to the PCRF.
  • the report enables the PCRF to provide QoS information to the access network access node for subsequent matching of the service data flow and the air interface bearer.
  • the access network access node can receive the QoS information sent by the PCRF, and match the service data flow of the UE to different air interface bearers according to the requirements of the QoS information, that is, the service data flow with the same QoS information requirement is matched to the same air interface. On the bearer, a mapping relationship between the service data flow, the QoS information, and the air interface bearer is established. In a possible implementation manner, for a specific QoS information requirement, it may be necessary to add or modify a dedicated air interface bearer between the access network access node and the UE.
  • the access network access node may send the foregoing mapping relationship to the UE by using an RRC connection reconfiguration message in the RRC connection reconfiguration with the UE, where
  • the RRC connection reconfiguration message may include a mapping between the service data flow of the UE and the air interface bearer, and may further include an identifier of the air interface resource allocated by the access network access node for the UE, where the identifier of the air interface resource may be used to indicate Which air interface resource the UE uses?
  • the air interface carries the service data stream of the transmitting UE. In this way, the service data stream of the UE can be transmitted on the matched air interface bearer, and the access network access node can return a QoS information execution response to the PCRF.
  • the bearer control method in this embodiment simplifies the function of the MME by hierarchically managing the bearer between the UE and the network; the access network access node controls the transmission of the service data flow on the air interface bearer according to the QoS information, and increases
  • the access network access node manages the status of the air interface resources, and further improves the efficiency and capacity of network resource management, reduces power consumption, and provides a basis for the evolution of the mobile network.
  • FIG. 4 is a scene diagram showing a bearer control method according to Embodiment 4 of the present invention.
  • the access network access node may receive the QoS information from the PCRF, and match the service data flow to the air interface bearer according to the QoS information request. Transmission of uplink and downlink data.
  • the access network access node needs to allocate air interface resources to the UE, and the contexts related to the UE, such as service data flow information, QoS information, and the like, may be saved in each node of the network.
  • intermediate data is also generated in each node of the network, occupying the memory of each node of the network, the port between the nodes of the network, and the like.
  • the UE may not need to transmit the service data stream in a certain period of time, that is, the UE is in an idle state.
  • the release process can include the following two methods:
  • Manner 1 When the access network access node detects that the UE does not have a service data flow within a first preset time length, releasing the first between the access network access node and the UE Connecting the information, storing the context of the UE in the access network access node, and buffering the downlink data of the UE in the access network access node,
  • the first connection information is at least one of a mapping relationship between the service data flow of the UE and the air interface bearer, and the air interface resource allocated by the access network access node to the UE.
  • the UE may release the UE.
  • the first connection information is to release at least one of a mapping relationship between the service data flow of the access network access node UE and the air interface bearer and the air interface resource allocated by the access network access node to the UE.
  • the access network access node may send an RRC connection release request to the UE, which is used to indicate that the first connection information between the access network access node and the UE is released.
  • the PDN connection channel between the access network access node and the serving gateway is not released, and when the downlink data arrives, the packet data gateway can be sent to the access network access node after the access network access node Cache, and is used to subsequently trigger paging to the UE.
  • Manner 2 releasing the RRC connection and the access node of the access network, if the access network access node detects that the UE does not have a service data flow exceeding the first preset time length Storing the second connection information between the serving gateways, and storing the context of the UE in the MME, and buffering downlink data of the UE in the serving gateway,
  • the second connection information is at least one of intermediate data generated by the service network data stream and the occupied memory, port, and computing resources between the access network access node and the serving gateway;
  • the context of the UE includes at least one of a service data flow of the UE, the QoS information, the air interface resource occupied by the UE, and a location area of the UE.
  • the UE may release the UE.
  • the second connection information may include intermediate data generated by the service data flow between the access network access node and the serving gateway, and occupied memory, ports, resources, and the like; the context of the UE may include the service data flow and QoS of the UE. At least one of information, an air interface resource occupied by the UE, and a location area of the UE.
  • the access network access node may send a UE access network context release request to the MME to indicate that the access network context of the UE saved in each node of the network is released, so that each node of the network may have a larger storage capacity.
  • the MME may send a release channel request to the core network gateway to instruct the core network gateway to release the second connection information of the UE.
  • the core network gateway may return a release channel response to the MME, and the MME may return a UE access network context release command to the access network access node to indicate that the access network access node releases the second UE. Connection information.
  • the PDN connection channel between the access network access node and the serving gateway has been released.
  • the packet data gateway can be buffered in the serving gateway after being sent to the serving gateway, and used for subsequent triggering on the UE. Paging.
  • the access network access node when the access network access node sends the UE access network context release request and the UE access network context release completion to the MME, the UE context, such as service data flow, QoS information, and the like, may be stored in the MME.
  • the UE in order to reduce the processing transaction of the access network access node and save the storage resource of the access network access node, the UE may be divided into two levels without an activity timer, and the UE has no activity in a short time. Then, the access network access node may release the first connection information according to the mode 1. If the UE has no activity for a long time, the access network access node may release the RRC connection and the second connection information according to the second mode.
  • the bearer control method in this embodiment can improve network resource management efficiency and capacity and reduce power consumption by releasing the first connection information or the RRC connection and the second connection information when detecting that the UE is in an idle state; Different release methods can be implemented for UE and network
  • the inter-layer bearer management simplifies the function of the MME and increases the management of the air interface resource status of the access network access node.
  • FIG. 5 is a flowchart showing a bearer control method according to Embodiment 5 of the present invention.
  • the UE in the idle state can regenerate a new service data flow.
  • the access network context of the UE can be retrieved and the connection between the UE and the core network gateway can be restored.
  • the service request process of the UE may also be performed in the following two manners.
  • Manner 1 The access network access node receives the recovery request sent by the UE; the access network access node allocates the new service data flow according to the QoS information according to the stored context of the UE And the access network access node allocates the air interface resource to the air interface bearer, so that the new service data stream is transmitted on the air interface bearer.
  • the access network access node may store the UE access network context, and retain the PDN connection channel between the access network access node and the serving gateway.
  • the UE may no longer send a service request to the MME, but only needs to resume the RRC connection between the UE and the access network access node.
  • the access network access node may match the UE's new service data flow to the air interface bearer according to the QoS information requirement in the UE access network context stored in the access network access node.
  • the dedicated air interface bearer may be established or modified between the UE and the access network access node, and after the RRC connection reconfiguration is completed, the UE The corresponding air interface resource can be used to transmit the service data stream on the corresponding air interface bearer.
  • Method 2 Before each step in the first method, the following steps may also be included:
  • the access network access node receives an initial UE access network context setup request sent by the MME, where the initial UE access network context setup request carries the context of the UE and the service gateway stored by the MME Uplink channel information allocated for the PDN connection, the uplink channel information The information includes an IP address and a port number of the UE, such that uplink data of the UE is transmitted between the access network access node and the serving gateway.
  • an initial UE access network context setup response where the initial UE access network context setup response carries downlink channel information allocated by the access network access node for the PDN connection, and the uplink channel information Including the IP address and port number of the UE, such that downlink data of the UE is transmitted between the access network access node and the serving gateway.
  • the UE may send a service request to the MME.
  • the MME may perform authentication on the UE according to the subscription information of the UE saved in the HSS to ensure network security.
  • the MME may send an initial UE access network context establishment request to the access network access node, and may perform the air interface connection release process in the fourth embodiment of the present invention in the initial UE access network context establishment request.
  • the context of the UE stored in the MME such as service flow information, QoS information, and the like, may also carry downlink channel information allocated by the serving gateway for the PDN connection.
  • the access network access node can match the new service data flow of the UE to the air interface bearer according to the QoS information requirement in the UE context.
  • the dedicated air interface bearer may be established or modified between the UE and the access network access node, and after the RRC connection reconfiguration is completed, the UE Uplink data can be sent.
  • the access network access node may send an initial UE access network context setup response to the MME, and may carry the downlink channel information allocated by the MME for the PDN connection in the initial UE access network context setup response. At this time, the downlink data buffered in the serving gateway can be sent to the UE through the MME.
  • the bearer control method of the embodiment restores the connection between the UE and the core network gateway according to different release modes, thereby improving network resource management efficiency and capacity, and reducing power consumption; Layered management of the bearer between the UE and the network simplifies the function of the MME and increases the management of the air interface resource status of the access node.
  • FIGS. 6a-6c are flowcharts showing a bearer control method according to Embodiment 6 of the present invention.
  • Figure 6a ⁇ 6c As shown, in the above network architecture, the location area management of the UE can be divided into two ways. Specifically, in the process of using the UE, a change of the location may occur. In this manner, the location area of the UE needs to be managed in the network.
  • the management manner may include the following two types:
  • Method 1 The location area management is completely performed by the MME;
  • the access network access node manages the paging area in the access node of the access network, and the MME manages the node identifier when the UE moves between access nodes of different access networks.
  • the location change of the UE may also have various changes. For example, the UE moves completely from the original access network access node to the access network access node that is not under the control of the original MME, and the serving gateway changes at the same time.
  • the location update procedure can be simplified if any one or more of the original access network access node, MME, or serving gateway does not change.
  • the bearer control method may include:
  • Step 610 The MME sends a context release command to the access network access node, to indicate that the access network access node releases the context of the UE, and forwards the context of the UE to the MME.
  • the context of the UE includes a service data flow of the UE, the QoS information, a mapping relationship between the service data flow of the UE and the air interface bearer, an air interface resource occupied by the UE, and a location of the UE. At least one of the districts;
  • Step 611 The new MME retrieves the context of the UE from the MME.
  • Step 612 The new MME updates the location area registered by the UE according to the location change of the UE.
  • the access network access node manages the transactions of some UEs, for example, the service data stream of the UE is matched to different air interface bearers according to the QoS information, and is transmitted on the UE.
  • the context generated by the access network access node when managing the UE is also included.
  • the part of the context needs to be taken out from the access network access node.
  • the location area of the UE is managed by the access network access node, and the MME manages the UE in different access nodes of the access network.
  • the bearer control method may further include:
  • Step 620 The UE sends the identifier of the MME to a new access network access node.
  • Step 622 The new MME determines whether the UE is registered.
  • Step 623 If yes, the new MME searches for the identifier of the access network access node by using the context of the UE, and notifies the access network according to the identifier of the access node of the access network.
  • the node deletes the location area registered by the UE;
  • Step 624 If not, the new MME finds the MME according to the received identifier of the MME, and searches for the registered context of the UE in the MME, and searches for the context by using the context of the UE.
  • Step 625 The new access network access node updates the location area registered by the UE according to the location change of the UE.
  • the access network access node 1 can complete the registration in the MME1
  • the UE accesses the network through the access network access node 1 to perform the transmission of the service data stream
  • the MME1 can allocate a temporary identifier to the UE
  • the UE The identity of MME1 can be obtained.
  • the access network access node 2 can complete the registration in the MME2, and the UE can send the identifier of the MME1 to the access network access node 2, the access network.
  • Access node 2 will mark its own The identifier, the temporary identifier assigned by the MME1 for the UE, and the identifier of the MME1 are sent to the MME2.
  • the MME2 After receiving the MME2, it can be determined whether the UE is registered in the MME2. If yes, it is stated that the MME2 itself can save the context of the UE, and can find the identifier of the access network access node 1 from which the corresponding access network access node 1 is notified to delete the location area where the UE is registered; MME2 may find the corresponding MME1 according to the identifier of the received MME1, and look up the registered context of the UE from the MME1, search for the identifier of the access network access node 1 through the context of the UE, and access the node 1 according to the access network. The identifier of the corresponding access network access node 1 deletes the location area registered by the UE. Finally, the access network access node 2 updates the location area registered by the UE according to the location change of the UE, that is, re-registers the location area for the UE.
  • the MME manages the UE in different access network access nodes.
  • the bearer control method may further include:
  • Step 640 The UE sends the identifier of the MME to a new access network access node.
  • Step 641 The new access network access node determines, according to the identifier of the MME, whether the MME is The new MME registered by the new access network access node;
  • Step 642 If yes, the new access network access node sends its own identifier, the temporary identifier that the MME allocates to the UE, to the new MME, and the new MME searches through the context of the UE. And the access network access node identifier is notified, and the access network access node is notified to delete the location area where the UE is registered according to the identifier of the access network access node;
  • Step 643 If not, the new access network access node sends its own identifier, the temporary identifier allocated by the MME to the UE, and the identifier of the MME to a new MME, where the new MME Finding the MME according to the received identifier of the MME, and searching for a context of the registered UE in the MME, searching for an identifier of the access node of the access network by using a context of the UE, and according to the Notifying the access network access node of the access network access node to delete the The location area registered by the UE;
  • Step 644 The new access network access node updates the location area registered by the UE according to the location change of the UE.
  • the access network access node may perform a first judgment, and determine, according to the determination result, whether the identifier of the MME needs to be sent to the new MME.
  • the UE may send the identifier of the MME1 to the access network access node 2, and the access network access node 2 may determine, according to the identifier of the received MME1, whether the MME1 is the MME registered by the access network access node 2. . If yes, the access network access node 2 may send its own identifier and the temporary identifier allocated by the MME1 to the UE to the MME2.
  • the MME2 may find the identifier of the access network access node 1 by using the context of the UE that is saved by itself, and notify the corresponding access network access node 1 of the corresponding access network to delete the location area registered by the UE; if not, The access network access node 2 may send its own identifier, the temporary identifier allocated by the MME1 to the UE, and the identifier of the MME1 to the MME2, and the MME2 finds the corresponding MME1 according to the identifier of the received MME1, and searches for the registered UE from the MME1.
  • the identifier of the access network access node 1 is searched by the context of the UE, and the corresponding access network access node 1 is notified to delete the location area registered by the UE according to the identifier of the access network access node 1. Finally, the access network access node 2 updates the location area registered by the UE according to the location change of the UE, that is, re-registers the location area for the UE.
  • the access network access node may retrieve the context of the UE from the MME, where the context may include the access network access node managing the mobility context of the UE, that is, the location originally allocated for the UE.
  • the area processing the location update request or reassigning the location area to the UE according to the location of the UE. For example, if the UE moves completely from the original access network access node to the access network access node that is not under the control of the original MME, and the serving gateway changes at the same time, for example, the access network access node is connected by the access network.
  • the ingress node 2 becomes the access network access node 1
  • the MME is changed from the MME2 to the MME1
  • the serving gateway is changed from the serving gateway 2 to the serving gateway 1.
  • a pair of UE location areas can be managed in a manner.
  • the UE may send a location update message to MME1.
  • the MME1 may create a PDN connection channel between the MME1 and the serving gateway 1 and the packet data gateway; update the location area of the UE in the HSS; cancel the location area of the UE that the MME2 originally registered in the HSS; if the MME2 stores the context of the UE, Then MME1 can obtain the context of the UE from MME2. If the access network access node 2 stores the context of the UE, the MME2 needs to retrieve the context of the UE from the access network access node 2 and forward it to the MME1; delete the MME2 and the serving gateway. 2 PDN session connection.
  • the UE location area may also be managed by using the second method.
  • the UE may initiate a paging area update to the access network access node 1, and the access network access node 1 initiates an access node update to the MME1.
  • the node identifier of the access network access node may be carried, and the MME1 may pass Manage the node ID and update the access network access node.
  • the access network access node 1 can manage the paging area update of the UE.
  • the management of the UE context and the PDN connection channel refer to the related description of the foregoing bearer control method in this embodiment.
  • the serving gateway is not changed when the location area of the UE is updated, and the related description of the foregoing bearer control method in this embodiment, the PDN connection channel between the MME and the core network gateway is not required to be performed. Updates, the process can be simplified.
  • the MME does not change when the UE location area is updated, and the related description of the foregoing bearer control method in this embodiment, there is no need to perform handover of the context of the UE between the MMEs, and in the HSS. Only the location registration of the UE needs to be updated, and the deletion of the location registration is not required. If the MME stores the context of the UE, it can be used directly; if the access network access node stores the context of the UE, the MME can find the corresponding access network access node and retrieve the context of the UE for subsequent management. It should be noted that the foregoing implementation manners described in this embodiment are only possible implementations of the bearer control method, but are not limited thereto. The bearer control method in this embodiment may also have many possible implementation manners according to the specific situation of the UE location update, the storage location of the UE context, and the management manner of the UE location area.
  • the bearer control method in this embodiment simplifies the function of the MME by hierarchically managing the bearer between the UE and the network, and increases the management of the UE context by the access node of the access network; further improves the network resources. Managing efficiency and capacity, reducing power consumption provides the basis for a new evolution of mobile networks.
  • FIG. 7 is a flowchart showing a bearer control method according to Embodiment 7 of the present invention. As shown in FIG. 7, if a new service data stream is generated after the location update of the UE, paging needs to be initiated to the UE.
  • the downlink data of the UE may be cached in the access network access node or may be cached in the serving gateway.
  • the paging process may include: receiving, by the access network access node, downlink data of the UE, or receiving downlink data sent by the serving gateway, and initiating searching for the UE in a location area where the UE is registered. call.
  • the paging process may further include: receiving, by the MME, downlink data of the UE from the serving gateway, and sending a paging message to the access network access node, to indicate that the access network access node is located
  • the UE initiates paging; or the access network access node receives the paging message, and initiates paging to the UE in a location area registered by the UE.
  • the release mode 2 of the foregoing embodiment of the present invention the second connection information between the RRC connection and the access network access node and the serving gateway has been released, and when the serving gateway receives the downlink data, the service gateway can buffer the downlink.
  • the data is sent to the MME for downlink data notification.
  • the MME may send a paging message to the access network access node, instructing the access network access node to page the UE.
  • the mode 1 of the bearer control method in the sixth embodiment of the present invention is used to manage the location area of the UE, and the MME may perform the MME, the MME may send the homing to the access node of the access network.
  • the paging message carries the location area of the UE registration, and the access network access node may page the UE in the corresponding cell according to the location area registered by the UE. If the UE location area is managed, the bearer control method in the sixth embodiment of the present invention is adopted. In the second mode, the paging area in the access network access node is managed by the access network access node, and the MME manages the node identifier when the UE moves between different access network access nodes. Then, the MME sends a paging message to the access network access node, and the access network access node can page the UE in the corresponding cell according to the paging area registered by the UE.
  • the access node of the access network can receive the downlink data and buffer the downlink data. If the management of the UE location area is performed in the MME according to the method in the bearer control method in the sixth embodiment of the present invention, the access network access node may page the UE in the corresponding cell according to the location area registered by the UE; If the management of the UE location area is the second mode in the bearer control method in the sixth embodiment of the present invention, the paging area in the access network access node is managed by the access network access node, and the MME manages the UE in different access networks. The node identifier when the access node moves, the access network access node may page the UE in the corresponding cell according to the paging area registered by the UE.
  • the bearer control method in this embodiment simplifies the function of the MME by hierarchically managing the bearer between the UE and the network, and increases the management of the UE context by the access node of the access network; further improves the network resources. Managing efficiency and capacity, reducing power consumption provides the basis for a new evolution of mobile networks.
  • Figure 8 is a block diagram showing the structure of a bearer control system according to an eighth embodiment of the present invention.
  • the bearer control system 800 can mainly include:
  • Access network access node 810
  • Mobility management entity 820
  • the establishing module 840 is configured to establish a packet data network when the terminal device UE accesses the network.
  • Network PDN connection
  • a transmission module 850 configured to distinguish and transmit a service data flow of the UE on an air interface bearer between the UE and an access network access node according to the acquired quality of service QoS information, where the access node accesses the node
  • the transport channel between the core network gateways transmits the service data stream, or directly sends the service data stream to the packet data network through the access network access node.
  • the network registration is first performed, and the UE is authenticated by acquiring the subscription information between the UE and the network.
  • the subscription information may be stored in the home subscriber server (English: Home Subscriber) Server, abbreviated: HSS), the above-mentioned network registration process of the UE is the attach procedure.
  • HSS home subscriber server
  • the module 840 is also required to establish a PDN connection between the UE and the network by adding a PDN policy session.
  • the HSS is a database for storing user subscription information, and the subscription information may include a user classification, a service usage authority, a service quality level, and a charging method agreed by the user and the operator.
  • the UE may receive QoS information from the Policy and Charging Rule Function (PCRF) in the network through the PDN connection.
  • the transmission module 850 can distinguish the service data flow of the UE according to the requirements of the QoS information.
  • the data path of the PDN connection granularity may include an air interface bearer portion and a transport tunnel portion.
  • the air interface bears a transmission channel between the UE and the access network access node 810 (such as an eNodeB), and the transmission module 850 can distinguish the service data flow of the UE according to the requirements of the received QoS information, and the service that meets the requirements of different QoS information.
  • the data flows are respectively matched to different air interface bearers, and the access network access node 810 can allocate air interface resources for different air interface bearers for transmitting the service data stream of the UE.
  • the transmission tunnel part is a transmission tunnel between the access network access node 810 and the PCRF, and can be used to transmit the service data flow between the access network access node and the PCRF, and does not need to distinguish the service data flow according to the QoS information requirement. Or in the case that the access network access node 810 has access to the network and has a network interface, the access network access node 810 can carry the bearer through the air interface through the transmission module 850.
  • the service data stream received by the UE is directly sent to the packet data network.
