WO2012122910A1 - 一种双通道通信方法和系统 - Google Patents

一种双通道通信方法和系统 Download PDF

Info

Publication number
WO2012122910A1
WO2012122910A1 PCT/CN2012/072003 CN2012072003W WO2012122910A1 WO 2012122910 A1 WO2012122910 A1 WO 2012122910A1 CN 2012072003 W CN2012072003 W CN 2012072003W WO 2012122910 A1 WO2012122910 A1 WO 2012122910A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearer
sgw
mme
dual
user
Prior art date
Application number
PCT/CN2012/072003
Other languages
English (en)
French (fr)
Inventor
朱进国
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012122910A1 publication Critical patent/WO2012122910A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the present invention relates to the field of communications, and in particular, to a two-channel communication method and system. Background technique
  • 3GPP 3rd Generation
  • the Partnership Project (3rd Generation Partnership Project) defines the LTE (Long Term Evolution) system and the EPC (Evolved Packet Core) of the GPRS (General Packet Radio Service).
  • LTE Long Term Evolution
  • EPC Evolved Packet Core
  • GPRS General Packet Radio Service
  • Radio Access Network/GSM EDGE Radio Access Network the radio network controller of the Global System for Mobile Communications (WLAN), which is responsible for the allocation and scheduling of UTRAN/GERAN radio resources, and establishes and maintains the RRC connection function to the terminal (UE).
  • the RNC/BSC is connected to the core network service GPRS support node (SERVICING GPRS SUPPORT NODE, SGSN) through the Iu/A interface.
  • the UTRAN/GERAN is a GPRS wireless network, UTRAN stands for 3G, and GERAN stands for 2G.
  • the evolved NodeB can provide higher uplink and downlink rates, lower transmission delays, and more reliable wireless transmission over UTRAN/GERAN on the air interface.
  • the eNodeB provides radio resources for terminal access and establishes a SI control plane link with the core network Mobility Management Entity (MME).
  • MME Mobility Management Entity
  • the SGSN is a control plane entity and is mainly responsible for the processing of control signaling.
  • the SGSN is responsible for temporarily storing 2G/3G user data, and is responsible for managing and maintaining the UE context (such as the UE's user identity, mobile Sex management status, user security context, etc., assigns Temporate Mobile Subscription Identity (P-TMSI), and is responsible for authentication when the user accesses from UTRAN/GERAN.
  • P-TMSI Temporate Mobile Subscription Identity
  • the MME is also a control plane entity, a server for temporarily storing user data, and is responsible for managing and storing UE contexts (such as UE/user identity, mobility management state, user security parameters, etc.), and assigning a temporary identifier GUTI (Globally Unique Temporary Identity) to the user. , the only temporary identifier in the world), responsible for authenticating users when accessing from LTE.
  • UE contexts such as UE/user identity, mobility management state, user security parameters, etc.
  • GUTI Globally Unique Temporary Identity
  • the System Architecture Evolution GW (SAE Gateway or SAE GW) is a user plane entity responsible for user plane data routing processing.
  • the SAE GW is generally classified into a Serving Gateway (SGW) and a Packet Data Network Gateway (PDN GW, PDW).
  • SGW Serving Gateway
  • PDN GW Packet Data Network Gateway
  • the Serving GW is responsible for the mobility anchor between the LTE and the UMTS, and the downlink data triggers the MME and the SGSN paging in the idle state; the PDN GW is responsible for the gateway function of the UE accessing the PDN (Packet Data Network).
  • the user assigns a User IP (Internet Protocol) address.
  • the PDN GW and the Serving GW may be combined in one physical entity.
  • UE User Equipment
  • UE has the capability of accessing UTRAN/GERAN and LTE wireless networks.
  • the UE can only reside in one wireless system at the same time due to capacity limitation and energy saving requirements.
  • This type of camping can be called Single Radio, for example, when the UE resides in LTE.
  • the paging message cannot be received from the UTRAN/GERAN; or the user can only initiate the service in one access system at the same time.
  • 3 GPP defines a number of single radio mobile management processes.
  • the main features of the mechanism are: The dual-mode terminal can be registered at the same time in the SGSN and the MME; when the user reselects the new wireless access system, if the current cell is already registered, the location update is not initiated; in the idle mode, the core network The current camped cell of the user cannot be known, so the Serving GW needs to initiate paging to the SGSN and the MME at the same time, and the user responds in a radio access technology and establishes a radio bearer.
  • the ISR establishment process is as shown in FIG. 2, and the process includes the following steps:
  • Step 201 After the dual-mode terminal is powered on, the LTE module finds that the user is in the LTE coverage area, and the LTE module selects a suitable cell, initiates an RRC setup request to the eNodeB to establish an RRC connection, and then initiates a registration request, where the request carries the user permanent user identifier. , such as the International Mobile Subscriber Identity (IMSI);
  • IMSI International Mobile Subscriber Identity
  • Step 202 The eNodeB selects an appropriate MME to forward the registration request to the selected MME.
  • the MME initiates an authentication process. If the authentication succeeds, the MME obtains user subscription data from the HSS and performs subscription data check.
  • Step 203 If the MME subscription data check succeeds, select the corresponding PDN GW and the Serving GW, and then initiate a create session request to the Serving GW.
  • Step 204 The Serving GW allocates user plane tunnel information, and then forwards a create session request to the PDN GW, where the request carries the user plane tunnel information of the Serving GW.
  • Step 205 The PDN GW allocates user plane tunnel information, and returns a Serving GW to create a session response. After the negotiation, the user plane tunnel between the Serving GW and the PDN GW is successfully established.
  • Step 206 The Serving GW allocates user plane tunnel information to the S1-U interface, returns the MME to create a session response, and the MME saves the S 1 -U user plane tunnel information of the Serving GW.
  • Step 207 The MME requests according to quality of service (QoS) information returned by the PDN GW.
  • QoS quality of service
  • the eNodeB establishes the radio resources of the user plane. In this way, the UE passes through the eNodeB to the Serving GW and then to the user plane channel of the PDN GW.
  • Step 208 The MME allocates a temporary user identifier GUTI, and returns an eNodeB registration response, where the response carries the GUTI.
  • Step 209 the eNodeB returns a registration response to the UE.
  • Step 210 The MME sends the S1-U user plane tunnel information allocated by the eNodeB to the Serving GW in the bearer update request.
  • Step 211 The Serving GW saves the S1-U user plane tunnel information, and returns an MME bearer update response.
  • the IP address of the user may be allocated by the PDN GW in step 205 and then returned to the UE through the MME; or may be obtained by the UE in other manners after step 209.
  • the dual mode terminal completes the access process in LTE.
  • Step 212 The dual-mode terminal finds that the current LTE signal is insufficient, but the 2G/3G signal is good, and then performs cell selection to select a 2G/3G cell; then establishes an RRC connection to the RNC/BSC and initiates an RAU process, where the process involves
  • the tracking area update request message carries the GUTI allocated by the MME, and an indication of whether the UE supports the ISR capability.
  • Step 213 The RNC/BSC selects an appropriate SGSN and forwards the RAU to the SGSN.
  • Step 214 The SGSN finds the MME that allocates the GUTI according to the received GUTI, and then initiates an acquisition context request to the MME, where the request message includes an indication of whether the SGSN supports the ISR capability.
  • Step 215 The MME finds the user context according to the GUTI, and then returns an acquisition context response including the user context to the SGSN.
  • the context includes the selected Serving GW, PDN GW, and all bearer information (QoS information, bearer Id, etc.).
  • Step 216 The SGSN authenticates the user and determines whether to reselect the new Serving GW. If the authentication succeeds and the new Serving GW is not reselected, the SGSN may decide to enable the ISR. The SGSN then returns a Get Context Acknowledge message to the MME with an ISR already activated indication.
  • Step 217 The SGSN initiates a bearer update request to the Serving GW, where the address information of the Serving GW is obtained from the MME, where the ISR indication is activated.
  • Step 218 the Serving GW updates the user context, saves the control plane tunnel information of the SGSN, and creates a new Iu-U user plane tunnel.
  • the control plane tunnel information of the MME is reserved, and the user plane tunnel of the S1-U is deleted.
  • the SGW returns a bearer update response with an ISR activation indication.
  • Step 219 The SGSN acquires user subscription data from the HSS, and performs a contract check. After that
  • the SGSN allocates the temporary user identity P-TMSI, P-TMSI signature (signature), and returns the RNC/BSS routing area update response with the assigned P-TMSI, P-TMSI signature, and ISR activation flag.
  • Step 220 The RNC/BSS returns a routing area update response to the UE, and the UE saves the P-TMSL P-TMSI signature therein.
  • the UE finds that the network has activated the ISR, and sets the Temporary Identity used in Next update (TIN) to "RAT-Related TMSI".
  • the TIN is set to "RAT-Related TMSI", indicating that the ISR has been activated.
  • TINS is set to "GUTI", indicating that the ISR is not activated.
  • the user accesses in LTE ⁇ UTRAN ⁇ GERAN, the user must use the GUTI assigned by the MME to identify the user. If the user accesses from the UTRA GERAN, the SGSN will be triggered to obtain the MME. Context, advance Line context synchronization.
  • the TIN is set to "P-TMSI", indicating that the ISR is not activated.
  • P-TMSI When the user accesses in LTE ⁇ UTRAN ⁇ GERAN, the user must use the P-TMSI allocated by the SGSN to identify the user. If the user accesses from LTE, the MME will be triggered. Go to the SGSN to get the context and perform context synchronization.
  • the 3GPP system defines that the ISR may not be activated in the case where the MME/SGSN does not activate the ISR flag in the location update response, and sets the TIN to GUTI or P-TMSI: the Serving GW has changed; The MME moves to the new MME or moves from the SGSN to the SGSN. The ISR is activated only when moving across the access system. When the UE finds that the user bearer context changes in the access system, the ISR needs to be deactivated and the TIN is set to GUTK. Residing in LTE) or P-TMSI (residing in 2G/3G), this enables host context synchronization to be initiated when user location updates are activated.
  • LTE Long Term Evolution
  • P-TMSI residing in 2G/3G
  • the terminal's LTE and 2G/3G are Single Radio.
  • the same terminal can achieve dual radio between 2G/3G and LTE, for example, it can be connected at the same time.
  • the benefits of sending and receiving data into the system are as follows: The terminal can simultaneously send and receive data from two access systems, increasing bandwidth; when the user is at the edge of an access system, cross-system switching is not required, which can improve the user experience.
  • the main object of the present invention is to provide a two-channel communication method and system to support dual radio terminal access.
  • a two-channel communication method including:
  • the SGW saves the control plane information of the MME and the SGSN and the user plane information of the S1-U when the user first accesses from the long-term evolution LTE system and then accesses in the 2G/3G, and the anchor points to the serving gateway SGW and establishes dual channels. .
  • the SGW determines that the bearer needs to pass through both 2G/3G and LTE, it decides to start dual channel, and performs the following operations on the bearer:
  • the SGW notifies the serving GPRS support node SGSN to establish a 2G/3G radio bearer; the SGSN initiates a 2G/3G radio resource establishment process, and brings the user plane tunnel information allocated by the radio network controller RNC on the Iu-U to the bearer update request. SGW; the SGW sends the different data flows in the bearer to the terminal from different interfaces including the Iu-U and the S1-U according to the policy;
  • the same application stream is routed in the same radio access technology.
  • the SGW stores the control plane information of the MME and the SGSN and the user plane information of the Iu-U when the user first accesses and activates the context from the 2G/3G, accesses the LTE, and connects to the SGW and establishes the dual channel.
  • the SGW determines that the bearer needs to go from 2G/3G and LTE at the same time, it is decided to start the dual channel, and perform the following operations on the bearer:
