WO2008018305A1 - Method of detecting variation and kit to be used therein - Google Patents

Method of detecting variation and kit to be used therein Download PDF

Info

Publication number
WO2008018305A1
WO2008018305A1 PCT/JP2007/064800 JP2007064800W WO2008018305A1 WO 2008018305 A1 WO2008018305 A1 WO 2008018305A1 JP 2007064800 W JP2007064800 W JP 2007064800W WO 2008018305 A1 WO2008018305 A1 WO 2008018305A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
mutation
probe
dna
sequence
Prior art date
Application number
PCT/JP2007/064800
Other languages
English (en)
French (fr)
Inventor
Mitsuharu Hirai
Satoshi Majima
Taira Maekawa
Shinya Kimura
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to KR1020117005830A priority Critical patent/KR101171635B1/ko
Priority to US12/376,534 priority patent/US20100216123A1/en
Priority to KR1020087023332A priority patent/KR101110396B1/ko
Priority to JP2007549753A priority patent/JPWO2008018305A1/ja
Priority to EP07791494A priority patent/EP2031074A4/en
Priority to CN200780013688.5A priority patent/CN101421420B/zh
Publication of WO2008018305A1 publication Critical patent/WO2008018305A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/107Temperature of melting, i.e. Tm
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/143Multiplexing, i.e. use of multiple primers or probes in a single reaction, usually for simultaneously analyse of multiple analysis