  • the PDN connection granularity data path established between the access network access node 810 and the core network gateway 830 carries all uplink and downlink data of the PDN connection of the UE.
  • the data path may delete and release the context information of the UE saved in each network node, so as to improve resource utilization of the network, and further, the data path
  • the data path between the original access network access node 810 and the core network gateway 830 may be deleted when the UE initiates a location update at the other access network access node; when the UE initiates the service request, the service data is available.
  • the data path of the PDN connection granularity of the UE between the access network access node 810 and the core network gateway 830 that initiates the service request by the UE may be restored.
  • the specific examples of the access network access node 810, the core network gateway 830, and the mobility management entity 820 in the foregoing system may refer to the related description of the bearer control method in Embodiment 1 of the present invention. This will not be repeated here.
  • the bearer control system in this embodiment simplifies the function of the MME by hierarchically managing the bearer between the UE and the network; the access network access node controls the transmission of the service data flow on the air interface bearer according to the QoS information, and increases
  • the access network access node manages the status of the air interface resources, and further improves the efficiency and capacity of network resource management, reduces power consumption, and provides a basis for the evolution of the mobile network.
  • Figure 9 is a block diagram showing the structure of a bearer control system according to Embodiment 9 of the present invention.
  • the same components in Fig. 9 as those in Fig. 8 have the same functions, and a detailed description of these components will be omitted for the sake of brevity.
  • the establishing module 840 may specifically include:
  • the adding unit 910 is configured to add the PDN connection policy session in the access network control session between the access network access node and the PCRF; or in the access network access node and the MME The PDN connection policy session is added between the MME and the PCRF, respectively.
  • each node in the network may save the identification information of the UE.
  • each node in the network such as the access network access node 810 or the MME 820, can also store the identification information of the PDN.
  • the access network access node 810 or the MME 820 can discover the corresponding PCRF in the network and initiate a PDN connection policy session by using the saved identity information of the UE and the identity information of the PDN.
  • the adding unit 910 may add a PDN connection policy session in the access network control session between the access network access node 810 and the PCRF; if all PDN connections of the UE are respectively
  • the PDN connection policy session may be added between the access network access node 810 and the MME 820 by the multiple PCRF services.
  • the MME 820 and the PCRF establish the PDN connection policy session between the MME 820 and the PCRF.
  • the access network access node 810 can include:
  • the receiving unit 920 is configured to receive QoS information sent by the PCRF, or receive, by using the MME, the QoS information sent by the PCRF;
  • the reconfiguration unit 930 is configured to be connected to the receiving unit 920, configured to perform radio resource control RRC connection reconfiguration between the QoS information and the UE, and allocate air interface resources for the air interface bearer.
  • the receiving unit 920 of the access network access node 810 may directly receive QoS information from the PCRF through the foregoing transmission channel, or may receive QoS information from the PCRF through the MME 820, and the access network access node 810 may be used by the subsequent access network.
  • the QoS information distinguishes the service data flow of the UE, and completes Radio Resource Control (RRC) connection reconfiguration with the UE.
  • RRC Radio Resource Control
  • the reconfiguration unit 930 can distinguish the service data flow of the UE according to the requirements of the QoS information, and establish different service data flows that satisfy different QoS information.
  • the mapping between the air interface and the air interface bearer which allocates air interface resources for different air interface bearers, that is, the space used to transmit different service data streams on different air interface bearers.
  • the access network access node 810 can also include:
  • the sending unit 940 is configured to send an RRC connection reconfiguration message to the UE, and allocate the air interface resource to the air interface bearer;
  • the receiving unit 920 is further configured to receive an RRC connection reconfiguration success response from the UE.
  • the RRC connection reconfiguration message includes a mapping relationship between the service data flow of the UE and the air interface bearer, and an identifier of the air interface resource, where the identifier of the air interface resource is used to indicate that the UE transmits on the air interface bearer.
  • the receiving unit 920 may receive an RRC connection reconfiguration success response from the UE, and complete the RRC connection reconfiguration process.
  • the access network access node 810 can also obtain QoS information (such as bandwidth, priority, delay, and packet loss rate) of the service data flow by using the uplink and downlink data flows of the UE that it identifies. . Further, if the UE performs the transmission of the service data stream through the foregoing data channel, the node in the network (such as the MME 820) can save the context of the UE, including the mapping relationship between the service data flow and the QoS information in the context. .
  • QoS information such as bandwidth, priority, delay, and packet loss rate
  • the access network access node 810 can obtain the mapping relationship between the service data flow and the QoS information in the context from the MME 820, and allocate the uplink and downlink resources (especially the air interface radio resources) to the UE, and map to The air interface bears, and sends the mapping relationship between the service data flow and the air interface bearer to the UE through the RRC connection reconfiguration message, and the air interface resource used by the UE to transmit the service data stream on the air interface bearer.
  • the core network gateway 830 may include a serving gateway SGW and/or a packet data gateway PGW, and the MME 820 may specifically include:
  • the receiving unit 950 is configured to receive a PDN connection establishment request sent by the UE, where the PDN connection establishment request carries a PDN identifier access point name APN;
  • the selecting unit 960 is connected to the receiving unit 950, and configured to select the core network gateway according to the subscription information of the APN and the UE;
  • the sending unit 970 is connected to the selecting unit 960, and configured to send the ingenious to the core network gateway. Establishing a session request, where the creation session request carries the first channel information allocated by the serving gateway for the PDN connection, where the first channel information includes the first allocated by the access network access node to the UE An IP address and a port number of the channel, where the first channel information is used to establish the first channel between the serving gateway and the packet data gateway;
  • the receiving unit 950 is further configured to receive a create session response from the core network gateway, where the create session response carries second channel information that is allocated by the packet data gateway to the PDN connection, where the second channel information includes And the second channel information is used to establish the second channel between the packet data gateway and the serving gateway;
  • the first channel and the second channel form the transmission tunnel, and are used to transmit the service data flow between the access network access node and the core network gateway.
  • the access network access node 810 may further include a modifying unit 980.
  • an initial air interface bearer may be established between the UE and the access network access node, where the initial air interface bearer may include a dedicated air interface. Hosted.
  • the modifying unit 980 may add or modify the dedicated air interface bearer according to the requirements of the QoS information, where the dedicated air interface bearer is according to the scheduling priority, the delay, the packet loss rate, and the packet loss rate in the QoS information. And establishing, by the at least one of the bandwidth requirements, the dedicated air interface carries the matching information carried by the service data flow and the dedicated air interface.
  • the bearer control system in this embodiment simplifies the function of the MME by hierarchically managing the bearer between the UE and the network; the access network access node controls the transmission of the service data flow on the air interface bearer according to the QoS information, and increases
  • the access network access node manages the status of the air interface resources, and further improves the efficiency and capacity of network resource management, reduces power consumption, and provides a basis for the evolution of the mobile network.
  • Figure 10 is a block diagram showing the structure of a bearer control system according to Embodiment 10 of the present invention.
  • the service data flow of the UE may be changed.
  • the service data flow of the UE may be different at different times.
  • the access network access node 810 may perform service identification on the service of the UE, and detect service data of the UE. flow.
  • the access network access node 810 of the bearer control system 1000 may further include a distribution unit 1010.
  • the access network access node 810 detects the service data flow of the UE,
  • the sending unit 940 is further configured to send a service detection report to the PCRF, where the receiving unit 920 is further configured to receive the QoS information returned by the PCRF.
  • the sending unit 940 is further configured to send the service detection report to the PCRF by using the MME, where the receiving unit 920 is further configured to receive, by using the MME, the QoS information returned by the PCRF;
  • the allocating unit 1010 is configured to allocate, according to the QoS information, a service data flow of the UE to the air interface bearer.
  • the bearer control system in this embodiment simplifies the function of the MME by hierarchically managing the bearer between the UE and the network; the access network access node controls the transmission of the service data flow on the air interface bearer according to the QoS information, and increases
  • the access network access node manages the status of the air interface resources, and further improves the efficiency and capacity of network resource management, reduces power consumption, and provides a basis for the evolution of the mobile network.
  • Figure 11 is a block diagram showing the structure of a bearer control system according to Embodiment 11 of the present invention.
  • the access network access node 810 may receive the QoS information from the PCRF and request the number of services according to the QoS information request. According to the flow matching to the air interface bearer, the uplink and downlink data are transmitted. In the foregoing process, the access network access node 810 needs to allocate air interface resources to the UE, and the contexts related to the UE, such as service data flow information, QoS information, and the like, may be saved in each node of the network.
  • intermediate data is also generated in each node of the network, occupying the memory of each node of the network, the port between the nodes of the network, and the like.
  • the UE may not need to transmit the service data stream in a certain period of time, that is, the UE is in an idle state.
  • the air interface resources occupied by the UE in the idle state and the context of the UE stored in each node of the network are released.
  • the access network access node 810 may also include a release unit 1110.
  • the releasing unit 1110 is configured to release the access network access node and the UE. First connection information, and storing the context of the UE in the access network access node, and buffering downlink data of the UE in the access network access node,
  • the first connection information is at least one of a mapping relationship between the service data flow of the UE and the air interface bearer, and the air interface resource allocated by the access network access node to the UE.
  • the releasing unit 1110 is further configured to release the RRC connection and the access network connection, if the access network access node 810 detects that the UE does not have a service data flow exceeding the first preset time length. a second connection information between the ingress node and the serving gateway, and storing the context of the UE in the MME, and buffering downlink data of the UE in the serving gateway,
  • the second connection information is at least one of intermediate data generated by the service network data stream and the occupied memory, port, and computing resources between the access network access node and the serving gateway;
  • the context of the UE includes at least one of a service data flow of the UE, the QoS information, the air interface resource occupied by the UE, and a location area of the UE.
  • the UE in the idle state can regenerate a new service data stream.
  • the access network context of the UE can be retrieved and the connection between the UE and the core network gateway 830 can be restored.
  • the receiving unit 920 is further configured to receive a recovery request sent by the UE.
  • the allocating unit 1010 is further configured to allocate, according to the stored context of the UE, the new service data flow to the air interface bearer according to the QoS information;
  • the allocating unit 1010 is further configured to allocate the air interface resource to the air interface bearer, so that the new service data stream is transmitted on the air interface bearer.
  • the bearer control system of the present embodiment releases the first connection information or the RRC connection and the second connection information by using the release unit when detecting that the UE is in the idle state, and recovers the UE according to different release modes when receiving the new service request of the UE.
  • the connection with the core network gateway can improve network resource management efficiency and capacity, and reduce power consumption. Further, two different release modes can be used to implement layered management of the bearer between the UE and the network, simplifying
  • the function of the MME increases the management of the air interface resource status of the access network access node.
  • the location area management of the UE can be divided into two ways. Specifically, in the process of using the UE, a change of the location may occur. In this manner, the location area of the UE needs to be managed in the network, and the management manner may include the following two types:
  • Method 1 The location area management is completely performed by the MME 820;
  • the access network access node 810 manages the paging area in the access network access node 810, and the MME 820 manages the node identifier when the UE moves between different access network access nodes 810.
  • the location change of the UE may also have various changes. For example, the UE moves completely from the original access network access node to the access network access node that is not under the control of the original MME, and the serving gateway changes at the same time.
  • the location update procedure can be simplified if any one or more of the original access network access node, MME, or serving gateway does not change.
  • the new MME 1201 to which the UE moves may include a retrieval unit 1210 and an update unit 1220. If the location area of the UE is managed by the MME, the context of the UE is stored in the MME, and when the location of the UE changes, the sending unit 970 of the MME is further configured to access the The network access node sends a context release command to instruct the access network access node to release the context of the UE, and forward the context of the UE to the MME.
  • the context of the UE includes a service data flow of the UE, the QoS information, a mapping relationship between the service data flow of the UE and the air interface bearer, an air interface resource occupied by the UE, and a location of the UE. At least one of the districts;
  • the retrieving unit 1210 is configured to retrieve a context of the UE from the MME.
  • the updating unit 1220 is connected to the retrieving unit 1210, and is configured to update the location area registered by the UE according to the location change of the UE.
  • the location area of the UE is managed by the access network access node, and the MME manages that the UE is in different access nodes of the access network.
  • the new access network access node 1202 to which the UE moves may include:
  • the receiving unit 1230 is configured to receive an identifier of the MME from the UE.
  • the sending unit 1240 is connected to the receiving unit 1230, and configured to send the identifier of the MME, the temporary identifier allocated by the MME to the UE, and the identifier of the MME to a new MME.
  • the new MME 1201 further includes: The determining unit 1250 is configured to determine whether the UE is registered;
  • the searching unit 1260 is configured to search for an identifier of the access network access node by using a context of the UE, and notify the access network according to the identifier of the access network access node, if the determination is yes.
  • the access node deletes the location area of the UE registration; if it is determined to be absent, the method is used to find the MME according to the received identifier of the MME, and look up the registered context of the UE in the MME. And searching, by the context of the UE, the identifier of the access network access node, and notifying the access network access node to delete the location area where the UE is registered according to the identifier of the access network access node;
  • the new access network access node 1202 further includes:
  • the updating unit 1270 is configured to update the location area registered by the UE according to the location change of the UE.
  • the location area of the UE is managed by the access network access node, and the MME manages the UE in different access nodes of the access network.
  • the new access network access node 1202 may further include:
  • the determining unit 1280 is configured to determine, according to the identifier of the MME, whether the MME is the new MME that is registered by the new access network access node;
  • the sending unit 1240 is further configured to send the identifier of the self and the temporary identifier allocated by the MME to the UE to the new MME, if the determination result is yes;
  • the sending unit 1240 is further configured to send the identifier of the MME, the temporary identifier allocated by the MME to the UE, and the identifier of the MME to the new MME, if the determination result is not.
  • a paging needs to be initiated for the UE.
  • downlink data of a UE may be cached in an access network.
  • the access node it can also be cached in the service gateway.
  • the receiving unit 920 of the access network access node is further configured to receive downlink data of the UE, or receive downlink data sent by the serving gateway, and register with the UE. The location area initiates paging for the UE.
  • the receiving unit 950 of the MME is further configured to receive downlink data of the UE from the serving gateway, where the sending unit 970 of the MME is further configured to connect to the access network.
  • the ingress node sends a paging message to instruct the access network access node to initiate paging to the UE; the receiving unit 920 of the access network access node is further configured to receive the paging message, where The location area registered by the UE initiates paging to the UE.
  • the bearer control system in this embodiment simplifies the function of the MME by hierarchically managing the bearer between the UE and the network, and increases the management of the UE context by the access node of the access network; further improves the network resources. Managing efficiency and capacity, reducing power consumption provides the basis for a new evolution of mobile networks.
  • Figure 13 is a block diagram showing the structure of a bearer control system according to a thirteenth embodiment of the present invention.
  • the bearer control system 1300 can be a host server with computing power, a personal computer PC, or a portable computer or terminal that can be carried.
  • the specific embodiment of the present invention does not limit the specific implementation of the computing node.
  • the bearer control system 1300 includes a processor 1310, a communications interface 1320, a memory 1330, and a bus 1340. Among them, the processor 1310, the communication interface 1320, and the memory 1330 complete communication with each other through the bus 1340.
  • Communication interface 1320 is for communicating with network devices, such as virtual machine management centers, shared storage, and the like.
  • the processor 1310 is for executing a program.
  • the processor 1310 may be a central processing unit CPU, or
  • the application is an Application Specific Integrated Circuit (ASIC) or one or more integrated circuits configured to implement the embodiments of the present invention.
  • ASIC Application Specific Integrated Circuit
  • the memory 1330 is for storing files.
  • the memory 1330 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • Memory 1330 can also be a memory array.
  • the memory 1330 may also be partitioned, and the blocks may be combined into a virtual volume according to certain rules.
  • the above program may be a program code including computer operating instructions.
  • the program is applied to support multiple access technology network architecture, specifically for:
  • establishing a PDN connection of the packet data network includes:
  • the foregoing procedure is further used to:
  • the access network access node receives the QoS information sent by the PCRF, or the access network access node receives the QoS information sent by the PCRF by using the MME;
  • the access network access node performs radio resource control according to the QoS information and the UE
  • the RRC connection reconfiguration is performed, and the air interface resource is allocated for the air interface bearer.
  • the access network access node and the UE perform a radio resource control protocol RRC connection reconfiguration, including:
  • the access network access node sends an RRC connection reconfiguration message to the UE, and allocates the air interface resource to the air interface bearer;
  • the access network access node receives an RRC connection reconfiguration success response from the UE, where the RRC connection reconfiguration message includes a mapping relationship between the service data flow of the UE and the air interface bearer, and the air interface An identifier of the resource, where the identifier is used to indicate an air interface resource used by the UE to transmit the service data flow on the air interface bearer.
  • the core network gateway includes a serving gateway and/or a packet data gateway, and the service data is transmitted in the transmission tunnel between the access network access node and the core network gateway.
  • the above program is also used to:
  • the MME selects the core network gateway according to the APN and the subscription information of the UE; the MME sends a create session request to the core network gateway, where the service session gateway carries the service gateway as the PDN Connecting the allocated first channel information, where the first channel information includes an IP address and a port number of the first channel allocated by the access network access node to the UE, where the first channel information is used to establish the The first channel between the serving gateway and the packet data gateway;
  • the core network gateway returns a create session response to the MME, where the create session response carries the second channel information allocated by the packet data gateway for the PDN connection, and the second channel information includes the core network gateway And the second channel information is used to establish the second channel between the packet data gateway and the serving gateway;
  • the first channel and the second channel form the transmission tunnel, and are used to transmit the service data flow between the access network access node and the core network gateway.
  • the foregoing procedure is further used to:
  • the access network access node sends a service detection report to the PCRF, and receives the QoS information returned by the PCRF;
  • the access network access node sends a service detection report to the PCRF through the MME, and receives the QoS information returned by the PCRF by using the MME;
  • the access network access node allocates the service data flow of the UE to the air interface bearer according to the QoS information.
  • the foregoing procedure is further used to:
  • the first connection information is at least one of a mapping relationship between the service data flow of the UE and the air interface bearer, and the air interface resource allocated by the access network access node to the UE.
  • the foregoing procedure is further used to:
  • the second connection information is used to transmit the intermediate data generated by the service data flow between the access network access node and the serving gateway, and the occupied memory, port, and computing resources. missing one;
  • the context of the UE includes at least one of a service data flow of the UE, the QoS information, the air interface resource occupied by the UE, and a location area of the UE.
  • the foregoing program is further used to:
  • the access network access node allocates the new service data flow to the air interface bearer according to the QoS information according to the stored context of the UE;
  • the access network access node allocates the air interface resource to the air interface bearer, so that the new service data stream is transmitted on the air interface bearer.
  • the above program is further used to:
  • the access network access node adds or modifies a dedicated air interface bearer according to the QoS information, and the dedicated air interface bearer is configured according to at least one of scheduling priority, delay, packet loss rate, and bandwidth requirement in the QoS information.
  • the dedicated air interface carries the matching information carried by the service data flow and the dedicated air interface.
  • the location area of the UE is managed by the MME, and the context of the UE is stored in the MME, and when the location of the UE changes, the method further includes:
  • the context of the UE includes the service data flow of the UE, the QoS information, the mapping relationship between the service data flow of the UE and the air interface bearer, the air interface resource occupied by the UE, and at least the location area of the UE.
  • the new MME retrieves the context of the UE from the MME;
  • the new MME updates the location area registered by the UE according to the location change of the UE.
  • the location area of the UE is connected to the node by the access network.
  • the MME is configured to: when the location of the UE is changed, the MME manages the node identifier when the UE moves between different access nodes of the access network, and further includes:
  • the new access network access node sends its own identifier, the temporary identifier allocated by the MME to the UE, and the identifier of the MME to the new MME;
  • the new MME determines whether the UE is registered
  • the new MME searches for the identifier of the access network access node by using the context of the UE, and notifies the access network access node to delete the access node according to the identifier of the access network access node.
  • the new MME finds the MME according to the received identifier of the MME, and searches for the context of the registered UE in the MME, and searches for the access network through the context of the UE.
  • the new access network access node updates the location area registered by the UE according to the location change of the UE.
  • the location area of the UE is managed by the access network access node, and the MME manages the node identifier of the UE when moving between different access nodes of the access network.
  • the method further includes:
  • the new access network access node determines, according to the identifier of the MME, whether the MME is the new MME registered by the new access network access node;
  • the new access network access node sends its own identifier and the temporary identifier allocated by the MME to the UE to the new MME, and the new MME searches for the access by using the context of the UE.
  • the new access network access node updates the location area registered by the UE according to the location change of the UE.
  • the foregoing program is further used to:
  • the access network access node receives downlink data of the UE, or receives downlink data sent by the serving gateway, and initiates paging to the UE in a location area registered by the UE.
  • the above program is further used to:
  • the access network access node receives the paging message, and initiates paging to the UE in a location area registered by the UE.
