WO2008016079A1 - Method for introducing nucleic-acid-protecting group - Google Patents

Method for introducing nucleic-acid-protecting group Download PDF

Info

Publication number
WO2008016079A1
WO2008016079A1 PCT/JP2007/065070 JP2007065070W WO2008016079A1 WO 2008016079 A1 WO2008016079 A1 WO 2008016079A1 JP 2007065070 W JP2007065070 W JP 2007065070W WO 2008016079 A1 WO2008016079 A1 WO 2008016079A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
following general
acid derivative
represented
group
Prior art date
Application number
PCT/JP2007/065070
Other languages
English (en)
French (fr)
Inventor
Hidetoshi Kitagawa
Kouichi Uetake
Original Assignee
Nippon Shinyaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shinyaku Co., Ltd. filed Critical Nippon Shinyaku Co., Ltd.
Priority to EP07791750.8A priority Critical patent/EP2053054B1/en
Priority to JP2008527773A priority patent/JP5168145B2/ja
Priority to KR1020097004292A priority patent/KR101405632B1/ko
Priority to CN2007800362424A priority patent/CN101522701B/zh
Priority to US12/375,755 priority patent/US8158774B2/en
Priority to CA2659703A priority patent/CA2659703C/en
Publication of WO2008016079A1 publication Critical patent/WO2008016079A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/167Purine radicals with ribosyl as the saccharide radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention introduces the following substituent (I) to the 2′-position hydroxyl group of ribose in a ribonucleic acid derivative in which the 3′-position hydroxyl group and the 5′-position hydroxyl group are protected with a protecting group for the silicon! It is about the method.
  • WG 1 represents an electron-withdrawing group.
  • WG 1 as "electron withdrawing group", for example, Xia input nitro, alkylsulfonyl, ⁇ reel sulfonyl, Bruno, can be force S mentioned androgenic. Of these, Ciano is preferred.
  • alkyl part of “alkylsulfonyl” according to WG 1 examples include linear or branched alkyl having 1 to 5 carbon atoms. Specifically, for example, methylol, ethyl, n propyl, isopropyl, n butyl, isobutyl, sec butyl, t tert butyl, n pentyl, isopentyl, neopentyl, tert pentyl can be cited with force S.
  • Examples of the “aryl” part of “arylsulfonyl” according to WG 1 include aryl having 6 to 12 carbon atoms. Specific examples include phenyl, 1-naphthyl, 2-naphthyl, and biphenyl. The aryl may be substituted, and examples of such substituents include halogen, alkyl, alkoxy, cyano and nitro, and 1 to 3 of these are substituted at any position. May be.
  • halogen examples include, for example, fluorine, chlorine, bromine and iodine.
  • alkoxy which is a substituent of “aryl” in WG 1 include linear or branched alkoxy having 1 to 4 carbon atoms. The ability to boil S. Specific examples include methoxy, ethoxy, n-propoxy, isopropoxy, n butoxy, isobutoxy, sec butoxy and tert butoxy. Of these, alkoxy having 1 to 3 carbon atoms is preferable.
  • Oligo RNA is useful as an RNA probe for gene analysis, RNA drug material (antisense RNA, ribozyme, gene expression control using RNAi), artificial enzyme, and abama.
  • RNA drug material antisense RNA, ribozyme, gene expression control using RNAi
  • abama As a reagent used in the production process of this oligo RNA, the 2′-position hydroxyl group of ribose is substituted with a 2-cyanethoxymethyl (CEM) group that can be removed under neutral conditions.
  • CEM 2-cyanethoxymethyl
  • a process for producing the phosphoramidite compound there is a process of introducing CEM as a protecting group into the hydroxyl group at the 2′-position of ribose.
  • this process has employed the hydroxyl groups at the 3′-position and the 5′-position of ribose as a key group.
  • a ribonucleic acid derivative (raw compound) protected with a protecting group eg, tetraisopropyldisiloxane 1,3-diyl
  • an acid such as trifluoromethanesulfonic acid or silver trifluoromethanesulfonate.
  • N-thiosuccinimide NMS
  • N-bromosuccinimide N-bromosuccinimide
  • Reagents for halogenating sulfur atoms of alkylating reagents as described above, and acids as described above, ie, NIS, NBS, trifluoromethanesulfonic acid, silver trifluoromethanesulfonate, are very reactive. Therefore, even if the reaction temperature is lowered to around 0 ° C., the nucleobase of the ribonucleic acid derivative, which is a raw material compound, may be halogenated. Therefore, in this step, it is necessary to carry out under extremely low temperature conditions of 50 ° C. to ⁇ 40 ° C. to prevent nucleobase halogenation. However, when the ribonucleic acid derivative of the raw material compound is a small scale of about 100 mg to 2 g, the reaction may proceed cleanly even if the reaction temperature is around 0 ° C.
  • NIS NIS
  • NBS trifluoromethanesulfonic acid
  • silver trifluoromethanesulfonate are very expensive reagents and are economically disadvantageous.
  • Such a conventional production method using NIS, NBS or the like is not suitable for mass production of the phosphoramidite compound.
  • Patent Document 1 International Publication WO2006 / 022323 A1 Pamphlet
  • Non-Patent Document 1 Oki et al., ORGANIC LETTERS, Vol. 7, 3477 (2005)
  • An object of the present invention is to provide a ribonucleic acid derivative in which the hydroxyl group at the 3 'position and the hydroxyl group at the 5' position are protected with a protecting group, and the following substituent (I) (for example, , CEM group) is to provide a method for easily and inexpensively introducing.
  • substituent (I) for example, , CEM group
  • a ribonucleic acid derivative represented by the following general formula (1) is reacted with a monothioacetal compound represented by the following general formula (2) to give the following general formula (3):
  • a monothioacetal compound represented by the following general formula (2) is reacted with a monothioacetal compound represented by the following general formula (3):
  • iodine is used as a reagent for halogenating the sulfur atom of the monothioacetal compound (2) in the presence of an acid.
  • the production method of the ribonucleic acid derivative represented by 3) can be mentioned.
  • Bz represents a nucleobase which may have a protecting group
  • WG 1 has the same meaning as described above
  • R 3 represents alkyl or aryl.
  • A represents a silicon substituent represented by the following general formula (4a) or (4b).
  • R 6 represents alkyl
  • nucleobase relating to Bz is not particularly limited as long as it is used for nucleic acid synthesis, and examples thereof include pyrimidine bases such as cytosine and uracil, purine bases such as adenine and guanine, and modified products thereof. be able to.
  • the “nucleobase” relating to Bz is a protected nucleic acid base having an amino group, such as adenine, guanine, and cytosine, in which the amino group is protected.
  • the “protecting group for amino group” is not particularly limited as long as it is used as a protecting group for nucleic acids. Specific examples thereof include benzoyl, 4-methoxybenzoyl, acetinol, propionyl. , Butyryl, isobutyryl, phenylacetyl, phenoxyacetyl, 4-tert-butylphenoxycetyl, 4-isopropylphenoxycetyl, and (dimethinoreamino) methylene.
  • a “modified product” of Bz is one in which a nucleobase is substituted with an arbitrary substituent.
  • substituents include halogen, acyl, alkyl, arylenorequinole, alkoxy, alkoxy.
  • Alkyl, hydroxy, amino, monoalkylamino, dianolenoleamino, force lupoxy, and nitro-containing nitro can be listed, and these are substituted at 1 to 3 positions in any position.
  • Examples of “no, rogen” related to “modified form” of Bz include fluorine, chlorine, bromine and iodine. I ’ll use the power S.
  • acyl according to “modified” of Bz include linear or branched alkanols having 1 to 6 carbon atoms and 7 to 13 carbon atoms. More specifically, for example, honoreminore, acetyl, n-propionyl, isopropionyl, n-butyryl, isobutylinole, tert-butyryl, norolinole, hexanol, benzoyl, naphthoyl, levulininoles are mentioned by the force S.
  • alkyl related to the “modified product” of Bz
  • examples of the “alkyl” related to the “modified product” of Bz include linear or branched alkyl having! To 5 carbon atoms. Specific examples include methyl, ethyl, n-propinole, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl and tert-pentyl.
  • the alkyl may be substituted, and examples of such substituents include halogen, alkyl, alkoxy, and nitro-containing nitro, and 1 to 3 of these are substituted at any position. May be.
  • alkyl part of “aryl alkynole”, “alkoxy alkynole”, “monoalkylamino”, “dialkylamino” and “alkylsulfonyl” relating to the “modified” of Bz is the same as the above “alkyl”. The ability to list the same thing.
  • alkoxy related to the “modified product” of Bz
  • examples of the “alkoxy” related to the “modified product” of Bz include linear or branched alkoxy having 1 to 4 carbon atoms. Specifically, for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy can be cited. Of these, alkoxy having 1 to 3 carbon atoms is preferred, and methoxy is particularly preferred.
  • aryl in “aryl alkyl” related to “modified” of Bz examples include aryl having 6 to 12 carbon atoms. Specific examples thereof include phenyl, 1-naphthinole, 2-naphthyl, and biphenyl. The aryl may be substituted, and examples of such substituents include halogen, alkyl, alkoxy, cyano and nitro, and 1 to 3 of these may be substituted at any position. Good. Examples of “alkylene”, “alkylene”, “alkynole” and “alkoxy” which are substituents of “alkyl” according to “modified” of Bz can be the same as those described above.
  • alkyl and aryl can include the same “alkyl” and “arynole” as the modified Bz.
  • monothioacetal compound (11) examples include 2-cyanoethyl methylthiomethyl ether.
  • alkyl related to R 6 include a linear or branched alkynole having 1 to 5 carbon atoms. Specific examples include methyl, ethyl, n-propyl, isopropinole, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl and tert-pentyl.
  • a ribonucleic acid derivative represented by the following general formula (1) is reacted with a monothioacetal compound represented by the following general formula (2), which is represented by the following general formula (3).
  • a monothioacetal compound represented by the following general formula (2) which is represented by the following general formula (3).
  • Bz and WG 1 are as defined above.
  • R 2a and R 2b are the same or different and represent a force representing an alkyl or a 5- to 6-membered saturated amino ring group formed by R 2a and R 2b together with an adjacent nitrogen atom. .
  • Such a saturated amino ring group may have one oxygen atom or sulfur atom as a ring constituent atom in addition to the nitrogen atom.
  • WG 2 is the same or different and represents an electron-withdrawing group
  • R 1 represents a substituent represented by the following general formula (5).
  • R U , R 12 and R 13 are the same or different and each represents hydrogen or alkoxy.
  • Examples of the “alkoxy” related to R u , R 12 and R 13 include the same “alkoxy” related to the modified Bz.
  • Examples of the “alkyl” related to R 2a and R 2b include the same “alkyl” related to the modified form of Bz described above with the force S.
  • Examples of the “5- to 6-membered saturated amino ring group” relating to R 2a and R 2b include pyrrolidine-1-yl, piperidine-1-yl, morpholine-4-yl or thiomorpholine-1- You can raise your power.
  • the “electron withdrawing group” according to WG 2 is the same as the “electron withdrawing group” according to WG 1 mentioned above.
  • the phosphoramidite compound (A) is a phosphoramidite compound in which the 2′-position hydroxyl group of ribose is protected by the following substituent (I).
  • substituent (I) the group introduced into the hydroxyl group at the 2 ′ position
  • the condensation reaction proceeds in a very short time, and the condensation yield is good.
  • the phosphoramidite compound (A) high-purity oligo RNA can be produced by almost the same method as oligo DNA production.
  • oligo RNA means an oligonucleic acid containing at least one ribonucleic acid (RNA) as a constituent monomer of the oligonucleic acid.
  • Oligonucleic acid refers to an oligonucleic acid that does not contain ribonucleic acid (RNA) as a constituent monomer of oligonucleic acid.
  • a raw material affects a reaction (for example, hydroxy
  • the reaction is carried out after protecting the starting material with an appropriate protecting group according to a known method.
  • the protecting group can be finally removed according to a known method such as catalytic reduction, alkali treatment, acid treatment and the like.
  • This production method is carried out by reacting a ribonucleic acid derivative represented by the following general formula (1) with a monothioacetal compound represented by the following general formula (2) in the presence of acid and iodine.
  • the power S to do is carried out by reacting a ribonucleic acid derivative represented by the following general formula (1) with a monothioacetal compound represented by the following general formula (2) in the presence of acid and iodine.
  • the monothioacetal compound (2) can be produced by a known method (for example, International Publication WO2006 / 022323A1 pamphlet).
  • This production method can be carried out by allowing a monothioacetal compound (2) and iodine to act on a ribonucleic acid derivative (1) that is commercially available or can be synthesized according to literature methods in the presence of an acid.
  • S can.
  • the amount of “iodine” used in this production method is suitably in the range of 0.8 to 20 times the molar ratio with respect to the ribonucleic acid derivative (1), preferably from the same amount to 10 times. Within the quantity range.
  • the reaction temperature is suitably in the range of ⁇ 20 ° C. to 20 ° C., preferably 10 ° C. to; within the range of 10 ° C., more preferably in the range of 5 ° C. to 5 ° C. It is within.
  • the reaction time varies depending on the type of raw materials used, reaction temperature, etc., but is usually within the range of 5 minutes to 5 hours.
  • the amount of “monothioacetal compound (2)” that can be used in this production method is suitably within the range of 0.8 to 5 times the molar ratio of ribonucleic acid derivative (1), Preferably, it is within the range of 1 to 3 times the amount.
  • the acid is not particularly limited as long as it is an organic acid that can activate the alkylation reaction to the 2′-position of ribose and can form a salt with the nucleobase moiety.
  • such acids can include methanesulfonic acid, trifluoromethanesulfonic acid, or mixtures thereof.
  • methanesulfonic acid or a mixed acid of trifluoromethanesulfonic acid and methanesulfonic acid is preferable.
  • the amount of the “acid” used is suitably in the range of 0.01 to 10 times the molar ratio of the ribonucleic acid derivative (1), preferably 0.1 to 5 times the amount. Is within the range.
  • a molar ratio within the range of 0.01 times to 0.9 times the appropriate amount relative to trifluoromethanesulfonic acid sulfonic acid is appropriate.
  • the solvent to be used is not particularly limited as long as it does not participate in the reaction.
  • THF tetrahydrofuran
  • THF is preferred.
  • the phosphoramidite compound (A) can be produced from a known compound or an intermediate that can be easily produced, for example, by carrying out the following steps a to d.
  • This step is the same as the above-mentioned method I.
  • This step is represented by the following general formula (7) by dissolving the ribonucleic acid derivative (3) produced in step a in a suitable solvent and reacting with a reagent for eliminating the carbon substituent.
  • a step of producing a ribonucleic acid derivative is represented by the following general formula (7) by dissolving the ribonucleic acid derivative (3) produced in step a in a suitable solvent and reacting with a reagent for eliminating the carbon substituent.
  • Examples thereof include ammonium fluoride, a salt of ammine and hydrofluoric acid, or a mixture of ammine and hydrofluoric acid in an appropriate solvent in an arbitrary ratio.
  • a mixed reagent in which an appropriate acid is further added to a salt of ammine and hydrofluoric acid or a mixture of amine and hydrofluoric acid in an appropriate solvent in an arbitrary ratio can also be used to carry out this step.
  • acids that can be used at that time include acetic acid, hydrochloric acid, and sulfuric acid.
  • the amount of force and carboxylic acid used is suitably in the range of 0.01 times to 10 times the molar ratio with respect to the amine, preferably in the range of 0.1 times to 5 times the amount. It is.
  • solvent to be used examples include THF, acetonitrile, methanol, isopropyl, toluene, dimethyl sulfoxide, N, N-dimethylformamide, or any mixed solvent thereof.
  • THF and methanol are preferable.
  • the type of ribonucleic acid derivative (3), the reagent used for eliminating the carbon substituent used, and the use Depending on the solvent, etc., the amount of the “reagent for removing the substituent on the key” that can be used in this step is from 1 to 10 times the molar ratio of the ribonucleic acid derivative (3).
  • the amount is suitably in the range, preferably 1.2 times to 1.5 times the amount.
  • the reaction temperature is suitably in the range of 0 ° C to 80 ° C.
  • the reaction time varies depending on the type of ribonucleic acid derivative, the reagent used to remove the carbon substituent, the solvent used, etc., but it varies depending on the reaction temperature, etc., but is usually in the range of 30 minutes to 10 hours. Is appropriate.
  • the ribonucleic acid derivative (7) can be obtained as a precipitate by adding or cooling an appropriate amount of water as it is or after cooling.
  • the amount of water to be added is suitably in the range of 0.05 times to 5 times the volume ratio of the solvent used, preferably in the range of 0.06 times to the same amount. More preferably, it is in the range of 0.07 times to 0.1 times the amount.
  • salts of amamine and hydrofluoric acid include ammonium fluoride, trimethylamine hydrochloride, trimethylamine dihydrofluoride, trimethylamine trishydrofluoride, trimethylamine tetrahydrofluoride, Trimethylamine pentahydro fluoride, trimethylamine hexahydrofluoride, triethylamine hydrofluoride, triethylamine dihydrofluoride, triethinoreamine trishydrofluoride, triethylamine tetrahydrofluoride, triethinoreamine 26 hydrofluoride, quinutaridin trishydrofluoride, triethylenediamine tetrahydrofluoride and the like (for example, Journal Molecular Structure, 193, 247 (1989), Pol.
  • ammonium fluoride and triethylamine trishydrofluoride are preferable.
  • Examples of the “mixture of ammine and hydrofluoric acid in a suitable solvent in an arbitrary ratio” that can be used in this step include, for example, ammonia, triethylamine, triethylamine, quinutaridin, triethylenediamine.
  • a suitable solvent for example, THF, acetonitrinol, methanol, isopropal, tonoleene
  • a suitable solvent for example, THF, acetonitrinol, methanol, isopropal, tonoleene
  • the ribonucleic acid derivative (7) produced in step b is subjected to a known method, Introducing a protecting group (R 1 ) that is eliminated under acidic conditions by reacting with I ⁇ X 3 represented by the following general formula (8) to the 5'-position hydroxyl group of the proposed ribonucleic acid derivative (7) To produce a ribonucleic acid derivative represented by the following general formula (9).
  • the “norogen” relating to X 3 is the same as the “norogen” relating to the modified form of Bz mentioned above.
  • ⁇ ⁇ ⁇ 3 (8) should be used in a molar ratio within the range of 0.8 to 20 times the ribonucleic acid derivative (7), preferably from the same amount to 10 times. Within the quantity range.
  • the solvent to be used is not particularly limited as long as it does not participate in the reaction, and examples thereof include acetonitrile and THF.
  • bases include pyridine, 2,6-dimethylviridine, 2,4,6-trimethylolpyridine, ⁇ -methinoreimidazolene, triethinoreamine, tribubutenoreamine, ⁇ , ⁇ - organic base be able to.
  • the amount of such “base” used is suitably in the range of 0.8 to 20 times the molar ratio of the ribonucleic acid derivative (7), preferably about 10 to 10 times the molar amount. Within range.
  • the reaction temperature is suitably in the range of 0 ° C to 120 ° C.
  • the reaction time varies depending on the type of raw material used, reaction temperature, etc., but is usually in the range of 30 minutes to 24 hours.
  • the phosphoramidite reagent (9) produced in step c is allowed to act on a phosphoramidite reagent and, if necessary, an activator, so that the hydroxyl group at the 3 ′ position is converted to phosphoramidite.
  • an activator so that the hydroxyl group at the 3 ′ position is converted to phosphoramidite.
  • R-in formulas (10a) and (10b) R 2a , R 2b and WG 2 are as defined above.
  • X 1 represents halogen.
  • the “norogen” relating to X 1 is the same as the “norogen” relating to the modified form of Bz mentioned above, with a force S.
  • the solvent to be used is not particularly limited as long as it does not participate in the reaction, and examples thereof include acetonitrile and THF.
  • the amount of the “phosphoramidation reagent” that can be used in this step is suitably in the range of 0.8 to 20 times the molar ratio of the ribonucleic acid derivative (9), preferably It is within the range of 1x to 10x.
  • the “activator” include 1H-tetrazole, 5-ethinolethiotetrazonore, 4,5-dichroic imidazole, 4,5-disyanimidazole, benzotriazole triflate, imidazole triflate , Pyridinium triflate, N, N-diisopropylethylamine, 2,4,6-collidine / N-methylimidazole.
  • the amount of the “activator” used is suitably in the range of 0.8 to 20 times the molar ratio of the ribonucleic acid derivative (9), preferably from the same amount to 10 times the amount. It is within the range.
  • the reaction temperature is suitably in the range of 0 ° C to 120 ° C.
  • Reaction time is the raw material used The force that varies depending on the type of reaction, reaction temperature, etc. Usually within the range of 30 minutes to 24 hours is suitable.
  • the phosphoramidite compound (A) thus produced can be produced by means known per se, for example, concentration, liquid It can be separated and purified by sex conversion, phase transfer, solvent extraction, crystallization, recrystallization, fractional distillation, chromatography, etc.
  • oligo RNA (B) an oligo RNA represented by the general formula (B) of 7 fires (hereinafter referred to as “oligo RNA (B)”) is produced. And force S.
  • each B independently represents a nucleobase or a modified form thereof.
  • Each Q independently represents O or S.
  • Each R is independently H, hydroxyl group, halogen, alkoxy, alkylthio, amino, anolenoquinamino, dianolenoamino, alkenyloxy, alkenylthio, alkenylamino, dialkenyl. It represents mino, alkynyloxy, alkynylthio, anolequininoreamino, dialkynylamino or alkoxyalkyloxy, at least one of which represents a hydroxyl group.
  • Each Y represents alkyl, alkoxy, alkynolethio, O—, S—, NR 2a R 2b (R 2a and R 2b are as defined above).
  • R of the nucleic acid monomer unit constituting the oligo RN A (B) is a hydroxyl group
  • Y represents O—.
  • Z represents H, a phosphate group or a thiophosphate group.
  • n represents an integer in the range of !! to 200
  • n is preferably an integer in the range of 10 to: L00, and more preferably in the range of 15 to 50. An integer in the range.
  • the nucleobase represented by B is not particularly limited, and examples thereof include pyrimidine bases such as cytosine, uracil and thymine, purine bases such as adenine and guanine, and their modified bodies.
  • the “modified product” of B is a compound in which the nucleobase is substituted with an arbitrary substituent.
  • substituents related to the modified product of B include halogen, acyl, alkyl, aryl alkyl, alkoxy, hydroxy , Amino, monoalkylamino, dianolenoamino, carboxy, and nitro-containing nitro, which are substituted at 1 to 3 positions in any position.
  • alkyl in “alkyl”, “alkoxy”, and “alkylthio” according to Y include the same as those related to the modified form of B z.
  • alkyl examples include the same “alkyl” as the modified Bz.
  • alkoxy of “alkoxyalkyloxy” according to R, the same “alkenyloxy” as the modified Bz can be cited.
  • alkenyl of “alkenyloxy”, “alkenyloxy”, “alkenylylamino” and “dialkenylamino” related to R include, for example, linear or branched alkenyl having 2 to 6 carbon atoms. Can be mentioned. Specifically, for example, bulle, arryl, 1-propenyl, isopropenore, 1-fu, teninole, 2-fu, teninole, 1 penteninole, 1 .
  • nucleic acid monomer unit refers to a portion of each nucleic acid monomer constituting the oligo RNA (B) and each (oligo) nucleic acid derivative.
  • the production method of the oligo RNA (B) using the phosphoramidite compound (A) is a force S that can be performed according to a known method, for example, the following steps A to G are repeated.
  • the nucleic acid monomer compound can be condensed in a 3 ′ to 5 ′ direction step by step.
  • the following step B by using the phosphoramidite compound (A) as the nucleic acid monomer compound, an oligo RNA (B) in which each R is a hydroxyl group can be produced.
  • those other than the phosphoramidite compound (A) are not particularly limited to those generally used for oligo RNA or oligo DNA synthesis. It can be used.
  • all steps can be produced manually or using a commercially available DNA automatic synthesizer. It is desirable to use an automatic synthesizer from the viewpoint of simplification of operation and accuracy of synthesis.
  • an acid for removing R 1 is allowed to act on the (oligo) nucleic acid derivative represented by the following general formula (11) to remove the protecting group for the hydroxyl group at the 5 ′ position.
  • This is a process for producing an oligonucleic acid derivative represented by the general formula (12).
  • Each Bx is It independently represents a nucleobase which may have a protecting group or a modified form thereof.
  • Each R 4 is independently H, halogen, alkoxy, alkylthio, optionally protected aminoamino, diaminoquinamino, alkenyloxy, alkenyloxy, protected Alkenylamino, dialkenylamino, alkynyloxy, alkynylthio, alkynylamino, dialkynylamino-containing alkoxyalkyloxy which may be protected, or the following general formula (13): Wherein at least one represents a substituent represented by the following general formula (13).
  • WG 1 is as defined above.
  • Each Y 1 represents alkyl, alkoxy, alkylthio, NR 2a R 2b (R 2a and R 2b are as defined above) or a substituent represented by the following general formula (14).
  • WG 2 has the same meaning as described above.
  • R 4 of the nucleic acid monomer unit constituting the (oligo) nucleic acid derivative (11) and (12) is a substituent represented by the above general formula (13)
  • Y 1 is represented by the above general formula (14) Represents a substituted group.
  • E represents acyl or a substituent represented by the following general formula (15).