  • the SGW informs the mobility management entity MME to establish the radio bearer of the LTE; the MME initiates the LTE radio resource establishment process, and brings the user plane tunnel information allocated by the evolved base station eNodeB on the S1-U to the SGW in the bearer update request; the SGW according to the policy Different data streams in the bearer are sent to the terminal from different interfaces including Iu-U and S 1 -U;
  • the same application stream is routed in the same radio access technology.
  • a processing method is that the uplink and downlink data are transmitted in the same radio.
  • the SGW needs to notify the terminal UE of the corresponding uplink routing information during the initiated bearer modification process;
  • the second processing method is that all uplink data is transmitted from a radio bearer, and the radio bearer is determined by the terminal according to the configuration.
  • the method further includes a registration process of the UE, in which the UE informs the MME of its dual channel capability, and the MME selects the dual-channel SGW according to the capability.
  • the interaction message of the cell selection and the bearer update in the terminal involved in the method includes an indication of whether the terminal supports the dual channel capability.
  • a two-channel communication method in which two wireless controller user plane tunnel information of two access systems for two-channel communication are stored for the same bearer of the same user; the method includes: a registration process at the UE The UE informs the MME of its dual channel capability, and the MME selects the SGW supporting the dual channel according to the capability.
  • the interaction message of the cell selection and the bearer update in the terminal involved in the method includes an indication of whether the terminal supports the dual channel capability.
  • a two-channel communication system comprising an SGW, a packet data network gateway PDW, wherein the SGW is configured to store two radio controls for two access systems for dual channel communication for the same bearer of the same user User plane tunnel information;
  • the SGW saves the control plane information of the MME and the SGSN and the S1-U tunnel information when the user first accesses from the LTE system and then accesses the 2G/3G, and the anchor points to the SGW and establishes dual channels.
  • the SGW uses In:
  • the SGW When the SGW decomposes the bearer stream, it is used to: Route the same application flow in the same wireless access technology.
  • the SGW is used to store the control plane information of the MME and the SGSN and the Iu-U tunnel information when the user first accesses and activates the context from the 2G/3G, and then accesses the LTE and connects to the SGW and establishes dual channels.
  • the SGW decides that the bearer needs to go from 2G/3G and LTE at the same time, the SGW is used to:
  • the SGW When the SGW decomposes the bearer stream, it is used to: Route the same application flow in the same wireless access technology.
  • the SGW decides to start the dual channel, it is used to perform either of the following two processing methods:
  • a processing method is that the uplink and downlink data are transmitted in the same radio.
  • the SGW needs to notify the UE of the corresponding uplink routing information in the process of the bearer modification initiated.
  • the second processing method is that all uplink data is transmitted from a radio bearer, and the radio bearer is determined by the terminal according to the configuration.
  • the system further includes a UE, configured to notify its dual channel capability during the registration process.
  • the MME triggers the MME to select a dual-channel SGW according to the capability.
  • the interaction message of the cell selection and the bearer update of the terminal involved in the system includes an indication of whether the terminal supports the dual channel capability.
  • a dual-channel communication system including a UE, is configured to notify the MME of its dual-channel capability during the registration process, and trigger the MME to select a dual-channel SGW according to the capability.
  • the interaction message of the cell selection and the bearer update of the terminal involved in the system includes an indication of whether the terminal supports the dual channel capability.
  • the present invention can store two wireless controller user plane tunnel information for two access systems of two-channel communication for the same bearer of the same user; receive downlink data on the bearer, and decide to transmit The user plane of the data access system transmits the data to the corresponding wireless controller through the tunnel of the user plane.
  • the UE may inform the MME of its dual channel capability, and the MME selects the SGW supporting the dual channel according to the capability.
  • the dual channel communication technology of the present invention can support dual channel terminal access.
  • FIG. 1 is a schematic diagram of a network system framework applied to the present invention
  • FIG. 2 is a flow chart of a user accessing and starting ISR in LTE and then in 2G/3G;
  • FIG. 3 is a first embodiment of the present invention, where a user first accesses from LTE, and then accesses in 2G/3G, anchor Point to the SGW and establish a dual channel flow chart;
  • FIG. 4 is a flowchart of a method in which a user first accesses and activates a context from 2G/3G, accesses in LTE, anchors to an SGW, and establishes a dual channel according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a two-channel communication process according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a dual mode terminal according to an embodiment of the present invention. detailed description
  • the invention provides a core network solution supporting dual radio terminal access, and the characteristics of the solution
  • the 2G/3G and LTE anchors are in the Serving GW, and the ISR-related mechanisms are reused.
  • the SGW saves the user plane tunnel information of the two wireless controllers of the two access systems.
  • the SGW receives the downlink data from the PGW on the bearer, determines according to which policy the data is transmitted from the user plane of the access system, and transmits the data to the corresponding wireless controller through the determined user plane tunnel.
  • Figure 3 is the user first access from LTE, then access in 2G/3G, anchor point to
  • the SGW also establishes a two-channel flow chart, which includes the following steps:
  • Step 301 After the dual-mode terminal is powered on, the LTE module finds that the user is in the LTE coverage area, and the LTE module selects a suitable cell, and initiates a registration process in the LTE. Then, the UE registers in the MME, and the MME establishes a user default bearer context; the UE saves the GUTI allocated by the MME, and saves the IP address allocated to the UE. During the registration process, the UE needs to inform its own dual-channel capability to the MME, and then the MME selects a two-channel Serving GW according to the capability.
  • Step 302 The 2G/3G module in the dual-mode terminal discovers that there is a wireless signal, and then performs cell selection, establishes an RRC connection to the RNC/BSC, and initiates an RAU process, where the routing area update request message involved in the process is allocated by LTE. GUTI. The message also has an indication of whether the UE supports dual channel capability.
  • Step 303 The RNC/BSC selects an appropriate SGSN and forwards the RAU to the SGSN.
  • Step 306 The SGSN finds the MME that allocates the GUTI according to the received GUTI, and then initiates an acquisition context request to the MME, where the request message includes an indication of whether the SGSN supports the ISR capability.
  • Step 305 The MME finds the user context according to the GUTI, and then returns an acquisition context response including the user context to the SGSN.
  • the context includes the selected Serving GW, PDN GW, and all bearer information (QoS information, bearer Id, etc.). After this step, the bearer between the MME and the SGSN is synchronized.
  • the response includes an indication of whether the MME supports the ISR capability.
  • Step 306 The SGSN authenticates the user and decides whether to reselect the new Serving GW. If the authentication succeeds and the new Serving GW is not reselected, and the MME also supports the ISR, the SGSN may decide to enable the ISR. Then, the SGSN returns a Get Context Confirmation message to the MME with the ISR already activated indication.
  • Step 307 The SGSN sends a bearer update request to the Serving GW.
  • the address information of the Serving GW is obtained from the MME, where the ISR indication is activated, and the request message also has an indication of whether the terminal supports the dual channel capability.
  • Step 308 the Serving GW updates the user context, saves the control plane tunnel information of the SGSN, and creates a new Iu-U user plane tunnel. If the SGSN indicates that the terminal supports dual channels, and the Serving GW also supports dual channels, the Serving GW needs to retain the control plane tunnel information of the MME while preserving the user plane tunnel of the S1-U.
  • the SGW returns an SGSN bearer update response with an ISR activation indication.
  • the bearer in the SGSN is in the Idle state, and the Serving GW only saves the tunnel information allocated by itself on the Iu-U, and there is no user plane tunnel information of the S1-U on the RNC.
  • Step 309 The SGSN acquires user subscription data from the HSS, and performs a contract check.
  • the SGSN allocates the temporary user identity P-TMSI, P-TMSI signature, and returns a routing area update response to the RNC/BSS with the assigned P-TMSI, P-TMSI signature, and ISR activation flag.
  • Step 310 The RNC/BSS returns a routing area update response to the UE, and the UE saves the P-TMSL P-TMSI signature therein.
  • the UE finds that the network has activated the ISR, and then sets the TIN to "RAT-Related TMSI".
  • the dual-mode terminal registers with the SGSN and the MME at the same time, and establishes an ISR mechanism.
  • the Serving GW also stores two user plane tunnel information of the S1-U and Iu-U allocated by itself.
  • Step 311 The Serving GW determines whether the bearer route is to go from LTE according to the policy, or to go from 2G/3G, or to go from LTE and 2G/3G.
  • Step 312 If the Serving GW determines that the bearer needs to go from the LTE, because the LTE side has established the wireless air interface bearer, the process ends here.
  • Step 313 If the Serving GW determines that the bearer needs to go from the 2G/3G, then: Step 313a, the Serving GW needs to notify the SGSN to re-establish the 2G/3G radio bearer, for example: Serving GW initiates the modification.
  • Step 313b The SGSN initiates a 2G/3G radio resource establishment process.
  • Step 313c The SGSN sends the user plane tunnel information allocated by the RNC on the Iu-U to the Serving GW in the bearer update request, and is saved by the Serving GW.
  • Step 313 the Serving GW deletes the S1-U tunnel information of the bearer on the eNodeB, and notifies the MME to delete the radio resource that is carried on the LTE side.
  • Step 313e The MME deletes the radio resource of the bearer on the eNodeB.
  • the Serving GW sends the downlink data from the 2G/3G to the UE.
  • Step 314 if the Serving GW decides that the bearer needs to go from 2G/3G and LTE at the same time, it decides to start the dual channel:
  • the Serving GW needs to notify the SGSN to establish a 2G/3G radio bearer, such as: The Serving GW initiates a modification process.
  • Step 314b the SGSN initiates a 2G/3G radio resource establishment process.
  • Step 314c The SGSN sends the user plane tunnel information allocated by the RNC on the Iu-U to the Serving GW in the bearer update request, and is saved by the Serving GW.
  • the S1-U interface and the Iu-U interface of the Serving GW and the corresponding radio bearers are established; afterwards, the Serving GW uses different data flows in the bearer according to the policy (Iu-U and S1-U). ) Issued to the terminal.
  • the Serving GW decomposes the bearer stream, the flow of the same application needs to be routed in the same radio access technology, so that the terminal can avoid The same application's packets come from two wireless modules and cause out-of-order problems.
  • the terminal can correspond to the application through different port numbers.
  • the Serving GW decides to start the dual channel
  • One processing method is that the uplink and downlink data are transmitted in the same wireless.
  • the bearer modification process initiated by the Serving GW in step 314 needs to be performed.
  • the corresponding uplink routing information is sent to the UE.
  • the second processing method is that all uplink data is transmitted from one radio bearer, and which radio bearer transmits uplink data, which is determined by the terminal according to the configuration.
  • the Serving GW can simultaneously transmit data to two access systems, and the data is combined in the UE.
  • the UE can select any one of the access systems to send uplink data.