  • the computer software product is typically stored in a computer readable non-volatile storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all of the methods of various embodiments of the present invention. Or part of the step.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种承载控制方法及系统,该承载控制方法应用于支持多接入技术网络架构,包括:在终端设备UE接入网络的情况下,建立分组数据网络PDN连接;根据所获取的服务质量QoS信息在UE与接入网接入节点之间的空口承载上区分并传输UE的业务数据流,通过接入网接入节点与核心网网关之间的传输隧道传输业务数据流,或通过接入网接入节点直接将业务数据流发送至分组数据网络。通过对UE与网络之间的承载进行分层管理,简化了MME的功能;接入网接入节点根据QoS信息控制业务数据流在空口承载上的传输,增加了接入网接入节点对空口资源状况的管理,提升了网络资源管理效率和容量,降低了功耗,为移动网络进一步演进提供了基础。

Description

说 明 书
承载控制方法及系统
技术领域
本发明涉及通信技术领域, 尤其涉及一种承载控制方法及系统。 背景技术
在蜂窝网络中, 从终端设备如用户设备(英文: User Equipment, 缩写: UE) 到分组数据网关 (英文: Public Data Network Gateway, 缩写: PGW) 的数据传输是通过端到端的承载(Bearer)实现的。 以长期演进技术(英文: Long Term Evolution, 缩写 LTE) 为例, 一个 UE到 PGW的承载确定了 UE与 PGW之间的数据传输连接, UE到 PGW的承载由映射到不同网络节点之间的 多段承载对接而成, 每段承载由服务质量 (英文: Quality of Service, 缩写: QoS ) 区分, 通过数据流过滤器可以把业务数据流过滤到不同的承载上, 使 具有相同 QoS要求的业务数据流可以聚合到同一承载进行传输。
网络根据终端设备和业务数据流的 QoS建立、 修改或者删除端到端承载 的过程是会话管理的一部分。 除了会话管理, 对于终端设备的移动性管理也 是蜂窝网络中重要的一部分, 移动性管理中, 主要包括终端设备所在位置区 的更新和对终端设备的寻呼。
LTE引入后, 由于 LTE与全球移动通信系统 (Global System for Mobile communications, GSM ) /宽带码分多址 (Wideband Code Division Multiple Access, WCDMA) 分别由不同的核心网移动性管理实体进行移动性管理, 终端设备在 LTE与 GSM/WCDMA之间来回移动时,可能需要频繁发生不同制 式的位置区更新。
综上所述, 在现有技术中, 核心网网关根据 QoS要求建立端到端承载, 并将终端设备的业务数据流映射到承载上,核心网网关并不掌握接入网的资 源状况, 业务数据流的 QoS要求变化时需要修改端到端承载; 端到端承载与 接入技术绑定, 无法支持多接入技术共同传输终端设备的业务数据流、 并根 据资源状况动态利用接入技术资源的模式; 寻呼需要由核心网网关将下行数 据通知发往移动性管理实体, 由移动性管理实体向终端设备注册的位置区的 接入网设备发起寻呼。 发明内容
技术问题
有鉴于此, 本发明要解决的技术问题是, 如何实现对承载的灵活控制, 并实现多接入技术共同传输终端设备的业务数据流。
解决方案
为了解决上述技术问题, 根据本发明的一实施例, 在第一方面, 提供了 一种承载控制方法, 应用于支持多接入技术网络架构, 包括:
在终端设备 UE接入网络的情况下, 建立分组数据网络 PDN连接; 根据所获取的服务质量 QoS信息在所述 UE与接入网接入节点之间的空 口承载上区分并传输 UE的业务数据流, 通过所述接入网接入节点与核心网 网关之间的传输隧道传输所述业务数据流,或通过所述接入网接入节点直接 将所述业务数据流发送至分组数据网络。
结合第一方面,在第一方面的第一种可能的实现方式中,在终端设备 UE 接入网络的情况下, 建立分组数据网络 PDN连接, 包括:
在所述接入网接入节点与 PCRF之间在接入网控制会话中添加所述 PDN 连接策略会话; 或
在所述接入网接入节点与移动性管理实体 MME之间和 /或所述 MME与 所述 PCRF之间分别添加所述 PDN连接策略会话。
结合第一方面, 在第一方面的第二种可能的实现方式中, 在根据所获取 的 QoS信息在所述 UE与接入网接入节点之间的空口承载上区分并传输 UE的 业务数据流之前, 包括:
所述接入网接入节点接收所述 PCRF发送的 QoS信息,或,所述接入网接 入节点通过所述 MME接收所述 PCRF发送的所述 QoS信息;
所述接入网接入节点根据所述 QoS信息与所述 UE之间进行无线资源控 制 RRC连接重配置, 为所述空口承载分配空口资源。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实 现方式中, 所述接入网接入节点与所述 UE之间进行无线资源控制协议 RRC 连接重配置, 包括:
所述接入网接入节点向所述 UE发送 RRC连接重配置消息, 为所述空口 承载分配所述空口资源;
所述接入网接入节点从所述 UE接收 RRC连接重配置成功响应; 其中, 所述 RRC连接重配置消息中包括所述 UE的业务数据流与所述空 口承载的映射关系和所述空口资源的标识, 所述标识用于指示所述 UE在所 述空口承载上传输所述业务数据流时所使用的空口资源。
结合第一方面, 在第一方面的第四种可能的实现方式中, 所述核心网网 关包括服务网关和 /或分组数据网关,在所述通过所述接入网接入节点与核心 网网关之间的传输隧道传输所述业务数据流之前, 包括:
所述 MME接收所述 UE发送的 PDN连接建立请求, 所述 PDN连接建立请 求中携带 PDN标识接入点名称 APN;
所述 MME根据所述 APN和所述 UE的签约信息选择所述核心网网关; 所述 MME向所述核心网网关发送创建会话请求, 所述创建会话请求中 携带所述服务网关为所述 PDN连接分配的第一通道信息,所述第一通道信息 包括所述接入网接入节点为所述 UE分配的第一通道的 IP地址和端口号,所述 第一通道信息用于建立所述服务网关和所述分组数据网关之间的所述第一 通道;
所述核心网网关向所述 MME返回创建会话响应, 所述创建会话响应中 携带所述分组数据网关为所述 PDN连接分配的第二通道信息,所述第二通道 信息包括所述核心网网关为所述 UE分配的第二通道的 IP地址和端口号,所述 第二通道信息用于建立所述分组数据网关和所述服务网关之间的所述第二 通道;
其中, 所述第一通道和所述第二通道构成所述传输隧道, 用于在所述接 入网接入节点与所述核心网网关之间传输所述业务数据流。
结合第一方面以及第一方面的第一种至第四种可能的实现方式中任一 种, 在第一方面的第五种可能的实现方式中, 在所述接入网接入节点检测到 所述 UE的业务数据流时, 还包括:
所述接入网接入节点将业务检测报告发送至所述 PCRF , 并接收所述 PCRF返回的所述 QoS信息; 或
所述接入网接入节点将业务检测报告通过所述 MME发送至所述 PCRF, 并通过所述 MME接收所述 PCRF返回的所述 QoS信息;
所述接入网接入节点根据所述 QoS信息将所述 UE的业务数据流分配到 所述空口承载上。
结合第一方面以及第一方面的第一种至第五种可能的实现方式中任一 种, 在第一方面的第六种可能的实现方式中, 在所述接入网接入节点检测到 第一预设时间长度内所述 UE没有业务数据流的情况下, 还包括:
释放所述接入网接入节点与所述 UE之间的第一连接信息, 并将所述 UE 的上下文存储在所述接入网接入节点中, 将所述 UE的下行数据缓存在所述 接入网接入节点中,
其中, 所述第一连接信息为所述 UE的业务数据流与所述空口承载的映 射关系和所述接入网接入节点为所述 UE分配的所述空口资源中的至少一 个。
结合第一方面以及第一方面的第一种至第五种可能的实现方式中任一 种, 在第一方面的第七种可能的实现方式中, 在所述接入网接入节点检测到 超过所述第一预设时间长度所述 UE没有业务数据流的情况下, 还包括: 释放所述 RRC连接和所述接入网接入节点与所述服务网关之间的第二 连接信息, 并将所述 UE的上下文存储在所述 MME中, 将所述 UE的下行数据 缓存在所述服务网关中,
其中,所述第二连接信息为所述接入网接入节点与所述服务网关之间传 输所述业务数据流产生的中间数据以及占用的内存、 端口、 计算资源中的至 少一个; 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所述 UE占 用的所述空口资源以及所述 UE的位置区中的至少一个。
结合第一方面的第六种可能的实现方式,在第一方面的第八种可能的实 现方式中, 在所述 UE具有新业务数据流时, 还包括:
所述接入网接入节点接收所述 UE发送的恢复请求;
所述接入网接入节点根据存储的所述 UE的上下文, 将所述新业务数据 流根据所述 QoS信息分配到所述空口承载上;
所述接入网接入节点为所述空口承载分配所述空口资源, 以使所述新业 务数据流在所述空口承载上传输。
结合第一方面以及第一方面的第一种至第八种可能的实现方式中任一 种, 在第一方面的第九种可能的实现方式中, 还包括:
所述接入网接入节点根据所述 QoS信息增加或修改专用空口承载, 所述 专用空口承载是按照所述 QoS信息中调度优先级、 时延、 丢包率、 带宽要求 中的至少一种建立的,所述专用空口承载上携带所述业务数据流与所述专用 空口承载的匹配信息。 结合第一方面, 在第一方面的第十种可能的实现方式中, 所述 UE的位 置区由 MME管理, 所述 UE的上下文存储在所述 MME中, 在所述 UE的位置 发生改变时, 还包括:
所述 MME向所述接入网接入节点发送上下文释放命令, 以指示所述接 入网接入节点释放所述 UE的上下文, 将所述 UE的上下文转交至所述 MME, 其中, 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所 述 UE的业务数据流与所述空口承载的映射关系、 所述 UE占用的空口资源以 及所述 UE的位置区中的至少一个;
新的 MME从所述 MME中取回所述 UE的上下文;
所述新的 MME根据所述 UE的位置变化更新所述 UE注册的位置区。
结合第一方面, 在第一方面的第 ^一种可能的实现方式中, 所述 UE的 位置区由所述接入网接入节点管理, 所述 MME管理所述 UE在不同所述接入 网接入节点之间移动时的节点标识, 在所述 UE的位置发生改变时, 还包括: 所述 UE将所述 MME的标识发送至新的接入网接入节点;
所述新的接入网接入节点将自身的标识、 所述 MME为所述 UE分配的临 时标识、 所述 MME的标识发送至新的 MME;
所述新的 MME判断是否有所述 UE注册;
若有, 所述新的 MME通过所述 UE的上下文査找所述接入网接入节点的 标识, 并根据所述接入网接入节点的标识通知所述接入网接入节点删除所述 UE注册的位置区;
若没有, 所述新的 MME根据接收到的所述 MME的标识找到所述 MME, 并在所述 MME中査找注册的所述 UE的上下文,通过所述 UE的上下文査找所 述接入网接入节点的标识, 并根据所述接入网接入节点的标识通知所述接入 网接入节点删除所述 UE注册的位置区;
所述新的接入网接入节点根据所述 UE的位置变化更新所述 UE注册的位 置区。
结合第一方面的第十一种可能的实现方式,在第一方面的第十二种可能 的实现方式中, 所述 UE的位置区由所述接入网接入节点管理, 所述 MME管 理所述 UE在不同所述接入网接入节点之间移动时的节点标识, 在所述 UE的 位置发生改变时, 还包括:
所述 UE将所述 MME的标识发送至新的接入网接入节点;
所述新的接入网接入节点根据所述 MME的标识判断所述 MME是否是所 述新的接入网接入节点注册的所述新的 MME;
若是, 所述新的接入网接入节点将自身的标识、 所述 MME为所述 UE分 配的临时标识发送至新的 MME,所述新的 MME通过所述 UE的上下文査找所 述接入网接入节点的标识, 并根据所述接入网接入节点的标识通知所述接入 网接入节点删除所述 UE注册的位置区;
若不是, 所述新的接入网接入节点将自身的标识、 所述 MME为所述 UE 分配的临时标识、所述 MME的标识发送至新的 MME,所述新的 MME根据接 收到的所述 MME的标识找到所述 MME, 并在所述 MME中査找注册的所述 UE的上下文, 通过所述 UE的上下文査找所述接入网接入节点的标识, 并根 据所述接入网接入节点的标识通知所述接入网接入节点删除所述 UE注册的 位置区;
所述新的接入网接入节点根据所述 UE的位置变化更新所述 UE注册的位 置区。
结合第一方面以及第一方面的第一种至第十二种可能的实现方式,在第 一方面的第十三种可能的实现方式中, 在所述 UE具有新的业务数据流时, 还包括:
所述接入网接入节点接收所述 UE的下行数据, 或, 接收所述服务网关 发送的下行数据, 并在所述 UE注册的位置区对所述 UE发起寻呼。 结合第一方面的第十三种可能的实现方式,在第一方面的第十四种可能 的实现方式中, 还包括:
所述 MME从所述服务网关接收所述 UE的下行数据通知, 向所述接入网 接入节点发送寻呼消息, 以指示所述接入网接入节点向所述 UE发起寻呼; 或
所述接入网接入节点接收所述寻呼消息, 在所述 UE注册的位置区对所 述 UE发起寻呼。
在第二方面, 本发明提供了一种承载控制系统, 应用于支持多接入技术 网络架构, 包括:
接入网接入节点;
移动性管理实体 MME;
核心网网关;
建立模块, 用于在终端设备 UE接入网络的情况下, 建立分组数据网络 PDN连接;
传输模块,用于根据所获取的服务质量 QoS信息在所述 UE与所述接入网 接入节点之间的空口承载上区分并传输 UE的业务数据流, 通过所述接入网 接入节点与所述核心网网关之间的传输隧道传输所述业务数据流, 或通过所 述接入网接入节点直接将所述业务数据流发送至分组数据网络。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述建立模块 包括:
添加单元, 用于在所述接入网接入节点与 PCRF之间在接入网控制会话 中添加所述 PDN连接策略会话; 或在所述接入网接入节点与所述 MME之间 和 /或所述 MME与所述 PCRF之间分别添加所述 PDN连接策略会话。
结合第二方面, 在第二方面的第二种可能的实现方式中, 所述接入网接 入节点包括: 接收单元, 用于接收所述 PCRF发送的 QoS信息, 或, 通过所述 MME接 收所述 PCRF发送的所述 QoS信息;
重配置单元, 与所述接收单元连接, 用于根据所述 QoS信息与所述 UE 之间进行无线资源控制 RRC连接重配置, 为所述空口承载分配空口资源。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实 现方式中, 所述接入网接入节点还包括:
发送单元, 用于向所述 UE发送 RRC连接重配置消息, 为所述空口承载 分配所述空口资源;
所述接收单元还用于从所述 UE接收 RRC连接重配置成功响应; 其中, 所述 RRC连接重配置消息中包括所述 UE的业务数据流与所述空 口承载的映射关系和所述空口资源的标识, 所述标识用于指示所述 UE在所 述空口承载上传输所述业务数据流时所使用的空口资源。
结合第二方面, 在第二方面的第四种可能的实现方式中, 所述核心网网 关包括服务网关和 /或分组数据网关, 所述 MME包括:
接收单元, 用于接收所述 UE发送的 PDN连接建立请求, 所述 PDN连接 建立请求中携带 PDN标识接入点名称 APN;
选择单元, 与所述接收单元连接, 用于根据所述 APN和所述 UE的签约 信息选择所述核心网网关;
发送单元, 与所述选择单元连接, 用于向所述核心网网关发送创建会话 请求,所述创建会话请求中携带所述服务网关为所述 PDN连接分配的第一通 道信息, 所述第一通道信息包括所述接入网接入节点为所述 UE分配的第一 通道的 IP地址和端口号, 所述第一通道信息用于建立所述服务网关和所述分 组数据网关之间的所述第一通道;
所述接收单元还用于从所述核心网网关接收创建会话响应,所述创建会 话响应中携带所述分组数据网关为所述 PDN连接分配的第二通道信息,所述 第二通道信息包括所述核心网网关为所述 UE分配的第二通道的 IP地址和端 口号,所述第二通道信息用于建立所述分组数据网关和所述服务网关之间的 所述第二通道;
其中, 所述第一通道和所述第二通道构成所述传输隧道, 用于在所述接 入网接入节点与所述核心网网关之间传输所述业务数据流。
结合第二方面以及第二方面的第一种至第四种可能的实现方式中任一 种, 在第二方面的第五种可能的实现方式中, 在所述接入网接入节点检测到 所述 UE的业务数据流时,
所述接入网接入节点的发送单元还用于将业务检测报告发送至所述 PCRF, 或, 将业务检测报告通过所述 MME发送至所述 PCRF;
所述接入网接入节点的接收单元还用于接收所述 PCRF返回的所述 QoS 信息, 或, 通过所述 MME接收所述 PCRF返回的所述 QoS信息;
所述接入网接入节点还包括:
分配单元,用于根据所述 QoS信息将所述 UE的业务数据流分配到所述空 口承载上。
结合第二方面以及第二方面的第一种至第五种可能的实现方式中任一 种, 在第二方面的第六种可能的实现方式中, 所述接入网接入节点还包括释 放单元, 在所述接入网接入节点检测到第一预设时间长度内所述 UE没有业 务数据流的情况下,
所述释放单元用于所述接入网接入节点与所述 UE之间的第一连接信 息, 并将所述 UE的上下文存储在所述接入网接入节点中, 将所述 UE的下行 数据缓存在所述接入网接入节点中,
其中, 所述第一连接信息为所述 UE的业务数据流与所述空口承载的映 射关系和所述接入网接入节点为所述 UE分配的所述空口资源中的至少一 结合第二方面以及第二方面的第一种至第五种可能的实现方式中任一 种, 在第二方面的第七种可能的实现方式中, 在所述接入网接入节点检测到 超过所述第一预设时间长度所述 UE没有业务数据流的情况下,
所述释放单元还用于释放所述 RRC连接和所述接入网接入节点与所述 服务网关之间的第二连接信息, 并将所述 UE的上下文存储在所述 MME中, 将所述 UE的下行数据缓存在所述服务网关中,
其中,所述第二连接信息为所述接入网接入节点与所述服务网关之间传 输所述业务数据流产生的中间数据以及占用的内存、 端口、 计算资源中的至 少一个; 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所述 UE占 用的所述空口资源以及所述 UE的位置区中的至少一个。
结合第二方面的第六种可能的实现方式,在第二方面的第八种可能的实 现方式中, 在所述 UE具有新业务数据流时,
所述接入网接入节点的接收单元还用于接收所述 UE发送的恢复请求; 所述分配单元还用于根据存储的所述 UE的上下文, 将所述新业务数据 流根据所述 QoS信息分配到所述空口承载上;
所述分配单元还用于为所述空口承载分配所述空口资源, 以使所述新业 务数据流在所述空口承载上传输。
结合第二方面以及第二方面的第一种至第八种可能的实现方式中任一 种, 在第二方面的第九种可能的实现方式中, 所述接入网接入节点还包括: 修改单元, 用于根据所述 QoS信息增加或修改专用空口承载, 所述专用 空口承载是按照所述 QoS信息中调度优先级、 时延、 丢包率、 带宽要求中的 至少一种建立的,所述专用空口承载上携带所述业务数据流与所述专用空口 承载的匹配信息。
结合第二方面, 在第二方面的第十种可能的实现方式中, 所述 UE的位 置区由 MME管理, 所述 UE的上下文存储在所述 MME中, 在所述 UE的位置 发生改变时,
所述 MME的发送单元还用于向所述接入网接入节点发送上下文释放命 令, 以指示所述接入网接入节点释放所述 UE的上下文, 将所述 UE的上下文 转交至所述 MME,
其中, 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所 述 UE的业务数据流与所述空口承载的映射关系、 所述 UE占用的空口资源以 及所述 UE的位置区中的至少一个;
新的 MME包括:
取回单元, 用于从所述 MME中取回所述 UE的上下文;
更新单元, 与所述取回单元连接, 用于根据所述 UE的位置变化更新所 述 UE注册的位置区。
结合第二方面, 在第二方面的第 ^一种可能的实现方式中, 所述 UE的 位置区由所述接入网接入节点管理, 所述 MME管理所述 UE在不同所述接入 网接入节点之间移动时的节点标识, 在所述 UE的位置发生改变时, 新的接 入网接入节点包括:
接收单元, 用于从所述 UE接收所述 MME的标识;
发送单元, 与所述接收单元连接, 用于将自身的标识、 所述 MME为所 述 UE分配的临时标识、 所述 MME的标识发送至新的 MME;
所述新的 MME还包括:
判断单元, 用于判断是否有所述 UE注册;
査找单元, 在判断为有的情况下, 用于通过所述 UE的上下文査找所述 接入网接入节点的标识, 并根据所述接入网接入节点的标识通知所述接入网 接入节点删除所述 UE注册的位置区; 在判断为没有的情况下, 用于根据接 收到的所述 MME的标识找到所述 MME, 并在所述 MME中査找注册的所述 UE的上下文, 通过所述 UE的上下文査找所述接入网接入节点的标识, 并根 据所述接入网接入节点的标识通知所述接入网接入节点删除所述 UE注册的 位置区;
所述新的接入网接入节点还包括:
更新单元, 用于根据所述 UE的位置变化更新所述 UE注册的位置区。 结合第二方面的第十一种可能的实现方式,在第二方面的第十二种可能 的实现方式中, 所述 UE的位置区由所述接入网接入节点管理, 所述 MME管 理所述 UE在不同所述接入网接入节点之间移动时的节点标识, 在所述 UE的 位置发生改变时,
所述新的接入网接入节点还包括:
判断单元, 用于根据所述 MME的标识判断所述 MME是否是所述新的接 入网接入节点注册的所述新的 MME;