Definitions

  • the present invention relates to a mutation detection method and a kit used therefor.
  • Point mutation a so-called single nucleotide polymorphism, is used as a method for analyzing at the gene level the causes of various diseases, disease susceptibility (susceptibility to disease) between individuals, and differences in drug efficacy among individuals.
  • Type (SNP) detection is widely performed!
  • a general method for detecting a point mutation for example, (1) For a target DNA of a sample, a region corresponding to a detection target sequence is amplified, and the base sequence of the obtained amplification product is analyzed. (2) Pyrosequencing method, (3) Amplification of the region corresponding to the sequence to be detected, and the resulting amplification product is subjected to HPLC in a temperature gradient column, and the presence or absence of mutation is detected by the elution time Denaturing HPLC (4) Invadar method for detecting mutations by detecting fluorescence by using fluorescence when a fluorescent probe binds to a region containing the target mutation. (5) The target mutation is detected in the 3 'end region. For example, the ASP-PCR method is used in which PCR is performed using the positioned primers and mutations are determined by the presence or absence of amplification.
  • the methods (1), (2) and (4) require about 20%, about 5% and about 5%, respectively.
  • the method (3) has a low sensitivity of about 10%.
  • the method (5) has a problem that false positives tend to occur with low sensitivity but high specificity.
  • the sensitivity is higher as the numerical value (%) is smaller.
  • a point mutation detection method has been performed, for example, as follows. First, a hybrid (double-stranded DNA) of a target single-stranded DNA in the sample and the probe is formed using a probe complementary to the detection target sequence containing the target point mutation. Continue! / The hybrid formed body is subjected to a heat treatment, and the dissociation (melting) of the hybrid accompanying a temperature rise is detected by measuring the signal such as absorbance. The presence or absence of a point mutation is determined by determining the Tm value based on the detection result. The higher the homology of the hybrid former, the higher the Tm value, and the lower the homology.
  • a Tm value (evaluation reference value) is obtained in advance for a hybrid of a detection target sequence containing a point mutation and a probe complementary thereto, and the target single-stranded DNA and the probe are obtained.
  • the following judgments can be made by measuring the Tm value (measured value). If the measured value is the same as the evaluation reference value, it can be determined that a match, that is, a point mutation exists in the target DNA. On the other hand, if the measured value is lower than the evaluation reference value, it can be determined that there is no mismatch, that is, there is no point mutation in the target DNA.
  • Leukemia is a disease caused by hematopoietic stem cells in the bone marrow becoming cancerous.
  • CML chronic myeloid leukemia
  • Imatinib an ABL kinase inhibitor
  • the abl gene including the abl gene in the fusion gene
  • resistance to imatinib is expressed.
  • the blood cells have a point mutation in the abl gene (sequence to be detected). (The non-detection target sequence) is included, and the difference between them is only a point mutation, that is, a single base sequence.
  • the probe for detecting a point mutation hybridizes (matches) to the detection target sequence containing the point mutation, and further hybridizes (mismatches) to the non-detection target sequence that does not contain the point mutation. Will happen.
  • the signal intensity can be determined by Tm analysis. A melting curve showing the relationship between temperature and temperature, it becomes difficult to detect due to the presence of the peak on the low temperature side of the non-detection target sequence that is a mismatch in the high-temperature peak force against the matching detection target sequence. A decrease in detection sensitivity occurs.
  • Patent Document 1 Japanese Translation of Special Publication 2004—537992
  • an object of the present invention is to provide a method for detecting a mutation with excellent detection sensitivity using Tm analysis and a detection probe kit used therefor.
  • the mutation detection method of the present invention includes a detection target DNA in which the detection site is mutated and a non-detection target DNA in which the detection site is unmutated.
  • the detection target sequence is the detection target DNA or a partial sequence thereof, and includes the detection site that is mutated,
  • the step, wherein the non-detection target sequence includes the detection site that is the non-detection target DNA or a partial sequence thereof and is not mutated.
  • (C) a step of measuring a signal change accompanying a temperature change with respect to a hybrid of the DNA and the detection probe.
  • the detection probe kit of the present invention is a detection probe kit used in the method for detecting a mutation of the present invention
  • Detection probe consisting of polynucleotide complementary to detection target sequence and non-detection target Including a complementary complementary anti-inhibitory poplarinuccleotide in the arrangement sequence
  • the detection / detection target target arrangement sequence is different in the detection / detection part site position !! //, Ruru detection / detection target target DDNNAA A partial distribution sequence of the part, including the position of the detection and detection part before the detection of the variation,
  • the above-mentioned non-non-detection detection target object arrangement sequence is the above-mentioned non-non-detection detection target object figure, wherein the above-mentioned detection detection part site position is an unaltered mutation.
  • the position of the detection / detection part is varied in the sample material. As described above, the position of the detection and detection part remains unchanged as it is just the detection probe for the detection and detection target array.
  • the inhibitory inhibitory popolylinucleotide is added to the above-mentioned non-detected target sequence. The . For this reason, it is possible to suppress the non-detection detection vs.
  • the above-mentioned detection detection detection probe probe by the suppression system, As a result of this, the sensitivity level (about 33 %%) superior to that of conventional ones was obtained, and the above detection / detection part site position was improved. It is possible to detect and detect abnormal mutations. . As shown here, it is possible to suppress high-frequency hybridization of the detection detection detection probe to the non-detection detection target target array sequence by suppressing the detection. Compared with the above-mentioned detection probe for detection and detection, the above-mentioned non-detection detection of the above-mentioned poplarinuccleotide used for inhibition of inhibition is performed. This is because of the high degree of homology homology to the target arrangement sequence. .
  • the detection and detection method according to the present invention is, for example, a non-detection target to be detected with DDNNAA in the sample material. This is useful for the sample fee that includes both non-detection detection target target DDNNAA. .
  • it is useful for the test specimens of patients with leukemia disease, and even in the middle, chronic bone and myelogenous White blood disease ((For patients with CCMMUU, mutations in the aabbll genetic gene ((bbccrr-- abbll fusion genetic gene This is useful when detecting and detecting mutations in the aabbll genetic gene, including mutations of the aabbll genetic gene, as described above.
  • FIG. 11 is a graph showing the inhibitory inhibition of poplarinuccleo otchi in Example 11 of the present invention. TTmm solution with dodo added
  • FIG. 22 shows the TTmm in the comparative example 11 of the comparative comparative example with no addition of the inhibitory inhibitory polypolynucleotide added.
  • FIG. 3 is a graph showing the results of Tm analysis with the detection probe addition ratio varied in Example 1 of the present invention.
  • FIG. 4 is a graph showing the results of Tm analysis in which the inhibitory polynucleotide addition ratio was changed in Example 1 of the present invention.
  • FIG. 5 shows a Tm solution to which an inhibitory polynucleotide was added in Example 2 of the present invention.
  • Fig. 6 shows a Tm solution in which an inhibitory polynucleotide was added in Example 3 of the present invention.
  • FIG. 7 shows a Tm solution to which an inhibitory polynucleotide was added in Example 4 of the present invention.
  • the mutation detection method of the present invention is a method for detecting a mutation in DNA in a sample, wherein the sample comprises a detection target DNA in which a detection site is mutated, and the detection unit. It is a sample containing non-detection target DNA whose position is not mutated, and includes the following steps (A) to (E).
  • (C) a step of measuring a signal change accompanying a temperature change with respect to a hybrid of the DNA and the detection probe.
  • the detection target sequence is the detection target DNA or a partial sequence thereof and a sequence including the mutated detection target site.
  • the non-detection target sequence is the non-detection target DNA or a partial sequence thereof and includes the detection target site that is not mutated.
  • the detection target sequence having a mutation at the detection site is also referred to as “mutant sequence”
  • the detection target DNA containing the detection target sequence is also referred to as “mutant DNA”
  • the non-mutation does not exist at the detection site.
  • Detection target sequence is “normal sequence”
  • DN containing the non-detection target sequence A is also referred to as “normal DNA”.
  • a mutation at a detection site is also referred to as “a mutation for detection”.
  • the DNA in the sample that is the target for detecting the presence or absence of mutation is also referred to as “target DNA”.
  • Examples of the mutation detected in the present invention include single nucleotide polymorphism (SNP).
  • the DNA in the sample may be single-stranded DNA or double-stranded DNA.
  • the DNA when it is a double-stranded DNA, for example, prior to the hybridizing step (B), it preferably includes a step of dissociating the double-stranded DNA in the sample by heating.
  • the hybridization with detection probe or inhibitor polynucleotide can be performed in the next (B) hybridization step. it can.
  • the DNA in the sample may be, for example, a gene or a partial sequence of the gene.
  • the DNA in the sample may be, for example, DNA originally contained in a sample such as a biological sample, but is preferably an amplification product amplified by a gene amplification method because, for example, detection accuracy can be improved. .
  • Examples include amplification products amplified by a gene amplification method using cDNA generated by reverse transcription reaction (eg, RT-PCR (Reverse Transcription PCR)) from a mRNA as a saddle type.
  • the length of the amplification product is not particularly limited, but is, for example, 50 to! OOOmer, preferably 80 to 200 mer.
  • the sample to which the detection method of the present invention is applied is not particularly limited.
  • the present invention is directed to a sample containing both DNA having a target mutation (detection target DNA) and DNA not having a target mutation (non-detection target DNA) as target DNA.
  • the origin of the DNA or RNA is not limited, and examples include cells such as various cancer cells, viruses, mitochondria and the like.
  • a mutation is detected in a biological sample (for example, a blood sample) of a leukemia patient, the cancerous blood cells are not mutated with cells having DNA in which the mutation has occurred.
  • a biological sample for example, a blood sample
  • the cancerous blood cells are not mutated with cells having DNA in which the mutation has occurred.
  • the above-mentioned problems are likely to occur because cells containing DNA are included.
  • the detection method of the present invention is particularly applicable to a sample having DNA having a mutation and DNA having no mutation.
  • a biological sample of leukemia for example, a blood sample or a white blood cell.
  • the sample collection method, DNA preparation method, etc. are not limited, and conventionally known methods can be employed.
  • Mutations for detection purposes in the present invention are not limited. As described above, when detecting a mutation related to leukemia, it is known that a detection probe hybridizes to a non-detection target sequence. Thus, as a specific example, the method of the present invention is useful in detecting gene mutations related to leukemia.
  • the gene mutation associated with leukemia include abl gene mutation (including abl gene mutation in bcr-abl fusion gene).
  • abl gene mutation including abl gene mutation in bcr-abl fusion gene.
  • abl gene mutation associated with leukemia include abl gene mutation (including abl gene mutation in bcr-abl fusion gene).
  • abl gene mutation associated with leukemia include abl gene mutation (including abl gene mutation in bcr-abl fusion gene).
  • abl gene mutation associated with leukemia include abl gene mutation (including abl gene mutation in bcr-abl fusion gene).
  • mRNA-directed IJ mRNA-directed IJ
  • Mutation G763A 763rd base G is mutated to A
  • the detection probe has a sequence complementary to the detection target sequence in which the detection site is mutated, and the detection polynucleotide has the unchanged detection site. Any sequence complementary to the non-detection target sequence! /.
  • the lengths of the probe and the inhibitory polynucleotide are not particularly limited, but are preferably the same length.
  • the sequence of the probe for detection and the sequence of the polynucleotide for inhibition are, for example, (2) except for a site (base) that forms a pair with the detection site (site where the target mutation occurs) during the formation of hybrids. 90% ⁇ ; 100% is preferably the same sequence, particularly preferably 100%.
  • the detection probe and the inhibition polynucleotide are the same strand, they may be designed to hybridize to the forward and reverse strands of DNA.
  • the ratio of the inhibitory polynucleotide to be added is not particularly limited, but can be appropriately determined according to the conditions of the detection system such as the length of the detection probe, the GC content of the detection target sequence, and the like. .
  • the ratio of addition to the detection probe is not particularly limited, but the lower limit is, for example, 0.1 or more, preferably 1 or more, and more preferably 2 or more in terms of molar ratio.
  • an upper limit is 100 times or less in molar ratio, for example.
  • the length of the inhibitory polynucleotide is not particularly limited, and is, for example, 5 to 50 mer, preferably 10 to 30 mer, and is preferably set to the same length as the detection probe.
  • the addition ratio of the detection probe complementary to the detection target sequence is not particularly limited.
  • the molar ratio with respect to the DNA in the sample is preferably 1 times or less.
  • the detection sensitivity can be further improved, for example, by controlling the addition ratio of the detection probe.
  • the operation is extremely simple.
  • the addition ratio of the detection probe is more preferably 0.1 times or less in molar ratio to the DNA.
  • the DNA in the sample may be, for example, the total of the detection target DNA and the non-detection target DNA, or the total of the amplification product including the detection target sequence and the amplification product including the non-detection target sequence.
  • the ratio of the detection target DNA to the DNA in the sample is usually unknown, but as a result, the detection probe addition ratio is, for example, the detection target DNA or the amplification product containing the detection target sequence.
  • the molar ratio is preferably 10 times or less, more preferably 5 times or less, and even more preferably 3 times or less. Further, the lower limit thereof is not particularly limited.
  • the molar ratio with respect to the DNA to be detected is preferably 0.01 times or more, more preferably 0.01 times or more, and still more preferably. 0. More than 1 time.
  • the addition ratio of the detection probe to the DNA may be, for example, a molar ratio with respect to double-stranded DNA or a molar ratio with respect to single-stranded DNA.
  • the length of the detection probe is not particularly limited, and is, for example, 5 to 50 mer, preferably 10 to 30 mer.
  • the Tm value will be described. As the solution containing double-stranded DNA is heated, the absorbance at 260 nm increases. This is because hydrogen bonds between both strands in double-stranded DNA are unwound by heating and dissociated into single-stranded DNA (DNA melting). When all double-stranded DNA is dissociated into single-stranded DNA, the absorbance is about 1.5 times the absorbance at the start of heating (absorbance of double-stranded DNA alone). Therefore, it can be judged that melting has been completed. Based on this phenomenon, the melting temperature Tm is generally defined as the temperature at which the absorbance reaches 50% of the total increase in absorbance.
  • the measurement of the signal fluctuation accompanying the temperature rise for determining the Tm value can be performed by measuring the absorbance at 260 nm, for example, from the principle described above. More preferably, a probe labeled with a labeling substance is used as the detection probe. Then, the signal fluctuation is measured.
  • the labeling site in the detection probe is not particularly limited.
  • the labeling substance is not particularly limited, but can usually be bound to a phosphate group of a nucleotide.
  • Examples of the labeled probe include a labeled probe that shows a signal alone and does not show a signal by hybridization, or a labeled probe that does not show a signal alone and shows a signal by hybridization. It is done. In the case of the former probe, no signal is shown when forming a hybrid (double-stranded DNA) with the detection target sequence, and when the probe is released by heating, a signal is shown. The latter probe shows a signal by forming a hybrid (double-stranded DNA) with the sequence to be detected, and the signal decreases (disappears) when the probe is released by heating. Therefore, for example, by detecting the signal from this labeled substance under signal-specific conditions (absorbance, etc.), it is possible to determine the progress of melting and the Tm value as in the case of the absorbance measurement at 260 nm. .
  • the labeling substance is not limited, and examples thereof include a fluorescent dye (fluorophore).
  • a fluorescent dye fluorophore
  • a probe that is labeled with a fluorescent dye exhibits fluorescence alone, and the fluorescence decreases (for example, quenches) by hybridization is preferable.
  • a probe using such a fluorescence quenching phenomenon is called a fluorescence quenching probe.
  • the 3′-end or 5′-end of the oligonucleotide is labeled with a fluorescent dye! /
  • the power S is preferable, and the base at the end to be labeled is C. Is preferred.
  • the detection target DNA hybridized by the detection probe has a base paired with the terminal base C of the detection probe or a base paired with the base; It is preferable to design the base sequence of the detection probe so as to be G.
  • a probe is generally called a guanine quenching probe and is known as a so-called QProbe (registered trademark).
  • QProbe registered trademark
  • the fluorescent dye is not particularly limited.
  • fluorescein, phosphor examples thereof include rhodamine and polymethine dye derivatives.
  • Commercially available fluorescent dyes include, for example, BODIPY FL (trade name, manufactured by Molecular Probe Co., Ltd.), FluorePrime (trade name, manufactured by Amersham Almacia), Fluoredite (trade name, manufactured by Millipore), FAM (ABI) ), Cy3 and Cy5 (Amersham Falmacia), TARMA (Molecular Probes), and the like.
  • the detection conditions are not particularly limited, and can be appropriately determined depending on the fluorescent dye used.
  • Pacific Blue can be detected at a detection wavelength of 450 to 480 nm
  • TAM RA can be detected at a detection wavelength of 585 to 700 nm, for example
  • BODIPY FL can be detected at a detection wavelength of 515 to 555 nm, for example.
  • the inhibitory polynucleotide is preferably labeled.
  • the detection method of the present invention will be described by taking the point mutation (A ⁇ T) at the 758th base A in the abl gene (SEQ ID NO: 1) as an example.
  • the present invention is characterized in that an inhibitory polynucleotide is added, and the other steps and conditions are not limited at all.
  • the detection target sequence to be hybridized by the detection probe may be, for example, the full-length sequence mutated to the 758th base A force in the base sequence of SEQ ID NO: 1, but the 758th base (A ⁇ Including T) is preferable if it is a partial sequence.