  • FIG. 4 is a flowchart of a user first accessing and activating a context from 2G/3G, accessing in LTE, anchoring to an SGW, and establishing a dual channel. The process includes the following steps:
  • Step 401 After the dual-mode terminal is powered on, the 2G/3G module finds that the user is in the 2G/3G coverage range, and the 2G/3G module selects a suitable cell, and initiates the registration process in the 2G/3G.
  • the SGSN authenticates the UE, acquires the user context from the HSS, and performs a subscription check. After that, the SGSN allocates the P-TMSI, the P-TMSI signature, and brings the UE to the registration response. In this process, the UE needs to inform its SGSN of its dual channel capability.
  • Step 402 The UE initiates a PDP context activation process, and the SGSN selects a suitable Serving GW and a PDN GW according to the dual channel capability of the UE, and sends an activation request to the Serving GW and the PDN GW.
  • the PDN GW allocates the user IP address and passes the IP address through Serving.
  • the GW and the PDN GW are returned to the terminal.
  • the SGSN establishes a 2G/3G radio bearer for the bearer, and the Serving GW retains the user plane tunnel information of the Iu-U, and the PDN GW communicates with the UE through the Serving GW and through the 2G/3G.
  • Step 403 The LTE module in the dual-mode terminal discovers that there is a wireless signal, and then performs cell selection, establishes an RRC connection to the eNodeB, and initiates a TAU process, where the tracking area involved in the process is further
  • the new request message carries the P-TMSI and P-TMSI signature allocated in the 2G/3G LTE, and the request message also carries an indication of whether the UE supports the dual channel capability.
  • the eNodeB selects the appropriate MME and forwards the TAU to the MMEo.
  • Step 404 The MME finds the SGSN that allocates the P-TMSI according to the received P-TMSI, and then initiates an acquisition context request to the SGSN, where the request message carries an indication of whether the MME supports the ISR capability.
  • Step 405 The SGSN finds the user mobility context according to the P-TMSI and the P-TMSI signature.
  • the following includes the selected Serving GW, the PDN GW, and all bearer information (QoS information, bearer Id, etc.).
  • the bearer between the MME and the SGSN is synchronized.
  • the response includes an indication of whether the SGSN supports ISR capabilities.
  • Step 406 The MME authenticates the user and determines whether to reselect the new Serving GW. If the authentication succeeds and the new Serving GW is not reselected, and the SGSN also supports the ISR, the MME may decide to enable the ISR. The MME then returns a Get Context Acknowledge message to the SGSN with an ISR activated indication.
  • Step 407 The MME initiates an update request to the Serving GW.
  • the address information of the Serving GW is obtained from the SGSN, and the activation ISR indication is also included, and the request message also has an indication of whether the terminal supports the dual channel capability.
  • Step 408 The Serving GW updates the user context, saves the control plane tunnel information of the MME, and creates a new S1-U user plane tunnel. If the MME indicates that the terminal supports dual channels, and the Serving GW also supports dual channels, the Serving GW needs to retain the control plane tunnel information of the SGSN while retaining the user plane tunnel of the Iu-U.
  • the Serving GW returns a bearer update response to the MME with an ISR activation indication. After that, the bearer in the MME is in the Idle state, and the Serving GW only stores the tunnel information allocated by itself on the S1-U, and there is no user plane tunnel information of the S1-U on the eNodeB.
  • Step 409 The MME acquires user subscription data from the HSS, and performs a subscription check.
  • the MME allocates a temporary user identity GUTI and returns an eNodeB tracking area update response with the assigned GUTI and the ISR activation flag.
  • Step 410 The eNodeB returns a UE tracking area update response, and the UE saves the GUTI.
  • the dual-mode terminal registers with the SGSN and the MME at the same time, and establishes an ISR mechanism.
  • the Serving GW also stores two user plane tunnel information of S1-U and Iu-U.
  • Step 411 The Serving GW determines, according to the policy, whether the route of the bearer goes from LTE, or from 2G/3G, or from two channels of LTE and 2G/3G.
  • Step 412 If the Serving GW determines that the bearer needs to go from the 2G/3G, because the 2G/3G side has established the wireless air interface bearer, the process ends here.
  • Step 413 If the Serving GW determines that the bearer needs to go from the LTE, then: Step 413a, the Serving GW needs to notify the MME to re-establish the radio bearer of the LTE, for example, the Serving GW initiates the modification.
  • Step 313b The MME initiates an LTE radio resource establishment process.
  • Step 313c The MME sends the user plane tunnel information allocated by the eNodeB on the S1-U to the Serving GW in the bearer update request, and is saved by the Serving GW.
  • Step 313d the Serving GW deletes the Iu-U tunnel information of the bearer on the RNC, and notifies
  • the SGSN deletes the radio resource carried on the 2G/3G side.
  • Step 313e The SGSN deletes the radio resource of the bearer on the 2G/3G.
  • the Serving GW sends the downlink data from the LTE to the UE.
  • Step 414 if the Serving GW decides that the bearer needs to go from 2G/3G and LTE at the same time, it decides to start the dual channel:
  • the Serving GW needs to notify the MME to establish an LTE radio bearer, such as: Serving GW initiates the modification process.
  • Step 414b ⁇ initiate an LTE radio resource establishment process.
  • Step 414c The MME sends the user plane tunnel information allocated by the eNodeB on the S1-U to the Serving GW in the bearer update request, and is saved by the Serving GW.
  • the S1-U interface and the Iu-U interface of the Serving GW and the corresponding radio bearers are established; afterwards, the Serving GW uses different data flows in the bearer according to the policy (Iu-U and S1-U). ) Issued to the terminal.
  • the Serving GW decomposes the bearer stream, the flow of the same application needs to be routed in the same radio access technology, so that the terminal can avoid the out-of-order problem caused by the data packets of the same application coming from the two radio modules.
  • the terminal can correspond to the application through different port numbers.
  • the Serving GW decides to start the dual channel
  • One processing method is that the uplink and downlink data are transmitted in the same wireless.
  • the bearer modification process initiated by the Serving GW in step 414 needs to be performed.
  • the corresponding uplink routing information is sent to the UE.
  • the second processing method is that all uplink data is transmitted from one radio bearer, and which radio bearer transmits uplink data, which is determined by the terminal according to the configuration.
  • the above embodiment includes only some of the steps associated with the present invention, and some steps unrelated to the present invention (such as obtaining contract data from the HSS) are not described in detail.
  • the operation idea of the two-channel communication of the present invention can represent the flow shown in FIG. 5, and the process includes the following steps:
  • Step 510 Save two user plane tunnel information of two wireless controllers for two access systems for two-channel communication for the same bearer of the same user.
  • Step 520 Receive downlink data on the bearer, determine a user plane of the access system for transmitting the data, and transmit the data to the corresponding wireless controller through the tunnel of the user plane.
  • both step 510 and step 520 are implemented by the SGW, that is: for the same bearer of the same user, the SGW is saved for the dual Channel-communication of two wireless controller user plane tunnel information for two access systems.
  • the SGW receives the downlink data from the PGW on the bearer, and the SGW determines the user plane of the access system for transmitting the data according to the policy, and transmits the data to the corresponding wireless controller through the tunnel of the user plane.
  • a terminal supporting dual-channel communication includes at least four modules: an application layer module, a 2G/3G wireless module, an LTE wireless module, and a dual-mode management module. These four modules are capable of implementing the logical structure shown in Figure 6.
  • the application layer module is used to manage the application layer
  • the 2G/3G wireless module and the LTE wireless module respectively include a 2G/3G module protocol stack and an LTE module protocol stack
  • the dual mode management module is used for the dual mode management layer. management.
  • the data packet forwarding function of the wireless module and the application layer module needs to be completed: for the downlink data sent from the network, corresponding to the dotted line in FIG. 6, the module corresponds to the specific application by the port number of the data packet; Applying the uplink data to the network, corresponding to the solid line, there are two ways to deal with it:
  • Dual-mode management module configuration 2G/3G wireless module one wireless module in the LTE wireless module is the master module, all uplink data is sent from the master module in dual-channel communication.
  • the dual-mode management module maintains an access filter that indicates which flows need to go from LTE and which flows need to go from 2G/3G. This filter is delivered by the network.
  • the functions that the dual-mode management module also needs to accomplish are: When the user is in the coverage of 2G/3G and LTE at the same time, the user is prevented from simultaneously initiating the registration process, and the wireless module is registered according to the configuration priority.
  • the user can first access from the LTE system, and then access in the 2G/3G, and the SGW saves the control plane information of the MME and the SGSN and the S1-U tunnel information when the anchor is connected to the SGW and the dual channel is established.
  • the SGW decides that the bearer needs to pass both 2G/3G and LTE, the SGW is used to: decide to start the dual channel, notify the SGSN to establish the 2G/3G radio bearer; trigger the SGSN to initiate 2G/3G radio resource establishment process, and the user plane tunnel information allocated by the RNC on the Iu-U is brought to the SGW in the bearer update request; the SGW selects different data streams in the bearer according to the policy from the Iu-U and the S1- The different interfaces are sent to the terminal.
  • the SGW is used to: route the traffic of the same application in the same radio access technology.
  • the user can also access and activate the context from the 2G/3G, and then access the LTE, and the SGW is used to store the control plane information of the MME and the SGSN and the Iu-U tunnel information.
  • the SGW determines that the bearer needs to go from 2G/3G and LTE at the same time, the SGW is configured to: initiate dual channel, notify the MME to establish an LTE radio bearer; trigger the MME to initiate an LTE radio resource establishment process, and the eNodeB is in the S1-U
  • the user plane tunnel information allocated in the bearer is sent to the SGW in the bearer update request; the SGW sends the different data flows in the bearer to the terminal from different interfaces including the Iu-U and the S1-U according to the policy; the SGW is decomposing the bearer.
  • streaming it is used to: For the same application stream, route in the same radio access technology.
  • a processing method is that the uplink and downlink data are transmitted in the same radio.
  • the SGW needs to notify the UE of the corresponding uplink routing information in the process of the bearer modification initiated.
  • the second processing method is that all uplink data is transmitted from a radio bearer, and the radio bearer is determined by the terminal according to the configuration.
  • the UE may inform the MME of its dual channel capability, and the MME selects the SGW supporting the dual channel according to the capability.
  • the indication of whether the terminal supports the dual channel capability is included.
  • the system of the present invention may include a UE, configured to inform the MME of its dual channel capability during the registration process, and trigger the MME to select a dual-channel SGW according to the capability.
  • the interaction message that the terminal involved in the system performs cell selection and bearer update includes an indication of whether the terminal supports dual channel capability.
  • the dual channel communication technology of the present invention can support dual radio terminal access, whether it is a method or a system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种双通道通信方法和系统,对于同一个用户的同一个承载,均可保存用于双通道通信的两个接入系统的两个无线控制器用户面隧道信息;在所述承载上收到下行数据,决定用以传递该数据的接入系统的用户面,将所述数据通过该用户面的隧道传递给对应的无线控制器。另外,在UE的注册过程中,UE可以将自身的双通道能力告知MME,MME根据该能力选择支持双通道的SGW。本发明的双通道通信技术,能够支持双通道终端接入。