所述新的接入网接入节点的发送单元, 在判断结果为是的情况下, 还用 于将自身的标识、 所述 MME为所述 UE分配的临时标识发送至新的 MME; 所述新的接入网接入节点的发送单元, 在判断结果为不是的情况下, 还 用于将自身的标识、所述 MME为所述 UE分配的临时标识、所述 MME的标识 发送至新的 MME。
结合第二方面以及第二方面的第一种至第十二种可能的实现方式,在第 二方面的第十三种可能的实现方式中, 在所述 UE具有新的业务数据流时, 所述接入网接入节点的接收单元还用于接收所述 UE的下行数据, 或, 接收 所述服务网关发送的下行数据, 并在所述 UE注册的位置区对所述 UE发起寻 呼。
结合第二方面的第十三种可能的实现方式,在第二方面的第十四种可能 的实现方式中, 所述 MME的接收单元还用于从所述服务网关接收所述 UE的 下行数据通知, 所述 MME的发送单元还用于向所述接入网接入节点发送寻 呼消息, 以指示所述接入网接入节点向所述 UE发起寻呼; 或
所述接入网接入节点的接收单元还用于接收所述寻呼消息, 在所述 UE 注册的位置区对所述 UE发起寻呼。
有益效果
本发明实施例,通过对 UE与网络之间的承载进行分层管理,简化了 MME 的功能;接入网接入节点根据 QoS信息控制业务数据流在空口承载上的传输, 增加了接入网接入节点对空口资源状况的管理, 进一歩地, 提升了网络资源 管理效率和容量, 降低了功耗, 为移动网络进一歩演进提供了基础。
根据下面参考附图对示例性实施例的详细说明, 本发明的其它特征及方 面将变得清楚。 附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了 本发明的示例性实施例、 特征和方面, 并且用于解释本发明的原理。
图 1示出根据本发明实施例一的承载控制方法的流程图;
图 2示出根据本发明实施例二的承载控制方法的流程图;
图 3示出根据本发明实施例三的承载控制方法的场景图;
图 4示出根据本发明实施例四的承载控制方法的场景图;
图 5示出根据本发明实施例五的承载控制方法的场景图;
图 6a~6c示出根据本发明实施例六的承载控制方法的图 ·'
图 7示出根据本发明实施例七的承载控制方法的场景图;
图 8示出根据本发明实施例八的承载控制系统的结构框图;
图 9示出根据本发明实施例九的承载控制系统的结构框图;
图 10示出根据本发明实施例十的承载控制系统的结构框图;
图 11示出根据本发明实施例十一的承载控制系统的结构框图; 图 12a~12c示出根据本发明实施例十二的新的 MME和 /或新的接入网接 入节点的结构框图;
图 13示出根据本发明实施例十三的承载控制系统的结构框图。 具体实施方式
以下将参考附图详细说明本发明的各种示例性实施例、 特征和方面。 附 图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施 例的各种方面, 但是除非特别指出, 不必按比例绘制附图。
在这里专用的词"示例性 "意为 "用作例子、 实施例或说明性"。 这里作为 "示例性"所说明的任何实施例不必解释为优于或好于其它实施例。
另外, 为了更好的说明本发明, 在下文的具体实施方式中给出了众多的 具体细节。 本领域技术人员应当理解, 没有某些具体细节, 本发明同样可以 实施。 在另外一些实例中, 对于本领域技术人员熟知的方法、 手段、 元件和 电路未作详细描述, 以便于凸显本发明的主旨。
实施例 1
图 1示出根据本发明实施例一的承载控制方法的流程图。 如图 1所示, 该 承载控制方法主要可以包括:
歩骤 100、 在终端设备 UE接入网络的情况下, 建立分组数据网络 PDN连 接。
具体地, 在 UE接入网络的过程中, 首先需要进行入网注册, 并通过获 取 UE与网络之间的签约信息对该 UE进行鉴权, 这些签约信息可以保存在归 属用户服务器(英文: Home Subscriber Server, 缩写: HSS ) 中, UE的上述 入网注册过程即为附着流程。 经过附着流程之后, 该 UE已接入网络, 但是 为了与网络之间可以进行数据传输即完成相应的用户业务,还需要通过添加 PDN策略会话建立 UE与网络之间的 PDN连接。其中, HSS是保存用户签约信 息的数据库, 签约信息可以包括用户与运营商约定的用户的分类、 业务使用 权限, 服务质量等级, 计费方式等。
歩骤 120、 根据所获取的服务质量 QoS信息在所述 UE与接入网接入节点 之间的空口承载上区分并传输 UE的业务数据流, 通过所述接入网接入节点 与核心网网关之间的传输隧道传输所述业务数据流, 或通过所述接入网接入 节点直接将所述业务数据流发送至分组数据网络。
具体地, 在建立 PDN连接之后, UE可以通过该 PDN连接从网络中的策 略和计费规则功能决策点(Policy and Charing Rule Function, PCRF)接收到 QoS信息。 根据 QoS信息的要求可以区分 UE的业务数据流。 进一歩地, 上述 PDN连接粒度的数据通路可以包括空口承载部分和传输隧道部分。空口承载 为 UE与接入网接入节点 (如 eNodeB ) 之间的传输通道, 可以按照接收到的 QoS信息的要求区分 UE的业务数据流, 并将符合不同 QoS信息要求的业务数 据流分别匹配到不同的空口承载上,接入网接入节点可以分别为不同的空口 承载分配空口资源, 以用于传输 UE的业务数据流。 传输隧道部分为接入网 接入节点与 PCRF之间的传输隧道, 可以用来传输接入网接入节点与 PCRF之 间的业务数据流, 不需要按照 QoS信息要求区分业务数据流。 或者在接入网 接入节点已经接入网络并具有网络接口的情况下,接入网接入节点可以将通 过空口承载从 UE接收到的业务数据流直接发送至分组数据网络。
在一种可能的实现方式中, 接入网接入节点与核心网网关之间建立的 PDN连接粒度的数据通路承载 UE的所有该 PDN连接的上下行数据。 在 UE转 入空闲态即没有业务数据流需要传输的情况下, 该数据通路可以删除并释放 各个网络节点中保存的该 UE的上下文信息, 以提高网络的资源利用率, 此 外, 该数据通路也可以保留; 当 UE在其他接入网接入节点发起位置更新时, 原接入网接入节点与核心网网关之间的该数据通路可以删除; 当 UE发起业 务请求即有业务数据流需要传输的情况下, 可以恢复 UE发起业务请求的接 入网接入节点与核心网网关之间的该 UE的 PDN连接粒度的数据通路。
在一种可能的实现方式中,上述网络架构中,接入网接入节点可以为 LTE 中的演进型基站(Evolved NodeB , eNB )、通用移动通信系统(Universal Mobile Telecommunications System, UMTS ) 中的基站(NodeB )和无线网络控制器
(Radio Network Controller, RNC)、 全球移动通信系统 (Global System for Mobile Communications, GSM) 中的基站收发台 (Base Transceiver Station, BTS ) 和基站控制器 (Base Station Controller, BSC), 统一无线网络控制器
(Single Radio Controller, SRC) , 其中 SRC是一种集成多制式无线网络控制 器或协调器的接入网设备;接入网可以包括 LTE、 UMTS、码分多址接入(Code Division Multiple Access, CDMA) 2000、 GSM等接入技术类型的网络, 其 中 LTE属于第四代移动通信 (the 4th Generation Mobile Communication, 4G) 技术, UMTS、 CDMA2000属于第三代移动通信 (the 3rd Generation Mobile Communication, 3G) 技术, GSM属于第二代移动通信 (the 2nd Generation Mobile Communication, 2G) 技术; 核心网网关可以为通用分组无线服务技 术 (General Packet Radio Service , GPRS ) 核心网的网关 GPRS支持节点
(Gateway GPRS Support Node, GGSN)、 4G核心网 ( Evolved Packet Core, EPC) 的服务网关(Serving Gateway, SGW)和 PGW; 移动性管理实体可以 为 LTE的移动性管理实体(Mobility Management Entity, MME)、UMTS和 GSM 的服务 GPRS支持节点(Serving GPRS Support Node, SGSN)、与接入技术无 关的核心网控制器 (Core network Controller, CC)。当 SGSN有用户面时, SGSN 既可以是移动性管理实体也可以是核心网网关。
本实施例的承载控制方法, 通过对 UE与网络之间的承载进行分层管理, 简化了 MME的功能;接入网接入节点根据 QoS信息控制业务数据流在空口承 载上的传输, 增加了接入网接入节点对空口资源状况的管理, 进一歩地, 提 升了网络资源管理效率和容量, 降低了功耗, 为移动网络进一歩演进提供了 基础。
实施例 2
图 2示出根据本发明实施例二的承载控制方法的流程图。 图 2中标号与图 1相同的歩骤具有相同的功能, 为简明起见, 省略对这些歩骤的详细说明。
如图 2所示, 图 2所示的承载控制方法与图 1所示承载控制方法的主要区 别在于, 歩骤 100具体可以包括:
歩骤 200、在所述接入网接入节点与策略和计费规则功能决策点 PCRF之 间建立 PDN连接策略会话。
进一歩地, 歩骤 200可以为以下两种可能的实现方式中任一种实现方式: 方式一、 在所述接入网接入节点与 PCRF之间在接入网控制会话中添加 所述 PDN连接策略会话; 或
方式二、 在所述接入网接入节点与移动性管理实体 MME之间和 /或所述 MME与所述 PCRF之间分别添加所述 PDN连接策略会话。
具体地, 一方面, 在 UE完成附着流程之后, 网络中的各个节点如接入 网接入节点或 MME可以保存 UE的标识信息。 另一方面, 在建立 PDN连接的 过程中, 网络中的各个节点如接入网接入节点或 MME还可以保存 PDN的标 识信息。 通过上述保存的 UE的标识信息和 PDN的标识信息, 接入网接入节 点或 MME可以在网络中发现对应的 PCRF, 并发起建立 PDN连接策略会话。 如果该 UE的所有 PDN连接都被一个 PCRF服务, 则可以采用方式一, 在接入 网接入节点与 PCRF之间的接入网控制会话中添加 PDN连接策略会话; 如果 该 UE的所有 PDN连接分别被多个 PCRF服务, 则可以采用方式二, 在接入网 接入节点与 MME之间添加该 PDN连接策略会话, 由 MME与 PCRF建立 MME 与 PCRF之间的该 PDN连接策略会话。
在一种可能的实现方式中, 在歩骤 120之前, 该承载控制方法还可以包 括: 歩骤 210、 所述接入网接入节点接收所述 PCRF发送的 QoS信息, 或, 所 述接入网接入节点通过所述 MME接收所述 PCRF发送的所述 QoS信息;
歩骤 220、 所述接入网接入节点根据所述 QoS信息与所述 UE之间进行无 线资源控制 RRC连接重配置, 为所述空口承载分配空口资源。
具体地, 接入网接入节点可以通过上述传输通道直接从 PCRF接收 QoS 信息, 也可以通过 MME从 PCRF接收 QoS信息, 用于后续接入网接入节点可 以根据该 QoS信息区分 UE的业务数据流, 完成与 UE之间的无线资源控制 (Radio Resource Control, RRC) 连接重配置。
进一歩地, 接入网接入节点接收到 QoS信息之后, 可以根据 QoS信息的 要求, 区分 UE的业务数据流, 并建立满足不同 QoS信息的不同业务数据流与 空口承载之间的映射关系, 为不同的空口承载分配空口资源即在不同空口承 载上传输不同业务数据流时所使用的空口资源。
歩骤 220还可以包括:
歩骤 221、 所述接入网接入节点向所述 UE发送 RRC连接重配置消息, 为 所述空口承载分配所述空口资源;
歩骤 222、 所述接入网接入节点从所述 UE接收 RRC连接重配置成功响 应。
其中, RRC连接重配置消息中包括所述 UE的业务数据流与所述空口承 载的映射关系和所述空口资源的标识, 该空口资源的标识用于指示所述 UE 在所述空口承载上传输所述业务数据流时所使用的空口资源。接入网接入节 点可以从 UE接收 RRC连接重配置成功响应, 完成 RRC连接重配置过程。
在一种可能的实现方式中, 接入网接入节点还可以通过自身识别的 UE 的上下行数据流得到业务数据流的 QoS信息 (如带宽、 优先级、 延时和丢包 率等)。 进一歩地, 如果该 UE通过上述数据通道进行过业务数据流的传输, 那么网络中的节点 (如 MME) 中可以保存该 UE的上下文, 包括上下文中的 业务数据流和 QoS信息的映射关系。 在这种情况下, 接入网接入节点可以从 MME获得上下文中的业务数据流和 QoS信息的映射关系, 并对 UE进行上下 行资源 (特别是空口无线资源) 的分配, 映射到空口承载, 并通过 RRC连接 重配置消息向 UE发送业务数据流与空口承载的映射关系以及 UE在空口承载 上传输上述业务数据流时所使用的空口资源。
在一种可能的实现方式中, 核心网网关可以包括服务网关 SGW和 /或分 组数据网关 PGW, 在歩骤 120之前, 该承载控制方法还可以包括:
歩骤 230、 所述 MME接收所述 UE发送的 PDN连接建立请求, 所述 PDN 连接建立请求中携带 PDN标识接入点名称 APN。
具体地, UE通过某种接入技术(例如 LTE、 WCDMA、 GSM等)与接入 网接入节点之间建立空口连接后, 可以在该空口连接上向 MME发送 PDN连 接建立请求, 该 PDN连接建立请求中可以携带 PDN标识接入点名称 (英文: Access Point Name, 缩写: APN), APN可以用来指示 UE使用的 PDN网络。 可选的, 如果 UE没有完成附着流程, 该 PDN连接建立请求还可以是附着请 求, MME可以根据 HSS中保存的 UE签约信息对该 UE进行鉴权, 以确保网络 的安全性,签约信息的具体示例可以参见本发明实施例一中承载控制方法的 相关描述。
歩骤 240、所述 MME根据所述 APN和所述 UE的签约信息选择所述核心网 网关;
歩骤 250、 所述 MME向所述核心网网关发送创建会话请求, 所述创建会 话请求中携带所述服务网关为所述 PDN连接分配的第一通道信息,所述第一 通道信息包括所述接入网接入节点为所述 UE分配的第一通道的 IP地址和端 口号,所述第一通道信息用于建立所述服务网关和所述分组数据网关之间的 所述第一通道;
歩骤 260、 所述核心网网关向所述 MME返回创建会话响应, 所述创建会 话响应中携带所述分组数据网关为所述 PDN连接分配的第二通道信息,所述 第二通道信息包括所述核心网网关为所述 UE分配的第二通道的 IP地址和端 口号,所述第二通道信息用于建立所述分组数据网关和所述服务网关之间的 所述第二通道;
其中, 所述第一通道和所述第二通道构成所述传输隧道, 用于在所述接 入网接入节点与所述核心网网关之间传输所述业务数据流。
具体地, MME可以根据接收到的 APN和 UE的签约信息, 为 UE选择核心 网网关, 核心网网关可以包括分组数据网关和服务网关, 并向服务网关发送 创建会话请求, 再通过服务网关向分组数据网关发送该创建会话请求, 该创 建会话请求中可以携带服务网关为需要建立的 PDN连接分配的第一通道信 息, 该第一通道信息中可以包括接入网接入节点为 UE分配的第一通道的 IP 地址和端口号等,用于建立该 PDN连接中服务网关和分组数据网关之间的第 一通道。 这样, 分组数据网关与服务网关之间的第一通道已经建立, 在一种 可能的实现方式中, 分组数据网关此时可以向服务网关发送 UE在该 PDN连 接上传输的下行数据, 这些下行数据可以在服务网关中暂时缓存。 分组数据 网关向服务网关发送创建会话响应, 该创建会话响应中可以携带分组数据网 关为该 PDN连接分配的第二通道信息, 该第一通道信息中可以包括所述核心 网网关为 UE分配的第二通道的 IP地址和端口号等,用于建立该 PDN连接中分 组数据网关和服务网关之间的第二通道。服务网关接收到该创建会话响应之 后, 可以向 MME发送该创建会话响应, 该创建会话响应中可以携带服务网 关为该 PDN连接分配的第一通道信息。 MME接收到该创建会话响应之后可 以向接入网接入节点发送 PDN连接通道建立请求以及下行通道信息, 该下行 通道信息可以包括为 UE分配的 IP地址和端口号等, 用于建立 MME与接入网 接入节点之间的下行通道。 接入网接入节点向 MME反馈 PDN连接通道建立 响应,在 PDN连接通道建立响应中可以携带接入网接入节点为该 PDN连接分 配的上行通道信息, 该上行通道信息可以包括为 UE分配的 IP地址和端口号 等, 用于建立 MME与接入网接入节点之间的上行通道。 UE向 MME反馈 PDN 连接建立完成, 这时 UE可以向分组数据网关发送上行数据, 并且在服务网 关中可能缓存的下行数据此时也可以发往 UE。
需要说明的是, 在建立 PDN连接的过程中, 可以在 UE与接入网接入节 点之间建立初始的空口承载, 该初始的空口承载可以包括专用空口承载。 在 接入网接入节点接收到 QoS信息之后, 可以根据 QoS信息的要求增加或者修 改专用空口承载, 该专用空口承载是按照 QoS信息中调度优先级、 时延、 丢 包率、 带宽要求中的至少一种建立的, 所述专用空口承载上携带所述业务数 据流与所述专用空口承载的匹配信息。
本实施例的承载控制方法, 通过对 UE与网络之间的承载进行分层管理, 简化了 MME的功能;接入网接入节点根据 QoS信息控制业务数据流在空口承 载上的传输, 增加了接入网接入节点对空口资源状况的管理, 进一歩地, 提 升了网络资源管理效率和容量, 降低了功耗, 为移动网络进一歩演进提供了 基础。
实施例 3
图 3示出根据本发明实施例三的承载控制方法的场景图。 如图 3所示, 在 PDN连接建立完成后, UE的业务数据流可能会发生变化, 例如不同时间 UE 的业务数据流可能不相同, 接入网接入节点可以对 UE的业务进行业务识别, 检测 UE的业务数据流。 在此场景中, 该承载控制方法可以包括:
歩骤 300、 所述接入网接入节点将业务检测报告发送至所述 PCRF, 或, 所述接入网接入节点将业务检测报告通过所述 MME发送至所述 PCRF;
歩骤 310、所述接入网接入节点接收所述 PCRF返回的所述 QoS信息,或, 所述接入网接入节点通过所述 MME接收所述 PCRF返回的所述 QoS信息; 歩骤 320、 所述接入网接入节点根据所述 QoS信息将所述 UE的业务数据 流分配到所述空口承载上。
具体地, 在接入网接入节点的业务识别功能检测到 UE的业务数据流的 情况下, 可以生成业务流检测报告, 并将该业务流检测报告上报给 PCRF。 参见本发明实施例二的承载控制方法中建立 PDN连接策略会话的相关描述, 在一种可能的实现方式中,接入网接入节点可以直接将业务检测报告发送至 PCRF, 在另一种可能的实现方式中, 接入网接入节点可以通过 MME将业务 检测报告发送至 PCRF。 PCRF接收到业务流检测报告之后, 可以向接入网接 入节点提供 QoS信息。 参见本发明实施例二的承载控制方法中建立 PDN连接 策略会话的相关描述, 在一种可能的实现方式中, 接入网接入节点可以直接 接收 PCRF返回的 QoS信息,在另一种可能的实现方式中,接入网接入节点可 以通过 MME接收 PCRF返回的 QoS信息。
在一种可能的实现方式中, 网络中的其他节点也可以具备业务识别的功 能, 在网络中的其他节点通过业务识别检测到 UE的业务数据流的情况下, 同样可以向 PCRF发送业务流检测报告, 使得 PCRF可以向接入网接入节点提 供 QoS信息, 以用于后续进行业务数据流与空口承载的匹配。
接入网接入节点可以接收到 PCRF发送的 QoS信息, 并根据该 QoS信息的 要求将 UE的业务数据流匹配到不同的空口承载上,即将具有相同 QoS信息要 求的业务数据流匹配到同一空口承载上, 建立业务数据流、 QoS信息和空口 承载之间的映射关系。 在一种可能的实现方式中, 针对某种特定的 QoS信息 要求, 可能需要在接入网接入节点与 UE之间增加或者修改专用空口承载。
业务数据流、 QoS信息和空口承载之间的映射关系建立完成后, 接入网 接入节点可以在与 UE的 RRC连接重配置中, 通过 RRC连接重配置消息将上 述映射关系发送至 UE, 其中, RRC连接重配置消息中可以包括 UE的业务数 据流与空口承载之间的映射关系, 还可以包括接入网接入节点为 UE分配的 空口资源的标识, 该空口资源的标识可以用来指示 UE使用哪种空口资源在 空口承载上传输 UE的业务数据流。 这样, UE的业务数据流可以在匹配的空 口承载上进行传输, 这时接入网接入节点可以向 PCRF返回 QoS信息执行应 答。
本实施例的承载控制方法, 通过对 UE与网络之间的承载进行分层管理, 简化了 MME的功能;接入网接入节点根据 QoS信息控制业务数据流在空口承 载上的传输, 增加了接入网接入节点对空口资源状况的管理, 进一歩地, 提 升了网络资源管理效率和容量, 降低了功耗, 为移动网络进一歩演进提供了 基础。
实施例 4
图 4示出根据本发明实施例四的承载控制方法的场景图。
在 UE与网络之间建立 PDN连接之后, 若检测到 UE的业务数据流, 接入 网接入节点可以从 PCRF接收到 QoS信息, 并根据 QoS信息要求将业务数据流 匹配到空口承载中, 进行上下行数据的传输。 在上述过程中, 接入网接入节 点需要为 UE分配空口资源, 并且在网络各个节点中可以保存与该 UE相关的 上下文, 例如业务数据流信息、 QoS信息等。 在 UE进行业务数据流传输的过 程中, 还会在网络各个节点中产生中间数据, 占用网络各个节点的内存、 网 络各个节点之间的端口等。 但是, UE可能在某一段时间内没有业务数据流 需要传输, 即 UE处于空闲态, 在这种情况下, 为了节省网络资源、 减轻网 络各个节点的负担、提升网络各个节点的存储能力,可以对处于空闲态的 UE 占用的空口资源、 网络各个节点中保存的该 UE的上下文等进行释放。 如图 4 所示, 释放过程可以包括以下两种方式:
方式一: 在所述接入网接入节点检测到第一预设时间长度内所述 UE没 有业务数据流的情况下, 释放所述接入网接入节点与所述 UE之间的第一连 接信息, 并将所述 UE的上下文存储在所述接入网接入节点中, 将所述 UE的 下行数据缓存在所述接入网接入节点中, 其中, 所述第一连接信息为所述 UE的业务数据流与所述空口承载的映 射关系和所述接入网接入节点为所述 UE分配的所述空口资源中的至少一 个。
具体地, 如果接入网接入节点检测到第一预设时间长度 (如 2小时) 内 UE没有业务数据流需要传输即处于空闲态, 或者 UE的无活动定时器超时, 则可以释放 UE的第一连接信息, 即释放接入网接入节点 UE的业务数据流与 空口承载的映射关系和接入网接入节点为 UE分配的空口资源中的至少一 个。
接入网接入节点可以向 UE发送 RRC连接释放请求, 用来指示释放接入 网接入节点与 UE之间的第一连接信息。 此时, 接入网接入节点与服务网关 之间的该 PDN连接通道没有释放, 有下行数据到来时, 可以在分组数据网关 发给接入网接入节点之后, 在接入网接入节点缓存, 并用于后续触发对 UE 的寻呼。
方式二:在所述接入网接入节点检测到超过所述第一预设时间长度所述 UE没有业务数据流的情况下, 释放所述 RRC连接和所述接入网接入节点与 所述服务网关之间的第二连接信息, 并将所述 UE的上下文存储在所述 MME 内, 将所述 UE的下行数据缓存在所述服务网关中,
其中,所述第二连接信息为所述接入网接入节点与所述服务网关之间传 输所述业务数据流产生的中间数据以及占用的内存、 端口、 计算资源中的至 少一个; 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所述 UE占 用的所述空口资源以及所述 UE的位置区中的至少一个。
具体地, 如果接入网接入节点检测到超过第一预设时间长度(如 2小时) 内 UE没有业务数据流需要传输即处于空闲态,或者 UE的无活动定时器超时, 则可以释放 UE的 RRC连接和接入网接入节点与服务网关之间的第二连接信 息。 其中, 该第二连接信息可以包括接入网接入节点与服务网关之间传输业 务数据流产生的中间数据以及占用的内存、 端口、 资源等; UE的上下文可 以包括 UE的业务数据流、 QoS信息、 UE占用的空口资源以及 UE的位置区中 的至少一个。
接入网接入节点可以向 MME发送 UE接入网上下文释放请求, 用来指示 将网络各个节点中保存的该 UE的接入网上下文进行释放, 使得网络各个节 点可以具有更大的存储容量。 MME接收到 UE接入网上下文释放请求后, 可 以向核心网网关发送释放通道请求, 用来指示核心网网关释放该 UE的第二 连接信息。 核心网网关接收到释放通道请求之后, 可以向 MME返回释放通 道响应, MME可以向接入网接入节点返回 UE接入网上下文释放命令, 用于 指示接入网接入节点释放 UE的第二连接信息。
此时, 接入网接入节点与服务网关之间的该 PDN连接通道已经释放, 有 下行数据到来时,可以在分组数据网关发给服务网关之后,在服务网关缓存, 并用于后续触发对 UE的寻呼。
需要说明的是, 在接入网接入节点向 MME发送 UE接入网上下文释放请 求和 UE接入网上下文释放完成时,可以将 UE的上下文例如业务数据流、 QoS 信息等存储到 MME中。
在一种可能的实现方式中, 为了减少接入网接入节点的处理事务、 节省 接入网接入节点的存储资源, 可以分两级 UE无活动定时器, 在较短时间内 UE无活动, 则接入网接入节点可以按照方式一释放第一连接信息, 较长时 间内 UE无活动, 则接入网接入节点可以按照方式二释放 RRC连接和第二 连接信息。
本实施例的承载控制方法, 通过在检测到 UE处于空闲态时释放第一连 接信息或者 RRC连接与第二连接信息,可以提升网络资源管理效率和容量, 降低功耗; 进一歩地, 采用两种不同的释放方式, 可以实现对 UE与网络之 间的承载分层管理, 简化了 MME的功能, 增加了接入网接入节点对空口资 源状况的管理。
实施例 5
图 5示出根据本发明实施例五的承载控制方法的场景图。 如图 5所示, 处于空闲态的 UE可以重新产生新的业务数据流,这时根据 UE的业务请求, 可以重新找回 UE的接入网上下文并恢复 UE与核心网网关之间的连接。 针 对本发明实施例四中承载控制方法的两种释放方式, UE 的业务请求流程也 可以按照以下两种方式进行。
方式一: 所述接入网接入节点接收所述 UE发送的恢复请求; 所述接入 网接入节点根据存储的所述 UE的上下文,将所述新业务数据流根据所述 QoS 信息分配到所述空口承载上; 所述接入网接入节点为所述空口承载分配所述 空口资源, 以使所述新业务数据流在所述空口承载上传输。
具体地, 参见本发明实施例四中承载控制方法的释放方式一, 接入网接 入节点可以存储 UE接入网上下文, 并保留了接入网接入节点与服务网关之 间的 PDN连接通道, 则 UE可以不再向 MME发送业务请求, 只需要在 UE与接 入网接入节点之间恢复 RRC连接。接入网接入节点可以根据接入网接入节点 中存储的 UE接入网上下文中的 QoS信息要求将 UE的新的业务数据流匹配到 空口承载上。 参见本发明实施例二中承载控制方法的相关描述, 在 RRC连接 重配置过程中, 可能需要在 UE与接入网接入节点之间建立或者修改专用空 口承载, 完成 RRC连接重配置之后, UE可以在相应的空口承载上采用相应 的空口资源进行业务数据流的传输。
方式二: 在方式一中各个歩骤之前, 还可以包括以下歩骤:
所述接入网接入节点接收所述 MME发送的初始 UE接入网上下文建立请 求,所述初始 UE接入网上下文建立请求中携带所述 MME存储的所述 UE的上 下文和所述服务网关为所述 PDN连接分配的上行通道信息,所述上行通道信 息包括所述 UE的 IP地址和端口号,以使得在所述接入网接入节点和所述服务 网关之间传输所述 UE的上行数据。
向所述 MME返回初始 UE接入网上下文建立响应,所述初始 UE接入网上 下文建立响应中携带所述接入网接入节点为所述 PDN连接分配的下行通道 信息,所述上行通道信息包括所述 UE的 IP地址和端口号, 以使得在所述接入 网接入节点和所述服务网关之间传输所述 UE的下行数据。
具体地, UE可以向 MME发送业务请求。 可选的, MME可以根据 HSS中 保存的该 UE的签约信息对 UE进行鉴权, 以确保网络的安全性。 接收到 UE的 业务请求之后, MME可以向接入网接入节点发送初始 UE接入网上下文建立 请求, 在初始 UE接入网上下文建立请求中可以携带本发明实施例四中执行 空口连接释放流程之后存储在 MME中的该 UE的上下文例如业务流信息、 QoS信息等, 还可以携带服务网关为 PDN连接分配的下行通道信息。
进一歩地, 接入网接入节点可以根据 UE上下文中的 QoS信息要求将 UE 的新的业务数据流匹配到空口承载上。参见本发明实施例二中承载控制方法 的相关描述, 在 RRC连接重配置过程中, 可能需要在 UE与接入网接入节点 之间建立或者修改专用空口承载, 完成 RRC连接重配置之后, UE可以发送 上行数据。接入网接入节点可以向 MME发送初始 UE接入网上下文建立响应, 在初始 UE接入网上下文建立响应中可以携带 MME为 PDN连接分配的下行通 道信息。 此时, 缓存在服务网关中的下行数据可以通过 MME发往 UE。
本实施例的承载控制方法, 接收到 UE的业务请求之后, 根据不同的释 放方式恢复 UE与核心网网关之间的连接, 可以提升网络资源管理效率和容 量, 降低功耗; 进一歩地, 实现对 UE与网络之间的承载分层管理, 简化了 MME的功能, 增加了接入网接入节点对空口资源状况的管理。
实施例 6
图 6a~6c示出根据本发明实施例六的承载控制方法的流程图。 如图 6a~6c 所示, 在上述网络架构中, 对 UE的位置区管理可以分为两种方式。 具体地, 在 UE使用的过程中, 可能会发生位置的变化, 这样, 在网络中, 需要对 UE 的位置区进行管理, 管理方式可以包括以下两种:
方式一: 位置区管理完全由 MME进行;
方式二: 接入网接入节点管理接入网接入节点内的寻呼区, MME管理 UE在不同接入网接入节点之间移动时的节点标识。
针对 UE所在网络的接入网接入节点、 MME、服务网关等网络各个节点, UE的位置变化也可以有多种变化情况。 例如, UE完全从原接入网接入节点 移动到不在原 MME控制下的接入网接入节点, 且服务网关同时发生变化。 如果原接入网接入节点、 MME或服务网关中的任意一项或者多项没有发生 变化, 位置更新流程可以变得简化。
在一种可能的实现方式中,如图 6a所示,若所述 UE的位置区由所述 MME 管理, 所述 UE的上下文存储在所述 MME中, 在所述 UE的位置发生改变时, 该承载控制方法可以包括:
歩骤 610、 所述 MME向所述接入网接入节点发送上下文释放命令, 以指 示所述接入网接入节点释放所述 UE的上下文, 将所述 UE的上下文转交至所 述 MME,
其中, 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所 述 UE的业务数据流与所述空口承载的映射关系、 所述 UE占用的空口资源以 及所述 UE的位置区中的至少一个;
歩骤 611、 新的 MME从所述 MME中取回所述 UE的上下文;
歩骤 612、 所述新的 MME根据所述 UE的位置变化更新所述 UE注册的位 置区。
具体地, 本发明中, 由于接入网接入节点分管了部分 UE的事务, 如根 据 QoS信息将 UE的业务数据流匹配到不同的空口承载上进行传输, UE的上 下文中除了 MME管理 UE时产生的上下文之外, 还包括接入网接入节点管理 UE时产生的上下文。 在 UE发送位置变化时, 需要将这部分上下文从接入网 接入节点中取出。
在一种可能的实现方式中, 如图 6b所示, 所述 UE的位置区由所述接入 网接入节点管理, 所述 MME管理所述 UE在不同所述接入网接入节点之间移 动时的节点标识, 在所述 UE的位置发生改变时, 该承载控制方法还可以包 括:
歩骤 620、 所述 UE将所述 MME的标识发送至新的接入网接入节点; 歩骤 621、所述新的接入网接入节点将自身的标识、所述 MME为所述 UE 分配的临时标识、 所述 MME的标识发送至新的 MME;
歩骤 622、 所述新的 MME判断是否有所述 UE注册;
歩骤 623、若有,所述新的 MME通过所述 UE的上下文査找所述接入网接 入节点的标识, 并根据所述接入网接入节点的标识通知所述接入网接入节点 删除所述 UE注册的位置区;
歩骤 624、若没有,所述新的 MME根据接收到的所述 MME的标识找到所 述 MME, 并在所述 MME中査找注册的所述 UE的上下文, 通过所述 UE的上 下文査找所述接入网接入节点的标识, 并根据所述接入网接入节点的标识通 知所述接入网接入节点删除所述 UE注册的位置区;
歩骤 625、所述新的接入网接入节点根据所述 UE的位置变化更新所述 UE 注册的位置区。
举例而言, 如果接入网接入节点 1可以在 MME1中完成注册, UE通过接 入网接入节点 1接入网络, 进行业务数据流的传输, MME1可以为 UE分配一 个临时标识, 同时 UE可以获取到 MME1的标识。 在 UE发送位置变化、 移动 到接入网接入节点 2时,其中接入网接入节点 2可以在 MME2中完成注册, UE 可以向接入网接入节点 2发送 MME1的标识, 接入网接入节点 2将自身的标 识、 MMEl为 UE分配的临时标识、 MMEl的标识发送至 MME2。 MME2接收 到之后, 可以判断 UE是否在 MME2内注册。 如果是, 说明 MME2自身可以保 存 UE的上下文, 并可以从中査找到接入网接入节点 1的标识, 通过此标识通 知对应的接入网接入节点 1删除该 UE注册的位置区; 如果不是, MME2可以 根据接收到 MME1的标识找到对应的 MME1 , 并从 MME1中査找注册的该 UE 的上下文, 通过 UE的上下文査找接入网接入节点 1的标识, 并根据接入网接 入节点 1的标识通知对应的接入网接入节点 1删除 UE注册的位置区。 最后, 由接入网接入节点 2根据 UE的位置变化更新 UE注册的位置区, 即重新为 UE 注册位置区。
在一种可能的实现方式中,如图 6c所示,若所述 UE的位置区由所述接入 网接入节点管理, 所述 MME管理所述 UE在不同所述接入网接入节点之间移 动时的节点标识, 在所述 UE的位置发生改变时, 该承载控制方法还可以包 括:
歩骤 640、 所述 UE将所述 MME的标识发送至新的接入网接入节点; 歩骤 641、所述新的接入网接入节点根据所述 MME的标识判断所述 MME 是否是所述新的接入网接入节点注册的所述新的 MME;
歩骤 642、 若是, 所述新的接入网接入节点将自身的标识、 所述 MME为 所述 UE分配的临时标识发送至新的 MME, 所述新的 MME通过所述 UE的上 下文査找所述接入网接入节点的标识, 并根据所述接入网接入节点的标识通 知所述接入网接入节点删除所述 UE注册的位置区;
歩骤 643、 若不是, 所述新的接入网接入节点将自身的标识、 所述 MME 为所述 UE分配的临时标识、 所述 MME的标识发送至新的 MME, 所述新的 MME根据接收到的所述 MME的标识找到所述 MME, 并在所述 MME中査找 注册的所述 UE的上下文, 通过所述 UE的上下文査找所述接入网接入节点的 标识, 并根据所述接入网接入节点的标识通知所述接入网接入节点删除所述 UE注册的位置区;
歩骤 644、所述新的接入网接入节点根据所述 UE的位置变化更新所述 UE 注册的位置区。
具体地, 与上述可能的实现方式不同的是, 接入网接入节点可以先做一 次判断, 根据判断结果决定是否需要将 MME的标识发送至新的 MME。
参见上述示例进行说明, UE可以向接入网接入节点 2发送 MME1的标识, 接入网接入节点 2可以根据接收到的 MME1的标识判断 MME1是否是接入网 接入节点 2注册的 MME。如果是,接入网接入节点 2可以将自身的标识、 MME1 为 UE分配的临时标识发送至 MME2。 MME2接收到之后, 可以通过自身保存 的 UE的上下文, 査找到接入网接入节点 1的标识, 通过此标识通知对应的接 入网接入节点 1删除该 UE注册的位置区; 如果不是, 接入网接入节点 2可以 将自身的标识、 MME1为 UE分配的临时标识、 MME1的标识发送至 MME2, MME2根据接收到 MME1的标识找到对应的 MME1, 并从 MME1中査找注册 的该 UE的上下文, 通过 UE的上下文査找接入网接入节点 1的标识, 并根据接 入网接入节点 1的标识通知对应的接入网接入节点 1删除 UE注册的位置区。 最后, 由接入网接入节点 2根据 UE的位置变化更新 UE注册的位置区, 即重新 为 UE注册位置区。
在一种可能的实现方式中, 当所述 UE在较长时间内处于空闲态即没有 业务数据流需要传输的情况下, 若所述 UE的上下文存储在所述 MME中, 所 述 UE的位置区由所述接入网接入节点管理,所述 MME管理所述 UE在不同所 述接入网接入节点之间移动时的节点标识, 当 UE的位置方式改变即发起位 置更新或具有新的业务数据流时, 接入网接入节点可以从所述 MME取回 UE 的上下文, 该上下文中可以包括接入网接入节点管理所述 UE的移动性上下 文, 即原来为 UE分配的位置区, 处理位置更新请求或根据所述 UE所处的位 置为 UE重新分配位置区。 举例而言, 若 UE完全从原接入网接入节点移动到不在原 MME控制下的 接入网接入节点, 且服务网关同时发生变化, 例如, 接入网接入节点由接入 网接入节点 2变为接入网接入节点 1, MME由 MME2变为 MME1 , 服务网关由 服务网关 2变为服务网关 1, 位置更新流程中, 可以采用方式一对 UE位置区 进行管理。 UE可以向 MME1发送位置更新消息。 MME1可以创建 MME1与服 务网关 1和分组数据网关之间的 PDN连接通道; 在 HSS中更新 UE的位置区; 取消 MME2原来在 HSS中注册的该 UE的位置区; 若 MME2存储了 UE的上下 文, 则 MME1可以从 MME2得到 UE的上下文, 若接入网接入节点 2存储了 UE 的上下文, 需要 MME2从接入网接入节点 2取回 UE的上下文, 并转交给 MME1; 删除 MME2与服务网关 2之间的 PDN会话连接。
在一种可能的实现方式中, 针对上述情况, 也可以采用方式二对 UE位 置区进行管理。 UE可以向接入网接入节点 1寻呼区更新, 接入网接入节点 1 向 MME1发起接入节点更新, 在这个过程中, 可以携带接入网接入节点的节 点标识, MME1可以通过管理节点标识, 更新接入网接入节点。 接入网接入 节点 1可以管理 UE的寻呼区更新。对于 UE上下文和 PDN连接通道的管理, 可 以参见本实施例中上述承载控制方法的相关描述。
在一种可能的实现方式中, 若 UE位置区更新时, 服务网关没有发生变 化, 与本实施例中上述承载控制方法的相关描述, 不需要对 MME与核心网 网关之间的 PDN连接通道进行更新, 流程可以得到简化。
在一种可能的实现方式中, 若 UE位置区更新时, MME没有发生变化, 与本实施例中上述承载控制方法的相关描述, 不需要在 MME之间进行 UE的 上下文的转交, 并且在 HSS中只需要更新 UE的位置注册, 不需要进行位置注 册的删除。 若 MME存储了 UE的上下文, 可以直接使用; 若接入网接入节点 存储了 UE的上下文, MME可以找到相应的接入网接入节点并取回 UE的上下 文, 进行后续的管理。 需要说明的是, 本实施例中所描述的上述实施方式只是该承载控制方法 部分可能的实现方式, 但不限于此。 根据 UE位置更新的具体情况、 UE上下 文的存储位置以及对 UE位置区的管理方式, 本实施例的承载控制方法还可 以有很多种可能的实现方式。
本实施例的承载控制方法, 通过对 UE与网络之间的承载进行分层管理, 简化了 MME的功能,增加了接入网接入节点对 UE上下文的管理;进一歩地, 提升了网络资源管理效率和容量, 降低了功耗, 为移动网络进一歩演进提供 了基础。
实施例 7
图 7示出根据本发明实施例七的承载控制方法的场景图。 如图 7所示, 若 UE发生位置更新后, 产生新的业务数据流, 需要对 UE发起寻呼。
根据本发明上述实施例的相关描述, UE的下行数据可以缓存在接入网 接入节点中, 也可以缓存在服务网关中。 该寻呼流程可以包括: 所述接入网 接入节点接收所述 UE的下行数据, 或, 接收所述服务网关发送的下行数据, 并在所述 UE注册的位置区对所述 UE发起寻呼。
该寻呼流程还可以包括: 所述 MME从所述服务网关接收所述 UE的下行 数据, 向所述接入网接入节点发送寻呼消息, 以指示所述接入网接入节点向 所述 UE发起寻呼; 或所述接入网接入节点接收所述寻呼消息, 在所述 UE注 册的位置区对所述 UE发起寻呼。
具体地, 若采用本发明上述实施例的释放方式二, RRC连接和接入网接 入节点与服务网关之间的第二连接信息已经释放,服务网关接收到下行数据 时, 服务网关可以缓存下行数据并向 MME发送下行数据通知。 MME接收到 下行数据通知后, 可以向接入网接入节点发送寻呼消息, 指示接入网接入节 点寻呼该 UE。 如果对 UE位置区的管理采用本发明实施例六中承载控制方法 中的方式一, 完全在 MME进行, 则 MME可以在向接入网接入节点发送的寻 呼消息中携带该 UE注册的位置区, 接入网接入节点可以根据 UE注册的位置 区, 在相应小区寻呼该 UE; 如果对 UE位置区的管理采用本发明实施例六中 承载控制方法中的方式二,接入网接入节点内的寻呼区由接入网接入节点管 理, MME管理 UE在不同接入网接入节点之间移动时的节点标识。 则 MME 向接入网接入节点发送寻呼消息, 接入网接入节点可以根据 UE注册的寻呼 区, 在相应小区寻呼该 UE。
若采用本发明上述实施例的释放方式一, 仅释放 UE与接入网接入节点 之间的第一连接信息, 接入网接入节点可以接收到下行数据, 并缓存下行数 据。 如果对 UE位置区的管理采用本发明实施例六中承载控制方法中的方式 一, 完全在 MME进行, 则接入网接入节点可以根据 UE注册的位置区, 在相 应小区寻呼该 UE; 如果对 UE位置区的管理采用本发明实施例六中承载控制 方法中的方式二,接入网接入节点内的寻呼区由接入网接入节点管理, MME 管理 UE在不同接入网接入节点之间移动时的节点标识, 则接入网接入节点 可以根据 UE注册的寻呼区, 在相应小区寻呼该 UE。
本实施例的承载控制方法, 通过对 UE与网络之间的承载进行分层管理, 简化了 MME的功能,增加了接入网接入节点对 UE上下文的管理;进一歩地, 提升了网络资源管理效率和容量, 降低了功耗, 为移动网络进一歩演进提供 了基础。
实施例 8
图 8示出根据本发明实施例八的承载控制系统的结构框图。 如图 8所示, 该承载控制系统 800主要可以包括:
接入网接入节点 810;
移动性管理实体 820;
核心网网关 830;
建立模块 840, 用于在终端设备 UE接入网络的情况下, 建立分组数据网 络 PDN连接;
传输模块 850, 用于根据所获取的服务质量 QoS信息在所述 UE与接入网 接入节点之间的空口承载上区分并传输 UE的业务数据流, 通过所述接入网 接入节点与核心网网关之间的传输隧道传输所述业务数据流, 或通过所述接 入网接入节点直接将所述业务数据流发送至分组数据网络。
具体地, 在 UE接入网络的过程中, 首先需要进行入网注册, 并通过获 取 UE与网络之间的签约信息对该 UE进行鉴权, 这些签约信息可以保存在归 属用户服务器(英文: Home Subscriber Server, 缩写: HSS ) 中, UE的上述 入网注册过程即为附着流程。 经过附着流程之后, 该 UE已接入网络, 但是 为了与网络之间可以进行数据传输即完成相应的用户业务,还需要建立模块 840通过添加 PDN策略会话建立 UE与网络之间的 PDN连接。 其中, HSS是保 存用户签约信息的数据库,签约信息可以包括用户与运营商约定的用户的分 类、 业务使用权限, 服务质量等级, 计费方式等。
