WO2008018229A1 - Système de pile à combustible - Google Patents

Système de pile à combustible Download PDF

Info

Publication number
WO2008018229A1
WO2008018229A1 PCT/JP2007/061687 JP2007061687W WO2008018229A1 WO 2008018229 A1 WO2008018229 A1 WO 2008018229A1 JP 2007061687 W JP2007061687 W JP 2007061687W WO 2008018229 A1 WO2008018229 A1 WO 2008018229A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel cell
exhaust
supply
amount
Prior art date
Application number
PCT/JP2007/061687
Other languages
English (en)
French (fr)
Inventor
Katsuki Ishigaki
Hideaki Mizuno
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112007001874.7T priority Critical patent/DE112007001874B4/de
Priority to US12/373,828 priority patent/US7981558B2/en
Priority to CN200780028098XA priority patent/CN101496209B/zh
Publication of WO2008018229A1 publication Critical patent/WO2008018229A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K24/00Devices, e.g. valves, for venting or aerating enclosures
    • F16K24/02Devices, e.g. valves, for venting or aerating enclosures the enclosure being itself a valve, tap, or cock
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04179Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by purging or increasing flow or pressure of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • a fuel cell system including a fuel cell that generates power by receiving a supply of a reaction gas (a fuel gas and an oxidizing gas) has been proposed and put into practical use.
  • Impurities such as nitrogen and carbon monoxide accumulate over time in the fuel cell of the fuel cell system and in the circulation path of the fuel-off gas as power is generated.
  • an exhaust valve is provided in the discharge flow path connected to the circulation flow path, and the exhaust valve is controlled to open and close, so that the gas in the circulation flow path is discharged at regular intervals.
  • a technology to purge has been proposed.
  • the fuel cell system is provided with a fuel supply channel for flowing fuel gas supplied from a fuel supply source such as a hydrogen tank to the fuel cell.
  • a fuel supply source such as a hydrogen tank
  • a mechanical variable regulator or the like can be used in the fuel supply channel.
  • a technique has been proposed in which the supply pressure of the fuel gas from the fuel supply source is changed according to the operating state of the system by providing a variable gas supply device.
  • an injector is employed as the variable gas supply device, and the purge amount (exhaust amount) from the exhaust valve is calculated based on the gas supply from the injector, and the calculated purge amount is set to a predetermined threshold (A technique for closing the exhaust valve when the target purge amount is exceeded (hereinafter referred to as “injector exhaust control”) has been proposed.
  • injector exhaust control A technique for closing the exhaust valve when the target purge amount is exceeded (hereinafter referred to as “injector exhaust control”) has been proposed.
  • injector exhaust control As shown in Fig. 9A and Fig. 9B, the exhaust amount increment corresponding to the gas supply from the injector at a certain time is calculated, and this exhaust amount increment is calculated as the purge amount until then.
  • the total purge amount is calculated by adding to, and when this total purge amount exceeds the target purge amount, the exhaust valve is closed.
  • the present invention has been made in view of such circumstances.
  • a fuel cell system that includes a variable gas supply device and an exhaust valve, and closes the exhaust valve when the calculated exhaust amount exceeds a predetermined target exhaust amount.
  • the purpose is to suppress exhaust errors.
  • a first fuel cell system includes a fuel cell, a supply channel for flowing fuel gas supplied from a fuel supply source to the fuel cell, A variable gas supply device that adjusts the gas state on the upstream side and supplies it to the downstream side, a discharge channel for flowing the fuel off-gas discharged from the fuel cell, and a gas in the discharge channel for discharging to the outside Exhaust valve and open the exhaust valve And a control means for closing the exhaust valve when the exhaust amount calculated during release exceeds a predetermined target exhaust amount, and the control means includes an exhaust amount calculated during release of the exhaust valve. When the amount exceeds the target displacement, the exhaust valve is closed simultaneously with the supply stop of the gas supply from the variable gas supply device.
  • “powerful” configuration when the exhaust amount calculated while the exhaust valve is opened exceeds a predetermined target exhaust amount, the exhaust valve can be closed simultaneously with the supply stop of the gas supply. In other words, when the exhaust amount calculated while the exhaust valve is open exceeds the predetermined target exhaust amount, the exhaust valve can be continuously opened in consideration of the gas supply amount. Therefore, it is possible to suppress that the actual exhaust amount falls below the target exhaust amount due to the gas supply from the variable gas supply device (exhaust error).
  • “Gas state” means a gas state represented by flow rate, pressure, temperature, molarity, etc., and particularly includes at least one of gas flow rate and gas pressure.
  • the second fuel cell system includes a fuel cell, a supply channel for flowing fuel gas supplied from a fuel supply source to the fuel cell, and a gas state upstream of the supply channel.
  • a variable gas supply device that adjusts the flow rate and supplies it downstream, a discharge passage for flowing fuel off-gas discharged from the fuel cell, and an exhaust valve for discharging the gas in the discharge passage to the outside
  • a fuel cell system comprising: control means for closing the exhaust valve when the exhaust amount calculated while the exhaust valve is open exceeds a predetermined target exhaust amount; and the control means is configured to open the exhaust valve while the exhaust valve is open.
  • the exhaust valve can be closed after the required time has elapsed from the start of gas supply from the variable gas supply device. Therefore, if the actual exhaust amount exceeds the target exhaust amount when the exhaust valve is closed simultaneously with the supply stop of the gas supply from the variable gas supply device, the exhaust is preceded before the stop of the supply of the gas supply. The valve can be closed. As a result, it is possible to suppress the actual displacement from exceeding the target displacement (exhaust error).
  • each of the fuel cell systems it is possible to employ a control means having an exhaust amount calculating means for calculating the exhaust amount from the exhaust valve based on the time integration of the change in the gas supply state from the variable gas supply device.
  • the flow rate corresponding to the pressure change converted from the change in the downstream pressure of the variable gas supply device and the time integrated value of the gas correction supply flow rate to compensate for the decrease in the downstream pressure of the variable gas supply device are:
  • an exhaust amount calculation means for calculating the exhaust amount from the exhaust valve.
  • an injector can be employed as the variable gas supply device.
  • An injector is an electromagnetic drive type that can adjust the gas state (gas flow rate or gas pressure) by driving the valve body directly at a predetermined drive cycle with electromagnetic drive force and separating it from the valve seat. Open / close valve.
  • a predetermined control unit drives the valve body of the injector to control the fuel gas injection timing and injection time, whereby the flow rate and pressure of the fuel gas can be controlled. According to the present invention, it is possible to suppress an exhaust error in a fuel cell system that includes a variable gas supply device and an exhaust valve, and closes the exhaust valve when the calculated exhaust amount exceeds a predetermined target exhaust amount. It becomes.
  • FIG. 1 is a configuration diagram of a fuel cell system according to an embodiment of the present invention.
  • FIG. 2 is a control block diagram for explaining a control mode of the control unit of the fuel cell system shown in FIG.
  • FIG. 3 is a flowchart for explaining the operation method of the fuel cell system shown in FIG.
  • FIG. 4 is a flowchart for explaining a purge amount estimation step in the operation method of the fuel cell system shown in FIG.
  • FIG. 5A is a time chart (showing the opening / closing operation of the exhaust drain valve) for explaining the operation method of the fuel cell system shown in FIG.
  • FIG. 5B is a time chart (showing the amount of drainage from the exhaust drain valve) for explaining the operation method of the fuel cell system shown in FIG.
  • FIG. 5C is a time chart (showing the exhaust amount (purge amount) from the exhaust / drain valve) for explaining the operation method of the fuel cell system shown in FIG.
  • FIG. 5D is a timing chart for explaining the operation method of the fuel cell system shown in FIG. 1 (indicating a decrease in pressure on the downstream side of the injector due to the purge).
  • Fig. 5E is a timing chart for explaining the operation method of the fuel cell system shown in Fig. 1 (indicating the feedback correction flow rate for capturing the drop in the pressure on the downstream side of the injector). .
  • FIG. 6A is a time chart for illustrating purge control of the fuel cell system shown in FIG. 1 (showing the opening / closing operation of the indicator).
  • FIG. 6B is a time chart for explaining the purge control of the fuel cell system shown in FIG. 1 (showing the calculated purge amount and the actual purge amount).
  • FIG. 6C is a time chart for explaining the purge control of the fuel cell system shown in FIG. 1 (showing the opening / closing operation of the exhaust drain valve).
  • FIG. 7 is a configuration diagram showing a modification of the fuel cell system shown in FIG.
  • FIG. 8A is a time chart (showing the opening / closing operation of the indicator) for explaining another example of the purge control of the fuel cell system shown in FIG.
  • FIG. 8B is a time chart (showing the calculated purge amount and the actual purge amount) for explaining another example of the purge control of the fuel cell system shown in FIG.
  • FIG. 8C is a time chart for illustrating another example of the purge control of the fuel cell system shown in FIG. 1 (showing the opening / closing operation of the exhaust drain valve).
  • FIG. 9A is a time chart (showing the opening / closing operation of the indicator) for explaining the purge control of the conventional fuel cell system.
  • FIG. 9B is a time chart (showing the calculated purge amount and the actual purge amount) for explaining the purge control of the conventional fuel cell system.
  • FIG. 9C is a time chart (showing the opening / closing operation of the exhaust drain valve) for explaining the purge control of the conventional fuel cell system.
  • the fuel cell system 1 As shown in FIG. 1, the fuel cell system 1 according to the present embodiment generates electric power by receiving supply of reaction gas (oxidizing gas and fuel gas).
  • a power system 6 for charging / discharging the system power
  • a control unit 7 for overall control of the entire system are provided.
  • the fuel cell 2 is composed of, for example, a solid polymer electrolyte type, and has a stack structure in which a large number of single cells are stacked.
  • the unit cell of the fuel cell 2 has an air electrode on one surface of an electrolyte made of an ion exchange membrane, a fuel electrode on the other surface, and a pair of air electrodes and a fuel electrode sandwiched from both sides. It has a separator.
  • the fuel gas is supplied to the fuel gas flow path of one separator, and the oxidizing gas is supplied to the oxidizing gas flow path of the other separator, and the fuel cell 2 generates electric power by this gas supply.
  • the fuel cell 2 is provided with a current sensor 2 a that detects a current during power generation.
  • the oxidizing gas piping system 3 has an air supply flow path 11 1 through which oxidizing gas supplied to the fuel cell 2 flows, and an exhaust flow path 12 through which oxidizing off gas discharged from the fuel cell 2 flows.
  • the air supply flow path 11 is provided with a compressor 14 that takes in the oxidizing gas via the filter 13 and a humidifier 15 that humidifies the oxidation gas pumped by the compressor 14.
  • Oxidized off-gas flowing through the exhaust flow path 1 2 passes through the back pressure regulating valve 16 and is used for moisture exchange in the humidifier 15, and is finally exhausted into the atmosphere outside the system as exhaust gas.
  • the compressor 14 takes in oxidizing gas in the atmosphere by driving a motor (not shown).
  • the fuel gas piping system 4 includes a hydrogen supply source 21, a hydrogen supply passage 2 2 through which hydrogen gas supplied from the hydrogen supply source 21 to the fuel cell 2 flows, and a hydrogen off-gas discharged from the fuel cell 2 ( The fuel off-gas) to return to the confluence A 1 of the hydrogen supply flow path 2 2, and the hydrogen off-gas in the circulation flow path 2 3 to the hydrogen supply flow path 2 2 W 200