Description

一种双通道通信方法和系统 技术领域
本发明涉及通信领域, 具体涉及一种双通道通信方法和系统。 背景技术
为了更好的满足用户对无线连接带宽的需求, 3GPP ( 3rd Generation
Partnership Project,第三代合作伙伴计划)定义了 GPRS( General packet radio service, 通用分组无线业务) 的 LTE ( Long Term Evolution, 长期演进) 系 统和 EPC ( evolved Packet Core, 演进的分组核心网), 其架构如图 1所示, 其中:
无线网络控制器 ( Radio Network Controller/Base Station Controller, astern
Radio Access Network/GSM EDGE Radio Access Network, 全球移动通信系 统无线接入网 )的无线网络控制器, 主要负责 UTRAN/GERAN无线资源的 分配和调度, 建立并维护到终端 (UE ) 的 RRC连接功能。 RNC/BSC通过 Iu/A接口和核心网服务 GPRS 支持节点 (SERVICING GPRS SUPPORT NODE, SGSN )相连。所述 UTRAN/GERAN是 GPRS的无线网络, UTRAN 代表 3G, GERAN代表 2G。
演进基站 ( evolved NodeB , eNodeB ) 可以在空口上提供比 UTRAN/GERAN更高的上下行速率, 更低的传输延迟和更加可靠的无线传 输。 eNodeB 为终端的接入提供无线资源, 同时和核心网移动性管理实体 ( Mobility Management Entity, MME )之间建立 SI控制面链接。
SGSN是控制面实体, 主要负责控制信令的处理。 SGSN负责临时存储 2G/3G用户数据, 负责管理和维护 UE上下文(比如 UE的用户标识、 移动 性管理状态、 用户安全上下文等), 分配用户临时标识 (P-TMSI, Packet Temperate Mobile Subscription Identity ), 并负责用户从 UTRAN/GERAN接 入时候的鉴权。
MME也是控制面实体, 用于临时存储用户数据的服务器, 负责管理和 存储 UE上下文(比如 UE/用户标识、移动性管理状态、用户安全参数等), 为用户分配临时标识 GUTI ( Globally Unique Temporary Identity, 全球唯一 临时标识), 负责用户从 LTE接入时对用户进行鉴权。
SAE网关 ( System Architecture Evolution GW, SAE Gateway或 SAE GW )是用户面实体, 负责用户面数据路由处理。 SAE GW—般分为服务网 关(Serving GW, SGW )和分组数据网网关( PDN GW, PDW )。 其中, Serving GW负责 LTE和 UMTS之间移动性的锚点,在空闲状态下下行数据 触发 MME和 SGSN寻呼; PDN GW负责 UE接入 PDN( Packet Data Network, 分组数据网)的网关功能,为用户分配用户 IP ( Internet Protocol, 网际协议 ) 地址。 PDN GW和 Serving GW可能合设在一个物理实体中。
用户设备 ( User Equipment, UE )具有接入 UTRAN/GERAN和 LTE两 种无线网络的能力。 在现有系统中, UE由于能力限制以及节能需求, 在同 一个时刻只能驻留在一个无线系统中, 这种驻留方式可称为单通道(Single Radio ), 比如当 UE驻留在 LTE下时, 此时无法从 UTRAN/GERAN收到寻 呼消息; 或者用户在同一时刻只能在一个接入系统中发起业务。 为了支持 single radio, 3 GPP定义了很多 single radio的移动管理流程。
用户在空闲模式下移出已经注册的位置区, 或者重新选择另一个无线 接入技术时, 用户需要发起位置更新过程。 如果是在 UTRAN/GREAN下, 则发起路由区更新 ( RAU , Routing Area Update ) , 如果是在 LTE下, 则发 起跟踪区更新 ( TAU, Tracking Area Update )。 在 LTE和 UTRAN/GERAN 共同覆盖的区域, 为了避免用户在两个无线接入技术之间来回选择而导致 过多的位置更新, 3GPP引入了空闲模式下减少信令(Idle Mode Signaling Reduction, ISR )机制。 该机制的主要特点是: 双模终端可以在 SGSN 和 MME同时注册; 当用户重新选择新的无线接入系统时, 如果发现当前小区 已经注册, 则不发起位置更新; 在空闲模式下, 核心网无法获知用户当前 的驻留小区, 因此 Serving GW需要同时向 SGSN和 MME发起寻呼, 用户 在一个无线接入技术中响应, 并建立无线承载。
用户首先从 LTE中注册, 然后再接入到 UTRAN/GERAN时, ISR建立 过程如图 2所示, 该过程包括以下步驟:
步驟 201 , 双模终端开机之后, LTE模块发现用户处于 LTE覆盖范围, 则 LTE模块选择合适小区, 向 eNodeB发起 RRC建立请求以建立 RRC连 接, 然后发起注册请求, 该请求中带有用户永久用户标识, 如国际移动用 户识别码 ( IMSI );
步驟 202, eNodeB选择合适的 MME, 将注册请求转发到所选 MME。 根据 3GPP定义的规范, MME启动鉴权过程, 如果鉴权成功, 则 MME向 HSS获取用户签约数据, 并进行签约数据检查。
步驟 203 , MME签约数据检查成功,则选择对应的 PDN GW和 Serving GW , 然后向 Serving GW发起创建会话请求。
步驟 204, Serving GW分配用户面隧道信息, 然后向 PDN GW转发创 建会话请求, 该请求中带有 Serving GW的用户面隧道信息。
步驟 205 , PDN GW分配用户面隧道信息, 返回 Serving GW创建会话 响应。 在通过协商之后成功建立了 Serving GW和 PDN GW之间的用户面 隧道。
步驟 206, Serving GW为 S1-U接口分配用户面隧道信息, 返回 MME 创建会话响应, MME保存 Serving GW的 S 1 -U用户面隧道信息。
步驟 207, MME根据 PDN GW返回的服务质量( QoS )信息, 请求 eNodeB建立用户面的无线资源。 这样, UE通过 eNodeB到 Serving GW再 到 PDN GW的用户面通道就打通了。
步驟 208, MME分配临时用户标识 GUTI, 返回 eNodeB注册响应 , 该 响应中带有该 GUTI。
步驟 209, eNodeB将注册响应返回给 UE。
步驟 210, MME将 eNodeB分配的 S1-U用户面隧道信息携带于承载更 新请求中发送给 Serving GW。
步驟 211 , Serving GW保存 S1-U用户面隧道信息, 并返回 MME承载 更新响应。
用户的 IP地址可以在步驟 205中由 PDN GW分配,然后通过 MME返 回给 UE; 也可以在步驟 209之后, 由 UE通过其他方式获得。 通过上述过 程, 双模终端完成了在 LTE的接入过程。
步驟 212, 双模终端发现当前 LTE信号不足, 但是 2G/3G信号很好, 于是重新进行小区选择, 以选择 2G\3G小区; 然后向 RNC/BSC建立 RRC 连接并发起 RAU过程 , 该过程所涉及的跟踪区更新请求消息中带有 MME 分配的 GUTI, 以及 UE是否支持 ISR能力的指示。
步驟 213 , RNC/BSC选择合适的 SGSN, 将 RAU转发给 SGSN。
步驟 214, SGSN根据收到的 GUTI找到分配该 GUTI的 MME, 然后 向 MME发起获取上下文请求, 该请求消息中带有 SGSN是否支持 ISR能 力的指示。
步驟 215, MME根据 GUTI找到用户上下文, 然后向 SGSN返回包含 用户上下文的获取上下文响应。所述上下文中包含了所选择的 Serving GW、 PDN GW以及所有的承载信息 (QoS信息、 承载 Id等)。
本步驟之后, MME和 SGSN之间的承载实现同步。 所述响应中包括了 MME是否支持 ISR能力的指示。 步驟 216, SGSN对用户进行鉴权, 并决定是否重新选择新的 Serving GW, 如果鉴权成功且不用重新选择新的 Serving GW, 则 SGSN可以决定 启用 ISR。 于是 SGSN向 MME返回获取上下文确认消息,其中带有 ISR已 经激活指示。
步驟 217, SGSN向 Serving GW发起承载更新请求, Serving GW的地 址信息是从 MME获取的, 其中带有激活 ISR指示。
步驟 218, Serving GW更新用户上下文, 保存 SGSN的控制面隧道信 息, 新建 Iu-U用户面隧道。 同时保留 MME的控制面隧道信息, 删除 S1-U 的用户面隧道。 SGW返回承载更新响应, 其中带有 ISR激活指示。
步驟 219, SGSN从 HSS获取用户签约数据, 并进行签约检查。 之后
SGSN分配临时用户标识 P-TMSI、 P-TMSI签名( signature ),返回 RNC/BSS 路由区更新响应, 其中带有已分配的 P-TMSI、 P-TMSI signature以及 ISR 激活标记。
步驟 220, RNC/BSS 向 UE返回路由区更新响应, UE保存其中的 P-TMSL P-TMSI signature。 UE发现网络已经激活 ISR, 于是设置下次更新 临日于 ID ( Temporary Identity used in Next update, TIN ) 为 "RAT-Related TMSI"。
通过上述过程之后, 系统成功建立了 ISR机制。 ISR机制中 TIN的使 用比较关键, 具体而言:
TIN设为" RAT-Related TMSI", 说明已经激活了 ISR, 用户下次从新的 无线接入系统接入时, 接入的用户标识为本系统自身分配的用户标识, 此 时不需要去另外一个系统获取上下文。
TINS 设为 "GUTI" , 说明 没有激活 ISR , 那 么 用 户 在 LTE\UTRAN\GERAN中接入时,必须都用 MME分配的 GUTI来标识用户; 如果用户从 UTRA GERAN接入, 将触发 SGSN去 MME获取上下文, 进 行上下文同步。
TIN 设为 "P-TMSI" , 说明 没有激活 ISR , 那 么 用 户 在 LTE\UTRAN\GERAN中接入时, 必须都用 SGSN分配的 P-TMSI来标识用 户; 如果用户从 LTE接入, 将触发 MME去 SGSN获取上下文, 进行上下 文同步。