在建立模块 840建立 PDN连接之后, UE可以通过该 PDN连接从网络中的 策略和计费规则功能决策点(Policy and Charing Rule Function, PCRF)接收 到 QoS信息。 传输模块 850根据 QoS信息的要求可以区分 UE的业务数据流。 进一歩地,上述 PDN连接粒度的数据通路可以包括空口承载部分和传输隧道 部分。 空口承载为 UE与接入网接入节点 810 (如 eNodeB ) 之间的传输通道, 传输模块 850可以按照接收到的 QoS信息的要求区分 UE的业务数据流, 并将 符合不同 QoS信息要求的业务数据流分别匹配到不同的空口承载上, 接入网 接入节点 810可以分别为不同的空口承载分配空口资源, 以用于传输 UE的业 务数据流。 传输隧道部分为接入网接入节点 810与 PCRF之间的传输隧道, 可 以用来传输接入网接入节点与 PCRF之间的业务数据流,不需要按照 QoS信息 要求区分业务数据流。 或者在接入网接入节点 810已经接入网络并具有网络 接口的情况下,接入网接入节点 810可以通过传输模块 850将通过空口承载从 UE接收到的业务数据流直接发送至分组数据网络。
在一种可能的实现方式中,接入网接入节点 810与核心网网关 830之间建 立的 PDN连接粒度的数据通路承载 UE的所有该 PDN连接的上下行数据。 在 UE转入空闲态、 即没有业务数据流需要传输的情况下, 该数据通路可以删 除并释放各个网络节点中保存的该 UE的上下文信息, 以提高网络的资源利 用率, 此外, 该数据通路也可以保留; 当 UE在其他接入网接入节点发起位 置更新时, 原接入网接入节点 810与核心网网关 830之间的该数据通路可以删 除; 当 UE发起业务请求即有业务数据流需要传输的情况下, 可以恢复 UE发 起业务请求的接入网接入节点 810与核心网网关 830之间的该 UE的 PDN连接 粒度的数据通路。
在一种可能的实现方式中, 上述系统中, 接入网接入节点 810、 核心网 网关 830以及移动性管理实体 820的具体示例可以参见本发明实施例一中承 载控制方法的相关描述, 在此不再赘述。
本实施例的承载控制系统, 通过对 UE与网络之间的承载进行分层管理, 简化了 MME的功能;接入网接入节点根据 QoS信息控制业务数据流在空口承 载上的传输, 增加了接入网接入节点对空口资源状况的管理, 进一歩地, 提 升了网络资源管理效率和容量, 降低了功耗, 为移动网络进一歩演进提供了 基础。
实施例 9
图 9示出根据本发明实施例九的承载控制系统的结构框图。 图 9中标号与 图 8相同的组件具有相同的功能, 为简明起见, 省略对这些组件的详细说明。
如图 9所示, 图 9所示的承载控制系统 900与图 8所示承载控制系统 800的 主要区别在于, 建立模块 840具体可以包括:
添加单元 910, 用于在所述接入网接入节点与 PCRF之间在接入网控制会 话中添加所述 PDN连接策略会话; 或在所述接入网接入节点与所述 MME之 间和 /或所述 MME与所述 PCRF之间分别添加所述 PDN连接策略会话。
具体地, 一方面, 在 UE完成附着流程之后, 网络中的各个节点如接入 网接入节点 810或 MME 820可以保存 UE的标识信息。 另一方面, 在建立 PDN 连接的过程中, 网络中的各个节点如接入网接入节点 810或 MME 820还可以 保存 PDN的标识信息。 通过上述保存的 UE的标识信息和 PDN的标识信息, 接入网接入节点 810或 MME 820可以在网络中发现对应的 PCRF,并发起建立 PDN连接策略会话。 如果该 UE的所有 PDN连接都被一个 PCRF服务, 添加单 元 910可以在接入网接入节点 810与 PCRF之间的接入网控制会话中添加 PDN 连接策略会话; 如果该 UE的所有 PDN连接分别被多个 PCRF服务, 添加单元 910可以在接入网接入节点 810与 MME 820之间添加该 PDN连接策略会话,由 MME 820与 PCRF建立 MME 820与 PCRF之间的该 PDN连接策略会话。
在一种可能的实现方式中, 接入网接入节点 810可以包括:
接收单元 920, 用于接收所述 PCRF发送的 QoS信息, 或, 通过所述 MME 接收所述 PCRF发送的所述 QoS信息;
重配置单元 930, 与所述接收单元 920连接, 用于根据所述 QoS信息与所 述 UE之间进行无线资源控制 RRC连接重配置, 为所述空口承载分配空口资 源。
具体地,接入网接入节点 810的接收单元 920可以通过上述传输通道直接 从 PCRF接收 QoS信息, 也可以通过 MME 820从 PCRF接收 QoS信息, 用于后 续接入网接入节点 810可以根据该 QoS信息区分 UE的业务数据流, 完成与 UE 之间的无线资源控制 (Radio Resource Control, RRC) 连接重配置。
进一歩地, 接入网接入节点 810的接收单元 920接收到 QoS信息之后, 重 配置单元 930可以根据 QoS信息的要求, 区分 UE的业务数据流, 并建立满足 不同 QoS信息的不同业务数据流与空口承载之间的映射关系, 为不同的空口 承载分配空口资源即在不同空口承载上传输不同业务数据流时所使用的空 接入网接入节点 810还可以包括:
发送单元 940, 用于向所述 UE发送 RRC连接重配置消息, 为所述空口承 载分配所述空口资源;
所述接收单元 920还用于从所述 UE接收 RRC连接重配置成功响应。
其中, RRC连接重配置消息中包括所述 UE的业务数据流与所述空口承 载的映射关系和所述空口资源的标识, 该空口资源的标识用于指示所述 UE 在所述空口承载上传输所述业务数据流时所使用的空口资源。 接收单元 920 可以从 UE接收 RRC连接重配置成功响应, 完成 RRC连接重配置过程。
在一种可能的实现方式中, 接入网接入节点 810还可以通过自身识别的 UE的上下行数据流得到业务数据流的 QoS信息(如带宽、 优先级、 延时和丢 包率等)。进一歩地,如果该 UE通过上述数据通道进行过业务数据流的传输, 那么网络中的节点 (如 MME 820) 中可以保存该 UE的上下文, 包括上下文 中的业务数据流和 QoS信息的映射关系。在这种情况下,接入网接入节点 810 可以从 MME 820获得上下文中的业务数据流和 QoS信息的映射关系,并对 UE 进行上下行资源(特别是空口无线资源) 的分配, 映射到空口承载, 并通过 RRC连接重配置消息向 UE发送业务数据流与空口承载的映射关系以及 UE在 空口承载上传输上述业务数据流时所使用的空口资源。
在一种可能的实现方式中, 核心网网关 830可以包括服务网关 SGW和 / 或分组数据网关 PGW, 所述 MME 820具体可以包括:
接收单元 950, 用于接收所述 UE发送的 PDN连接建立请求, 所述 PDN连 接建立请求中携带 PDN标识接入点名称 APN;
选择单元 960, 与所述接收单元 950连接, 用于根据所述 APN和所述 UE 的签约信息选择所述核心网网关;
发送单元 970, 与所述选择单元 960连接, 用于向所述核心网网关发送创 建会话请求,所述创建会话请求中携带所述服务网关为所述 PDN连接分配的 第一通道信息, 所述第一通道信息包括所述接入网接入节点为所述 UE分配 的第一通道的 IP地址和端口号, 所述第一通道信息用于建立所述服务网关和 所述分组数据网关之间的所述第一通道;
所述接收单元 950还用于从所述核心网网关接收创建会话响应, 所述创 建会话响应中携带所述分组数据网关为所述 PDN连接分配的第二通道信息, 所述第二通道信息包括所述核心网网关为所述 UE分配的第二通道的 IP地址 和端口号,所述第二通道信息用于建立所述分组数据网关和所述服务网关之 间的所述第二通道;
其中, 所述第一通道和所述第二通道构成所述传输隧道, 用于在所述接 入网接入节点与所述核心网网关之间传输所述业务数据流。
具体示例可以参见本发明实施例二的承载控制方法中的相关描述,在此 不再赘述。
接入网接入节点 810中还可以包括修改单元 980,在建立 PDN连接的过程 中, 可以在 UE与接入网接入节点之间建立初始的空口承载, 该初始的空口 承载可以包括专用空口承载。在接入网接入节点 810接收到 QoS信息之后,修 改单元 980可以根据 QoS信息的要求增加或者修改专用空口承载,该专用空口 承载是按照 QoS信息中调度优先级、 时延、 丢包率、 带宽要求中的至少一种 建立的,所述专用空口承载上携带所述业务数据流与所述专用空口承载的匹 配信息。
本实施例的承载控制系统, 通过对 UE与网络之间的承载进行分层管理, 简化了 MME的功能;接入网接入节点根据 QoS信息控制业务数据流在空口承 载上的传输, 增加了接入网接入节点对空口资源状况的管理, 进一歩地, 提 升了网络资源管理效率和容量, 降低了功耗, 为移动网络进一歩演进提供了 基础。 实施例 10
图 10示出根据本发明实施例十的承载控制系统的结构框图。在 PDN连接 建立完成后, UE的业务数据流可能会发生变化, 例如不同时间 UE的业务数 据流可能不相同, 接入网接入节点 810可以对 UE的业务进行业务识别, 检测 UE的业务数据流。
如图 10所示, 该承载控制系统 1000的接入网接入节点 810还可以包括分 配单元 1010, 在接入网接入节点 810检测到 UE的业务数据流时,
所述发送单元 940还用于将业务检测报告发送至所述 PCRF, 所述接收单 元 920还用于接收所述 PCRF返回的所述 QoS信息 ·' 或
所述发送单元 940还用于将业务检测报告通过所述 MME发送至所述 PCRF, 所述接收单元 920还用于通过所述 MME接收所述 PCRF返回的所述 QoS信息;
所述分配单元 1010,用于根据所述 QoS信息将所述 UE的业务数据流分配 到所述空口承载上。
具体示例可以参见本发明实施例三的承载控制方法中的相关描述,在此 不再赘述。
本实施例的承载控制系统, 通过对 UE与网络之间的承载进行分层管理, 简化了 MME的功能;接入网接入节点根据 QoS信息控制业务数据流在空口承 载上的传输, 增加了接入网接入节点对空口资源状况的管理, 进一歩地, 提 升了网络资源管理效率和容量, 降低了功耗, 为移动网络进一歩演进提供了 基础。
实施例 11
图 11示出根据本发明实施例十一的承载控制系统的结构框图。
在 UE与网络之间建立 PDN连接之后, 若检测到 UE的业务数据流, 接入 网接入节点 810可以从 PCRF接收到 QoS信息, 并根据 QoS信息要求将业务数 据流匹配到空口承载中, 进行上下行数据的传输。 在上述过程中, 接入网接 入节点 810需要为 UE分配空口资源,并且在网络各个节点中可以保存与该 UE 相关的上下文, 例如业务数据流信息、 QoS信息等。 在 UE进行业务数据流传 输的过程中, 还会在网络各个节点中产生中间数据, 占用网络各个节点的内 存、 网络各个节点之间的端口等。 但是, UE可能在某一段时间内没有业务 数据流需要传输, 即 UE处于空闲态, 在这种情况下, 为了节省网络资源、 减轻网络各个节点的负担、 提升网络各个节点的存储能力, 可以对处于空闲 态的 UE占用的空口资源、网络各个节点中保存的该 UE的上下文等进行释放。
如图 11所示, 接入网接入节点 810还可以包括释放单元 1110。
在所述接入网接入节点 810检测到第一预设时间长度内所述 UE没有业 务数据流的情况下, 释放单元 1110用于释放所述接入网接入节点与所述 UE 之间的第一连接信息, 并将所述 UE的上下文存储在所述接入网接入节点中, 将所述 UE的下行数据缓存在所述接入网接入节点中,
其中, 所述第一连接信息为所述 UE的业务数据流与所述空口承载的映 射关系和所述接入网接入节点为所述 UE分配的所述空口资源中的至少一 个。
在所述接入网接入节点 810检测到超过所述第一预设时间长度所述 UE 没有业务数据流的情况下, 释放单元 1110还用于释放所述 RRC连接和所述接 入网接入节点与所述服务网关之间的第二连接信息, 并将所述 UE的上下文 存储在所述 MME内, 将所述 UE的下行数据缓存在所述服务网关中,
其中,所述第二连接信息为所述接入网接入节点与所述服务网关之间传 输所述业务数据流产生的中间数据以及占用的内存、 端口、 计算资源中的至 少一个; 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所述 UE占 用的所述空口资源以及所述 UE的位置区中的至少一个。 具体示例可以参见本发明实施例四中承载控制方法的相关描述,在此不 再赘述。
进一歩地, 处于空闲态的 UE可以重新产生新的业务数据流, 这时根据 UE的业务请求, 可以重新找回 UE的接入网上下文并恢复 UE与核心网网关 830之间的连接。
所述接收单元 920还用于接收所述 UE发送的恢复请求;
所述分配单元 1010还用于根据存储的所述 UE的上下文, 将所述新业务 数据流根据所述 QoS信息分配到所述空口承载上;
所述分配单元 1010还用于为所述空口承载分配所述空口资源, 以使所述 新业务数据流在所述空口承载上传输。
具体示例可以参见本发明实施例五中承载控制方法的相关描述,在此不 再赘述。
本实施例的承载控制系统, 在检测到 UE处于空闲态时通过释放单元释 放第一连接信息或者 RRC连接与第二连接信息, 在接收到 UE的新业务请求 时, 根据不同的释放方式恢复 UE与核心网网关之间的连接, 可以提升网络 资源管理效率和容量, 降低功耗; 进一歩地, 采用两种不同的释放方式, 可 以实现对 UE与网络之间的承载分层管理, 简化了 MME的功能, 增加了接入 网接入节点对空口资源状况的管理。
实施例 12
在承载控制系统中, 对 UE的位置区管理可以分为两种方式。 具体地, 在 UE使用的过程中, 可能会发生位置的变化, 这样, 在网络中, 需要对 UE 的位置区进行管理, 管理方式可以包括以下两种:
方式一: 位置区管理完全由 MME 820进行;
方式二:接入网接入节点 810管理接入网接入节点 810内的寻呼区, MME 820管理 UE在不同接入网接入节点 810之间移动时的节点标识。 针对 UE所在网络的接入网接入节点 810、 MME 820等网络各个节点, UE 的位置变化也可以有多种变化情况。 例如, UE完全从原接入网接入节点移 动到不在原 MME控制下的接入网接入节点, 且服务网关同时发生变化。 如 果原接入网接入节点、 MME或服务网关中的任意一项或者多项没有发生变 化, 位置更新流程可以变得简化。
在一种可能的实现方式中, 如图 12a所示, UE移动到的新的 MME 1201 可以包括取回单元 1210和更新单元 1220。 若所述 UE的位置区由所述 MME管 理, 所述 UE的上下文存储在所述 MME中, 在所述 UE的位置发生改变时, 所述 MME的发送单元 970还用于向所述接入网接入节点发送上下文释 放命令, 以指示所述接入网接入节点释放所述 UE的上下文, 将所述 UE的上 下文转交至所述 MME,
其中, 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所 述 UE的业务数据流与所述空口承载的映射关系、 所述 UE占用的空口资源以 及所述 UE的位置区中的至少一个;
所述取回单元 1210用于从所述 MME中取回所述 UE的上下文;
所述更新单元 1220, 与所述取回单元 1210连接, 用于根据所述 UE的位 置变化更新所述 UE注册的位置区。
在一种可能的实现方式中, 如图 12b所示, 所述 UE的位置区由所述接入 网接入节点管理, 所述 MME管理所述 UE在不同所述接入网接入节点之间移 动时的节点标识, 在所述 UE的位置发生改变时, UE移动到的新的接入网接 入节点 1202可以包括:
接收单元 1230, 用于从所述 UE接收所述 MME的标识;
发送单元 1240, 与所述接收单元 1230连接, 用于将自身的标识、 所述 MME为所述 UE分配的临时标识、 所述 MME的标识发送至新的 MME;
所述新的 MME1201还包括: 判断单元 1250, 用于判断是否有所述 UE注册;
査找单元 1260, 在判断为有的情况下, 用于通过所述 UE的上下文査找 所述接入网接入节点的标识, 并根据所述接入网接入节点的标识通知所述接 入网接入节点删除所述 UE注册的位置区; 在判断为没有的情况下, 用于根 据接收到的所述 MME的标识找到所述 MME,并在所述 MME中査找注册的所 述 UE的上下文, 通过所述 UE的上下文査找所述接入网接入节点的标识, 并 根据所述接入网接入节点的标识通知所述接入网接入节点删除所述 UE注册 的位置区;
所述新的接入网接入节点 1202还包括:
更新单元 1270,用于根据所述 UE的位置变化更新所述 UE注册的位置区。 在一种可能的实现方式中, 如图 120所示, 所述 UE的位置区由所述接入 网接入节点管理, 所述 MME管理所述 UE在不同所述接入网接入节点之间移 动时的节点标识, 在所述 UE的位置发生改变时, 所述新的接入网接入节点 1202还可以包括:
判断单元 1280, 用于根据所述 MME的标识判断所述 MME是否是所述新 的接入网接入节点注册的所述新的 MME;
所述发送单元 1240, 在判断结果为是的情况下, 还用于将自身的标识、 所述 MME为所述 UE分配的临时标识发送至新的 MME;
所述发送单元 1240,在判断结果为不是的情况下,还用于将自身的标识、 所述 MME为所述 UE分配的临时标识、 所述 MME的标识发送至新的 MME。
具体示例可以参见本发明实施例六中承载控制方法的相关描述,在此不 再赘述。
在一种可能的实现方式中, 若 UE发生位置更新后, 产生新的业务数据 流, 需要对 UE发起寻呼。
根据本发明上述实施例的相关描述, UE的下行数据可以缓存在接入网 接入节点中, 也可以缓存在服务网关中。 在一种可能的实现方式中, 所述接 入网接入节点的接收单元 920还用于接收所述 UE的下行数据, 或, 接收所述 服务网关发送的下行数据, 并在所述 UE注册的位置区对所述 UE发起寻呼。 在另一种可能的实现方式中, 所述 MME的接收单元 950还用于从所述服务网 关接收所述 UE的下行数据,所述 MME的发送单元 970还用于向所述接入网接 入节点发送寻呼消息, 以指示所述接入网接入节点向所述 UE发起寻呼; 所 述接入网接入节点的接收单元 920还用于接收所述寻呼消息, 在所述 UE注册 的位置区对所述 UE发起寻呼。
具体示例可以参见本发明实施例七中承载控制方法的相关描述,在此不 再赘述。
本实施例的承载控制系统, 通过对 UE与网络之间的承载进行分层管理, 简化了 MME的功能,增加了接入网接入节点对 UE上下文的管理;进一歩地, 提升了网络资源管理效率和容量, 降低了功耗, 为移动网络进一歩演进提供 了基础。
实施例 13
图 13示出根据本发明实施例十三的一种承载控制系统的结构框图。所述 承载控制系统 1300可以是具备计算能力的主机服务器、个人计算机 PC、或者 可携带的便携式计算机或终端等。本发明具体实施例并不对计算节点的具体 实现做限定。
所述承载控制系统 1300包括处理器(processor)1310、 通信接口 (Communications Interface) 1320,存储器 (memory) 1330和总线 1340。其中, 处 理器 1310、通信接口 1320、以及存储器 1330通过总线 1340完成相互间的通信。
通信接口 1320用于与网络设备通信, 其中网络设备包括例如虚拟机管理 中心、 共享存储等。
处理器 1310用于执行程序。 处理器 1310可能是一个中央处理器 CPU, 或 者是专用集成电路 ASIC (Application Specific Integrated Circuit) , 或者是被 配置成实施本发明实施例的一个或多个集成电路。
存储器 1330用于存放文件。存储器 1330可能包含高速 RAM存储器,也可 能还包括非易失性存储器 (non-volatile memory), 例如至少一个磁盘存储器。 存储器 1330也可以是存储器阵列。 存储器 1330还可能被分块, 并且所述块可 按一定的规则组合成虚拟卷。
在一种可能的实施方式中, 上述程序可为包括计算机操作指令的程序代 码。 该程序应用于支持多接入技术网络架构, 具体可用于:
在终端设备 UE接入网络的情况下, 建立分组数据网络 PDN连接; 根据所获取的服务质量 QoS信息在所述 UE与接入网接入节点之间的空 口承载上区分并传输 UE的业务数据流, 通过所述接入网接入节点与核心网 网关之间的传输隧道传输所述业务数据流,或通过所述接入网接入节点直接 将所述业务数据流发送至分组数据网络。
在一种可能的实现方式中, 在终端设备 UE接入网络的情况下, 建立分 组数据网络 PDN连接, 包括:
在所述接入网接入节点与 PCRF之间在接入网控制会话中添加所述 PDN 连接策略会话; 或
在所述接入网接入节点与移动性管理实体 MME之间和 /或所述 MME与 所述 PCRF之间分别添加所述 PDN连接策略会话。
在一种可能的实现方式中,在根据所获取的 QoS信息在所述 UE与接入网 接入节点之间的空口承载上区分并传输 UE的业务数据流之前, 上述程序还 用于:
所述接入网接入节点接收所述 PCRF发送的 QoS信息,或,所述接入网接 入节点通过所述 MME接收所述 PCRF发送的所述 QoS信息;
所述接入网接入节点根据所述 QoS信息与所述 UE之间进行无线资源控 制 RRC连接重配置, 为所述空口承载分配空口资源。
在一种可能的实现方式中, 所述接入网接入节点与所述 UE之间进行无 线资源控制协议 RRC连接重配置, 包括:
所述接入网接入节点向所述 UE发送 RRC连接重配置消息, 为所述空口 承载分配所述空口资源;
所述接入网接入节点从所述 UE接收 RRC连接重配置成功响应; 其中, 所述 RRC连接重配置消息中包括所述 UE的业务数据流与所述空 口承载的映射关系和所述空口资源的标识, 所述标识用于指示所述 UE在所 述空口承载上传输所述业务数据流时所使用的空口资源。
在一种可能的实现方式中,所述核心网网关包括服务网关和 /或分组数据 网关,在所述通过所述接入网接入节点与核心网网关之间的传输隧道传输所 述业务数据流之前, 上述程序还用于:
所述 MME接收所述 UE发送的 PDN连接建立请求, 所述 PDN连接建立请 求中携带 PDN标识接入点名称 APN;
所述 MME根据所述 APN和所述 UE的签约信息选择所述核心网网关; 所述 MME向所述核心网网关发送创建会话请求, 所述创建会话请求中 携带所述服务网关为所述 PDN连接分配的第一通道信息,所述第一通道信息 包括所述接入网接入节点为所述 UE分配的第一通道的 IP地址和端口号,所述 第一通道信息用于建立所述服务网关和所述分组数据网关之间的所述第一 通道;