  • genomic DNA is isolated from whole blood. Isolation of genomic DNA from whole blood can be performed by a conventionally known method. For example, a commercially available genomic DNA isolation kit (trade name: GF X Genomic Blood DNA Purification kit; manufactured by GE Healthcare Biosciences) Etc. can be used.
  • a commercially available genomic DNA isolation kit (trade name: GF X Genomic Blood DNA Purification kit; manufactured by GE Healthcare Biosciences) Etc. can be used.
  • a detection probe and an inhibitory polynucleotide are added to the sample containing the isolated genomic DNA.
  • the addition of the detection probe and the inhibitory polynucleotide is not limited as described later, but in the present embodiment, as an example, after adding the detection probe, the inhibitory polynucleotide is added. Give a way.
  • a detection probe is first added to a sample containing isolated genomic DNA.
  • the detection probe examples include those described above, and among them, QProbe is preferable.
  • this QProbe generally has cytosine at the terminal base, and A probe whose end is labeled with a fluorescent dye. Then, when this is hybridized to the detection target sequence, the fluorescent dye interacts with the guanine of the detection target sequence, and as a result, the fluorescence is reduced or quenched.
  • the sequence of the detection probe can be appropriately designed according to the detection target sequence as long as it is complementary to the detection target sequence including the point mutation.
  • the point mutation A ⁇ T
  • SEQ ID NO: 1 for example, a polynucleotide comprising the above-mentioned base sequence of SEQ ID NO: 4 can be mentioned.
  • the timing of adding the detection probe is not particularly limited.
  • the detection probe may be added, for example, to the amplification product obtained after the gene amplification process described later, but is preferably added before the gene amplification process.
  • a phosphate group may be further added to the 3 ′ end, as described above.
  • the 3 'end may be labeled with a suitable fluorescent dye.
  • the detection probe may be added to a liquid sample containing isolated genomic DNA, or may be mixed with genomic DNA in a solvent.
  • the solvent is not particularly limited and includes, for example, a buffer such as Tris-HCl, KC1, MgCl, MgSO, glycerol and the like.
  • the target sequence is amplified by gene amplification using the isolated genomic DNA as a saddle. Specifically, a sequence containing a base site that causes a point mutation for detection purposes, that is, a detection target sequence and a non-detection target sequence is amplified.
  • the gene amplification method is not limited.
  • PCR Polymerase Chain Reaction
  • ⁇ ⁇ Nucleic acid sequence based amplification
  • TMA Transcription—mediated amplification
  • SDA String Displacement Am plification
  • PCR conditions are particularly limited. It is not restricted but can be performed by a conventionally known method.
  • the sequence of the PCR primer is not particularly limited as long as it can amplify the target sequence to be detected, and can be appropriately designed by a conventionally known method according to the target sequence.
  • the region to be amplified may be, for example, only a target detection target sequence or a region including the detection target sequence I].
  • the length of the primer is not particularly limited and can be set to a general length, for example, 10 to 30 mer.
  • a primer comprising the following polynucleotide can be used as a specific example.
  • the combination of these primers is not particularly limited.
  • the length of the amplification product obtained is about 103 mer.
  • the inhibitory polynucleotide is added to the sample containing the amplification product.
  • the addition ratio of the inhibitory polynucleotide is as described above.
  • the timing of addition is not limited to this, and can be performed, for example, before or after addition of the detection probe or simultaneously.
  • the inhibitory polynucleotide may be added before or after the gene amplification treatment described above, for example, but is preferably added before the gene amplification treatment because the treatment is simple.
  • a phosphate group is further added to its 3 ′ end.
  • the polynucleotide for inhibition does not include, for example, a point mutation
  • An example is a polynucleotide comprising the base sequence of SEQ ID NO: 5.
  • This inhibitory polynucleotide is preferably used in combination with, for example, the detection probe comprising the base sequence of SEQ ID NO: 4 described above!
  • the heating temperature in the dissociation step is not particularly limited as long as the amplification product can be dissociated, and is, for example, 85 ° C or higher, and preferably 85 ° C to 95 ° C.
  • the heating time is not particularly limited, and is, for example, 1 second to 10 minutes, preferably 1 second to 5 minutes.
  • the hybrid of the dissociated single-stranded DNA and the detection probe, and the hybrid of the single-stranded DNA and the inhibitory polynucleotide are, for example, after the dissociation step, the dissociation. This can be done by lowering the heating temperature in the process.
  • the temperature condition is, for example, 40 ° C or lower.
  • the volume and concentration of each composition in the reaction solution of the ibridize process are not particularly limited.
  • the concentration of DNA is, for example, 0.01 to 1 [IM, preferably 0.;! To 0. ⁇ ⁇ ⁇
  • the range satisfying the addition ratio with respect to the DN ⁇ is preferably, for example, 0.001 to ⁇ ⁇ ⁇ , preferably 0.001 to 1, ⁇ , and the concentration of the inhibitory polynucleotide is, for example, 0.1 ⁇ to ImM, preferably 0 ⁇ ⁇ to ; ⁇ ⁇ .
  • the concentration of the DNA to be detected, the probe for detection, the reaction of the polynucleotide for inhibition is particularly limited. Not. As a specific example, in the detection of a signal to be described later
  • the higher the detection sensitivity of the device used the lower the concentration of the detection target DNA in the reaction solution.
  • the lower the detection sensitivity of the device used the lower the detection target DNA in the reaction solution. It is preferable to increase the concentration of.
  • the detection target DNA concentration is 5 to 1000 nM
  • the detection probe concentration is 50 to 50. 1000 nM
  • the inhibitory polynucleotide concentration is preferably 5 ⁇ to 100 ⁇ , and more preferably the detection target DNA concentration is 10 to 500 ⁇ , the detection probe concentration is 100 to 500 ⁇ , and the inhibitory polynucleotide concentration is ⁇ ⁇ . ⁇ It is a spear.
  • the formed hybrid of the single-stranded DNA and the labeled probe or the inhibitory polynucleotide is heated, and the change in the signal accompanying an increase in temperature is measured.
  • fluorescence decreases (or quenches) when hybridized with single-stranded DNA, and emits fluorescence when dissociated. Therefore, for example, gradually increase the fluorescence intensity as the temperature rises by gradually heating the hybrid that has decreased or quenched the fluorescence.
  • the temperature range for measuring the signal fluctuation is not particularly limited.
  • the starting temperature is, for example, room temperature (for example, 10 ° C.) to 85 ° C., preferably 25 to 70 ° C.
  • the ending temperature is, for example, 40 to 105 ° C.
  • the rate of temperature rise is not particularly limited, and is, for example, 0.3 ;! to 20 ° C./second, preferably 0.3 to 5 ° C./second.
  • the Tm value is determined by analyzing the fluctuation of the signal. Specifically, a value at each temperature (1d increase in fluorescence intensity / dt) is calculated from the obtained fluorescence intensity, and the temperature showing the lowest value can be determined as the Tm value. In addition, the point at which the amount of increase in fluorescence intensity per unit time (fluorescence intensity increase / 1) is the highest can also be determined as the Tm value.
  • the decrease in fluorescence intensity may be measured.
  • the Tm value can be calculated by, for example, conventionally known MELTCALC software (http://www.meltcalc.com/) or the like, and can also be determined by a neighbor method (Nearest Neighbor Method).
  • the measurement of the signal fluctuation at the time of formation of the noise or the hybrid is performed. You may go. That is, when the hybrid is formed by lowering the temperature of the sample to which the probe is added, the signal fluctuation accompanying the temperature drop may be measured.
  • the detection probe kit of the present invention is a kit used for the mutation detection method of the present invention, and is for detection comprising a polynucleotide complementary to the sequence to be detected. It comprises a probe and a polynucleotide for inhibition complementary to the non-detection target sequence.
  • the detection target sequence is a detection target DNA that is changed! /, Or a detection target DNA or a partial sequence thereof, and includes the detection part that is mutated! / Is an array.
  • the non-detection target sequence is the non-detection target DNA in which the detection site is unmutated or a partial sequence thereof and includes the detection site that is unmutated.
  • the other configuration of the detection probe kit of the present invention is not limited as long as it includes the probe and the inhibitory polynucleotide.
  • the probe and the polynucleotide for inhibition are not limited, and the same ones as described above can be used, and preferred combinations are also as described above.
  • the probe and the inhibitory polynucleotide are used.
  • the tides may be mixed as one reagent or may be independent as separate reagents.
  • it is preferable that the probe and the inhibitory polynucleotide are mixed at the ratio described above. In the latter case, for example, it may be used so that the ratio in the reaction solution falls within the range as described above.
  • the detection probe kit of the present invention may further have a primer for amplifying a region containing a sequence complementary to the probe.
  • the data analysis method of the present invention is a data analysis method for determining the presence or absence of DNA mutation, and has the following steps (a) to (b).
  • the system of the present invention is a system for detecting the presence or absence of a DNA mutation in a sample, and an input for inputting the signal fluctuation obtained in step (C) in the mutation detection method of the present invention.
  • An example of the system of the present invention is a detection device constructed by a computer system.
  • the hardware structure of the system is not limited.
  • an input device such as a storage device or a keyboard or a mouse is connected to a CPU that is a control unit.
  • a display device (display) for displaying the result may be connected.
  • each means may be a functional block realized by, for example, a computer CPU executing a predetermined program. For this reason, for example, each component means may be implemented as hardware! /, Or may be a network system.
  • the system of the present invention includes, for example, the step (B) in the mutation detection method of the present invention
  • thermocontrol means for example, a double-stranded DNA (hybrid-forming body) by hybridization is used.
  • the signal detection means for example, it is possible to detect a signal fluctuation amount due to the formation of a hybrid with a change in temperature and a signal fluctuation due to the dissociation of the hybrid.
  • a recording means for recording the signal fluctuation detected by the signal detection means may be provided.
  • the system of the present invention may include a means for outputting the presence or absence of DNA mutation determined by the determination means.
  • the program of the present invention is a computer program that can execute the data analysis method of the present invention on a computer.
  • the electronic medium of the present invention is a computer-readable electronic medium (also referred to as “recording medium”) that stores the computer program of the present invention.
  • wtDNA abl tyrosine kinase A758T
  • mtDNA the former without mutation is referred to as “mtDNA”.
  • Example 1-1 As Comparative Example 1-1, fluorescence intensity was measured in the same manner except that 2 ⁇ L of distilled water was added to the following PCR reaction solution instead of 2 ⁇ L of the polynucleotide for inhibition.
  • FIG. 1 shows the results of Example 1-1
  • FIG. 2 shows the results of Comparative Example 1-1.
  • (A) is a sample in which 100% of the whole genome has a point mutation
  • (B) is a sample in which 5% of the whole genome has a point mutation
  • (C) is a sample of the whole genome. Samples with 3% having point mutations
  • (D) are results for samples where the whole genome has no point mutations.
  • (A) is a sample in which 100% of the whole genome has a point mutation
  • (B) is 50% of the whole genome. Is a sample with a point mutation
  • (C) is a sample with 5% of the whole genome having a point mutation
  • (D) is a sample with 3% of the whole genome having a point mutation
  • (E) is This is the result of the whole genome not having point mutations!
  • mtDNA is 65.5 ° C
  • Fig. 1 (D) and Fig. 2 (E) wtDNA is 61.5 ° C.
  • a signal peak was detected.
  • Each sample was evaluated using this as a standard.
  • Comparative Example 11 in which no inhibitory polynucleotide was added, when mtDNA was 50%, the amount of mtDNA that was able to detect the mtDNA signal was small (5%, 3%) as shown in Fig. 2 (B). %), No mtDNA signal could be detected as shown in FIGS. 2 (C) and (D).
  • Example 11 In contrast, in Example 11 to which the inhibitory polynucleotide was added, even if the amount of mtDNA was small (5%, 3%), as shown in FIGS. 1 (B) and (C), the signal of mtDNA could be detected.
  • the addition of the inhibitory polynucleotide inhibited the hybridization of the detection probe to wtDNA without a point mutation, resulting in an increase in the amount of detection probe that binds to mtDNA, thereby detecting it. It can be said that the sensitivity has improved.
  • Example 1 The amount of detection probe added to the PCR reaction solution in Example 1 was 0.1 ⁇ L, the amount of distilled water added was 34. 375 and the amount was 34.775, and the final concentration of the detection probe was 1 Tm analysis was performed in the same manner as in Example 1 except that / 5 was set to ⁇ .
  • the results are shown in Fig. 3 as Example 1-2.
  • (A) is a sample in which 100% of the whole genome has a point mutation
  • B) is a sample in which 10% of the whole genome has a point mutation
  • C is a sample of the whole genome. Samples with 5% point mutations
  • D are the results for samples with 3% point mutations in the whole genome!
  • a peak of mtDNA was remarkably detected.
  • Fig. 3 (C) and Fig. 1 (B), Fig. 3 (D) and Fig. 1 (C ) By reducing the amount of probe added compared to Example 1 1 (0.02 times the molar ratio to the PCR amplification product), the wtDNA peak was further reduced, and the relative mtDNA The peak has grown. This power, pro, professional It has been found that the detection sensitivity is further improved by adjusting the amount of the addition.
  • Example 1 of the above (2) except that 2 L of the inhibitory polynucleotide added to the PCR reaction solution in Example 1 was 3 L and the amount of distilled water added 34.375 HL was 33.775 ⁇ L. Tm analysis was performed in the same manner as in 2. The final concentration of the blocking polynucleotide in the PCR reaction solution is 300 nM, and the final concentration of the detection probe is ⁇ .
  • Fig. 4 These results are shown in Fig. 4 as Example 1-3.
  • (A) is a sample in which 100% of the whole genome has a point mutation
  • (B) is a sample in which 10% of the whole genome has a point mutation
  • (C) is a sample of the whole genome. Of these, 5% are samples with point mutations
  • (D) is the result for 3% of all genomes with point mutations.
  • the peak of mtDNA was detected remarkably.
  • the amount of inhibitory polynucleotide added should be increased from that in Example 12 (30 times the molar ratio to the probe).
  • the wtDNA peak decreased and the relative peak of mtDNA increased. It was found that the detection sensitivity was further improved by adjusting the addition amount of the inhibitory polynucleotide.
  • the inhibitory polynucleotide was added, and Tm analysis was performed for point mutation (G ⁇ C) at the 756th base in the abl gene.
  • the former without mutation is called “wtDNA”
  • the latter with mutation is called “mtDNA”.
  • the final concentration of the inhibitory polynucleotide was 300 nM
  • the final concentration of the detection probe was 50 nM.
  • the PCR reaction was performed in a thermal cycler at 95 ° C for 60 seconds, and then repeated for 50 cycles with 95 ° C for 1 second and 58 ° C for 30 seconds as one cycle, and then at 95 ° C for 1 second and at 40 ° C. Processed for 60 seconds.
  • the PCR reaction solution was heated from 40 ° C. to 95 ° C. at a temperature increase rate of 1 ° C./3 seconds, and the change in fluorescence intensity over time was measured.
  • the measurement wavelength was 585 to 700 nm.
  • the addition ratio of the detection probe is 0.05 times the molar ratio of the PCR amplification product
  • the addition ratio of the inhibitory polynucleotide is 0.3 times the molar ratio of the PCR amplification product and the probe.
  • the molar ratio is 6 times.
  • fluorescence intensity was measured in the same manner except that distilled water 3 aL was added to the PCR reaction solution below instead of the inhibiting polynucleotide 3 aL.
  • FIG. This figure is a graph of Tm analysis showing changes in fluorescence intensity with increasing temperature.
  • (A) is a sample in which all plasmids do not have point mutations
  • (B) is a sample in which 100% of all plasmids have point mutations
  • (C) and (D) are all samples. 3% of lasmids are samples with point mutations.
  • (C) is the result of Comparative Example 2
  • (D) is the result of Example 2.
  • the inhibitory polynucleotide was added, and Tm analysis was performed for the point 763 mutation (G ⁇ A) in the abl gene.
  • wtDNA the former without mutation
  • mtDNA the latter with mutation
  • the addition ratio of the detection probe is 0.05 times the molar ratio of the PCR amplification product
  • the addition ratio of the inhibitory polynucleotide is 0.5 times the molar ratio of the PCR amplification product and the probe.
  • the molar ratio is 10 times.
  • fluorescence intensity was measured in the same manner except that distilled water 5 aL was added to the following PCR reaction solution instead of the inhibiting polynucleotide 5 aL.
  • FIG. 6 This figure is a graph of Tm analysis showing changes in fluorescence intensity with increasing temperature.
  • Fig. 6 (A) shows a sample in which all plasmids have no point change , (B) is a sample in which 100% of all plasmids have point mutations, and (C) and (D) are samples in which 3% of all plasmids have point mutations.
  • the (C) is the result of Comparative Example 3
  • the (D) is the result of Example 3.
  • the inhibitory polynucleotide was added, and Tm analysis was performed for point mutation (A ⁇ T) at the 758th base in the abl gene.
  • the 758th base A shown in SEQ ID NO: 1 has no mutation! /, A plasmid inserted with the normal abl gene sequence, and the mutated abl gene (abl tyrosine kinase) mutated to the 758th base A force.
  • wtDNA the former without mutation
  • mtDNA the latter with mutation
  • PCR reaction was carried out by adding 49 ⁇ L of the following PCR reaction solution: In the PCR reaction solution, the final concentration of the inhibitory polynucleotide was 500 ⁇ , and the final concentration of the detection probe was 50 ⁇ . The change in fluorescence intensity over time was measured in the same manner as in Example 2. The measurement wavelength was 585 to 700 nm, and the addition ratio of the detection probe was 0 in molar ratio to the PCR amplification product.
  • the inhibitory polynucleotide was added in a molar ratio of 0.5 times with respect to the PCR amplification product and 10 times with respect to the probe as a comparative example 4. In the same manner, except that 5 a L of distilled water was added instead of 5 a L of the inhibitory polynucleotide to the PCR reaction solution below. Was measured. [0091] [Table 5]
  • FIG. 7 is a graph of Tm analysis showing changes in fluorescence intensity with increasing temperature.
  • A is a sample in which all plasmids have no point mutation
  • B is a sample in which 100% of all plasmids have point mutations
  • C and (D) are all samples. 3% of lasmids are samples with point mutations.
  • C is the result of Comparative Example 4
  • D is the result of Example 4.
  • a detection target DNA having a point mutation and a detection target DNA such as a leukocyte sample of a leukemia patient can be obtained.
  • the point mutation can be detected with excellent sensitivity even in a sample mixed with non-detection target DNA that does not have the point mutation.
  • the type of mutation can be identified, it is a detection method with excellent specificity. Therefore, this method is particularly useful for detecting point mutations in leukemia patients.For example, it is possible to analyze whether leukemia drugs are suitable among individuals at the gene level. It is a very useful method in the medical field!