为了简化移动性, 3GPP系统定义在如下情况下, 可以不激活 ISR, 即 MME/SGSN在位置更新响应中不带激活 ISR标记,将 TIN设为 GUTI或者 P-TMSI: Serving GW发生了变化;从 MME移动到新的 MME,或者从 SGSN 移动到 SGSN, ISR只在跨接入系统移动时激活; 当 UE发现本接入系统中 用户承载上下文发生了变化,需要去活 ISR,将 TIN设为 GUTK驻留在 LTE ) 或者 P-TMSI (驻留在 2G/3G ), 这样可以在激活用户位置更新时发起承载 上下文同步。
目前, 终端的 LTE和 2G/3G是 Single Radio的。 然而, 随着 UE技术 的发展(比如电池技术以及无线抗干扰技术的逐步成熟), 同一个终端在 2G/3G和 LTE之间能够做到双通道( Dual radio ), 比如能够同时在两个接 入系统下收发数据, 这样的好处是: 终端能够从两个接入系统同时收发数 据, 增加了带宽; 用户处于一个接入系统边缘时, 不需要跨系统切换, 可 以提高用户体验。 但具体如何实现, 目前并没有相应的技术支持。 发明内容
有鉴于此, 本发明的主要目的在于提供一种双通道通信方法和系统, 以支持 dual radio终端接入。
为达到上述目的, 本发明的技术方案是这样实现的:
一种双通道通信方法, 包括:
对于同一个用户的同一个承载, 保存用于双通道通信的两个接入系统 的两个无线控制器用户面隧道信息; 在所述承载上收到下行数据, 决定用以传递该数据的接入系统的用户 面, 将所述数据通过该用户面的隧道传递给对应的无线控制器。
其中, 用户首先从长期演进 LTE系统接入, 再在 2G/3G中接入, 锚点 到服务网关 SGW并建立双通道时, SGW保存 MME和 SGSN的控制面信 息以及 S1-U的用户面信息。
其中, 如果 SGW决定该承载需要同时经由 2G/3G和 LTE, 则决定启 动双通道, 针对所述承载执行如下操作:
SGW通知服务 GPRS支持节点 SGSN建立 2G/3G的无线承载; SGSN 发起 2G/3G无线资源建立过程, 并将无线网络控制器 RNC在 Iu-U上分配 的用户面隧道信息在承载更新请求中带给 SGW; SGW根据策略将该承载 中的不同数据流从包含 Iu-U和 S 1 -U在内的不同接口下发到终端;
SGW在分解承载流时, 对于同一个应用的流, 在同一个无线接入技术 中路由。
其中, 用户首先从 2G/3G接入并激活上下文, 再在 LTE中接入, 锚点 到 SGW并建立双通道时, SGW保存 MME和 SGSN的控制面信息以及 Iu-U 的用户面信息。
其中, 如果 SGW决定该承载需要同时从 2G/3G和 LTE走, 则决定启 动双通道, 针对所述承载执行如下操作:
SGW通知移动性管理实体 MME建立 LTE的无线承载; MME发起 LTE 无线资源建立过程, 并将演进基站 eNodeB在 S1-U上分配的用户面隧道信 息在承载更新请求中带给 SGW; SGW根据策略将该承载中的不同数据流 从包含 Iu-U和 S 1 -U在内的不同接口下发到终端;
SGW在分解承载流时, 对于同一个应用的流, 在同一个无线接入技术 中路由。
其中, 对于上行数据, 当 SGW决定启动双通道之后, 执行以下两种处 理方法中的任一种:
一种处理方法是上下行数据在同一个无线中传递,此时 SGW在发起的 承载修改过程中, 需要将对应的上行路由信息通知给终端 UE;
第二种处理方法是所有上行数据均从一个无线承载传递, 该无线承载 由终端根据配置决定。
其中, 该方法还包括 UE的注册过程, 在该过程中, UE将自身的双通 道能力告知 MME, MME根据该能力选择支持双通道的 SGW。
其中, 在该方法所涉及的终端进行小区选择以及承载更新的交互消息 中, 包含终端是否支持双通道能力的指示。
一种双通道通信方法, 其中, 对于同一个用户的同一个承载, 保存有 用于双通道通信的两个接入系统的两个无线控制器用户面隧道信息; 该方 法包括: 在 UE的注册过程中, UE将自身的双通道能力告知 MME, MME 根据该能力选择支持双通道的 SGW。
其中, 在该方法所涉及的终端进行小区选择以及承载更新的交互消息 中, 包含终端是否支持双通道能力的指示。
一种双通道通信系统, 包括 SGW、 分组数据网网关 PDW, 其中, 所述 SGW, 用于对于同一个用户的同一个承载, 保存用于双通道通信 的两个接入系统的两个无线控制器用户面隧道信息;
以及在所述承载上收到来自 PGW的下行数据,决定用以传递该数据的 接入系统的用户面, 将所述数据通过该用户面的隧道传递给对应的无线控 制器。
其中, 用户首先从 LTE系统接入, 再在 2G/3G中接入, 锚点到 SGW 并建立双通道时, SGW保存 MME和 SGSN的控制面信息以及 S1-U隧道 信息。
其中, 如果 SGW决定该承载需要同时经由 2G/3G和 LTE, 则 SGW用 于:
决定启动双通道, 通知 SGSN建立 2G/3G的无线 载; 触发 SGSN发 起 2G/3G无线资源建立过程, 并将 RNC在 Iu-U上分配的用户面隧道信息 在承载更新请求中带给 SGW; SGW根据策略将该承载中的不同数据流从 包含 Iu-U和 S 1 -U在内的不同接口下发到终端;
SGW在分解承载流时, 用于: 对于同一个应用的流, 在同一个无线接 入技术中路由。
其中, 用户首先从 2G/3G接入并激活上下文, 再在 LTE中接入, 锚点 到 SGW并建立双通道时, SGW用于保存 MME和 SGSN的控制面信息以 及 Iu-U隧道信息。
其中, 如果 SGW决定所述承载需要同时从 2G/3G和 LTE走, 则 SGW 用于:
决定启动双通道, 通知 MME建立 LTE的无线 7|载; 触发 MME发起 LTE无线资源建立过程, 并将 eNodeB在 S1-U上分配的用户面隧道信息在 承载更新请求中带给 SGW; SGW根据策略将该承载中的不同数据流从包 含 Iu-U和 S 1 -U在内的不同接口下发到终端;
SGW在分解承载流时, 用于: 对于同一个应用的流, 在同一个无线接 入技术中路由。
其中, 对于上行数据, 当 SGW决定启动双通道之后, 用于进行以下两 种处理方法中的任一种:
一种处理方法是上下行数据在同一个无线中传递,此时 SGW在发起的 承载修改过程中, 需要将对应的上行路由信息通知给 UE;
第二种处理方法是所有上行数据均从一个无线承载传递, 该无线承载 由终端根据配置决定。
其中, 该系统还包括 UE, 用于在注册过程中将自身的双通道能力告知 MME, 触发 MME根据该能力选择支持双通道的 SGW。
其中, 在该系统所涉及的终端进行小区选择以及承载更新的交互消息 中, 包含终端是否支持双通道能力的指示。
一种双通道通信系统, 包括 UE, 用于在注册过程中将自身的双通道能 力告知 MME, 触发 MME根据该能力选择支持双通道的 SGW。
其中, 在该系统所涉及的终端进行小区选择以及承载更新的交互消息 中, 包含终端是否支持双通道能力的指示。
本发明对于同一个用户的同一个承载, 均可保存用于双通道通信的两 个接入系统的两个无线控制器用户面隧道信息; 在所述承载上收到下行数 据, 决定用以传递该数据的接入系统的用户面, 将所述数据通过该用户面 的隧道传递给对应的无线控制器。 另外, 在 UE的注册过程中, UE可以将 自身的双通道能力告知 MME, MME根据该能力选择支持双通道的 SGW。 本发明的双通道通信技术, 能够支持双通道终端接入。 附图说明
图 1为本发明应用的网络系统框架示意图;
图 2为用户首先从 LTE接入,再在 2G/3G中接入并启动 ISR的流程图; 图 3为本发明实施例的用户首先从 LTE接入, 再在 2G/3G中接入, 锚 点到 SGW并建立双通道的流程图;
图 4为本发明实施例的用户首先从 2G/3G接入并激活上下文,再在 LTE 中接入, 锚点到 SGW并建立双通道的流程图;
图 5为本发明实施例的双通道通信流程简图;
图 6为本发明实施例的双模终端结构示意图。 具体实施方式
本发明提供了支持 dual radio终端接入的核心网方案, 该方案的特点 2G/3G和 LTE的锚点在 Serving GW, 重复利用 ISR相关机制。
在实际应用时, 对于同一个用户的同一个承载, SGW保存两个接入系 统的两个无线控制器用户面隧道信息。
SGW在该承载上收到来自 PGW的下行数据, 根据策略决定该数据从 哪个接入系统的用户面传递, 并将数据通过所决定的用户面隧道传递到对 应的无线控制器中。
下面结合附图对本发明所述方法做进一步详细说明。
参见图 3 , 图 3是用户首先从 LTE接入, 再在 2G/3G中接入, 锚点到
SGW并建立双通道的流程图, 该流程包括以下步驟:
步驟 301 , 双模终端开机之后, LTE模块发现用户处于 LTE覆盖范围, 则 LTE模块选择合适小区 , 并在 LTE内发起注册过程。 之后 , UE在 MME 中登记、 MME建立了用户缺省承载上下文; UE保存有 MME分配的 GUTI, 并且保存为 UE分配的 IP地址。在注册过程中, UE需要将自身的双通道能 力告知 MME, 然后 MME根据该能力选择支持双通道的 Serving GW。
步驟 302, 双模终端中的 2G/3G模块发现有无线信号, 于是进行小区 选择, 向 RNC/BSC建立 RRC连接并发起 RAU过程,该过程所涉及的路由 区更新请求消息中带有 LTE所分配的 GUTI。该消息中还带有 UE是否支持 双通道能力的指示。
步驟 303 , RNC/BSC选择合适的 SGSN, 将 RAU转发给 SGSN。
步驟 304, SGSN根据收到的 GUTI找到分配该 GUTI的 MME, 然后 向 MME发起获取上下文请求, 该请求消息中带有 SGSN是否支持 ISR能 力的指示。
步驟 305, MME根据 GUTI找到用户上下文, 然后向 SGSN返回包含 用户上下文的获取上下文响应。 该上下文中包含了所选择的 Serving GW、 PDN GW以及所有的承载信息 (QoS信息、 承载 Id等)。 本步驟之后, MME和 SGSN之间的承载实现同步。 所述响应中包括 MME是否支持 ISR能力的指示。
步驟 306, SGSN对用户进行鉴权, 并决定是否重新选择新的 Serving GW,如果鉴权成功且不用重新选择新的 Serving GW,且 MME也支持 ISR, 则 SGSN可以决定启用 ISR。 于是, SGSN向 MME返回获取上下文确认消 息, 其中带有 ISR已经激活指示。
步驟 307, SGSN向 Serving GW发起承载更新请求, Serving GW的地 址信息是从 MME获取的, 其中带有激活 ISR指示, 该请求消息中也带有 终端是否支持双通道能力的指示。
步驟 308, Serving GW更新用户上下文, 保存 SGSN的控制面隧道信 息,新建 Iu-U用户面隧道。如果 SGSN指示终端支持双通道,且 Serving GW 也支持双通道, 则 Serving GW需要保留 MME的控制面隧道信息, 同时保 留 S1-U的用户面隧道。 SGW返回 SGSN承载更新响应, 其中带有 ISR激 活指示。