所述核心网网关向所述 MME返回创建会话响应, 所述创建会话响应中 携带所述分组数据网关为所述 PDN连接分配的第二通道信息,所述第二通道 信息包括所述核心网网关为所述 UE分配的第二通道的 IP地址和端口号,所述 第二通道信息用于建立所述分组数据网关和所述服务网关之间的所述第二 通道; 其中, 所述第一通道和所述第二通道构成所述传输隧道, 用于在所述接 入网接入节点与所述核心网网关之间传输所述业务数据流。
在一种可能的实现方式中, 在所述接入网接入节点检测到所述 UE的业 务数据流时, 上述程序还用于:
所述接入网接入节点将业务检测报告发送至所述 PCRF , 并接收所述 PCRF返回的所述 QoS信息; 或
所述接入网接入节点将业务检测报告通过所述 MME发送至所述 PCRF, 并通过所述 MME接收所述 PCRF返回的所述 QoS信息;
所述接入网接入节点根据所述 QoS信息将所述 UE的业务数据流分配到 所述空口承载上。
在一种可能的实现方式中,在所述接入网接入节点检测到第一预设时间 长度内所述 UE没有业务数据流的情况下, 上述程序还用于:
释放所述接入网接入节点与所述 UE之间的第一连接信息, 并将所述 UE 的上下文存储在所述接入网接入节点中, 将所述 UE的下行数据缓存在所述 接入网接入节点中,
其中, 所述第一连接信息为所述 UE的业务数据流与所述空口承载的映 射关系和所述接入网接入节点为所述 UE分配的所述空口资源中的至少一 个。
在一种可能的实现方式中,在所述接入网接入节点检测到超过所述第一 预设时间长度所述 UE没有业务数据流的情况下, 上述程序还用于:
释放所述 RRC连接和所述接入网接入节点与所述服务网关之间的第二 连接信息, 并将所述 UE的上下文存储在所述 MME中, 将所述 UE的下行数据 缓存在所述服务网关中,
其中,所述第二连接信息为所述接入网接入节点与所述服务网关之间传 输所述业务数据流产生的中间数据以及占用的内存、 端口、 计算资源中的至 少一个;
所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所述 UE占 用的所述空口资源以及所述 UE的位置区中的至少一个。
在一种可能的实现方式中, 在所述 UE具有新业务数据流时, 上述程序 还用于:
所述接入网接入节点接收所述 UE发送的恢复请求;
所述接入网接入节点根据存储的所述 UE的上下文, 将所述新业务数据 流根据所述 QoS信息分配到所述空口承载上;
所述接入网接入节点为所述空口承载分配所述空口资源, 以使所述新业 务数据流在所述空口承载上传输。
在一种可能的实现方式中, 上述程序还用于:
所述接入网接入节点根据所述 QoS信息增加或修改专用空口承载, 所述 专用空口承载是按照所述 QoS信息中调度优先级、 时延、 丢包率、 带宽要求 中的至少一种建立的,所述专用空口承载上携带所述业务数据流与所述专用 空口承载的匹配信息。
在一种可能的实现方式中, 所述 UE的位置区由 MME管理, 所述 UE的上 下文存储在所述 MME中, 在所述 UE的位置发生改变时, 还包括:
所述 MME向所述接入网接入节点发送上下文释放命令, 以指示所述接 入网接入节点释放所述 UE的上下文, 将所述 UE的上下文转交至所述 MME, 其中, 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所 述 UE的业务数据流与所述空口承载的映射关系、 所述 UE占用的空口资源以 及所述 UE的位置区中的至少一个;
新的 MME从所述 MME中取回所述 UE的上下文;
所述新的 MME根据所述 UE的位置变化更新所述 UE注册的位置区。 在一种可能的实现方式中, 所述 UE的位置区由所述接入网接入节点管 理, 所述 MME管理所述 UE在不同所述接入网接入节点之间移动时的节点标 识, 在所述 UE的位置发生改变时, 还包括:
所述 UE将所述 MME的标识发送至新的接入网接入节点;
所述新的接入网接入节点将自身的标识、 所述 MME为所述 UE分配的临 时标识、 所述 MME的标识发送至新的 MME;
所述新的 MME判断是否有所述 UE注册;
若有, 所述新的 MME通过所述 UE的上下文査找所述接入网接入节点的 标识, 并根据所述接入网接入节点的标识通知所述接入网接入节点删除所述 UE注册的位置区;
若没有, 所述新的 MME根据接收到的所述 MME的标识找到所述 MME, 并在所述 MME中査找注册的所述 UE的上下文,通过所述 UE的上下文査找所 述接入网接入节点的标识, 并根据所述接入网接入节点的标识通知所述接入 网接入节点删除所述 UE注册的位置区;
所述新的接入网接入节点根据所述 UE的位置变化更新所述 UE注册的位 置区。
在一种可能的实现方式中, 所述 UE的位置区由所述接入网接入节点管 理, 所述 MME管理所述 UE在不同所述接入网接入节点之间移动时的节点标 识, 在所述 UE的位置发生改变时, 还包括:
所述 UE将所述 MME的标识发送至新的接入网接入节点;
所述新的接入网接入节点根据所述 MME的标识判断所述 MME是否是所 述新的接入网接入节点注册的所述新的 MME;
若是, 所述新的接入网接入节点将自身的标识、 所述 MME为所述 UE分 配的临时标识发送至新的 MME,所述新的 MME通过所述 UE的上下文査找所 述接入网接入节点的标识, 并根据所述接入网接入节点的标识通知所述接入 网接入节点删除所述 UE注册的位置区; 若不是, 所述新的接入网接入节点将自身的标识、 所述 MME为所述 UE 分配的临时标识、所述 MME的标识发送至新的 MME,所述新的 MME根据接 收到的所述 MME的标识找到所述 MME, 并在所述 MME中査找注册的所述 UE的上下文, 通过所述 UE的上下文査找所述接入网接入节点的标识, 并根 据所述接入网接入节点的标识通知所述接入网接入节点删除所述 UE注册的 位置区;
所述新的接入网接入节点根据所述 UE的位置变化更新所述 UE注册的位 置区。
在一种可能的实现方式中, 在所述 UE具有新的业务数据流时, 上述程 序还用于:
所述接入网接入节点接收所述 UE的下行数据, 或, 接收所述服务网关 发送的下行数据, 并在所述 UE注册的位置区对所述 UE发起寻呼。
在一种可能的实现方式中, 上述程序还用于:
所述 MME从所述服务网关接收所述 UE的下行数据通知, 向所述接入网 接入节点发送寻呼消息, 以指示所述接入网接入节点向所述 UE发起寻呼; 或
所述接入网接入节点接收所述寻呼消息, 在所述 UE注册的位置区对所 述 UE发起寻呼。
本领域普通技术人员可以意识到, 本文所描述的实施例中的各示例性单 元及算法歩骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。 这些功能究竟以硬件还是软件形式来实现, 取决于技术方案的特定应用和设 计约束条件。专业技术人员可以针对特定的应用选择不同的方法来实现所描 述的功能, 但是这种实现不应认为超出本发明的范围。
如果以计算机软件的形式来实现所述功能并作为独立的产品销售或使 用时, 则在一定程度上可认为本发明的技术方案的全部或部分(例如对现有 技术做出贡献的部分)是以计算机软件产品的形式体现的。 该计算机软件产 品通常存储在计算机可读取的非易失性存储介质中,包括若干指令用以使得 计算机设备(可以是个人计算机、 服务器、 或者网络设备等)执行本发明各 实施例方法的全部或部分歩骤。 而前述的存储介质包括 U盘、 移动硬盘、 只 读存储器 (ROM, Read-Only Memory )、 随机存取存储器 (RAM, Random Access Memory), 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种承载控制方法, 其特征在于, 应用于支持多接入技术网络架构, 包括:
在终端设备 UE接入网络的情况下, 建立分组数据网络 PDN连接; 根据所获取的服务质量 QoS信息在所述 UE与接入网接入节点之间的空 口承载上区分并传输 UE的业务数据流, 通过所述接入网接入节点与核心网 网关之间的传输隧道传输所述业务数据流,或通过所述接入网接入节点直接 将所述业务数据流发送至分组数据网络。
2、 根据权利要求 1所述的承载控制方法, 其特征在于, 在终端设备 UE 接入网络的情况下, 建立分组数据网络 PDN连接, 包括:
在所述接入网接入节点与策略和计费规则功能 PCRF之间在接入网控制 会话中添加所述 PDN连接策略会话; 或
在所述接入网接入节点与移动性管理实体 MME之间和 /或所述 MME与 所述 PCRF之间分别添加所述 PDN连接策略会话。
3、 根据权利要求 1所述的承载控制方法, 其特征在于, 在根据所获取的 QoS信息在所述 UE与接入网接入节点之间的空口承载上区分并传输 UE的业 务数据流之前, 还包括:
所述接入网接入节点接收所述 PCRF发送的 QoS信息,或,所述接入网接 入节点通过所述 MME接收所述 PCRF发送的所述 QoS信息;
所述接入网接入节点根据所述 QoS信息与所述 UE之间进行无线资源控 制 RRC连接重配置, 为所述空口承载分配空口资源。
4、 根据权利要求 3所述的承载控制方法, 其特征在于, 所述接入网接入 节点根据所述 QoS信息与所述 UE之间进行无线资源控制协议 RRC连接重配 置, 包括:
所述接入网接入节点向所述 UE发送 RRC连接重配置消息, 为所述空口 承载分配所述空口资源; 所述接入网接入节点从所述 UE接收 RRC连接重配置成功响应; 其中, 所述 RRC连接重配置消息中包括所述 UE的业务数据流与所述空 口承载的映射关系和所述空口资源的标识, 所述标识用于指示所述 UE在所 述空口承载上传输所述业务数据流时所使用的空口资源。
5、 根据权利要求 1所述的承载控制方法, 其特征在于, 所述核心网网关 包括服务网关和 /或分组数据网关,在所述通过所述接入网接入节点与核心网 网关之间的传输隧道传输所述业务数据流之前, 还包括:
所述 MME接收所述 UE发送的 PDN连接建立请求, 所述 PDN连接建立请 求中携带 PDN标识接入点名称 APN;
所述 MME根据所述 APN和所述 UE的签约信息选择所述核心网网关; 所述 MME向所述核心网网关发送创建会话请求, 所述创建会话请求中 携带所述服务网关为所述 PDN连接分配的第一通道信息,所述第一通道信息 包括所述接入网接入节点为所述 UE分配的第一通道的 IP地址和端口号,所述 第一通道信息用于建立所述服务网关和所述分组数据网关之间的所述第一 通道;
所述核心网网关向所述 MME返回创建会话响应, 所述创建会话响应中 携带所述分组数据网关为所述 PDN连接分配的第二通道信息,所述第二通道 信息包括所述核心网网关为所述 UE分配的第二通道的 IP地址和端口号,所述 第二通道信息用于建立所述分组数据网关和所述服务网关之间的所述第二 通道;
其中, 所述第一通道和所述第二通道构成所述传输隧道, 用于在所述接 入网接入节点与所述核心网网关之间传输所述业务数据流。
6、 根据权利要求 1-5中任一项所述的承载控制方法, 其特征在于, 在所 述接入网接入节点检测到所述 UE的业务数据流时, 还包括:
所述接入网接入节点将业务检测报告发送至所述 PCRF , 并接收所述 PCRF返回的所述 QoS信息; 或
所述接入网接入节点将业务检测报告通过所述 MME发送至所述 PCRF, 并通过所述 MME接收所述 PCRF返回的所述 QoS信息;
所述接入网接入节点根据所述 QoS信息将所述 UE的业务数据流分配到 所述空口承载上。
7、 根据权利要求 1-6中任一项所述的承载控制方法, 其特征在于, 在所 述接入网接入节点检测到第一预设时间长度内所述 UE没有业务数据流的情 况下, 还包括:
释放所述接入网接入节点与所述 UE之间的第一连接信息, 并将所述 UE 的上下文存储在所述接入网接入节点中, 将所述 UE的下行数据缓存在所述 接入网接入节点中,
其中, 所述第一连接信息为所述 UE的业务数据流与所述空口承载的映 射关系和所述接入网接入节点为所述 UE分配的所述空口资源中的至少一 个。
8、 根据权利要求 1-6中任一项所述的承载控制方法, 其特征在于, 在所 述接入网接入节点检测到超过所述第一预设时间长度所述 UE没有业务数据 流的情况下, 还包括:
释放所述 RRC连接和所述接入网接入节点与所述服务网关之间的第二 连接信息, 并将所述 UE的上下文存储在所述 MME中, 将所述 UE的下行数据 缓存在所述服务网关中,
其中,所述第二连接信息为所述接入网接入节点与所述服务网关之间传 输所述业务数据流产生的中间数据以及占用的内存、 端口、 计算资源中的至 少一个; 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所述 UE占 用的所述空口资源以及所述 UE的位置区中的至少一个。
9、 根据权利要求 7所述的承载控制方法, 其特征在于, 在所述 UE具有 新业务数据流时, 还包括:
所述接入网接入节点接收所述 UE发送的恢复请求;
所述接入网接入节点根据存储的所述 UE的上下文, 将所述新业务数据 流根据所述 QoS信息分配到所述空口承载上;
所述接入网接入节点为所述空口承载分配所述空口资源, 以使所述新业 务数据流在所述空口承载上传输。
10、 根据权利要求 1-9中任一项所述的承载控制方法, 其特征在于, 还 包括:
所述接入网接入节点根据所述 QoS信息增加或修改专用空口承载, 所述 专用空口承载是按照所述 QoS信息中调度优先级、 时延、 丢包率、 带宽要求 中的至少一种建立的,所述专用空口承载上携带所述业务数据流与所述专用 空口承载的匹配信息。
11、 根据权利要求 1所述的承载控制方法, 其特征在于, 所述 UE的位置 区由 MME管理, 所述 UE的上下文存储在所述 MME中, 在所述 UE的位置发 生改变时, 所述方法还包括:
所述 MME向所述接入网接入节点发送上下文释放命令, 以指示所述接 入网接入节点释放所述 UE的上下文, 将所述 UE的上下文转交至所述 MME, 其中, 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所 述 UE的业务数据流与所述空口承载的映射关系、 所述 UE占用的空口资源以 及所述 UE的位置区中的至少一个;
新的 MME从所述 MME中取回所述 UE的上下文;
所述新的 MME根据所述 UE的位置变化更新所述 UE注册的位置区。
12、 根据权利要求 1所述的承载控制方法, 其特征在于, 所述 UE的位置 区由所述接入网接入节点管理, 所述 MME管理所述 UE在不同所述接入网接 入节点之间移动时的节点标识, 在所述 UE的位置发生改变时, 所述方法还 包括:
所述 UE将所述 MME的标识发送至新的接入网接入节点;
所述新的接入网接入节点将自身的标识、 所述 MME为所述 UE分配的临 时标识、 所述 MME的标识发送至新的 MME;
所述新的 MME判断是否有所述 UE注册;
若有, 所述新的 MME通过所述 UE的上下文査找所述接入网接入节点的 标识, 并根据所述接入网接入节点的标识通知所述接入网接入节点删除所述 UE注册的位置区;
若没有, 所述新的 MME根据接收到的所述 MME的标识找到所述 MME, 并在所述 MME中査找注册的所述 UE的上下文,通过所述 UE的上下文査找所 述接入网接入节点的标识, 并根据所述接入网接入节点的标识通知所述接入 网接入节点删除所述 UE注册的位置区;
所述新的接入网接入节点根据所述 UE的位置变化更新所述 UE注册的位 置区。
13、 根据权利要求 12所述的承载控制方法, 其特征在于, 所述 UE的位 置区由所述接入网接入节点管理, 所述 MME管理所述 UE在不同所述接入网 接入节点之间移动时的节点标识, 在所述 UE的位置发生改变时, 所述方法 还包括:
所述 UE将所述 MME的标识发送至新的接入网接入节点;
所述新的接入网接入节点根据所述 MME的标识判断所述 MME是否是所 述新的接入网接入节点注册的所述新的 MME;
若是, 所述新的接入网接入节点将自身的标识、 所述 MME为所述 UE分 配的临时标识发送至新的 MME,所述新的 MME通过所述 UE的上下文査找所 述接入网接入节点的标识, 并根据所述接入网接入节点的标识通知所述接入 网接入节点删除所述 UE注册的位置区;
若不是, 所述新的接入网接入节点将自身的标识、 所述 MME为所述 UE 分配的临时标识、所述 MME的标识发送至新的 MME,所述新的 MME根据接 收到的所述 MME的标识找到所述 MME, 并在所述 MME中査找注册的所述 UE的上下文, 通过所述 UE的上下文査找所述接入网接入节点的标识, 并根 据所述接入网接入节点的标识通知所述接入网接入节点删除所述 UE注册的 位置区;
所述新的接入网接入节点根据所述 UE的位置变化更新所述 UE注册的位 置区。
14、 根据权利要求 1-13中任一项所述的承载控制方法, 其特征在于, 在 所述 UE具有新的业务数据流时, 还包括:
所述接入网接入节点接收所述 UE的下行数据, 或, 接收所述服务网关 发送的下行数据, 并在所述 UE注册的位置区对所述 UE发起寻呼。
15、 根据权利要求 14所述的承载控制方法, 其特征在于, 还包括: 所述 MME从所述服务网关接收所述 UE的下行数据通知, 向所述接入网 接入节点发送寻呼消息, 以指示所述接入网接入节点向所述 UE发起寻呼; 或
所述接入网接入节点接收所述寻呼消息, 在所述 UE注册的位置区对所 述 UE发起寻呼。
16、一种承载控制系统,其特征在于,应用于支持多接入技术网络架构, 包括:
接入网接入节点;
移动性管理实体 MME;
核心网网关;
建立模块, 用于在终端设备 UE接入网络的情况下, 建立分组数据网络 PDN连接;
传输模块,用于根据所获取的服务质量 QoS信息在所述 UE与所述接入网 接入节点之间的空口承载上区分并传输 UE的业务数据流, 通过所述接入网 接入节点与所述核心网网关之间的传输隧道传输所述业务数据流, 或通过所 述接入网接入节点直接将所述业务数据流发送至分组数据网络。
17、 根据权利要求 16所述的承载控制系统, 其特征在于, 所述建立模块 包括:
添加单元, 用于在所述接入网接入节点与 PCRF之间在接入网控制会话 中添加所述 PDN连接策略会话; 或在所述接入网接入节点与所述 MME之间 和 /或所述 MME与所述 PCRF之间分别添加所述 PDN连接策略会话。
18、 根据权利要求 16所述的承载控制系统, 其特征在于, 所述接入网接 入节点包括:
接收单元, 用于接收所述 PCRF发送的 QoS信息, 或, 通过所述 MME接 收所述 PCRF发送的所述 QoS信息;
重配置单元, 与所述接收单元连接, 用于根据所述 QoS信息与所述 UE 之间进行无线资源控制 RRC连接重配置, 为所述空口承载分配空口资源。
19、 根据权利要求 18所述的承载控制系统, 其特征在于, 所述接入网接 入节点还包括:
发送单元, 用于向所述 UE发送 RRC连接重配置消息, 为所述空口承载 分配所述空口资源;
所述接收单元还用于从所述 UE接收 RRC连接重配置成功响应; 其中, 所述 RRC连接重配置消息中包括所述 UE的业务数据流与所述空 口承载的映射关系和所述空口资源的标识, 所述标识用于指示所述 UE在所 述空口承载上传输所述业务数据流时所使用的空口资源。
20、 根据权利要求 16所述的承载控制系统, 其特征在于, 所述核心网网 关包括服务网关和 /或分组数据网关, 所述 MME包括:
接收单元, 用于接收所述 UE发送的 PDN连接建立请求, 所述 PDN连接 建立请求中携带 PDN标识接入点名称 APN;
选择单元, 与所述接收单元连接, 用于根据所述 APN和所述 UE的签约 信息选择所述核心网网关;
发送单元, 与所述选择单元连接, 用于向所述核心网网关发送创建会话 请求,所述创建会话请求中携带所述服务网关为所述 PDN连接分配的第一通 道信息, 所述第一通道信息包括所述接入网接入节点为所述 UE分配的第一 通道的 IP地址和端口号, 所述第一通道信息用于建立所述服务网关和所述分 组数据网关之间的所述第一通道;
所述接收单元还用于从所述核心网网关接收创建会话响应,所述创建会 话响应中携带所述分组数据网关为所述 PDN连接分配的第二通道信息,所述 第二通道信息包括所述核心网网关为所述 UE分配的第二通道的 IP地址和端 口号,所述第二通道信息用于建立所述分组数据网关和所述服务网关之间的 所述第二通道;
其中, 所述第一通道和所述第二通道构成所述传输隧道, 用于在所述接 入网接入节点与所述核心网网关之间传输所述业务数据流。
21、 根据权利要求 16-20中任一项所述的承载控制系统, 其特征在于, 在所述接入网接入节点检测到所述 UE的业务数据流时,
所述接入网接入节点的发送单元还用于将业务检测报告发送至所述 PCRF, 所述接入网接入节点的接收单元还用于接收所述 PCRF返回的所述 QoS信息; 或
所述接入网接入节点的发送单元还用于将业务检测报告通过所述 MME 发送至所述 PCRF, 所述接入网接入节点的接收单元还用于通过所述 MME接 收所述 PCRF返回的所述 QoS信息; 所述接入网接入节点还包括:
分配单元,用于根据所述 QoS信息将所述 UE的业务数据流分配到所述空 口承载上。
22、 根据权利要求 16-21中任一项所述的承载控制系统, 其特征在于, 所述接入网接入节点还包括释放单元,在所述接入网接入节点检测到第一预 设时间长度内所述 UE没有业务数据流的情况下,
所述释放单元用于所述接入网接入节点与所述 UE之间的第一连接信 息, 并将所述 UE的上下文存储在所述接入网接入节点中, 将所述 UE的下行 数据缓存在所述接入网接入节点中,
其中, 所述第一连接信息为所述 UE的业务数据流与所述空口承载的映 射关系和所述接入网接入节点为所述 UE分配的所述空口资源中的至少一 个。
23、 根据权利要求 16-21中任一项所述的承载控制系统, 其特征在于, 在所述接入网接入节点检测到超过所述第一预设时间长度所述 UE没有业务 数据流的情况下,
所述释放单元还用于释放所述 RRC连接和所述接入网接入节点与所述 服务网关之间的第二连接信息, 并将所述 UE的上下文存储在所述 MME中, 将所述 UE的下行数据缓存在所述服务网关中,
其中,所述第二连接信息为所述接入网接入节点与所述服务网关之间传 输所述业务数据流产生的中间数据以及占用的内存、 端口、 计算资源中的至 少一个; 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所述 UE占 用的所述空口资源以及所述 UE的位置区中的至少一个。