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

明 細 書
変異の検出方法およびそれに用いるキット
技術分野
[0001] 本発明は、変異の検出方法およびそれに用いるキットに関する。
背景技術
[0002] あらゆる疾患の原因や、個体間の疾患易罹患性 (疾患のかかり易さ)、個体間にお ける薬効の違い等を遺伝子レベルで解析する方法として、点突然変異、いわゆる一 塩基多型(SNP)の検出が広く行われて!/、る。
[0003] 点突然変異の一般的な検出方法としては、例えば、(1)試料の標的 DNAについて 、検出対象配列に相当する領域を増幅させ、得られた増幅産物の塩基配列を解析 する Direct Sequencing法、(2) Pyrosequencing法、(3)検出対象配列に相当 する領域を増幅させ、得られた増幅産物について温度勾配カラム中で HPLCを行い 、溶出される時間によって変異の有無を検出する Denaturing HPLC法、(4)目的 の変異を含む領域に蛍光プローブが結合すると蛍光を発することを利用し、前記蛍 光の検出により変異を検出する Invadar法、(5) 3'末端領域に目的の変異が位置す るプライマーを用いて PCRを行い、増幅の有無によって変異を判断する ASP— PC R法等があげられる。
[0004] しかしながら、前記(1)、(2)および(4)の方法は、それぞれ約 20%、約 5%、約 5 %程度と感度が低ぐ操作に多大な手間と時間がかかる。前記(3)の方法は、感度が 約 10%と低ぐまた、変異の有無が確認できるのみで、どの部位にどのような変異が 生じているのかを解析できず、特異性に欠けるという問題がある。また、前記(5)の方 法は、感度は高いものの特異性が低ぐ偽陽性が生じ易いという問題がある。なお、 感度は数値(%)が小さい程高感度である。
[0005] このような問題から、近年、点突然変異の検出方法として、 Tm解析を利用した検出 が行われている。この方法は、例えば、以下のようにして行うこと力 Sできる。まず、検出 目的の点突然変異を含む検出対象配列に相補的なプローブを用いて、試料中の標 的一本鎖 DNAと前記プローブとのハイブリッド(二本鎖 DNA)を形成させる。続!/、て 、このハイブリッド形成体に加熱処理を施して、温度上昇に伴うハイブリッドの解離( 融解)を、吸光度等のシグナル測定により検出する。そして、この検出結果に基づい て Tm値を決定することによって点突然変異の有無を判断する。 Tm値は、ハイブリツ ド形成体の相同性が高い程高ぐ相同性が低い程低くなる。このため、点突然変異を 含む検出対象配列とそれに相補的なプローブとのハイブリッド形成体につ!/、て、予め Tm値 (評価基準値)を求めておき、標的一本鎖 DNAと前記プローブとの Tm値 (測 定値)を測定すれば、以下のような判断が可能である。前記測定値が前記評価基準 値と同じであれば、マッチ、すなわち、標的 DNAに点突然変異が存在すると判断で きる。他方、前記測定値が前記評価基準値より低ければ、ミスマッチ、すなわち、標 的 DNAに点突然変異が存在しないと判断できる。
しかしながら、このような Tm解析を用いた検出方法は、感度が低いという問題があ る。具体例として、白血病患者の血液細胞由来 DNAについて点突然変異を検出す る際に問題となっている(特許文献 1)。 白血病は、骨髄中の造血幹細胞がガン化す ることによって起こる疾患である。中でも慢性骨髄性白血病(chronic myeloid leu kemia: CML)は、 9番目の染色体と 22番目の染色体との転座により形成される bcr aW融合遺伝子が発症原因として知られており、その治療には、 ABLキナーゼ阻 害剤であるイマチニブ等が広く使用されている。し力、しながら、この abl遺伝子(前記 融合遺伝子における abl遺伝子を含む)に点突然変異が存在すると、イマチニブに対 して耐性を発現するという問題がある。その場合、治療において、例えば、イマチニ ブ投与量の増加、他の治療薬への変更、骨髄移植等への切り替え等が必要になる。 したがって、白血病、特に CMLの治療においては、 abl遺伝子における点突然変異 の有無を検出することが非常に重要となっている。し力、しながら、一人の CML患者の 血液であっても、その血液細胞には abl遺伝子に点突然変異が発生しているもの(検 出対象配列)と発生してレ、な!/、もの(非検出対象配列)とが含まれており、両者の違 いは、点突然変異すなわち一塩基の配列にすぎない。そうすると、点突然変異を検 出するためのプローブは、点突然変異を含む検出対象配列にハイブリダィズ (マッチ )し、さらに、点突然変異を含まない非検出対象配列にもハイブリダィズ (ミスマッチ) するという現象が起こってしまう。このような場合に、 Tm解析によってシグナルの強度 と温度との関係を示す融解曲線を作成すると、マッチしている検出対象配列に対す る高温側のピーク力 ミスマッチである非検出対象配列に対する低温側のピークの存 在によって検出し難くなり、さらに検出感度の低下が生じてしまう。
特許文献 1 :特表 2004— 537992号公報
発明の開示
発明が解決しょうとする課題
[0007] そこで、本発明は、 Tm解析を利用した検出感度に優れる変異の検出方法ならび にそれに用いる検出用プローブキットの提供を目的とする。
課題を解決するための手段
[0008] 前記目的を達成するために、本発明の変異の検出方法は、前記試料が、検出部位 が変異してレ、る検出対象 DNAと、前記検出部位が未変異である非検出対象 DNAと を含有する試料であり、
下記 (A)〜(E)工程を含むことを特徴とする。
(A) 前記 DNAを含む試料に、検出対象配列に相補的なポリヌクレオチドからなる 検出用プローブ、および、非検出対象配列に相補的なポリヌクレオチド(以下、「阻害 用ポリヌクレオチド」と!/、う)を添加する工程であって、
前記検出対象配列が、前記検出対象 DNAまたはその部分配列であって、変異し ている前記検出部位を含み、
前記非検出対象配列が、前記非検出対象 DNAまたはその部分配列であって、未 変異である前記検出部位を含む、前記工程
(B) 前記 DNAに前記検出用プローブをハイブリダィズさせる工程
(C) 前記 DNAと前記検出用プローブとのハイブリッド形成体について、温度変化 に伴うシグナルの変動を測定する工程
(D) 前記シグナルの変動を解析して Tm値を決定する工程
(E) 前記 Tm値から前記検出対象部位における変異の有無を決定する工程
[0009] 本発明の検出用プローブキットは、本発明の変異の検出方法に使用する検出用プ ローブキットであって、
検出対象配列に相補的なポリヌクレオチドからなる検出用プローブと、非検出対象 配配列列にに相相補補的的なな阻阻害害用用ポポリリヌヌククレレオオチチドドととをを含含みみ、、
前前記記検検出出対対象象配配列列がが、、検検出出部部位位がが変変異異ししてて!!//、、るる検検出出対対象象 DDNNAAままたたははそそのの部部分分配配 列列ででああっってて、、変変異異ししてていいるる前前記記検検出出部部位位をを含含みみ、、
前前記記非非検検出出対対象象配配列列がが、、前前記記検検出出部部位位がが未未変変異異ででああるる前前記記非非検検出出対対象象 DDNNAAまま たたははそそのの部部分分配配列列ででああっってて、、未未変変異異ででああるる前前記記検検出出部部位位をを含含むむここととをを特特徴徴ととすするる。。 発発明明のの効効果果
[[00001100]] 本本発発明明のの変変異異のの検検出出方方法法はは、、試試料料にに、、検検出出部部位位がが変変異異ししてていいるる前前記記検検出出対対象象配配 列列にに対対すするる検検出出用用ププロローーブブだだけけででななぐぐささららにに、、検検出出部部位位がが未未変変異異ででああるる前前記記非非検検 出出対対象象配配列列にに対対すするる阻阻害害用用ポポリリヌヌククレレオオチチドドをを添添加加ししてていいるる。。ここののたためめ、、非非検検出出対対象象 配配列列へへのの前前記記検検出出用用ププロローーブブののハハイイブブリリダダィィズズをを抑抑制制でできき、、ここのの結結果果、、従従来来よよりりもも優優 れれたた感感度度((約約 33%%))でで、、前前記記検検出出部部位位ににおおけけるる変変異異をを検検出出ででききるる。。ここののよよううにに、、検検出出用用 ププロローーブブのの非非検検出出対対象象配配列列へへののハハイイブブリリダダィィズズをを抑抑制制ででききるるののはは、、前前記記検検出出用用ププロロ ーーブブとと比比較較ししてて、、前前記記阻阻害害用用ポポリリヌヌククレレオオチチドドのの前前記記非非検検出出対対象象配配列列にに対対すするる相相同同 性性がが高高いいここととにによよるる。。ししたたががっってて、、本本発発明明のの検検出出方方法法はは、、例例ええばば、、試試料料中中にに検検出出対対象象 DDNNAAとと非非検検出出対対象象 DDNNAAのの両両方方がが含含ままれれるる試試料料にに対対ししてて有有用用ででああるる。。特特にに、、白白血血病病 患患者者のの試試料料にに対対ししてて有有用用でであありり、、中中ででもも、、慢慢性性骨骨髄髄性性白白血血病病((CCMMUU患患者者ににつついいてて 、、 aabbll遺遺伝伝子子のの変変異異 ((bbccrr—— aabbll融融合合遺遺伝伝子子ににおおけけるる aabbll遺遺伝伝子子のの変変異異をを含含むむ))をを検検出出 すするる際際にに有有用用ででああるる。。前前述述ののよよううにに、、変変異異をを高高感感度度でで検検出出ででききるるたためめ、、例例ええばば、、患患者者 ごごととのの白白血血病病治治療療薬薬のの適適正正をを、、遺遺伝伝子子レレベベルルでで解解析析すするるここととがが可可能能ととななりり、、医医療療分分野野 ににおおいいてて極極めめてて有有用用なな方方法法とといいええるる。。ままたた、、本本発発明明のの検検出出用用ププロローーブブキキッットトをを用用いいれれ ばば、、本本発発明明のの変変異異のの検検出出方方法法をを簡簡便便にに行行ううここととががででききるる。。
図図面面のの簡簡単単なな説説明明
[[00001111]] [[図図 11]]図図 11はは、、本本発発明明のの実実施施例例 11ににおおけけるる、、阻阻害害用用ポポリリヌヌククレレオオチチドドをを添添加加ししたた TTmm解解
Figure imgf000006_0001
[[図図 22]]図図 22はは、、比比較較例例 11ににおおけけるる、、阻阻害害用用ポポリリヌヌククレレオオチチドド無無添添加加ででのの TTmm解解析析のの結結果果
[図 3]図 3は、本発明の前記実施例 1における、検出用プローブの添加割合を変化さ せた Tm解析の結果を示すグラフである。 園 4]図 4は、本発明の前記実施例 1における、阻害用ポリヌクレオチドの添加割合を 変化させた Tm解析の結果を示すグラフである。
[図 5]図 5は、本発明の実施例 2における、阻害用ポリヌクレオチドを添加した Tm解
Figure imgf000007_0001
[図 6]図 6は、本発明の実施例 3における、阻害用ポリヌクレオチドを添加した Tm解
Figure imgf000007_0002
[図 7]図 7は、本発明の実施例 4における、阻害用ポリヌクレオチドを添加した Tm解
Figure imgf000007_0003
発明を実施するための最良の形態
[0012] 本発明の変異の検出方法は、前述のとおり、試料中の DNAの変異を検出する方 法であって、前記試料が、検出部位が変異している検出対象 DNAと、前記検出部 位が未変異である非検出対象 DNAとを含有する試料であり、下記 (A)〜(E)工程を 含むことを特徴とする。
(A) 前記 DNAを含む試料に、検出対象配列に相補的なポリヌクレオチドからなる 検出用プローブ、および、非検出対象配列に相補的な阻害用ポリヌクレオチドを添 加する工程
(B) 前記 DNAに前記検出用プローブをハイブリダィズさせる工程
(C) 前記 DNAと前記検出用プローブとのハイブリッド形成体について、温度変化 に伴うシグナルの変動を測定する工程
(D) 前記シグナルの変動を解析して Tm値を決定する工程
(E) 前記 Tm値から前記検出対象部位における変異の有無を決定する工程
[0013] 前記 (A)工程にお!/、て、前記検出対象配列とは、前記検出対象 DNAまたはその 部分配列であって、変異している前記検出対象部位を含む配列である。また、前記 非検出対象配列とは、前記非検出対象 DNAまたはその部分配列であって、未変異 である前記検出対象部位を含む配列である。
[0014] 本発明において、検出部位に変異が存在する前記検出対象配列を「変異配列」、 前記検出対象配列を含む検出対象 DNAを「変異 DNA」ともいい、検出部位に変異 が存在しない前記非検出対象配列を「正常配列」、前記非検出対象配列を含む DN Aを「正常 DNA」ともいう。また、検出部位における変異を「検出目的の変異」ともいう 。変異の有無を検出する標的となる試料中 DNAを「標的 DNA」ともいう。本発明に おいて検出する変異としては、例えば、一塩基多型(SNP)等があげられる。
[0015] 本発明において、前記試料中の DNAは、一本鎖 DNAでもよいし二本鎖 DNAで あってもよい。前記 DNAが二本鎖 DNAの場合は、例えば、前記(B)ハイブリダィズ 工程に先立って、加熱により前記試料中の二本鎖 DNAを解離させる工程を含むこと が好ましい。二本鎖 DNAを一本鎖 DNAに解離することによって、次の(B)ハイブリ ダイズ工程にお!/、て、検出用プローブや阻害用ポリヌクレオチドとのハイブリダィズを ¾]串よく fiうことカできる。
[0016] 本発明において、前記試料中の DNAは、例えば、遺伝子であってもよいし、遺伝 子の部分配列であってもよい。また、前記試料中の DNAは、例えば、生体試料等の 試料に元来含まれる DNAでもよいが、例えば、検出精度を向上できることから、遺伝 子増幅法により増幅させた増幅産物であることが好ましい。具体的には、例えば、前 記試料に元来含まれてレ、る DNAを铸型として、遺伝子増幅法により増幅させた増幅 産物や、前記試料に元来含まれている RNA (トータル RNA、 mRNA等)から逆転写 反応(例えば、 RT— PCR (Reverse Transcription PCR) )により生成させた cD NAを铸型として、遺伝子増幅法により増幅させた増幅産物があげられる。前記増幅 産物の長さは、特に制限されないが、例えば、 50〜; !OOOmerであり、好ましくは 80 〜200merでめる。
[0017] 本発明の検出方法を適用する試料は、特に制限されない。本発明は、例えば、前 述のように、標的 DNAとして、 目的の変異を有する DNA (検出対象 DNA)と目的の 変異を有さない DNA (非検出対象 DNA)との両方を含む試料に対して、非常に有 用である。前記 DNAや RNAの由来は、制限されず、例えば、各種がん細胞等の細 胞、ウィルス、ミトコンドリア等があげられる。特に、前述のように、白血病患者の生体 試料 (例えば、血液試料)について変異の検出を行う場合、ガン化した血液細胞には 、変異が発生した DNAを有する細胞と、変異が発生していない DNAを有する細胞 とが含まれるため、前述のような問題が起こり易い。したがって、本発明の検出方法は 、特に、変異が発生した DNAと変異が発生していない DNAを有する試料への適用 が好ましぐ例えば、白血病の生体試料、具体例としては、血液試料や白血球細胞 等に適用することが好ましい。なお、本発明において、試料の採取方法、 DNAの調 製方法等は、制限されず、従来公知の方法が採用できる。
[0018] 本発明における検出目的の変異は、制限されない。前述のように、白血病に関連 する変異を検出する際、非検出対象配列に対して検出用プローブがハイブリダィズ することが知られている。このことから、具体例として、白血病に関連する遺伝子の変 異を検出する際、本発明の方法は有用である。前記白血病に関連する遺伝子の変 異としては、例えば、 abl遺伝子の変異 (bcr— abl融合遺伝子における abl遺伝子の 変異を含む)があげられる。例えば、配列番号 1に示す abl遺伝子の cDNA配歹 IJ (mR NA配歹 IJ)において、 756番目の塩基 G、 758番目の塩基 A、 763番目の塩基 Gの変 異があげられる。これらの塩基については、例えば、以下のような塩基への変異が報 告されている。なお、 abl遺伝子の配列は、 NCBIァクセッション No. NM— 005157 に登録されている。
変異 G756C 756番目の塩基 Gが Cに変異
変異 A758T 758番目の塩基 Aが Tに変異
変異 G763A 763番目の塩基 Gが Aに変異
[0019] 本発明において、前記検出用プローブは、検出部位が変異している前記検出対象 配列に相補的な配列であればよぐ前記阻害用ポリヌクレオチドは、検出部位が未変 異である前記非検出対象配列に相補的な配列であればよ!/、。前記プローブと前記 阻害用ポリヌクレオチドの長さは、特に制限されないが、同じ長さであることが好まし い。前記検出用プローブの配列と前記阻害用ポリヌクレオチドの配列とは、例えば、 ノ、イブリツド形成の際に前記検出部位(目的の変異が発生する部位)と対をなす部位 (塩基)を除いて、 90%〜; 100%同じ配列であることが好ましぐ特に好ましくは 100 %である。また、前記検出用プローブと前記阻害用ポリヌクレオチドは、例えば、同じ 鎖であれば、 DNAの順鎖および逆鎖の!/、ずれにハイブリダィズするように設計して あよい。
[0020] 以下に、 abl遺伝子の前記 3種類の変異(G756C、 A758T、 G763A)の検出に使 用する検出用プローブと阻害用ポリヌクレオチドとの組み合わせを例示する。なお、 各配列において、大文字で示した塩基力 abl遺伝子の 756番目、 758番目、 763 番目にそれぞれ対応する。本発明は、これらには制限されない。
[0021] 変異 G756C (順鎖の検出用)
検出用プローブ 配列番号 2
5 — ccgtaGtggcccccgc— 3
阻害用ポリヌクレオチド 配列番号 3
5 —ccgtaGtggcccccgc—
[0022] 変異 A758T (順鎖の検出用)
検出用プローブ 配列番号 4
5 — ccgAactggcccccgc― 3
阻害用ポリヌクレオチド 配列番号 5
o — cctccccgl actggcccccg— «3
阻害用ポリヌクレオチド 配列番号 6
5 — ccgl actggcccccgc— 3
[0023] 栾 HG763A (逆鎖の掄出用)
検出用プローブ 配列番号 7
o — ccagtacgggAaggtgt― 3 '
阻害用ポリヌクレオチド 配列番号 8
o — ccagtacgggGaggtgt― 3 '
[0024] 本発明において、前記阻害用ポリヌクレオチドの添加割合は、特に制限されないが 、例えば、前記検出用プローブの長さ、検出対象配列の GC含量等、検出系の条件 に応じて適宜決定できる。前記検出用プローブに対する添加割合は、特に制限され ないが、下限は、例えば、モル比で 0. 1倍以上であり、好ましくは 1倍以上、より好ま しくは 2倍以上である。また、上限は、例えば、モル比で 100倍以下である。前記阻害 用ポリヌクレオチドの長さは、特に制限されず、例えば、 5〜50merであり、好ましくは 10〜30merであり、前記検出用プローブと同じ長さに設定することが好ましい。
[0025] 本発明において、前記検出対象配列に相補的な検出用プローブの添加割合は、 特に制限されないが、例えば、検出シグナルを十分に確保することができることから、 前記試料中の DNAに対してモル比で 1倍以下が好ましい。前記阻害用ポリヌクレオ チドの添加に加えて、さらに、前記検出用プローブの添加割合を制御することによつ て、例えば、検出感度のより一層の向上を図ることができる。また、前記検出用プロ一 ブの添加割合を設定するのみで足りることから、操作が極めて簡便である。前記検出 用プローブの添加割合は、より好ましくは、前記 DNAに対してモル比で 0. 1倍以下 である。この際、試料中の DNAとは、例えば、検出対象 DNAと非検出対象 DNAと の合計でもよいし、検出対象配列を含む増幅産物と非検出対象配列を含む増幅産 物との合計でもよい。なお、試料中の DNAにおける検出対象 DNAの割合は、通常 、不明であるが、結果的に、前記検出用プローブの添加割合は、例えば、検出対象 DNAほたは、検出対象配列を含む増幅産物)に対してモル比で 10倍以下となるこ とが好ましぐより好ましくは 5倍以下、さらに好ましくは 3倍以下である。また、その下 限は特に制限されないが、例えば、前記検出対象 DNA等に対して、モル比で、 0. 0 01倍以上が好ましぐより好ましくは 0. 01倍以上であり、さらに好ましくは 0. 1倍以 上である。
[0026] なお、前記 DNAに対する検出用プローブの添加割合は、例えば、二本鎖 DNAに 対するモル比でもよいし、一本鎖 DNAに対するモル比でもよい。また、前記検出用 プローブの長さは、特に制限されず、例えば、 5〜50merであり、好ましくは 10〜30 merである。