之后, SGSN中承载处于 Idle状态, Serving GW仅保存自身在 Iu-U上 分配的隧道信息, 没有 RNC上 S1-U的用户面隧道信息。
步驟 309, SGSN从 HSS获取用户签约数据, 并进行签约检查。 SGSN 分配临时用户标识 P-TMSI、 P-TMSI signature, 向 RNC/BSS返回路由区更 新响应 , 其中带有分配的 P-TMSI、 P-TMSI signature以及 ISR激活标记。
步驟 310, RNC/BSS 向 UE返回路由区更新响应, UE保存其中的 P-TMSL P-TMSI signature。 UE发现网络已经激活 ISR, 于是设置 TIN为 "RAT-Related TMSI"。
通过上述过程, 双模终端同时在 SGSN和 MME进行了注册, 并建立 了 ISR机制, Serving GW同时保存有自身分配的 S1-U和 Iu-U两个用户面 隧道信息。 步驟 311 , Serving GW根据策略决定承载的路由从 LTE走, 还是从 2G/3G走, 还是同时从 LTE、 2G/3G两个通道走。
步驟 312, 如果 Serving GW决定承载需要从 LTE走, 因为 LTE侧已经 建立了无线空口承载, 那么流程到此结束。
步驟 313 , 如果 Serving GW决定承载需要从 2G/3G走, 那么: 步驟 313a, Serving GW需要通知 SGSN重新建立 2G/3G的无线 载, 如: Serving GW发起 载修改。
步驟 313b, SGSN发起 2G/3G无线资源建立过程。
步驟 313c, SGSN将 RNC在 Iu-U上分配的用户面隧道信息在承载更 新请求中带给 Serving GW, 由 Serving GW保存。
步驟 313d, Serving GW删除 eNodeB上该承载的 S1-U隧道信息, 并 通知 MME删除该承载在 LTE侧的无线资源。
步驟 313e, MME删除 eNodeB上该承载的无线资源。
上述步驟之后, Serving GW将下行数据从 2G/3G发送到 UE。
步驟 314, 如果 Serving GW决定该承载需要同时从 2G/3G和 LTE走, 则决定启动双通道:
步驟 314a, Serving GW需要通知 SGSN建立 2G/3G的无线承载, 如: Serving GW发起修改过程。
步驟 314b, SGSN发起 2G/3G无线资源建立过程。
步驟 314c, SGSN将 RNC在 Iu-U上分配的用户面隧道信息在承载更 新请求中带给 Serving GW , 由 Serving GW保存。
上述步驟之后, Serving GW的 S1-U接口和 Iu-U接口以及对应的无线 承载都已经建立; 之后, Serving GW根据策略将该承载中的不同数据流从 不同接口 (Iu-U和 S1-U )下发到终端。 Serving GW在分解承载流时, 对于 同一个应用的流, 需要在同一个无线接入技术中路由, 这样终端可以避免 同一个应用的数据包来自两个无线模块而导致的乱序问题。 终端可以通过 不同端口号和应用进行对应。
对于上行数据, 当 Serving GW决定启动双通道之后,有两种处理方法, 一种处理方法是上下行数据在同一个无线中传递, 此时 Serving GW在步驟 314中发起的承载修改过程, 需要将对应的上行路由信息通知给 UE; 第二 种处理方法是所有上行数据均从一个无线承载传递, 具体哪个无线承载传 上行数据, 由终端根据配置决定。
通过上述过程,建立了双通道的通信系统:对于一个承载, Serving GW 能同时向两个接入系统下发数据,这些数据在 UE中进行合并。对于上行来 说, UE可以选择任何一个接入系统发送上行数据。
参见图 4, 图 4是用户首先从 2G/3G接入并激活上下文, 再在 LTE中 接入, 锚点到 SGW并建立双通道的流程图, 该流程包括以下步驟:
步驟 401 , 双模终端开机之后, 2G/3G模块发现用户处于 2G/3G覆盖 范围, 则 2G/3G模块选择合适小区, 并在 2G/3G内发起注册过程。 该注册 过程中, SGSN对 UE进行鉴权, 并从 HSS获取用户上下文并进行签约检 查, 之后, SGSN分配 P-TMSI、 P-TMSI signature并在注册响应中带给 UE。 在该过程中, UE需要将自身的双通道能力告知 SGSN。
步驟 402, UE发起 PDP上下文激活过程, SGSN根据 UE的双通道能 力选择合适的 Serving GW和 PDN GW, 并将激活请求发给 Serving GW和 PDN GW; PDN GW分配用户 IP地址并将 IP地址经过 Serving GW和 PDN GW返回给终端。 在该过程中, SGSN为该承载建立 2G/3G的无线承载, Serving GW中保留有 Iu-U的用户面隧道信息, PDN GW经过 Serving GW 并通过 2G/3G和 UE进行通信。
步驟 403 , 双模终端中的 LTE模块发现有无线信号, 于是进行小区选 择, 向 eNodeB建立 RRC连接并发起 TAU过程, 该过程所涉及的跟踪区更 新请求消息中带有 2G/3G LTE中所分配的 P-TMSI、 P-TMSI signature, 该 请求消息中还带有 UE是否支持双通道能力的指示。 eNodeB 选择合适的 MME, 将 TAU转发给 MMEo
步驟 404, MME根据收到的 P-TMSI找到分配该 P-TMSI的 SGSN, 然 后向 SGSN发起获取上下文请求, 该请求消息中带有 MME是否支持 ISR 能力的指示。
步驟 405 , SGSN根据 P-TMSI、 P-TMSI signature找到用户移动上下文 下文中包含了所选择的 Serving GW、 PDN GW以及所有的承载信息 ( QoS 信息、 承载 Id等)。
本步驟之后, MME和 SGSN之间的承载实现同步。 该响应中包括了 SGSN是否支持 ISR能力的指示。
步驟 406, MME对用户进行鉴权, 并决定是否重新选择新的 Serving GW,如果鉴权成功且不用重新选择新的 Serving GW,且 SGSN也支持 ISR, 则 MME可以决定启用 ISR。于是 MME向 SGSN返回获取上下文确认消息, 其中带有 ISR已经激活指示。
步驟 407, MME向 Serving GW发起 载更新请求, Serving GW的地 址信息是从 SGSN获取的, 其中带有激活 ISR指示, 该请求消息中也带有 终端是否支持双通道能力的指示。
步驟 408, Serving GW更新用户上下文, 保存 MME的控制面隧道信 息,新建 S1-U用户面隧道。如果 MME指示终端支持双通道,且 Serving GW 也支持双通道, 则 Serving GW需要保留 SGSN的控制面隧道信息, 同时保 留 Iu-U的用户面隧道。 Serving GW向 MME返回承载更新响应 , 其中带有 ISR激活指示。 之后, MME中的承载处于 Idle状态, Serving GW中仅保存 自身在 S1-U上分配的隧道信息, 没有 eNodeB上 S1-U的用户面隧道信息。 步驟 409, MME从 HSS获取用户签约数据, 并进行签约检查。 MME 分配临时用户标识 GUTI, 返回 eNodeB跟踪区更新响应 , 其中带有分配的 GUTI以及 ISR激活标记。
步驟 410, eNodeB返回 UE跟踪区更新响应, UE保存其中的 GUTI。 UE发现网络已经激活 ISR, 于是设置 TIN为 "RAT-Related TMSI"。
通过上述过程, 双模终端同时在 SGSN和 MME进行了注册, 并建立 了 ISR机制, Serving GW同时保存有自身分配的 S1-U和 Iu-U两个用户面 隧道信息。
步驟 411 , Serving GW根据策略决定该承载的路由从 LTE走, 还是从 2G/3G走, 还是同时从 LTE、 2G/3G两个通道走。
步驟 412, 如果 Serving GW决定该承载需要从 2G/3G走, 因为 2G/3G 侧已经建立了无线空口承载, 那么流程到此结束。
步驟 413 , 如果 Serving GW决定该承载需要从 LTE走, 那么: 步驟 413a, Serving GW需要通知 MME重新建立 LTE的无线 载,如: Serving GW发起 载修改。
步驟 313b, MME发起 LTE无线资源建立过程。
步驟 313c, MME将 eNodeB在 S1-U上分配的用户面隧道信息在承载 更新请求中带给 Serving GW , 由 Serving GW保存。
步驟 313d, Serving GW删除 RNC上该承载的 Iu-U隧道信息, 并通知
SGSN删除该承载在 2G/3G侧的无线资源。
步驟 313e, SGSN删除 2G/3G上该承载的无线资源。
上述步驟之后, Serving GW将下行数据从 LTE发送到 UE。
步驟 414, 如果 Serving GW决定该承载需要同时从 2G/3G和 LTE走, 则决定启动双通道:
步驟 414a, Serving GW需要通知 MME建立 LTE的无线 载, 如: Serving GW发起修改过程。
步驟 414b , ΜΜΕ发起 LTE无线资源建立过程。
步驟 414c, MME将 eNodeB在 S1-U上分配的用户面隧道信息在承载 更新请求中带给 Serving GW, 由 Serving GW保存。
上述步驟之后, Serving GW的 S1-U接口和 Iu-U接口以及对应的无线 承载都已经建立; 之后, Serving GW根据策略将该承载中的不同数据流从 不同接口 (Iu-U和 S1-U )下发到终端。 Serving GW在分解承载流时, 对于 同一个应用的流, 需要在同一个无线接入技术中路由, 这样终端可以避免 同一个应用的数据包来自两个无线模块而导致的乱序问题。 终端可以通过 不同端口号和应用进行对应。
对于上行数据, 当 Serving GW决定启动双通道之后,有两种处理方法, 一种处理方法是上下行数据在同一个无线中传递, 此时 Serving GW在步驟 414中发起的承载修改过程, 需要将对应的上行路由信息通知给 UE; 第二 种处理方法是所有上行数据均从一个无线承载传递, 具体哪个无线承载传 上行数据, 由终端根据配置决定。
以上实施例只包括了和本发明相关的一些步驟, 对于和本发明无关的 一些步驟(比如从 HSS取得签约数据)并没有详细说明。
结合以上技术描述可知,本发明双通道通信的操作思路可以表示如图 5 所示的流程, 该流程包括以下步驟:
步驟 510: 对于同一个用户的同一个承载,保存用于双通道通信的两个 接入系统的两个无线控制器用户面隧道信息。
步驟 520: 在所述承载上收到下行数据, 决定用以传递该数据的接入系 统的用户面, 将所述数据通过该用户面的隧道传递给对应的无线控制器。