24、 根据权利要求 22所述的承载控制系统, 其特征在于, 在所述 UE具 所述接入网接入节点的接收单元还用于接收所述 UE发送的恢复请求; 所述分配单元还用于根据存储的所述 UE的上下文, 将所述新业务数据 流根据所述 QoS信息分配到所述空口承载上;
所述分配单元还用于为所述空口承载分配所述空口资源, 以使所述新业 务数据流在所述空口承载上传输。
25、 根据权利要求 16-24中任一项所述的承载控制系统, 其特征在于, 所述接入网接入节点还包括:
修改单元, 用于根据所述 QoS信息增加或修改专用空口承载, 所述专用 空口承载是按照所述 QoS信息中调度优先级、 时延、 丢包率、 带宽要求中的 至少一种建立的,所述专用空口承载上携带所述业务数据流与所述专用空口 承载的匹配信息。
26、 根据权利要求 16所述的承载控制系统, 其特征在于, 所述 UE的位 置区由 MME管理, 所述 UE的上下文存储在所述 MME中, 在所述 UE的位置 发生改变时,
所述 MME的发送单元还用于向所述接入网接入节点发送上下文释放命 令, 以指示所述接入网接入节点释放所述 UE的上下文, 将所述 UE的上下文 转交至所述 MME,
其中, 所述 UE的上下文包括所述 UE的业务数据流、 所述 QoS信息、 所 述 UE的业务数据流与所述空口承载的映射关系、 所述 UE占用的空口资源以 及所述 UE的位置区中的至少一个;
新的 MME包括:
取回单元, 用于从所述 MME中取回所述 UE的上下文;
更新单元, 与所述取回单元连接, 用于根据所述 UE的位置变化更新所 述 UE注册的位置区。
27、 根据权利要求 16所述的承载控制系统, 其特征在于, 所述 UE的位 置区由所述接入网接入节点管理, 所述 MME管理所述 UE在不同所述接入网 接入节点之间移动时的节点标识, 在所述 UE的位置发生改变时, 新的接入 网接入节点包括:
接收单元, 用于从所述 UE接收所述 MME的标识;
发送单元, 与所述接收单元连接, 用于将自身的标识、 所述 MME为所 述 UE分配的临时标识、 所述 MME的标识发送至新的 MME;
所述新的 MME还包括:
判断单元, 用于判断是否有所述 UE注册;
査找单元, 在判断为有的情况下, 用于通过所述 UE的上下文査找所述 接入网接入节点的标识, 并根据所述接入网接入节点的标识通知所述接入网 接入节点删除所述 UE注册的位置区; 在判断为没有的情况下, 用于根据接 收到的所述 MME的标识找到所述 MME, 并在所述 MME中査找注册的所述 UE的上下文, 通过所述 UE的上下文査找所述接入网接入节点的标识, 并根 据所述接入网接入节点的标识通知所述接入网接入节点删除所述 UE注册的 位置区;
所述新的接入网接入节点还包括:
更新单元, 用于根据所述 UE的位置变化更新所述 UE注册的位置区。
28、 根据权利要求 27所述的承载控制系统, 其特征在于, 所述 UE的位 置区由所述接入网接入节点管理, 所述 MME管理所述 UE在不同所述接入网 接入节点之间移动时的节点标识, 在所述 UE的位置发生改变时,
所述新的接入网接入节点还包括:
判断单元, 用于根据所述 MME的标识判断所述 MME是否是所述新的接 入网接入节点注册的所述新的 MME;
所述新的接入网接入节点的发送单元, 在判断结果为是的情况下, 还用 于将自身的标识、 所述 MME为所述 UE分配的临时标识发送至新的 MME; 所述新的接入网接入节点的发送单元, 在判断结果为不是的情况下, 还 用于将自身的标识、所述 MME为所述 UE分配的临时标识、所述 MME的标识 发送至新的 MME。
29、 根据权利要求 16-28中任一项所述的承载控制系统, 其特征在于, 在所述 UE具有新的业务数据流时, 所述接入网接入节点的接收单元还用于 接收所述 UE的下行数据, 或, 接收所述服务网关发送的下行数据, 并在所 述 UE注册的位置区对所述 UE发起寻呼。
30、 根据权利要求 29所述的承载控制系统, 其特征在于, 所述 MME的 接收单元还用于从所述服务网关接收所述 UE的下行数据通知, 所述 MME的 发送单元还用于向所述接入网接入节点发送寻呼消息, 以指示所述接入网接 入节点向所述 UE发起寻呼; 或
所述接入网接入节点的接收单元还用于接收所述寻呼消息, 在所述 UE 注册的位置区对所述 UE发起寻呼。
PCT/CN2014/075819 2014-04-21 2014-04-21 承载控制方法及系统 WO2015161411A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP23194589.0A EP4304294A3 (en) 2014-04-21 2014-04-21 Bearer control method and system
CN201910467782.2A CN110337150B (zh) 2014-04-21 2014-04-21 承载控制方法及系统
CN201480000646.8A CN105379402B (zh) 2014-04-21 2014-04-21 承载控制方法及系统
EP14890344.6A EP3128802B1 (en) 2014-04-21 2014-04-21 Bearer control method and system
PCT/CN2014/075819 WO2015161411A1 (zh) 2014-04-21 2014-04-21 承载控制方法及系统
US15/298,463 US10201024B2 (en) 2014-04-21 2016-10-20 Bearer control method and system
US16/243,516 US10772136B2 (en) 2014-04-21 2019-01-09 Bearer control method and system
US17/006,206 US11382146B2 (en) 2014-04-21 2020-08-28 Bearer control method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075819 WO2015161411A1 (zh) 2014-04-21 2014-04-21 承载控制方法及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/298,463 Continuation US10201024B2 (en) 2014-04-21 2016-10-20 Bearer control method and system

Publications (1)

Publication Number Publication Date
WO2015161411A1 true WO2015161411A1 (zh) 2015-10-29

Family

ID=54331555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075819 WO2015161411A1 (zh) 2014-04-21 2014-04-21 承载控制方法及系统

Country Status (4)

Country Link
US (3) US10201024B2 (zh)
EP (2) EP4304294A3 (zh)
CN (2) CN110337150B (zh)
WO (1) WO2015161411A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454601B1 (en) * 2016-04-01 2023-11-29 ZTE Corporation Method and apparatus for controlling quality of service

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3105974B1 (en) * 2014-02-14 2020-08-12 Telefonaktiebolaget LM Ericsson (publ) Pcrf assisted apn selection
WO2015191835A1 (en) * 2014-06-11 2015-12-17 Convida Wireless, Llc Mapping service for local content redirection
WO2016047374A1 (ja) 2014-09-25 2016-03-31 シャープ株式会社 端末装置、mmeおよび制御方法
EP3836586A1 (en) * 2015-04-22 2021-06-16 Convida Wireless, LLC Small data usage enablement in 3gpp networks
CN107295452B (zh) * 2016-03-30 2021-06-08 中兴通讯股份有限公司 一种信息通知方法和装置
US10277515B2 (en) * 2016-04-04 2019-04-30 Qualcomm Incorporated Quality of service (QOS) management in wireless networks
JP2019145864A (ja) * 2016-07-04 2019-08-29 シャープ株式会社 端末装置、制御装置、ゲートウェイ、及び通信制御方法
JP2019149588A (ja) * 2016-07-04 2019-09-05 シャープ株式会社 端末装置、制御装置、ゲートウェイ、及び通信制御方法
CN114760710A (zh) 2016-08-01 2022-07-15 三星电子株式会社 用于管理无线通信网络中的数据通信的方法和设备
FR3058863B1 (fr) * 2016-11-14 2019-07-05 Airbus Defence And Space Sas Equipement mandataire dans un systeme de telecommunication cellulaire
CN115460685A (zh) * 2017-02-06 2022-12-09 三星电子株式会社 基站、接入和移动性管理功能实体及其方法
KR102395384B1 (ko) * 2017-03-20 2022-05-10 삼성전자 주식회사 셀룰러망의 효율적 pdu 세션 활성화 및 비활성화 방안
WO2018174509A1 (en) * 2017-03-20 2018-09-27 Samsung Electronics Co., Ltd. Method for supporting efficient pdu session activation and deactivation in cellular networks
US11032744B2 (en) 2017-05-04 2021-06-08 At&T Intellectual Property I, L.P. Inter-distributed unit beam switch procedure triggered by radio link interruption
US10644974B2 (en) 2017-05-04 2020-05-05 At&T Intellectual Property I, L.P. Measurements and radio link monitoring in a wireless communications system
US10499398B2 (en) 2017-09-29 2019-12-03 At&T Intellectual Property I, L.P. Facilitating mobile device-assisted mobility enhancement to improve user plane interruption time
CN110048861B (zh) * 2018-01-17 2021-01-29 华为技术有限公司 一种业务数据流处理方法及其相关设备
CN114629544B (zh) * 2022-03-09 2023-06-20 成都天奥集团有限公司 一种融合5g技术实现测控的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374260A (zh) * 2007-08-22 2009-02-25 华为技术有限公司 Pcc规则和承载关联的实现方法、装置和系统
CN101854734A (zh) * 2009-03-30 2010-10-06 华为技术有限公司 释放接入连接的方法、装置、策略控制实体及系统
US20110310737A1 (en) * 2010-06-21 2011-12-22 Qualcomm Incorporated Method and apparatus for qos context transfer during inter radio access technology handover in a wireless communication system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101375474B1 (ko) * 2007-09-13 2014-03-20 삼성전자주식회사 인터넷 프로토콜을 이용하는 통신 장치 및 방법
US20090190471A1 (en) * 2008-01-10 2009-07-30 Mahendran Arungundram C Method and Apparatus for Optimized Session Setup with Network-Initiated QoS Policy Control
CN101730150B (zh) * 2009-01-19 2013-08-07 中兴通讯股份有限公司 业务流迁移时对网络资源进行控制的方法
US8498208B2 (en) * 2009-07-20 2013-07-30 Qualcomm Incorporated Turning on flows in network initiated QoS
CN101990247B (zh) * 2009-08-07 2013-08-28 华为技术有限公司 数据传输方法、装置和通信系统
WO2011120235A1 (zh) * 2010-04-02 2011-10-06 华为技术有限公司 Sae架构下实现业务数据流旁路的方法、装置及系统
CN102238574B (zh) * 2010-04-27 2016-06-15 中兴通讯股份有限公司 一种用户状态改变的通知方法及系统
EP2445266B1 (en) * 2010-10-25 2016-03-16 Alcatel Lucent Control of access network/access technology selection for the routing of IP traffic by a user equipment, and QoS support, in a multi-access communication system
CN102761958B (zh) * 2011-04-28 2017-09-22 中兴通讯股份有限公司 一种支持多接入的承载管理方法和系统
EP2842355A2 (en) * 2012-04-27 2015-03-04 Interdigital Patent Holdings, Inc. Methods and apparatuses for optimizing proximity data path setup
US9473928B2 (en) * 2012-07-14 2016-10-18 Tekelec, Inc. Methods, systems, and computer readable media for policy-based local breakout (LBO)
TW201442527A (zh) * 2013-01-11 2014-11-01 Interdigital Patent Holdings 使用者平面壅塞管理
EP3127369A4 (en) * 2014-04-01 2017-12-06 Nokia Solutions and Networks Oy Enhanced quality of service class identifier modification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374260A (zh) * 2007-08-22 2009-02-25 华为技术有限公司 Pcc规则和承载关联的实现方法、装置和系统
CN101854734A (zh) * 2009-03-30 2010-10-06 华为技术有限公司 释放接入连接的方法、装置、策略控制实体及系统
US20110310737A1 (en) * 2010-06-21 2011-12-22 Qualcomm Incorporated Method and apparatus for qos context transfer during inter radio access technology handover in a wireless communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454601B1 (en) * 2016-04-01 2023-11-29 ZTE Corporation Method and apparatus for controlling quality of service

Also Published As

Publication number Publication date
EP4304294A3 (en) 2024-03-27
US10201024B2 (en) 2019-02-05
EP3128802A1 (en) 2017-02-08
US20200396777A1 (en) 2020-12-17
US10772136B2 (en) 2020-09-08
US20170041968A1 (en) 2017-02-09
EP3128802A4 (en) 2017-04-05
CN110337150B (zh) 2023-06-27
CN110337150A (zh) 2019-10-15
EP4304294A2 (en) 2024-01-10
CN105379402A (zh) 2016-03-02
US11382146B2 (en) 2022-07-05
EP3128802B1 (en) 2023-10-04
CN105379402B (zh) 2019-06-11
US20190150207A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
US11382146B2 (en) Bearer control method and system
US11051224B2 (en) Method for moving between communications systems and apparatus
EP3694254A1 (en) Handover method in wireless communication system and apparatus therefor
US10841768B2 (en) Method and equipment for determining IOT service, and method and equipment for controlling IOT service behavior
EP2445261B1 (en) Method, apparatus and system for routing user plane data in mobile network
WO2014101571A1 (zh) 一种承载分配方法及用户设备、基站和服务网关
WO2013064104A1 (zh) 一种数据传输方法、移动性管理实体和移动终端
US11856413B2 (en) Coverage enhancement CE function implementation method and device
WO2009049529A1 (fr) Procédé d'établissement de support de charge et dispositif associé
WO2011060673A1 (zh) 公用承载建立的方法、数据传输方法和核心网络侧设备
WO2011023090A1 (zh) 家庭基站接入场景下寻呼的处理方法和装置
WO2014000219A1 (zh) 拥塞状态上报方法及接入网设备
WO2012122910A1 (zh) 一种双通道通信方法和系统
WO2013170673A1 (zh) 一种接入方法、基站、接入点和用户设备
WO2019154160A1 (zh) 一种通信方法及装置
WO2012024989A1 (zh) 承载释放方法及系统
WO2009140917A1 (zh) 建立用户面单隧道的方法、系统及其基站子系统
WO2016000172A1 (zh) 网络设备及分配接入点名称的方法
WO2016205997A1 (zh) 一种寻呼的方法及装置
WO2011026391A1 (zh) 服务网关的负载重分配方法、系统及服务网关
JPWO2017029908A1 (ja) 無線通信システム、無線基地局、移動管理エンティティ、ユーザ装置及び通信制御方法
JPWO2017029909A1 (ja) 無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法
WO2020173146A1 (zh) 一种切换处理的方法、相关设备、程序产品以及存储介质
WO2019034021A1 (zh) 一种异系统互操作的方法及装置
WO2011150649A1 (zh) 分组数据网关重分配的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014890344

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014890344

Country of ref document: EP