  • a hydrogen pump 24 that pumps to the exhaust gas
  • an exhaust / drain channel 25 that is branched and connected to the circulation channel 23.
  • the hydrogen supply source 21 corresponds to the fuel supply source in the present invention, and is composed of, for example, a high-pressure tank or a hydrogen storage alloy, and can store, for example, 35 MPa or 70 MPa of hydrogen gas. It is configured.
  • a shut-off valve 26 described later When a shut-off valve 26 described later is opened, hydrogen gas flows out from the hydrogen supply source 21 to the hydrogen supply flow path 22.
  • the hydrogen gas is finally depressurized to, for example, about 200 kPa by a regulator 27 and an injector 28, which will be described later, and supplied to the fuel cell 2.
  • a reformer that generates hydrogen-rich reformed gas from a hydrocarbon-based fuel, a high-pressure gas tank that stores the reformed gas generated by the reformer in a high-pressure state, and a hydrogen supply source 21 from It may be configured.
  • a tank having a hydrogen storage alloy can be used as the hydrogen supply source 21.
  • the hydrogen supply flow path 2 2 includes a shutoff valve 26 that shuts off or allows the supply of hydrogen gas from the hydrogen supply source 21, a regulator 2 7 that adjusts the pressure of the hydrogen gas, and an injector 2 8. Is provided. Further, the pressure of the hydrogen gas in the hydrogen supply flow path 2 2 is detected downstream of the indicator 28 and upstream of the junction A 1 between the hydrogen supply flow path 2 2 and the circulation flow path 2 3. A pressure sensor 29 is provided. Further, on the upstream side of the injector 28, a pressure sensor and a temperature sensor (not shown) for detecting the pressure and temperature of the hydrogen gas in the hydrogen supply flow path 22 are provided. Information relating to the gas state (pressure, temperature) of the hydrogen gas detected by the pressure sensor 29 or the like is used for feedback control of the injector 28 described later.
  • a mechanical pressure reducing valve for reducing the primary pressure is employed as the regulator 27.
  • the mechanical pressure reducing valve has a structure in which a back pressure chamber and a pressure adjusting chamber are separated from each other by a diaphragm.
  • a known configuration can be adopted in which the primary pressure is reduced to a predetermined pressure in the pressure adjusting chamber by the back pressure in the pressure chamber to obtain a secondary pressure.
  • the upstream pressure of the injector 28 can be effectively reduced by arranging two regulators 27 on the upstream side of the injector 28.
  • the degree of freedom in designing the mechanical structure of the injector 28 can be increased.
  • the valve body of the injector 28 becomes difficult to move due to an increase in the differential pressure between the upstream pressure and the downstream pressure of the injector 28. Can be suppressed. Therefore, it is possible to widen the adjustable pressure range of the downstream pressure of the injector 28 and to suppress the decrease in the responsiveness of the injector 28.
  • the regulator 27 adjusts the gas state (gas pressure) on the upstream side of the hydrogen supply flow path 22 and supplies it to the downstream side, and corresponds to the variable gas supply device in the present invention.
  • the engineer 28 is an electromagnetically driven on-off valve that can adjust the gas flow rate and gas pressure by driving the valve body directly with a predetermined driving cycle with electromagnetic driving force and separating it from the valve seat It is.
  • the injector 28 includes a valve seat having a spray hole for injecting gaseous fuel such as hydrogen gas, a nozzle body for supplying and guiding the gaseous fuel to the spray hole, and an axial direction ( And a valve body that is accommodated and held movably in the gas flow direction) and opens and closes the injection hole.
  • the valve body of the injector 28 is driven by a solenoid that is an electromagnetic drive device, and the opening area of the injection hole is set in two or more stages by turning on and off the pulsed excitation current fed to the solenoid.
  • Injector 2 8 is a valve (valve The body and valve seat) are directly opened and closed by electromagnetic drive force, and the drive cycle can be controlled to the high response region, so it has high responsiveness.
  • the injector 28 should change at least one of the opening area (opening) and the opening time of the valve provided in the gas flow path of the injector 28 in order to supply the required gas flow rate downstream of the injector 28. Adjust the gas flow rate (or hydrogen molar concentration) supplied to the downstream side (fuel cell 2 side). The gas flow rate is adjusted by opening and closing the valve body of the injector 28, and the gas pressure supplied to the downstream of the injector 28 is reduced from the gas pressure upstream of the injector 28. (Pressure reducing valve, Regulator) In the present embodiment, the modulation amount (pressure reduction amount) of the upstream gas pressure of the injector 28 can be changed so as to match the required pressure within a predetermined pressure range according to the gas requirement. It can also be interpreted as a pressure valve. The generator 28 adjusts the gas state (gas flow rate, hydrogen molar concentration, gas pressure) on the upstream side of the hydrogen supply flow path 22 and supplies it to the downstream side.
  • the variable gas supply device according to the present invention It corresponds to.
  • an indicator 28 is arranged upstream of the junction A 1 between the hydrogen supply channel 22 and the circulation channel 23.
  • the hydrogen gas supplied from each hydrogen supply source 21 is joined (hydrogen gas merger).
  • the injector 28 is disposed downstream of the part A2).
  • An exhaust / drain channel 25 is connected to the circulation channel 23 via a gas / liquid separator 30 and an exhaust / drain valve 31.
  • the gas-liquid separator 30 collects moisture from the hydrogen off gas.
  • the exhaust / drain valve 31 is operated according to a command from the control unit 7 so that moisture recovered by the gas-liquid separator 30 and hydrogen off-gas (fuel off-gas) including impurities in the circulation channel 23 Is discharged (purged) to the outside It is. Opening the exhaust / drain valve 31 reduces the concentration of impurities in the hydrogen off-gas in the circulation channel 23 and increases the concentration of hydrogen in the hydrogen off-gas that is circulated.
  • the upstream pressure sensor 3 2 and the downstream pressure for detecting the hydrogen off-gas pressure are located at the upstream position (on the circulation flow path 2 3) and the downstream position (on the exhaust drainage flow path 25) of the exhaust drain valve 3 1, respectively. Sensor 33 is provided. Information relating to the pressure of the hydrogen off-gas detected by these pressure sensors is used for purge control described later.
  • the circulation channel 23 is an embodiment of the discharge channel in the present invention
  • the exhaust / drain valve 31 is an embodiment of the exhaust valve in the present invention.
  • the hydrogen off-gas discharged through the exhaust / drain valve 31 and the exhaust / drain channel 25 is diluted by a diluter (not shown) and merges with the oxidizing off-gas in the exhaust channel 12.
  • the hydrogen pump 24 circulates and supplies hydrogen gas in the circulation system to the fuel cell 2 by driving a motor (not shown).
  • the hydrogen gas circulation system is composed of the downstream flow path at the confluence point A 1 of the hydrogen supply flow path 2 2, the fuel gas flow path formed in the separator of the fuel cell 2, and the circulation flow path 2 3. Will be.
  • the refrigerant piping system 5 cools the refrigerant flow path 41 connected to the cooling flow path in the fuel cell 2, the cooling pump 4 2 provided in the cooling flow path 41, and the refrigerant discharged from the fuel cell 2.
  • Rajeta 4 3 and The cooling pump 42 circulates and supplies the refrigerant in the refrigerant flow path 41 to the fuel cell 2 by driving a motor (not shown).
  • the power system 6 includes a high-voltage DC / DC converter 61, a notch 62, a traction inverter 63, a traction motor 64, various auxiliary inverters not shown.
  • High voltage DC CZD C converter 6 1 is a DC voltage converter that adjusts the DC voltage input from battery 6 2 and outputs it to traction inverter 6 3 side.
  • Fuel cell 2 or traction motor 6 4) Adjust the DC voltage input from 4 and output it to the battery 62. Have. With these functions of the high-voltage DC / DC converter 61, charging / discharging of the battery 62 is realized. In addition, the output voltage of the fuel cell 2 is controlled by the high voltage DC ZDC converter 61.
  • Traction impeller 6 3 converts a direct current into a three-phase alternating current and supplies it to traction motor 64.
  • the traction motor 6 4 is, for example, a three-phase AC motor, and constitutes a main power source of a vehicle on which the fuel cell system 1 is mounted.
  • the auxiliary inverter is an electric motor controller that controls the drive of each motor, and converts the direct current into three-phase alternating current and supplies it to each motor.
  • the auxiliary inverter is, for example, a pulse width modulation type PWM inverter, which converts the DC voltage output from the fuel cell 2 or the battery 6 2 into a three-phase AC voltage in accordance with a control command from the control unit 7, and Controls the torque generated by the motor.
  • PWM inverter pulse width modulation type PWM inverter
  • the control unit 7 detects the amount of operation of an acceleration operation member (accelerator, etc.) provided in the vehicle, and controls information such as an acceleration request value (for example, a required power generation amount from a load device such as the traction motor 64). In response, it controls the operation of various devices in the system.
  • the load device is an auxiliary device required to operate the fuel cell 2 (for example, each motor of the compressor 14, the hydrogen pump 2 4, the cooling pump 4 2), Generic term for power consumption devices including actuators used in various devices (transmissions, wheel control units, steering devices, suspension devices, etc.), passenger space air conditioners (air conditioners), lighting, audio, etc. It is a thing.
  • the control unit 7 is configured by a computer system (not shown). Such a computer system comprises a CPU, ROM, RAM, HDD, input / output interface, display, etc., and is recorded in ROM.
  • the CPU reads the various control programs that have been executed and executes the desired calculations to perform various processes and controls such as purge control, which will be described later.
  • the control unit 7 controls the flow rate of hydrogen gas consumed by the fuel cell 2 (hereinafter referred to as “the flow rate of hydrogen gas” based on the generated current value of the fuel cell 2 detected by the current sensor 2a. (Referred to as “hydrogen consumption”) (fuel consumption calculation function: B 1).
  • hydrogen consumption fuel consumption calculation function: B 1).
  • the hydrogen consumption is calculated and updated for each calculation cycle of the control unit 7 using a specific calculation formula representing the relationship between the generated current value and the hydrogen consumption.
  • control unit 7 calculates a target pressure value at a downstream position of the indicator 28 of the hydrogen gas supplied to the fuel cell 2 based on the generated current value of the fuel cell 2 (target pressure value calculation function: B 2) In addition, calculate the target purge amount (target discharge amount of hydrogen off-gas from the exhaust drain valve 31) (target purge amount calculation function: B3).
  • target pressure value and the target purge amount are calculated for each calculation cycle of the control unit 7 using a specific map representing the relationship between the generated current value, the target pressure value, and the target purge amount.
  • control unit 7 calculates the deviation between the calculated target pressure value and the pressure value (detected pressure value) at the downstream position of the injector 28 detected by the pressure sensor 29 (pressure difference calculation function: B 4). Then, the control unit 7 calculates a hydrogen gas flow rate (feedback correction flow rate) added to the hydrogen consumption to reduce the calculated deviation (correction flow rate calculation function: B 5). Further, the control unit 7 calculates the injection flow rate of the injector 28 by adding the hydrogen consumption amount and the feedback correction flow rate.
  • injection flow rate calculation function B 6
  • the control unit 7 calculates the injection time of the injector 28 based on the calculated injection flow rate and drive cycle, and outputs a control signal for realizing this injection time, thereby providing a gas for the injector 28.
  • the flow of hydrogen gas supplied to the fuel cell 2 is controlled by controlling the injection time and gas injection timing. Adjust volume and pressure.
  • the calculated information related to the injection flow rate of the injector 28 is used for purge control described later.