具体而言, 在本发明的双通道通信系统中, 步驟 510以及步驟 520均 是由 SGW实现的, 即: 对于同一个用户的同一个承载, SGW保存用于双 通道通信的两个接入系统的两个无线控制器用户面隧道信息。 SGW在所述 承载上收到来自 PGW的下行数据, SGW根据策略决定用以传递该数据的 接入系统的用户面, 将所述数据通过该用户面的隧道传递给对应的无线控 制器。
需要说明的是, 在实现上述的双通道通信时, 还可以考虑终端的具体 设置。 如: 支持双通道通信的终端至少包括如下四个模块: 应用层模块、 2G/3G无线模块、 LTE无线模块、 双模管理模块。 这四个模块能够实现图 6 所示的逻辑结构。 具体而言, 应用层模块用于对应用层进行管理, 2G/3G 无线模块、 LTE无线模块分别包括 2G/3G模块协议栈、 LTE模块协议栈, 双模管理模块用于对双模管理层进行管理。
其中, 需要完成无线模块和应用层模块的数据报文转发功能: 对于从 网络下发的下行数据, 对应于图 6 中的虚线, 该模块通过数据报文的端口 号和具体应用对应; 对于从应用向网络的上行数据, 对应于实线, 有以下 两种处理方法:
双模管理模块配置 2G/3G无线模块、 LTE无线模块中的一个无线模块 为 master模块, 双通道通信时所有上行数据均从该 master模块上发。
双模管理模块保存有接入过滤器,该过滤器用于指示哪些流需要从 LTE 走, 哪些流需要从 2G/3G走。 该过滤器是网络下发的。
双模管理模块还需要完成的功能是: 当用户同时在 2G/3G和 LTE覆盖 范围时, 避免用户同时发起注册过程, 而是根据配置优先进行无线模块注 册。
另夕卜,用户可以首先从 LTE系统接入,再在 2G/3G中接入,锚点到 SGW 并建立双通道时, SGW保存 MME和 SGSN的控制面信息以及 S1-U隧道 信息。 如果 SGW决定该 载需要同时经由 2G/3G和 LTE, 则 SGW用于: 决定启动双通道, 通知 SGSN建立 2G/3G的无线 载; 触发 SGSN发起 2G/3G无线资源建立过程, 并将 RNC在 Iu-U上分配的用户面隧道信息在 承载更新请求中带给 SGW; SGW根据策略将该承载中的不同数据流从包 含 Iu-U和 S1-U在内的不同接口下发到终端; SGW在分解承载流时,用于: 对于同一个应用的流, 在同一个无线接入技术中路由。
用户还可以首先从 2G/3G接入并激活上下文, 再在 LTE中接入, 锚点 到 SGW并建立双通道时, SGW用于保存 MME和 SGSN的控制面信息以 及 Iu-U隧道信息。 如果 SGW决定所述承载需要同时从 2G/3G和 LTE走, 则 SGW用于: 决定启动双通道, 通知 MME建立 LTE的无线承载; 触发 MME发起 LTE无线资源建立过程, 并将 eNodeB在 S1-U上分配的用户面 隧道信息在承载更新请求中带给 SGW; SGW根据策略将该承载中的不同 数据流从包含 Iu-U和 S1-U在内的不同接口下发到终端; SGW在分解承载 流时, 用于: 对于同一个应用的流, 在同一个无线接入技术中路由。
对于上行数据, 当 SGW决定启动双通道之后, 用于进行以下两种处理 方法中的任一种:
一种处理方法是上下行数据在同一个无线中传递,此时 SGW在发起的 承载修改过程中, 需要将对应的上行路由信息通知给 UE;
第二种处理方法是所有上行数据均从一个无线承载传递, 该无线承载 由终端根据配置决定。
另夕卜, 在 UE的注册过程中, UE可以将自身的双通道能力告知 MME, MME根据该能力选择支持双通道的 SGW。 并且, 在所涉及的终端进行小 区选择以及承载更新的交互消息中, 包含终端是否支持双通道能力的指示。
本发明的系统可以包括 UE, 用于在注册过程中将自身的双通道能力告 知 MME, 触发 MME根据该能力选择支持双通道的 SGW。 该系统所涉及 的终端进行小区选择以及承载更新的交互消息中, 包含终端是否支持双通 道能力的指示。 综上所述可见, 无论是方法还是系统, 本发明的双通道通信技术, 能 够支持 dual radio终端接入。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种双通道通信方法, 包括:
对于同一个用户的同一个承载, 保存用于双通道通信的两个接入系统 的两个无线控制器用户面隧道信息;
在所述承载上收到下行数据, 决定用以传递该数据的接入系统的用户 面, 将所述数据通过该用户面的隧道传递给对应的无线控制器。
2、 根据权利要求 1所述的方法, 其中, 用户首先从长期演进 LTE系统 接入, 再在 2G/3G中接入, 锚点到服务网关 SGW并建立双通道时, SGW 保存 MME和 SGSN的控制面信息以及 S1-U的用户面信息。
3、 根据权利要求 2所述的方法, 其中, 如果 SGW决定该承载需要同 时经由 2G/3G和 LTE, 则决定启动双通道, 针对所述 载执行如下操作:
SGW通知服务 GPRS支持节点 SGSN建立 2G/3G的无线承载; SGSN 发起 2G/3G无线资源建立过程, 并将无线网络控制器 RNC在 Iu-U上分配 的用户面隧道信息在承载更新请求中带给 SGW; SGW根据策略将该承载 中的不同数据流从包含 Iu-U和 S 1 -U在内的不同接口下发到终端;
SGW在分解承载流时, 对于同一个应用的流, 在同一个无线接入技术 中路由。
4、 根据权利要求 1所述的方法, 其中, 用户首先从 2G/3G接入并激活 上下文,再在 LTE中接入,锚点到 SGW并建立双通道时, SGW保存 MME 和 SGSN的控制面信息以及 Iu-U的用户面信息。
5、 根据权利要求 4所述的方法, 其中, 如果 SGW决定该承载需要同 时从 2G/3G和 LTE走, 则决定启动双通道, 针对所述承载执行如下操作:
SGW通知移动性管理实体 MME建立 LTE的无线 载; MME发起 LTE 无线资源建立过程, 并将演进基站 eNodeB在 S1-U上分配的用户面隧道信 息在承载更新请求中带给 SGW; SGW根据策略将该承载中的不同数据流 从包含 Iu-U和 S 1 -U在内的不同接口下发到终端;
SGW在分解承载流时, 对于同一个应用的流, 在同一个无线接入技术 中路由。
6、 根据权利要求 2或 4所述的方法, 其中, 对于上行数据, 当 SGW 决定启动双通道之后, 执行以下两种处理方法中的任一种:
一种处理方法是上下行数据在同一个无线中传递,此时 SGW在发起的 承载修改过程中, 需要将对应的上行路由信息通知给终端 UE;
第二种处理方法是所有上行数据均从一个无线承载传递, 该无线承载 由终端根据配置决定。
7、 根据权利要求 1至 5任一项所述的方法, 其中, 该方法还包括 UE 的注册过程, 在该过程中, UE将自身的双通道能力告知 MME, MME根据 该能力选择支持双通道的 SGW。
8、 根据权利要求 1至 5任一项所述的方法, 其中, 在该方法所涉及的 终端进行小区选择以及承载更新的交互消息中, 包含终端是否支持双通道 能力的指示。
9、 一种双通道通信方法, 其中, 对于同一个用户的同一个承载, 保存 有用于双通道通信的两个接入系统的两个无线控制器用户面隧道信息; 该 方法包括:在 UE的注册过程中, UE将自身的双通道能力告知 MME, MME 根据该能力选择支持双通道的 SGW。
10、 根据权利要求 9所述的方法, 其中, 在该方法所涉及的终端进行 小区选择以及承载更新的交互消息中, 包含终端是否支持双通道能力的指 示。
11、 一种双通道通信系统, 包括 SGW、 分组数据网网关 PDW, 其中, 所述 SGW, 用于对于同一个用户的同一个承载, 保存用于双通道通信 的两个接入系统的两个无线控制器用户面隧道信息; 以及在所述承载上收到来自 PGW的下行数据,决定用以传递该数据的 接入系统的用户面, 将所述数据通过该用户面的隧道传递给对应的无线控 制器。
12、 根据权利要求 11所述的系统, 其中,
用户首先从 LTE系统接入, 再在 2G/3G中接入, 锚点到 SGW并建立 双通道时, SGW保存 MME和 SGSN的控制面信息以及 S1-U隧道信息。
13、 根据权利要求 11或 12所述的系统, 其中, 如果 SGW决定该承载 需要同时经由 2G/3G和 LTE, 则 SGW用于:
决定启动双通道, 通知 SGSN建立 2G/3G的无线 载; 触发 SGSN发 起 2G/3G无线资源建立过程, 并将 RNC在 Iu-U上分配的用户面隧道信息 在承载更新请求中带给 SGW; SGW根据策略将该承载中的不同数据流从 包含 Iu-U和 S 1 -U在内的不同接口下发到终端;
SGW在分解承载流时, 用于: 对于同一个应用的流, 在同一个无线接 入技术中路由。
14、 根据权利要求 11所述的系统, 其中,
用户首先从 2G/3G接入并激活上下文,再在 LTE中接入,锚点到 SGW 并建立双通道时, SGW用于保存 MME和 SGSN的控制面信息以及 Iu-U隧 道信息。
15、 根据权利要求 11或 14所述的系统, 其中, 如果 SGW决定所述承 载需要同时从 2G/3G和 LTE走, 则 SGW用于:
决定启动双通道, 通知 MME建立 LTE的无线 7|载; 触发 MME发起 LTE无线资源建立过程, 并将 eNodeB在 S1-U上分配的用户面隧道信息在 承载更新请求中带给 SGW; SGW根据策略将该承载中的不同数据流从包 含 Iu-U和 S 1 -U在内的不同接口下发到终端;
SGW在分解承载流时, 用于: 对于同一个应用的流, 在同一个无线接 入技术中路由。
16、 根据权利要求 11、 12或 14所述的系统, 其中, 对于上行数据, 当 SGW决定启动双通道之后, 用于进行以下两种处理方法中的任一种: 一种处理方法是上下行数据在同一个无线中传递,此时 SGW在发起的 承载修改过程中, 需要将对应的上行路由信息通知给 UE;
第二种处理方法是所有上行数据均从一个无线承载传递, 该无线承载 由终端根据配置决定。
17、根据权利要求 11、 12或 14所述的系统, 其中, 该系统还包括 UE, 用于在注册过程中将自身的双通道能力告知 MME, 触发 MME根据该能力 选择支持双通道的 SGW。
18、 根据权利要求 11、 12或 14所述的系统, 其中, 在该系统所涉及 的终端进行小区选择以及承载更新的交互消息中, 包含终端是否支持双通 道能力的指示。
19、 一种双通道通信系统, 包括 UE, 用于在注册过程中将自身的双通 道能力告知 MME, 触发 MME根据该能力选择支持双通道的 SGW。
20、 根据权利要求 19所述的系统, 其中, 在该系统所涉及的终端进行 小区选择以及承载更新的交互消息中, 包含终端是否支持双通道能力的指
PCT/CN2012/072003 2011-03-11 2012-03-06 一种双通道通信方法和系统 WO2012122910A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110059875.5A CN102685921B (zh) 2011-03-11 2011-03-11 一种双通道通信方法和系统
CN201110059875.5 2011-03-11