  • is ⁇ , acyloxy, halogen, alkoxy, alkylthio, protected! /, Optionally amino, optionally protected alkylamino, dianolenoleamino, alkenyloxy, alkenylthio, Optionally protected alkenylamino, dialkenylamino, alkynyloxy, alkynylthio, optionally protected alkynylamino, dialkynylamino-substituted alkoxyalkyloxy, represented by the above general formula (13) Or a substituent represented by the above general formula (15). However, either ⁇ or ⁇ represents the substituent (15).
  • nucleobase relating to Bx is not particularly limited as long as it is used for nucleic acid synthesis.
  • pyrimidine bases such as cytosine, uracil and thymine
  • purine bases such as adenine and guanine, or those Can be mentioned.
  • Nucleobase relating to Bx is preferably protected from a nucleic acid base having an amino group, for example, adenine, guanine, and cytosine, wherein the amino group is protected.
  • the “protecting group for amino group” is not particularly limited as long as it is used as a protecting group for nucleic acid, and examples thereof include benzoyl, 4-methoxybenzoyl, acetyl, propionyl, butyryl, isobutyryl, and phenyl. Examples include lucetyl, phenoxyacetyl, 4 tert butynole, phenoxyacetinole, 4 isopropylinophenoxyacetinole, and (dimethinoreamino) methylene.
  • the “modified product” of Bx is a compound in which the nucleobase is substituted with an arbitrary substituent.
  • substituents related to the “modified product” of Bx include halogen, acyl, alkyl, arylanolenole, alkoxy , Alkoxyalkyl, hydroxy, amino, monoalkylamino, dialkylamino-containing carboxy, and cyano-containing nitro, which can be substituted at any position;
  • Examples of the “norogen”, “alkoxy”, “alkylamino” and “dialkylamino” moiety relating to R 4 are the same as those relating to the modified form of Bz. Examples thereof include the same “alkyl” related to the modified form of Bz.
  • Examples of the “alkoxy” part of the “alkoxyalkyloxy” according to R 4 include the same “alkoxy” as the above-mentioned modified body of Bz.
  • alkenyl part of “alkenyloxy”, “alkenyloxy”, “alkenylylamino” and “dialkenylamino” related to R 4 can be the same as “alkenyl” related to R above. Monkey.
  • “Amino”, “alkylamino”, “alkenylylamino” and “alkynylamino” according to R 4 may be protected, and the protective group may be used as a protective group for an amino group.
  • the protective group may be used as a protective group for an amino group.
  • trifluoroacetyl, benzoyl, 4-methoxybenzoyl, acetyl, propionyl, butyryl, isobutyryl, phenylacetyl, phenoxyacetyl, 4-tert-butylphenoxyacetyl, 4-isopropylphenoxyacetyl , (Dimethylamino) methylene can give the power S.
  • Particularly preferred is trifluoroacetyl.
  • Examples of the “acyl” related to E include the same “acyl” related to the modified form of Bz.
  • acyl part of “acyloxy” relating to T can be exemplified by the same “acyl” relating to the modified Bz.
  • Norogen “alkoxy”, “alkylamino” and “dialkylamino” relating to T are the same as those relating to the modified form of Bz mentioned above. Can be the same as “alkyl” related to the modified form of Bz.
  • Examples of the “alkoxy” part of the “alkoxyalkyloxy” according to T include the same “anolecoxy” according to the modified Bz.
  • alkenyl part of “alkenyloxy”, “alkenyloxy”, “alkenylamino” and “dialkenylamino” related to T can be the same as “alkenyl” related to R. .
  • alkynyl part of “alkynyloxy”, “alkynylthio”, “alkynylamino”, and “dialkynylamino” according to T may be the same as the “alkynyl” according to R. .
  • Alkyl in “alkyl”, “alkoxy” and “alkylthio” according to Y 1 refers to the same S as those related to the modified Bz.
  • R 2 represents acyloxy.
  • R 4a is H, acyloxy, halogen, alkoxy, alkylthio, optionally protected amino, optionally protected alkylamino, dialkynoreamino, alkenyloxy, alkenylthio, optionally protected alkenilamino. , Dialkenylamino, alkynyloxy, alkynylthio, alkynylamino, dialkynylamino, alkoxyalkyloxy or substituent (13) which may be protected.
  • Examples of the “acyl” moiety related to “acyloxy” of R 2 and R 4a include the same “acinole” related to the modified form of Bz.
  • Examples of the “norogen”, “alkoxy”, “alkylamino” and “dialkylamino” moiety relating to R 4a are the same as those relating to the modified form of Bz. Examples thereof include the same “alkyl” related to the modified form of Bz.
  • Examples of the “alkoxy” part of the “alkoxyalkyloxy” according to R 4a include the same “alkoxy” as the above-mentioned modified body of Bz.
  • alkenyl part of “alkenyloxy”, “alkenyloxy”, “alkenylylamino” and “dialkenylamino” related to R 4a can be the same as “alkenyl” related to R above. Monkey.
  • Alkynyloxy “alkynylthio”, “alkynylamino”, “dialkynylamino” and “alkynyl” in R 4a are the same as “alkynyl” in R above. I'll do it.
  • “Amino”, “alkylamino”, “alkenylamino”, and “alkynylamino” according to R 4a may be protected, and the protective group is particularly suitable if it is used as a protective group for an amino group.
  • the protective group is particularly suitable if it is used as a protective group for an amino group.
  • trifluoroacetyl, benzoyl, 4-methoxybenzoyl, acetyl, propionyl, butyryl, isobutyryl, phenylacetyl, phenoxyacetyl, 4-tert-butylphenoxyacetyl, 4-isopropylphenoxyacetyl , (Dimethylamino) methylene can give the power S.
  • Particularly preferred is trifluoroacetyl.
  • solid phase carrier examples include controlled pore glass (CPG) and oxalylated fixed pore glass (see, for example, Alul et al., Nucleic Acids Research, Vol. 19, 15 27 (1991)). Mention may be made of the TentaGel support-aminopolyethylenedaricol derivatized support (see, for example, Wright et al., Tetrahedron Letters, Vol. 34, 3373 (1993)), Poros polystyrene / dibutenebenzene copolymer.
  • CPG controlled pore glass
  • oxalylated fixed pore glass see, for example, Alul et al., Nucleic Acids Research, Vol. 19, 15 27 (1991)
  • TentaGel support-aminopolyethylenedaricol derivatized support see, for example, Wright et al., Tetrahedron Letters, Vol. 34, 3373 (1993)
  • linker examples include 3aminopropyl, succinyl, 2,2′-diethanol sulfonyl, and long chain alkylamino (LCAA).
  • the nucleic acid derivative (17a) and the nucleic acid derivative (17b) are a compound produced according to a known method or a compound supported on a solid phase carrier that can be obtained as a commercial product.
  • Preferred embodiments include, for example, the following general formula: And nucleic acid derivatives represented by (18) and (19).
  • the nucleic acid derivative (19) in which R 4 is the substituent (13) can be produced according to a known method from the phosphoramidite compound (A).
  • Examples of the "acid for eliminating” that can be used in this step include trifluoroacetic acid, dichloroacetic acid, and trichlorodiacetic acid.
  • the “acid” can be used after diluting with a suitable solvent so as to have a concentration of 1 to 5%.
  • the solvent is not particularly limited as long as it does not participate in the reaction, and examples thereof include dichloromethane, toluene, acetonitrile, methanol, water, and any mixed solvent thereof.
  • the amount of the “acid” that can be used in this step is suitably within the range of 0.8 to 100 times the molar ratio of the oligonucleic acid derivative supported on the solid support, preferably Is in the range of 1 to 10 times the amount.
  • the reaction temperature in the above reaction is preferably in the range of 20 ° C to 50 ° C.
  • the reaction time varies depending on the type of (oligo) nucleic acid derivative (11), the type of acid used, the reaction temperature, etc., but it is usually within the range of 1 minute to 1 hour.
  • an oligonucleic acid derivative represented by the following general formula (20) is produced by condensing a nucleic acid monomer compound with an activating agent to the oligonucleic acid derivative (12) produced in step A. It is a process.
  • each B, E, n, each Q, R 1 , each R 4 , T, and each Y 1 are as defined above.
  • ⁇ 1 represents the above general formula (14) Represents a substituent represented by
  • nucleic acid monomer compound examples include a phosphoramidite compound ( ⁇ ) or a nucleic acid derivative represented by the following general formula (21).
  • nucleobase is not particularly limited as long as it is used for nucleic acid synthesis.
  • Examples thereof include pyrimidine bases such as cytosine, uracil, and thymine, purine bases such as adenine and guanine, and modifications thereof.
  • Nucleobase is a nucleobase having an amino group, whether it is protected or not.
  • adenine, guanine, and cytosine preferably have a protected amino group.
  • the “amino group protecting group” is not particularly limited as long as it is used as a nucleic acid protecting group, and specifically includes, for example, benzoyl, 4-methoxybenzoyl, acetyl, propionyl, butyryl. , Isobutyryl, phenylacetyl, phenoxyacetyl, 4 tert butyl phenoxyacetyl, 4 isopropylphenoxycetyl, and (dimethylamino) methylene.
  • the “modified form” of B is a compound in which the nucleobase is substituted with an arbitrary substituent.
  • substituents related to the “modified product” for example, halogen, acyl, alkyl, arylamino quinole, alkoxy, alkoxyalkyl, hydroxy, amino, monoalkylamino, dialkylamino-containing carboxy, and nitro-containing nitro These are substituted at any position;! ⁇ 3.
  • the nucleic acid derivative (21) is a commercially available nucleic acid compound or synthesized according to a method known in the literature (Protocols foroligonucleotiaes and analogs; S. Agrawal, Eds .: Humann Press Inc .: Totowa, NJ, 1993.). List possible nucleic acid compounds.
  • Examples of the "activator” include the same ones as described above.
  • the amount of such “activator” used is suitably within the range of 0.8-fold amount to 100-fold amount, preferably, etc. with respect to the oligonucleic acid derivative supported on the solid phase carrier. It is in the range of double amount to 10 times amount.
  • the reaction solvent is not particularly limited as long as it does not participate in the reaction, and for example, mention may be made of acetonitrile and THF.
  • the reaction temperature in the above reaction is preferably in the range of 20 ° C to 50 ° C.
  • the reaction time varies depending on the type of oligonucleic acid derivative (12), the type of activator used, the reaction temperature, etc., but it is usually within the range of 1 minute to 1 hour.
  • the oligonucleic acid derivative (12) supported on the solid phase carrier is capped.
  • each B, E, n, each Q, each R 4 , T, and each ⁇ 1 are as defined above.
  • R 4 of the nucleic acid monomer unit constituting the (oligo) nucleic acid derivative (12) and (22) is a substituent represented by the above general formula (13)
  • Y 1 represents the above general formula (14). The substituent represented by these is represented.
  • the “capping agent” examples include acetic anhydride, phenoxyacetic anhydride or 4-tert-butylphenoxyacetic anhydride.
  • the capping agent can be used by diluting with a suitable solvent so as to have a concentration of 0.05 to 1M.
  • the solvent is not particularly limited as long as it does not participate in the reaction, and examples thereof include pyridine, lutidine, dichloromethane, acetonitrile, THF, and any mixed solvent thereof.
  • the amount of “capping agent” that can be used in this step is suitably within the range of 0.8 to 100 times the molar ratio of the oligonucleic acid derivative supported on the solid support. Preferably, it is within the range of the same amount to 10 times the amount.
  • reaction accelerator such as 4-dimethylaminopyridine, N-methylimidazole, 2-dimethylaminopyridine.
  • the amount of the “reaction accelerator” used is suitably in the range of 0.01 times to 100 times the molar ratio of the oligonucleic acid derivative supported on the solid phase carrier, and preferably 0. Within the range of 1 to 10 times the amount.
  • the reaction temperature in the above reaction is preferably in the range of 20 ° C to 50 ° C.
  • the reaction time depends on the type of oligonucleic acid derivative (12) and the key used. Although it varies depending on the type of yapping agent, reaction temperature, etc., it is usually within the range of 1 to 30 minutes.
  • an oxidant is allowed to act on the oligonucleic acid derivative (20) produced in Step B to convert the phosphite group (trivalent phosphorus) into a phosphate group or thiophosphate group (pentavalent phosphorus). This is the process of conversion.
  • each B R 4 , T, and each Y 1 are as defined above.
  • R 4 of the nucleic acid monomer unit constituting the oligonucleic acid derivatives (20) and (23) is a substituent represented by the general formula (13)
  • ⁇ 1 is represented by the general formula (14). Represents a substituted group.
  • an “oxidant” in the case of oxidizing phosphorus with oxygen for example, iodine or tert butyl hydroperoxide can be used.
  • the “oxidizing agent” can be used after diluting with a suitable solvent so as to have a concentration of 0.05 to 2M.
  • the solvent used in the reaction is not particularly limited as long as it does not participate in the reaction, but may include pyridine, THF, water, or any mixed solvent thereof.
  • an “oxidant” in the case of oxidizing phosphorus with sulfur for example, sulfur, Beaucage reagent (3H-1, 2, benzodithiol-3-one 1,1-dioxide), 3 amino-1, 2, 4, dithiazole-5-thione (ADTT) can be used.
  • the oxidizing agent can be used by diluting with an appropriate solvent so as to have a concentration of 0.05 to 2M.
  • the solvent used in the reaction is not particularly limited as long as it does not participate in the reaction, and examples thereof include dichloromethane, acetonitrile, pyridine, and any mixed solvent thereof.
  • the amount of the “oxidant” that can be used in this step is suitably in the range of 0.8 to 100 times the molar ratio of the oligonucleic acid derivative supported on the solid phase carrier, Preferably, it is within the range of 10 times to 50 times.
  • the reaction temperature is preferably in the range of 20 ° C to 50 ° C.
  • the reaction time varies depending on the type of the oligonucleic acid derivative (20), the type of oxidizing agent used, the reaction temperature, etc., but it is usually within the range of 1 to 30 minutes.
  • This step is a step in which the oligonucleic acid derivative (23) produced in Step D is cut out from the solid phase carrier, and each nucleobase and the protecting group for each phosphate group are eliminated.
  • R 4 of the nucleic acid monomer unit constituting the oligonucleic acid derivative (23) and (24) is a substituent represented by the above general formula (13), ⁇ 1 or ⁇ is respectively the above general formula.
  • the substituent represented by (14) or ⁇ - is represented.
  • the cleaving step is a reaction in which oligo RNA having a desired chain length is removed from the solid phase carrier and the linker by a cleaving agent, and the cleaving agent is added to the solid carrier carrying the oligo RNA having the desired chain length. Can be implemented.
  • the nucleobase Protecting groups can be removed.
  • Examples of the “cutting agent” include concentrated aqueous ammonia and methylamine.
  • the “cleaving agent” that can be used in this step can be used by diluting with, for example, water, methanol, ethanol, isopropyl alcohol, acetonitrile, THF, or any mixed solvent thereof. Of these, ethanol is preferred.
  • the concentration of ammonium hydroxide in the solution used for deprotection is suitably in the range of 20 wt% to 30 wt%, preferably in the range of 25 wt% to 30 wt%, more preferably It is in the range of 28% to 30% by weight.
  • the amount of “cleaving agent” that can be used in this step is suitably within the range of 0.8 to 100 times the molar ratio of the oligonucleic acid derivative supported on the solid support.
  • the amount is preferably in the range of 10 to 50 times.
  • the reaction temperature is suitably in the range of 15 ° C to 75 ° C, preferably in the range of 15 ° C to 30 ° C, more preferably in the range of 18 ° C to 25 ° C.
  • the deprotection reaction time is suitably in the range of 10 minutes to 30 hours, preferably in the range of 30 minutes to 24 hours, and more preferably in the range of 1 to 4 hours.
  • the oligonucleic acid derivative (24) produced in step E is reacted with a reagent for removing the protecting group of the 2′-position hydroxyl group of each ribose, thereby the following general formula (25). It is the process of manufacturing the represented oligonucleic acid derivative.
  • each B, n, each Q, each Y, each R, Each R 4 and Z has the same meaning as described above, except that R 4 of the nucleic acid monomer unit constituting the oligonucleic acid derivatives (24) and (25) is above.
  • Y represents O—.
  • Examples of the “reagent for removing the protecting group for the hydroxyl group at the 2 ′ position” include TBAF and triethylamine trihydrofluoride.
  • the amount of the “reagent for removing the protecting group of the hydroxyl group at the 2′-position” is suitably within the range of from 1 to 500 times in molar ratio to the protecting group to be removed, preferably It is within the range of 5 times to 10 times.
  • the solvent to be used is not particularly limited as long as it does not participate in the reaction, and examples thereof include THF, N-methylpyrrolidone, pyridine, dimethyl sulfoxide, and any mixed solvent thereof.
  • the amount of the reaction solvent used is suitably within the range of 0.8 to 100 times the molar ratio with respect to the “reagent for removing the protecting group of the hydroxyl group at the 2′-position”, preferably, etc. Within the range of double to 10 times.
  • the reaction temperature is preferably in the range of 20 ° C to 80 ° C.
  • the reaction time varies depending on the type of oligonucleic acid derivative (24), the type of reagent that removes the protecting group of the 2'-position hydroxyl group used, the reaction temperature, etc. It is.
  • a by-product in this step for example, nitroalkane, anolenoleamine, amidine, thiol, thiol derivative or any mixture thereof as a scavenger for talaronitrile.
  • nitroalkane examples include a linear nitroalkane having 1 to 6 carbon atoms. Specifically, for example, it is possible to mention nitromethane.
  • alkylamine examples include linear alkylamines having 1 to 6 carbon atoms.
  • Examples of “amidine” include benzamidine and formamidine.
  • Examples of the “thiol” include a straight chain thiol having 1 to 6 carbon atoms. Specifically, for example, methanethionole, ethanethiol, 1 propanethiol, 1 butanethionole, 1 pentanethiol, 1-hexanethiol can be mentioned.
  • Examples of the “thiol derivative” include an alcohol or an ether having the same or different linear alkyl thiol group having 1 to 6 carbon atoms.
  • 2-mercaptoethanol 4 mercapto 1-butanol, 6-mercapto 1 monohexanol, mercapto methyl ether, 2 mercaptoethyl ether, 3 mercaptopropyl ether
  • Examples include 4-mercaftoptyl ether, 5-mercaft pentyl ether, and 6-mercaft hexyl ether.
  • the amount of “acrylonitrile scavenger” used depends on the type of oligonucleic acid derivative (24), etc., but the 2′-position hydroxyl group of each ribose of the oligonucleic acid derivative (24) is protected.
  • the range of 0.8 to 500 times the molar amount of cyanoethoxymethyl is appropriate, preferably 1 to 10 times.
  • This step is a step of removing the hydroxyl group at the 5 ′ position by allowing an acid to act on the oligonucleic acid derivative (25) produced in Step F.
  • each B, n, each Q, each Y, each Z is as defined above.
  • Y represents o_.
  • Examples of the “acid” that can be used in this step include trichlorodiacetic acid, dichloroacetic acid, and acetic acid.
  • the “acid” that can be used in this step can also be diluted with an appropriate solvent.
  • the solvent is not particularly limited as long as it does not participate in the reaction, and examples thereof include dichloromethane, acetonitrile, water, a buffer solution having a pH of 2 to 5 or any mixed solvent thereof. wear.
  • Examples of the buffer solution include an acetate buffer solution.
  • the amount of “acid” used in this step is suitably within the range of 0.8 to 100 times the molar ratio of the oligonucleic acid derivative supported on the solid phase carrier, Preferably, it is within the range of the same amount to 10 times the amount.
  • the reaction temperature in the above reaction is preferably in the range of 20 ° C to 50 ° C.
  • the reaction time varies depending on the type of oligonucleic acid derivative (25), the type of acid used, the reaction temperature, etc., but it is usually within the range of 1 minute to 5 hours.
  • This step is a step of separating and purifying the oligo RNA (B) produced in Step G.
  • the “separation and purification step” refers to usual separation and purification means from the above reaction mixture, such as extraction, concentration, neutralization, filtration, centrifugation, recrystallization, C-force C reverse phase column chromatography, C
  • the “elution solvent” for example, acetonitrile, methanol, ethanol, isopropyl alcohol, water alone or a mixed solvent of any ratio can be mentioned.
  • sodium phosphate, potassium phosphate, sodium chloride, potassium chloride, ammonium acetate, triethylammonium acetate, sodium acetate, acetic acid lithium, tris hydrochloric acid, ethylenediamine tetraacetic acid can be added as lmM to It can also be added at a concentration in the range of 2M and the pH of the solution can be adjusted in the range of 1-9.
  • Step A to Step D By repeating the operations of Step A to Step D, it is possible to produce an oligo RNA (B) having a desired chain length.
  • a nucleic acid derivative (17a) in which R 4a is a substituent (13), a nucleic acid derivative (17a) in which R 4 H or acyloxy is used, or R A nucleic acid derivative (17b) or the like in which 2 is acyl can be used.
  • nucleic acid derivative (17a) in which R 4 H or acyloxy is used as a starting material or a nucleic acid derivative (17b) in which R 2 is acyl is used, at least one of the nucleic acid monomer compounds of the present invention It is necessary to use loamidite compounds.
  • the operation of the process G is performed before the operation of the process E, and then the process Oligo RNA (B) can also be isolated and purified by performing the operation of E and then the operations of Step F and Step H.
  • reaction mixture was filtered at room temperature, diluted with dichloromethane, washed with aqueous sodium thiosulfate solution and saturated aqueous sodium bicarbonate solution, and the solvent was distilled off.
  • the resulting reaction mixture was dissolved in ethyl acetate. And with water Wash with sodium thiosulfate aqueous solution and saturated saline, After drying over anhydrous sodium sulfate, the solvent was distilled off to obtain 3 ', 5'-O (tetraisopropyldisiloxane 1,3 diyl) 2' O (2 cyanoethoxymethyl) uridine (64 ⁇ 2g; Yield quantitative)
  • Step 2 N A —Acetenolay 2′— O— (2-Cyanethoxymethinole) Cytidine preparation
  • N 4 acetylyl 3 ', 5'-O- (tetraisopropyldisiloxane 1,3-diinole) 2' O (2 cyanoethoxymethinole) cytidine 500 mg (0.819 mmol) obtained in step 1 was added to 2.5 mL THF and methanol After dissolving in 2.5 mL of a mixed solvent, 150 mg of ammonium fluoride (4. lOmmol) was added and reacted at 50 ° C for 4 hours. After completion of the reaction, the mixture was diluted with acetonitrile and filtered, and the solvent was distilled off. The resulting mixture was purified by silica gel column chromatography to obtain the target compound (210 mg; yield 70%).
  • N-dosuccinimide (1.09 mmol) and 280 mg of silver trifluoromethanesulfonate (1.09 mmol) were suspended in 8 mL of dichloromethane, and molecular sieves 4 A was added and dried.
  • 400 mg of N 6 acetyl 1, 3, 5, 1 O— (tetraisopropinolesiloxane 1,3 dinole) adenosine (0.73 mmol) and 145 mg of methinoretic methyl 2 cyanoethyl ether (1 llmmol) was dissolved in 4 mL of dichloromethane and added under ice cooling. The mixture was stirred for 3 hours.
  • reaction mixture is diluted with dichloromethane, washed with an aqueous sodium thiosulfate solution and a saturated aqueous sodium bicarbonate solution, dried over anhydrous magnesium sulfate, and the solvent is distilled off.
  • the resulting mixture is subjected to silica gel column chromatography. N 6 acetyl 1-3 ', 5' -0- (tetraisopropyldisiloxane -1, 3 diyl) -2 '-0- (2 cyanoethoxymethyl) adenosine (20 lmg; yield) Rate 45%).
  • Step 2 N £ acetyl- 3 ', 5'— ⁇ — (Tetraisopropyldisiloxane 1,3 Diyl) 2′— ⁇ — (2-Cyanethoxymethinole) Adenosine
  • reaction mixture was neutralized by adding triethylamine with cooling, diluted with dichloromethane, washed with aqueous sodium thiosulfate solution and saturated aqueous sodium hydrogen carbonate solution, and the solvent was distilled off.
  • the obtained reaction mixture was dissolved in ethyl acetate, washed with water and saturated brine, dried over anhydrous sodium sulfate, evaporated, recrystallized using hexane and ethyl acetate, and silica gel column.
  • Step 3 N £ —Acetinole 2′— O— (2 Cyanethoxymethyl) adenosine
  • N 2 phenoxycetyl-3,5,1 O— (tetraisopropylpyrdisiloxane-1,3 dinole) guanosine (3 ⁇ Ommol) is dissolved in 16 mL of THF to obtain 0.99 g Of methinoretiomethinole 2 Cyanethinoreethenole (7.6 mmol), 1. Og molecular sieves 4A were added and stirred at 45 ° C. for 10 minutes.
  • reaction solution was added to a mixed solvent of a saturated aqueous sodium bicarbonate solution and a saturated aqueous sodium thiosulfate solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine. It was dried over magnesium sulfate and concentrated under reduced pressure to obtain a crude product.
  • reaction solution was added to a mixed solvent of a saturated aqueous sodium bicarbonate solution and a saturated aqueous sodium thiosulfate solution, and the mixture was extracted with ethyl acetate. The collected organic layer was washed with saturated saline. It was. The extract was dried over magnesium sulfate and concentrated under reduced pressure to obtain a crude product.
  • N 2 Phenoxyacetyl- 2′-0- (2 cyanoethoxymethyl) guanosine 52.8 g of N 2 phenoxycetyl mono-3 ′, 5, O- (tetraisopropyldisiloxane-1 , 3 Ginino) guanosine (80 mmol) was dissolved in 180 mL of THF and 0 in an argon atmosphere.
  • C ft Zenshina et al. 7 ⁇ 69 g methanesunorephonic acid (80 mmol), 1. 20 g trifnore rosenomethenorephonic acid (8 mmol), 203.
  • Step 3 '.5' —O— (Tetraisopropyldisiloxane 1,3-diyl) -5-methyluridine
  • a ribonucleic acid derivative (3) useful as an intermediate for producing various ribonucleic acid derivatives in a large amount at a low cost can be produced.
  • the reaction can be carried out at a higher concentration than in the conventional method, the amount of reaction solvent used can be reduced.
  • RNA probes for gene analysis RNA pharmaceutical materials (antigenic RNA, ribozyme, gene expression control using RNAi), artificial enzymes, oligo RNA (B) useful as aptamers are used for the production.
  • the phosphoramidite compound (A) that can be produced can be produced at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Description