  • control unit 7 controls the feedback of the injector 28 (the gas injection time and the gas injection of the injector 28 such that the detected pressure value at the downstream position of the injector 28 follows a predetermined target pressure value).
  • the control unit 7 controls the opening and closing of the exhaust drain valve 31, moisture and hydrogen off-gas in the circulation channel 23 are discharged from the exhaust drain valve 31 to the outside.
  • the control unit 7 calculates the total discharge amount (purge amount) of hydrogen off-gas from the exhaust drain valve 31 based on the change in the gas supply state from the indicator 28 (purge amount calculation function: B 7) Determines whether the calculated purge amount is equal to or greater than a predetermined target purge amount (purge amount deviation determination function: B 8). The control unit 7 then calculates the calculated purge amount Q as the target purge amount Q. If it is less, the exhaust drain valve 3 1 is opened, and if the calculated purge amount Q is greater than or equal to the target purge amount, the exhaust drain valve 31 is closed (purge control function: B 9).
  • the control unit 7 When the purge control, the control unit 7, when the purge amount Q calculated at the gas supply partial supply start of the Injiwekuta 2 8 at a certain point in time is the target purge amount Q Q above, the supply of the gas supply amount The exhaust drain valve 31 is kept open until it is stopped, and the exhaust drain valve 31 is closed simultaneously with the supply stop of the gas supply. That is, the control unit 7 functions as a control unit in the present invention.
  • the feedback flow of the injector 2 8 causes the circulation flow path 2 by opening the exhaust drain valve 3 1 in a state where the detected pressure value of the pressure sensor 2 9 at the downstream position of the injector 2 8 follows the target pressure value.
  • the control unit 7 calculates a pressure drop due to such hydrogen off-gas discharge (purge), and based on the calculated pressure drop, the hydrogen off-gas discharge amount (pressure change) corresponding to the pressure drop is calculated.
  • Correspondence Flow rate
  • the flow rate corresponding to the pressure change is calculated using a specific arithmetic expression representing the relationship between the pressure drop caused by the purge and the hydrogen gas discharge amount corresponding to the pressure drop. is doing.
  • the control unit 7 also calculates a feed pack correction flow rate (gas correction supply flow rate) to compensate for the pressure drop caused by the hydrogen off-gas discharge (purging) (correction flow rate calculation function: B 5), and this feedback correction Calculate the time integration value Q 2 from the start of the flow rate purge (corrected flow integration function: B 7 b).
  • control unit 7 adds the flow rate corresponding to the pressure change and the time integrated value Q 2 from the start point of the purge of the feed pack correction flow rate, thereby total discharge of the hydrogen off-gas from the exhaust drain valve 31. Calculate the amount (Purge amount Q) (Purge amount calculation function: B 7). That is, the control unit 7 functions as an exhaust amount calculation unit in the present invention.
  • the control unit 7 of the fuel cell system 1 calculates a current value during power generation of the fuel cell 2 using the current sensor 2a (current detection step: S 1).
  • the control unit 7 calculates the hydrogen consumption in the fuel cell 2 based on the detected current value (hydrogen consumption calculation step: S 2), and the hydrogen gas indicator 2 8 supplied to the fuel cell 2.
  • the target pressure value and target purge amount at the downstream position of the target are calculated (target value calculation step: S 3).
  • the control unit 7 detects the pressure value on the downstream side of the injector 28 using the pressure sensor 29 (pressure value detection step: S 4).
  • control unit 7 uses the hydrogen consumption to reduce the deviation between the target pressure value calculated in the target value calculation step S3 and the pressure value (detected pressure value) detected in the pressure value detection step S4. Calculate the hydrogen gas flow rate (feedback correction flow rate) to be added to (corrected flow rate calculation process:
  • control unit 7 calculates the injection flow rate of the injector 28 by adding the hydrogen consumption amount and the feedback correction flow rate, and calculates the injection time of the injector 28 based on the injection flow rate and the driving cycle. Then, the control unit 7 outputs a control signal for realizing the injection time, thereby controlling the gas injection time and the gas injection timing of the injector 28, and the flow rate of the hydrogen gas supplied to the fuel cell 2 And adjusting the pressure (feedback control step: S 6).
  • the control unit 7 determines the presence or absence of a purge start request while realizing the feed pack control step S 6 described above (purge request determination step: S 7).
  • a liquid amount sensor (not shown) sends a purge start request signal to the control unit 7. It is designed to output.
  • the control unit 7 maintains the exhaust drain valve 31 closed (purge valve closing step: S11).
  • the control unit 7 receives the purge start request signal in the purge request determination step S7, determines that there is a purge start request, and if the gas injection from the injector 28 has already started, the control unit 7 Drainage Open valve 3 1 (purge valve opening process: S 8). As shown in FIG. 5A to FIG.
  • the control unit 7 estimates the total amount of hydrogen off-gas discharged from the exhaust drain valve 31 (purge amount Q) simultaneously with the opening of the exhaust drain valve 31 (purge amount estimation step: S 9).
  • purge amount estimation step S9 will be described with reference to the flowchart of FIG. 4 and the time chart of FIG. 5D.
  • the control unit 7 obtains the pressure drop ⁇ ⁇ (subtracting the current hydrogen pressure from the hydrogen reference pressure) on the downstream side of the injector 28 caused by the discharge of the hydrogen off-gas by opening the exhaust drain valve 31. Value: refer to FIG. 5D), the flow rate corresponding to the pressure change as the flow rate corresponding to the pressure drop ⁇ is calculated (the flow rate corresponding to the pressure change calculation step: S 20).
  • the control unit 7 calculates a feedback correction flow rate to compensate for the pressure drop on the downstream side of the indicator 28 caused by the discharge of the hydrogen off-gas due to the opening of the exhaust drain valve 31. Calculate the time integration value Q 2 (see Fig. 5 E) from the correction flow purge start time (correction flow integration process: S 2 1).
  • control unit 7 adds the flow rate corresponding to the pressure change and the time integrated value Q 2 of the feed pack correction flow rate from the start of the purge, thereby total discharge of hydrogen off-gas from the exhaust drain valve 31.
  • the amount (purge amount Q) is calculated (purge amount calculation step: S 2 2).
  • the controller 7 determines whether the estimated total hydrogen off-gas discharge amount (purge amount Q) is equal to or greater than the target purge amount Q 0 calculated in the target value calculation step S3. (Purge amount determination step: S 1 0). Then, when the estimated purge amount Q is less than the target purge amount Q 0 , the control unit 7 continues the purge amount estimation step S 9 and the purge amount determination step S 10 while continuing the estimation.
  • the purge amount Q is the target purge amount Q. If this is the case, the exhaust / drain valve 3 1 is closed (purge valve closing step: S 1 1).
  • the control unit 7 determines that the purge amount Q calculated at the start of gas supply from the indicator 28 at a certain point in time is the target purge, as shown in FIGS. 6A and 6C.
  • the amount is Q 0 or more
  • the exhaust / drain valve 31 is kept open until the supply of the gas supply is stopped, and the exhaust / drain valve 31 is closed simultaneously with the supply stop of the gas supply.
  • the control unit 7 controls the exhaust / drain valve 31 in this way, so that the actual purge amount is the target purge amount Q, as shown in Fig. 6B. Excess gas volume increment AQ corresponding to the gas supply from the injector 28 (critical gas supply) can be exhausted.
  • the purge amount calculated while the exhaust drain valve 31 is open exceeds the predetermined target purge amount
  • the supply of the critical gas supply from the injector 28 is performed.
  • the exhaust drain valve 3 1 can be closed simultaneously with the stop. In other words, when the purge amount calculated while the exhaust drain valve 31 is open exceeds the predetermined target purge amount, the exhaust drain valve 31 is opened in consideration of the critical gas supply from the injector 28. Can continue. Therefore, it is possible to suppress that the actual purge amount falls below the target purge amount due to the gas supply from the injector 28 (exhaust error).
  • the example in which the circulation flow path 23 is provided in the hydrogen gas piping system 4 of the fuel cell system 1 has been shown.
  • the exhaust drain valve 31 is closed at the same time as the supply of the critical gas supply from the injector 28 is stopped, as in the above embodiment.
  • the purge amount calculated while the exhaust drain valve 31 is open exceeds the predetermined target purge amount, the exhaust gas is exhausted at the same time as the supply of the critical gas supply from the injector 28 is stopped.
  • the opening / closing operation of the exhaust drain valve 31 can be controlled with higher accuracy.
  • the controller 7 starts supplying the critical gas supply from the indicator 28, Calculate the required time At until the purge amount calculated by adding a part of the exhaust amount increment AQ corresponding to the critical gas supply amount to the purge amount so far reaches the target purge amount.
  • the exhaust drain valve 31 can be closed after the required time ⁇ t has elapsed since the start of gas supply.
  • ⁇ t is the local exhaust speed (exhaust per unit time) calculated from the exhaust amount increment AQ corresponding to the critical gas supply from the injector 28 and the time required until all the exhaust amount increment AQ is purged.
  • the difference between the purge amount calculated before the exhaust amount increment AQ is added and the target purge amount Q 0 can be calculated.
  • the control unit 7 controls the exhaust / drain valve 3 1 in this way, the actual purge amount becomes the target purge amount when the exhaust / drain valve 31 is closed at the same time as the supply of critical gas from the indicator 28 is stopped.
  • the exhaust / drain valve 31 can be closed before the supply of critical gas is stopped. As a result, it is possible to suppress the actual purge amount from exceeding the target purge amount (exhaust error).
  • the example in which the hydrogen pump 24 is provided in the circulation flow path 23 is shown, but an ejector may be employed instead of the hydrogen pump 24.
  • an example in which the exhaust drain valve 31 for realizing both exhaust and drainage is provided in the circulation flow path 23 is shown.
  • the water collected by the gas-liquid separator 30 is shown.
  • a drain valve that discharges the gas to the outside, and the gas in the circulation channel 2 3 It is also possible to provide a separate exhaust valve and to control the drain valve and the exhaust valve separately by the control unit 7.
  • the example in which the shutoff valve 26 and the regulator 27 are provided in the hydrogen supply flow path 22 is shown, but the injector 28 functions as a modulatable pressure valve.
  • the shut-off valve 26 since it also functions as a shut-off valve that shuts off the supply of hydrogen gas, the shut-off valve 26 is not necessarily provided with the regulator 27. Therefore, when the injector 28 is used, the shut-off valve 26 and the regulator 27 can be omitted, so that the system can be reduced in size and cost.
  • the hydrogen consumption amount, the target pressure value, and the target purge amount are set based on the generated current value of the fuel cell 2 has been described.
  • the hydrogen consumption, target pressure value, and target purge amount are set according to the detected physical quantity. Good.
  • the fuel cell 2 is in a stopped state, in an operating state at the time of startup, in the operating state immediately before entering the intermittent operation, in an operating state immediately after recovering from the intermittent operation, or in the normal operating state
  • the control unit can determine whether there is an operating condition, and the hydrogen consumption can be set according to the operating condition.
  • the fuel cell system according to the present invention can be mounted on a fuel cell vehicle as shown in the above embodiment, and can also be mounted on various mobile bodies (robots, ships, aircrafts, etc.) other than the fuel cell vehicle. It is. Further, the fuel cell system according to the present invention may be applied to a stationary power generation system used as a power generation facility for a building (house, building, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Description