[0027] Tm値について説明する。二本鎖 DNAを含む溶液を加熱していくと、 260nmにお ける吸光度が上昇する。これは、二本鎖 DNAにおける両鎖間の水素結合が加熱に よってほどけ、一本鎖 DNAに解離 (DNAの融解)することが原因である。そして、全 ての二本鎖 DNAが解離して一本鎖 DNAになると、その吸光度は加熱開始時の吸 光度(二本鎖 DNAのみの吸光度)の約 1. 5倍程度を示し、これによつて融解が完了 したと判断できる。この現象に基づき、融解温度 Tmとは、一般に、吸光度が、吸光度 全上昇分の 50%に達した時の温度と定義される。
[0028] 本発明にお!/、て、 Tm値を決定するための温度上昇に伴うシグナル変動の測定は 、例えば、前述のような原理から、 260nmの吸光度測定により行うことができる。より 好ましくは、前記検出用プローブとして、標識化物質で標識化されたプローブを使用 して、シグナル変動の測定を行う。前記検出用プローブにおいて標識化部位は、特 に制限されない。また、標識化物質は、特に制限されないが、通常、ヌクレオチドのリ ン酸基に結合することができる。
[0029] 前記標識化プローブとしては、例えば、単独でシグナルを示し且つハイブリッド形 成によりシグナルを示さない標識化プローブ、または、単独でシグナルを示さず且つ ハイブリッド形成によりシグナルを示す標識化プローブがあげられる。前者のようなプ ローブであれば、検出対象配列とハイブリッド(二本鎖 DNA)を形成して!/、る際には シグナルを示さず、加熱によりプローブが遊離するとシグナルを示す。また、後者の プローブであれば、検出対象配列とハイブリッド(二本鎖 DNA)を形成することによつ てシグナルを示し、加熱によりプローブが遊離するとシグナルが減少(消失)する。し たがって、例えば、この標識化物質によるシグナルをシグナル特有の条件(吸光度等 )で検出することによって、前記 260nmの吸光度測定と同様に、融解の進行ならび に Tm値の決定を行うことができる。
[0030] 前記標識化物質としては、制限されないが、例えば、蛍光色素(蛍光団)があげら れる。前記標識化プローブの具体例としては、例えば、蛍光色素で標識され、単独で 蛍光を示し且つハイブリッド形成により蛍光が減少(例えば、消光)するプローブが好 ましい。このような蛍光消光現象(Quenching phenomenon)を利用したプローブ は、蛍光消光プローブと呼ばれる。中でも、検出用プローブとしては、オリゴヌクレオ チドの 3 '末端もしくは 5 '末端が蛍光色素で標識化されて!/、ること力 S好ましく、標識化 される前記末端の塩基は、 Cであることが好ましい。この場合、検出用プローブがハイ ブリダィズする検出対象 DNAにお!/、て、前記検出用プローブの末端塩基 Cと対をな す塩基もしくは前記対をなす塩基から;!〜 3塩基離れた塩基が Gとなるように、前記検 出用プローブの塩基配列を設計することが好ましい。このようなプローブは、一般的 にグァニン消光プローブと呼ばれ、いわゆる QProbe (登録商標)として知られている 。このようなグァニン消光プローブが検出対象 DNAにハイブリダィズすると、蛍光色 素で標識化された末端の C力 S、前記検出対象 DNAにおける Gに近づくことによって 、前記蛍光色素の発光が弱くなる (蛍光強度が減少する)と!、う現象を示す。
[0031] 前記蛍光色素としては、特に制限されないが、例えば、フルォレセイン、リン光体、 ローダミン、ポリメチン色素誘導体等があげられる。市販の蛍光色素としては、例えば 、 BODIPY FL (商標名、モレキュラー.プローブ社製)、 FluorePrime (商品名、ァ マシャムフアルマシア社製)、 Fluoredite (商品名、ミリポア社製)、 FAM (ABI社製) 、 Cy3および Cy5 (アマシャムフアルマシア社製)、 TARMA (モレキュラープローブ社 製)等があげられる。検出条件は、特に制限されず、使用する蛍光色素により適宜決 定できる。具体例として、 Pacific Blueは、例えば、検出波長 450〜480nm、 TAM RAは、例えば、検出波長 585〜700nm、 BODIPY FLは、例えば、検出波長 515 〜555nmで検出できる。このようなプローブを使用すれば、シグナルの変動により、 ノ、イブリダィズと解離とを容易に確認することができる。他方、前記阻害用ポリヌクレ ォチドは、標識化されてレ、なレ、ことが好ましレ、。
[0032] 次に、 abl遺伝子(配列番号 1)における 758番目の塩基 Aの点突然変異 (A→T)を 例にあげて、本発明の検出方法について説明する。なお、本発明は、阻害用ポリヌク レオチドを添加した点が特徴であり、その他の工程や条件については何ら制限され ない。また、検出用プローブがハイブリダィズする検出対象配列は、例えば、配列番 号 1の塩基配列において 758番目の塩基 A力 に変異した全長配列でもよいが、検 出部位である 758番目の塩基 (A→T)を含んで!/ヽれば部分配列であることが好まし い。
[0033] まず、全血からゲノム DNAを単離する。全血からのゲノム DNAの単離は、従来公 知の方法によって行うことができ、例えば、市販のゲノム DNA単離キット(商品名 GF X Genomic Blood DNA Purification kit ; GEヘルスケアバイオサイエンス 社製)等が使用できる。
[0034] 次に、単離したゲノム DNAを含む試料に、検出用プローブおよび阻害用ポリヌクレ ォチドを添加する。前記検出用プローブと阻害用ポリヌクレオチドの添加時は、後述 するように、何ら制限されないが、本実施形態においては、一例として、検出用プロ ーブを添加した後に、阻害用ポリヌクレオチドを添加する方法をあげる。
[0035] すなわち、単離したゲノム DNAを含む試料に、まず、検出用プローブを添加する。
前記検出用プローブとしては、例えば、前述のものがあげられるが、中でも、 QProbe が好ましい。この QProbeは、前述のように、一般に、末端塩基がシトシンであり、前 記末端を蛍光色素で標識化したプローブである。そして、これが検出対象配列にハ イブリツドすることで、前記蛍光色素と検出対象配列のグァニンとが相互作用し、その 結果、蛍光が減少ほたは消光)するものである。
[0036] 前記検出用プローブの配列は、前述のように、点突然変異を含む検出対象配列に 相補的であればよぐ前記検出対象配列に応じて適宜設計できる。 abl遺伝子(配列 番号 1)における 758番目塩基 Aの点突然変異 (A→T)を検出する場合は、例えば、 前述の配列番号 4の塩基配列からなるポリヌクレオチド等があげられる。
変異 A758Tの検出用プローブ 配列番号 4
o — ccgaActggcccccgc— (Gじノ a直 81. 3%)
[0037] 前記試料中の DNAや RNAを铸型として遺伝子増幅法を行う場合も、前記検出用 プローブの添加のタイミングは、特に制限されない。前記検出用プローブは、例えば 、後述する遺伝子増幅処理の後、得られた増幅産物に対して添加してもよいが、遺 伝子増幅処理の前に添加することが好ましい。このように遺伝子増幅処理前に前記 検出用プローブを添加する場合、例えば、プローブ自体の伸長を予防するために、 その 3 '末端に、さらにリン酸基が付加されてもよいし、前述のような蛍光色素で 3 '末 端を標識化してもよい。
[0038] 前記検出用プローブは、例えば、単離したゲノム DNAを含む液体試料に添加して もよいし、溶媒中でゲノム DNAと混合してもよい。前記溶媒としては、特に制限され ず、例えば、 Tris— HCl等の緩衝液、 KC1、 MgCl 、 MgSO、グリセロール等を含む
2 4
溶媒、 PCR反応液等、従来公知のものがあげられる。
[0039] 続いて、単離したゲノム DNAを铸型として、遺伝子増幅法により、 目的配列の増幅 を行う。具体的には、検出目的の点突然変異を生じる塩基部位を含む配列、すなわ ち、検出対象配列および非検出対象配列を増幅させる。
[0040] 遺伝子増幅法は、制限されず、例えば、 PCR (Polymerase Chain Reaction) 法、 ΝΑ βΑ (Nucleic acid sequence based amplification)法、 TMA (Tra nscription— mediated amplification)法、 SDA (Strand Displacement Am plification)法等があげられる力 PCR法が好ましい。なお、以下、 PCR法を例にあ げて、本発明を説明するが、これには制限されない。なお、 PCRの条件は、特に制 限されず、従来公知の方法により行うことができる。
[0041] PCRのプライマーの配列は、例えば、 目的の検出対象配列を増幅できるものであ れば特に制限されず、 目的の配列に応じて、従来公知の方法により適宜設計できる 。増幅させる領域は、例えば、 目的の検出対象配列のみでもよいし、前記検出対象 配歹 I]を含む領域であってもよい。プライマーの長さは、特に制限されず、一般的な長 さに設定でき、例えば、 10〜30merである。前述のように、 abl遺伝子(配列番号 1 ) における 758番目塩基 Aの点突然変異 (A→T)を検出する場合、具体例として、以 下に示すポリヌクレオチドからなるプライマーが使用できる。これらのプライマーの組 み合わせは特に制限されない。なお、配列番号 9の塩基配列からなるポリヌクレオチ ド(センスプライマー)と配列番号 10の塩基配列からなるポリヌクレオチド(アンチセン スプライマー)とを組み合わせた場合、得られる増幅産物の長さは 103mer程度であ
(プライマーセット 1 )
センスプライマー 配列番号 9
o ― ggagatggaacgcacggac― 3 (GC^ m63. 2 % )
アンチセンスプライマー 配列番号 10
5 ― ggccaccgtcaggctg― 3 (tjC'a m75 %
(プライマーセット 2)
センスプライマー 配列番号 1 1
5 ― gacaagtgggagatggaacgc― 3 '
アンチセンスプライマー 配列番号 12
5 — cacggccaccgtcagg— d
[0042] 次に、後述するハイブリダィズ工程に先立って、前記増幅産物を含む試料に前記 阻害用ポリヌクレオチドを添加する。前記阻害用ポリヌクレオチドの添加割合は、前述 の通りである。前述のように、添加のタイミングは、これに制限されず、例えば、前記 検出用プローブ添加の前後もしくは同時に行うことができる。また、前記阻害用ポリヌ クレオチドの添加は、例えば、前述の遺伝子増幅処理の前後いずれでもよいが、例 えば、処理が簡便であることから、遺伝子増幅処理前に添加しておくことが好ましい。 このように遺伝子増幅処理前に前記阻害用ポリヌクレオチドを添加する場合、例えば 、阻害用ポリヌクレオチド自体が伸長することを予防するために、その 3 '末端に、さら にリン酸基が付加されてもよ!/、。
[0043] 前述のように、 abl遺伝子(配列番号 1)における 758番目塩基 Aの点突然変異 (A →T)を検出する場合、阻害用ポリヌクレオチドとしては、例えば、点突然変異を含ま ない、配列番号 5の塩基配列からなるポリヌクレオチド等があげられる。この阻害用ポ リヌクレオチドは、例えば、前述の配列番号 4の塩基配列からなる検出用プローブと 組み合わせて使用することが好まし!/、。
変異 Α758Τの阻害用ポリヌクレオチド 配列番号 5
5 — cctccccg Tactggcccccg— 3 (GC¾'m80%
[0044] 次に、得られた増幅産物の解離、および、解離により得られた一本鎖 DNAと前記 検出用プローブならびに阻害用ポリヌクレオチドとのハイブリダィズを行う。
[0045] 前記解離工程における加熱温度は、前記増幅産物が解離できる温度であれば特 に制限されず、例えば、 85°C以上であり、好ましくは、 85°C〜95°Cである。加熱時間 も特に制限されず、例えば、 1秒〜 10分であり、好ましくは 1秒〜 5分である。
[0046] また、解離した一本鎖 DNAと前記検出用プローブとのハイブリダィズ、および、前 記一本鎖 DNAと前記阻害用ポリヌクレオチドとのハイブリダィズは、例えば、前記解 離工程の後、前記解離工程における加熱温度を降下させることによって行うことがで きる。温度条件としては、例えば、 40°C以下である。
[0047] ノ、イブリダィズ工程の反応液における各組成の体積や濃度は、特に制限されなレ、。
具体例としては、前記反応液において、 DNAの濃度は、例えば、 0. 01〜1 [I Mで あり、好ましくは 0. ;!〜 0. δ μ Μ^前記検出用プローブの濃度は、例えば、前記 DN Αに対する添加割合を満たす範囲が好ましぐ例えば、 0. 001〜; ΙΟ ^ Μであり、好 ましくは 0. 001 - 1 ,1 Μ、前記阻害用ポリヌクレオチドの濃度は、例えば、 0. 1ηΜ〜 ImMであり、好ましくは 0· ΙηΜ〜; ΙΟΟ ^ Μである。
[0048] 本発明においては、前述のように阻害用ポリヌクレオチドの添加が重要であって、 例えば、検出対象 DNA、検出用プローブ、阻害用ポリヌクレオチドの反応液におけ る濃度等は、特に制限されない。具体例としては、後述するシグナルの検出において 、例えば、使用する装置の検出感度が相対的に高い程、反応液における検出対象 D NAの濃度を低減でき、使用する装置の検出感度が相対的に低い程、反応液におけ る検出対象 DNAの濃度を増加させることが好ましい。具体例として、後述するシグナ ル検出で市販装置(商品名 Smart Cycler ; Cepheid社製)を使用する場合、例え ば、反応液において、検出対象 DNA濃度 5〜; 1000nM、前記検出用プローブ濃度 50〜; 1000nM、前記阻害用ポリヌクレオチド濃度 5ηΜ〜100 Μとすることが好ま しぐより好ましくは、検出対象 DNA濃度 10〜500ηΜ、前記検出用プローブ濃度 1 00〜500ηΜ、前記阻害用ポリヌクレオチド濃度 ΙΟηΜ δΟ ^ Μである。
[0049] そして、形成された、前記一本鎖 DNAと前記標識化プローブまたは阻害用ポリヌク レオチドとのハイブリッド形成体を加熱し、温度上昇に伴うシグナルの変動を測定す る。例えば、 Q-Probeを使用した場合、一本鎖 DNAとハイブリダィズした状態では、 蛍光が減少(または消光)し、解離した状態では、蛍光を発する。したがって、例えば 、蛍光が減少ほたは消光)しているハイブリッド形成体を徐々に加熱し、温度上昇に 伴う蛍光強度の増加を測定すればょレ、。
[0050] シグナル変動を測定する際の温度範囲は、特に制限されない。開始温度は、例え ば、室温 (例えば、 10°C)〜85°Cであり、好ましくは 25〜70°Cであり、終了温度は、 例えば、 40〜; 105°Cである。また、温度の上昇速度は、特に制限されず、例えば、 0 . ;!〜 20°C/秒であり、好ましくは 0· 3〜5°C/秒である。
[0051] 次に、前記シグナルの変動を解析して Tm値を決定する。具体的には、得られた蛍 光強度から各温度における値(一 d蛍光強度増加量/ dt)を算出し、最も低い値を示 す温度を Tm値として決定できる。また、単位時間当たりの蛍光強度増加量 (蛍光強 度増加量/ 1)が最も高い点を Tm値として決定することもできる。なお、検出用プロ一 ブとして、消光プローブではなぐ単独でシグナルを示さず且つハイブリッド形成によ りシグナルを示すプローブを使用した場合には、反対に、蛍光強度の減少量を測定 すればよい。
[0052] 前記 Tm値は、例えば、従来公知の MELTCALCソフトウェア(http: //www. meltcalc. com/)等により算出でき、また、隣接法(Nearest Neighbor Metho d)によって決定することもできる。 [0053] また、本発明においては、前述のように、ハイブリッド形成体を加熱して、温度上昇 に伴うシグナル変動を測定する方法に代えて、例えば、ノ、イブリツド形成時における シグナル変動の測定を行ってもよい。すなわち、前記プローブを添加した試料の温 度を降下させてハイブリッド形成体を形成する際に、前記温度降下に伴うシグナル変 動を測定してもよい。
[0054] 具体例を以下に示す。検出用プローブとして、単独でシグナルを示し且つハイプリ ッド形成によりシグナルを示さな!/、標識化プローブ (例えば、 Q-Probe)を使用した場 合、前記検出用プローブを試料に添加した際には、前記プローブは解離しているた め蛍光を発している力 温度の降下によりハイブリッドを形成すると、前記蛍光が減少 (または消光)する。したがって、例えば、前記試料の温度を徐々に降下して、温度下 降に伴う蛍光強度の減少を測定すればよい。他方、検出用プローブとして、単独で シグナルを示さず且つハイブリッド形成によりシグナルを示す標識化プローブを使用 した場合、前記プローブを試料に添加した際には、前記プローブは解離しているた め蛍光を発していないが、温度の降下によりハイブリッドを形成すると、蛍光を発する ようになる。したがって、例えば、前記試料の温度を徐々に降下して、温度下降に伴 う蛍光強度の増加を測定すればょレ、。
[0055] つぎに、本発明の検出用プローブキットは、前述のように、本発明の変異の検出方 法に使用するキットであって、検出対象配列に相補的なポリヌクレオチドからなる検 出用プローブと、非検出対象配列に相補的な阻害用ポリヌクレオチドとを含むことを 特徴とする。本発明において、前記検出対象配列は、前述のように、検出部位が変 異して!/、る検出対象 DNAまたはその部分配列であって、変異して!/、る前記検出部 位を含む配列である。また、前記非検出対象配列は、前述のように、前記検出部位 が未変異である前記非検出対象 DNAまたはその部分配列であって、未変異である 前記検出部位を含む配列である。本発明の検出用プローブキットは、前記プローブ と前記阻害用ポリヌクレオチドを含んでいればよぐその他の構成は制限されない。
[0056] 前記プローブおよび前記阻害用ポリヌクレオチドとしては、制限されず、前述と同様 のものが利用でき、好ましい組み合わせも前述の通りである。
[0057] 本発明の検出用プローブキットにおいて、前記プローブと前記阻害用ポリヌクレオ チドは、一つの試薬として混合されてもよいし、別個の試薬として独立していてもよい 。前者の場合、前記プローブと前記阻害用ポリヌクレオチドは、前述のような割合で 混合されていることが好ましい。後者の場合には、例えば、反応液中の割合が、前述 のような範囲となるように使用すればよい。また、本発明の検出用プローブキットは、 前記プローブと相補的な配列を含む領域を増幅するためのプライマーをさらに有し ても良い。
[0058] また、本発明のデータ解析方法は、 DNAの変異の有無を決定するためのデータ の解析方法であって、下記(a)〜(b)工程を有することを特徴とする。
(a) 本発明の変異検出方法における(C)工程で得られたシグナル変動を解析して Tm値を演算する工程
(b) 前記演算工程にお!/、て演算した前記 Tm値から DNAの変異の有無を決定す る工程
[0059] 本発明のシステムは、試料中の DNAの変異の有無を検出するためのシステムであ つて、本発明の変異の検出方法における(C)工程で得られたシグナル変動を入力す る入力手段、前記入力手段により入力した前記シグナル変動から Tm値を演算する 演算手段、および、前記演算手段により演算した Τπ^直に基づいて、 DNAの変異の 有無を決定する決定手段を有することを特徴とする。本発明のシステムは、例えば、 コンピュータシステムによって構築された検出装置があげられる。前記システムのハ 一ドウエア構造は、制限されず、例えば、制御部である CPUに、記憶装置、キーボー ドゃマウス等の入力装置が接続されており、さらに、例えば、結果の出力装置、入力 データや結果を表示する表示装置 (ディスプレイ)等が接続されてもよい。また、各手 段は、例えば、コンピュータの CPUが所定のプログラムを実行することによって実現 される機能的ブロックであればよい。このため、例えば、各構成手段が、ハードウェア として実装されて!/、なくともよく、ネットワークシステムであってもよレ、。
[0060] また、本発明のシステムは、例えば、本発明の変異の検出方法における(B)工程や
(C)工程を実行するための手段を有していてもよい。前記工程を実行するための手 段としては、例えば、温度制御手段、シグナルの検出手段があげられる。前記温度制 御手段の実行により、例えば、ハイブリダィズによる二本鎖 DNA (ハイブリッド形成体 )の形成や、ハイブリッド形成体の解離を行うことができる。また、前記シグナル検出 手段の実行により、例えば、温度変化に伴いハイブリッド形成体が形成されることによ るシグナル変動量や、ハイブリッド形成体が解離することによるシグナル変動量を検 出できる。この場合、例えば、前記入力手段にかえて、前記シグナル検出手段により 検出されたシグナル変動を記録する記録手段を有してもよい。さらに、本発明のシス テムは、前記決定手段により決定された DNAの変異の有無を出力する出力する手 段を備えてもよい。
[0061] 本発明のプログラムは、本発明のデータ解析方法をコンピュータ上で実行可能なコ ンピュータプログラムである。