明 細 書
核酸保護基の導入方法
技術分野
本発明は、 3'位水酸基と 5'位水酸基がケィ素保護基で保護されているリボ核酸誘 導体にお!/、て、リボースの 2'位水酸基に下記置換基 (I)を導入する方法に関するも のである。
[化 1コ
( I )
式 (I)中、 WG1は、電子吸引性基を表す。
WG1に係る「電子吸引性基」としては、例えば、シァ入ニトロ、アルキルスルホニル 、ァリールスルホニル、ノ、ロゲンを挙げること力 Sできる。なかでも、シァノが好ましい。
WG1に係る「アルキルスルホニル」の「アルキル」部分としては、例えば、直鎖状又 は分枝鎖状の炭素数 1〜5のアルキルを挙げることができる。具体的には、例えば、メ チノレ、ェチル、 n プロピル、イソプロピル、 n ブチル、イソブチル、 sec ブチル、 t ert ブチル、 n ペンチル、イソペンチル、ネオペンチル、 tert ペンチルを挙げる こと力 Sでさる。
WG1に係る「ァリールスルホニル」の「ァリール」部分としては、例えば、炭素数 6〜1 2のァリールを挙げることができる。具体的には、例えば、フエニル、 1—ナフチル、 2 ナフチル、ビフエニルを挙げることができる。当該ァリールは置換されていてもよぐ 力、かる置換基としては、例えば、ハロゲン、アルキル、アルコキシ、シァノ、ニトロを挙 げることができ、これらが任意の位置に 1〜3個置換されていてもよい。
WG1に係る「ハロゲン」としては、例えば、フッ素、塩素、臭素、ヨウ素を挙げること力 S できる。
WG1に係る「ァリール」の置換基である「ノヽロゲン」および「アルキル」としては、前記 「ハロゲン」と同じものを挙げること力 Sできる。 WG1に係る「ァリール」の置換基である「 アルコキシ」としては、例えば、直鎖状又は分枝鎖状の炭素数 1〜4のアルコキシを挙 げること力 Sできる。具体的には、例えば、メトキシ、エトキシ、 n—プロポキシ、イソプロ ポキシ、 n ブトキシ、イソブトキシ、 sec ブトキシ、 tert ブトキシを挙げることができ る。なかでも炭素数 1〜3の該アルコキシが好ましい。
背景技術
オリゴ RNAは、遺伝子解析の RNAプローブ、 RNA医薬品素材(アンチセンス RN A、リボザィム、 RNAiを利用した遺伝子発現制御)、人工酵素、アブタマ一として有 用である。このオリゴ RNAの製造過程で使用される試薬として、リボースの 2'位水酸 基が中性条件において脱離可能な 2—シァノエトキシメチル (CEM)基で置換されて V、るホスホロアミダイト化合物が知られて!/、る (非特許文献 1、特許文献 1)。
該ホスホロアミダイト化合物を製造する工程として、リボースの 2'位の水酸基に保護 基として CEMを導入する工程がある力 従来、当該工程は、リボースの 3'位と 5'位 の水酸基をケィ素保護基 (例えば、テトライソプロピルジシロキサン 1 , 3—ジィル) で保護されたリボ核酸誘導体 (原料化合物)に、トリフルォロメタンスルホン酸やトリフ ルォロメタンスルホン酸銀等の酸存在下、アルキル化試薬としてメチルチオメチル 2 ーシァノエチルエーテルを、アルキル化試薬の硫黄原子をハロゲン化するための試 薬(酸化剤)として N ョードスクシンイミド(NIS)や N ブロモスクシンイミド(NBS)を 作用させて実施されてレ、た (特許文献 1 )。
上記のようなアルキル化試薬の硫黄原子をハロゲン化するための試薬、及び上記 のような酸、即ち、 NIS、 NBS、トリフルォロメタンスルホン酸、トリフルォロメタンスルホ ン酸銀は、非常に反応性の高い化合物であるので、反応温度を 0°C付近に下げても なお、原料化合物であるリボ核酸誘導体の核酸塩基もハロゲン化されてしまうおそれ がある。したがって、当該工程では、核酸塩基のハロゲン化を防ぐべく 50°C〜― 4 0°Cという極めて低い温度条件において実施する必要がある。但し、原料化合物のリ ボ核酸誘導体が 100mg〜2g程度の小量スケールの場合には、反応温度が 0°C付 近であっても、きれいに反応が進行する場合がある。
また、 NISや NBSを使用した場合には、スクシンイミド由来の副生成物を生じる。当 該副生成物は抽出操作により除去することは困難であり、通常、大量に精製するの に不向きなカラムクロマトグラフィーを使用して除去する必要がある。 さらに、 NIS、 NBS、トリフルォロメタンスルホン酸、トリフルォロメタンスルホン酸銀 は、非常に高価な試薬であり、経済的に不利である。
このような NISや NBS等を用いる従来の製法は、上記ホスホロアミダイト化合物を 大量に生産するには適さない。
特許文献 1:国際公報 WO2006/022323 A1パンフレット
非特許文献 1 :大木ら, ORGANIC LETTERS, Vol. 7, 3477 (2005)
発明の開示
発明が解決しょうとする課題
[0003] 本発明の目的は、主として、 3'位水酸基と 5'位水酸基がケィ素保護基で保護され ているリボ核酸誘導体において、リボースの 2'位水酸基に下記置換基 (I) (例えば、 CEM基)を安価に簡便に導入する方法を提供することにある。
[化 2]
( I ) 式 (I)中、 WG1は、前記と同義である。
課題を解決するための手段
[0004] 本発明者らは、上記目的を達成するために、鋭意検討した結果、上記課題を解決 し得ることを見出し、本発明を完成するに至った。
[0005] 本発明として、例えば、次の一般式(1)で表されるリボ核酸誘導体に次の一般式(2 )で表されるモノチオアセタール化合物を反応させて次の一般式(3)で表されるリボ 核酸誘導体を製造する方法において、酸存在下、モノチオアセタール化合物(2)の 硫黄原子をハロゲン化するための試薬としてヨウ素を用いることを特徴とする、次の一 般式 (3)で表されるリボ核酸誘導体の製造方法を挙げることができる。
[化 3]
Figure imgf000006_0001
式(1)、(2)及び(3)中、 Bzは、保護基を有していてもよい核酸塩基を表し、 WG1 は、前記と同義であり、 R3は、アルキル又はァリールを表し、 Aは、次の一般式 (4a) 又は(4b)で表されるケィ素置換基を表す。
[化 4コ
R6 R6 R6
— S卜 0-Sト Si—
R6 R6 R6
( 4 a ) ( 4 b )
式(4a)及び(4b)中、 R6は、アルキルを表す。
Bzに係る「核酸塩基」としては、核酸の合成に使用されるものであれば特に制限さ れず、例えば、シトシン、ゥラシル等のピリミジン塩基、アデニン、グァニン等のプリン 塩基又はそれらの修飾体を挙げることができる。
Bzに係る「核酸塩基」は、保護されていてもよぐなかでもアミノ基を有する核酸塩 基、例えば、アデニン、グァニン、シトシンは、該ァミノ基が保護されているのが好まし い。力、かる「ァミノ基の保護基」としては、核酸の保護基として使用されるものであれば 特に制限されず、具体的には、例えば、ベンゾィル、 4ーメトキシベンゾィル、ァセチ ノレ、プロピオニル、ブチリル、イソブチリル、フエ二ルァセチル、フエノキシァセチル、 4 — tert ブチルフエノキシァセチル、 4 イソプロピルフエノキシァセチル、 (ジメチノレ ァミノ)メチレンを挙げることができる。
Bzの「修飾体」とは、核酸塩基が任意の置換基で置換されているものであり、かかる 置換基としては、例えば、ハロゲン、ァシル、アルキル、ァリーノレァノレキノレ、アルコキ シ、アルコキシアルキル、ヒドロキシ、ァミノ、モノアルキルァミノ、ジァノレキノレアミノ、力 ルポキシ、シァ入ニトロを挙げること力 Sでき、これらが任意の位置に 1〜3個置換され ているものをいう。
Bzの「修飾体」に係る「ノ、ロゲン」としては、例えば、フッ素、塩素、臭素、ヨウ素を挙 げること力 Sでさる。
Bzの「修飾体」に係る「ァシル」としては、例えば、直鎖状又は分枝鎖状の炭素数 1 〜6のアルカノィル、炭素数 7〜; 13のァロイルを挙げることができる。具体的には、例 えば、ホノレミノレ、ァセチル、 n—プロピオニル、イソプロピオニル、 n—ブチリル、イソブ チリノレ、 tert—ブチリル、ノ レリノレ、へキサノィル、ベンゾィル、ナフトイル、レブリニノレ を挙げること力 Sでさる。
Bzの「修飾体」に係る「アルキル」としては、例えば、直鎖状又は分枝鎖状の炭素数 ;!〜 5のアルキルを挙げることができる。具体的には、例えば、メチル、ェチル、 n—プ ロピノレ、イソプロピル、 n—ブチル、イソブチル、 sec—ブチル、 tert—ブチル、 n—ぺ ンチル、イソペンチル、ネオペンチル、 tert—ペンチルを挙げることができる。当該ァ ルキルは置換されていてもよぐ力、かる置換基としては、例えば、ハロゲン、アルキル 、アルコキシ、シァ入ニトロを挙げること力 Sでき、これらが任意の位置に 1〜3個置換 されていてもよい。
Bzの「修飾体」に係る「ァリールアルキノレ」、「アルコキシアルキノレ」、「モノアルキル ァミノ」、「ジアルキルァミノ」及び「アルキルスルホニル」の「アルキル」部分は、上記の 「アルキル」と同じものを挙げること力 Sできる。
Bzの「修飾体」に係る「アルコキシ」としては、例えば、直鎖状又は分枝鎖状の炭素 数 1〜4のアルコキシを挙げることができる。具体的には、例えば、メトキシ、エトキシ、 n—プロポキシ、イソプロポキシ、 n—ブトキシ、イソブトキシ、 sec—ブトキシ、 tert—ブ トキシを挙げること力 Sできる。なかでも炭素数 1〜3の該アルコキシが好ましぐとりわけ メトキシが好ましい。
Bzの「修飾体」に係る「アルコキシアルキル」の「アルコキシ」部分は、上記の「アルコ キシ」と同じあのを挙げること力 Sでさる。
Bzの「修飾体」に係る「ァリールアルキル」の「ァリール」としては、例えば、炭素数 6 〜; 12のァリールを挙げることができる。具体的には、例えば、フエニル、 1—ナフチノレ 、 2—ナフチル、ビフエニルを挙げることができる。当該ァリールは置換されていてもよ ぐ力、かる置換基としては、例えば、ハロゲン、アルキル、アルコキシ、シァノ、ニトロを 挙げることができ、これらが任意の位置に 1〜3個置換されていてもよい。 Bzの「修飾体」に係る「アルキル」、「ァリール」の置換基である「ノヽロゲン」、「アルキ ノレ」及び「アルコキシ」としては、各々上記と同じものを挙げることができる。
に係る「アルキル」、「ァリール」としては、前記 Bzの修飾体に係る「アルキル」、「 ァリーノレ」と同じものを挙げることカできる。
モノチオアセタール化合物(11)の具体例としては、 2—シァノエチル メチルチオメ チルエーテルを挙げることができる。
R6に係る「アルキル」としては、例えば、直鎖状又は分枝鎖状の炭素数 1〜5のアル キノレを挙げること力 Sできる。具体的には、例えば、メチル、ェチル、 n—プロピル、イソ プロピノレ、 n—ブチル、イソブチル、 sec—ブチル、 tert—ブチル、 n—ペンチル、イソ ペンチル、ネオペンチル、 tert—ペンチルを挙げることができる。
また、本発明として、次の一般式(1)で表されるリボ核酸誘導体に次の一般式(2) で表されるモノチオアセタール化合物を反応させて次の一般式(3)で表されるリボ核 酸誘導体を製造する方法において、酸存在下、モノチオアセタール化合物(2)の硫 黄原子をハロゲン化するための試薬としてヨウ素を用いることによって、次の一般式( 3)で表されるリボ核酸誘導体を製造する工程を含む、下記一般式 (A)で表されるホ スホロアミダイト化合物(以下、「ホスホロアミダイト化合物 (A)」という。)の製造方法も 挙げること力 Sでさる。
[化 5]
Figure imgf000008_0001
式(1)、(2)及び(3)中、 A、 Bz、R3、 WG1は、前記と同義である。
[化 6]
Figure imgf000009_0001
(A)
式 (A)中、 Bz、 WG1は、前記と同義である。 R2a、 R2bは、同一若しくは異なって、ァ ルキルを表す力、、又は、 R2a、 R2bが隣接する窒素原子と一緒になつて形成する、 5〜 6員の飽和アミノ環基を表す。力、かる飽和アミノ環基は、窒素原子の他に環構成原子 として酸素原子又は硫黄原子を 1個有していてもよい。 WG2は、同一又は異なって、 電子吸引性基を表し、 R1は、次の一般式(5)で表される置換基を表す。
[化 7]
Figure imgf000009_0002
( 5 )
式(5)中、 RU、 R12、 R13は、同一又は異なって、水素又はアルコキシを表す。
Ru、 R12、 R13に係る「アルコキシ」としては、前記 Bzの修飾体に係る「アルコキシ」と 同じものを挙げること力 Sできる。
R2a、 R2bに係る「アルキル」としては、前記 Bzの修飾体に係る「アルキル」と同じもの を挙げること力 Sでさる。
R2a、 R2bに係る「5〜6員の飽和アミノ環基」としては、例えば、ピロリジン— 1—ィル、 ピぺリジン一 1—ィル、モルホリン 4—ィル又はチオモルホリン一 4—ィルを挙げるこ と力 Sできる。
WG2に係る「電子吸引性基」としては、前記 WG1に係る「電子吸引性基」と同じもの を挙げること力 Sでさる。
ホスホロアミダイト化合物 (A)は、リボースの 2'位水酸基が下記置換基(I)で保護さ れているホスホロアミダイト化合物である。また、 2'位の水酸基に導入された基が直 鎖状の置換基であり、 3'位の水酸基に結合するリン原子の周りにおける立体が混み 合っていないため、従来力も使用されているホスホロアミダイト化合物と比較して、オリ ゴ RNAを合成する際、非常に短時間に縮合反応が進行し、縮合収率がよいという特 徴を有する。ホスホロアミダイト化合物 (A)を使用することにより、オリゴ DNAの製造と ほぼ同様の手法により、高純度のオリゴ RNAの製造することができる。
[化 8コ
Figure imgf000010_0001
( I ) 式 (I)中、 WG1は、前記と同義である。
[0009] ここで、本発明において「オリゴ RNA」とは、少なくとも 1つはオリゴ核酸の構成モノ マーとしてリボ核酸 (RNA)を含有するオリゴ核酸をいう。また、「オリゴ DNA」とは、ォ リゴ核酸の構成モノマーとしてリボ核酸 (RNA)を含有しないオリゴ核酸をいう。
[0010] 以下、本発明を詳細に説明する。
発明を実施するための最良の形態
[0011] 以下に示す製法において、原料が反応に影響を及ぼす置換基 (例えば、ヒドロキシ
、アミ入カルボキシ)を有する場合は、原料をあらかじめ公知の方法に従い、適当な 保護基で保護した後に反応を行う。保護基は、最終的に、接触還元、アルカリ処理、 酸処理などの公知の方法に従い保護基を脱離することができる。
[0012] I.リボ核酸誘導体(3)の製法
本製法は、酸及びヨウ素の存在下で、次の一般式(1)で表されるリボ核酸誘導体と 次の一般式(2)で表されるモノチオアセタール化合物とを反応させることによって実 施すること力 Sでさる。
[化 9]
Figure imgf000010_0002
式(1)、 (2)及び(3)中、 A、 Bz、R3、 WG1は、前記と同義である。
モノチオアセタール化合物(2)は、公知の方法(例えば、国際公開公報 WO2006 /022323A1パンフレット)により製造することができる。
本製法は、酸存在下、市販品として入手可能な又は文献記載の方法に従い合成 可能なリボ核酸誘導体(1)に、モノチオアセタール化合物(2)とヨウ素とを作用させる ことにより実施すること力 Sできる。本製法で使用する「ヨウ素」の量は、リボ核酸誘導体 (1)に対して、モル比で 0. 8倍量〜 20倍量の範囲内が適当であり、好ましくは等倍 量〜 10倍量の範囲内である。反応温度は、—20°C〜20°Cの範囲内が適当であり、 好ましくは、 10°C〜; 10°Cの範囲内であり、より好ましくは、 5°C〜5°Cの範囲内で ある。反応時間は、使用する原料の種類、反応温度等によって異なるが、通常 5分間 〜5時間の範囲内が適当である。本製法で使用しうる「モノチオアセタール化合物(2 )」の使用量は、リボ核酸誘導体(1)に対して、モル比で 0. 8倍量〜 5倍量の範囲内 が適当であり、好ましくは等倍量〜 3倍量の範囲内である。酸としては、リボースの 2' 位へのアルキル化反応を活性化することができ、また核酸塩基の部分と塩を形成す ることができる程度の酸性度を有する有機酸であれば特に限定されない。例えば、こ のような酸として、メタンスルホン酸、トリフルォロメタンスルホン酸又はそれらの混合 物を挙げること力 Sできる。特に、メタンスルホン酸又はトリフルォロメタンスルホン酸とメ タンスルホン酸との混合酸が好ましい。かかる「酸」の使用量は、リボ核酸誘導体(1) に対して、モル比で 0. 01倍量〜 10倍量の範囲内が適当であり、好ましくは 0. 1倍 量〜 5倍量の範囲内である。トリフルォロメタンスルホン酸とメタンスルホン酸との混合 酸の場合、トリフルォロメタンスルホン酸カ^タンスルホン酸に対して、モル比で 0. 01 倍量〜 0. 9倍量の範囲内が適当であり、好ましくは 0. 02倍量〜 0. 5倍量の範囲内 、より好ましくは、 0. 05倍量〜 0. 2倍量の範囲内である。使用する溶媒は、反応に 関与しなければ特に限定されないが、例えば、ジクロロメタン、クロ口ホルム、四塩化 炭素、 1 , 2—ジクロロェタン、ベンゼン、トルエン、キシレン、テトラヒドロフラン(以下、 「THF」という。)、ァセトニトリル、 N, N ジメチルホルムアミド又はこれら任意の混合 溶媒を挙げること力できる。特に、 THFが好ましい。
II.ホスホロアミダイト化合物 (A)の製法 ホスホロアミダイト化合物 (A)は、公知化合物又は容易に製造可能な中間体から、 例えば、次の工程 a〜工程 dを実施することにより製造することができる。
以下、詳細に説明する。
(1)工程 a :
本工程は、前述 Iの製法と同じものである。
(2)工程 b :
本工程は、工程 aにおいて製造されるリボ核酸誘導体(3)を適当な溶媒に溶解し、 ケィ素置換基を脱離するための試薬を作用させることによって、次の一般式(7)で表 されるリボ核酸誘導体を製造する工程である。
[化 10]
Figure imgf000012_0001
( 3 ) ( 7 ) 式(3)及び(7)中、 A、 Bz、 WG1は、前記と同義である。
本工程で使用しうる「ケィ素置換基を脱離するための試薬」としては、
ンモニゥムフロリド、ァミンとフッ化水素酸との塩又は適当な溶媒中においてァミンとフ ッ化水素酸とを任意の比で混合したものを挙げることができる。
また、場合によっては、ァミンとフッ化水素酸との塩又は適当な溶媒中においてアミ ンとフッ化水素酸とを任意の比で混合したものに、さらに適当な酸を添加した混合試 薬を使用して本工程を実施することもできる。その時に使用することができる酸として は、例えば、酢酸、塩酸、硫酸を挙げること力 Sできる。力、かる酸の使用量としては、アミ ンに対して、モル比で 0. 01倍量〜 10倍量の範囲内が適当であり、好ましくは 0. 1倍 量〜 5倍量の範囲内である。
使用する溶媒としては、例えば、 THF、ァセトニトリル、メタノール、イソプロパール、 トルエン、ジメチルスルホキシド、 N, N—ジメチルホルムアミド又はこれら任意の混合 溶媒を挙げること力できる。特に、 THF、メタノールが好ましい。