明細書 燃料電池システム 技術分野
本発明は、 燃料電池システムに関する。 背景技術
従来より、 反応ガス (燃料ガス及び酸化ガス) の供給を受けて発電を行う 燃料電池を備えた燃料電池システムが提案され、 実用化されている。 かかる 燃料電池システムの燃料電池の内部や燃料ォフガスの循環流路には、 発電に 伴つて窒素や一酸化炭素等の不純物が経時的に蓄積する。 このような不純物 を外部に排出するために、 循環流路に接続した排出流路に排気弁を設け、 こ の排気弁の開閉制御を行うことにより、 循環流路内のガスを一定時間毎に排 出する技術 (パージ技術) が提案されている。
また、 現在においては、 排気弁を通過するガスの流量が所定値を超えた場 合に排気弁を閉じるように制御する技術 (特開 2 0 0 4— 1 7 9 0 0 0号公 報) や、 燃料電池の発電状態に応じて排出時間を設定することにより、 発電 状態に対応する要求排出量と同量の排気を実現させる技術 (特開 2 0 0 5 - 1 4 1 9 7 7号公報) が提案されている。 発明の開示
ところで、 燃料電池システムには、 水素タンク等の燃料供給源から供給さ れる燃料ガスを燃料電池へと流すための燃料供給流路が設けられている。 そ して、 現在においては、 この燃料供給流路に機械式可変レギユレータ等の可 変ガス供給装置を設けることにより、 燃料供給源からの燃料ガスの供給圧力 をシステムの運転状態に応じて変化させる技術が提案されている。
また、 近年においては、 可変ガス供給装置としてインジェクタを採用する とともに、インジェクタからのガス供給に基づいて排気弁からのパージ量 (排 気量) を算出し、 この算出したパージ量が所定の閾値 (目標パージ量) を超 えた場合に排気弁を閉鎖する技術(以下、 「インジェクタ排気制御」 という) が提案されている。 従来のインジヱクタ排気制御においては、 図 9 A及ぴ図 9 Bに示すように、 ある時 におけるインジェクタからのガス供給分に対応 する排気量増分を算出し、 この排気量増分をそれまでのパージ量に加算する ことにより総パージ量を算出し、 この総パージ量が目標パージ量を超えた場 合に、 排気弁を閉鎖している。
し力 し、 このような従来のインジヱクタ排気制御を採用すると、 図 9 A及 ぴ図 9 Cに示すように、 算出したパージ量が目標パージ量を超える際のイン ジ クタからのガス供給分 (臨界ガス供給分) の供給開始時に、 排気弁が閉 鎖されてしまう。 この結果、 算出したパージ量が目標パージ量を超える際の 排気量増分 Δ Qが排気されず、図 9 Bに示すように実際の排気量が目標排気 量を下回る (排気誤差が生じる) という問題が発生していた。
本発明は、 かかる事情に鑑みてなされたものであり、 可変ガス供給装置及 び排気弁を備え、 算出した排気量が所定の目標排気量を超えた場合に排気弁 を閉鎖する燃料電池システムにおいて、 排気誤差を抑制することを目的とす る。
前記目的を達成するため、 本発明に係る第 1の燃料電池システムは、 燃料 電池と、 燃料供給源から供給される燃料ガスを燃料電池へと流すための供給 流路と、 この供給流路の上流側のガス状態を調整して下流側に供給する可変 ガス供給装置と、 燃料電池から排出される燃料オフガスを流すための排出流 路と、 この排出流路内のガスを外部に排出するための排気弁と、 排気弁の開 放中に算出した排気量が所定の目標排気量を超える場合に排気弁を閉鎖する 制御手段と、 を備える燃料電池システムであって、 制御手段は、 排気弁の開 放中に算出した排気量が前記目標排気量を超える場合に、 可変ガス供給装置 からのガス供給分の供給停止と同時に排気弁を閉鎖するものである。
力かる'構成を採用すると、 排気弁の開放中に算出した排気量が所定の目標 排気量を超える場合に、 前記ガス供給分の供給停止と同時に排気弁を閉鎖す ることができる。 換言すれば、 排気弁の開放中に算出した排気量が所定の目 標排気量を超える場合において、 前記ガス供給分を考慮して排気弁の開放を 継続することができる。 従って、 可変ガス供給装置からのガス供給に起因し て実際の排気量が目標排気量を下回ること (排気誤差) を抑制することが可 能となる。 なお、 「ガス状態」 とは、 流量、 圧力、 温度、 モル濃度等で表さ れるガスの状態を意味し、 特にガス流量及びガス圧力の少なくとも一方を含 むものとする。
また、 本発明に係る第 2の燃料電池システムは、 燃料電池と、 燃料供給源 から供給される燃料ガスを燃料電池へと流すための供給流路と、 この供給流 路の上流側のガス状態を調整して下流側に供給する可変ガス供給装置と、 燃 料電池から排出される燃料オフガスを流すための排出流路と、 この排出流路 内のガスを外部に排出するための排気弁と、 排気弁の開放中に算出した排気 量が所定の目標排気量を超える場合に排気弁を閉鎖する制御手段と、 を備え る燃料電池システムであって、 制御手段は、 排気弁の開放中に算出した排気 量が前記目標排気量を超える場合に、 可変ガス供給装置からのガス供給分の ガス供給開始時から、 前記ガス供給分に対応する排気量増分の少なくとも一 部をそれまでの排気量に加算して算出した排気量が前記目標排気量に到達す るまで、 の所要時間を算出し、 前記ガス供給分のガス供給開始時から前記所 要時間経過後に排気弁を閉鎖するものである。 かかる構成を採用すると、 排気弁の開放中に算出した排気量が所定の目標 排気量を超える場合に、 可変ガス供給装置からのガス供給分のガス供給開始 時から、 前記ガス供給分に対応する排気量増分の少なくとも一部をそれまで の排気量に加算して算出した排気量が目標排気量に到達するまで、 の所要時 間を算出することができる。 そして、 可変ガス供給装置からのガス供給開始 時から前記所要時間経過後に排気弁を閉鎖することができる。 従って、 可変 ガス供給装置からのガス供給分の供給停止と同時に排気弁を閉鎖すると実際 の排気量が目標排気量を上回るような場合に、 前記ガス供給分の供給停止時 よりも先行して排気弁を閉鎖することができる。 この結果、 実際の排気量が 目標排気量を上回ること (排気誤差) を抑制することが可能となる。
前記各燃料電池システムにおいて、 可変ガス供給装置からのガス供給状態 の変化分の時間積算に基づいて排気弁からの排気量を算出する排気量算出手 段を有する制御手段を採用することができる。 かかる場合において、 可変ガ ス供給装置の下流側圧力の変化分から換算される圧力変化対応流量と、 可変 ガス供給装置の下流側圧力の低下を補うためのガス補正供給流量の時間積算 値と、 を加算することにより、 排気弁からの排気量を算出する排気量算出手 段を採用することができる。
また、 前記燃料電池システムにおいて、 インジェクタを可変ガス供給装置 として採用することができる。
インジェクタとは、 弁体を電磁駆動力で直接的に所定の駆動周期で駆動し て弁座から離隔させることによりガス状態 (ガス流量やガス圧力) を調整す ることが可能な電磁駆動式の開閉弁である。 所定の制御部がィンジェクタの 弁体を駆動して燃料ガスの噴射時期や噴射時間を制御することにより、 燃料 ガスの流量や圧力を制御することが可能となる。 本発明によれば、 可変ガス供給装置及び排気弁を備え、 算出した排気量が 所定の目標排気量を超えた場合に排気弁を閉鎖する燃料電池システムにおい て、 排気誤差を抑制することが可能となる。
図面の簡単な説明
図 1は、 本発明の実施形態に係る燃料電池システムの構成図である。
図 2は、 図 1に示した燃料電池システムの制御部の制御態様を説明するた めの制御プロック図である。
図 3は、 図 1に示した燃料電池システムの運転方法を説明するためのフロ 一チャートである。
図 4は、 図 1に示した燃料電池システムの運転方法におけるパージ量推定 工程を説明するためのフローチャートである。
図 5 Aは、 図 1に示した燃料電池システムの運転方法を説明するためのタ ィムチャート (排気排水弁の開閉動作を示すもの) である。
図 5 Bは、 図 1に示した燃料電池システムの運転方法を説明するためのタ ィムチャート (排気排水弁からの排水量を示すもの) である。
図 5 Cは、 図 1に示した燃料電池システムの運転方法を説明するためのタ ィムチャート (排気排水弁からの排気量 (パージ量) を示すもの) である。 図 5 Dは、 図 1に示した燃料電池システムの運転方法を説明するためのタ ィムチヤ一ト(パージに起因したインジェクタ下流側圧力の低下を示すもの) である。
図 5 Eは、 図 1に示した燃料電池システムの運転方法を説明するためのタ ィムチヤ一ト (インジェクタ下流側圧力の低下分を捕うためのフィードバッ ク捕正流量を示すもの) である。
図 6 Aは、 図 1に示した燃料電池システムのパージ制御を説明するための タイムチャート (インジヱクタの開閉動作を示すもの) である。 図 6 Bは、 図 1に示した燃料電池システムのパージ制御を説明するための タイムチャート(算出したパージ量及び実際のパージ量を示すもの)である。 図 6 Cは、 図 1に示した燃料電池システムのパージ制御を説明するための タイムチャート (排気排水弁の開閉動作を示すもの) である。
図 7は、 図 1に示した燃料電池システムの変形例を示す構成図である。 図 8 Aは、 図 1に示した燃料電池システムのパージ制御の他の例を説明す るためのタイムチャート (インジヱクタの開閉動作を示すもの) である。 図 8 Bは、 図 1に示した燃料電池システムのパージ制御の他の例を説明す るためのタイムチヤ一ト(算出したパージ量及び実際のパージ量を示すもの) である。
図 8 Cは、 図 1に示した燃料電池システムのパージ制御の他の例を説明す るためのタイムチャート (排気排水弁の開閉動作を示すもの) である。
図 9 Aは、 従来の燃料電池システムのパージ制御を説明するためのタイム チャート (インジヱクタの開閉動作を示すもの) である。
図 9 Bは、 従来の燃料電池システムのパージ制御を説明するためのタイム チャート (算出したパージ量及び実際のパージ量を示すもの) である。