[0062] また、本発明の電子媒体は、本発明のコンピュータプログラムを格納したコンビユー タ読取可能な電子媒体(「記録媒体」ともレ、う)である。
[0063] 次に、本発明の実施例について、比較例と併せて説明する。ただし、本発明は下 記の実施例および比較例により制限されない。
[0064] [実施例 1]
abl遣ィ云早におけろ 758番目塩某の点 然 ¾ (A→T)
(1)阻害用ポリヌクレオチドを添加して、 abl遺伝子における 758番目塩基の点突然 変異(A→T)につ!/、ての Tm解析を行った。
[0065] abl遺伝子 758番目の塩基に変異を有さない白血球細胞株のゲノム DNA (配列番 号 1)と、 abl遺伝子 758番目の塩基に変異を有する白血球細胞株のゲノム DNA (配 列番号 1にお!/、て 758番目塩基が T: ablチロシンキナーゼ A758T (= Y253F) )とを 調製した。以下、変異を有さない前者を「wtDNA」、変異を有する後者を「mtDNA」 という。そして、両者を所定の割合(mtDNA:wtDNA= 100 : 0、 50 : 50、 10 : 90、 5 : 95、 3 : 97、 0 : 100)に調製して、 104copy/test (1 Uを下記 PCR反応液 50 H Lに添加して PCR反応を行った。前記 PCR反応液における阻害用ポリヌクレオチ ドの終濃度は 200nM、検出用プローブの終濃度は 50nMとした。前記 PCR反応は 、サーマルサイクラ一により、 95°Cで 60秒処理した後、 95°C10秒および 60°C30秒 を 1サイクルとして 50サイクル繰り返し、さらに 95°Cで 1秒、 40°Cで 60秒処理した。そ して、続けて、温度の上昇速度を l°C/3秒として、前記 PCR反応液を 40°Cから 95 °Cに加熱していき、経時的な蛍光強度の変化を測定した。測定波長は、 585-700 nmとした。なお、検出用プローブの添加割合は、前記 PCR増幅産物に対してモル 比で 0.1倍であり、阻害用ポリヌクレオチドの添加割合は、前記 PCR増幅産物に対 してモル比で 0.4倍および前記プローブに対してモル比で 4倍である。なお、検出用 プローブの検出対象 DNA (検出対象配列の増幅産物)に対する添加割合は、以下 の通りである。これらの結果を実施例 1—1とする。また、比較例 1—1として、阻害用 ポリヌクレオチド 2 μ Lに代えて蒸留水 2 μ Lを下記 PCR反応液に添加した以外は、 同様にして蛍光強度の測定を行った。
[表 1] サンプル 検出対象 D N Aに対する添加割合
(m t DN A: w t DN A)
1 00 : 0 0. 1倍
50 : 50 0. 2倍
1 0 : 90 1倍
5 : 95 2倍
3 : 97 3. 3倍
0 : 1 00 [表 2]
(PCR反応液:単位 I )
蒸留水 34.375
10 gene Taq buffer * 5
40% Glycerol 3.125
2.5m dNTPs 4
100juM センスプライマー 0.5
100 M アンチセンスプライマ一 0.25
5〃Μ検出用プローブ 0.5
5 Μ 阻害用ポリヌクレオチド 1
5U/^L Gene Taa_FP * 0.25
Total 50 L
* 商品名 G e n e Ta q F p :二ツボンジーン社製
(以下、 同様)
[0068] センスプライマー 配列番号 9
5 ― ggagatggaacgcacggac― 3
アンチセンスプライマー 配列番号 10
o ― ggccaccgtcaggctg― 3
検出用プローブ 配列番号 4
o —
Figure imgf000022_0001
— ccgAactggcccccgc— p—
阻害用ポリヌクレオチド 配列番号 5
o — cctccccg Tactggcccccg— 3
[0069] これらの結果を図 1および図 2に示す。両図は、温度上昇に伴う蛍光強度の変化を 示す Tm解析のグラフであり、縦軸の微分値とは「一 d蛍光強度増加量/ dt」を示す( 以下、同様)。図 1は実施例 1— 1、図 2は比較例 1—1の結果である。図 1において、 (A)は、全ゲノムの 100%が点突然変異を有する試料、(B)は、全ゲノムのうち 5%が 点突然変異を有する試料、(C)は、全ゲノムのうち 3%が点突然変異を有する試料、 (D)は、全ゲノムが点突然変異を有さない試料についての結果である。図 2において 、(A)は、全ゲノム 100%が点突然変異を有する試料、(B)は、全ゲノムのうち 50% が点突然変異を有する試料、(C)は、全ゲノムのうち 5%が点突然変異を有する試料 、(D)は、全ゲノムのうち 3%が点突然変異を有する試料、(E)は、全ゲノムが点突然 変異を有さな!/、試料につ!/、ての結果である。
[0070] 図 1 (A)および図 2 (A)に示すように、 mtDNAは 69· 5°C、図 1 (D)および図 2 (E) に示すように、 wtDNAは 61. 5°Cでシグナルのピークが検出された。これを標準とし て各試料を評価した。その結果、阻害用ポリヌクレオチドを添加していない比較例 1 1では、 mtDNAが 50%の場合、図 2 (B)に示すように mtDNAのシグナルを検出 できた力 mtDNAが少量(5%、 3%)の場合には、図 2 (C)および(D)に示すように mtDNAのシグナルを全く検出することができなかった。これに対して、阻害用ポリヌ クレオチドを添加した実施例 1 1では、 mtDNAが少量(5%、 3%)であっても、図 1 (B)および(C)に示すように、 mtDNAのシグナルを検出することができた。つまり、 阻害用ポリヌクレオチドの添加によって、点突然変異を有さない wtDNAへの検出用 プローブのハイブリダィズが阻害されたため、結果として、 mtDNAに結合する検出 用プローブの量が増加し、それによつて検出感度が向上したといえる。
[0071] (2)さらに、検出用プローブの添加割合を変化させ、 abl遺伝子における 758番目 塩基の点突然変異 (A→T)につ!/、ての Tm解析を行った。
[0072] 前記実施例 1における PCR反応液の検出用プローブ添加量 0. 5 μ Lを 0. 1 L、 蒸留水添加量 34. 375 しを 34.775 しとし、前記検出用プローブの終濃度を 1/ 5の ΙΟηΜに設定した以外は、前記実施例 1と同様にして Tm解析を行った。この結 果を実施例 1—2として、図 3に示す。同図において、(A)は、全ゲノム 100%が点突 然変異を有する試料、(B)は、全ゲノムのうち 10%が点突然変異を有する試料、(C) は、全ゲノムのうち 5%が点突然変異を有する試料、(D)は、全ゲノムのうち 3%が点 突然変異を有する試料につ!/、ての結果である。
[0073] この結果、同図に示すように、 mtDNAのピークが顕著に検出できた。例えば、プロ ーブ添加量以外は同条件で解析を行った実施例 1 1の結果と比較すると、図 3 (C) と前述の図 1 (B)、図 3 (D)と図 1 (C)に示すように、プローブの添加量を実施例 1 1 よりも軽減(PCR増幅産物に対してモル比で 0. 02倍)することによって、さらに wtD NAのピークが減少し、 mtDNAの相対的ピークが大きくなつた。このこと力、ら、プロ一 ブ添加量を調節することによって、さらに、検出感度が向上することがわかった。
[0074] (3)阻害用ポリヌクレオチドの添加量を増加して、 abl遺伝子における 758番目塩基 の点突然変異(A→T)につ!/、ての Tm解析を行った。
[0075] 前記実施例 1における PCR反応液の阻害用ポリヌクレオチド添加量 2 Lを 3〃 L、 蒸留水添加量 34. 375 H Lを 33.775 μ Lとした以外は、前記(2)の実施例 1 2と同 様にして Tm解析を行った。前記 PCR反応液における阻害用ポリヌクレオチドの終濃 度は 300nMであり、検出用プローブの終濃度は ΙΟηΜである。これらの結果を実施 例 1—3として図 4に示す。同図において、(A)は、全ゲノム 100%が点突然変異を有 する試料、(B)は、全ゲノムのうち 10%が点突然変異を有する試料、(C)は、全ゲノ ムのうち 5%が点突然変異を有する試料、(D)は、全ゲノムのうち 3%が点突然変異 を有する試料につ!/、ての結果である。
[0076] この結果、同図に示すように、 mtDNAのピークが極めて顕著に検出できた。特に、 阻害用ポリヌクレオチドの添加量以外は同条件で解析を行った実施例 1 2の結果と 比較すると、図 4 (B)と前述の図 3 (B)、図 4 (C)と図 3 (C)、図 4 (D)と図 3 (D)に示す ように、阻害用ポリヌクレオチドの添加量を実施例 1 2よりも増加(前記プローブに対 してモル比で 30倍)することによって、さらに wtDNAのピークが減少し、 mtDNAの 相対的ピークが大きくなつている。このこと力、ら、阻害用ポリヌクレオチド添加量を調節 することによって、より一層、検出感度が向上することがわかった。
[0077] [実施例 2]
abl遺伝子の 756番目塩某の点突然変異 (G→C)
阻害用ポリヌクレオチドを添加して、 abl遺伝子における 756番目塩基の点突然変 異(G→C)につ!/、ての Tm解析を行った。
[0078] 配列番号 1に示す 756番目の塩基 Gに変異を有さな!/、正常 abl遺伝子配列を揷入 したプラスミドと、前記 756番目の塩基 Gが Cに変異した変異 abl遺伝子(ablチロシン キナーゼ G756C ( = Q250E) )を揷入したプラスミドとを調製した。以下、変異を有さ ない前者を「wtDNA」、変異を有する後者を「mtDNA」という。そして、前記実施例 1の表 1と同様に、両者を所定の割合(mtDNA:wtDNA=0 : 100、 3 : 97、 100 : 0) に調製して、 104copy/test (l μ Uを下記 PCR反応液 49 μ Lに添加して PCR反 応を行った。前記 PCR反応液において、阻害用ポリヌクレオチドの終濃度は 300nM 、検出用プローブの終濃度は 50nMとした。前記 PCR反応は、サーマルサイクラ一 により、 95°Cで 60秒処理した後、 95°C1秒および 58°C30秒を 1サイクルとして 50サ イタル繰り返し、さらに 95°Cで 1秒、 40°Cで 60秒処理した。そして、続けて温度の上 昇速度を l°C/3秒として、前記 PCR反応液を 40°Cから 95°Cに加熱していき、経時 的な蛍光強度の変化を測定した。測定波長は、 585〜700nmとした。検出用プロ一 ブの添加割合は、 PCR増幅産物に対してモル比で 0.05倍であり、阻害用ポリヌクレ ォチドの添加割合は、前記 PCR増幅産物に対してモル比で 0.3倍および前記プロ ーブに対してモル比で 6倍である。また、比較例 2として、下記 PCR反応液に阻害用 ポリヌクレオチド 3 a Lに代えて蒸留水 3 a Lを添加した以外は、同様にして蛍光強度 の測定を行った。
[0079] [表 3]
(PCR反応液:単位 ^ I )
蒸留水 21.75
10 X gene Taq buffer * 5
40% Glycerol 12.5
2.5mM dNTPs 4
100mM MgCI2 0,5
100 M センスプライマ一 1
100 M アンチセンスプライマ一 0.5
5 M 検出用プローブ 0.5
5〃 M 阻害用ポリヌクレオチド 3
5 /ul Gene Taq FP * 0.25
Total 49/ L
[0080] センスプライマー 配列番号 13
5 ― gacaagtgggagatggaacgc― 3 '
アンチセンスプライマー 配列番号 14
o — cacggccaccgtcagg— 検出用プローブ 配列番号 2
5' - (BODIPY FL)— ccgtaGtggcccccgc— P— 3'
阻害用ポリヌクレオチド 配列番号 3
o — ccgtaCtggcccccgc— P— 3
[0081] これらの結果を図 5に示す。同図は、温度上昇に伴う蛍光強度の変化を示す Tm解 析のグラフである。図 5において、(A)は、全プラスミドが点突然変異を有さない試料 、(B)は、全プラスミドの 100%が点突然変異を有する試料、(C)および (D)は、全プ ラスミドのうち 3%が点突然変異を有する試料である。そして、前記(C)は、比較例 2 の結果、前記 (D)は、実施例 2の結果である。
[0082] 同図(A)に示すように、 wtDNAは 61. 0°C、同図(B)に示すように、 mtDNAは 67 . 0°Cで、それぞれシグナルのピークが検出された。これを標準として、全プラスミドの うち 3%が点突然変異を有する試料を評価した。その結果、同図(C)に示すように、 阻害用ポリヌクレオチドを添加して!/、な!/、比較例 2では、 mtDNAのシグナルを全く 検出することができな力 た。これに対して、阻害用ポリヌクレオチドを添加した実施 例 2では、同図(D)に示すように、 mtDNAが少量であっても、 wtDNAと mtDNAの 両方のシグナルを検出することができた。
[0083] [実施例 3]
abl遣ィ云 の 763 目 の点、^^ ^¾ (G→A)
阻害用ポリヌクレオチドを添加して、 abl遺伝子における 763番目塩基の点突然変 異(G→A)につ!/、ての Tm解析を行った。
[0084] 配列番号 1に示す 763番目の塩基 Gに変異を有さな!/、正常 abl遺伝子配列を揷入 したプラスミドと、前記 763番目の塩基 Gが Aに変異した変異 abl遺伝子(ablチロシン キナーゼ G763A( = E255K) )を揷入したプラスミドとを調製した。以下、変異を有さ ない前者を「wtDNA」、変異を有する後者を「mtDNA」という。そして、前記実施例 1の表 1と同様に、両者を所定の割合(mtDNA:wtDNA=0 : 100、 3 : 97、 100 : 0) に調製して、 104copy/test (l μ Uを下記 PCR反応液 49 μ Lに添加して PCR反 応を行った。前記 PCR反応液において、阻害用ポリヌクレオチドの終濃度は 500ηΜ 、検出用プローブの終濃度は 50ηΜとした。前記 PCR反応は、前記実施例 2と同様 に行い、経時的な蛍光強度の変化を測定した。測定波長は、 585〜700nmとした。 検出用プローブの添加割合は、前記 PCR増幅産物に対してモル比で 0.05倍であり 、阻害用ポリヌクレオチドの添加割合は、前記 PCR増幅産物に対してモル比で 0. 5 倍および前記プローブに対してモル比で 10倍である。また、比較例 3として、下記 P CR反応液に阻害用ポリヌクレオチド 5 a Lに代えて蒸留水 5 a Lを添加した以外は、 同様にして蛍光強度の測定を行った。
[0085] [表 4]
(PCR反応液:単位 I )
蒸留水 23.375
10 X gene Taq buffer * 5
40% Glycerol 9.375
2.5mM dNTPs 4
100 iM センスプライマー 0.5
IOOJWM アンチセンスプライマ一 1
5〃M 検出用プローブ 0.5
5;uM 阻害用ポリヌクレオチド 5
5 /ul Gene Taq FP * 0.25
Total 49 L
[0086] センスプライマー 配列番号 15
5'― gacaagtgggagatggaacgc― 3 '
アンチセンスプライマー 配列番号 16
o — cacggccaccgtcagg—
検出用プローブ 配列番号 7
5, - (BODIPY FL) - ccagtacgggAaggtgt - P - 3 '
阻害用ポリヌクレオチド 配列番号 8
5 ― ccagtacgggGaggtgt— P— 3
[0087] これらの結果を図 6に示す。同図は、温度上昇に伴う蛍光強度の変化を示す Tm解 析のグラフである。図 6において、(A)は、全プラスミドが点突然変化を有さない試料 、(B)は、全プラスミドの 100%が点突然変異を有する試料、(C)および (D)は、全プ ラスミドのうち 3%が点突然変異を有する試料である。そして、前記(C)は、比較例 3 の結果、前記 (D)は、実施例 3の結果である。
[0088] 同図(A)に示すように、 wtDNAは 50.0°C、同図(B)に示すように、 mtDNAは 59 . 0°Cで、それぞれシグナルのピークが検出された。これを標準として、全プラスミドの うち 3%が点突然変異を有する試料を評価した。その結果、同図(C)に示すように、 阻害用ポリヌクレオチドを添加して!/、な!/、比較例 3では、 mtDNAのシグナルを全く 検出することができなかった。これに対して、阻害用ポリヌクレオチドを添加した実施 例 3では、同図(D)に示すように、 mtDNAが少量であっても、 wtDNAと mtDNAの 両方のシグナルを検出することができた。
[0089] [実施例 4]
abl遣ィ云早の 758番目 某の点 Ι (Α→Τ)
阻害用ポリヌクレオチドを添加して、 abl遺伝子における 758番目塩基の点突然変 異(A→T)につ!/、ての Tm解析を行った。
[0090] 配列番号 1に示す 758番目の塩基 Aに変異を有さな!/、正常 abl遺伝子配列を揷入 したプラスミドと、前記 758番目の塩基 A力 に変異した変異 abl遺伝子(ablチロシン キナーゼ A758T (=Y253F) )を揷入したプラスミドとを調製した。以下、変異を有さ ない前者を、「wtDNA」、変異を有する後者を、「mtDNA」という。そして、前記実施 例 1の表 1と同様に、両者を所定の割合(mtDNA:wtDNA=0 : 100、 3 : 97、 100 : 0)に調製して、 104copy/test (l μ Uを下記 PCR反応液 49 μ Lに添加して PCR 反応を行った。前記 PCR反応液において、阻害用ポリヌクレオチドの終濃度は 500η Μ、検出用プローブの終濃度は 50ηΜとした。前記 PCR反応は、前記実施例 2と同 様に行い、経時的な蛍光強度の変化を測定した。測定波長は、 585〜700nmとした 。検出用プローブの添加割合は、前記 PCR増幅産物に対してモル比で 0. 05倍であ り、阻害用ポリヌクレオチドの添加割合は、前記 PCR増幅産物に対してモル比で 0. 5倍および前記プローブに対してモル比で 10倍である。また、比較例 4として、下記 P CR反応液に阻害用ポリヌクレオチド 5 a Lに代えて蒸留水 5 a Lを添加した以外は、 同様にして蛍光強度の測定を行った。 [0091] [表 5]
( P C R反応液:単位// I )
蒸留水 20. 25
10 gene Taq buffer * 5
40% G l ycero l 12. 5
2. 5mM dNTPs 4
100〃M センスプライマー 1
I OO JU M アンチセンスプライマー 0. 5
5〃M 検出用プローブ 0. 5
5〃 M 阻害用ポリヌクレオチド 5
5U/^ L Gene Taa_FP * 0. 25
Tota l Α9 μ Ι
[0092] センスプライマー 配列番号 11
5 ― gacaagtgggagatggaacgc― 3 '
アンチセンスプライマー 配列番号 12
5 — cacggccaccgtcagg— 3
検出用プローブ 配列番号 4
5 — 丄' AMRA)— ccgAactggcccccgc— P— d
阻害用ポリヌクレオチド 配列番号 6
5 — ccgTactggcccccgc— P— 3
[0093] これらの結果を図 7に示す。同図は、温度上昇に伴う蛍光強度の変化を示す Tm解 析のグラフである。図 7において、(A)は、全プラスミドが点突然変化を有さない試料 、(B)は、全プラスミドの 100%が点突然変異を有する試料、(C)および (D)は、全プ ラスミドのうち 3%が点突然変異を有する試料である。そして、前記(C)は、比較例 4 の結果、前記 (D)は、実施例 4の結果である。
[0094] 同図(A)に示すように、 wtDNAは 60.0°C、同図(B)に示すように、 mtDNAは 67 . 0°Cで、それぞれシグナルのピークが検出された。これを標準として、全プラスミドの うち 3%が点突然変異を有する試料を評価した結果、同図(C)に示すように、阻害用 ポリヌクレオチドを添加して!/、な!/、比較例 4では、 mtDNAのシグナルを全く検出する ことができなかった。これに対して、阻害用ポリヌクレオチドを添加した実施例 4では、 同図(D)に示すように、 mtDNAが少量であっても、 wtDNAと mtDNAの両方のシ グナルを検出することができた。
産業上の利用可能性
以上のように、本発明の変異の検出方法によれば、前述のような阻害用ポリヌクレ ォチドを添加することで、例えば、白血病患者の白血球試料のように、点突然変異を 有する検出対象 DNAと前記点突然変異を有さない非検出対象 DNAとが混在する 試料であっても、優れた感度で前記点突然変異を検出できる。また、変異の種類が 特定できることから、特異性にも優れる検出方法である。したがって、この方法は、特 に白血病患者の点突然変異検出に有用であり、例えば、白血病治療薬が個人間に おいて適しているか否かを遺伝子レベルで解析することも可能となることから、医療の 分野にお!/、て極めて有用な方法と!/、える。