リボ核酸誘導体(3)の種類、用いるケィ素置換基を脱離するための試薬、使用する 溶媒等によって異なるが、本工程で使用しうる「ケィ素置換基を脱離するための試薬 」の使用量としては、リボ核酸誘導体(3)に対して、モル比で等倍量〜 10倍量の範囲 内が適当であり、好ましくは 1. 2倍量〜 1. 5倍量の範囲内である。反応温度は、 0°C 〜80°Cの範囲内が適当である。反応時間は、リボ核酸誘導体の種類、用いるケィ素 置換基を脱離するための試薬、使用する溶媒等によって異なるが、反応温度等によ つて異なるが、通常 30分間〜 10時間の範囲内が適当である。
反応終了後、そのまま又は反応混合物に適量の水を加えて冷却することにより、リ ボ核酸誘導体(7)を析出物として得ることができる。添加する水の使用量としては、使 用する溶媒に対して、容量比で 0. 05倍量〜 5倍量の範囲内が適当であり、好ましく は 0. 06倍量〜等倍量の範囲内であり、より好ましくは 0. 07倍量〜 0. 1倍量の範囲 内である。
本工程で使用しうる「ァミンとフッ化水素酸との塩」としては、具体的には、アンモニ ゥムフロリド、トリメチルアミンヒドロフロリド、トリメチルアミンジヒドロフロリド、トリメチルァ ミントリスヒドロフロリド、トリメチルアミンテトラヒドロフロリド、トリメチルァミンペンタヒドロ フロリド、トリメチルァミンへキサヒドロフロリド、トリェチルアミンヒドロフロリド、トリェチル アミンジヒドロフロリド、トリエチノレアミントリスヒドロフロリド、トリェチルアミンテトラヒドロフ 口リド、トリエチノレアミン 26ヒドロフロリド、キヌタリジントリスヒドロフロリド、トリエチレンジ アミンテトラヒドロフロリド等を挙げることができる(例えば、 Journal Molecular Str ucture, 193, 247 (1989)、 Pol. J. Chem, 67 (2) , 281 (1993)、 Chem. Europ . J. , 4 (6) , 1043 (1998)、 J. Fluorine. Chem. , 1 18 (1— 2) , 123, (2002)を 参照)。とりわけ、アンモニゥムフロリド、トリェチルァミントリスヒドロフロリドが好ましい。 また、本工程で使用しうる「適当な溶媒中においてァミンとフッ化水素酸とを任意の 比で混合したもの」としては、例えば、アンモニア、トリエチルァミン、トリェチルァミン、 キヌタリジン、トリエチレンジァミン等のァミンとフッ化水素酸とを、適当な溶媒中(例え ば、 THF、ァセトニトリノレ、メタノーノレ、イソプロパール、トノレエン)、例えば、 1:;!〜 1: 30 (ァミン:フッ化水素酸)の混合比(モル比)で混合したものを挙げること力 Sできる。
(3)工程 c:
本工程は、工程 bにおいて製造されるリボ核酸誘導体(7)に、公知の方法に従い、 次の一般式(8)で表される I^X3を作用させ、リボ核酸案誘導体(7)の 5'位の水酸基 に酸性条件下において脱離する保護基 (R1)を導入することによって、次の一般式( 9)で表されるリボ核酸誘導体を製造する工程である。
[化 11]
Figure imgf000014_0001
( 7 ) ( 9 )
式(7)、(8)及び(9)中、 Bz、
Figure imgf000014_0002
WG1は、前記と同義である。 X3は、ハロゲンを表 す。
X3に係る「ノヽロゲン」としては、前記 Bzの修飾体に係る「ノヽロゲン」と同じものを挙げ ること力 Sでさる。
Ι^Χ3 (8)の使用量は、リボ核酸誘導体(7)に対して、モル比で 0. 8倍量〜 20倍量 の範囲内が適当であり、好ましくは等倍量〜 10倍量の範囲内である。使用する溶媒 は、反応に関与しなければ特に限定されないが、例えば、ァセトニトリル、 THF等を 挙げること力 Sできる。「塩基」としては、ピリジン、 2, 6—ジメチルビリジン、 2, 4, 6 -トリ メチノレピリジン、 Ν—メチノレイミダゾーノレ、トリエチノレアミン、トリブチノレアミン、 Ν, Ν- 有機塩基を挙げることができる。かかる「塩基」の使用量は、リボ核酸誘導体(7)に対 して、モル比で 0. 8倍量〜 20倍量の範囲内が適当であり、好ましくは等倍量〜 10倍 量の範囲内である。反応温度は、 0°C〜120°Cの範囲内が適当である。反応時間は 、使用する原料の種類、反応温度等によって異なるが、通常 30分間〜 24時間の範 囲内が適当である。
(4)工程 d :
本工程は、工程 cにおいて製造されるリボ核酸誘導体(9)にホスホロアミダイト化試 薬と、必要に応じて活性化剤とを作用させ、 3'位の水酸基がホスホロアミダイト化させ ることによって、ホスホロアミダイト化合物 (A)を製造する工程である。
[化 12] Bz
ホスホロアミダイト化試薬
へ 、 O
WG2 P
WG
R2a-N
( 9 )
(A) 式(9)及び (A)中、 Bz、
Figure imgf000015_0001
WG2は、前記と同義である。
「ホスホロアミダイト化試薬」としては、例えば、次の一般式(10a)、(10b)で表され o
る化合物を挙げることができる。
a
[化 13] 2
b
N.R2b
WG'
O人 N'R2b
R' 2a
( 1 0 a ) ( 1 0 b )
ひ R- 式(10a)及び(10b)中、 R2a、 R2b、 WG2は、前記と同義である。 X1は、ハロゲンを表 す。
X1に係る「ノヽロゲン」としては、前記 Bzの修飾体に係る「ノヽロゲン」と同じものを挙げ ること力 Sでさる。
使用する溶媒は、反応に関与しなければ特に限定されないが、例えば、ァセトニトリ ノレ、 THF等を挙げることカできる。
本工程で使用しうる「ホスホロアミダイト化試薬」の使用量は、リボ核酸誘導体(9)に 対して、モル比で 0. 8倍量〜 20倍量の範囲内が適当であり、好ましくは等倍量〜 10 倍量の範囲内である。「活性化剤」としては、例えば、 1H—テトラゾール、 5—ェチノレ チォテトラゾーノレ、 4, 5—ジクロ口イミダゾーノレ、 4, 5—ジシァノイミダゾーノレ、ベンゾ トリァゾールトリフラート、イミダゾーノレトリフラート、ピリジニゥムトリフラート、 N, N—ジ イソプロピルェチルァミン、 2, 4, 6—コリジン/ N—メチルイミダゾールを挙げること ができる。かかる「活性化剤」の使用量は、リボ核酸誘導体(9)に対して、モル比で 0 . 8倍量〜 20倍量の範囲内が適当であり、好ましくは等倍量〜 10倍量の範囲内であ る。反応温度は、 0°C〜120°Cの範囲内が適当である。反応時間は、使用する原料 の種類、反応温度等によって異なる力 通常 30分間〜 24時間の範囲内が適当であ このようにして、製造されるホスホロアミダイト化合物 (A)は、それ自体公知の手段、 例えば、濃縮、液性変換、転溶、溶媒抽出、結晶化、再結晶、分留、クロマトグラフィ 一等により分離精製することができる。
[0017] III.オリゴ RNAの製法
上記製法により製造されるホスホロアミダイト化合物 (A)を使用することによって、 7火 の一般式 (B)で表されるオリゴ RNA (以下、「オリゴ RNA(B)」という。)を製造するこ と力 Sできる。
以下に詳述する。
[化 14]
Figure imgf000016_0001
式 (B)中、各 Bは、それぞれ独立して、核酸塩基又はその修飾体を表す。各 Qは、 それぞれ独立して、 O又は Sを表す。各 Rは、それぞれ独立して、 H、水酸基、ハロゲ ン、アルコキシ、アルキルチオ、ァミノ、ァノレキノレアミノ、ジァノレキノレアミノ、アルケニル ォキシ、アルケニルチオ、アルケニルァミノ、ジァルケニルァミノ、アルキニルォキシ、 アルキニルチオ、ァノレキニノレアミノ、ジアルキニルァミノ又はアルコキシアルキルォキ シを表すが、少なくとも 1つは水酸基を表す。各 Yはアルキル、アルコキシ、アルキノレ チォ、 O—、 S―、 NR2aR2b (R2a、 R2bは、前記と同義である。)を表す。但し、オリゴ RN A (B)を構成する核酸モノマーユニットの Rが水酸基である場合、 Yは O—を表す。 Z は、 H、リン酸基又はチォリン酸基を表す。 nは、;!〜 200の範囲内にある整数を表す
[0018] nは、 10〜: L00の範囲内にある整数が好ましぐまた、より好ましくは、 15〜50の範 囲内にある整数である。
Bで表される核酸塩基としては特に限定されるものではなぐ例えば、シトシン、ゥラ シル、チミン等のピリミジン塩基、アデニン、グァニン等のプリン塩基又はそれらの修 飾体を挙げること力 Sできる。
Bの「修飾体」とは、核酸塩基が任意の置換基で置換されている化合物であり、 Bの 修飾体に係る置換基としては、例えば、ハロゲン、ァシル、アルキル、ァリールアルキ ル、アルコキシ、ヒドロキシ、ァミノ、モノアルキルァミノ、ジァノレキノレアミノ、カルボキシ 、シァ入ニトロを挙げること力 Sでき、これらが任意の位置に 1〜3個置換されている。
Bの修飾体に係る「ノヽロゲン」、「ァシル」、「アルキル」、「ァリールアルキル」、「アル コキシ」、「アルコキシアルキル」、「ァミノ」、「モノアルキルァミノ」、「ジアルキルァミノ」 としては、前記 Bzの修飾体に係るそれらと同じあのを挙げること力 Sでさる。
Yに係る「アルキル」、「アルコキシ」、「アルキルチオ」の「アルキル」としては、前記 B zの修飾体に係るそれらと同じものを挙げることができる。
Rに係る「ノヽロゲン」、「アルコキシ」、「アルキルァミノ」又は「ジアルキルァミノ」として は、前記 Bzの修飾体に係るそれらと同じあのを挙げること力 Sでさる。
Rに係る「アルコキシアルキルォキシ」、「アルキルチオ」の「アルキル」としては、前 記 Bzの修飾体に係る「アルキル」と同じものを挙げることができる。
Rに係る「アルコキシアルキルォキシ」の「アルコキシ」としては、前記 Bzの修飾体に 係る「ァノレコキシ」と同じものを挙げること力 Sできる。
Rに係る「ァルケ二ルォキシ」、「ァルケ二ルチオ」、「ァルケニルァミノ」、「ジァルケ二 ルァミノ」の「ァルケニル」としては、例えば、直鎖状又は分枝鎖状の炭素数 2〜6のァ ルケニルを挙げることができる。具体的には、例えば、ビュル、ァリル、 1 プロぺニル 、イソプロぺニノレ、 1ーフ、、テニノレ、 2—フ、、テニノレ、 1 ペンテニノレ、 1一へキセニノレを挙 げること力 Sでさる。
Rに係る「アルキニルォキシ」、「アルキニルチオ」、「アルキニルァミノ」、「ジアルキ ニルァミノ」の「アルキニル」としては、例えば、直鎖状又は分枝鎖状の炭素数 2〜4の アルキニルを挙げることができる。具体的には、例えば、ェチュル、 2—プロビュル、 1 ーブチュルを挙げることができる。 [0019] ここで、本発明において「核酸モノマーユニット」とは、オリゴ RNA(B)及び各(オリ ゴ)核酸誘導体を構成する各核酸モノマーの部分をレ、う。
[0020] ホスホロアミダイト化合物 (A)を用いるオリゴ RNA(B)の製法は、公知の方法に従 い行うことができる力 S、例えば、次に示す工程 A〜工程 Gを繰り返し実施することによ り、段階的に 3'から 5'の方向へ核酸モノマー化合物を縮合させていくことができる。 オリゴ RNAの製法において、各 Rのうち少なくとも 1つが水酸基であるオリゴ RNA( B)を製造すること力 Sできる。例えば、下記工程 Bにおいて、核酸モノマー化合物とし て全てホスホロアミダイト化合物 (A)を使用することにより、各 Rが全て水酸基である オリゴ RNA(B)を製造することができる。
[0021] 下記各工程で使用される化合物及び試薬のうち、ホスホロアミダイト化合物 (A)以 外については、オリゴ RNA又はオリゴ DNAの合成に一般的に使用されているものを 特に限定することなく用いること力できる。また、既存の核酸合成試薬を用いた場合と 同様、すべての工程をマニュアルで又は市販の DNA自動合成機を用いて製造する ことができる。操作法の簡便化、また合成の正確性の点から自動合成機を用いるの が望ましい。
[0022] (1)工程 A :
本工程は、次の一般式(11)で表される (オリゴ)核酸誘導体に R1を脱離するための 酸を作用させ、 5'位の水酸基の保護基を脱離することによって、次の一般式(12)で 表されるオリゴ核酸誘導体を製造する工程である。
[化 15]
Figure imgf000018_0001
( 1 1 ) ( 1 2 ) 式(11)及び(12)中、 n、各 Q、 R1はそれぞれ前記と同義である。各 Bxは、それぞ れ独立して、保護基を有していてもよい核酸塩基又はその修飾体を表す。各 R4は、 それぞれ独立して、 H、ハロゲン、アルコキシ、アルキルチオ、保護されていてもよい ァミノ保護されていてもよいアルキルァミノ、ジァノレキノレアミノ、アルケニルォキシ、ァ ルケ二ルチオ、保護されていてもよいアルケニルァミノ、ジァルケニルァミノ、アルキニ ルォキシ、アルキニルチオ、保護されていてもよいアルキニルァミノ、ジアルキニルァ ミ入アルコキシアルキルォキシ又は次の一般式(13)で表される置換基を表すが、 少なくとも 1つは次の一般式(13)で表される置換基を表す。
[化 16]
( 1 3 ) 式(13)中、 WG1は、前記と同義である。
[0023] 各 Y1はアルキル、アルコキシ、アルキルチオ、 NR2aR2b (R2a、 R2bは、前記と同義で ある。)又は次の一般式(14)で表される置換基を表す。
[化 17]
,0^^WG2
( 1 4 )
式(14)中、 WG2は、前記と同義である。
但し、(オリゴ)核酸誘導体(11)及び(12)を構成する核酸モノマーユニットの R4が 上記一般式(13)で表される置換基である場合、 Y1は上記一般式(14)で表される置 換基を表す。
[0024] Eは、ァシル又は次の一般式(15)で表される置換基を表す。
[化 18] リンカー Ha相担体 ( 1 5 ) 式(15)中、 E1は、単結合又は次の一般式(16)で表される置換基を表す。
Figure imgf000020_0001
( 1 6 ) 式(16)中、 Q、 Y1は、前記と同義である。
[0025] Τは、 Η、ァシルォキシ、ハロゲン、アルコキシ、アルキルチオ、保護されて!/、てもよ ぃァミノ、保護されていてもよいアルキルァミノ、ジァノレキノレアミノ、アルケニルォキシ、 アルケニルチオ、保護されていてもよいアルケニルァミノ、ジァルケニルァミノ、アルキ ニルォキシ、アルキニルチオ、保護されていてもよいアルキニルァミノ、ジアルキニル アミ入アルコキシアルキルォキシ、上記一般式(13)で表される置換基又は上記一 般式(15)で表される置換基を表す。但し、 Ε又は Τのどちらか一方は、置換基(15) を表す。
[0026] Bxに係る「核酸塩基」としては、核酸の合成に使用されるものであれば特に制限さ れず、例えば、シトシン、ゥラシル、チミン等のピリミジン塩基、アデニン、グァニン等の プリン塩基又はそれらの修飾体を挙げることができる。
Bxに係る「核酸塩基」は、保護されていてもよぐなかでもアミノ基を有する核酸塩 基、例えば、アデニン、グァニン、シトシンは、ァミノ基が保護されているのが好ましい
かかる「ァミノ基の保護基」としては、核酸の保護基として使用されるものであれば特 に制限されず、例えば、ベンゾィル、 4ーメトキシベンゾィル、ァセチル、プロピオニル 、ブチリル、イソブチリル、フエ二ルァセチル、フエノキシァセチル、 4 tert ブチノレ フエノキシァセチノレ、 4 イソプロピノレフエノキシァセチノレ、 (ジメチノレアミノ)メチレンを 挙げること力 Sでさる。
Bxの「修飾体」とは、核酸塩基が任意の置換基で置換されている化合物であり、 Bx の「修飾体」に係る置換基としては、例えば、ハロゲン、ァシル、アルキル、ァリールァ ノレキノレ、アルコキシ、アルコキシアルキル、ヒドロキシ、ァミノ、モノアルキルァミノ、ジ アルキルアミ入カルボキシ、シァ入ニトロを挙げること力 Sでき、これらが任意の位置 に;!〜 3個置換されている。
Bxの修飾体に係る「ノヽロゲン」、 「ァシル」、 「アルキル」、 「ァリールアルキル」、 「アル コキシ」、「アルコキシアルキル」、「モノアルキルァミノ」、「ジアルキルァミノ」としては、 前記 Bzの修飾体に係るそれらと同じあのを挙げること力 Sでさる。
R4に係る「ノヽロゲン」、「アルコキシ」、「アルキルァミノ」及び「ジアルキルァミノ」部分 としては、前記 Bzの修飾体に係るそれらと同じあのを挙げること力 Sでさる。 ては、前記 Bzの修飾体に係る「アルキル」と同じものを挙げることができる。
R4に係る「アルコキシアルキルォキシ」の「アルコキシ」部分としては、前記 Bzの修 飾体に係る「アルコキシ」と同じものを挙げることができる。
R4に係る「ァルケ二ルォキシ」、「ァルケ二ルチオ」、「ァルケニルァミノ」、「ジァルケ ニルァミノ」の「ァルケニル」部分としては、前記 Rに係る「ァルケニル」と同じものを挙 げること力 Sでさる。
R4に係る「アルキニルォキシ」、「アルキニルチオ」、「アルキニルァミノ」、「ジアルキ ニルァミノ」の「アルキニル」部分としては、前記 Rに係る「アルキニル」と同じものを挙 げること力 Sでさる。
R4に係る「ァミノ」、「アルキルァミノ」、「ァルケニルァミノ」、「アルキニルァミノ」は保 護されていてもよぐ力、かる保護基はァミノ基の保護基として使用されるものであれば 特に制限されず、例えば、トリフルォロアセチル、ベンゾィル、 4ーメトキシベンゾィル 、ァセチル、プロピオニル、ブチリル、イソブチリル、フエ二ルァセチル、フエノキシァセ チル、 4— tert ブチルフエノキシァセチル、 4 イソプロピルフエノキシァセチル、( ジメチルァミノ)メチレンを挙げること力 Sできる。特に、トリフルォロアセチルが好ましい
Eに係る「ァシル」としては、前記 Bzの修飾体に係る「ァシル」と同じものを挙げること ができる。
Tに係る「ァシルォキシ」の「ァシル」部分は、前記 Bzの修飾体に係る「ァシル」と同 じものを挙げること力 Sできる。
Tに係る「ノヽロゲン」、「アルコキシ」、「アルキルァミノ」及び「ジアルキルァミノ」として は、前記 Bzの修飾体に係るそれらと同じあのを挙げること力 Sでさる。 は、前記 Bzの修飾体に係る「アルキル」と同じものを挙げること力 Sできる。
Tに係る「アルコキシアルキルォキシ」の「アルコキシ」部分としては、前記 Bzの修飾 体に係る「ァノレコキシ」と同じものを挙げることができる。
Tに係る「ァルケ二ルォキシ」、 「ァルケ二ルチオ」、 「ァルケニルァミノ」、 「ジァルケ二 ノレアミノ」の「ァルケニル」部分としては、前記 Rに係る「ァルケニル」と同じものを挙げ ること力 Sでさる。
Tに係る「アルキニルォキシ」、 「アルキニルチオ」、 「アルキニルァミノ」、 「ジアルキニ ルァミノ」の「アルキニル」部分としては、前記 Rに係る「アルキニル」と同じものを挙げ ること力 Sでさる。
Y1に係る「アルキル」、 「アルコキシ」、 「アルキルチオ」の「アルキル」としては、前記 Bzの修飾体に係るそれらと同じあのを挙げること力 Sでさる。
本工程は、固相担体に担持された次の一般式(17a)、 (17b)で表される核酸誘導 体 (n= lである核酸誘導体(11)に相当)、又は、工程 A〜工程 Dの操作を行うことに より製造される固相担体に担持されたオリゴ RNA若しくはオリゴ DNA (n = 2〜; 100 であるオリゴ核酸誘導体(11)に相当)(以下、「固相担体に担持されているオリゴ核 酸誘導体」という。)に酸を作用させることにより実施することができる。
[化 20]
Figure imgf000022_0001
( 1 7 a ) ( 1 7 b ) 式(17a)及び(17b)中、 B は、置換基(15)を