図 9 Cは、 従来の燃料電池システムのパージ制御を説明するためのタイム チャート (排気排水弁の開閉動作を示すもの) である。
発明を実施するための最良の形態
以下、 図面を参照して、 本発明の実施形態に係る燃料電池システム 1につ いて説明する。 本実施形態においては、 本発明を燃料電池車両の車载発電シ ステムに適用した例について説明することとする。
まず、 図 1及び図 2を用いて、 本発明の実施形態に係る燃料電池システム 1の構成について説明する。 本実施形態に係る燃料電池システム 1は、 図 1 に示すように、 反応ガス (酸化ガス及ぴ燃料ガス) の供給を受けて電力を発 生する燃料電池 2と、 酸化ガスとしての空気を燃料電池 2に供給する酸化ガ ス配管系 3と、 燃料ガスとしての水素ガスを燃料電池 2に供給する燃料ガス 配管系 4と、 燃料電池 2に冷媒を供給して燃料電池 2を冷却する冷媒配管系 5と、 システムの電力を充放電する電力系 6と、 システム全体を統括制御す る制御部 7と、 を備えている。
燃料電池 2は、 例えば固体高分子電解質型で構成され、 多数の単電池を積 層したスタック構造を備えている。 燃料電池 2の単電池は、 イオン交換膜か らなる電解質の一方の面に空気極を有し、 他方の面に燃料極を有し、 さらに 空気極及び燃料極を両側から挟みこむように一対のセパレータを有している。 一方のセパレータの燃科ガス流路に燃料ガスが供給され、 他方のセパレータ の酸化ガス流路に酸化ガスが供給され、 このガス供給により燃料電池 2は電 力を発生する。 燃料電池 2には、 発電中の電流を検出する電流センサ 2 aが 取り付けられている。
酸化ガス配管系 3は、 燃料電池 2に供給される酸化ガスが流れる空気供給 流路 1 1と、 燃料電池 2から排出された酸化オフガスが流れる排気流路 1 2 と、 を有している。 空気供給流路 1 1には、 フィルタ 1 3を介して酸化ガス を取り込むコンプレッサ 1 4と、 コンプレッサ 1 4により圧送される酸化ガ スを加湿する加湿器 1 5と、 が設けられている。 排気流路 1 2を流れる酸化 オフガスは、 背圧調整弁 1 6を通って加湿器 1 5で水分交換に供された後、 最終的に排ガスとしてシステム外の大気中に排気される。 コンプレッサ 1 4 は、 図示されていないモータの駆動により大気中の酸化ガスを取り込む。 燃料ガス配管系 4は、 水素供給源 2 1と、 水素供給源 2 1から燃料電池 2 に供給される水素ガスが流れる水素供給流路 2 2と、 燃料電池 2から排出さ れた水素オフガス (燃料オフガス) を水素供給流路 2 2の合流点 A 1に戻す ための循環流路 2 3と、 循環流路 2 3内の水素オフガスを水素供給流路 2 2 W 200
8
に圧送する水素ポンプ 2 4と、 循環流路 2 3に分岐接続された排気排水流路 2 5と、 を有している。
水素供給源 2 1は、 本発明における燃料供給源に相当するものであり、 例 えば高圧タンクや水素吸蔵合金などで構成され、 例えば 3 5 M P a又は 7 0 M P aの水素ガスを貯留可能に構成されている。 後述する遮断弁 2 6を開く と、 水素供給源 2 1から水素供給流路 2 2に水素ガスが流出する。 水素ガス は、 後述するレギュレータ 2 7やインジェクタ 2 8により最終的に例えば 2 0 0 k P a程度まで減圧されて、 燃料電池 2に供給される。 なお、 炭化水素 系の燃料から水素リツチな改質ガスを生成する改質器と、 この改質器で生成 した改質ガスを高圧状態にして蓄圧する高圧ガスタンクと、 から水素供給源 2 1を構成してもよい。 また、 水素吸蔵合金を有するタンクを水素供給源 2 1として採用することもできる。
水素供給流路 2 2には、 水素供給源 2 1からの水素ガスの供給を遮断又は 許容する遮断弁 2 6と、 水素ガスの圧力を調整するレギユレータ 2 7と、 ィ ンジェクタ 2 8と、 が設けられている。 また、 インジヱクタ 2 8の下流側で あって水素供給流路 2 2と循環流路 2 3との合流部 A 1の上流側には、 水素 供給流路 2 2内の水素ガスの圧力を検出する圧力センサ 2 9が設けられてい る。 また、 ィンジェクタ 2 8の上流側には、 水素供給流路 2 2内の水素ガス の圧力及び温度を検出する図示されていない圧力センサ及び温度センサが設 けられている。 圧力センサ 2 9等で検出された水素ガスのガス状態 (圧力、 温度) に係る情報は、 後述するィンジヱクタ 2 8のフィードバック制御ゃパ ージ制御に用いられる。
レギユレータ 2 7は、 その上流側圧力 (一次圧) を、 予め設定した二次圧 に調圧する装置である。 本実施形態においては、 一次圧を減圧する機械式の 減圧弁をレギユレータ 2 7として採用している。 機械式の減圧弁の構成とし ては、 背圧室と調圧室とがダイアフラムを隔てて形成された筐体を有し、 背 圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする 公知の構成を採用することができる。 本実施形態においては、 図 1に示すよ うに、 ィンジェクタ 2 8の上流側にレギュレータ 2 7を 2個配置することに より、 インジェクタ 2 8の上流側圧力を効果的に低減させることができる。 このため、 インジェクタ 2 8の機械的構造 (弁体、 筐体、 流路、 駆動装置等) の設計自由度を高めることができる。 また、 インジェクタ 2 8の上流側圧力 を低減させることができるので、 ィンジェクタ 2 8の上流側圧力と下流側圧 力との差圧の増大に起因してィンジェクタ 2 8の弁体が移動し難くなること を抑制することができる。 従つて、 ィンジェクタ 2 8の下流側圧力の可変調 圧幅を広げることができるとともに、 インジヱクタ 2 8の応答性の低下を抑 制することができる。 レギュレータ 2 7は、 水素供給流路 2 2の上流側のガ ス状態 (ガス圧力) を調整して下流側に供給するものであり、 本発明におけ る可変ガス供給装置に相当する。 ·
ィンジ工クタ 2 8は、 弁体を電磁駆動力で直接的に所定の駆動周期で駆動 して弁座から離隔させることによりガス流量やガス圧を調整することが可能 な電磁駆動式の開閉弁である。 インジェクタ 2 8は、 水素ガス等の気体燃料 を噴射する嘖射孔を有する弁座を備えるとともに、 その気体燃料を嘖射孔ま で供給案内するノズルボディと、 このノズルボディに対して軸線方向 (気体 流れ方向) に移動可能に収容保持され噴射孔を開閉する弁体と、 を備えてい る。 本実施形態においては、 インジェクタ 2 8の弁体は電磁駆動装置である ソレノィドにより駆動され、 このソレノィドに給電されるパルス状励磁電流 のオン 'オフにより、 噴射孔の開口面積を 2段階又は多段階に切り替えるこ とができるようになっている。 制御部 7から出力される制御信号によってィ ンジェクタ 2 8のガス噴射時間及びガス噴射時期が制御されることにより、 水素ガスの流量及び圧力が高精度に制御される。ィンジェクタ 2 8は、弁(弁 体及び弁座) を電磁駆動力で直接開閉駆動するものであり、 その駆動周期が 高応答の領域まで制御可能であるため、 高い応答性を有する。
インジェクタ 2 8は、 その下流に要求されるガス流量を供給するために、 インジェクタ 2 8のガス流路に設けられた弁体の開口面積 (開度) 及ぴ開放 時間の少なくとも一方を変更することにより、 下流側 (燃料電池 2側) に供 給されるガス流量 (又は水素モル濃度) を調整する。 なお、 インジヱクタ 2 8の弁体の開閉によりガス流量が調整されるとともに、 インジェクタ 2 8下 流に供給されるガス圧力がインジェクタ 2 8上流のガス圧力より減圧される ため、 インジェクタ 2 8を調圧弁 (減圧弁、 レギユレータ) と解釈すること もできる。 また、 本実施形態では、 ガス要求に応じて所定の圧力範囲の中で 要求圧力に一致するようにィンジェクタ 2 8の上流ガス圧の調圧量 (減圧量) を変化させることが可能な可変調圧弁と解釈することもできる。 インジエタ タ 2 8は、水素供給流路 2 2の上流側のガス状態(ガス流量、水素モル濃度、 ガス圧力) を調整して下流側に供給するものであり、 本発明における可変ガ ス供給装置に相当する。
なお、 本実施形態においては、 図 1に示すように、 水素供給流路 2 2と循 環流路 2 3との合流部 A 1より上流側にインジヱクタ 2 8を配置している。 また、 図 1に破線で示すように、 燃料供給源として複数の水素供給源 2 1を 採用する場合には、 各水素供給源 2 1から供給される水素ガスが合流する部 分 (水素ガス合流部 A 2 ) よりも下流側にィンジェクタ 2 8を配置するよう にする。
循環流路 2 3には、 気液分離器 3 0及び排気排水弁 3 1を介して、 排気排 水流路 2 5が接続されている。 気液分離器 3 0は、 水素オフガスから水分を 回収するものである。 排気排水弁 3 1は、 制御部 7からの指令によって作動 することにより、 気液分離器 3 0で回収した水分と、 循環流路 2 3内の不純 物を含む水素オフガス (燃料オフガス) と、 を外部に排出 (パージ) するも のである。 排気排水弁 3 1の開放により、 循環流路 2 3内の水素オフガス中 の不純物の濃度が下がり、 循環供給される水素オフガス中の水素濃度が上が る。 排気排水弁 3 1の上流位置 (循環流路 2 3上) 及び下流位置 (排気排水 流路 2 5上) には、 各々、 水素オフガスの圧力を検出する上流側圧力センサ 3 2及び下流側圧力センサ 3 3が設けられている。 これら圧力センサで検出 された水素オフガスの圧力に係る情報は、後述するパージ制御に用いられる。 循環流路 2 3は本発明における排出流路の一実施形態であり、 排気排水弁 3 1は本発明における排気弁の一実施形態である。