Publications (1)

Publication Number Publication Date
WO2012122910A1 true WO2012122910A1 (zh) 2012-09-20

Family

ID=46817105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072003 WO2012122910A1 (zh) 2011-03-11 2012-03-06 一种双通道通信方法和系统

Country Status (2)

Country Link
CN (1) CN102685921B (zh)
WO (1) WO2012122910A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10681593B2 (en) 2017-11-30 2020-06-09 At&T Intellectual Property I, L.P. Session transfer for packet data network connection
US11044773B2 (en) 2017-11-30 2021-06-22 At&T Intellectual Property I, L.P. Dual session packet data network connection

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103702313B (zh) 2012-09-27 2018-04-27 电信科学技术研究院 确定激活isr的方法及设备
WO2015032087A1 (zh) * 2013-09-09 2015-03-12 华为技术有限公司 一种多流并发传输方法、装置和系统
CN104796945B (zh) * 2014-01-16 2019-07-02 中国移动通信集团广东有限公司 一种双链路数据传输方法、装置、系统及一种终端
CN104135744A (zh) * 2014-08-18 2014-11-05 中怡(苏州)科技有限公司 通信系统与其相关的通信方法
CN106559868B (zh) * 2015-09-25 2019-05-10 电信科学技术研究院 一种跟踪区更新方法及装置
CN108307530B (zh) 2016-09-30 2023-09-22 华为技术有限公司 一种会话连接建立方法、相关设备及系统
CN113056038B (zh) * 2016-11-04 2023-05-16 华为技术有限公司 删除用户面隧道的方法、网元及系统
CN106658628A (zh) * 2016-12-28 2017-05-10 重庆远创光电科技有限公司 异构网无线信道集成系统使用方法
CN111107550A (zh) * 2019-12-30 2020-05-05 全链通有限公司 5g终端设备双通道接入注册方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127652A (zh) * 2006-08-17 2008-02-20 华为技术有限公司 一种确定用户终端访问外部网络锚点的方法、装置及系统
CN101155126A (zh) * 2006-09-25 2008-04-02 华为技术有限公司 一种实现移动性管理的系统、装置和方法
US20100054207A1 (en) * 2008-09-04 2010-03-04 Vivek Gupta L2 Tunneling-based Low Latency Single Radio Handoffs
CN101873589A (zh) * 2009-04-21 2010-10-27 华为技术有限公司 多网接入控制方法、通讯系统以及相关设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616470B (zh) * 2008-06-24 2011-04-13 华为技术有限公司 多模多待终端的业务处理方法、网络系统及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127652A (zh) * 2006-08-17 2008-02-20 华为技术有限公司 一种确定用户终端访问外部网络锚点的方法、装置及系统
CN101155126A (zh) * 2006-09-25 2008-04-02 华为技术有限公司 一种实现移动性管理的系统、装置和方法
US20100054207A1 (en) * 2008-09-04 2010-03-04 Vivek Gupta L2 Tunneling-based Low Latency Single Radio Handoffs
CN101873589A (zh) * 2009-04-21 2010-10-27 华为技术有限公司 多网接入控制方法、通讯系统以及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NISHIDA, K. ET AL.: "Basic SAE Management Technology for Network Realizing All-IP", NTT DOCOMO TECHNICAL JOURNAL, vol. 11, no. 3, September 2009 (2009-09-01) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10681593B2 (en) 2017-11-30 2020-06-09 At&T Intellectual Property I, L.P. Session transfer for packet data network connection
US10979940B2 (en) 2017-11-30 2021-04-13 At&T Intellectual Property 1, L.P. Session transfer for packet data network connection
US11044773B2 (en) 2017-11-30 2021-06-22 At&T Intellectual Property I, L.P. Dual session packet data network connection

Also Published As

Publication number Publication date
CN102685921B (zh) 2017-04-26
CN102685921A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
JP7366356B2 (ja) ワイヤレスネットワークによるワイヤレスデバイスのページング
RU2764259C1 (ru) Способ для активизации или деактивизации соединения плоскости пользователя в каждом сеансе
US11889471B2 (en) Paging time adjustment in a wireless network
US11252694B2 (en) Core paging handling
WO2012122910A1 (zh) 一种双通道通信方法和系统
US9504005B2 (en) Method for processing data associated with location area update in a wireless communication system
US20230379830A1 (en) Base station handling of transitioning wireless device to inactive state
US11317374B2 (en) RAN paging handling
JP2019526970A (ja) 無線通信システムにおける登録解除方法及びこのための装置
JP2016513442A (ja) 移動通信システムにおけるサービス提供装置及び方法
KR102604142B1 (ko) 단말 장치, 코어 네트워크 내의 장치, 및 통신 제어 방법
WO2008113235A1 (fr) Procédé pour éviter la libération erronée de ressources pendant une mise à jour de zone de suivi ou un transfert intercellulaire
WO2010031353A1 (zh) 服务请求的处理方法、装置及系统
WO2012167478A1 (zh) 处理寻呼的方法、用户设备和系统
WO2009117879A1 (zh) 一种指示服务网关承载管理的方法
WO2012041073A1 (zh) 一种实现流迁移的方法及系统
WO2014005444A1 (zh) 分流到无线局域网络的接入方法及系统、mme和ue
KR20220091555A (ko) 연결 처리 방법 및 통신 장비
WO2008154783A1 (fr) Procédé pour établir un tunnel à partir de sgsn vers la passerelle de service
US20220248370A1 (en) Signaling Delivery in a Wireless Network
WO2019034021A1 (zh) 一种异系统互操作的方法及装置
WO2012129997A1 (zh) 本地访问连接的处理方法及装置
WO2012130118A1 (zh) 一种用户去附着方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757280

Country of ref document: EP

Kind code of ref document: A1