Figure imgf000022_0002
表す。 R2は、ァシルォキシを表す。 R4aは、 H、ァシルォキシ、ハロゲン、アルコキシ、 アルキルチオ、保護されていてもよいァミノ、保護されていてもよいアルキルァミノ、ジ アルキノレアミノ、アルケニルォキシ、アルケニルチオ、保護されていてもよいアルケニ ルァミノ、ジァルケニルァミノ、アルキニルォキシ、アルキニルチオ、保護されていても よいアルキニルァミノ、ジアルキニルァミノ、アルコキシアルキルォキシ又は置換基(1 3)を表す。 R2、 R4aの「ァシルォキシ」に係る「ァシル」部分としては、前記 Bzの修飾体に係る「 アシノレ」と同じものを挙げること力 Sできる。
R4aに係る「ノヽロゲン」、「アルコキシ」、「アルキルァミノ」及び「ジアルキルァミノ」部分 としては、前記 Bzの修飾体に係るそれらと同じあのを挙げること力 Sでさる。 ては、前記 Bzの修飾体に係る「アルキル」と同じものを挙げることができる。
R4aに係る「アルコキシアルキルォキシ」の「アルコキシ」部分としては、前記 Bzの修 飾体に係る「アルコキシ」と同じものを挙げることができる。
R4aに係る「ァルケ二ルォキシ」、「ァルケ二ルチオ」、「ァルケニルァミノ」、「ジァルケ ニルァミノ」の「ァルケニル」部分としては、前記 Rに係る「ァルケニル」と同じものを挙 げること力 Sでさる。
R4aに係る「アルキニルォキシ」、「アルキニルチオ」、「アルキニルァミノ」、「ジアルキ ニルァミノ」の「アルキニル」部分としては、前記 Rに係る「アルキニル」と同じものを挙 げること力 Sでさる。
R4aに係る「ァミノ」、「アルキルァミノ」、「ァルケニルァミノ」、「アルキニルァミノ」は保 護されていてもよぐ力、かる保護基はァミノ基の保護基として使用されるものであれば 特に制限されず、例えば、トリフルォロアセチル、ベンゾィル、 4ーメトキシベンゾィル 、ァセチル、プロピオニル、ブチリル、イソブチリル、フエ二ルァセチル、フエノキシァセ チル、 4— tert ブチルフエノキシァセチル、 4 イソプロピルフエノキシァセチル、( ジメチルァミノ)メチレンを挙げること力 Sできる。特に、トリフルォロアセチルが好ましい
「固相担体」としては、例えば、定孔ガラス(controlled pore glass; CPG)、ォキ サリル化一定孔ガラス(例えば、 Alulら, Nucleic Acids Research, Vol. 19, 15 27 ( 1991 )を参照)、 TentaGel支持体―ァミノポリエチレンダリコール誘導体化支持 体(例えば、 Wrightら, Tetrahedron Letters, Vol. 34, 3373 (1993)を参照)、 Poros ポリスチレン/ジビュルベンゼンのコポリマーを挙げることができる。
「リンカ一」としては、例えば、 3 ァミノプロピル、スクシニル、 2, 2 'ージエタノール スルホニル、ロングチェーンアルキルアミノ(LCAA)を挙げること力 Sできる。 核酸誘導体(17a)、核酸誘導体(17b)は、公知の方法に従い製造される化合物又 は市販品として入手できる固相担体に担持された化合物であり、好ましい態様として は、例えば、次の一般式(18)、 (19)で表される核酸誘導体を挙げることができる。
[化 21]
Figure imgf000024_0001
R4が置換基(13)である核酸誘導体(19)は、ホスホロアミダイト化合物 (A)から公 知の方法に従!/ヽ製造すること力 Sできる。
[0030] 本工程で使用しうる「 を脱離するための酸」としては、例えば、トリフルォロ酢酸、 ジクロロ酢酸、トリクロ口酢酸を挙げることができる。力、かる「酸」は、 1〜5%の濃度に なるように適当な溶媒で希釈して使用することもできる。溶媒としては、反応に関与し なければ特に限定されないが、ジクロロメタン、トルエン、ァセトニトリル、メタノーノレ、 水又はこれら任意の混合溶媒を挙げることができる。本工程で使用しうる「酸」の使用 量は、固相担体に担持されているオリゴ核酸誘導体に対して、モル比で 0. 8倍量〜 100倍量の範囲内が適当であり、好ましくは等倍量〜 10倍量の範囲内である。上記 反応における反応温度は、 20°C〜50°Cの範囲内が好ましい。反応時間は、(オリゴ) 核酸誘導体(11 )の種類、使用する酸の種類、反応温度等によって異なるが、通常 1 分間〜 1時間の範囲内が適当である。
[0031] (2)工程 B :
本工程は、工程 Aにおいて製造されるオリゴ核酸誘導体(12)に、活性化剤を用い て核酸モノマー化合物を縮合させることによって、次の一般式(20)で表されるオリゴ 核酸誘導体を製造する工程である。
[化 22]
Figure imgf000025_0001
2 )
( 2 0 )
式(12)及び(20)中、各 B 、 E、 n、各 Q、 R1,各 R4、 T、各 Y1は、前記と同義である
X
ο但し、(オリゴ)核酸誘導体(12)及び(20)を構成する核酸モノマーユニットの R4が 上記一般式(13)で表される置換基である場合、 Υ1は上記一般式(14)で表される置 換基を表す。
「核酸モノマー化合物」としては、ホスホロアミダイト化合物 (Α)又は次の一般式(21 )で表される核酸誘導体を挙げることができる。
[化 23]
Figure imgf000025_0002
( 2 1 ) 式(21)中、 は、保護基を有してい
Figure imgf000025_0003
てもよ!/、核酸塩基又はその修飾体を表す。
B に係る「核酸塩基」としては、核酸の合成に使用されるものであれば特に制限さ
Y
れず、例えば、シトシン、ゥラシル、チミン等のピリミジン塩基、アデニン、グァニン等の プリン塩基又はそれらの修飾体を挙げることができる。
B に係る「核酸塩基」は、保護されていてもよぐなかでもアミノ基を有する核酸塩基 、例えば、アデニン、グァニン、シトシンは、ァミノ基が保護されているのが好ましい。 かかる「ァミノ基の保護基」としては、核酸の保護基として使用されるものであれば特 に制限されず、具体的には、例えば、ベンゾィル、 4ーメトキシベンゾィル、ァセチル、 プロピオニル、ブチリル、イソブチリル、フエ二ルァセチル、フエノキシァセチル、 4 t ert ブチルフエノキシァセチル、 4 イソプロピルフエノキシァセチル、 (ジメチルアミ ノ)メチレンを挙げることができる。
B の「修飾体」とは、核酸塩基が任意の置換基で置換されている化合物であり、 B
Y Y
の「修飾体」に係る置換基としては、例えば、ハロゲン、ァシル、アルキル、ァリールァ ノレキノレ、アルコキシ、アルコキシアルキル、ヒドロキシ、ァミノ、モノアルキルァミノ、ジ アルキルアミ入カルボキシ、シァ入ニトロを挙げること力 Sでき、これらが任意の位置 に;!〜 3個置換されている。
B の修飾体に係る「ノヽロゲン」、 「ァシル」、 「アルキル」、 「ァリールアルキル」、 「アル γ
コキシ」、 「アルコキシアルキル」、 「モノアルキルァミノ」、 「ジアルキルァミノ」としては、 前記 Bzの修飾体に係るそれらと同じあのを挙げること力 Sでさる。
核酸誘導体(21)としては、市販品として入手可能な核酸化合物又は文献公知(Pr otocols foroligonucleotiaes and analogs ; S . Agrawal, Eds. : Humann P ress Inc. : Totowa, NJ, 1993. )の方法に従い合成可能な核酸化合物を挙げる こと力 Sでさる。
[0032] 「活性化剤」としては、前記と同じものを挙げること力 Sできる。かかる「活性化剤」の使 用量は、固相担体に担持されているオリゴ核酸誘導体に対して、モル比で 0. 8倍量 〜; 100倍量の範囲内が適当であり、好ましくは等倍量〜 10倍量の範囲内である。反 応溶媒としては、反応に関与しなければ特に限定されないが、例えば、ァセトニトリノレ 、 THFを挙げること力 Sできる。上記反応における反応温度は、 20°C〜50°Cの範囲内 が好ましい。反応時間は、オリゴ核酸誘導体(12)の種類、使用する活性化剤の種類 、反応温度等によって異なるが、通常 1分間〜 1時間の範囲内が適当である。
[0033] (3)工程 C:
本工程は、工程 Bにお!/、て未反応であるオリゴ核酸誘導体(12)の 5 '位の水酸基を 保護するために、固相担体に担持されているオリゴ核酸誘導体(12)にキャップ化剤 を作用させる工程である。
[化 24]
Figure imgf000027_0001
( 1 2 ) ( 2 2 ) 式(12)及び(22)中、各 B 、 E、 n、各 Q、各 R4、 T、各 Υ1は、前記と同義である。 R5
X
は、メチル、フエノキシメチル、 4— tert—ブチルフエノキシメチルを表す。但し、 (オリ ゴ)核酸誘導体( 12)及び (22)を構成する核酸モノマーユニットの R4が上記一般式( 13)で表される置換基である場合、 Y1は上記一般式(14)で表される置換基を表す。
「キャップ化剤」としては、例えば、無水酢酸、フエノキシ酢酸無水物又は 4— tert— ブチルフエノキシ酢酸無水物を挙げることができる。キャップ化剤は、 0. 05〜; 1Mの 濃度になるように適当な溶媒で希釈して使用することもできる。溶媒としては、反応に 関与しなければ特に限定されないが、ピリジン、ルチジン、ジクロロメタン、ァセトニトリ ル、 THF又はこれら任意の混合溶媒を挙げることができる。本工程で使用しうる「キヤ ップ化剤」の使用量は、固相担体に担持されているオリゴ核酸誘導体に対して、モル 比で 0. 8倍量〜 100倍量の範囲内が適当であり、好ましくは等倍量〜 10倍量の範 囲内である。また、本工程において必要に応じて、例えば、 4ージメチルァミノピリジン 、 N—メチルイミダゾール、 2—ジメチルァミノピリジンのような「反応促進剤」を使用す ること力 Sできる。かかる「反応促進剤」の使用量は、固相担体に担持されているオリゴ 核酸誘導体に対して、モル比で 0. 01倍量〜 100倍量の範囲内が適当であり、好ま しくは 0. 1倍量〜 10倍量の範囲内である。上記反応における反応温度は、 20°C〜5 0°Cの範囲内が好ましい。反応時間は、オリゴ核酸誘導体(12)の種類、使用するキ ヤップ化剤の種類、反応温度等によって異なるが、通常 1分間〜 30分間の範囲内が 適当である。
(4)工程 D :
本工程は、工程 Bにおいて製造されるオリゴ核酸誘導体(20)に酸化剤を作用させ ることによって亜リン酸基(3価のリン)をリン酸基又はチォリン酸基(5価のリン)に変換 する工程である。
[化 25]
Figure imgf000028_0001
( 2 0 ) ( 2 3 ) 式(20)及び(23)中、各 B 各 R4、 T、各 Y1は、前記と同義である
Figure imgf000028_0002
。但し、オリゴ核酸誘導体(20)及び(23)を構成する核酸モノマーユニットの R4が上 記一般式(13)で表される置換基である場合、 Υ1は上記一般式(14)で表される置換 基を表す。
リンを酸素で酸化する場合の「酸化剤」として、例えば、ヨウ素、 tert ブチルヒドロ ペルォキシドを使用することができる。力、かる「酸化剤」は、 0. 05〜2Mの濃度になる ように適当な溶媒で希釈して使用することができる。反応に使用する溶媒としては、 反応に関与しなければ特に限定されないが、ピリジン、 THF、水又はこれら任意の混 合溶媒を挙げること力できる。例えば、ヨウ素/水/ピリジン THFあるいはヨウ素/ ピリジン 酢酸や過酸化剤 (t プチルヒドロバーオキシド /ジクロロメタンなど)を用 いること力 Sでさる。
また、リンを硫黄で酸化する場合の「酸化剤」として、例えば、硫黄、 Beaucage試薬 (3H- 1 , 2 ベンゾジチオールー3 オン 1 , 1ージォキシド)、 3 アミノー 1 , 2, 4 ジチアゾール—5 チオン (ADTT)を使用することができる。該酸化剤は、 0. 0 5〜2Mの濃度になるように適当な溶媒で希釈して使用することができる。反応に使 用する溶媒としては、反応に関与しなければ特に限定されないが、例えば、ジクロロメ タン、ァセトニトリル、ピリジン又はこれら任意の混合溶媒が挙げられる。
本工程で使用しうる「酸化剤」の使用量は、固相担体に担持されているオリゴ核酸 誘導体に対して、モル比で 0. 8倍量〜 100倍量の範囲内が適当であり、好ましくは 1 0倍量〜 50倍量の範囲内である。反応温度は、 20°C〜50°Cの範囲内が好ましい。 反応時間は、オリゴ核酸誘導体(20)の種類、使用する酸化剤の種類、反応温度等 によって異なるが、通常 1分間〜 30分間の範囲内が適当である。
(5)ェ程£:
本工程は、工程 Dにおいて製造されるオリゴ核酸誘導体(23)を固相担体から切り 出し、各核酸塩基部及び各リン酸基の保護基を脱離する工程である。
[化 26]
Figure imgf000029_0001
( 2 3 ) ( 2 4 ) 式(23)及び(24)中、各 B、各 B Ζは、
Figure imgf000029_0002
前記と同義である。但し、オリゴ核酸誘導体(23)及び(24)を構成する核酸モノマー ユニットの R4が上記一般式(13)で表される置換基である場合、 Υ1又は Υは、それぞ れ上記一般式(14)で表される置換基又は Ο—を表す。
切り出し工程は、所望の鎖長のオリゴ RNAを切り出し剤によって、固相担体及びリ ンカーから外す反応であり、所望の鎖長のオリゴ RNAが担持された固体担体に切り 出し剤を添加することにより実施することができる。本工程において、核酸塩基部の 保護基を脱離することができる。
「切り出し剤」としては、例えば、濃アンモニア水、メチルァミンを挙げることができる 。本工程で使用しうる「切り出し剤」は、例えば、水、メタノール、エタノール、イソプロ ピルアルコール、ァセトニトリル、 THF又はこれら任意の混合溶媒で希釈して使用す ることもできる。なかでも、エタノールが好ましい。脱保護に使用される溶液中の水酸 化アンモニゥムの濃度は、 20重量%〜30重量%の範囲内が適当であり、好ましくは 25重量%〜30重量%の範囲内であり、より好ましくは 28重量%〜30重量%の範囲 内である。
本工程で使用しうる「切り出し剤」の使用量は、固相担体に担持されているオリゴ核 酸誘導体に対して、モル比で 0. 8倍量〜 100倍量の範囲内が適当であり、好ましく は 10倍量〜 50倍量の範囲内である。反応温度は、 15°C〜75°Cの範囲内が適当で あり、好ましくは 15°C〜30°Cの範囲内であり、より好ましくは 18°C〜25°Cの範囲内 である。脱保護反応時間は、 10分間〜 30時間の範囲内が適当であり、好ましくは 30 分間〜 24時間の範囲内であり、より好ましくは 1〜4時間の範囲内である。
(6)工程 F :
本工程は、工程 Eにおいて製造されるオリゴ核酸誘導体(24)に、各リボースの 2' 位水酸基の保護基を脱離するための試薬を作用させることによって、次の一般式(2 5)で表されるオリゴ核酸誘導体を製造する工程である。
[化 27]
Figure imgf000030_0001
( 2 4 ) ( 2 5 ) 式(24)及び(25)中、各 B、 n、各 Q、各 Y、各 R、
Figure imgf000030_0002
各 R4、 Zは、前記と同義である 但し、オリゴ核酸誘導体(24)及び(25)を構成する核酸モノマーユニットの R4が上 記一般式(13)で表される置換基である場合、 Yは O—を表す。
「2'位の水酸基の保護基を脱離する試薬」として、例えば、 TBAF、トリェチルアミ ントリヒドロフロリドを挙げることができる。かかる「2'位の水酸基の保護基を脱離する 試薬」の使用量は、除去される保護基に対して、モル比で等倍量〜 500倍量の範囲 内が適当であり、好ましくは 5倍量〜 10倍量の範囲内である。使用する溶媒としては 、反応に関与しなければ特に限定されないが、例えば、 THF、 N メチルピロリドン、 ピリジン、ジメチルスルホキシド又はこれら任意の混合溶媒を挙げることができる。反 応溶媒の使用量は、「2 '位の水酸基の保護基を脱離する試薬」に対して、モル比で 0. 8倍量〜 100倍量の範囲内が適当であり、好ましくは等倍量〜 10倍量の範囲内 である。反応温度は、 20°C〜80°Cの範囲内が好ましい。反応時間は、オリゴ核酸誘 導体(24)の種類、使用する 2'位の水酸基の保護基を脱離する試薬の種類、反応温 度等によって異なる力 通常 1時間〜 100時間の範囲内が適当である。
必要であれば、本工程における副生成物であるアクリロニトリルを捕捉するため、ァ タリロニトリルの捕捉剤として、例えば、ニトロアルカン、ァノレキノレアミン、アミジン、チォ ール、チオール誘導体又はこれら任意の混合物を添加することができる。「ニトロアル カン」としては、例えば、直鎖状の炭素数 1〜6のニトロアルカンを挙げることができる 。具体的には、例えば、ニトロメタンを挙げること力 Sできる。「アルキルァミン」としては、 例えば、直鎖状の炭素数 1〜6のアルキルアミンを挙げることができる。具体的には、 例えば、メチルァミン、ェチルァミン、 n—プロピルァミン、 n ブチルァミン、 n—ペン チルァミン、 n へキシルァミンを挙げることができる。「アミジン」としては、例えば、ベ ンズアミジン、ホルムアミジンを挙げることができる。 「チオール」としては、例えば、直 鎖状の炭素数 1〜6のチオールを挙げることができる。具体的には、例えば、メタンチ ォーノレ、エタンチオール、 1 プロパンチオール、 1 ブタンチォーノレ、 1 ペンタン チオール、 1—へキサンチオールを挙げることができる。「チオール誘導体」としては、 例えば、同一又は異なる直鎖状の炭素数 1〜6のアルキルチオール基を有するアル コール又はエーテルを挙げることができる。具体的には、例えば、 2—メルカプトエタ ノーノレ、 4 メルカプト 1ーブタノール、 6—メルカプト 1一へキサノーノレ、メルカプ トメチルエーテル、 2 メルカプトェチルエーテル、 3 メルカプトプロピルエーテル、 4 メルカフトプチルエーテル、 5—メルカフトペンチルエーテル、 6—メルカフトへキ シルエーテルを挙げることができる。力、かる「アクリロニトリルの捕捉剤」の使用量とし ては、オリゴ核酸誘導体(24)の種類等によって異なるが、オリゴ核酸誘導体(24)の 各リボースの 2'位水酸基を保護している 2—シァノエトキシメチルに対して、モル比で 0. 8〜500倍量の範囲内が適当であり、好ましくは 1〜; 10倍量の範囲内である。
[0037] 上記反応混合物から通常の分離精製手段、例えば、抽出、濃縮、中和、濾過、遠 心分離、再結晶、シリカゲルカラムクロマトグラフィー、薄層クロマトグラフィー、逆層 O DSカラムクロマトグラフィー、イオン交換カラムクロマトグラフィー、ゲルろ過カラムクロ マトグラフィー、透析、限界ろ過などの手段を用いることにより、 5'位が保護されたオリ ゴ RNAを単離精製することができる。
[0038] (7)ェ程0:
本工程は、工程 Fにおいて製造されるオリゴ核酸誘導体(25)に酸を作用させること により、 5'位の水酸基を脱離する工程である。
[化 28]
Figure imgf000032_0001
式(25)及び (B)中、各 B、 n、各 Q、各 Y、各
Figure imgf000032_0002
Zは、前記と同義である。但し、 オリゴ核酸誘導体(25)及びオリゴ RNA(B)を構成する核酸モノマーユニットの が 水酸基である場合、 Yは o_を表す。