Claims

請求の範囲
[1] 試料中の DNAの変異を検出する方法であって、
前記試料が、検出部位が変異している検出対象 DNAと、前記検出部位が未変異 である非検出対象 DNAとを含有する試料であり、
下記 (A)〜(E)工程を含むことを特徴とする変異の検出方法。
(A) 前記 DNAを含む試料に、検出対象配列に相補的なポリヌクレオチドからなる 検出用プローブ、および、非検出対象配列に相補的なポリヌクレオチドを添加するェ 程であって、
前記検出対象配列が、前記検出対象 DNAまたはその部分配列であって、変異し ている前記検出部位を含み、
前記非検出対象配列が、前記非検出対象 DNAまたはその部分配列であって、未 変異である前記検出部位を含む、前記工程
(B) 前記 DNAに前記検出用プローブをハイブリダィズさせる工程
(C) 前記 DNAと前記検出用プローブとのハイブリッド形成体について、温度変化 に伴うシグナルの変動を測定する工程
(D) 前記シグナルの変動を解析して Tm値を決定する工程
(E) 前記 Tm値から前記検出対象部位における変異の有無を決定する工程
[2] 前記検出用プローブが、標識化物質で標識化されたプローブである、請求の範囲
1記載の変異の検出方法。
[3] 前記標識化プローブが、単独でシグナルを示し且つハイブリッド形成によりシグナ ルを示さない標識化プローブ、または、単独でシグナルを示さず且つハイブリッド形 成によりシグナルを示す標識化プローブである、請求の範囲 2記載の変異の検出方 法。
[4] 前記標識化物質が、蛍光色素であり、前記標識化プローブが、単独で蛍光を示し 且つハイブリッド形成により蛍光が減少するプローブである、請求の範囲 2記載の変 異の検出方法。
[5] 前記標識化プローブが、その 3 '末端の塩基がシトシンであり、且つ、前記 3 '末端が 標識化されたプローブである、請求の範囲 2記載の変異の検出方法。
[6] 前記標識化プローブが、その 5'末端の塩基がシトシンであり、且つ、前記 3'末端が 標識化されたプローブである、請求の範囲 2記載の変異の検出方法。
[7] 前記検出対象配列に相補的な検出用プローブと前記非検出対象配列に相補的な ポリヌクレオチドとが、前記検出部位と対をなす部位を除き、同じ配列である、請求の 範囲 1記載の変異の検出方法。
[8] 前記非検出対象配列に相補的なポリヌクレオチドの添加割合が、前記検出用プロ ーブに対してモル比で 0. ;!〜 100倍である、請求の範囲 1記載の変異の検出方法。
[9] 前記検出用プローブの添加割合が、前記 DNAに対してモル比で 1倍以下である、 請求の範囲 1記載の変異の検出方法。
[10] 前記 DNAが、白血球由来の DNAである、請求の範囲 1記載の変異の検出方法。
[11] 前記変異が、 abl遺伝子の変異である、請求の範囲 1記載の変異の検出方法。
[12] 前記変異が、配列番号 1の塩基配列における 756番目の塩基 Gの Cへの変異であ る、請求の範囲 1記載の変異の検出方法。
[13] 前記検出用プローブが、配列番号 2の塩基配列からなるプローブであり、前記非検 出対象配列に相補的なポリヌクレオチドが、配列番号 3の塩基配列からなるポリヌクレ ォチドである、請求の範囲 12記載の変異の検出方法。
[14] 前記変異が、配列番号 1の塩基配列における 758番目の塩基 Aの Tへの変異であ る、請求の範囲 1記載の変異の検出方法。
[15] 前記検出用プローブが、配列番号 4の塩基配列からなるプローブであり、前記非検 出対象配列に相補的なポリヌクレオチドが、配列番号 5および配列番号 6の少なくと も一方の塩基配列からなるポリヌクレオチドである、請求の範囲 14記載の変異の検 出方法。
[16] 前記変異が、配列番号 1の塩基配列における 763番目の塩基 Gの Aへの変異であ る、請求の範囲 1記載の変異の検出方法。
[17] 前記検出用プローブが、配列番号 7の塩基配列からなるプローブであり、前記非検 出対象配列に相補的なポリヌクレオチドが、配列番号 8の塩基配列からなるポリヌクレ ォチドである、請求の範囲 16記載の変異の検出方法。
[18] 前記試料中の DNAが二本鎖 DNAであり、前記(B)工程に先立って、加熱により 前記試料中の二本鎖 DNAを解離させる工程を含む、請求の範囲 1記載の変異の検 出方法。
[19] 前記 DNAが、前記試料由来の DNAを铸型として、遺伝子増幅法により増幅させ た増幅産物である、請求の範囲 1記載の変異の検出方法。
[20] 前記 DNAが、前記試料由来の RNAから逆転写反応により生成させた cDNAを铸 型として、遺伝子増幅法により増幅させた増幅産物である、請求の範囲 1記載の変異 の検出方法。
[21] 前記(C)工程において、前記 DNAと前記検出用プローブとのハイブリッド形成体 を加熱して、温度上昇に伴うシグナルの変動を測定する、請求の範囲 1に記載の変 異の検出方法。
[22] 前記(B)工程と前記(C)工程とを並行して行う方法であって、前記試料の温度を降 下させて前記ハイブリッド形成体を形成し、前記温度降下に伴うシグナルの変動を測 定する、請求の範囲 1記載の変異の検出方法。
[23] 請求の範囲 1記載の変異の検出方法に使用する検出用プローブキットであって、 検出対象配列に相補的なポリヌクレオチドからなる検出用プローブと、非検出対象 配列に相補的なポリヌクレオチドとを含み、
前記検出対象配列が、検出部位が変異して!/、る検出対象 DNAまたはその部分配 歹 IJであって、変異している前記検出部位を含み、
前記非検出対象配列が、前記検出部位が未変異である前記非検出対象 DNAま たはその部分配列であって、未変異である前記検出部位を含むことを特徴とする検 出用プローブキット。
[24] 前記検出用プローブが、標識化物質で標識化されたプローブである、請求の範囲
23記載の検出用プローブキット。
[25] 前記検出対象配列に相補的な検出用プローブと前記非検出対象配列に相補的な ポリヌクレオチドとが、前記検出部位と対をなす部位を除き、同じ配列である、請求の 範囲 23記載の検出用プローブキット。
[26] 前記変異が、 abl遺伝子の変異である、請求の範囲 23記載の検出用プローブキット
[27] 前記変異が、配列番号 1の塩基配列における 756番目の塩基 Gの Aへの変異であ り、前記検出用プローブが、配列番号 2の塩基配列からなるプローブであり、前記非 検出対象配列に相補的なポリヌクレオチドが、配列番号 3の塩基配列からなるポリヌ クレオチドである、請求項 23記載の検出用プローブキット。
[28] 前記変異が、配列番号 1の塩基配列における 758番目の塩基 Aの Tへの変異であ り、前記検出用プローブが、配列番号 4の塩基配列からなるプローブであり、前記非 検出対象配列に相補的なポリヌクレオチドが、配列番号 5および配列番号 6の少なく とも一方の塩基配列からなるポリヌクレオチドである、請求項 23記載の検出用プロ一 ブキット。
[29] 前記変異が、配列番号 1の塩基配列における 763番目の塩基 Gの Aへの変異であ り、前記検出用プローブが、配列番号 7の塩基配列からなるプローブであり、前記非 検出対象配列に相補的なポリヌクレオチドが、配列番号 8の塩基配列からなるポリヌ クレオチドである、請求項 23記載の検出用プローブキット。
[30] DNAの変異の有無を決定するためのデータの解析方法であって、
下記(a)〜(b)工程を有することを特徴とするデータ解析方法。
(a) 請求の範囲 1記載の変異の検出方法における(C)工程で得られたシグナル変 動から Tm値を演算する工程
(b) 前記演算工程にお!/、て演算した前記 Tm値から DNAの変異の有無を決定す る工程
[31] 試料中の DNAの変異の有無を検出するためのシステムであって、
請求の範囲 1記載の変異の検出方法における(C)工程で得られたシグナル変動を 入力する入力手段、
前記入力手段により入力した前記シグナル変動から Tm値を演算する演算手段、 および、
前記演算手段により演算した Τιι^直に基づいて、 DNAの変異の有無を決定する決 定手段を有することを特徴とする変異検出システム。
[32] 請求の範囲 30に記載のデータ解析方法をコンピュータ上で実行可能なコンビユー タプログラム。 [33] 請求の範囲 32に記載のコンピュータプログラムを格納した電子媒体。
PCT/JP2007/064800 2006-08-08 2007-07-27 Method of detecting variation and kit to be used therein WO2008018305A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020117005830A KR101171635B1 (ko) 2006-08-08 2007-07-27 변이의 검출 방법 및 그것에 이용하는 키트
US12/376,534 US20100216123A1 (en) 2006-08-08 2007-07-27 Method of detecting mutation and kit used in the same
KR1020087023332A KR101110396B1 (ko) 2006-08-08 2007-07-27 변이의 검출 방법 및 그것에 이용하는 키트
JP2007549753A JPWO2008018305A1 (ja) 2006-08-08 2007-07-27 変異の検出方法およびそれに用いるキット
EP07791494A EP2031074A4 (en) 2006-08-08 2007-07-27 METHOD FOR VARIATION DETECTION AND KIT THEREFOR
CN200780013688.5A CN101421420B (zh) 2006-08-08 2007-07-27 突变的检测方法及用于该方法的试剂盒