排気排水弁 3 1及び排気排水流路 2 5を介して排出される水素オフガスは、 図示されていない希釈器によって希釈されて排気流路 1 2内の酸化オフガス と合流するようになっている。 水素ポンプ 2 4は、 図示されていないモータ の駆動により、 循環系内の水素ガスを燃料電池 2に循環供給する。 水素ガス の循環系は、 水素供給流路 2 2の合流点 A 1の下流側流路と、 燃料電池 2の セパレータに形成される燃料ガス流路と、 循環流路 2 3と、 によって構成さ れることとなる。
冷媒配管系 5は、 燃料電池 2内の冷却流路に連通する冷媒流路 4 1と、 冷 媒流路 4 1に設けられた冷却ポンプ 4 2と、 燃料電池 2から排出される冷媒 を冷却するラジェータ 4 3と、 を有している。 冷却ポンプ 4 2は、 図示され ていないモータの駆動により、 冷媒流路 4 1内の冷媒を燃料電池 2に循環供 給する。
電力系 6は、 高圧 D C/D Cコンバータ 6 1、 ノ ッテリ 6 2、 トラクショ ンインバータ 6 3、 トラクシヨンモータ 6 4、 図示されていない各種の補機 インパータ等を備えている。 高圧 D CZD Cコンバータ 6 1は、 直流の電圧 変換器であり、 パッテリ 6 2から入力された直流電圧を調整してトラクショ ンインバータ 6 3側に出力する機能と、 燃料電池 2又はトラクシヨンモータ 6 4から入力された直流電圧を調整してバッテリ 6 2に出力する機能と、 を 有する。 高圧 D C/D Cコンバータ 6 1のこれらの機能により、 ノ ッテリ 6 2の充放電が実現される。 また、 高圧 D C ZD Cコンバータ 6 1により、 燃 料電池 2の出力電圧が制御される。
パッテリ 6 2は、バッテリセルが積層されて一定の高電圧を端子電圧とし、 図示しないバッテリコンピュータの制御によって余剰電力を充電したり補助 的に電力を供給したりが可能になっている。トラクシヨンインパータ 6 3は、 直流電流を三相交流に変換し、 トラクシヨンモータ 6 4に供給する。 トラク ションモータ 6 4は、 例えば三相交流モータであり、 燃料電池システム 1が 搭載される車両の主動力源を構成する。 補機インバータは、 各モータの駆動 を制御する電動機制御部であり、 直流電流を三相交流に変換して各モータに 供給する。 補機インバータは、 例えばパルス幅変調方式の PWMインバータ であり、 制御部 7からの制御指令に従つて燃料電池 2又はバッテリ 6 2から 出力される直流電圧を三相交流電圧に変換して、 各モータで発生する回転ト ルクを制御する。
制御部 7は、 車両に設けられた加速用の操作部材 (アクセル等) の操作量 を検出し、 加速要求値 (例えばトラクシヨンモータ 6 4等の負荷装置からの 要求発電量) 等の制御情報を受けて、 システム内の各種機器の動作を制御す る。 なお、 負荷装置とは、 トラクシヨンモータ 6 4のほかに、 燃料電池 2を 作動させるために必要な補機装置 (例えばコンプレッサ 1 4、 水素ポンプ 2 4、 冷却ポンプ 4 2の各モータ等) 、 車両の走行に関与する各種装置 (変速 機、 車輪制御部、 操舵装置、 懸架装置等) で使用されるァクチユエータ、 乗 員空間の空調装置 (エアコン) 、 照明、 オーディオ等を含む電力消費装置を 総称したものである。
制御部 7は、 図示していないコンピュータシステムによって構成されてい る。 かかるコンピュータシステムは、 C P U、 R OM, R AM, H D D , 入 出カインタフェース及ぴディスプレイ等を備えるものであり、 R OMに記録 された各種制御プログラムを C P Uが読み込んで所望の演算を実行すること により、 後述するパージ制御など種々の処理や制御を行う。
具体的には、 制御部 7は、 図 2に示すように、 電流センサ 2 aで検出した 燃料電池 2の発電電流値に基づいて、 燃料電池 2で消費される水素ガスの流 量(以下「水素消費量」 という) を算出する (燃料消費量算出機能: B 1 ) 。 本実施形態においては、 発電電流値と水素消費量との関係を表す特定の演算 式を用いて、 制御部 7の演算周期毎に水素消費量を算出し更新することとし ている。
また、 制御部 7は、 燃料電池 2の発電電流値に基づいて、 燃料電池 2に供 給される水素ガスのインジヱクタ 2 8の下流位置における目標圧力値を算出 する (目標圧力値算出機能: B 2 ) とともに、 目標パージ量 (排気排水弁 3 1からの水素オフガスの目標排出量) を算出する (目標パージ量算出機能: B 3 ) 。 本実施形態においては、 発電電流値と目標圧力値及び目標パージ量 との関係を表す特定のマップを用いて、 制御部 7の演算周期毎に目標圧力値 及び目標パージ量を算出している。
また、 制御部 7は、 算出した目標圧力値と、 圧力センサ 2 9で検出したィ ンジェクタ 2 8の下流位置の圧力値(検出圧力値) と、の偏差を算出する (圧 力差算出機能: B 4 ) 。 そして、 制御部 7は、 算出した偏差を低減させるた めに水素消費量に加算される水素ガス流量 (フィードバック補正流量) を算 出する (補正流量算出機能: B 5 ) 。 また、 制御部 7は、 水素消費量とフィ ードバック補正流量とを加算してインジェクタ 2 8の噴射流量を算出する
(噴射流量算出機能: B 6 ) 。 そして、 制御部 7は、 算出した噴射流量や駆 動周期に基づいてインジェクタ 2 8の噴射時間を算出し、 この噴射時間を実 現させるための制御信号を出力することにより、 インジェクタ 2 8のガス噴 射時間及びガス噴射時期を制御して、 燃料電池 2に供給される水素ガスの流 量及ぴ圧力を調整する。 なお、 算出したィンジェクタ 2 8の噴射流量に係る 情報は、 後述するパージ制御に用いられる。
また、 制御部 7は、 前記したインジェクタ 2 8のフィードバック制御 (ィ ンジヱクタ 2 8の下流位置の検出圧力値を所定の目標圧力値に追従させるよ' うなィンジェクタ 2 8のガス噴射時間及びガス嘖射時期の制御) を行うと同 時に、 排気排水弁 3 1の開閉制御を行うことにより、 循環流路 2 3内の水分 及び水素オフガスを排気排水弁 3 1から外部に排出する。
この際、 制御部 7は、 インジヱクタ 2 8からのガス供給状態の変化に基づ いて排気排水弁 3 1からの水素オフガスの総排出量(パージ量)を算出し(パ ージ量算出機能: B 7 ) 、 算出したパージ量が所定の目標パージ量以上であ るか否かを判定する (パージ量偏差判定機能: B 8 )。そして、制御部 7は、 算出したパージ量 Qが目標パージ量 Q。未満である場合には排気排水弁 3 1 を開放し、算出したパージ量 Qが目標パージ量 以上である場合には排気排 水弁 3 1を閉鎖する (パージ制御機能: B 9 ) 。 パージ制御の際に、 制御部 7は、 ある時点におけるィンジヱクタ 2 8からのガス供給分の供給開始時に 算出したパージ量 Qが目標パージ量 QQ以上である場合に、前記ガス供給分の 供給が停止されるまで排気排水弁 3 1の開放を継続し、 前記ガス供給分の供 給停止と同時に、 排気排水弁 3 1を閉鎖する。 すなわち、 制御部 7は、 本発 明における制御手段として機能する。
ここで、 制御部 7のパージ量算出機能 B 7の詳細について説明する。 イン ジェクタ 2 8のフィードバック制御により、 インジェクタ 2 8の下流位置に おける圧力センサ 2 9の検出圧力値が目標圧力値に追従している状態におい て、 排気排水弁 3 1の開放により循環流路 2 3から水素オフガスが排出され ると、 検出圧力値が一時的に低下する。 制御部 7は、 このような水素オフガ スの排出 (パージ) に起因する圧力低下分を算出し、 この算出した圧力低下 分に基づいて、 圧力低下分に対応する水素オフガスの排出量 (圧力変化対応 流量) を算出する (圧力変化対応流量算出機能: B 7 a ) 。 本実施形態にお いては、 パージに起因する圧力低下分と、 この圧力低下分に対応する水素ガ スの排出量と、 の関係を表す特定の演算式を用いて、 圧力変化対応流量 を算出している。 また、 制御部 7は、 水素オフガスの排出 (パージ) に起因 する圧力低下分を補うためのフィードパック補正流量 (ガス補正供給流量) を算出し (補正流量算出機能: B 5 ) 、 このフィードバック補正流量のパー ジ開始時点からの時間積算値 Q2を算出する (補正流量積算機能: B 7 b ) 。 そして、 制御部 7は、圧力変化対応流量 と、 フィードパック補正流量のパ ージ開始時点からの時間積算値 Q2と、 を加算することにより、排気排水弁 3 1からの水素オフガスの総排出量 (パージ量 Q) を算出する (パージ量算出 機能: B 7 ) 。 すなわち、 制御部 7は、 本発明における排気量算出手段とし て機能する。
続いて、 図 3及び図 4のフローチャートと、 図 5 A〜図 6 Cのタイムチヤ ートと、 を用いて、 本実施形態に係る燃料電池システム 1の運転方法につい て説明する。
燃料電池システム 1の通常運転時においては、 水素供給源 2 1から水素ガ スが水素供給流路 2 2を介して燃料電池 2の燃料極に供給されるとともに、 加湿調整された空気が空気供給流路 1 1を介して燃料電池 2の酸化極に供給 されることにより、 発電が行われる。 この際、 燃料電池 2から引き出すべき 電力 (要求電力) が制御部 7で演算され、 その発電量に応じた量の水素ガス 及ぴ空気が燃料電池 2内に供給されるようになっている。 本実施形態におい ては、 このような通常運転時に、 インジェクタ 2 8のフィードパック制御を 実施するとともに、 排気排水弁 3 1のパージ制御 (循環流路 2 3の内部に滞 留する水分や水素オフガスを外部に排出するための排気排水弁 3 1の開閉制 御) を実施する。 まず、 図 3のフローチャートに示すように、 燃料電池システム 1の制御部 7は、 電流センサ 2 aを用いて燃料電池 2の発電時における電流値を算出す る (電流検出工程: S 1 ) 。 次いで、 制御部 7は、 検出した電流値に基づい て、燃料電池 2における水素消費量を算出する (水素消費量算出工程: S 2 ) とともに、 燃料電池 2に供給される水素ガスのインジヱクタ 2 8の下流位置 における目標圧力値及び目標パージ量を算出する(目標値算出工程: S 3 )。 次いで、 制御部 7は、 圧力センサ 2 9を用いて、 インジェクタ 2 8の下流 側の圧力値を検出する (圧力値検出工程: S 4 ) 。 次いで、 制御部 7は、 目 標値算出工程 S 3で算出した目標圧力値と、 圧力値検出工程 S 4で検出した 圧力値 (検出圧力値) と、 の偏差を低減させるために水素消費量に加算され る水素ガス流量(フィードバック補正流量) を算出する (補正流量算出工程:
S 5 ) 。 次いで、 制御部 7は、 水素消費量とフィードバック補正流量とを加 算してインジェクタ 2 8の噴射流量を算出し、 この噴射流量や駆動周期に基 づいてインジヱクタ 2 8の噴射時間を算出する。 そして、 制御部 7は、 この 噴射時間を実現させるための制御信号を出力することにより、 インジェクタ 2 8のガス噴射時間及びガス噴射時期を制御して、 燃料電池 2に供給される 水素ガスの流量及び圧力を調整する (フィードバック制御工程: S 6 ) 。 制御部 7は、 前記したフィードパック制御工程 S 6を実現させながら、 パ ージ開始要求の有無を判定する (パージ要求判定工程: S 7 ) 。 本実施形態 においては、 気液分離器 3 0の液溜部に溜まった水分量が所定の閾値を超え る場合に、 図示されていない液量センサが制御部 7に対してパージ開始要求 信号を出力するようになっている。 制御部 7は、 パージ要求判定工程 S 7に おいてパージ開始要求無と判定した場合には、 排気排水弁 3 1の閉鎖状態を 維持する (パージ弁閉鎖工程: S 1 1 ) 。 一方、 制御部 7は、 パージ要求判 定工程 S 7でパージ開始要求信号を受けてパージ開始要求有と判定し、かつ、 インジェクタ 2 8からのガス噴射が既に開始されている場合には、 排気排水 弁 3 1を開放する (パージ弁開放工程: S 8 ) 。 図 5 A〜図 5 Cに示される ように、 パージ弁開放工程 S 8において排気排水弁 3 1が開放されることに より、 気液分離器 3 0に溜まった水分が排気排水流路 2 5へと排出され、 水 分の排出が終了するとほぼ同時に循環流路 2 3内の水素オフガスが排気排水 流路 2 5へと排出されることとなる。
また、 制御部 7は、 排気排水弁 3 1の開放と同時に、 排気排水弁 3 1から の水素オフガスの総排出量 (パージ量 Q) を推定する (パージ量推定工程: S 9 ) 。 ここで、.図 4のフローチャート及び図 5 D等のタイムチャートを用 いて、 パージ量推定工程 S 9について説明する。
まず、 制御部 7は、 排気排水弁 3 1の開放により水素オフガスが排出され たことに起因するインジェクタ 2 8の下流側の圧力低下分 Δ Ρ (水素基準圧 力 ら水素現在圧を減じて得た値:図 5 D参照) に基づいて、 圧力低下分 Δ Ρ に対応する流量としての圧力変化対応流量 を算出する(圧力変化対応流量 算出工程: S 2 0 ) 。 次いで、 制御部 7は、 排気排水弁 3 1の開放により水 素オフガスが排出されたことに起因するインジヱクタ 2 8の下流側の圧力低 下分を補うためのフィードバック補正流量を算出し、 このフィードバック補 正流量のパージ開始時点からの時間積算値 Q2 (図 5 E参照) を算出する (補 正流量積算工程: S 2 1 ) 。 続いて、 制御部 7は、 圧力変化対応流量 と、 パージ開始時点からのフィードパック補正流量の時間積算値 Q2と、を加算す ることにより、排気排水弁 3 1からの水素オフガスの総排出量(パージ量 Q) を算出する (パージ量算出工程: S 2 2 ) 。
パージ量推定工程 S 9を経た後、 制御部 7は、 推定した水素オフガスの総 排出量 (パージ量 Q) 、 目標値算出工程 S 3で算出された目標パージ量 Q0 以上であるかを判定する (パージ量判定工程: S 1 0 ) 。 そして、 制御部 7 は、推定したパージ量 Qが目標パージ量 Q0未満である場合には、引き続きパ ージ量推定工程 S 9及ぴパージ量判定工程 S 1 0を続行する一方、 推定した パージ量 Qが目標パージ量 Q。以上である場合には、排気排水弁 3 1を閉鎖す る (パージ弁閉鎖工程: S 1 1 ) 。 パージ弁閉鎖工程 S 1 1において、 制御 部 7は、 図 6 A及ぴ図 6 Cに示すように、 ある時点におけるインジヱクタ 2 8からのガス供給分の供給開始時に算出したパージ量 Qが目標パージ量 Q0 以上である場合に、 前記ガス供給分の供給が停止されるまで排気排水弁 3 1 の開放を継続し、 前記ガス供給分の供給停止と同時に排気排水弁 3 1を閉鎖 する。 制御部 7がこのように排気排水弁 3 1を制御することにより、 図 6 B に示すように、実際のパージ量が目標パージ量 Q。を超える際のィンジェクタ 2 8からのガス供給分(臨界ガス供給分) に対応する排気量増分 A Qを排気 することができる。
以上説明した実施形態に係る燃料電池システム 1においては、 排気排水弁 3 1の開放中に算出したパージ量が所定の目標パージ量を超える場合に、 ィ ンジヱクタ 2 8からの臨界ガス供給分の供給停止と同時に排気排水弁 3 1を 閉鎖することができる。 換言すれば、 排気排水弁 3 1の開放中に算出したパ ージ量が所定の目標パージ量を超える場合において、 インジェクタ 2 8から の臨界ガス供給分を考慮して排気排水弁 3 1の開放を継続することができる。 従って、 インジェクタ 2 8からのガス供給に起因して実際のパージ量が目標 パージ量を下回ること (排気誤差) を抑制することが可能となる。
なお、 以上の実施形態においては、 燃料電池システム 1の水素ガス配管系 4に循環流路 2 3を設けた例を示したが、 例えば、 図 7に示すように、 燃料 電池 2に排出流路 3 2を接続して循環流路 2 3を廃止することもできる。 か かる構成 (デッドエンド方式) を採用した場合においても、 前記実施形態と 同様に、 インジェクタ 2 8からの臨界ガス供給分の供給停止と同時に排気排 水弁 3 1を閉鎖することにより、 前記実施形態と同様の作用効果を得ること ができる。 また、 以上の実施形態においては、 排気排水弁 3 1の開放中に算出したパ ージ量が所定の目標パージ量を超える場合に、 インジェクタ 2 8からの臨界 ガス供給分の供給停止と同時に排気排水弁 3 1を閉鎖した例を示したが、 さ らに精度良く排気排水弁 3 1の開閉動作を制御することもできる。
例えば、 図 8 A〜図 8 Cに示すように、 制御部 7が、 算出したパージ量 Q が目標パージ量 Qo以上である場合に、インジヱクタ 2 8からの臨界ガス供給 分の供給開始時から、臨界ガス供給分に対応する排気量増分 A Qの一部をそ れまでのパージ量に加算して算出したパージ量が目標パージ量 に到達す るまで、 の所要時間 A tを算出し、 臨界ガス供給分のガス供給開始時からこ の所要時間△ t経過後に排気排水弁 3 1を閉鎖することができる。 △ tは、 インジェクタ 2 8からの臨界ガス供給分に対応する排気量増分 A Qと排気 量増分 A Qが全てパージされるまでに要する時間とから算出される局所的 な排気速度 (単位時間当たりの排気量増分) と、 排気量増分 A Qが加算され る前に算出されたパージ量と目標パージ量 Q0との差と、を用いて算出するこ とができる。
制御部 7がこのように排気排水弁 3 1を制御すると、 インジ: クタ 2 8か らの臨界ガス供給分の供給停止と同時に排気排水弁 3 1を閉鎖すると実際の パージ量が目標パージ量を上回るような場合に、 図 8 Cに示すように臨界ガ ス供給分の供給停止時よりも先行して排気排水弁 3 1を閉鎖することができ る。 この結果、 実際のパージ量が目標パージ量を上回ること (排気誤差) を 抑制することが可能となる。
また、 以上の実施形態においては、 循環流路 2 3に水素ポンプ 2 4を設け た例を示したが、 水素ポンプ 2 4に代えてェジェクタを採用してもよい。 ま た、 以上の実施形態においては、 排気と排水との双方を実現させる排気排水 弁 3 1を循環流路 2 3に設けた例を示したが、 気液分離器 3 0で回収した水 分を外部に排出する排水弁と、 循環流路 2 3内のガスを外部に排出するため の排気弁と、 を別々に設け、 制御部 7で排水弁及び排気弁を別々に制御する こともできる。
.また、 以上の実施形態においては、 水素供給流路 2 2に遮断弁 2 6及びレ ギユレータ 2 7を設けた例を示したが、 インジェクタ 2 8は、 可変調圧弁と しての機能を果たすとともに、 水素ガスの供給を遮断する遮断弁としての機 能をも果たすため、 必ずしも遮断弁 2 6ゃレギユレータ 2 7を設けなくても よい。 従って、 インジェクタ 2 8を採用すると遮断弁 2 6ゃレギユレータ 2 7を省くことができるため、 システムの小型化及ぴ低廉化が可能となる。 また、 以上の実施形態においては、 燃料電池 2の発電電流値に基づいて水 素消費量、 目標圧力値及び目標パージ量を設定した例を示したが、 燃料電池 2の運転状態を示す他の物理量 (燃料電池 2の発電電圧値や発電電力値、 燃 料電池 2の温度等) を検出し、 この検出した物理量に応じて水素消費量、 目 標圧力値及び目標パージ量を設定してもよい。 また、 燃料電池 2が停止状態 にあるか、 起動時の運転状態にあるか、 間欠運転に入る直前の運転状態にあ る力、 間欠運転から回復した直後の運転状態あるか、 通常運転状態にあるか 等の運転状態を制御部が判定し、 これら運転状態に応じて水素消費量等を設 定することもできる。 産業上の利用可能性
本発明に係る燃料電池システムは、 以上の実施形態に示すように、 燃料電 池車両に搭載可能であり、また、燃料電池車両以外の各種移動体(ロボット、 船舶、 航空機等) にも搭載可能である。 また、 本発明に係る燃料電池システ ムを、 建物 (住宅、 ビル等) 用の発電設備として用いられる定置用発電シス テムに適用してもよい。

Claims

請求の範囲
1 . 燃料電池と、 燃料供給源から供給される燃料ガスを前記燃料電池へと 流すための供給流路と、 前記供給流路の上流側のガス状態を調整して下流側 に供給する可変ガス供給装置と、 前記燃料電池から排出される燃料オフガス を流すための排出流路と、 前記排出流路内のガスを外部に排出するための排 気弁と、 前記排気弁の開放中に算出した排気量が所定の目標排気量を超える 場合に前記排気弁を閉鎖する制御手段と、 を備える燃料電池システムであつ て、
前記制御手段は、 前記排気弁の開放中に算出した排気量が前記目標排気量 を超える場合に、 前記可変ガス供給装置からのガス供給分の供給停止と同時 に前記排気弁を閉鎖するものである、
燃料電池システム。
2 . 燃料電池と、 燃料供給源から供給される燃料ガスを前記燃料電池へと 流すための供給流路と、 前記供給流路の上流側のガス状態を調整して下流側 に供給する可変ガス供給装置と、 前記燃料電池から排出される燃料オフガス を流すための排出流路と、 前記排出流路内のガスを外部に排出するための排 気弁と、 前記排気弁の開放中に算出した排気量が所定の目標排気量を超える 場合に前記排気弁を閉鎖する制御手段と、 を備える燃料電池システムであつ て、
前記制御手段は、 前記排気弁の開放中に算出した排気量が前記目標排気量 を超える場合に、 前記可変ガス供給装置からのガス供給分のガス供給開始時 から、 前記ガス供給分に対応する排気量増分の少なくとも一部をそれまでの 排気量に加算して算出した排気量が目標排気量に到達するまで、 の所要時間 を算出し、 前記ガス供給分のガス供給開始時から前記所要時間経過後に前記 排気弁を閉鎖するものである、 燃料電池システム。
3 . 前記制御手段は、 前記可変ガス供給装置からのガス供給状態の変化分 の時間積算に基づいて前記排気弁からの排気量を算出する排気量算出手段を 有するものである、
請求項 1又は 2に記載の燃料電池システム。
4 . 前記排気量算出手段は、 前記可変ガス供給装置の下流側圧力の変化分 から換算される圧力変化対応流量と、 前記可変ガス供給装置の下流側圧力の 低下を捕うためのガス補正供給流量の時間積算値と、を加算することにより、 前記排気弁からの排気量を算出するものである、
請求項 3に記載の燃料電池システム。
5 . 前記可変ガス供給装置は、 インジヱクタである、
請求項 1から 4の何れか一項に記載の燃料電池システム。
PCT/JP2007/061687 2006-08-11 2007-06-05 Système de pile à combustible WO2008018229A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112007001874.7T DE112007001874B4 (de) 2006-08-11 2007-06-05 Verfahren zum Steuern eines Brennstoffzellensystems und Brennstoffzellensystem
US12/373,828 US7981558B2 (en) 2006-08-11 2007-06-05 Fuel cell system
CN200780028098XA CN101496209B (zh) 2006-08-11 2007-06-05 燃料电池系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006220140A JP5446023B2 (ja) 2006-08-11 2006-08-11 燃料電池システム
JP2006-220140 2006-08-11

Publications (1)

Publication Number Publication Date
WO2008018229A1 true WO2008018229A1 (fr) 2008-02-14

Family

ID=39032767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061687 WO2008018229A1 (fr) 2006-08-11 2007-06-05 Système de pile à combustible

Country Status (6)

Country Link
US (1) US7981558B2 (ja)
JP (1) JP5446023B2 (ja)
KR (1) KR101006219B1 (ja)
CN (1) CN101496209B (ja)
DE (1) DE112007001874B4 (ja)
WO (1) WO2008018229A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176612A (zh) * 2018-02-21 2019-08-27 丰田自动车株式会社 燃料电池系统及其控制方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067781A1 (ja) * 2014-10-28 2016-05-06 日産自動車株式会社 燃料電池システム
JP6299880B2 (ja) * 2014-10-28 2018-03-28 日産自動車株式会社 燃料電池システム及びその制御方法
US10497955B2 (en) 2014-10-28 2019-12-03 Nissan Motor Co., Ltd. Fuel cell system
US9653740B2 (en) * 2014-11-12 2017-05-16 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP7016025B2 (ja) * 2016-11-28 2022-02-04 パナソニックIpマネジメント株式会社 燃料電池システムおよびその運転方法
EP3570356B1 (en) * 2018-05-17 2021-01-20 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
CN111969229B (zh) * 2019-01-07 2021-08-31 中氢新能技术有限公司 一种甲醇燃料电池的排气阀角度的控制系统
JP7243538B2 (ja) * 2019-09-10 2023-03-22 トヨタ自動車株式会社 燃料電池システム及び排出弁の開閉方法
KR20220085400A (ko) * 2020-12-15 2022-06-22 현대자동차주식회사 연료전지시스템 및 그 제어방법
CN113506900B (zh) * 2021-06-18 2022-10-04 广西玉柴机器股份有限公司 用于车用燃料电池系统的氢气排气控制方法
DE102022211192A1 (de) * 2022-10-21 2024-05-02 Robert Bosch Gesellschaft mit beschränkter Haftung Abscheidungssystem für eine Brennstoffzelleneinheit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173807A (ja) * 2001-12-05 2003-06-20 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2004179000A (ja) * 2002-11-27 2004-06-24 Nissan Motor Co Ltd 燃料電池システム
JP2004179149A (ja) * 2002-11-13 2004-06-24 Nissan Motor Co Ltd 燃料電池システム
JP2005141977A (ja) * 2003-11-05 2005-06-02 Honda Motor Co Ltd 燃料電池システムの排出方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497970B1 (en) * 1999-10-15 2002-12-24 General Motors Corporation Controlled air injection for a fuel cell system
JP4348891B2 (ja) * 2001-06-15 2009-10-21 トヨタ自動車株式会社 燃料電池を有する動力出力装置およびその方法
CN100468848C (zh) * 2002-11-13 2009-03-11 日产自动车株式会社 燃料电池系统及相关方法
US7282286B2 (en) * 2002-11-28 2007-10-16 Honda Motor Co., Ltd. Start-up method for fuel cell
JP5044881B2 (ja) 2003-05-14 2012-10-10 トヨタ自動車株式会社 燃料電池システム
JP4742501B2 (ja) * 2004-02-17 2011-08-10 日産自動車株式会社 燃料電池システム
US7608354B2 (en) * 2004-03-16 2009-10-27 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of same
JP4945912B2 (ja) 2004-03-16 2012-06-06 トヨタ自動車株式会社 燃料電池システム
US7981559B2 (en) * 2004-03-17 2011-07-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system supply having a measuring device and a control device
JP2005283127A (ja) * 2004-03-26 2005-10-13 Nissan Motor Co Ltd 燃料量演算装置
JP4642432B2 (ja) * 2004-10-27 2011-03-02 本田技研工業株式会社 燃料電池システム
JP4730064B2 (ja) * 2004-11-29 2011-07-20 トヨタ自動車株式会社 ガス漏れ検知装置および燃料電池システム
JP2006164562A (ja) * 2004-12-02 2006-06-22 Denso Corp 燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173807A (ja) * 2001-12-05 2003-06-20 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2004179149A (ja) * 2002-11-13 2004-06-24 Nissan Motor Co Ltd 燃料電池システム
JP2004179000A (ja) * 2002-11-27 2004-06-24 Nissan Motor Co Ltd 燃料電池システム
JP2005141977A (ja) * 2003-11-05 2005-06-02 Honda Motor Co Ltd 燃料電池システムの排出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176612A (zh) * 2018-02-21 2019-08-27 丰田自动车株式会社 燃料电池系统及其控制方法
CN110176612B (zh) * 2018-02-21 2022-01-04 丰田自动车株式会社 燃料电池系统及其控制方法

Also Published As

Publication number Publication date
JP2008047353A (ja) 2008-02-28
DE112007001874T5 (de) 2009-05-28
KR20090026821A (ko) 2009-03-13
US20100015484A1 (en) 2010-01-21
CN101496209A (zh) 2009-07-29
CN101496209B (zh) 2011-09-14
DE112007001874B4 (de) 2016-02-25
JP5446023B2 (ja) 2014-03-19
US7981558B2 (en) 2011-07-19
KR101006219B1 (ko) 2011-01-07

Similar Documents

Publication Publication Date Title
JP5446023B2 (ja) 燃料電池システム
JP5224082B2 (ja) 燃料電池システム及びその排水制御方法
KR101190170B1 (ko) 연료전지시스템
JP4883360B2 (ja) 燃料電池システム
WO2007069554A1 (ja) 燃料電池システム及び移動体
JP2007305563A (ja) 燃料電池システム及び排気量推定方法
JP2008053122A (ja) 燃料電池システム及び開閉弁の診断方法
WO2009028340A1 (ja) 燃料電池システム及びその制御方法
WO2009011324A1 (ja) 燃料電池システム及び移動体
JP2009123661A (ja) 燃料電池システム
JP5158558B2 (ja) 燃料電池システム
JP2007317597A (ja) 燃料電池システム及び開閉弁の診断方法
JP2008041329A (ja) 燃料電池システム
JP5077636B2 (ja) 燃料電池システム
JP5376390B2 (ja) 燃料電池システム
JP2008084603A (ja) 燃料電池システム及びそのパージ方法
JP5136874B2 (ja) 燃料電池システム及び排気弁の異常判定方法
JP5109280B2 (ja) 燃料電池システム
JP5013171B2 (ja) 燃料電池システム
JP2010146788A (ja) 燃料電池システム、およびその起動時における開弁動作の制御方法
JP4998695B2 (ja) 燃料電池システム
JP4941641B2 (ja) 燃料電池システム
JP2008218034A (ja) 燃料電池システム及びその制御方法
JP5041215B2 (ja) 燃料電池システムおよびその起動完了度表示方法
JP2008171623A (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028098.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744979

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12373828

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097002696

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120070018747

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

RET De translation (de og part 6b)

Ref document number: 112007001874

Country of ref document: DE

Date of ref document: 20090528

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07744979

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)