本工程で使用しうる「酸」としては、例えば、トリクロ口酢酸、ジクロロ酢酸、酢酸を挙 げること力 Sできる。本工程で使用しうる「酸」は、適当な溶媒で希釈して使用することも できる。溶媒としては、反応に関与しなければ特に限定されないが、ジクロロメタン、 ァセトニトリル、水、 pHが 2〜5の緩衝液又はこれら任意の混合溶媒を挙げることがで きる。緩衝液としては、例えば、酢酸緩衝液を挙げること力できる。本工程で使用しう る「酸」の使用量は、固相担体に担持されているオリゴ核酸誘導体に対して、モル比 で 0. 8倍量〜 100倍量の範囲内が適当であり、好ましくは等倍量〜 10倍量の範囲 内である。上記反応における反応温度は、 20°C〜50°Cの範囲内が好ましい。反応 時間は、オリゴ核酸誘導体(25)の種類、使用する酸の種類、反応温度等によって異 なるが、通常 1分間〜 5時間の範囲内が適当である。
[0039] (7) I H :
本工程は、工程 Gにおいて製造されるオリゴ RNA(B)を分離精製する工程である。 「分離精製工程」とは、上記反応混合物から通常の分離精製手段、例えば、抽出、 濃縮、中和、濾過、遠心分離、再結晶、 C力 C の逆相カラムクロマトグラフィー、 C
8 18
力、ら C 逆相カートリッジカラム、陽イオン交換カラムクロマトグラフィー、陰イオン交
8 18
換カラムクロマトグラフィー、ゲルろ過カラムクロマトグラフィー、高速液体クロマトグラ フィ一、透析、限界ろ過などの手段を単独若しくは組み合わせて用いることにより、所 望のオリゴ RNA(B)を単離精製する工程である。
「溶出溶媒」としては、例えば、ァセトニトリル、メタノーノレ、エタノール、イソプロピル アルコール、水の単独溶媒もしくは任意の比率の混合溶媒を挙げることができる。こ の場合添加物として、例えば、リン酸ナトリウム、リン酸カリウム、塩化ナトリウム、塩化 カリウム、酢酸アンモニゥム、酢酸トリェチルアンモニゥム、酢酸ナトリウム、酢酸力リウ ム、トリス塩酸、エチレンジァミン四酢酸を lmM〜2Mの範囲の濃度で添加し、溶液 の pHを 1〜9の範囲で調整することもできる。
[0040] 工程 A〜工程 Dの操作を繰り返すことにより、所望の鎖長のオリゴ RNA(B)を製造 すること力 Sできる。なお、本製法においてオリゴ RNA(B)を製造するための出発原料 として、 R4aが置換基(13)である核酸誘導体(17a)、 R4 H若しくはァシルォキシで ある核酸誘導体(17a)、又は R2がァシルである核酸誘導体(17b)等を使用すること ができる。但し、出発原料として、 R4 H若しくはァシルォキシである核酸誘導体(1 7a)、又は R2がァシルである核酸誘導体(17b)を使用した場合、核酸モノマー化合 物として、少なくとも 1つは本発明ホスホロアミダイト化合物を使用する必要がある。 また、本製法において、工程 Eの操作を行う前に工程 Gの操作を行い、その後工程 Eの操作を行い、次いで工程 F及び工程 Hの操作を行うことによりオリゴ RNA(B)を 単離精製することもできる。
実施例
[0041] 以下に実施例を揚げて本発明を更に詳しく説明するが、本発明はこれらのみに限 定されない。
[0042] 参考例 メチルチオメチノレ 2—シァノエチルエーテル
32gの 3 ヒドロキシプロピオ二トリノレ(450mmol)を 450mLのジメチルスルホキシ ドに溶解し、 324mLの無水酢酸、 231mLの酢酸を加え室温で 24時間攪拌した。 9 90gの炭酸水素ナトリウムを 4. 5Lの水に溶解したものを調製し、これに反応液を一 時間かけて滴下した。そのまま一時間攪拌し、反応液を酢酸ェチルにて抽出し、無 水硫酸マグネシウムにて乾燥、溶媒留去し得られた油状物をシリカゲルカラムクロマト グラフィ一にて精製し、無色油状物の目的化合物を 41g得た (収率 70%)。
'H-NMR CCDCl ): δ 2. 18 (s, 3H) ; 2. 66 (t, 2H, J = 6. 3Hz) ; 3. 77 (t, 2
3
H, J = 6. 3Hz) ; 4. 69 (s, 2H)
参考例 2 2'— O—(2—シァノエトキシメチノレ)ゥリジン
工程 3' , 5'— O (テトライソプロピルジシロキサン 1 , 3—ジィノレ) 2'— O—( 2—シァノエトキシメチノレ)ゥリジンの鍵造
アルゴン雰囲気下、 150mgの 3,, 5,一O—(テトライソプロピルジシロキサン 1 , 3 —ジィル)ゥリジン(0· 3mmol)を 7mLの THFに溶解し、 54mgのメチルチオメチノレ 2 シァノエチノレエーテノレ(0. 4mmol)、 lOOmgのモレキュラーシーブス 4Aを加え 1 0分間攪拌した。反応液を 0°Cに冷却し、 10mgのトリフルォロメタンスルホン酸 (0. 0 6mmol)を含有する 2mLの THF溶液を加え攪拌した後、 92mgの N ョードスクシ ンイミド(0. 4mmol)を加え 1時間攪拌した。反応液をセライトろ過し、ジクロロメタンに て洗浄した後、有機層を 1Mのチォ硫酸水素ナトリウム水溶液にて洗浄、飽和炭酸水 素ナトリウム水溶液にて洗浄し、無水硫酸マグネシウムにて乾燥し、溶媒を留去した。 得られた残渣を薄層クロマトグラフィーにて精製し、 3' , 5'— O (テトライソプロピル ジシロキサン 1 , 3 ジィル) - 2' -0- (2 シァノエトキシメチル)ゥリジンを得た( 150mg ;収率 85%)。 H-NMR(CDC1 ): δ 0.97— 1.12(m, 28H) ;2.68— 2.73 (m, 2H) ;3.7
3
8-3.86 (m, 1H) ;3.96— 4.05 (m, 2H) ;4. 12— 4.30 (m, 4H) ;5.0— 5.0 4(m, 2H) ;5.70 (d, 1H, J = 8.2Hz) ;5.75(s, 1H) ;7.90 (d, 1H, J = 8.2Hz ) ;9.62 (br. s, 1H)
ESI-Mass:570[M + H] +
工程 2 2'— O—(2—シァノエトキシメチノレ)ゥリジンの鍵造
工程 1で得た 3', 5'— O (テトライソプロピルジシロキサン 1, 3 ジィル) 2' -0- (2—シァノエトキシメチル)ゥリジン 200mg(0.35mmol)を 2mLのメタノール に溶解し、 65mgのアンモニゥムフロリド(1.76mmol)を加え 50°Cにて 5時間加熱攪 拌した。放冷後、ァセトニトリルを加え攪拌し、ろ過濃縮した。得られた残渣をシリカゲ ルカラムクロマトグラフィーにて精製し、 目的化合物を得た(108mg;収率 94%)。 'H-NMRCCD OD): δ 2.72-2.76 (t, 2H, J = 6.2Hz) ;3.68— 3.92 (m
3
, 4H) ;4.00-4.03 (m, 1H) ;4.26— 4.32 (m, 2H) ;4.81—4.95 (m, 2H); 5.71 (d, 1H, J = 8.1Hz) ;6.00 (d, 1H, J = 3.3Hz) ;8.10(d, 1H, J = 8. 1 Hz)
ESI-Mass:350[M + Na] +
参考例 3 2 '— O—( 2 シァノエトキシメチノレ)ゥリジン
工程 3'.5'— O (テトライソプロピルジシロキサン 1.3—ジィノレ) 2'— O—( アルゴン雰囲気下、 50.2gの 3,, 5,一O—(テトライソプロピルジシロキサン 1, 3 —ジィル)ゥリジン(103mmol)を 400mLの THFに溶解し、 21· 0gのメチルチオメチ ル 2 シァノエチルエーテル(160mmol)、 40gのモレキュラーシーブス 4Aを加え 乾燥した。反応液を— 45°Cに冷却し、 24.0gのトリフルォロメタンスルホン酸(160m mol)を加え攪拌した後、 36· lgの N ョードスクシンイミド(161mmol)を lOOmLの THFに溶解して加え 15分間攪拌した。冷却下、トリェチルァミンを加えて中和し、室 温にて反応液をろ過し、ジクロロメタンにて希釈し、チォ硫酸ナトリウム水溶液と飽和 炭酸水素ナトリウム水溶液にて洗浄を行い、溶媒留去した。得られた反応混合物を 酢酸ェチルに溶解し、水とチォ硫酸ナトリウム水溶液と飽和食塩水にて洗浄を行レ、、 無水硫酸ナトリウムにて乾燥し、溶媒を留去し、 3' , 5'— O (テトライソプロピルジシ ロキサン 1, 3 ジィル) 2 ' O (2 シァノエトキシメチル)ゥリジンを得た(64· 2g;収率 定量的)
工程 2 2'— O—(2—シァノエトキシメチノレ)ゥリジンの鍵造
工程 2で得た 3', 5'— O (テトライソプロピルジシロキサン 1, 3—ジィル) 2' -0- (2 シァノエトキシメチノレ)ゥリジン 64· 2g(103mmol)を 500mLのメタノー ルに溶解し、 15. 3gのアンモニゥムフロリド(413mmol)を加え 50°Cにて 5時間加熱 攪拌した。放冷後、溶媒を留去した。残渣にァセトニトリルを加え攪拌した後ろ過した 。ろ液をへキサンにて洗浄した後、濃縮し、 目的化合物を得た(40. 5g;収率 定量 的)。
参考例 4 NA—ァセチノレー 2' O (2 シァノエトキシメチノレ)シチジン
工程 NA ァセチルー 3'. 5'—O—(テトライソプロピルジシロキサン 1. 3—ジィ ル) 2'— O—(2—シァノエトキシメチル)シチジンの製造
1.00gの N4 ァセチルー 3', 5'—O— (テトライソプロピルジシロキサン一 1, 3- ジィノレ)シチジン(1. 89mmol)と 500mgのメチノレチ才メチノレ 2 シァノエチノレエ一 テル(3. 79mmol)を混合し、 lOmLのトルエンと lOmLの THFの混合溶媒に溶解し た。次いで、 975mgのトリフルォロメタンスルホン酸銀(3. 79mmol)を加え、モレキ ユラーシーブス 4Aを加え、乾燥した。氷冷下、 370mgの N ブロモスクシンイミド(2 . 08mmol)を加え、反応容器を遮光し、 10分間撹拌した。さらに 70mgの N ブロモ スクシンイミド(0. 39mmol)を追加し、 25分間撹拌した。反応終了後、ジクロロメタン を加えて希釈し、飽和炭酸水素ナトリウム水溶液にて洗浄を行い、無水硫酸ナトリウ ムにて乾燥、溶媒留去し、得られた混合物をシリカゲルカラムクロマトグラフィーにて 精製し、 N4 ァセチル— 3,, 5,— O— (テトライソプロピルジシロキサン— 1, 3—ジィ ル) 2' O (2 シァノエトキシメチル)シチジンを得た(936mg;収率 81%)。 'H-NMRCCDCl ): δ 0. 90-1. ll(m, 28H) ;2. 28(s, 3H) ;2. 62— 2. 79
3
(m, 2H) ;3. 78-3. 89 (m, 1H) ;3. 96— 4. 04 (m, 2H) ;4. 19— 4. 23 (m, 3 H) ;4. 30 (d, 1H, J=13. 6Hz) ;5.00 (d, 1H, J = 6. 8Hz) ;5.09(d, 1H, J = 6 . 8Hz) ;5. 77(s, 1H) ;7.44 (d, 1H, J = 7. 5Hz) ;8. 30 (d, 1H, J = 7. 5Hz); 10.13(s, 1H)
ESI-Mass:611[M + H] +
工程 2 NA—ァセチノレー 2'— O—(2—シァノエトキシメチノレ)シチジンの經造
工程 1で得た N4 ァセチルー 3', 5'—O—(テトライソプロピルジシロキサン 1, 3 ージィノレ) 2' O (2 シァノエトキシメチノレ)シチジン 500mg(0.819mmol)を 2.5mLの THFとメタノール 2.5mLの混合溶媒に溶解し、 150mgのアンモニゥムフ ロリド(4. lOmmol)を加え、 50°Cで 4時間反応させた。反応終了後、ァセトニトリルに て希釈、濾過し、溶媒を留去し得られた混合物をシリカゲルカラムクロマトグラフィー にて精製し、 目的化合物を得た(210mg;収率 70%)
'H-NMRCD 0): δ 2.13(s, 3H) ;2.66— 2.71 (m, 2H) ;3.72— 3.78 (m
2
, 3H) ;3.90 (dd, 1H, 13.0, 2.6Hz) ;4.06— 4. ll(m, 1H) ;4.20 (dd, 1H ,J = 7.1, 5.2Hz) ;4.29 (dd, 1H, J = 5. 1, 2.9Hz) ;4.83(d, 1H, J = 7.2H z) ;4.94 (d, 1H, J = 7.2Hz) ;5.95(d, 1H, J = 2.9Hz) ;7.25(d, 1H, J = 7. 6Hz) ;8.25(d, 1H, J = 7.6Hz)
ESI— Mass: 391 [M + Na] +
参考例 5 NA—ァセチノレー 2' O (2 シァノエトキシメチノレ)シチジン
アルゴン雰囲気下、 50gの N4 ァセチルー 3, , 5,—O—(テトライソプロピルジシロ キサン一 1, 3 ジィノレ)シチジン(95mmol)を 500mLの THFに溶角早し、 18.64gの メチノレチオメチノレ 2 シァノエチノレエーテノレ(142mmol)、 40gのモレキュラーシーブ ス 4Aを加え、 45°Cで 30分間攪拌した。 21.41gのトリフルォロメタンスルホン酸(1 42mmol)を滴下した後、 31· 97gの N ョードスクシンイミド(142mmol)を加え、 3 0分間攪拌した。反応液にトリェチルァミン 80mLを加え、ろ過後酢酸ェチルにて抽 出、有機層を 1Mのチォ硫酸水素ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液 、次いで飽和塩化ナトリウム水溶液にて洗浄し、無水硫酸ナトリウムにて乾燥、溶媒 田 しプ
得られた残渣を 300mLの THFに溶解し、 18.3gのトリエチルァミントリスヒドロフロ リド(llOmmol)を加え 45°Cで 2時間攪拌した。生じた沈殿をろ過し、冷却した THF で洗浄、乾燥し目的化合物を得た。 (27g;収率 78%) 参考例 6 N£—ァセチノレー 2'— O—(2 シァノエトキシメチノレ)アデノシン
工程 N£ ァセチルー 3', 5'—O—(テトライソプロピルジシロキサン 1, 3—ジィ ル) 2'— O—(2—シァノエトキシメチノレ)アデノシンの鍵造
245mgの N ョードスクシンイミド(1· 09mmol)と 280mgのトリフルォロメタンスル ホン酸銀(1.09mmol)を 8mLのジクロロメタンに懸濁させ、モレキュラーシーブス 4 Aを加え乾燥した。ここに、 400mgの N6 ァセチル一 3,, 5, 一 O— (テトライソプロピ ノレジシロキサン 1, 3 ジィノレ)アデノシン(0.73mmol)と 145mgのメチノレチ才メチ ル 2 シァノエチルエーテル(1. llmmol)を 4mLのジクロロメタンに溶解し、氷冷 下で加えた。そのまま 3時間撹拌した。反応終了後、ジクロロメタンを加えて希釈し、 チォ硫酸ナトリウム水溶液と飽和炭酸水素ナトリウム水溶液にて洗浄を行い、無水硫 酸マグネシウムにて乾燥、溶媒留去し、得られた混合物をシリカゲルカラムクロマトグ ラフィ一にて精製し、 N6 ァセチル一 3' , 5' -0- (テトライソプロピルジシロキサン -1, 3 ジィル) -2' -0- (2 シァノエトキシメチル)アデノシンを得た(20 lmg; 収率 45%)。
'H-NMRCCDCl ): δ 0.98-1. ll(m, 28H) ;2.62(s, 3H) ;2.69 (td, 2H
3
, 6.5, J=l.5Hz) ;3.81-3.89 (m, 1H) ;4.02— 4.09 (m, 2H) ;4.17(d, 1 H, J = 9.4Hz) ;4.28 (d, 1H, J=13.4Hz) ;4.50 (d, 1H, J = 4.5Hz) ;4.67( dd, 1H, J = 8.8, 4.5Hz) ;5.02(d, 1H, J = 7.0Hz) ;5.08 (d, 1H, J = 7. OH z) ;6. 10(s, 1H) ;8.34 (s, 1H) ;8.66(s, 1H) ;8.67(s, 1H)
ESI-Mass:636[M + H] +
工程 2 N£—ァセチノレー 2'— O—(2—シァノエトキシメチノレ)アデノシンの經造
工程 1で得た N6 ァセチルー 3', 5'—O—(テトライソプロピルジシロキサン 1, 3 ージィノレ) 2, 一 O (2 シァノエトキシメチノレ)アデノシン 300mg(0.47mmol)を 、 0. lmLの酢酸と 2mLの 0· 5Mテトラプチルアンモニゥムフロリドの THF溶液に溶 解し、室温で 2時間撹拌した。反応終了後、得られた反応混合物をシリカゲルカラム クロマトグラフィーにて精製し、 目的化合物を得た(160mg;収率 86%)。
— NMR(DMSO— d6): δ 2.25(s, 3H) ;2.53— 2.68 (m, 2H) ;3.41— 3 .46 (m, 1H) ;3.56— 3.64 (m, 2H) ;3.69— 3.73 (m, 1H) ;4.00— 4.01( m, 1H) ;4.36-4.37 (m, 1H) ;4.72— 4.78 (m, 3H) ;5.20 (bt, 2H) ;5.41 (d, 1H, J=5.2Hz) ;6.17(d, 1H, J = 5.7Hz) ;8.66(s, 1H) ;8.72(s, 1H); 10.72(s, 1H)
ESI-Mass:415[M + Na] +
参考例 7 N£—ァセチノレー 2'— O—(2 シァノエトキシメチノレ)アデノシン
工程 N£ ァセチルー 3', 5'—O—(テトライソプロピルジシロキサン 1, 3—ジィ ル) 2'— O メチルチオメチルアデノシンの製造
15gの N6 ァセチル一 3', 5, 一O— (テトライソプロピルジシロキサン一 1, 3 ジィ ノレ)アデノシン(27.4mmol)を lOOmLのジメチノレスノレホキシド、 80mLの無水酢酸 、 80mLの酢酸の混合溶液に溶解し、室温で終夜撹拌した。 150gの炭酸水素ナトリ ゥムを 1Lの水に懸濁したものを調製し、ここに反応混合物を注いだ後、酢酸ェチル にて抽出を行い、溶媒留去した。残渣を再度酢酸ェチルに溶解し、水にて洗浄を行 い、無水硫酸ナトリウムにて乾燥、濃縮した。得られた混合物をシリカゲルカラムクロ マトグラフィ一にて精製し、 N6 ァセチル一 3' , 5' -0- (テトライソプロピルジシロ キサン一 1, 3—ジィル) 2'—O メチルチオメチルアデノシンを得た。 (7· 2g;収 率 52%)
'H-NMRCCDCl ): δ 0.96-1. ll(m, 28H) ;2.20(s, 3H) ;2.61(s, 3H)
3
;4.03 (dd, 1H, 13.4, 2.4Hz) ;4. 18(d, 1H, J = 9.1Hz) ;4.27(d, 1H, J = 13.4Hz) ;4.63-4.71 (m, 2H) ;5.00 (d, 1H, J=ll.5Hz) ;5.07(d, 1H, J = 11.5Hz) ;6.09 (s, 1H) ;8.31 (s, 1H) ;8.65 (s, 1H) ;8.69 (s, 1H) ESI-Mass:634[M + Na] +
工程 2 N£ ァセチルー 3', 5'—Ο—(テトライソプロピルジシロキサン 1, 3 ジィ ル) 2'— Ο—(2—シァノエトキシメチノレ)アデノシンの鍵造