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006216194 2006-08-08
JP2006-216194 2006-08-08
JP2007040078 2007-02-20
JP2007-040078 2007-02-20

Publications (1)

Publication Number Publication Date
WO2008018305A1 true WO2008018305A1 (en) 2008-02-14

Family

ID=39032839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064800 WO2008018305A1 (en) 2006-08-08 2007-07-27 Method of detecting variation and kit to be used therein

Country Status (6)

Country Link
US (1) US20100216123A1 (ja)
EP (1) EP2031074A4 (ja)
JP (2) JPWO2008018305A1 (ja)
KR (2) KR101110396B1 (ja)
CN (1) CN101421420B (ja)
WO (1) WO2008018305A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102760A1 (ja) * 2007-02-20 2008-08-28 Arkray, Inc. abl遺伝子変異の検出用プローブおよびその用途
CN101597638B (zh) * 2008-06-04 2011-12-28 博奥生物有限公司 一种检测基因多突变位点的方法及其专用试剂盒
EP2407560A2 (en) 2010-07-12 2012-01-18 Arkray, Inc. Probe for detection of polymorphism in abl gene, and use thereof
CN102808020A (zh) * 2011-05-31 2012-12-05 爱科来株式会社 基因多态性检测方法
JP2012249630A (ja) * 2011-05-06 2012-12-20 Arkray Inc Egfrエクソン19多型検出試験用オリゴヌクレオチド及びその用途
CN104531850A (zh) * 2014-12-10 2015-04-22 中生北控生物科技股份有限公司 一种检测slc26a4基因突变的试剂盒及其应用
WO2018079579A1 (ja) * 2016-10-26 2018-05-03 栄研化学株式会社 標的塩基配列を検出する方法、プローブを設計および製造する方法ならびにキット

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2716807T3 (es) 2008-11-07 2019-06-17 Univ Utah Res Found Sesgo de amplificación de alelos
US9528897B2 (en) 2009-08-13 2016-12-27 Chimden Medical Pty Ltd Pressure indicator
EP2670465B1 (en) 2011-02-02 2017-07-26 Umedaes Limited Improved artificial airway
JP5955680B2 (ja) * 2011-09-02 2016-07-20 アークレイ株式会社 核酸検出装置、方法、及びプログラム
JP2013081450A (ja) * 2011-09-27 2013-05-09 Arkray Inc 多型検出用プローブ、多型検出方法、薬効判定方法及び多型検出用試薬キット
JP6205216B2 (ja) * 2012-09-24 2017-09-27 アークレイ株式会社 変異検出用プローブ、変異検出方法、薬効判定方法及び変異検出用キット

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111072A2 (en) * 2003-06-12 2004-12-23 Applera Corporation Combinatorial nucleobase oligomers comprising universal base analogues and methods for making and using same
JP2004537992A (ja) 2001-06-14 2004-12-24 ザ・レジェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア Sti−571に対する耐性に関連するbcr−ablチロシンキナーゼの変異
JP2005058107A (ja) * 2003-08-13 2005-03-10 Arkray Inc 融解曲線解析法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE112804T1 (de) * 1987-07-31 1994-10-15 Gen Probe Inc Polynukleotidentest unter benutzung von oligonukleotiden zur eliminierung von unerwünschten kreuzreaktionen.
GB2335984B (en) * 1996-11-15 2000-11-29 Univ Texas Genetic test for equine severe combined immunodeficiency disease
US6110676A (en) * 1996-12-04 2000-08-29 Boston Probes, Inc. Methods for suppressing the binding of detectable probes to non-target sequences in hybridization assays
US6127121A (en) * 1998-04-03 2000-10-03 Epoch Pharmaceuticals, Inc. Oligonucleotides containing pyrazolo[3,4-D]pyrimidines for hybridization and mismatch discrimination
US7205105B2 (en) * 1999-12-08 2007-04-17 Epoch Biosciences, Inc. Real-time linear detection probes: sensitive 5′-minor groove binder-containing probes for PCR analysis
ATE497019T1 (de) * 2000-03-29 2011-02-15 Lgc Ltd Hybridisierungsprobe und methode zum schnellen nachweis und zur schnellen unterscheidung von sequenzen
EP1356103B1 (en) * 2000-09-12 2010-10-20 Gen-Probe Incorporated Compositions, methods and kits for determining the presence of cryptosporidium organisms in a test sample
US20020142326A1 (en) * 2000-11-30 2002-10-03 Coull James M. Methods and compositions for sorting and/or determining organisms
DE60216468T2 (de) * 2001-03-09 2007-09-27 Boston Probes, Inc., Bedford Kombinationsoligomere betreffende verfahren, kits und zusammensetzungen
WO2002077224A1 (fr) * 2001-03-27 2002-10-03 Japan Bioindustry Association Nouvelle sonde d'acide nucleique et nouveau procede d'essai d'acides nucleiques faisant appel a ladite sonde
EP1275735A1 (en) * 2001-07-11 2003-01-15 Roche Diagnostics GmbH Composition and method for hot start nucleic acid amplification
EP1432826B1 (en) * 2001-09-24 2012-12-12 Life Technologies Corporation Methods, kits and compositions pertaining to the suppression of detectable probe binding to randomly distributed repeat sequences in genomic nucleic acid
WO2003080857A2 (en) * 2002-03-21 2003-10-02 Boston Probes,Inc. Pna oligomers, oligomers sets, methods and kits pertaining to the detection of bacillus anthracis
US20060141529A1 (en) * 2004-07-27 2006-06-29 Koleske Anthony J Compositions, kits and assays containing reagents directed to cortactin and an ARG/ABL protein kinase
WO2006079009A2 (en) * 2005-01-21 2006-07-27 University Of Rochester Methods for separating short single-stranded nucleic acid from long single- and double-stranded nucleic acid, and associated biomolecular assays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537992A (ja) 2001-06-14 2004-12-24 ザ・レジェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア Sti−571に対する耐性に関連するbcr−ablチロシンキナーゼの変異
WO2004111072A2 (en) * 2003-06-12 2004-12-23 Applera Corporation Combinatorial nucleobase oligomers comprising universal base analogues and methods for making and using same
JP2005058107A (ja) * 2003-08-13 2005-03-10 Arkray Inc 融解曲線解析法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
GERMER S. ET AL.: "Single-Tube Genotyping without Oligonucleotide Probes", GENOME RES., vol. 9, 1999, pages 72 - 78, XP002940171 *
ITO M. ET AL.: "CYP2C19 Idenshi Tagata ni Motozuki PPI Toyoji no Order Made Iryo Model", DAI 47 KAI THE JAPANESE SOCIETY OF GASTROENTEROLOGY TAIKAI SHOROKUSHU, 10 September 2005 (2005-09-10), pages A742 + ABSTR. NO. SHO P-202 NO KO, XP003020763 *
KURATA S. ET AL.: "Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY FL-labeled probe or primer", NAR, vol. 29, no. 6E34, 2001, pages 1 - 5, XP002376104 *
KUREBAYASHI Y. ET AL.: "Zenjido Idenshi Kaiseki Sochi o Mochiita Hito CYP2C19 no Idenshi Tagata Kaiseki to Shinki Kaiseki System o Mochiita Database no Kaihatsu", DAI 28 KAI ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN KOEN YOSHISHU, 25 November 2005 (2005-11-25), pages 742 + ABSTR. NO. 3P-1068 NO KO, XP003020761 *
MATSUMOTO M. ET AL.: "Chiken Jisshi Shisetsu ni okeru In-house Zenjido Idenshi Tagata Kaiseki no Kochiku", DAI 125 NENKAI THE PHARMACEUTICAL SOCIETY OF JAPAN KOYO2005 YOSHISHU 3, 5 March 2005 (2005-03-05), pages 111 + ABSTR. NO. 30-0556 NO KO, XP003020764 *
MATSUMOTO N. ET AL.: "Single nucleotide polymorphism genotyping of CYP2C19 using a new automated system", ANAL. BIOCHEM., XP022256857 *
MISHIMA K. ET AL.: "Capillary Electrophoretic Discrimination of Single Nucleotide Polymorphisms Using an Oligodeoxyribonucleotide-polyacrylamide Conjugate as a Pseudo-immobilized Affinity Ligand: Optimum Ligand Length Predicted by the Melting Temperature Values", ANAL. SCI., vol. 21, 2005, pages 25 - 29, XP003020765 *
See also references of EP2031074A4
YAMAGUCHI H. ET AL.: "Shinki Idenshi Kaiseki Sochi o Mochiita Honpo ni okeru G-CSF Juyotai (G-CSFR) Iden Tagata no Hindo Kaiseki", DAI 67 KAI THE JAPANESE SOCIETY OF HEMATOLOGY.DAI 47 KAI THE JAPANESE SOCIETY OF CLINICAL HEMATOLOGY.GODO SOKAI PROGRAM.SHOROKUSHU, 30 August 2005 (2005-08-30), pages 945 + ABSTR. NO. PS-3-14 NO KO, XP003020762 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012619B2 (en) 2007-02-20 2015-04-21 Arkray, Inc. Probe for detecting ABL gene mutation and uses thereof
JP2008199965A (ja) * 2007-02-20 2008-09-04 Arkray Inc abl遺伝子変異の検出用プローブおよびその用途
WO2008102760A1 (ja) * 2007-02-20 2008-08-28 Arkray, Inc. abl遺伝子変異の検出用プローブおよびその用途
CN101597638B (zh) * 2008-06-04 2011-12-28 博奥生物有限公司 一种检测基因多突变位点的方法及其专用试剂盒
EP2407560A2 (en) 2010-07-12 2012-01-18 Arkray, Inc. Probe for detection of polymorphism in abl gene, and use thereof
JP2012034688A (ja) * 2010-07-12 2012-02-23 Arkray Inc abl遺伝子多型の検出用プローブおよびその用途
US9085803B2 (en) 2010-07-12 2015-07-21 Arkray, Inc. Probe for detection of polymorphism in ABL gene, and use thereof
JP2012249630A (ja) * 2011-05-06 2012-12-20 Arkray Inc Egfrエクソン19多型検出試験用オリゴヌクレオチド及びその用途
JP2013009669A (ja) * 2011-05-31 2013-01-17 Arkray Inc 同一又は近傍の検出波長を有する蛍光色素で修飾された複数のオリゴヌクレオチドを用いて、1種類の波長で複数の遺伝子多型を検出する方法
CN102808020A (zh) * 2011-05-31 2012-12-05 爱科来株式会社 基因多态性检测方法
CN104531850A (zh) * 2014-12-10 2015-04-22 中生北控生物科技股份有限公司 一种检测slc26a4基因突变的试剂盒及其应用
WO2018079579A1 (ja) * 2016-10-26 2018-05-03 栄研化学株式会社 標的塩基配列を検出する方法、プローブを設計および製造する方法ならびにキット
JPWO2018079579A1 (ja) * 2016-10-26 2019-09-26 栄研化学株式会社 標的塩基配列を検出する方法、プローブを設計および製造する方法ならびにキット
JP7025342B2 (ja) 2016-10-26 2022-02-24 栄研化学株式会社 標的塩基配列を検出する方法、プローブを設計および製造する方法ならびにキット
US11390911B2 (en) 2016-10-26 2022-07-19 Eiken Kagaku Kabushiki Kaisha Method for detecting a target base sequence

Also Published As

Publication number Publication date
EP2031074A1 (en) 2009-03-04
US20100216123A1 (en) 2010-08-26
KR20080106292A (ko) 2008-12-04
CN101421420A (zh) 2009-04-29
KR101171635B1 (ko) 2012-08-09
KR101110396B1 (ko) 2012-07-04
KR20110036646A (ko) 2011-04-07
CN101421420B (zh) 2015-03-11
JP2012040029A (ja) 2012-03-01
EP2031074A4 (en) 2010-09-08
JPWO2008018305A1 (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
WO2008018305A1 (en) Method of detecting variation and kit to be used therein
JP5637850B2 (ja) 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
JP5224526B2 (ja) 遺伝子増幅用プライマーセット、それを含む遺伝子増幅用試薬およびその用途
JP2013081450A (ja) 多型検出用プローブ、多型検出方法、薬効判定方法及び多型検出用試薬キット
JP5917144B2 (ja) 疾患関連遺伝子の多型検出用プローブおよびその用途
JP4942508B2 (ja) abl遺伝子変異の検出用プローブおよびその用途
KR101649179B1 (ko) 표적 서열의 증폭 방법, 다형 검출 방법 및 그것에 사용하는 시약
JPWO2009011297A1 (ja) Jak2遺伝子の変異検出用プローブおよびその用途
JP5831093B2 (ja) C型慢性肝炎に対する治療効果を予測するためのプローブ
JPWO2011077990A1 (ja) c−kit遺伝子の多型検出用プローブおよびその用途
JP5720564B2 (ja) 遺伝子型の識別方法
WO2018079579A1 (ja) 標的塩基配列を検出する方法、プローブを設計および製造する方法ならびにキット
JP5860667B2 (ja) Egfrエクソン21l858r遺伝子多型検出用プライマーセット及びその用途
JP5635496B2 (ja) Egfr遺伝子多型検出用プローブおよびその用途
JP5570657B2 (ja) 遺伝子存在量の測定方法
US9085803B2 (en) Probe for detection of polymorphism in ABL gene, and use thereof
JP2018088883A (ja) 上皮成長因子受容体遺伝子変異の検出方法
JP5504676B2 (ja) 遺伝子型の識別方法
JP5568935B2 (ja) 標的塩基配列の識別方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007549753

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087023332

Country of ref document: KR

Ref document number: KR

WWE Wipo information: entry into national phase

Ref document number: 200780013688.5

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2007791494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007791494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12376534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1020117005830

Country of ref document: KR