49.0gの工程 1で得た Ν6 ァセチルー 3', 5'— O— (テトライソプロピルジシロキ サン 1, 3 ジィノレ) 2, 一 O メチノレチオメチノレアデノシン(80· lmmol)と 142g の 3 ヒドロキシプロピオ二トリル(2. OOmol)とを混合し、 500mLの THFに溶解した 。モレキュラーシーブス 4Aを加えて乾燥し、 45°Cに冷却した。 21· 6gの N ョード スクシンイミド(96· lmmol)を加え、次いで 24· 2gのトリフルォロメタンスルホン酸(1 61mmol)を加えた後、 45°Cで 20分間撹拌した。反応終了後、冷却したままトリエ チルァミンを加えて中和し、ジクロロメタンにて希釈、チォ硫酸ナトリウム水溶液と飽和 炭酸水素ナトリウム水溶液にて洗浄を行い、溶媒留去した。得られた反応混合物を 酢酸ェチルに溶解し、水と飽和食塩水にて洗浄を行い、無水硫酸ナトリウムにて乾 燥、溶媒留去し、へキサンと酢酸ェチルを用いた再結晶、及びシリカゲルカラムクロ マトグラフィ一にて精製し、 N6 ァセチル一 3' , 5' -0- (テトライソプロピルジシロ キサン一 1, 3 ジィル) 2'—〇ー(2 シァノエトキシメチル)アデノシンを得た。 (4 5.6g;収率 90%)。
'H-NMRCCDCl ): δ 0.98-1. ll(m, 28H) ;2.62(s, 3H) ;2.69 (td, 2H
3
, 6.5, 1.5Hz) ;3.81-3.89 (m, 1H) ;4.02— 4.09 (m, 2H) ;4.17(d, 1H , J = 9.4Hz) ;4.28 (d, 1H, J=13.4Hz) ;4.50 (d, 1H, J = 4.5Hz) ;4.67(d d, 1H, J = 8.8, 4.5Hz) ;5.02(d, 1H, J = 7.0Hz) ;5.08 (d, 1H, J = 7.0Hz ) ;6. 10(s, 1H) ;8.34 (s, 1H) ;8.66(s, 1H) ;8.67(s, 1H)
ESI-Mass:635.5[M + H] +
工程 3 N£—ァセチノレー 2'— O—(2 シァノエトキシメチル)アデノシンの製造
44gの工程 2で得た N6 ァセチルー 3,, 5, -0- (テトライソプロピルジシロキサン -1, 3 ジィル) 2'—〇ー(2 シァノエトキシメチル)アデノシン(69mmol)を、 1 50m:Lの THFiこ溶角早し、 13.4gのトリエチノレアミントリスヒドロフロリド(83mmol)を 50 mLの THFに溶解したものを調製し、これを加え、 45°Cで 1時間撹拌した。反応終了 後、 50mLのへキサンを加えて氷冷下で撹拌し、析出した物を吸引ろ過し、 目的化 合物を得た。 (29g;収率 定量的)。
参考例 8 —フエノキシァセチルー 2' -0- (2 シァノエトキシメチル)グアノシン 工程 —フエノキシァセチルー 3' .5' -0- (テトライソプロピルジシロキサン 1 .3 ジィル)—2'— O—(2 シァノエトキシメチル)グアノシンの鍵造
アルゴン雰囲気下、 2.0gの N2 フエノキシァセチルー 3,, 5,一 O— (テトライソプ 口ピルジシロキサン一 1, 3 ジィノレ)グアノシン(3· Ommol)を 16mLの THFに溶解 し、 0.99gのメチノレチオメチノレ 2 シァノエチノレエーテノレ(7.6mmol)、 1. Ogのモ レキユラーシーブス 4Aを加え、 45°Cで 10分間攪拌した。 0.68gのトリフルォロメタ ンスルホン酸(4.5mmol)の 5mLの THF溶液を加え攪拌した後、 1.02gの N ョー ドスクシンイミド (4.5mmol)を加え、 15分間攪拌した。反応液に飽和炭酸水素ナトリ ゥム水溶液を加え、ろ過後酢酸ェチルにて抽出、有機層を 1Mのチォ硫酸水素ナトリ ゥム水溶液にて洗浄、水、次いで飽和塩化ナトリウム水溶液にて洗浄し、無水硫酸マ グネシゥムにて乾燥、溶媒留去した。得られた残渣をシリカゲルクロマトグラフィーに て精製し、 N2—フエノキシァセチルー 3' , 5' -0- (テトライソプロピルジシロキサン -1, 3 ジィル) 2'—〇ー(2 シァノエトキシメチル)グアノシンを得た(2· Og;収 率 89%)。
'H-NMRCCDCl ): δ 0.99-1. ll(m, 28H) ;2.59— 2.77 (m, 2H) ;3.8
3
2-4.05 (m, 3H) ;4.15(d, 1H, J = 9.3Hz) ;4.25— 4.35 (m, 2H) ;4.52— 4.56 (dd, 1H, J = 9.3, 4.3Hz) ;5.00, 5.07(2d, 2H, J = 7.2Hz) ;5.95(s , 1H)6.99-7.12(m, 3H) ;7.35— 7.40 (m, 2H) ;8.09(s, 1H) ;9.38 (br . s, 1H) ;11.85 (br. s, 1H)
ESI-Mass:766[M + Na] +
M
2.83mLの 1Mテトラプチルアンモニゥムフロリドの THF溶液(2.83mmol)に 0.1 4mLの酢酸(0. 14mmol)を加え、ケィ素置換基を脱離するための試薬を調整した 。工程 1で得た N2 フエノキシァセチルー 3', 5'— O— (テトライソプロピルジシロキ サン 1, 3 ジィル) 2'—〇ー(2 シァノエトキシメチル)グアノシン 1· 0g(l.35 mmol)を 2.83mLの THFに溶解し、調整したケィ素置換基を脱離するための試薬 を加え、アルゴン雰囲気下室温で 1時間攪拌した。反応液を減圧下濃縮後、ジクロロ メタンに溶解しシリカゲルクロマトグラフィーを用いて精製し、 目的化合物を得た(0.6 7g;収率 99%)。
— NMR(DMSO d6): δ 2.59— 2.66 (m, 2H) ;3.41— 3.63 (m, 4H); 3.98 (m, 1H) ;4.32 (m, 1H) ;4.58— 4.62 (t, 1H, J = 5.3Hz) ;4.71—4.7 8(dd, 2H, J=13. 1, 6.8Hz) ;4.87(s, 2H) ;5.12(s, 1H)5.37(s, 1H) ;5. 97 (d, 1H, J = 6. lHz)6.96— 6.99 (m, 3H) ;7.28— 7.34 (m, 2H) ;8.30 (s , 1H) ; 11. 78 (br. s, 2H)
ESI— Mass : 500 [M— H]—
参考例 9 —フエノキシァセチルー 2' -0- (2 シァノエトキシメチル)グアノシン 工程 —フエノキシァセチルー 3' . 5' -0- (テトライソプロピルジシロキサン 1 . 3 ジィル)—2'— O—(2 シァノエトキシメチル)グアノシンの鍵造
アルゴン雰囲気下、 36gの N2 フエノキシァセチルー 3, , 5, 一 O— (テトライソプロ ピルジシロキサン— 1 , 3 ジィル)グアノシン(55mmol)を 380mLの THFに溶解し 、 17. 2gのメチノレチ才メチノレ 2 シァノエチノレエーテノレ(131mmol)、 36gのモレキ ユラーシーブス 4Aを加え、 45°Cで 10分間攪拌した。 12· 3gのトリフルォロメタンス ルホン酸(82mmol)を滴下した後、 18. 4gの N ョードスクシンイミド(82mmol)を 加え、 20分間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、ろ過後酢 酸ェチルにて抽出、有機層を 1Mのチォ硫酸水素ナトリウム水溶液にて洗浄、水、次 いで飽和塩化ナトリウム水溶液にて洗浄し、無水硫酸マグネシウムにて乾燥、溶媒留 去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、 N2 フエノキシァセ チルー 3, , 5, 一 O (テトライソプロピルジシロキサン 1 , 3 ジィル)ー2, 一 O—(2 ーシァノエトキシメチノレ)グアノシンを得た(32g;収率 79%)。
M
47gの工程 1で得た N2 フエノキシァセチルー 3, , 5, -0- (テトライソプロピルジ シロキサン 1 , 3 ジィル) 2'— O—(2 シァノエトキシメチノレ)グアノシン(63m0 • 563mol)を 280mLの セトニトリノレ ίこ溶角早し、 15. 3gのトリェチノレ ミントリスヒドロ フロリド(95m0. 563mol)を加え、 35°Cで 2時間攪拌した。反応液を lOOmLのへキ サンにて抽出し、残ったァセトニトリル層に 30mLの水を加え、室温で 5分間攪拌した 。生じた沈殿をろ過し、冷却した水とァセトニトリルとの混合溶媒(1 : 1)で洗浄、乾燥 し目的化合物を得た(22g;収率 69%)。
実施例 1 2'— O—(2 シァノエトキシメチノレ)ゥリジン
50. 6gの 3, , 5, 一O—(テトライソプロピルジシロキサン 1 , 3 ジィノレ)ゥリジン(1 04mmol)を 104mLの THFに溶解し、アルゴン雰囲気下 0°Cで、 0. 76mLのメタン スルホン酸(10· 4mmol)、 158gのヨウ素(624mmol)、 16. 4gのメチルチオメチル
2—シァノエチルエーテル(125mmol)を加えた。 45分後、飽和炭酸水素ナトリウ ム水溶液と飽和チォ硫酸ナトリウム水溶液の混合溶媒に反応溶液を加えて、酢酸ェ チルで抽出した。有機層を飽和食塩水で洗浄した。硫酸マグネシウムで乾燥し、減 圧濃縮して粗生成物を得た。
得られた粗生成物に 300mLのメタノールを加え、アルゴンガス雰囲気下、室温で 撹拌しながら、 11. 6gのアンモニゥムフロリドを加えた。 50°Cに昇温し、 7. 5時間撹 拌した。反応終了後、ァセトニトリルを加えて不溶物をろ去した。ろ液をへキサンで洗 浄した後、減圧濃縮し、 目的化合物を得た(21. 5g ;収率 63%)。
実施例 2 NA—ァセチノレー 2 '— O—(2—シァノエトキシメチノレ)シチジン
70gの N4—ァセチル一 3 ' , 5 '— O— (テトライソプロピルジシロキサン一 1 , 3—ジィ ル)シチジン(133mmol)を 133mLの THFに溶解し、アルゴン雰囲気下 0°Cで、 10 . 3mLのメタンスノレホン酸(160mmol)、 201gのヨウ素(798mmol)、 19. 9gのメチ ルチオメチル 2—シァノエチルエーテル(200mmol)を加えた。 30分後、飽和炭酸 水素ナトリウム水溶液と飽和チォ硫酸ナトリウム水溶液の混合溶媒に反応溶液を加え て、酢酸ェチルで抽出した。有機層を飽和食塩水で洗浄した。硫酸マグネシウムで 乾燥し、減圧濃縮して粗生成物を得た。
得られた粗生成物に 266mLの THFを加え、アルゴンガス雰囲気下、室温で撹拌 しながら、 25. 9mLのトリエチルァミントリスヒドロフロリドを加えた。 45°Cに昇温し、 1 時間撹拌した。反応終了後、室温まで放冷して析出した沈殿物を THFで洗浄し、 目 的化合物を得た(42. Og ;収率 86%)。
実施例 3 N£—ァセチノレー 2 '— O—(2—シァノエトキシメチノレ)アデノシン
60gの N4—ァセチル一 3 ' , 5 '— O— (テトライソプロピルジシロキサン一 1 , 3—ジィ ル)アデノシン(109mmol)を 109mLの THFに溶解し、アルゴン雰囲気下 0°Cで、 ft持しなカら 1. 04gのメタンスノレホン酸(10. 9mmol)、 165. 6gのヨウ素(654mmo 1)、 21. 3gのメチルチオメチノレ 2—シァノエチルエーテル(164mmol)を加えた。 2 時間後、飽和炭酸水素ナトリウム水溶液と飽和チォ硫酸ナトリウム水溶液の混合溶媒 に反応溶液を加えて、酢酸ェチルで抽出した。集めた有機層を飽和食塩水で洗浄し た。硫酸マグネシウムで乾燥し、減圧濃縮して粗生成物を得た。
得られた粗生成物に 218mLの THFを加え、アルゴンガス雰囲気下室温で撹拌し ながら、 21. 3mLのトリェチルァミントリスヒドロフロリドを加えた。 45°Cに昇温し、 3時 間撹拌した。反応終了後、室温まで放冷して析出した沈殿物をろ取し、 THFおよび メタノールと酢酸ェチルとの混合溶媒(1 : 9)で洗浄し、 目的化合物を得た(28. 4g ; 収率 67%)。
実施例 4 N2—フエノキシァセチルー 2 ' - 0 - (2 シァノエトキシメチル)グアノシン 52. 8gの N2 フエノキシァセチル一 3 ' , 5,一O— (テトライソプロピルジシロキサン - 1 , 3 ジィノレ)グアノシン(80mmol)を 180mLの THFに溶解し、アルゴン雰囲気 下 0。Cで、 ft禅しなカら 7· 69gのメタンスノレホン酸(80mmol)、 1. 20gのトリフノレ才ロ メタンスノレホン酸(8mmol)、 203. Ogのヨウ素(800mmol)、 31. 5gのメチノレチオメ チル 2 シァノエチルエーテル(240mmol)を加えた。 1時間後、飽和炭酸水素ナ トリウム水溶液と飽和チォ硫酸ナトリウム水溶液の混合溶媒に反応溶液を加えて、酢 酸ェチルで抽出した。集めた有機層を飽和食塩水で洗浄した。硫酸マグネシウムで 乾燥し、減圧濃縮して粗生成物を得た。
得られた粗生成物に 170mLの THFを加え、アルゴンガス雰囲気下室温で撹拌し ながら、 15. 6mLのトリェチルァミントリスヒドロフロリドを加えた。 35°Cに昇温し、 2時 間撹拌した。反応終了後、室温まで放冷して水 17mLを加え、析出した沈殿物をろ 取し、 目的化合物を得た(16. 7g ;収率 42%)。
実施例 5 5 ' O (4. 4 'ージメトキシトリチノレ) 2 ' O (2 シァノエトキシメチ ノレ)ー5 メチルゥリジン 3 '—〇ー(2 シァノエチノレ N, N ジイソプロピルホスホ ロアミダイト)
工程 3 ' . 5 '—O—(テトライソプロピルジシロキサン 1 , 3—ジィル)ー5—メチル ゥリジンの製造
27gの 5 メチノレゥリジン(105mmol)に 300mlのピリジンをカロえ、水冷下 35gの 1 , 3—ジクロロテトライソプロピルジシロキサン(l lOmmol)を滴下し室温で 4時間攪拌し た。反応液を減圧濃縮した後、酢酸ェチルで抽出し飽和食塩水で洗浄した。硫酸マ グネシゥムで乾燥し、減圧濃縮して粗生成物の 3 ' , 5 '— O (テトライソプロピルジシ ロキサン 1, 3—ジィル)ー5—メチルゥリジンを 54· 6g得た。
工程 2 2' O (2 シァノエトキシメチノレ) 5 メチノレゥリジンの鍵造
アルゴン雰囲気下、 45gの工程 1で得た粗生成物(89. 9mmol)を 90mLの THF ίこ溶角早し、 0。Cで 0. 58mLのメタンスノレホン酸(8. 99mmol)、 137gのヨウ素(539m mol)、 14. lgのメチノレチオメチノレ 2 シァノエチノレエーテノレ(107· 8mmol)をカロ えた。 30分後、飽和炭酸水素ナトリウム水溶液と飽和チォ硫酸ナトリウム水溶液の混 合溶媒に反応溶液を加えて、酢酸ェチルで抽出した。有機層を飽和食塩水で洗浄 した。硫酸マグネシウムで乾燥し、減圧濃縮して粗生成物を得た。
得られた粗生成物に 250mLのメタノールを加え、アルゴンガス雰囲気下、室温で 撹拌しながら、 10. Ogのアンモニゥムフロリドを加えた。 50°Cに昇温し、 11時間撹拌 した。反応終了後減圧濃縮し、残渣にァセトニトリル(300ml)とメタノール(90ml)を 加えて不溶物をろ去した。ろ液をへキサンで洗浄した後、減圧濃縮しエタノール(15 0ml)を用いて、 2' -0- (2 シァノエトキシメチル) 5 メチルゥリジンを析出した (23. 3g;収率 76%)。
'H-NMRCD 0): δ 1. 79(s, 3H) ;2. 58— 2. 74 (m, 2H) ;3. 68— 3. 84 (m
2
, 4H) ;3. 99-4.03 (m, 1H) ;4. 23— 4. 32 (m, 2H) ;4. 74— 4. 83 (m, 2H); 5. 93 (d, 1H, J = 3Hz) ;7. 62(s, 1H)
工程 3 5' O (4.4'ージメトキシトリチノレ) 2' O (2 シァノエトキシメチル) 5—メチルゥリジンの製造
工程 2で得た 20. 7gの 2' -0- (2 シァノエトキシメチル)ー5 メチルゥリジン(6 0. 6mmol)に脱水テトラヒドロフラン(150ml)、脱水ピリジン(150ml)を加えた後、 活性化したモレキュラーシーブス 4A(50g)、 4、 4,ージメトキシトリチルクロリド(22. 6 g、 66. 7mmol)を加えて室温下終夜攪拌した。反応終了後、反応液にメタノール(5 ml)を加え、 15分間攪拌した後、反応液を吸引ろ過し、酢酸ェチルで洗浄し、ろ液を 濃縮した。残渣に飽和炭酸水素ナトリウム水溶液を加え、酢酸ェチルで抽出操作を 行い、有機層を飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥、ろ過、濃縮した 。得られた残渣をシリカゲルクロマトグラフィーにて精製し、 5' -0- (4, 4'—ジメトキ シトリチル) 2' -0- (2 シァノエトキシメチル) 5 メチルゥリジンを得た(35· 6 g;収率 91.2%)。
'H-NMRCCDCl ): δ 2.05(s, 1H) ;2.62— 2.68 (m, 3H) ;3.41— 3.58 (
3
m, 2H) ;3.79(s, 6H) ;3.84 (t, 2H, J = 6.1Hz) ;4.03— 4.13(m, 2H) ;4. 38-4.41 (m, 1H) ;4.48— 4.54 (m, 1H) ;4.91, 5.05(2d, 2H, J = 6.9Hz ) ;6.04 (d, 1H, J = 3.2Hz) ;6.83— 6.86 (m, 4H) ;7.22— 7.42 (m, 10H); 7.63(d, 1H, J=l.1Hz) ;8.96 (br. s, 1H)
工程 4 5' O (4.4'ージメトキシトリチノレ) 2' O (2 シァノエトキシメチノレ )ー5 メチルゥリジン 3'—〇ー(2 シァノエチノレ N, N ジイソプロピルホスホロ アミダイト)の製造
工程 3で得た 38gの 5' O (4, 4'ージメトキシトリチル) 2' O (2 シァノエ トキシメチル) 5 メチルゥリジン(59mmol)を脱水ァセトニトリル(350ml)に溶解し 、活性化したモレキュラーシーブス 4A(15g)、ジイソプロピルアミノテトラゾリド(11· 1 g、 64.9mmol)、ビス(N、 N ジイソプロピルァミノ)シァノエチルホスファイト(19.6 g、 64.9mmol)を加え、 40°Cで 3時間攪拌した。反応液をろ過し、ろ液を濃縮した。 得られた残渣をシリカゲルクロマトグラフィーにて精製し、 目的化合物を得た (44g;収 率 88%)。
3iP NMR(CDC1 ): δ 152.072 53.108
3
産業上の利用可能性
本発明によれば、安価に簡便に大量に種々リボ核酸誘導体を製造するための中間 体として有用なリボ核酸誘導体(3)を製造することができる。また、従来法よりも高濃 度において反応を実施することが可能であるので、反応溶媒の使用量を減らすこと ができる。
したがって、本発明によれば、遺伝子解析の RNAプローブ、 RNA医薬品素材(ァ ンチセンス RNA、リボザィム、 RNAiを利用した遺伝子発現制御)、人工酵素、ァプタ マーとして有用なオリゴ RNA(B)の製造に使用することができるホスホロアミダイト化 合物 (A)を安価に製造することができる。

Claims

請求の範囲 次の一般式(1)で表されるリボ核酸誘導体に次の一般式(2)で表されるモノチオアセ タール化合物を反応させて次の一般式 (3)で表されるリボ核酸誘導体を製造する方 法において、酸存在下、モノチオアセタール化合物(2)の硫黄原子をハロゲン化す るための試薬としてヨウ素を用いることを特徴とする、次の一般式(3)で表されるリボ 核酸誘導体の製造方法。
[化 1]
Figure imgf000047_0001
式(1) (2)及び(3)中、 Bzは、保護基を有して!/、てもよ!/、核酸塩基を表し、 WG1は 、電子吸引性基を表し、 R3は、アルキル又はァリールを表し、 Aは、次の一般式 (4a) 又は(4b)で表されるケィ素置換基を表す。
[化 2]
Figure imgf000047_0002
( 4 a ) ( 4 b )
式(4a)及び(4b)中、 R6は、アルキルを表す。
酸がメタンスルホン酸又はトリフルォロメタンスルホン酸とメタンスルホン酸との混合酸 である、請求項 1記載のリボ核酸誘導体の製造方法。
R3がメチルである、請求項 1又は 2のいずれかに記載のリボ核酸誘導体の製造方法
WG1がシァノである、請求項 1 3のいずれかに記載のリボ核酸誘導体の製造方法 下記工程を含む、次の一般式 (A)で表されるホスホロアミダイト化合物の製造方法。
[化 3]
Figure imgf000048_0001
(A)
式 (A)中、 Bzは、保護基を有していてもよい核酸塩基を表し、 R2a、 R2bは、同一又は 異なって、アルキルを表す力、、又は、 R2a、 R2bが隣接する窒素原子と一緒になつて形 成する、 5〜6員の飽和アミノ環基を表す。力、かる飽和アミノ環基は、窒素原子の他に 環構成原子として酸素原子又は硫黄原子を 1個有していてもよい。
Figure imgf000048_0002
WG2は、 同一又は異なって、電子吸引性基を表す。 R1は、次の一般式(5)で表される置換基 を表す。
[化 4]
Figure imgf000048_0003
( 5 )
式(5)中、 Ru、 R12、 R13は、同一又は異なって、水素又はアルコキシを表す。
工程:
次の一般式(1)で表されるリボ核酸誘導体に次の一般式(2)で表されるモノチオアセ タール化合物を反応させて次の一般式(3)で表されるリボ核酸誘導体を製造するェ 程において、酸存在下、モノチオアセタール化合物(2)の硫黄原子をハロゲン化す るための試薬としてヨウ素を用いることによって、次の一般式(3)で表されるリボ核酸 誘導体を製造する工程。
[化 5]
Figure imgf000049_0001
( 1 )
( 3 ) 式(1)、(2)及び(3)中、 Bzは、保護基を有して!/、てもよ!/、核酸塩基を表し、 WG1は 、電子吸引性基を表し、 は、アルキル又はァリールを表し、 Aは、次の一般式 (4a) 又は(4b)で表されるケィ素置換基を表す。
[化 6]
R6 R6 R6
1
Si-0-Si— —Si-
R6 R6 R6
( 4 a ) ( 4 b )
式(4a)及び(4b)中、 R6は、アルキルを表す。
[6] 酸がメタンスルホン酸又 酸との混合酸 である、請求項 5記載のホスホロアミダイト化合物の製造方法。
[7] R3がメチルである、請求項 5又は 6のいずれかに記載のホスホロアミダイト化合物の 製造方法。
[8] WG1がシァノである、請求項 5〜7のいずれかに記載のホスホロアミダイト化合物の製 造方法。
[9] 下記工程 a〜dを含む、次の一般式 (A)で表されるホスホロアミダイト化合物の製造方 法。
[化 7]
Figure imgf000049_0002
(A) 式 (A)中、 Bzは、保護基を有していてもよい核酸塩基を表し、 R2a、!Tbは、同一又は 異なって、アルキルを表す力、、又は、 R , が隣接する窒素原子と一緒になつて形 成する、 5〜6員の飽和アミノ環基を表す。力、かる飽和アミノ環基は、窒素原子の他に 環構成原子として酸素原子又は硫黄原子を 1個有していてもよい。
Figure imgf000050_0001
WG2は、 同一又は異なって、電子吸引性基を表す。 R1は、次の一般式(5)で表される置換基 を表す。
[化 8]
Figure imgf000050_0002
( 5 ) 式(5)中、 RU、 R12、 R13は、同一又は異なって、水素又はアルコキシを表す。
工程 a :
次の一般式(1)で表されるリボ核酸誘導体に次の一般式(2)で表されるモノチオアセ タール化合物を反応させて次の一般式(3)で表されるリボ核酸誘導体を製造するェ 程において、酸存在下、モノチオアセタール化合物(2)の硫黄原子をハロゲン化す るための試薬としてヨウ素を用いることによって、次の一般式(3)で表されるリボ核酸 誘導体を製造する工程、
[化 9]
Figure imgf000050_0003
式(1)、 (2)及び(3)中、 Bz、 WG1は、前記と同義である。 R3は、アルキル又はァリー ルを表し、 Aは、次の一般式 (4a)又は (4b)で表されるケィ素置換基を表す。
[化 10]
Figure imgf000051_0001
(4 a) (4 b)
式(4a)及び(4b)中、 R6は、アルキルを表す。
工程 b:
工程 aにおいて製造されるリボ核酸誘導体(3)に、ケィ素置換基を脱離するための試 薬を作用させることによって、次の一般式(7)で表されるリボ核酸誘導体を製造する 工程、
[化 11]
Figure imgf000051_0002
式(3)及び(7)中、 A、 Bz、 WG1は、前記と同義である。
工程 c:
工程 bにお!/、て製造されるリボ核酸誘導体(7)の 5'位の水酸基に、次の一般式(8) で表される R 3を作用させ、酸性条件下において脱離する保護基 (R1)を導入する ことによって、次の一般式(9)で表されるリボ核酸誘導体を製造する工程、
[化 12]
Figure imgf000051_0003
(7) (9) 式(7)、(8)及び(9)中、 Bz、
Figure imgf000051_0004
WG1は、前記と同義である。 X3は、ハロゲンを表す 工程 d:
工程 cにおいて製造されるリボ核酸誘導体(9)にホスホロアミダイト化試薬と、必要に 応じて活性化剤とを作用させることによって、 3'位の水酸基がホスホロアミダイト化さ れた、次の一般式 (A)で表されるホスホロアミダイト化合物を製造する工程。
[化 13]
Figure imgf000052_0001
式(9)及び (A)中、 Bz、
Figure imgf000052_0002
、 R2b、 WG2は、前記と同義である。
[10] 酸がメタンスルホン酸又はトリフルォロ Rメタンスルホン メタンスルホン酸との
2 酸と 混合酸 である、請求項 9記載のホスホロアミダイト化合物の製造方法。
[11] R3がメチルである、請求項 9又は 10のいずれかに記載のホスホロアミダイト化合物の 製造方法。
[12] WG1がシァノである、請求項 9〜; 11のいずれかに記載のホスホロアミダイト化合物の
)R N'
製造方法。
[13] ホスホロアミダイト化試薬力 次の一般式(10a)又は(10b)で表される化合物である
、請求項 9〜; 12のいずれかに記載のホスホロアミダイト化合物の製造方法。
[化 14]
R 2a 2b
N
WG
R2a
( 1 0 a ) ( 1 o 式(10a)及び(10b)中、 R , R bは、同一又は異なって、アルキルを表す力、、又は、 R2a、 R2bが隣接する窒素原子と一緒になつて形成する、 5〜6員の飽和アミノ環基を 表す。力、かる飽和アミノ環基は、窒素原子の他に環構成原子として酸素原子又は石) 黄原子を 1個有していてもよい。 WG2は、電子吸引性基を表し、 X1は、ハロゲンを表 す。
[14] 工程 dにおいて使用する活性化剤が、 1H—テトラゾール、 5—ェチルチオテトラゾー ノレ、 5—べンジルメルカプト 1H—テトラゾーノレ、 4, 5—ジクロ口イミダゾーノレ、 4, 5 ージシァノイミダゾール、ベンゾトリアゾールトリフラート、イミダゾールトリフラート、ピリ ジニゥムトリフラート、 N, N ミン又は 2, 4, 6—コリジン/ N
—メチルイミダゾールである、請求項 9〜; 13のいずれかに記載のホスホロアミダイト化 合物の製造方法。
請求項 5〜; 14のいずれかに記載の製造方法において製造されるホスホロアミダイト 化合物を使用することを特徴とする、次の一般式 (B)で表されるオリゴ RNAの製造 方法。
[化 15]
Figure imgf000053_0001
式 (B)中、各 Bは、それぞれ独立して、核酸塩基又はその修飾体を表し、各 Qは、そ れぞれ独立して、 O又は Sを表し、各 Yは、アルキル、アルコキシ、アルキルチオ、 O— S NR2aR2b (R2a R2bは、同一又は異なって、アルキルを表す力、、又は、 R2a R2b が隣接する窒素原子と一緒になつて形成する、 5 6員の飽和アミノ環基を表す。 かる飽和アミノ環基は、窒素原子の他に環構成原子として酸素原子又は硫黄原子を 1個有していてもよい。)を表し、各 Rは、それぞれ独立して、 H、水酸基、ハロゲン、ァ ルコキシ、アルキルチオ、ァミノ、ァノレキノレアミノ、ジァノレキノレアミノ、アルケニルォキシ 、アルケニルチオ、アルケニルァミノ、ジアルケニルアミ入アルキニルォキシ、アルキ 二ルチオ、ァノレキニノレアミノ、ジアルキニルァミノ又はアルコキシアルキルォキシを表 す力 少なくとも 1つは水酸基を表す。但し、オリゴ RNA(B)を構成する核酸モノマー ユニットの Rが水酸基である場合、 Yは O—を表す。 Zは、 H、リン酸基又はチォリン酸 基を表し、 nは、;!〜 200の範囲内にある整数を表す。
PCT/JP2007/065070 2006-08-02 2007-08-01 Method for introducing nucleic-acid-protecting group WO2008016079A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07791750.8A EP2053054B1 (en) 2006-08-02 2007-08-01 Method for introducing nucleic-acid-protecting group
JP2008527773A JP5168145B2 (ja) 2006-08-02 2007-08-01 核酸保護基の導入方法
KR1020097004292A KR101405632B1 (ko) 2006-08-02 2007-08-01 핵산 보호기의 도입 방법
CN2007800362424A CN101522701B (zh) 2006-08-02 2007-08-01 核酸保护基的导入方法
US12/375,755 US8158774B2 (en) 2006-08-02 2007-08-01 Method for introducing a nucleic-acid protecting group
CA2659703A CA2659703C (en) 2006-08-02 2007-08-01 Method for introducing a nucleic-acid-protecting group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-210439 2006-08-02
JP2006210439 2006-08-02

Publications (1)

Publication Number Publication Date
WO2008016079A1 true WO2008016079A1 (en) 2008-02-07

Family

ID=38997254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065070 WO2008016079A1 (en) 2006-08-02 2007-08-01 Method for introducing nucleic-acid-protecting group

Country Status (7)

Country Link
US (1) US8158774B2 (ja)
EP (1) EP2053054B1 (ja)
JP (1) JP5168145B2 (ja)
KR (1) KR101405632B1 (ja)
CN (1) CN101522701B (ja)
CA (1) CA2659703C (ja)
WO (1) WO2008016079A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079813A1 (ja) * 2009-01-07 2010-07-15 日本新薬株式会社 イノシン誘導体の製造方法
WO2021070507A1 (ja) * 2019-10-08 2021-04-15 住友化学株式会社 配糖体化合物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3848381A4 (en) * 2018-09-07 2022-05-11 Sumitomo Chemical Company Limited METHOD OF PREPARING A GLYCOSIDE COMPOUND

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054931A2 (en) * 2001-01-10 2002-07-18 Bristol Myers Squibb Company P Alpha-aminoboronic acids prepared by novel synthetic methods
WO2002088062A1 (fr) * 2001-04-23 2002-11-07 Eisai Co., Ltd. Procede de preparation de derives d'alcool
WO2006022323A1 (ja) 2004-08-26 2006-03-02 Nippon Shinyaku Co., Ltd. ホスホロアミダイト化合物及びオリゴrnaの製法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580870B2 (ja) 2003-09-02 2010-11-17 株式会社キラルジェン リボヌクレオチド又はリボヌクレオチド誘導体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054931A2 (en) * 2001-01-10 2002-07-18 Bristol Myers Squibb Company P Alpha-aminoboronic acids prepared by novel synthetic methods
WO2002088062A1 (fr) * 2001-04-23 2002-11-07 Eisai Co., Ltd. Procede de preparation de derives d'alcool
WO2006022323A1 (ja) 2004-08-26 2006-03-02 Nippon Shinyaku Co., Ltd. ホスホロアミダイト化合物及びオリゴrnaの製法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Protocols for oligonucleotides and analogs", 1993, HUMAN PRESS INC.
ALUL ET AL., NUCLEIC ACIDS RESEARCH, vol. 19, 1991, pages 1527
CHEM. EUROP. J., vol. 4, no. 6, 1998, pages 1043
CSJ: THE CHEMICAL SOCIETY OF JAPAN, FOURTH EDITION: "Jikken Kagaku Koza 19 Yuki Gosei I Tanka Suiso Halogen Kagobutsu", MARUZEN CO. LTD., article "Heisei 4 nen 6 Gatsu 5 Nichi Hakko", pages: 476, XP003020884 *
J. FLUORINE CHEM., vol. 118, no. 1-2, 2002, pages 123
JOURNAL MOLECULAR STRUCTURE, vol. 193, 1989, pages 247
OHGI ET AL., ORGANIC LETTERS, vol. 7, 2005, pages 3477
POL. J. CHEM, vol. 67, no. 2, 1993, pages 281
See also references of EP2053054A4
WRIGHT ET AL., TETRAHEDRON LETTERS, vol. 34, 1993, pages 3373

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079813A1 (ja) * 2009-01-07 2010-07-15 日本新薬株式会社 イノシン誘導体の製造方法
WO2021070507A1 (ja) * 2019-10-08 2021-04-15 住友化学株式会社 配糖体化合物の製造方法
JP7522753B2 (ja) 2019-10-08 2024-07-25 住友化学株式会社 配糖体化合物の製造方法

Also Published As

Publication number Publication date
JP5168145B2 (ja) 2013-03-21
CA2659703A1 (en) 2008-02-07
US20090286970A1 (en) 2009-11-19
US8158774B2 (en) 2012-04-17
KR101405632B1 (ko) 2014-06-10
EP2053054A4 (en) 2013-11-06
EP2053054A1 (en) 2009-04-29
KR20090035629A (ko) 2009-04-09
EP2053054B1 (en) 2014-12-17
JPWO2008016079A1 (ja) 2009-12-24
CN101522701A (zh) 2009-09-02
CA2659703C (en) 2014-03-11
CN101522701B (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5157168B2 (ja) ホスホロアミダイト化合物及びオリゴrnaの製法
US5561225A (en) Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages
WO2019208571A1 (ja) アミダイト化合物及び該化合物を用いたポリヌクレオチドの製造方法
US8354524B2 (en) Synthesis of selenium-derivatized nucleosides, nucleotides, phosphoramidites, triphosphates and nucleic acids
EP1995253B1 (en) Method for detaching protecting group on nucleic acid
WO2018019748A1 (en) 5's-lna nucleotides and oligonucleotides
WO2008016079A1 (en) Method for introducing nucleic-acid-protecting group
US20090312534A1 (en) Method for removal of nucleic acid-protecting group
KR20080100465A (ko) 올리고 핵산의 캡핑법
WO2021070494A1 (ja) 核酸オリゴマーの製造方法
JP2013531665A (ja) オリゴヌクレオチド合成のためにn−チオ化合物を用いる新規な方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036242.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791750

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12375755

Country of ref document: US

Ref document number: 2659703

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 593/CHENP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007791750

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097004292

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU