WO2008015967A1 - Composite conductive sheet, method for manufacturing the same and application of the same - Google Patents

Composite conductive sheet, method for manufacturing the same and application of the same Download PDF

Info

Publication number
WO2008015967A1
WO2008015967A1 PCT/JP2007/064741 JP2007064741W WO2008015967A1 WO 2008015967 A1 WO2008015967 A1 WO 2008015967A1 JP 2007064741 W JP2007064741 W JP 2007064741W WO 2008015967 A1 WO2008015967 A1 WO 2008015967A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
spacer
adhesive layer
anisotropic conductive
spacer sheet
Prior art date
Application number
PCT/JP2007/064741
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Kimura
Sugiro Shimoda
Fujio Hara
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2008015967A1 publication Critical patent/WO2008015967A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/007Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for elastomeric connecting elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2414Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means conductive elastomers

Definitions

  • the present invention relates to a composite conductive sheet that can be suitably used for electrical inspection of wafers on which circuit devices such as printed circuit boards and ICs and integrated circuits are formed, a method for manufacturing the same, and an application thereof. is there.
  • circuit boards for configuring or mounting electronic components such as package LSIs such as BGA and CSP (chip scale package), MCM, and other integrated circuit devices have wiring patterns of It is necessary to inspect its electrical characteristics to confirm that it has the expected performance.
  • an inspection electrode device in which a plurality of inspection electrodes are arranged according to the grid point positions arranged in the vertical and horizontal directions, and the inspection electrode of this inspection electrode device are inspection targets. It is known how to use it in combination with an adapter that electrically connects the electrodes to be inspected on the circuit board!
  • the adapter used in this method is a printed wiring board called a pitch conversion board.
  • This adapter has a plurality of connection electrodes arranged on one side according to a pattern corresponding to the electrodes to be inspected on the circuit board to be inspected, and has the same pitch as the inspection electrodes of the inspection electrode device on the other side. Those having a plurality of terminal electrodes arranged at the positions of the lattice points are known.
  • the circuit board to be inspected and the adapter are It is expected to use an anisotropic conductive elastomer sheet as a connector.
  • This anisotropically conductive elastomer sheet has conductivity only in the thickness direction, or a number of pressure-conductive conductive portions that show conductivity only in the thickness direction when pressed. It has something.
  • an anisotropically conductive elastomer sheet those having various structures are conventionally known.
  • conductive particles exhibiting magnetism are arranged in the thickness direction in an elastic polymer material.
  • An anisotropic conductive elastomer sheet (hereinafter referred to as a “dispersion type anisotropic conductive sheet”), which is formed in such a state that the chain is formed in such a manner that the chain is formed in such a manner that the chain is dispersed in the plane direction.
  • Patent Document 2 discloses a number of conductive path forming portions extending in the thickness direction by non-uniformly dispersing conductive particles exhibiting magnetism in an elastic polymer material, and these.
  • An anisotropic conductive elastomer sheet (hereinafter referred to as an “unevenly anisotropic conductive sheet”) formed by insulating portions that insulate each other is disclosed.
  • Patent Document 3 discloses a conductive path. A step between the surface of the forming portion and the insulating portion There uneven distribution type anisotropic conductive sheet is formed is disclosed! /, Ru.
  • the dispersion type anisotropic conductive sheet can be manufactured at a low cost without using a special and expensive mold. It can be used regardless of the pattern of electrodes to be connected, and is versatile, which is advantageous compared to an unevenly distributed anisotropic conductive sheet.
  • the dispersed anisotropic conductive sheet is applied to each of the electrodes in a state where necessary insulation is ensured between the adjacent electrodes, even for a connection object having a small separation distance between the adjacent electrodes.
  • the anisotropic conductive elastomer sheet having a small thickness absorbs the variation in the height level of each electrode to be connected, and can achieve electrical connection to each of the electrodes, that is, unevenness.
  • absorption capacity is low.
  • the unevenness absorption capacity of the anisotropic conductive elastomer sheet is about 20% of the thickness of the anisotropic conductive elastomer sheet.
  • Height level variation exceeds 10 m It is difficult to achieve a stable electrical connection for the connection object.
  • a tapered movable conductor adapted to the through hole can move in the thickness direction with respect to the insulating sheet in the tapered through hole formed in the insulating sheet.
  • a composite conductive sheet consisting of a movable conductor made of metal and an insulating resin sheet
  • two anisotropic conductive elastomer sheets disposed on one side and the other side of the composite conductive sheet, respectively.
  • An anisotropic conductive connector has been proposed! /, (For example, see Patent Document 4).
  • the anisotropic conductive connector having such a composite conductive sheet, since the movable electrode in the composite conductive sheet is movable in the thickness direction, when the pressure is applied in the thickness direction, the composite conductive sheet Since the two anisotropically conductive elastomer sheets placed on one side and the other side of each other are compressed and deformed in conjunction with each other, the sum of the concave and convex absorbent capacity of the two is the uneven conductive capacity of the anisotropic conductive connector. Therefore, high unevenness absorbing ability can be obtained.
  • the thickness required to obtain the required unevenness absorption capacity is as small as each anisotropically conductive elastomer sheet, as long as it is ensured by the total thickness of two anisotropically conductive elastomer sheets. High resolution can be obtained.
  • the movable conductor of the composite conductive sheet is supported by both the insulating sheet and the anisotropic conductive elastomer sheet, and the composite conductive sheet and the anisotropic conductive elastomer
  • the composite conductive sheet and the anisotropic conductive elastomer When the sheet is separated, the movable conductor may fall off the insulating sheet, so it is practically difficult to handle the composite conductive sheet alone. Therefore, when a failure occurs in either the composite conductive sheet or the anisotropic conductive elastomer sheet in the anisotropic conductive connector, only the composite conductive sheet or the anisotropic conductive elastomer sheet is replaced with a new one. The entire anisotropically conductive connector must be replaced with a new one.
  • the movable conductor of the composite conductive sheet has a tapered through-hole formed on the insulating sheet. It is obtained by depositing metal in the through-holes to form a metal body by mechanically pressing the metal body and separating the metal body adhered to the inner surface of the through hole by mechanically pressing the metal body. .
  • Patent Document 1 Japanese Patent Laid-Open No. 51-93393
  • Patent Document 2 Japanese Patent Laid-Open No. 53-147772
  • Patent Document 3 Japanese Patent Application Laid-Open No. 61-250906
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-351702
  • the present invention has been made based on the circumstances as described above, and a first object thereof is to have a rigid conductor that can move in the thickness direction, and the rigid conductor does not fall off. Therefore, the object is to provide a composite conductive sheet that can be easily handled alone.
  • the second object of the present invention is to secure the necessary insulation between the adjacent electrodes even if the connection object has a variation in the height level of the electrodes where the distance between the adjacent electrodes is small. It is an object of the present invention to provide an anisotropic conductive connector that can reliably achieve an electrical connection to each of the electrodes in a state in which it is held.
  • a third object of the present invention is to provide a circuit device to be inspected even if the distance between the adjacent electrodes to be inspected is small and the height level of the electrodes to be inspected varies. It is an object of the present invention to provide an adapter device capable of reliably achieving electrical connection to each of the electrodes to be inspected in a state where necessary insulation is ensured between the inspection electrodes.
  • a fourth object of the present invention is to provide a circuit device that is an object to be inspected even if the distance between adjacent electrodes to be inspected is small and the height levels of the electrodes to be inspected vary. It is an object of the present invention to provide an electrical inspection device for a circuit device that can surely execute a required electrical inspection.
  • the composite conductive sheet of the present invention is integrally laminated on each of a spacer sheet in which a plurality of through-holes extending in the thickness direction are formed and both surfaces of the spacer sheet.
  • Each of the cover sheets is formed with a plurality of through holes having a diameter smaller than the diameter of the through hole of the spacer sheet corresponding to the through hole of the spacer sheet.
  • Each of the rigid conductors is formed in a flange portion having a diameter larger than the diameter of the through hole of the force bar sheet, which is positioned in the through hole of the spacer sheet, and at both ends of the flange portion.
  • the rigid conductor can be moved in the thickness direction with respect to the spacer sheet, and is formed of two terminal portions that pass through the through-hole of the cover sheet and project from the surface of the cover sheet. It is said that it is said.
  • each of the cover sheets is preferably laminated integrally with the spacer sheet via an adhesive layer.
  • the movable distance of the rigid conductor in the thickness direction of the spacer sheet is 3 to 150 ⁇ m.
  • the spacer sheet may be made of metal.
  • the method for producing a composite conductive sheet of the present invention provides a spacer sheet in which a plurality of through holes are formed according to a pattern corresponding to a pattern of electrodes to be connected, and the through holes of the spacer sheet are prepared.
  • An easily etchable metal body is formed inside,
  • An adhesive layer is formed on the surface of each of the spacer sheet and the metal body, and a cover sheet is integrally laminated on the back surface of the spacer sheet and the metal body via the adhesive layer.
  • An opening that exposes the metal body is formed in the adhesive layer formed on the surface, and a cover sheet is integrally laminated on the adhesive layer, and a resin sheet is integrated on the force persheet via the adhesive layer.
  • a through hole communicating with the two resin sheets, an adhesive layer formed on the cover sheet, two cover sheets, and a spacer sheet are formed on the back surface of the spacer sheet.
  • An easily etchable thin metal layer is formed on the inner surface of each through hole of the formed adhesive layer and the inner surface of the opening of the adhesive layer formed on the back surface of the spacer sheet,
  • the space defined by the thin metal layer is filled with metal to form a rigid conductor
  • the method includes a step of removing the thin metal layer and the metal body by an etching process.
  • An anisotropic conductive connector according to the present invention comprises the above-described composite conductive sheet and an anisotropic conductive elastomer sheet disposed on at least one surface of the composite conductive sheet.
  • An anisotropic conductive connector according to the present invention includes the above-described composite conductive sheet and two anisotropic conductive elastomer sheets disposed on one side and the other side of the composite conductive sheet. It is characterized by comprising.
  • the anisotropically conductive elastomer sheet has a chain formed by orienting conductive particles exhibiting magnetism in the anisotropic polymer material so as to be aligned in the thickness direction. It is preferable that it is contained in a state in which the chain of the conductive particles is dispersed in a plane direction.
  • the thickness of the anisotropically conductive elastomer sheet is 0 to 100 ⁇ m! /.
  • the number average particle diameter of electroconductive particle is 3-20 m.
  • the adapter device of the present invention includes an adapter body having a connection electrode region in which a plurality of connection electrodes are formed according to a pattern corresponding to an electrode to be inspected in a circuit device to be inspected on the surface;
  • the anisotropic conductive connector having a plurality of rigid conductors arranged according to a pattern corresponding to the connection electrode in the adapter body, disposed on the connection electrode region of the adapter body;
  • An electrical inspection device for a circuit device comprises the adapter device described above.
  • the rigid conductor that can move in the thickness direction is provided in the through hole of the spacer sheet, and the flange portion of the rigid conductor is formed on the cover sheet. Since it has a diameter larger than the diameter of the through hole, the composite conductive sheet alone in which the rigid conductor does not fall off the spacer sheet is easy to handle.
  • each of the rigid conductors in the composite conductive sheet is movable in the thickness direction with respect to the spacer sheet.
  • the first anisotropic conductive elastomer sheet disposed on one side of the composite conductive sheet and the second anisotropic conductive sheet disposed on the other side of the composite conductive sheet The elastomer sheet is compressed and deformed in conjunction with each other when the rigid conductor moves in the thickness direction of the spacer sheet, so the total of the irregularity absorption capacity of both is expressed as the irregularity absorption capacity of the anisotropic conductive connector. Therefore, a high unevenness absorbing ability can be obtained.
  • the thickness required to obtain the required unevenness absorbing capability may be ensured by the total thickness of the first anisotropic conductive elastomer sheet and the second anisotropic conductive elastomer sheet.
  • the electrically conductive elastomer sheet a sheet having a small thickness can be used, so that high resolution can be obtained.
  • the circuit device to be inspected since the anisotropic conductive connector is provided, the circuit device to be inspected has a small separation distance between adjacent electrodes to be inspected. Even if there are variations in the height level, it is possible to reliably achieve electrical connection to each of the electrodes to be inspected while ensuring the necessary insulation between adjacent electrodes to be inspected. it can.
  • the circuit device to be inspected since the adapter device is provided, the circuit device to be inspected has a small separation distance between adjacent electrodes to be inspected. Even if there are variations in the height level of the electrodes, Thus, the required electrical inspection can be performed reliably.
  • FIG. 1 is an explanatory cross-sectional view showing a configuration in an example of a composite conductive sheet of the present invention.
  • FIG. 2 is a cross-sectional view for explaining a spacer sheet material.
  • FIG. 3 is an explanatory cross-sectional view showing a spacer sheet.
  • FIG. 4 is an explanatory cross-sectional view showing a state where a metal body is formed in a through hole of a spacer sheet.
  • FIG. 5 is an explanatory cross-sectional view showing a state in which an adhesive layer is formed on the surface of the spacer sheet and a cover sheet is physically laminated on the back surface via the adhesive layer.
  • FIG. 6 is an explanatory sectional view showing a state in which an opening is formed in the adhesive layer.
  • FIG. 7 is an explanatory cross-sectional view showing a state in which a cover sheet is disposed on an adhesive layer, and a resin sheet is laminated on the cover sheet via the adhesive layer.
  • FIG. 8 is an explanatory sectional view showing a state in which through holes are formed in each of a resin sheet, a cover sheet, a metal body, and an adhesive layer.
  • FIG. 9 is an explanatory sectional view showing a state in which a thin metal layer is formed.
  • FIG. 10 is an explanatory sectional view showing a state in which a rigid conductor is formed.
  • FIG. 11 is an explanatory cross-sectional view showing a state where a thin metal layer and a metal body are removed.
  • FIG. 12 is a cross-sectional view illustrating the configuration of an example of the anisotropically conductive connector of the present invention.
  • FIG. 13 is an explanatory cross-sectional view showing one side molding member, the other side molding member and a spacer for producing the first anisotropic conductive elastomer sheet.
  • FIG. 14 is an explanatory cross-sectional view showing a state in which a conductive elastomer material has been applied to the surface of the other side molding member.
  • FIG. 15 is an explanatory cross-sectional view showing a state in which a conductive elastomer material layer is formed between a surface-side molded member and another surface-side molded member.
  • FIG. 16 is an enlarged cross-sectional view illustrating the conductive elastomer material layer shown in FIG. 15.
  • FIG. 17 A magnetic field is applied to the conductive elastomer material layer shown in FIG. The It is sectional drawing for description which shows the state shown.
  • FIG. 18 is a cross-sectional view for explaining the structure of an example of an adapter device according to the present invention.
  • FIG. 19 is a sectional view for explanation showing the configuration of the adapter main body in the adapter device shown in FIG. 18.
  • FIG. 20 is an explanatory diagram showing a configuration of an example of an electrical inspection device for a circuit device according to the present invention.
  • FIG. 1 is a cross-sectional view for explaining the structure of an example of the composite conductive sheet of the present invention.
  • the composite conductive sheet 10 includes a spacer sheet 11 formed according to a pattern corresponding to a pattern of electrodes to which a plurality of through-holes 11H extending in the thickness direction are to be connected, and both surfaces of the spacer sheet 11
  • the cover sheets 13 and 14 are integrally laminated with the adhesive layers 12a and 12b, respectively, and the rigid conductor 15 is disposed in each of the through holes 11H of the spacer sheet 11.
  • Each of the cover sheets 13 and 14 is formed with a plurality of through holes 13H and 14H having a diameter smaller than the diameter of the through hole 11H of the spacer sheet 11 corresponding to the through hole 11H of the spacer sheet 11. Yes.
  • Each of the rigid conductors 15 has a disk-like flange portion 15a having a diameter larger than the diameters of the through holes 13H and 14H of the cover sheets 13 and 14 and located in the through holes 11H of the spacer sheet 11.
  • Two flanged terminal portions 15b projecting from the surfaces of the cover sheets 13 and 14 through the through holes 13H and 14H of the cover sheets 13 and 14, respectively, are provided on both end surfaces of the flange portion 15a. It is formed connected to the body.
  • the flange portion 15a of the rigid conductor 15 has a diameter smaller than the diameter of the through hole 11H of the spacer sheet 11, and its thickness is smaller than the thickness of the spacer sheet 11. As a result, the rigid conductor 15 is movable in the thickness direction with respect to the spacer sheet 11! /.
  • the material constituting the spacer sheet 11 is not particularly limited, and for example, a metal material or a non-metal material can be used.
  • metal materials include: (a) stainless steel, (b) invar type alloys such as invar, elinvar type alloys such as elimber, superinvar, kovar, alloy of magnetic metals such as 42 alloy or alloy steel, (c ) Gold, silver, copper, iron, nickel, cobalt or these An alloy etc. can be mentioned.
  • non-metallic materials include resin materials with high mechanical strength such as polyimide resin, polyester resin, fluororesin, polyaramid resin, polyamide resin, glass fiber reinforced epoxy resin, glass fiber reinforced polyester resin, glass Composite resin materials such as fiber reinforced polyimide resin, composite resin materials such as epoxy resin mixed with inorganic materials such as silica, alumina, boron nitride, etc. can be used, but the coefficient of thermal expansion is small. In this respect, it is possible to use with a composite resin material such as polyimide resin, glass fiber reinforced epoxy resin, or a composite resin material such as epoxy resin mixed with boron nitride as a filler.
  • resin materials with high mechanical strength such as polyimide resin, polyester resin, fluororesin, polyaramid resin, polyamide resin, glass fiber reinforced epoxy resin, glass fiber reinforced polyester resin, glass Composite resin materials such as fiber reinforced polyimide resin, composite resin materials such as epoxy resin mixed with inorganic materials such as silica, alumina, boron nitride, etc. can
  • the thickness of the spacer sheet 11 is preferably 10 to 200 111, more preferably 15 to 100 ⁇ m.
  • the diameter of the through hole; 11H of the spacer sheet 11 is preferably 20 to 300 111, more preferably 30 to 150 ⁇ m.
  • the materials constituting the adhesive layers 12a and 12b include an alkali developing adhesive, a polyimide adhesive, a polyurethane adhesive, a silicon adhesive, an epoxy resin adhesive, and an ethylene acetate butyl copolymer.
  • Hot melt adhesives mainly composed of polyamide, polyesters, hot melt adhesives composed mainly of polyolefins such as polypropylene, etc. can be used. It is preferable to use an alkali developing adhesive in that the flange portion 15a of the conductor 15 can be easily formed.
  • the materials constituting the cover sheets 13, 14 include resin materials such as liquid crystal polymer, polyimide resin, polyester resin, polyaramid resin, polyamide resin, glass fiber reinforced epoxy resin, and glass fiber reinforced polyester resin. Further, a fiber reinforced resin material such as a glass fiber reinforced polyimide resin, a composite resin material containing an inorganic material such as alumina or boron nitride as a filler in an epoxy resin or the like can be used.
  • the thickness d of the cover sheets 13 and 14 is preferably 5 to 50 111, more preferably 8 to 30 111.
  • the diameters of the through holes 13H and 14H of the cover sheets 13 and 14 are 15 to 120 m.
  • the force S is more preferably 20 to 80 ⁇ m.
  • a metal material having rigidity can be preferably used, and in particular, a thin metal layer formed on the spacer sheet 11 and the cover sheets 13, 14, etc. in the manufacturing method described later. It is preferable to use a material that is less susceptible to etching. Specific examples of such a metal material include simple metals such as nickel, cobalt, gold, and aluminum, or alloys thereof.
  • the difference between the diameter of the flange portion 15a of the rigid conductor 15 and the diameter of the through hole 11H of the spacer sheet 11 is preferably 1 m or more, more preferably 2 m or more. If this difference is too small, it may be difficult to move the flange portion 15a of the rigid conductor 15 in the thickness direction of the spacer sheet 11.
  • the difference between the diameter of the flange portion 15a in the rigid conductor 15 and the diameter of the through holes 13H and 14H of the cover sheets 13 and 14 is preferably 5 m or more, more preferably 10 m or more. If this difference is too small, the rigid conductor 15 may fall off.
  • the diameter of the terminal portion 15b in the rigid conductor 15 is preferably 50 to 300% of the diameter of the electrode to be connected, for example, the electrode to be inspected. Further, the difference between the diameter of the terminal portion 15b in the rigid conductor 15 and the diameter of the through holes 13H and 14H of the cover sheets 13 and 14 is preferably 1 m or more, more preferably 2 m or more. If the difference is too small, this and force s becomes difficult to move with respect to the thickness direction of the scan Bae Sashito 11 a flange portion 15a of the rigid conductor 15.
  • the movable distance of the rigid conductor 15 in the thickness direction of the spacer sheet 11, that is, the difference between the thickness of the flange portion 15 a and the thickness of the spacer sheet 11 is a force S of 3 to 150 111, more preferably 5 to 100 m, more preferably 10 to 50 111.
  • a force S of 3 to 150 111 more preferably 5 to 100 m, more preferably 10 to 50 111.
  • the composite conductive sheet 10 can be manufactured, for example, as follows.
  • a spacer sheet material 11A made of metal is prepared, and the spacer sheet material 11A is subjected to photolithography and etching treatment, thereby connecting as shown in FIG.
  • a spacer sheet 11 in which a plurality of through holes 11H are formed in accordance with a pattern corresponding to the pattern of the electrode to be formed is formed.
  • the spacer sheet 11 thus obtained is subjected to photolithography and a mesh treatment, so that an easily-etchable metal body is placed in the through-hole 11H of the spacer sheet 11.
  • Form M an adhesive layer 12a made of an alkali developing adhesive is formed on the surface of each of the spacer sheet 11 and the metal body M, and the spacer sheet 11 and the metal body M
  • the cover sheet 14 is integrally laminated on the back surface via the adhesive layer 12b.
  • an opening 12K that exposes the metal body M is formed in the adhesive layer 12a as shown in FIG.
  • a cover sheet 13 is integrally laminated on the adhesive layer 12a, and a resin sheet 16a is integrally laminated on the cover sheet 13 via the adhesive layer 12c.
  • the adhesive layer 12a is opened on each of the resin sheet 16a, the adhesive layer 12c, the cover sheet 13, the metal body M, the adhesive layer 12b, and the cover sheet 14 by, for example, ultraviolet laser processing.
  • P121 ⁇ Through holes L16H, 12h, 13H, H, 12H, 14H are formed, and then electroless plating treatment is applied, as shown in Fig. 9, resin sheet 16a, adhesive layer 12c, cover An easy-etching thin metal layer 16b is formed on the inner surface of each of the through holes 16H, 12h, 13H, H, 12H, 14H and the adhesive layer 12K of the sheet 13, the metal body M, the adhesive layer 12b, and the cover sheet 14.
  • the thin metal layer 16b by subjecting the thin metal layer 16b to, for example, electrolytic plating, the space defined by the thin metal layer 16b is filled with metal to form the rigid conductor 15, as shown in FIG.
  • the thin metal layer 16b and the metal body M are removed by performing an etching process, so that the flange portion 15a of the rigid conductor 15 is spaced as shown in FIG.
  • the composite conductive sheet 10 shown in FIG. 1 is obtained by making the cir- sible sheet 11 movable in the thickness direction and further removing the resin sheet 16a and the adhesive layer 12c.
  • the rigid conductor 15 movable in the thickness direction is provided in the through hole 11H of the spacer sheet 11, and the flange portion 15a of the rigid conductor 15 is Since the cover sheet 13, 14 has a diameter larger than the diameter of the through holes 13H, 14H, the composite conductive sheet 10 alone in which the rigid conductor 15 does not fall off the spacer sheet 11 can be removed. Easy to handle!
  • the composite conductive sheet of the present invention can be used for electrical inspection of circuit devices such as printed circuit boards and ICs, and is also used as a connector for achieving electrical connection between various circuit devices. That power S.
  • FIG. 12 is a cross-sectional view illustrating the configuration of an example of the anisotropically conductive connector of the present invention.
  • the anisotropic conductive connector 17 includes a composite conductive sheet 10 having the configuration shown in FIG. 1 and a first anisotropic conductive elastomer disposed on one surface (the upper surface in FIG. 12) of the composite conductive sheet 10.
  • the sheet 18 and a second anisotropic conductive elastomer sheet 19 disposed on the other surface of the composite conductive sheet 10 are configured.
  • the first anisotropically conductive elastomer sheet 18 and the second anisotropically conductive elastomer sheet 19 in this example are both conductive particles exhibiting magnetism in an insulating elastic polymer material.
  • P is contained in a state in which P is aligned so as to be aligned in the thickness direction and a chain is formed, and a chain of the conductive particles P is dispersed in the plane direction.
  • a polymer material having a cross-linked structure is preferred as the elastic polymer material forming the first anisotropic conductive elastomer sheet 18 and the second anisotropic conductive elastomer sheet 19.
  • Durability, moldability From the viewpoint of electrical properties, it is more preferable to use silicone rubber.
  • conductive particles exhibiting magnetism are used because the particles can be easily aligned in the thickness direction by a method described later.
  • Specific examples of such conductive particles include particles of a metal having magnetism such as iron, cobalt and nickel, particles of these alloys, particles containing these metals, or particles of these particles as core particles.
  • the surface of the core particle is made of a metal having a good conductivity such as gold, silver, palladium, rhodium, or inorganic substance particles such as non-magnetic metal particles or glass beads, or polymer particles.
  • the surface of the core particle may be a conductive magnetic metal such as nickel or cobalt.
  • nickel particles as core particles and the surface of which is provided with gold or silver plating with good conductivity! /.
  • the means for coating the surface of the core particles with the conductive metal is not particularly limited.
  • chemical plating or electrolytic plating, sputtering, vapor deposition, or the like is used.
  • the conductive particles P used are those in which the surface of the core particles is coated with a conductive metal, good conductivity can be obtained.
  • the ratio of the coated area of the conductive metal to the surface area of the core particles) is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
  • the coating amount of the conductive metal is preferably 0.5 to 50% by mass of the core particles.
  • the number average particle diameter of the conductive particles P is preferably 3 to 20, 1 m, and more preferably 5 to 15. When this number average particle diameter is too small, it may be difficult to orient the conductive particles P in the thickness direction in the production method described later. On the other hand, when the number average particle diameter is excessive, it may be difficult to obtain an anisotropic conductive elastomer sheet with high resolution.
  • the particle size distribution (Dw / Dn) of the conductive particles P is preferably 1 to 10; more preferably 1.01-7, still more preferably 1.05 to 5, particularly preferably 1. ; ⁇ 4.
  • the shape of the conductive particles P is not particularly limited.
  • the conductive particles P can be easily dispersed in the polymer material-forming material. It is preferable that they are agglomerated secondary particles.
  • Such conductive particles P are preferably contained in the anisotropic conductive elastomer sheet at a volume fraction of 10 40%, particularly 15 35%. If this ratio is too small, an anisotropic conductive elastomer sheet having sufficiently high conductivity in the thickness direction may not be obtained. On the other hand, if this ratio is excessive, the anisotropically conductive elastomer sheet obtained becomes fragile and the necessary elasticity as an anisotropically conductive elastomer sheet cannot be obtained immediately! / .
  • each of the first anisotropic conductive elastomer sheet 18 and the second anisotropic conductive elastomer sheet 19 is 20 to 100 m, preferably S, more preferably 25 7 O ⁇ m. If this thickness is too small, sufficient unevenness absorbing ability may not be obtained. On the other hand, if this thickness is excessive, high resolution may not be obtained.
  • the first anisotropically conductive elastomer sheet 18 can be manufactured as follows. First, as shown in FIG. 13, the sheet-like one-side molded member 30 and the other-side molded member, respectively. 31 and a frame shape having an opening 32K having a shape conforming to the planar shape of the target first anisotropic conductive elastomer sheet 18 and having a thickness corresponding to the thickness of the first anisotropic conductive elastomer sheet 18 And a spacer 32, and a conductive elastomer material in which conductive particles are contained in a liquid polymer substance-forming material that is cured to become an elastic polymer substance.
  • a spacer 32 is disposed on the molding surface (the upper surface in FIG. 14) of the other surface side molding member 31, and the spacer 32 on the molding surface of the other surface side molding member 31 is disposed.
  • the prepared conductive elastomer material 18B is applied to the opening 32K, and then the one side molding member 30 is formed on the conductive elastomer material 18B with the molding surface (lower surface in FIG. 14) being the conductive elastomer material. Arrange it in contact with 18B.
  • the one side molding member 30 and the other side molding member 31 resin sheets made of polyimide resin, polyester resin, acrylic resin, or the like can be used. Further, the thickness of the resin sheet constituting the one-surface-side molded member 30 and the other-surface-side molded member 31 Is preferably 50 to 500 ⁇ 111, more preferably 75 to 300 ⁇ 111. If this thickness is less than 50 m, the strength required for molded parts may not be obtained. On the other hand, when the thickness exceeds 500 m, it may be difficult to apply a magnetic field having a required strength to the conductive elastomer material layer described later.
  • a conductive elastomer material is formed by the one-surface-side molded member 30 and the other-surface-side molded member 31 using a pressure roll device 35 including a pressure roll 33 and a support roll 34.
  • a conductive elastomer material layer 18A having a required thickness is formed between the one side molding member 30 and the other side molding member 31.
  • the conductive particles P are contained in a uniformly dispersed state.
  • a pair of electromagnets are arranged on the back surface of the one-surface-side molded member 30 and the back surface of the other-surface-side molded member 31, and the electromagnet is operated to be parallel to the thickness direction of the conductive elastomer material layer 18A. Apply a magnetic field.
  • the conductive particles P dispersed in the conductive elastomer material layer 18A were dispersed in the plane direction as shown in FIG. While maintaining the state, it is oriented so as to be aligned in the thickness direction, whereby a chain of a plurality of conductive particles P each extending in the thickness direction is formed in a state dispersed in the plane direction.
  • the curing process of the conductive elastomer material layer 18A can be performed after the action of the force parallel magnetic field which can be performed with the parallel magnetic field applied is stopped.
  • the action of the parallel magnetic field may be temporarily stopped, and then the direction of the applied magnetic field may be reversed.
  • the intensity of the parallel magnetic field applied to the conductive elastomer material layer 18A preferably has an average value of 0.02 to 2.5 Tesla.
  • the second anisotropically conductive elastomer sheet 19 can be manufactured by a method similar to that of the first anisotropically conductive elastomer sheet 18.
  • each of the rigid conductors 15 in the composite conductive sheet 10 is movable in the thickness direction with respect to the spacer sheet 11! /, Therefore, when pressed in the thickness direction by the electrodes to be connected, the first anisotropic conductive elastomer sheet 18 disposed on one side of the composite conductive sheet 10 and the other side of the composite conductive sheet 10 The second anisotropically conductive elastomer sheet 19 disposed in FIG.
  • the thickness necessary to obtain the required unevenness absorbing capacity may be ensured by the total thickness of the first anisotropic conductive elastomer sheet 18 and the second anisotropic conductive elastomer sheet 19.
  • Individual anisotropically conductive elastomer sheets can be used with a small thickness V and force S, so that high resolution can be obtained.
  • FIG. 18 is a cross-sectional view illustrating the configuration of an example of the adapter device according to the present invention
  • FIG. 19 is a cross-sectional view illustrating the adapter body in the adapter device shown in FIG.
  • This adapter device is for inspecting a circuit device used for, for example, an open / short test of a circuit device such as a printed circuit board, and has an adapter body 20 made of a multilayer wiring board.
  • connection electrode region in which a plurality of connection electrodes 21 are arranged according to a specific pattern corresponding to the pattern of the electrode to be inspected of the circuit device to be inspected. 25 is formed.
  • a plurality of terminal electrodes 22 are arranged on the back surface of the adapter body 20 in accordance with the grid point positions of, for example, a pitch of 0.8 mm, 0.75 mm, 1.5 mm, 1.8 mm, and 2.54 mm. Each of the electrodes 22 is electrically connected to the connection electrode 21 by the internal wiring portion 23.
  • an anisotropic conductive connector 15 having a configuration shown in FIG. 12 is basically provided on the connection electrode region 25, and a second anisotropic conductive elastomer sheet 19 is provided on the adapter body. It is placed in contact with 20 and fixed to the adapter body 20 by an appropriate means (not shown).
  • this anisotropic conductive connector 15 a plurality of rigid conductors 12 are arranged on the composite conductive sheet 10 according to the same pattern as the specific pattern related to the connection electrode 21 in the adapter single body 20.
  • the directionally conductive connector 15 is arranged such that each of the rigid conductors 12 in the composite conductive sheet 10 is positioned directly above the connection electrode 21 of the adapter body 20! /.
  • the circuit device to be inspected has a small distance between adjacent electrodes to be inspected. Even if there are variations in the height level of the test electrodes, electrical connection to each of the test electrodes is reliably achieved with the necessary insulation between adjacent test electrodes. can do.
  • FIG. 20 is an explanatory diagram showing a configuration of an example of an electrical inspection apparatus for a circuit device according to the present invention.
  • This electrical inspection device performs, for example, an open 'short test on a circuit device 5 such as a printed circuit board having electrodes 6 and 7 to be inspected on both sides.
  • the holder 2 for holding is provided with a positioning pin 3 for arranging the circuit device 5 at an appropriate position in the inspection execution area E.
  • an upper adapter device la and an upper inspection head 50a configured as shown in FIG. 18 are arranged in this order from the bottom, and further above the upper inspection head 50a.
  • the upper side support plate 56a is arranged, and the upper side inspection head 50a is fixed to the upper side support plate 56a by the support 54a.
  • a lower-side adapter device lb and a lower-side inspection head 50b configured as shown in FIG. 18 are arranged in this order from the top, and further below the lower-side inspection head 50b. Is provided with a lower support plate 56b, and the lower inspection head 50b It is fixed to the lower support plate 56b by 4b.
  • the upper inspection head 50a is composed of a plate-shaped inspection electrode device 51a and an anisotropically conductive elastomer sheet 55a having elasticity and fixed to the lower surface of the inspection electrode device 51a.
  • the inspection electrode device 51a has a plurality of pin-shaped inspection electrodes 52a arranged at lattice point positions at the same pitch as the terminal electrodes 22 of the upper-side adapter device la on its lower surface, and each of these inspection electrodes 52a. Is electrically connected to a connector 57a provided on the upper support plate 56a by an electric wire 53a, and further electrically connected to a test circuit (not shown) of the tester via this connector 57a! /
  • the lower side inspection head 50b is composed of a plate-like inspection electrode device 51b and an anisotropically conductive elastomer sheet 55b having elasticity and fixed to the upper surface of the inspection electrode device 51b.
  • the inspection electrode device 51b has a plurality of pin-shaped inspection electrodes 52b arranged on the upper surface thereof at lattice point positions having the same pitch as the terminal electrodes 22 of the lower side adapter device lb, and each of these inspection electrodes 52b. Is electrically connected to the connector 57b provided on the lower support plate 56b by the electric wire 53b, and further electrically connected to the test circuit of the tester (not shown) via the connector 57b! /
  • the anisotropic conductive elastomer sheets 55a and 55b in the upper side inspection head 50a and the lower side inspection head 50b are both formed with conductive path forming portions that form conductive paths only in the thickness direction. is there.
  • each conductive path forming portion is formed so as to protrude in the thickness direction on at least one surface! /, But what is high! / Preferable in terms of exerting contact stability.
  • the circuit device 5 to be inspected is held in the inspection execution region E by the holder 2, and in this state, the upper side support plate 56a and the lower side support As each of the plates 56b moves in a direction approaching the circuit device 5, the circuit device 5 is clamped by the upper adapter device la and the lower adapter device lb.
  • the electrode 6 to be inspected on the upper surface of the circuit device 5 is electrically connected to the connection electrode 21 in the upper-side adapter device la via the anisotropic conductive connector 10, and this upper-side adapter is connected.
  • the terminal electrode 22 of the device la is an anisotropic conductive elastomer. It is electrically connected to the inspection electrode 52a of the inspection electrode device 51a through one sheet 55a.
  • the electrode 7 to be inspected on the lower surface of the circuit device 5 is electrically connected to the connection electrode 21 in the lower-side adapter device lb via the anisotropic conductive connector 10, and this lower-side adapter device.
  • the terminal electrode 22 of lb is electrically connected to the inspection electrode 52b of the inspection electrode device 51b via an anisotropic conductive elastomer sheet 55b.
  • each force of the electrodes 6 and 7 to be inspected on both the upper surface and the lower surface of the circuit device 5 is inspected in the inspection electrode 52a and the lower inspection head 50b of the inspection electrode device 51a in the upper inspection head 50a.
  • a state of being electrically connected to the inspection circuit of the tester is achieved, and a required electrical inspection is performed in this state.
  • the circuit device 5 to be inspected is provided with the upper side adapter device la and the lower side adapter device lb configured as shown in FIG. Even if there is a variation in the height level of the electrodes 6 and 7 to be inspected, the distance between the electrodes 6 and 7 adjacent to each other is small, the required electrical inspection of the circuit device 5 is reliably performed. can do.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the flange portion of the rigid conductor is limited to a disc-shaped one. Instead, it may be a rectangular plate or other shapes.
  • the anisotropic conductive elastomer sheet may be arranged only on one surface of the composite conductive sheet.
  • the anisotropic conductive connector having such a configuration is used for inspection of a wafer on which a circuit device or an integrated circuit is formed, it is preferable that the rigid conductor of the composite conductive sheet is disposed so as to contact the electrode to be inspected. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

Provided is a composite conductive sheet, which has a rigid conductor movable in the thickness direction of an insulating sheet and is easy to handle even by itself without having the rigid conductor dropped. A method for manufacturing such composite conductive sheet, an anisotropic conductive connector, an adaptor apparatus and an electrical inspection apparatus for circuit devices, which are provided with the composite conductive sheet, are also provided. The composite conductive sheet is provided with a spacer sheet having a plurality of through holes, two cover sheets integrally laminated on the both surfaces of the spacer sheet, and the rigid conductor arranged in the through hole of the spacer sheet. On the cover sheet, through holes having a diameter smaller than that of the through holes of the spacer sheet are formed corresponding to the through holes of the spacer sheet. The rigid conductor is composed of a flange section, which is positioned in the through hole of the spacer sheet and has a diameter lager than that of the through hole of the cover sheet, and terminal sections, which are formed at the both ends of the flange section by being inserted into the through holes of the cover sheet. The rigid conductor is permitted to move in the thickness direction of the spacer sheet.

Description

明 細 書  Specification
複合導電性シート、その製造方法およびその応用  Composite conductive sheet, its production method and its application
技術分野  Technical field
[0001] 本発明は、例えばプリント回路基板、 ICなどの回路装置や集積回路が形成された ウェハの電気的検査に好適に用いることができる複合導電性シート、その製造方法 およびその応用に関するものである。  The present invention relates to a composite conductive sheet that can be suitably used for electrical inspection of wafers on which circuit devices such as printed circuit boards and ICs and integrated circuits are formed, a method for manufacturing the same, and an application thereof. is there.
背景技術  Background art
[0002] 一般に、 BGAや CSP (チップスケールパッケージ)等のパッケージ LSI、 MCM、そ の他の集積回路装置などの電子部品を構成するための或いは搭載するための回路 基板については、その配線パターンが所期の性能を有することを確認するためにそ の電気的特性を検査することが必要である。  [0002] Generally, circuit boards for configuring or mounting electronic components such as package LSIs such as BGA and CSP (chip scale package), MCM, and other integrated circuit devices have wiring patterns of It is necessary to inspect its electrical characteristics to confirm that it has the expected performance.
従来、回路基板の電気的検査を実行する方法としては、縦横に並ぶ格子点位置に 従って複数の検査電極が配置されてなる検査電極装置と、この検査電極装置の検 查電極に検査対象である回路基板の被検査電極を電気的に接続するアダプターと を組み合わせて用いる方法などが知られて!/、る。この方法にお!/、て用いられるァダプ ターは、ピッチ変換ボードと称されるプリント配線板よりなるものである。  Conventionally, as a method of performing an electrical inspection of a circuit board, an inspection electrode device in which a plurality of inspection electrodes are arranged according to the grid point positions arranged in the vertical and horizontal directions, and the inspection electrode of this inspection electrode device are inspection targets. It is known how to use it in combination with an adapter that electrically connects the electrodes to be inspected on the circuit board! The adapter used in this method is a printed wiring board called a pitch conversion board.
このアダプタ一としては、一面に検査対象である回路基板の被検査電極に対応す るパターンに従って配置された複数の接続用電極を有し、他面に検査電極装置の検 查電極と同一のピッチの格子点位置に配置された複数の端子電極を有するものなど が知られている。  This adapter has a plurality of connection electrodes arranged on one side according to a pattern corresponding to the electrodes to be inspected on the circuit board to be inspected, and has the same pitch as the inspection electrodes of the inspection electrode device on the other side. Those having a plurality of terminal electrodes arranged at the positions of the lattice points are known.
而して、回路基板の電気的検査においては、一般に、検査対象である回路基板と アダプターとの安定な電気的接続を達成するために、検査対象である回路基板とァ ダプターとの間に、コネクタ一として異方導電性エラストマ一シートを介在させることが ネ亍われている。  Therefore, in the electrical inspection of a circuit board, generally, in order to achieve a stable electrical connection between the circuit board to be inspected and the adapter, the circuit board to be inspected and the adapter are It is expected to use an anisotropic conductive elastomer sheet as a connector.
[0003] この異方導電性エラストマ一シートは、厚さ方向にのみ導電性を示すもの、あるい は加圧されたときに厚さ方向にのみ導電性を示す多数の加圧導電性導電部を有す るものである。 このような異方導電性エラストマ一シートとしては、従来、種々の構造のものが知ら れており、例えば特許文献 1には、弾性高分子物質中に磁性を示す導電性粒子が 厚み方向に並ぶよう配向して連鎖を形成した状態でかつ当該導電性粒子による連 鎖が面方向に分散した状態で含有されてなる異方導電性エラストマ一シート(以下、 これを「分散型異方導電性シート」という。)が開示され、特許文献 2には、弾性高分 子物質中に磁性を示す導電性粒子を不均一に分散させることにより、厚み方向に伸 びる多数の導電路形成部と、これらを相互に絶縁する絶縁部とが形成されてなる異 方導電性エラストマ一シート(以下、これを「偏在型異方導電性シート」という。)が開 示され、特許文献 3には、導電路形成部の表面と絶縁部との間に段差が形成された 偏在型異方導電性シートが開示されて!/、る。 [0003] This anisotropically conductive elastomer sheet has conductivity only in the thickness direction, or a number of pressure-conductive conductive portions that show conductivity only in the thickness direction when pressed. It has something. As such an anisotropically conductive elastomer sheet, those having various structures are conventionally known. For example, in Patent Document 1, conductive particles exhibiting magnetism are arranged in the thickness direction in an elastic polymer material. An anisotropic conductive elastomer sheet (hereinafter referred to as a “dispersion type anisotropic conductive sheet”), which is formed in such a state that the chain is formed in such a manner that the chain is formed in such a manner that the chain is dispersed in the plane direction. Patent Document 2 discloses a number of conductive path forming portions extending in the thickness direction by non-uniformly dispersing conductive particles exhibiting magnetism in an elastic polymer material, and these. An anisotropic conductive elastomer sheet (hereinafter referred to as an “unevenly anisotropic conductive sheet”) formed by insulating portions that insulate each other is disclosed. Patent Document 3 discloses a conductive path. A step between the surface of the forming portion and the insulating portion There uneven distribution type anisotropic conductive sheet is formed is disclosed! /, Ru.
そして、分散型異方導電性シートおよび偏在型異方導電性シートを比較すると、分 散型異方導電性シートは、特殊で高価な金型を用いずに小さいコストで製造すること ができる点、接続すべき電極のパターンに関わらず使用することができ、汎用性を有 するものである点で、偏在型異方導電性シートに比較して有利である。し力もながら、 分散型異方導電性シートは、隣接する電極間の離間距離が小さい接続対象体につ いても、隣接する電極間に必要な絶縁性が確保された状態で当該電極の各々に対 する電気的な接続を達成することができる性能、すなわち分解能が低い点で、偏在 型異方導電性シートに比較して不利である。  And comparing the dispersion type anisotropic conductive sheet and the uneven distribution type anisotropic conductive sheet, the dispersion type anisotropic conductive sheet can be manufactured at a low cost without using a special and expensive mold. It can be used regardless of the pattern of electrodes to be connected, and is versatile, which is advantageous compared to an unevenly distributed anisotropic conductive sheet. However, the dispersed anisotropic conductive sheet is applied to each of the electrodes in a state where necessary insulation is ensured between the adjacent electrodes, even for a connection object having a small separation distance between the adjacent electrodes. However, it is disadvantageous compared to the unevenly distributed anisotropic conductive sheet in terms of the ability to achieve electrical connection, that is, low resolution.
而して、分散型異方導電性シートにおいて、分解能を向上させるためには、当該分 散型異方導電性シートの厚みを小さくすることが肝要である。  Thus, in order to improve the resolution of the dispersed anisotropic conductive sheet, it is important to reduce the thickness of the distributed anisotropic conductive sheet.
然るに、厚みの小さい異方導電性エラストマ一シートにおいては、接続すべき電極 の各々における高さレベルのバラツキを吸収して当該電極の各々に対する電気的な 接続を達成することができる性能、すなわち凹凸吸収能が低い、という問題がある。 具体的には、異方導電性エラストマ一シートの凹凸吸収能は、当該異方導電性エラ ストマーシートの厚みの 20%程度であり、例えば厚みが 100 mの異方導電性エラ ストマーシートにおいては、電極の高さレベルのバラツキが 20 m程度の接続対象 体に対しても安定な電気的接続を達成することができる力 厚みが 50 mの異方導 電性エラストマ一シートにおいては、電極の高さレベルのバラツキが 10 mを超える 接続対象体に対しては、安定な電気的接続を達成することが困難となる。 However, the anisotropic conductive elastomer sheet having a small thickness absorbs the variation in the height level of each electrode to be connected, and can achieve electrical connection to each of the electrodes, that is, unevenness. There is a problem that absorption capacity is low. Specifically, the unevenness absorption capacity of the anisotropic conductive elastomer sheet is about 20% of the thickness of the anisotropic conductive elastomer sheet. For example, in the anisotropic conductive elastomer sheet having a thickness of 100 m, The force that can achieve a stable electrical connection even with a connection object with an electrode height level variation of about 20 m. In an anisotropic conductive elastomer sheet with a thickness of 50 m, Height level variation exceeds 10 m It is difficult to achieve a stable electrical connection for the connection object.
[0005] このような問題を解決するため、絶縁性シートに形成されたテーパ状の貫通孔内に 、当該貫通孔に適合するテーパ状の可動導体が絶縁性シートに対して厚み方向に 移動可能に設けられた複合導電性シート (金属よりなる可動導体と絶縁性樹脂シート とよりなる)と、この複合導電性シートの一面および他面の各々に配置された 2つの異 方導電性エラストマ一シートとよりなる異方導電性コネクターが提案されて!/、る(例え ば特許文献 4等参照。)。 [0005] In order to solve such problems, a tapered movable conductor adapted to the through hole can move in the thickness direction with respect to the insulating sheet in the tapered through hole formed in the insulating sheet. A composite conductive sheet (consisting of a movable conductor made of metal and an insulating resin sheet) and two anisotropic conductive elastomer sheets disposed on one side and the other side of the composite conductive sheet, respectively. An anisotropic conductive connector has been proposed! /, (For example, see Patent Document 4).
このような複合導電性シートを有する異方導電性コネクターによれば、複合導電性 シートにおける可動電極が厚み方向に移動可能とされているため、厚み方向に加圧 されたときには、複合導電性シートの一面および他面の各々に配置された 2つの異 方導電性エラストマ一シートが互いに連動して圧縮変形するため、両者の有する凹 凸吸収能の合計が異方導電性コネクターの凹凸吸収能として発現され、従って、高 い凹凸吸収能を得ることができる。  According to the anisotropic conductive connector having such a composite conductive sheet, since the movable electrode in the composite conductive sheet is movable in the thickness direction, when the pressure is applied in the thickness direction, the composite conductive sheet Since the two anisotropically conductive elastomer sheets placed on one side and the other side of each other are compressed and deformed in conjunction with each other, the sum of the concave and convex absorbent capacity of the two is the uneven conductive capacity of the anisotropic conductive connector. Therefore, high unevenness absorbing ability can be obtained.
また、所要の凹凸吸収能を得るために必要な厚みは、 2つの異方導電性エラストマ 一シートの合計の厚みによって確保すればよぐ個々の異方導電性エラストマーシー トとしては、厚みが小さいものを用いることができるので、高い分解能を得ることができ  In addition, the thickness required to obtain the required unevenness absorption capacity is as small as each anisotropically conductive elastomer sheet, as long as it is ensured by the total thickness of two anisotropically conductive elastomer sheets. High resolution can be obtained.
[0006] しかしながら、上記の異方導電性コネクターにおいては、実用上、以下のような問 題がある。 [0006] However, the above anisotropic conductive connector has the following problems in practice.
上記の異方導電性コネクターにおいて、複合導電性シートの可動導体は、絶縁性 シートおよび異方導電性エラストマ一シートの両方に支持されており、複合導電性シ 一トと異方導電性エラストマ一シートとを分離した場合には、可動導体が絶縁性シー トから脱落するおそれがあるため、複合導電性シートを単独で取り扱うことは実際上 極めて困難である。従って、異方導電性コネクターにおける複合導電性シートおよび 異方導電性エラストマ一シートのいずれか一方に故障が生じたときには、当該複合 導電性シートまたは当該異方導電性エラストマ一シートのみを新たなものに交換する ことができず、異方導電性コネクター全体を新たなものに交換しなければならない。 また、複合導電性シートの可動導体は、絶縁性シートに形成されたテーパ状の貫 通孔内にメツキ処理によって金属を堆積させて金属体を形成し、この金属体を機械 的に押圧することにより、貫通孔の内面に接着していた金属体を分離させることによ つて得られる。然るに、多数の可動導体を有する異方導電性コネクターを製造する場 合には、絶縁性シートに形成された全ての金属体を当該絶縁性シートの内面から確 実に分離させることが困難であるため、一部の可動導体の機能に不具合が生じる。 In the above anisotropic conductive connector, the movable conductor of the composite conductive sheet is supported by both the insulating sheet and the anisotropic conductive elastomer sheet, and the composite conductive sheet and the anisotropic conductive elastomer When the sheet is separated, the movable conductor may fall off the insulating sheet, so it is practically difficult to handle the composite conductive sheet alone. Therefore, when a failure occurs in either the composite conductive sheet or the anisotropic conductive elastomer sheet in the anisotropic conductive connector, only the composite conductive sheet or the anisotropic conductive elastomer sheet is replaced with a new one. The entire anisotropically conductive connector must be replaced with a new one. Further, the movable conductor of the composite conductive sheet has a tapered through-hole formed on the insulating sheet. It is obtained by depositing metal in the through-holes to form a metal body by mechanically pressing the metal body and separating the metal body adhered to the inner surface of the through hole by mechanically pressing the metal body. . However, when manufacturing an anisotropically conductive connector having a large number of movable conductors, it is difficult to reliably separate all metal bodies formed on the insulating sheet from the inner surface of the insulating sheet. A malfunction occurs in the function of some movable conductors.
[0007] 特許文献 1 :特開昭 51— 93393号公報  [0007] Patent Document 1: Japanese Patent Laid-Open No. 51-93393
特許文献 2:特開昭 53— 147772号公報  Patent Document 2: Japanese Patent Laid-Open No. 53-147772
特許文献 3:特開昭 61— 250906号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 61-250906
特許文献 4 :特開 2001— 351702号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-351702
発明の開示  Disclosure of the invention
[0008] 本発明は、以上のような事情に基づいてなされたものであって、その第 1の目的は、 厚み方向に移動可能な剛性導体を有し、当該剛性導体が脱落することがなくて単独 でも取り极レ、易い複合導電性シートを提供することにある。  [0008] The present invention has been made based on the circumstances as described above, and a first object thereof is to have a rigid conductor that can move in the thickness direction, and the rigid conductor does not fall off. Therefore, the object is to provide a composite conductive sheet that can be easily handled alone.
本発明の第 2の目的は、隣接する電極間の離間距離が小さぐ電極の高さレベル にバラツキがある接続対象体にっレ、ても、隣接する電極間に必要な絶縁性が確保さ れた状態で当該電極の各々に対する電気的な接続を確実に達成することができる異 方導電性コネクターを提供することにある。  The second object of the present invention is to secure the necessary insulation between the adjacent electrodes even if the connection object has a variation in the height level of the electrodes where the distance between the adjacent electrodes is small. It is an object of the present invention to provide an anisotropic conductive connector that can reliably achieve an electrical connection to each of the electrodes in a state in which it is held.
本発明の第 3の目的は、検査対象である回路装置が、隣接する被検査電極の間の 離間距離が小さぐ被検査電極の高さレベルにバラツキがあるものであっても、隣接 する被検査電極間に必要な絶縁性が確保された状態で当該被検査電極の各々に 対する電気的な接続を確実に達成することができるアダプター装置を提供することに ある。  A third object of the present invention is to provide a circuit device to be inspected even if the distance between the adjacent electrodes to be inspected is small and the height level of the electrodes to be inspected varies. It is an object of the present invention to provide an adapter device capable of reliably achieving electrical connection to each of the electrodes to be inspected in a state where necessary insulation is ensured between the inspection electrodes.
本発明の第 4の目的は、検査対象である回路装置が、隣接する被検査電極の間の 離間距離が小さぐ被検査電極の高さレベルにバラツキがあるものであっても、当該 回路装置について所要の電気的検査を確実に実行することができる回路装置の電 気的検査装置を提供することにある。  A fourth object of the present invention is to provide a circuit device that is an object to be inspected even if the distance between adjacent electrodes to be inspected is small and the height levels of the electrodes to be inspected vary. It is an object of the present invention to provide an electrical inspection device for a circuit device that can surely execute a required electrical inspection.
[0009] 本発明の複合導電性シートは、それぞれ厚み方向に伸びる複数の貫通孔が形成 されたスぺーサーシートと、このスぺーサーシートの両面の各々に一体的に積層され た 2つのカバーシートと、前記スぺーサーシートの貫通孔の各々に配置された剛性導 体とを有してなり、 [0009] The composite conductive sheet of the present invention is integrally laminated on each of a spacer sheet in which a plurality of through-holes extending in the thickness direction are formed and both surfaces of the spacer sheet. Two cover sheets, and a rigid conductor disposed in each of the through holes of the spacer sheet,
前記カバーシートの各々には、前記スぺーサーシートの貫通孔に対応して当該ス ぺーサ一シートの貫通孔の径より小さい径を有する複数の貫通孔が形成されており  Each of the cover sheets is formed with a plurality of through holes having a diameter smaller than the diameter of the through hole of the spacer sheet corresponding to the through hole of the spacer sheet.
前記剛性導体の各々は、前記スぺーサーシートの貫通孔内に位置された、前記力 バーシートの貫通孔の径より大きレ、径を有するフランジ部と、このフランジ部の両端の 各々に形成された、前記カバーシートの貫通孔に揷通されて当該カバーシートの表 面から突出する 2つの端子部とからなり、当該剛性導体が、前記スぺーサーシートに 対してその厚み方向に移動可能とされていることを特徴とする。 Each of the rigid conductors is formed in a flange portion having a diameter larger than the diameter of the through hole of the force bar sheet, which is positioned in the through hole of the spacer sheet, and at both ends of the flange portion. The rigid conductor can be moved in the thickness direction with respect to the spacer sheet, and is formed of two terminal portions that pass through the through-hole of the cover sheet and project from the surface of the cover sheet. It is said that it is said.
[0010] 本発明の複合導電性シートにおいては、カバーシートの各々は、接着層を介してス ぺーサ一シートに一体的に積層されていることが好ましい。 [0010] In the composite conductive sheet of the present invention, each of the cover sheets is preferably laminated integrally with the spacer sheet via an adhesive layer.
また、スぺーサーシートの厚み方向における剛性導体の移動可能距離が 3〜; 150 〃 mであることが好ましい。  Further, it is preferable that the movable distance of the rigid conductor in the thickness direction of the spacer sheet is 3 to 150 μm.
また、本発明の複合導電性シートにおいては、スぺーサーシートは、金属よりなるも のであってもよい。  In the composite conductive sheet of the present invention, the spacer sheet may be made of metal.
[0011] 本発明の複合導電性シートの製造方法は、接続すべき電極のパターンに対応する ノ ターンに従って複数の貫通孔が形成されたスぺーサーシートを用意し、このスぺー サーシートの貫通孔内に易エッチング性の金属体を形成し、  [0011] The method for producing a composite conductive sheet of the present invention provides a spacer sheet in which a plurality of through holes are formed according to a pattern corresponding to a pattern of electrodes to be connected, and the through holes of the spacer sheet are prepared. An easily etchable metal body is formed inside,
スぺーサーシートおよび金属体の各々の表面に接着層を形成すると共に、スぺー サーシートおよび金属体の裏面に、接着層を介してカバーシートを一体的に積層し、 その後、スぺーサーシートの表面に形成された接着層に、金属体を露出する開口を 形成し、当該接着層上に、カバーシートを一体的に積層すると共に、この力パーシー ト上に接着層を介して樹脂シートを一体的に積層し、  An adhesive layer is formed on the surface of each of the spacer sheet and the metal body, and a cover sheet is integrally laminated on the back surface of the spacer sheet and the metal body via the adhesive layer. An opening that exposes the metal body is formed in the adhesive layer formed on the surface, and a cover sheet is integrally laminated on the adhesive layer, and a resin sheet is integrated on the force persheet via the adhesive layer. Laminated
2つの樹脂シート、カバーシート上に形成された接着層、 2つのカバーシートおよび スぺーサーシートの裏面に形成された接着層の各々に、スぺーサーシートの表面に 形成された接着層の開口に連通する貫通孔を形成し、 2つの樹脂シート、カバーシ ート上に形成された接着層、 2つのカバーシートおよびスぺーサーシートの裏面に形 成された接着層の各々の貫通孔の内面並びにスぺーサーシートの裏面に形成され た接着層の開口の内面に、易エッチング性の金属薄層を形成し、 Two resin sheets, an adhesive layer formed on the cover sheet, two cover sheets, and an adhesive layer formed on the back surface of the spacer sheet, each having an opening in the adhesive layer formed on the surface of the spacer sheet A through hole communicating with the two resin sheets, an adhesive layer formed on the cover sheet, two cover sheets, and a spacer sheet are formed on the back surface of the spacer sheet. An easily etchable thin metal layer is formed on the inner surface of each through hole of the formed adhesive layer and the inner surface of the opening of the adhesive layer formed on the back surface of the spacer sheet,
この金属薄層に対してメツキ処理を施すことにより、当該金属薄層によって区画され た空間内に金属を充填して剛性導体を形成し、  By applying a plating treatment to this thin metal layer, the space defined by the thin metal layer is filled with metal to form a rigid conductor,
その後、エッチング処理によって金属薄層および金属体を除去する工程を有するこ とを特徴とする。  Thereafter, the method includes a step of removing the thin metal layer and the metal body by an etching process.
[0012] 本発明の異方導電性コネクタ一は、上記の複合導電性シートと、この複合導電性シ ートの少なくとも一面に配置された異方導電性エラストマ一シートとを具えてなること を特徴とする。  [0012] An anisotropic conductive connector according to the present invention comprises the above-described composite conductive sheet and an anisotropic conductive elastomer sheet disposed on at least one surface of the composite conductive sheet. Features.
また、本発明の異方導電性コネクタ一は、上記の複合導電性シートと、この複合導 電性シートの一面および他面の各々に配置された 2つの異方導電性エラストマーシ 一トとを具えてなることを特徴とする。  An anisotropic conductive connector according to the present invention includes the above-described composite conductive sheet and two anisotropic conductive elastomer sheets disposed on one side and the other side of the composite conductive sheet. It is characterized by comprising.
[0013] 本発明の異方導電性コネクターにおいては、異方導電性エラストマ一シートは、弹 性高分子物質中に、磁性を示す導電性粒子が、厚み方向に並ぶよう配向して連鎖 が形成された状態で、かつ、当該導電性粒子による連鎖が面方向に分散した状態で 含有されてなることが好ましレ、。 [0013] In the anisotropically conductive connector of the present invention, the anisotropically conductive elastomer sheet has a chain formed by orienting conductive particles exhibiting magnetism in the anisotropic polymer material so as to be aligned in the thickness direction. It is preferable that it is contained in a state in which the chain of the conductive particles is dispersed in a plane direction.
[0014] このような異方導電性コネクターにおいては、異方導電性エラストマ一シートの厚み 力 0〜; 100 μ mであることが好まし!/、。 [0014] In such an anisotropically conductive connector, it is preferable that the thickness of the anisotropically conductive elastomer sheet is 0 to 100 μm! /.
また、導電性粒子の数平均粒子径が 3〜20 mであることが好ましい。  Moreover, it is preferable that the number average particle diameter of electroconductive particle is 3-20 m.
[0015] 本発明のアダプター装置は、表面に検査すべき回路装置における被検査電極に 対応するパターンに従って複数の接続用電極が形成された接続用電極領域を有す るアダプター本体と、 [0015] The adapter device of the present invention includes an adapter body having a connection electrode region in which a plurality of connection electrodes are formed according to a pattern corresponding to an electrode to be inspected in a circuit device to be inspected on the surface;
このアダプター本体の接続用電極領域上に配置された、当該アダプター本体にお ける接続用電極に対応するパターンに従って配置された複数の剛性導体を有する、 上記の異方導電性コネクターと  The anisotropic conductive connector having a plurality of rigid conductors arranged according to a pattern corresponding to the connection electrode in the adapter body, disposed on the connection electrode region of the adapter body;
を具えてなることを特徴とする。  It is characterized by comprising.
[0016] 本発明の回路装置の電気的検査装置は、上記のアダプター装置を具えてなること を特徴とする。 [0017] 本発明の複合導電性シートによれば、スぺーサーシートの貫通孔に、その厚み方 向に移動可能な剛性導体が設けられており、当該剛性導体のフランジ部は、カバー シートの貫通孔の径より大きい径を有するものであるため、当該剛性導体がスぺーサ 一シートから脱落することがなぐ当該複合導電性シート単独でも取り扱い易いもの である。 [0016] An electrical inspection device for a circuit device according to the present invention comprises the adapter device described above. [0017] According to the composite conductive sheet of the present invention, the rigid conductor that can move in the thickness direction is provided in the through hole of the spacer sheet, and the flange portion of the rigid conductor is formed on the cover sheet. Since it has a diameter larger than the diameter of the through hole, the composite conductive sheet alone in which the rigid conductor does not fall off the spacer sheet is easy to handle.
[0018] 本発明の異方導電性コネクターによれば、複合導電性シートにおける剛性導体の 各々は、スぺーサーシートに対してその厚み方向に移動可能とされているため、接続 すべき電極によって厚み方向に加圧されたときには、複合導電性シートの一面に配 置された第 1の異方導電性エラストマ一シートおよび当該複合導電性シートの他面に 配置された第 2の異方導電性エラストマ一シートは、剛性導体がスぺーサーシートの 厚み方向に移動することによって互いに連動して圧縮変形するため、両者の有する 凹凸吸収能の合計が異方導電性コネクターの凹凸吸収能として発現され、従って、 高い凹凸吸収能を得ることができる。  [0018] According to the anisotropic conductive connector of the present invention, each of the rigid conductors in the composite conductive sheet is movable in the thickness direction with respect to the spacer sheet. When pressed in the thickness direction, the first anisotropic conductive elastomer sheet disposed on one side of the composite conductive sheet and the second anisotropic conductive sheet disposed on the other side of the composite conductive sheet The elastomer sheet is compressed and deformed in conjunction with each other when the rigid conductor moves in the thickness direction of the spacer sheet, so the total of the irregularity absorption capacity of both is expressed as the irregularity absorption capacity of the anisotropic conductive connector. Therefore, a high unevenness absorbing ability can be obtained.
また、所要の凹凸吸収能を得るために必要な厚みは、第 1の異方導電性エラストマ 一シートおよび第 2の異方導電性エラストマ一シートの合計の厚みによって確保すれ ばよく、個々の異方導電性エラストマ一シートとしては、厚みが小さいものを用いるこ とができるので、高!/、分解能を得ることができる。  In addition, the thickness required to obtain the required unevenness absorbing capability may be ensured by the total thickness of the first anisotropic conductive elastomer sheet and the second anisotropic conductive elastomer sheet. As the electrically conductive elastomer sheet, a sheet having a small thickness can be used, so that high resolution can be obtained.
従って、隣接する電極間の離間距離が小さぐ電極の高さレベルにバラツキがある 接続対象体についても、隣接する電極間に必要な絶縁性が確保された状態で当該 電極の各々に対する電気的な接続を確実に達成することができる。  Therefore, even when the distance between the adjacent electrodes is small and the height level of the electrodes varies, the electrical connection to each of the electrodes is ensured with the necessary insulation between the adjacent electrodes. Connection can be reliably achieved.
[0019] 本発明のァダフター装置によれば、上記の異方導電性コネクターを具えてなるため 、検査対象である回路装置が、隣接する被検査電極の間の離間距離が小さぐ被検 查電極の高さレベルにバラツキがあるものであっても、隣接する被検査電極間に必 要な絶縁性が確保された状態で当該被検査電極の各々に対する電気的な接続を確 実に達成することができる。  [0019] According to the adapter device of the present invention, since the anisotropic conductive connector is provided, the circuit device to be inspected has a small separation distance between adjacent electrodes to be inspected. Even if there are variations in the height level, it is possible to reliably achieve electrical connection to each of the electrodes to be inspected while ensuring the necessary insulation between adjacent electrodes to be inspected. it can.
[0020] 本発明の回路装置の電気的検査装置によれば、上記のアダプター装置を具えて なるため、検査対象である回路装置が、隣接する被検査電極の間の離間距離が小さ ぐ被検査電極の高さレベルにバラツキがあるものであっても、当該回路装置につい て所要の電気的検査を確実に実行することができる。 [0020] According to the electrical inspection device for a circuit device of the present invention, since the adapter device is provided, the circuit device to be inspected has a small separation distance between adjacent electrodes to be inspected. Even if there are variations in the height level of the electrodes, Thus, the required electrical inspection can be performed reliably.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の複合導電性シートの一例における構成を示す説明用断面図である。 FIG. 1 is an explanatory cross-sectional view showing a configuration in an example of a composite conductive sheet of the present invention.
[図 2]スぺーサーシート材を示す説明用断面図である。 FIG. 2 is a cross-sectional view for explaining a spacer sheet material.
[図 3]スぺーサーシートを示す説明用断面図である。 FIG. 3 is an explanatory cross-sectional view showing a spacer sheet.
[図 4]スぺーサーシートの貫通孔内に金属体が形成された状態を示す説明用断面図 である。  FIG. 4 is an explanatory cross-sectional view showing a state where a metal body is formed in a through hole of a spacer sheet.
[図 5]スぺーサーシートの表面に接着層が形成され、裏面に接着層を介してカバーシ ートがー体的に積層された状態を示す説明用断面図である。  FIG. 5 is an explanatory cross-sectional view showing a state in which an adhesive layer is formed on the surface of the spacer sheet and a cover sheet is physically laminated on the back surface via the adhesive layer.
[図 6]接着層に開口が形成された状態を示す説明用断面図である。  FIG. 6 is an explanatory sectional view showing a state in which an opening is formed in the adhesive layer.
[図 7]接着層上にカバーシートが配置され、このカバーシート上に接着層を介して樹 脂シートか積層された状態を示す説明用断面図である。  FIG. 7 is an explanatory cross-sectional view showing a state in which a cover sheet is disposed on an adhesive layer, and a resin sheet is laminated on the cover sheet via the adhesive layer.
[図 8]樹脂シート、カバーシート、金属体およひ接着層の各々に貫通孔が形成された 状態を示す説明用断面図である。  FIG. 8 is an explanatory sectional view showing a state in which through holes are formed in each of a resin sheet, a cover sheet, a metal body, and an adhesive layer.
[図 9]金属薄層が形成された状態を示す説明用断面図である。  FIG. 9 is an explanatory sectional view showing a state in which a thin metal layer is formed.
[図 10]剛性導体が形成された状態を示す説明用断面図である。  FIG. 10 is an explanatory sectional view showing a state in which a rigid conductor is formed.
[図 11]金属薄層および金属体が除去された状態を示す説明用断面図である。  FIG. 11 is an explanatory cross-sectional view showing a state where a thin metal layer and a metal body are removed.
[図 12]本発明の異方導電性コネクターの一例における構成を示す説明用断面図で ある。  FIG. 12 is a cross-sectional view illustrating the configuration of an example of the anisotropically conductive connector of the present invention.
[図 13]第 1の異方導電性エラストマ一シートを製造するための一面側成形部材、他面 側成形部材およびスぺーサーを示す説明用断面図である。  FIG. 13 is an explanatory cross-sectional view showing one side molding member, the other side molding member and a spacer for producing the first anisotropic conductive elastomer sheet.
[図 14]他面側成形部材の表面に導電性エラストマ一用材料が塗布された状態を示 す説明用断面図である。  FIG. 14 is an explanatory cross-sectional view showing a state in which a conductive elastomer material has been applied to the surface of the other side molding member.
[図 15]—面側成形部材と他面側成形部材との間に導電性エラストマ一用材料層が 形成された状態を示す説明用断面図である。  FIG. 15 is an explanatory cross-sectional view showing a state in which a conductive elastomer material layer is formed between a surface-side molded member and another surface-side molded member.
[図 16]図 15に示す導電性エラストマ一用材料層を拡大して示す説明用断面図であ [図 17]図 15に示す導電性エラストマ一用材料層に対して厚み方向に磁場を作用さ せた状態を示す説明用断面図である。 FIG. 16 is an enlarged cross-sectional view illustrating the conductive elastomer material layer shown in FIG. 15. [FIG. 17] A magnetic field is applied to the conductive elastomer material layer shown in FIG. The It is sectional drawing for description which shows the state shown.
[図 18]本発明に係るアダプター装置の一例における構成を示す説明用断面図であ  FIG. 18 is a cross-sectional view for explaining the structure of an example of an adapter device according to the present invention.
[図 19]図 18に示すアダプター装置におけるアダプター本体の構成を示す説明用断 面図である。 FIG. 19 is a sectional view for explanation showing the configuration of the adapter main body in the adapter device shown in FIG. 18.
[図 20]本発明に係る回路装置の電気的検査装置の一例における構成を示す説明図 である。  FIG. 20 is an explanatory diagram showing a configuration of an example of an electrical inspection device for a circuit device according to the present invention.
符号の説明 Explanation of symbols
la 上部側アダプター装置  la Upper adapter device
lb 下部側アダプター装置  lb Lower adapter device
2 ホルダー  2 Holder
3 位置決めピン  3 Positioning pin
5 回路装置  5 Circuit equipment
6, 7 被検査電極  6, 7 Inspected electrode
10 複合導電性シート 10 Composite conductive sheet
11 スぺーサ一シート 11 Spacer sheet
11A スぺーサーシート材 11A Spacer sheet material
11H 貫通孔 11H Through hole
12a, 12b, 12c 接着層 12a, 12b, 12c adhesive layer
12H, 12h 貫通孑し 12H, 12h
12K 開口 12K aperture
13, 14 カバーシート  13, 14 Cover sheet
13H, 14H 貫通孔 13H, 14H Through hole
15 剛性導体 15 Rigid conductor
15a フランジ咅 15a Flange 咅
15b 端子部 15b terminal
16a 樹脂シート 16a resin sheet
16b 金属薄層 H 貫通孔 16b thin metal layer H Through hole
異方導電性コネクター  Anisotropic conductive connector
第 1の異方導電性エラストマ一シートA 導電性エラストマ一用材料層B 導電性エラストマ一用材料  First anisotropic conductive elastomer sheet A Material layer for conductive elastomer B Material for conductive elastomer
第 2の異方導電性エラストマ一シート アダプター本体  Second anisotropic conductive elastomer sheet adapter body
接続用電極  Connecting electrode
端子電極  Terminal electrode
内部配線部  Internal wiring section
接続用電極領域  Connecting electrode area
一面側成形部材  One side molded member
他面側成形部材  Other side molding
スぺーサー Spacer
K 開口 K opening
加圧ロール  Pressure roll
支持ロール  Support roll
加圧ロール装置 Pressure roll device
a 上部側検査ヘッドa Upper inspection head
b 下部側検査ヘッドb Lower side inspection head
a, 51b 検査電極装置a, 51b Inspection electrode device
a, 52b 検査電極a, 52b Test electrode
a, 53b 電線a, 53b Electric wire
a, 54b 支柱a, 54b Prop
a, 55b 異方導電性エラストマa 上部側支持板a, 55b Anisotropic conductive elastomer a Upper support plate
b 下部側支持板b Lower support plate
a, 57b コネクター P 導電性粒子 a, 57b connector P conductive particles
M 金属体  M metal body
H 貫通孔  H Through hole
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
〈複合導電性シート〉  <Composite conductive sheet>
図 1は、本発明の複合導電性シートの一例における構成を示す説明用断面図であ る。この複合導電性シート 10は、それぞれ厚み方向に伸びる複数の貫通孔 11Hが 接続すべき電極のパターンに対応するパターンに従って形成されたスぺーサーシ一 ト 11と、このスぺーサーシート 11の両面の各々に接着層 12a, 12bを介して一体的 に積層されたカバーシート 13, 14と、スぺーサーシート 11の貫通孔 11Hの各々に配 置された剛性導体 15とにより構成されている。カバーシート 13, 14の各々には、スぺ ーサーシート 11の貫通孔 11Hに対応して当該スぺーサーシート 11の貫通孔 11Hの 径より小さい径を有する複数の貫通孔 13H, 14Hが形成されている。  FIG. 1 is a cross-sectional view for explaining the structure of an example of the composite conductive sheet of the present invention. The composite conductive sheet 10 includes a spacer sheet 11 formed according to a pattern corresponding to a pattern of electrodes to which a plurality of through-holes 11H extending in the thickness direction are to be connected, and both surfaces of the spacer sheet 11 The cover sheets 13 and 14 are integrally laminated with the adhesive layers 12a and 12b, respectively, and the rigid conductor 15 is disposed in each of the through holes 11H of the spacer sheet 11. Each of the cover sheets 13 and 14 is formed with a plurality of through holes 13H and 14H having a diameter smaller than the diameter of the through hole 11H of the spacer sheet 11 corresponding to the through hole 11H of the spacer sheet 11. Yes.
剛性導体 15の各々は、スぺーサーシート 11の貫通孔 11H内に位置された、カバ 一シート 13, 14の貫通孔 13H, 14Hの径より大きい径を有する円板状のフランジ部 15aを有し、このフランジ部 15aの両端面の各々には、それぞれカバーシート 13, 14 の貫通孔 13H, 14Hに揷通されて当該カバーシート 13, 14の表面から突出する、 2 つの棒状の端子部 15bがー体に連結されて形成されている。  Each of the rigid conductors 15 has a disk-like flange portion 15a having a diameter larger than the diameters of the through holes 13H and 14H of the cover sheets 13 and 14 and located in the through holes 11H of the spacer sheet 11. Two flanged terminal portions 15b projecting from the surfaces of the cover sheets 13 and 14 through the through holes 13H and 14H of the cover sheets 13 and 14, respectively, are provided on both end surfaces of the flange portion 15a. It is formed connected to the body.
そして、剛性導体 15におけるフランジ部 15aは、その径がスぺーサ一シート 11の貫 通孔 11Hの径より小さ!/、ものとされ、その厚みがスぺーサーシート 11の厚みより小さ いものとされており、これにより、剛性導体 15は、スぺーサーシート 11に対してその厚 み方向に移動可能とされて!/、る。  The flange portion 15a of the rigid conductor 15 has a diameter smaller than the diameter of the through hole 11H of the spacer sheet 11, and its thickness is smaller than the thickness of the spacer sheet 11. As a result, the rigid conductor 15 is movable in the thickness direction with respect to the spacer sheet 11! /.
[0024] スぺーサーシート 11を構成する材料としては、特に限定されるものではなぐ例え ば金属材料や非金属材料を用いることができる。 [0024] The material constituting the spacer sheet 11 is not particularly limited, and for example, a metal material or a non-metal material can be used.
金属材料の具体例としては、 (a)ステンレス、 (b)インバーなどのインバー型合金、 エリンバーなどのエリンバー型合金、スーパーインバー、コバール、 42合金などの磁 性金属の合金または合金鋼、(c)金、銀、銅、鉄、ニッケル、コバルト若しくはこれらの 合金などを挙げることができる。 Specific examples of metal materials include: (a) stainless steel, (b) invar type alloys such as invar, elinvar type alloys such as elimber, superinvar, kovar, alloy of magnetic metals such as 42 alloy or alloy steel, (c ) Gold, silver, copper, iron, nickel, cobalt or these An alloy etc. can be mentioned.
また、非金属材料の具体例としては、ポリイミド樹脂、ポリエステル樹脂、フッ素樹脂 、ポリアラミド樹脂、ポリアミド樹脂等の機械的強度の高い樹脂材料、ガラス繊維補強 型エポキシ樹脂、ガラス繊維補強型ポリエステル樹脂、ガラス繊維補強型ポリイミド樹 脂等の複合樹脂材料、エポキシ樹脂等にシリカ、アルミナ、ボロンナイトライド等の無 機材料をフイラ一として混入した複合樹脂材料などを用いることができるが、熱膨張 係数が小さい点で、ポリイミド樹脂、ガラス繊維補強型エポキシ樹脂等の複合樹脂材 料、ボロンナイトライドをフイラ一として混入したエポキシ樹脂等の複合樹脂材料など と用いること力 Sでさる。  Specific examples of non-metallic materials include resin materials with high mechanical strength such as polyimide resin, polyester resin, fluororesin, polyaramid resin, polyamide resin, glass fiber reinforced epoxy resin, glass fiber reinforced polyester resin, glass Composite resin materials such as fiber reinforced polyimide resin, composite resin materials such as epoxy resin mixed with inorganic materials such as silica, alumina, boron nitride, etc. can be used, but the coefficient of thermal expansion is small. In this respect, it is possible to use with a composite resin material such as polyimide resin, glass fiber reinforced epoxy resin, or a composite resin material such as epoxy resin mixed with boron nitride as a filler.
スぺーサーシート 11の厚みは、 10〜200 111でぁることカ好ましく、より好ましくは 1 5〜100 μ mで $?る。  The thickness of the spacer sheet 11 is preferably 10 to 200 111, more preferably 15 to 100 μm.
また、スぺーサーシート 11の貫通孔; 11Hの径は、 20〜300 111でぁることカ 子まし く、より好ましくは 30〜; 150 μ mである。  Further, the diameter of the through hole; 11H of the spacer sheet 11 is preferably 20 to 300 111, more preferably 30 to 150 μm.
[0025] 接着層 12a, 12bを構成する材料としては、アルカリ現像型接着剤、ポリイミド系接 着剤、ポリウレタン系接着剤、シリコン系接着剤、エポキシ樹脂系接着剤、エチレン 酢酸ビュル共重合体を主成分とするホットメルト接着剤、ポリアミドやポリエステルを 主成分とするホットメルト接着剤、ポリプロピレン等のポリオレフインを主成分とするホ ットメルト接着剤などを用いることができるが、後述する製造方法において、剛性導体 15のフランジ部 15aを容易に形成することができる点で、アルカリ現像型接着剤を用 いることが好ましい。 [0025] The materials constituting the adhesive layers 12a and 12b include an alkali developing adhesive, a polyimide adhesive, a polyurethane adhesive, a silicon adhesive, an epoxy resin adhesive, and an ethylene acetate butyl copolymer. Hot melt adhesives mainly composed of polyamide, polyesters, hot melt adhesives composed mainly of polyolefins such as polypropylene, etc. can be used. It is preferable to use an alkali developing adhesive in that the flange portion 15a of the conductor 15 can be easily formed.
[0026] カバーシート 13, 14を構成する材料としては、液晶ポリマー、ポリイミド樹脂、ポリエ ステル樹脂、ポリアラミド樹脂、ポリアミド樹脂等の樹脂材料、ガラス繊維補強型ェポ キシ樹脂、ガラス繊維補強型ポリエステル樹脂、ガラス繊維補強型ポリイミド樹脂等の 繊維補強型樹脂材料、エポキシ樹脂等にアルミナ、ボロンナイトライド等の無機材料 をフイラ一として含有した複合樹脂材料などを用いることができる。  [0026] The materials constituting the cover sheets 13, 14 include resin materials such as liquid crystal polymer, polyimide resin, polyester resin, polyaramid resin, polyamide resin, glass fiber reinforced epoxy resin, and glass fiber reinforced polyester resin. Further, a fiber reinforced resin material such as a glass fiber reinforced polyimide resin, a composite resin material containing an inorganic material such as alumina or boron nitride as a filler in an epoxy resin or the like can be used.
また、複合導電性シート 10を高温環境下で使用する場合には、カバーシート 13, 1 4として、線熱膨張係数が 3 X 10— 5/K以下のものを用いることが好ましぐより好まし くは 1 X 10— 6〜2 X 10— 5/Κ、特に好ましくは 1 X 10— 6〜6 X 10— 6/Κである。 また、カバーシート 13, 14の厚み dは、 5〜50 111であることが好ましぐより好まし くは 8〜30 111である。 Also, when using a composite conductive sheet 10 in a high temperature environment, as a cover sheet 13, 1 4, than it is preferred instrument linear thermal expansion coefficient used the following 3 X 10- 5 / K good better rather than the 1 X 10- 6 ~2 X 10- 5 / Κ, particularly preferably from 1 X 10- 6 ~6 X 10- 6 / Κ. Further, the thickness d of the cover sheets 13 and 14 is preferably 5 to 50 111, more preferably 8 to 30 111.
また、カバーシート 13, 14の貫通孔 13H, 14Hの径は、 15〜; 120 mであること力 S 好ましぐより好ましくは 20〜80 μ mである。  Further, the diameters of the through holes 13H and 14H of the cover sheets 13 and 14 are 15 to 120 m. The force S is more preferably 20 to 80 μm.
剛性導体 15を構成する材料としては、剛性を有する金属材料を好適に用いること ができ、特に、後述する製造方法においてスぺーサーシート 11およびカバーシート 1 3, 14などに形成される金属薄層よりもエッチングされにくいものを用いることが好まし い。このような金属材料の具体例としては、ニッケル、コバルト、金、アルミニウムなど の単体金属またはこれらの合金などを挙げることができる。  As the material constituting the rigid conductor 15, a metal material having rigidity can be preferably used, and in particular, a thin metal layer formed on the spacer sheet 11 and the cover sheets 13, 14, etc. in the manufacturing method described later. It is preferable to use a material that is less susceptible to etching. Specific examples of such a metal material include simple metals such as nickel, cobalt, gold, and aluminum, or alloys thereof.
剛性導体 15におけるフランジ部 15aの径とスぺーサ一シート 11の貫通孔 11Hの径 との差は、 1 m以上であることが好ましぐより好ましくは 2 m以上である。この差が 過小である場合には、スぺーサーシート 11の厚み方向に対して剛性導体 15のフラン ジ部 15aを移動させることが困難となることがある。  The difference between the diameter of the flange portion 15a of the rigid conductor 15 and the diameter of the through hole 11H of the spacer sheet 11 is preferably 1 m or more, more preferably 2 m or more. If this difference is too small, it may be difficult to move the flange portion 15a of the rigid conductor 15 in the thickness direction of the spacer sheet 11.
また、剛性導体 15におけるフランジ部 15aの径とカバーシート 13, 14の貫通孔 13 H, 14Hの径との差は、 5 m以上であることが好ましぐより好ましくは 10 m以上 である。この差が過小である場合には、剛性導体 15が脱落する恐れがある。  Further, the difference between the diameter of the flange portion 15a in the rigid conductor 15 and the diameter of the through holes 13H and 14H of the cover sheets 13 and 14 is preferably 5 m or more, more preferably 10 m or more. If this difference is too small, the rigid conductor 15 may fall off.
剛性導体 15における端子部 15bの径は、接続すべき電極例えば被検査電極の径 の 50〜300%であることが好ましい。また、剛性導体 15における端子部 15bの径とカ バーシート 13, 14の貫通孔 13H, 14Hの径との差は、 1 m以上であることが好まし ぐより好ましくは 2 m以上である。この差が過小である場合には、スぺーサーシート 11の厚み方向に対して剛性導体 15のフランジ部 15aを移動させることが困難となる こと力 sある。 The diameter of the terminal portion 15b in the rigid conductor 15 is preferably 50 to 300% of the diameter of the electrode to be connected, for example, the electrode to be inspected. Further, the difference between the diameter of the terminal portion 15b in the rigid conductor 15 and the diameter of the through holes 13H and 14H of the cover sheets 13 and 14 is preferably 1 m or more, more preferably 2 m or more. If the difference is too small, this and force s becomes difficult to move with respect to the thickness direction of the scan Bae Sashito 11 a flange portion 15a of the rigid conductor 15.
スぺーサーシート 11の厚み方向における剛性導体 15の移動可能距離、すなわち フランジ部 15aの厚みとスぺーサーシート 11の厚みとの差は、 3〜150 111であるこ と力 S好ましく、より好ましくは 5〜; 100〃 m、さらに好ましくは 10〜50〃 111である。フラ ンジ部 15aの移動可能距離が過小である場合には、後述する異方導電性コネクター において、十分な凹凸吸収能を得ることが困難となることがある。一方、フランジ部 15 aの移動可能距離が過大である場合には、剛性導体 15におけるフランジ部 15aおよ び端子部 15bの長さが過大となり、後述する異方導電性コネクターにおいて、被検査 物との接続時の圧力により、端子部やフランジ部の座屈や曲がりを生じ、剛性導体の 移動困難となること力 Sfcる。 The movable distance of the rigid conductor 15 in the thickness direction of the spacer sheet 11, that is, the difference between the thickness of the flange portion 15 a and the thickness of the spacer sheet 11 is a force S of 3 to 150 111, more preferably 5 to 100 m, more preferably 10 to 50 111. When the movable distance of the flange portion 15a is too small, it may be difficult to obtain sufficient unevenness absorbing ability in the anisotropic conductive connector described later. On the other hand, if the movable distance of the flange portion 15a is excessive, the flange portion 15a and the rigid conductor 15 And the length of the terminal part 15b becomes excessive, and the anisotropic conductive connector described later causes buckling and bending of the terminal part and flange part due to the pressure when connecting to the object to be inspected. The power to become Sfc.
[0028] 上記の複合導電性シート 10は、例えば以下のようにして製造することができる。 [0028] The composite conductive sheet 10 can be manufactured, for example, as follows.
先ず、図 2に示すように、金属よりなるスぺーサーシート材 11Aを用意し、このスぺ ーサーシート材 11Aに対してフォトリソグラフィーおよびエッチング処理を施すことに より、図 3に示すように、接続すべき電極のパターンに対応するパターンに従って複 数の貫通孔 11Hが形成されてなるスぺーサーシート 11が形成される。  First, as shown in FIG. 2, a spacer sheet material 11A made of metal is prepared, and the spacer sheet material 11A is subjected to photolithography and etching treatment, thereby connecting as shown in FIG. A spacer sheet 11 in which a plurality of through holes 11H are formed in accordance with a pattern corresponding to the pattern of the electrode to be formed is formed.
このようにして得られたスぺーサーシート 11に対してフォトリソグラフィーおよびメッ キ処理を施すことにより、図 4に示すように、スぺーサーシート 11の貫通孔 11H内に 易エッチング性の金属体 Mを形成する。次いで、図 5に示すように、スぺーサーシ一 ト 11および金属体 Mの各々の表面にアルカリ現像型接着剤よりなる接着層 12aを形 成すると共に、スぺーサーシート 11および金属体 Mの裏面に、接着層 12bを介して カバーシート 14を一体的に積層する。その後、接着層 12aに対して露光処理および 現像処理を施すことにより、図 6に示すように、接着層 12aに、金属体 Mを露出する 開口 12Kを形成する。そして、図 7に示すように、接着層 12a上に、カバーシート 13 を一体的に積層すると共に、このカバーシート 13上に接着層 12cを介して樹脂シート 16aを一体的に積層する。  As shown in FIG. 4, the spacer sheet 11 thus obtained is subjected to photolithography and a mesh treatment, so that an easily-etchable metal body is placed in the through-hole 11H of the spacer sheet 11. Form M. Next, as shown in FIG. 5, an adhesive layer 12a made of an alkali developing adhesive is formed on the surface of each of the spacer sheet 11 and the metal body M, and the spacer sheet 11 and the metal body M The cover sheet 14 is integrally laminated on the back surface via the adhesive layer 12b. Thereafter, by performing exposure processing and development processing on the adhesive layer 12a, an opening 12K that exposes the metal body M is formed in the adhesive layer 12a as shown in FIG. Then, as shown in FIG. 7, a cover sheet 13 is integrally laminated on the adhesive layer 12a, and a resin sheet 16a is integrally laminated on the cover sheet 13 via the adhesive layer 12c.
[0029] 次いで、図 8に示すように、例えば紫外線レーザー加工によって、樹脂シート 16a、 接着層 12c、カバーシート 13、金属体 M、接着層 12bおよびカバーシート 14の各々 に、接着層 12aの開 P 121^こ連通する貫通孑 L16H, 12h, 13H, H, 12H, 14Hを 形成し、更に、無電解メツキ処理を施すことにより、図 9に示すように、樹脂シート 16a 、接着層 12c、カバーシート 13、金属体 M、接着層 12bおよびカバーシート 14の各 々の貫通孔 16H, 12h, 13H、H, 12H, 14Hおよび接着層 12Kの開口の内面に、 易エッチング性の金属薄層 16bを形成する。 Next, as shown in FIG. 8, the adhesive layer 12a is opened on each of the resin sheet 16a, the adhesive layer 12c, the cover sheet 13, the metal body M, the adhesive layer 12b, and the cover sheet 14 by, for example, ultraviolet laser processing. P121 ^ Through holes L16H, 12h, 13H, H, 12H, 14H are formed, and then electroless plating treatment is applied, as shown in Fig. 9, resin sheet 16a, adhesive layer 12c, cover An easy-etching thin metal layer 16b is formed on the inner surface of each of the through holes 16H, 12h, 13H, H, 12H, 14H and the adhesive layer 12K of the sheet 13, the metal body M, the adhesive layer 12b, and the cover sheet 14. Form.
そして、金属薄層 16bに対して例えば電解メツキ処理を施すことにより、図 10に示 すように、金属薄層 16bによって区画された空間内に金属が充填されて剛性導体 15 が形成される。 このようにして剛性導体 15を形成した後、エッチング処理を施して金属薄層 16bお よび金属体 Mを除去することにより、図 11に示すように、剛性導体 15におけるフラン ジ部 15aをスぺーサーシート 11の厚み方向に移動可能な状態とし、更に、樹脂シー ト 16aおよび接着層 12cを除去することにより、図 1に示す複合導電性シート 10が得 られる。 Then, by subjecting the thin metal layer 16b to, for example, electrolytic plating, the space defined by the thin metal layer 16b is filled with metal to form the rigid conductor 15, as shown in FIG. After forming the rigid conductor 15 in this manner, the thin metal layer 16b and the metal body M are removed by performing an etching process, so that the flange portion 15a of the rigid conductor 15 is spaced as shown in FIG. The composite conductive sheet 10 shown in FIG. 1 is obtained by making the cir- sible sheet 11 movable in the thickness direction and further removing the resin sheet 16a and the adhesive layer 12c.
[0030] 本発明の複合導電性シートによれば、スぺーサーシート 11の貫通孔 11Hに、その 厚み方向に移動可能な剛性導体 15が設けられており、当該剛性導体 15のフランジ 部 15aは、カバーシート 13, 14の貫通孔 13H, 14Hの径より大きい径を有するもの であるため、当該剛性導体 15がスぺーサーシート 11から脱落することがなぐ当該複 合導電性シート 10単独でも取り扱!/、易いものである。  [0030] According to the composite conductive sheet of the present invention, the rigid conductor 15 movable in the thickness direction is provided in the through hole 11H of the spacer sheet 11, and the flange portion 15a of the rigid conductor 15 is Since the cover sheet 13, 14 has a diameter larger than the diameter of the through holes 13H, 14H, the composite conductive sheet 10 alone in which the rigid conductor 15 does not fall off the spacer sheet 11 can be removed. Easy to handle!
本発明の複合導電性シートは、プリント回路基板、 ICなどの回路装置の電気的検 查に用いることができ、また、種々の回路装置間の電気的接続を達成するためのコネ クタ一として用いること力 Sできる。  The composite conductive sheet of the present invention can be used for electrical inspection of circuit devices such as printed circuit boards and ICs, and is also used as a connector for achieving electrical connection between various circuit devices. That power S.
[0031] 〈異方導電性コネクター〉  [0031] <Anisotropic conductive connector>
図 12は、本発明の異方導電性コネクターの一例における構成を示す説明用断面 図である。この異方導電性コネクター 17は、図 1に示す構成の複合導電性シート 10 と、この複合導電性シート 10の一面(図 12において上面)に配置された第 1の異方導 電性エラストマ一シート 18と、複合導電性シート 10の他面に配置された第 2の異方 導電性エラストマ一シート 19とにより構成されている。  FIG. 12 is a cross-sectional view illustrating the configuration of an example of the anisotropically conductive connector of the present invention. The anisotropic conductive connector 17 includes a composite conductive sheet 10 having the configuration shown in FIG. 1 and a first anisotropic conductive elastomer disposed on one surface (the upper surface in FIG. 12) of the composite conductive sheet 10. The sheet 18 and a second anisotropic conductive elastomer sheet 19 disposed on the other surface of the composite conductive sheet 10 are configured.
[0032] この例における第 1の異方導電性エラストマ一シート 18および第 2の異方導電性ェ ラストマーシート 19は、いずれも絶縁性の弾性高分子物質中に、磁性を示す導電性 粒子 Pが、厚み方向に並ぶよう配向して連鎖が形成された状態で、かつ、当該導電 性粒子 Pによる連鎖が面方向に分散した状態で含有されてなるものである。  [0032] The first anisotropically conductive elastomer sheet 18 and the second anisotropically conductive elastomer sheet 19 in this example are both conductive particles exhibiting magnetism in an insulating elastic polymer material. P is contained in a state in which P is aligned so as to be aligned in the thickness direction and a chain is formed, and a chain of the conductive particles P is dispersed in the plane direction.
第 1の異方導電性エラストマ一シート 18および第 2の異方導電性エラストマ一シート 19を形成する弾性高分子物質としては、架橋構造を有する高分子物質が好ましぐ 耐久性、成形加工性および電気特性の観点から、シリコーンゴムを用いることが、より 好ましい。  A polymer material having a cross-linked structure is preferred as the elastic polymer material forming the first anisotropic conductive elastomer sheet 18 and the second anisotropic conductive elastomer sheet 19. Durability, moldability From the viewpoint of electrical properties, it is more preferable to use silicone rubber.
[0033] 第 1の異方導電性エラストマ一シート 18および第 2の異方導電性エラストマ一シート 19に含有される導電性粒子 Pとしては、後述する方法により当該粒子を容易に厚み 方向に並ぶよう配向させることができることから、磁性を示す導電性粒子が用いられる 。このような導電性粒子の具体例としては、鉄、コバルト、ニッケルなどの磁性を有す る金属の粒子若しくはこれらの合金の粒子またはこれらの金属を含有する粒子、また はこれらの粒子を芯粒子とし、当該芯粒子の表面に金、銀、パラジウム、ロジウムなど の導電性の良好な金属のメツキを施したもの、あるいは非磁性金属粒子若しくはガラ スビーズなどの無機物質粒子またはポリマー粒子を芯粒子とし、当該芯粒子の表面 に、ニッケル、コバルトなどの導電性磁性金属のメツキを施したものなどが挙げられる[0033] First anisotropically conductive elastomer sheet 18 and second anisotropically conductive elastomer sheet As the conductive particles P contained in 19, conductive particles exhibiting magnetism are used because the particles can be easily aligned in the thickness direction by a method described later. Specific examples of such conductive particles include particles of a metal having magnetism such as iron, cobalt and nickel, particles of these alloys, particles containing these metals, or particles of these particles as core particles. The surface of the core particle is made of a metal having a good conductivity such as gold, silver, palladium, rhodium, or inorganic substance particles such as non-magnetic metal particles or glass beads, or polymer particles. In addition, the surface of the core particle may be a conductive magnetic metal such as nickel or cobalt.
Yes
これらの中では、ニッケル粒子を芯粒子とし、その表面に導電性の良好な金または 銀のメツキを施したものを用いることが好まし!/、。  Of these, it is preferable to use nickel particles as core particles and the surface of which is provided with gold or silver plating with good conductivity! /.
芯粒子の表面に導電性金属を被覆する手段としては、特に限定されるものではな いが、例えば化学メツキまたは電解メツキ法、スパッタリング法、蒸着法などが用いら れている。  The means for coating the surface of the core particles with the conductive metal is not particularly limited. For example, chemical plating or electrolytic plating, sputtering, vapor deposition, or the like is used.
[0034] 導電性粒子 Pとして、芯粒子の表面に導電性金属が被覆されてなるものを用いる場 合には、良好な導電性が得られることから、粒子表面における導電性金属の被覆率( 芯粒子の表面積に対する導電性金属の被覆面積の割合)が 40%以上であることが 好ましぐさらに好ましくは 45%以上、特に好ましくは 47〜95%である。  [0034] When the conductive particles P used are those in which the surface of the core particles is coated with a conductive metal, good conductivity can be obtained. The ratio of the coated area of the conductive metal to the surface area of the core particles) is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
また、導電性金属の被覆量は、芯粒子の 0. 5〜50質量%であることが好ましい。  Further, the coating amount of the conductive metal is preferably 0.5 to 50% by mass of the core particles.
[0035] また、導電性粒子 Pの数平均粒子径は、 3〜20 ,1 mであることが好ましく、より好ま しくは 5〜; 15 である。この数平均粒子径が過小である場合には、後述する製造 方法において、導電性粒子 Pを厚み方向に配向させることが困難となることがある。 一方、この数平均粒子径が過大である場合には、分解能の高い異方導電性エラスト マーシートを得ることが困難となることがある。 [0035] The number average particle diameter of the conductive particles P is preferably 3 to 20, 1 m, and more preferably 5 to 15. When this number average particle diameter is too small, it may be difficult to orient the conductive particles P in the thickness direction in the production method described later. On the other hand, when the number average particle diameter is excessive, it may be difficult to obtain an anisotropic conductive elastomer sheet with high resolution.
また、導電性粒子 Pの粒子径分布(Dw/Dn)は、 1〜; 10であることが好ましぐより 好ましくは 1. 01-7,さらに好ましくは 1. 05〜5、特に好ましくは 1. ;!〜 4である。 また、導電性粒子 Pの形状は、特に限定されるものではないが、高分子物質形成材 料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれ らが凝集した 2次粒子であることが好ましレ、。 Further, the particle size distribution (Dw / Dn) of the conductive particles P is preferably 1 to 10; more preferably 1.01-7, still more preferably 1.05 to 5, particularly preferably 1. ; ~ 4. In addition, the shape of the conductive particles P is not particularly limited. However, the conductive particles P can be easily dispersed in the polymer material-forming material. It is preferable that they are agglomerated secondary particles.
[0036] このような導電性粒子 Pは、異方導電性エラストマ シート中に体積分率で 10 40 %、特に 15 35%となる割合で含有されていることが好ましい。この割合が過小であ る場合には、厚み方向に十分に高い導電性を有する異方導電性エラストマ シート が得られないことがある。一方、この割合が過大である場合には、得られる異方導電 性エラストーシートは脆弱なものとなりやすぐ異方導電性エラストマ シートとして必 要な弾性が得られな!/、こと力 Sある。 [0036] Such conductive particles P are preferably contained in the anisotropic conductive elastomer sheet at a volume fraction of 10 40%, particularly 15 35%. If this ratio is too small, an anisotropic conductive elastomer sheet having sufficiently high conductivity in the thickness direction may not be obtained. On the other hand, if this ratio is excessive, the anisotropically conductive elastomer sheet obtained becomes fragile and the necessary elasticity as an anisotropically conductive elastomer sheet cannot be obtained immediately! / .
[0037] また、第 1の異方導電性エラストマ シート 18および第 2の異方導電性エラストマ シート 19の各々の厚みは、 20〜; 100〃 mであること力 S好ましく、より好ましくは 25 7 O ^ mである。この厚みが過小である場合には、十分な凹凸吸収能が得られないこと がある。一方、この厚みが過大である場合には、高い分解能が得られないことがある [0037] Further, the thickness of each of the first anisotropic conductive elastomer sheet 18 and the second anisotropic conductive elastomer sheet 19 is 20 to 100 m, preferably S, more preferably 25 7 O ^ m. If this thickness is too small, sufficient unevenness absorbing ability may not be obtained. On the other hand, if this thickness is excessive, high resolution may not be obtained.
[0038] 第 1の異方導電性エラストマ シート 18は、以下のようにして製造することができる 先ず、図 13に示すように、それぞれシート状の一面側成形部材 30および他面側成 形部材 31と、 目的とする第 1の異方導電性エラストマ シート 18の平面形状に適合 する形状の開口 32Kを有すると共に当該第 1の異方導電性エラストマ シート 18の 厚みに対応する厚みを有する枠状のスぺーサー 32とを用意すると共に、硬化されて 弾性高分子物質となる液状の高分子物質形成材料中に導電性粒子が含有されてな る導電性エラストマ 用材料を調製する。 [0038] The first anisotropically conductive elastomer sheet 18 can be manufactured as follows. First, as shown in FIG. 13, the sheet-like one-side molded member 30 and the other-side molded member, respectively. 31 and a frame shape having an opening 32K having a shape conforming to the planar shape of the target first anisotropic conductive elastomer sheet 18 and having a thickness corresponding to the thickness of the first anisotropic conductive elastomer sheet 18 And a spacer 32, and a conductive elastomer material in which conductive particles are contained in a liquid polymer substance-forming material that is cured to become an elastic polymer substance.
そして、図 14に示すように、他面側成形部材 31の成形面(図 14において上面)上 にスぺーサー 32を配置し、他面側成形部材 31の成形面上におけるスぺーサー 32 の開口 32K内に、調製した導電性エラストマ 用材料 18Bを塗布し、その後、この導 電性エラストマ 用材料 18B上に一面側成形部材 30をその成形面(図 14において 下面)が導電性エラストマ 用材料 18Bに接するよう配置する。  Then, as shown in FIG. 14, a spacer 32 is disposed on the molding surface (the upper surface in FIG. 14) of the other surface side molding member 31, and the spacer 32 on the molding surface of the other surface side molding member 31 is disposed. The prepared conductive elastomer material 18B is applied to the opening 32K, and then the one side molding member 30 is formed on the conductive elastomer material 18B with the molding surface (lower surface in FIG. 14) being the conductive elastomer material. Arrange it in contact with 18B.
以上において、一面側成形部材 30および他面側成形部材 31としては、ポリイミド 樹脂、ポリエステル樹脂、アクリル樹脂などよりなる樹脂シートを用いることができる。 また、一面側成形部材 30および他面側成形部材 31を構成する樹脂シートの厚み は、 50〜500〃111でぁることカ 子ましく、より好ましくは 75〜300〃111である。この厚 みが 50 m未満である場合には、成形部材として必要な強度が得られないことがあ る。一方、この厚みが 500 mを超える場合には、後述する導電性エラストマ一用材 料層に所要の強度の磁場を作用させることが困難となることがある。 In the above, as the one side molding member 30 and the other side molding member 31, resin sheets made of polyimide resin, polyester resin, acrylic resin, or the like can be used. Further, the thickness of the resin sheet constituting the one-surface-side molded member 30 and the other-surface-side molded member 31 Is preferably 50 to 500〃111, more preferably 75 to 300〃111. If this thickness is less than 50 m, the strength required for molded parts may not be obtained. On the other hand, when the thickness exceeds 500 m, it may be difficult to apply a magnetic field having a required strength to the conductive elastomer material layer described later.
[0039] 次いで、図 15に示すように、加圧ロール 33および支持ロール 34よりなる加圧ロー ル装置 35を用い、一面側成形部材 30および他面側成形部材 31によって導電性ェ ラストマー用材料 18Bを挟圧することにより、当該一面側成形部材 30と当該他面側 成形部材 31との間に、所要の厚みの導電性エラストマ一用材料層 18Aを形成する。 この導電性エラストマ一用材料層 18Aにおいては、図 16に拡大して示すように、導 電性粒子 Pが均一に分散した状態で含有されている。  Next, as shown in FIG. 15, a conductive elastomer material is formed by the one-surface-side molded member 30 and the other-surface-side molded member 31 using a pressure roll device 35 including a pressure roll 33 and a support roll 34. By sandwiching 18B, a conductive elastomer material layer 18A having a required thickness is formed between the one side molding member 30 and the other side molding member 31. In the conductive elastomer material layer 18A, as shown in an enlarged view in FIG. 16, the conductive particles P are contained in a uniformly dispersed state.
その後、一面側成形部材 30の裏面および他面側成形部材 31の裏面に、例えば一 対の電磁石を配置し、当該電磁石を作動させることにより、導電性エラストマ一用材 料層 18Aの厚み方向に平行磁場を作用させる。その結果、導電性エラストマ一用材 料層 18 Aにおいては、当該導電性エラストマ一用材料層 18A中に分散されている導 電性粒子 Pが、図 17に示すように、面方向に分散された状態を維持しながら厚み方 向に並ぶよう配向し、これにより、それぞれ厚み方向に伸びる複数の導電性粒子 Pに よる連鎖が、面方向に分散した状態で形成される。  After that, for example, a pair of electromagnets are arranged on the back surface of the one-surface-side molded member 30 and the back surface of the other-surface-side molded member 31, and the electromagnet is operated to be parallel to the thickness direction of the conductive elastomer material layer 18A. Apply a magnetic field. As a result, in the conductive elastomer material layer 18A, the conductive particles P dispersed in the conductive elastomer material layer 18A were dispersed in the plane direction as shown in FIG. While maintaining the state, it is oriented so as to be aligned in the thickness direction, whereby a chain of a plurality of conductive particles P each extending in the thickness direction is formed in a state dispersed in the plane direction.
そして、この状態において、導電性エラストマ一用材料層 18Aを硬化処理すること により、弾性高分子物質中に、導電性粒子 Pが厚み方向に並ぶよう配向した状態で、 かつ、当該導電性粒子 Pによる連鎖が面方向に分散された状態で含有されてなる第 1の異方導電性エラストマ一シート 18が製造される。  In this state, by curing the conductive elastomer material layer 18A, the conductive particles P are aligned in the thickness direction in the elastic polymer substance, and the conductive particles P Thus, a first anisotropic conductive elastomer sheet 18 containing the chain in a state where the chain is dispersed in the plane direction is produced.
[0040] 以上において、導電性エラストマ一用材料層 18Aの硬化処理は、平行磁場を作用 させたままの状態で行うこともできる力 平行磁場の作用を停止させた後に行うことも できる。  [0040] In the above, the curing process of the conductive elastomer material layer 18A can be performed after the action of the force parallel magnetic field which can be performed with the parallel magnetic field applied is stopped.
また、平行磁場の作用を一旦停止し、その後、作用させる磁場の方向を反転させて あよい。  In addition, the action of the parallel magnetic field may be temporarily stopped, and then the direction of the applied magnetic field may be reversed.
導電性エラストマ一用材料層 18Aに作用される平行磁場の強度は、平均で 0. 02 〜2· 5テスラとなる大きさが好ましい。 [0041] また、第 2の異方導電性エラストマ一シート 19は、第 1の異方導電性エラストマーシ ート 18と同様の方法によって製造することができる。 The intensity of the parallel magnetic field applied to the conductive elastomer material layer 18A preferably has an average value of 0.02 to 2.5 Tesla. [0041] The second anisotropically conductive elastomer sheet 19 can be manufactured by a method similar to that of the first anisotropically conductive elastomer sheet 18.
[0042] このような異方導電性コネクター 17によれば、複合導電性シート 10における剛性導 体 15の各々は、スぺーサーシート 11に対してその厚み方向に移動可能とされて!/、る ため、接続すべき電極によって厚み方向に加圧されたときには、複合導電性シート 1 0の一面に配置された第 1の異方導電性エラストマ一シート 18および当該複合導電 性シート 10の他面に配置された第 2の異方導電性エラストマ一シート 19は、剛性導 体 15がスぺーサーシート 11の厚み方向に移動することによって互いに連動して圧縮 変形するため、両者の有する凹凸吸収能の合計が異方導電性コネクター 17の凹凸 吸収能として発現され、従って、高い凹凸吸収能を得ることができる。 [0042] According to such an anisotropic conductive connector 17, each of the rigid conductors 15 in the composite conductive sheet 10 is movable in the thickness direction with respect to the spacer sheet 11! /, Therefore, when pressed in the thickness direction by the electrodes to be connected, the first anisotropic conductive elastomer sheet 18 disposed on one side of the composite conductive sheet 10 and the other side of the composite conductive sheet 10 The second anisotropically conductive elastomer sheet 19 disposed in FIG. 2 is compressed and deformed in conjunction with each other as the rigid conductor 15 moves in the thickness direction of the spacer sheet 11, so that the irregularity absorption capability of both Of the anisotropic conductive connector 17 is expressed as the uneven absorbability of the anisotropic conductive connector 17, and thus high uneven absorbability can be obtained.
また、所要の凹凸吸収能を得るために必要な厚みは、第 1の異方導電性エラストマ 一シート 18および第 2の異方導電性エラストマ一シート 19の合計の厚みによって確 保すればよぐ個々の異方導電性エラストマ一シートとしては、厚みが小さいものを用 V、ること力 Sできるので、高!/、分解能を得ることができる。  In addition, the thickness necessary to obtain the required unevenness absorbing capacity may be ensured by the total thickness of the first anisotropic conductive elastomer sheet 18 and the second anisotropic conductive elastomer sheet 19. Individual anisotropically conductive elastomer sheets can be used with a small thickness V and force S, so that high resolution can be obtained.
従って、隣接する電極間の離間距離が小さぐ電極の高さレベルにバラツキがある 接続対象体についても、隣接する電極間に必要な絶縁性が確保された状態で当該 電極の各々に対する電気的な接続を確実に達成することができる。  Therefore, even when the distance between the adjacent electrodes is small and the height level of the electrodes varies, the electrical connection to each of the electrodes is ensured with the necessary insulation between the adjacent electrodes. Connection can be reliably achieved.
[0043] 〈アダプター装置〉 [0043] <Adapter device>
図 18は、本発明に係るアダプター装置の一例における構成を示す説明用断面図 であり、図 19は、図 18に示すアダプター装置におけるアダプター本体を示す説明用 断面図である。このアダプター装置は、例えばプリント回路基板などの回路装置につ いて、例えばオープン 'ショート試験を行うために用いられる回路装置検査用のもの であって、多層配線板よりなるアダプター本体 20を有する。  FIG. 18 is a cross-sectional view illustrating the configuration of an example of the adapter device according to the present invention, and FIG. 19 is a cross-sectional view illustrating the adapter body in the adapter device shown in FIG. This adapter device is for inspecting a circuit device used for, for example, an open / short test of a circuit device such as a printed circuit board, and has an adapter body 20 made of a multilayer wiring board.
アダプター本体 20の表面(図 18および図 19において上面)には、検査対象である 回路装置の被検査電極のパターンに対応する特定のパターンに従って複数の接続 用電極 21が配置された接続用電極領域 25が形成されている。  On the surface of the adapter body 20 (upper surface in FIGS. 18 and 19), a connection electrode region in which a plurality of connection electrodes 21 are arranged according to a specific pattern corresponding to the pattern of the electrode to be inspected of the circuit device to be inspected. 25 is formed.
アダプター本体 20の裏面には、例えばピッチが 0. 8mm、 0. 75mm, 1. 5mm、 1 . 8mm、 2. 54mmの格子点位置に従って複数の端子電極 22が配置され、端子電 極 22の各々は、内部配線部 23によって接続用電極 21に電気的に接続されている。 このアダプター本体 20の表面には、その接続用電極領域 25上に、基本的に図 12 に示す構成の異方導電性コネクター 15が、その第 2の異方導電性エラストマーシー ト 19がアダプター本体 20に接するよう配置され、当該アダプター本体 20に適宜の手 段(図示省略)によって固定されてレ、る。 A plurality of terminal electrodes 22 are arranged on the back surface of the adapter body 20 in accordance with the grid point positions of, for example, a pitch of 0.8 mm, 0.75 mm, 1.5 mm, 1.8 mm, and 2.54 mm. Each of the electrodes 22 is electrically connected to the connection electrode 21 by the internal wiring portion 23. On the surface of the adapter body 20, an anisotropic conductive connector 15 having a configuration shown in FIG. 12 is basically provided on the connection electrode region 25, and a second anisotropic conductive elastomer sheet 19 is provided on the adapter body. It is placed in contact with 20 and fixed to the adapter body 20 by an appropriate means (not shown).
この異方導電性コネクター 15において、複合導電性シート 10には、アダプタ一本 体 20における接続用電極 21に係る特定のパターンと同一のパターンに従って複数 の剛性導体 12が配置されており、当該異方導電性コネクター 15は、複合導電性シ ート 10における剛性導体 12の各々がアダプター本体 20の接続用電極 21の直上位 置に位置するよう配置されて!/、る。  In this anisotropic conductive connector 15, a plurality of rigid conductors 12 are arranged on the composite conductive sheet 10 according to the same pattern as the specific pattern related to the connection electrode 21 in the adapter single body 20. The directionally conductive connector 15 is arranged such that each of the rigid conductors 12 in the composite conductive sheet 10 is positioned directly above the connection electrode 21 of the adapter body 20! /.
[0044] このようなアダプター装置によれば、図 12に示す構成の異方導電性コネクター 17 を有するため、検査対象である回路装置が、隣接する被検査電極の間の離間距離 力小さぐ被検査電極の高さレベルにバラツキがあるものであっても、隣接する被検 查電極間に必要な絶縁性が確保された状態で当該被検査電極の各々に対する電 気的な接続を確実に達成することができる。  [0044] According to such an adapter device, since the anisotropic conductive connector 17 having the configuration shown in Fig. 12 is provided, the circuit device to be inspected has a small distance between adjacent electrodes to be inspected. Even if there are variations in the height level of the test electrodes, electrical connection to each of the test electrodes is reliably achieved with the necessary insulation between adjacent test electrodes. can do.
[0045] 〈回路装置の電気的検査装置〉  <Electrical Inspection Device for Circuit Device>
図 20は、本発明に係る回路装置の電気的検査装置の一例における構成を示す説 明図である。この電気的検査装置は、両面に被検査電極 6, 7が形成されたプリント 回路基板などの回路装置 5について、例えばオープン 'ショート試験を行うものであつ て、回路装置 5を検査実行領域 Eに保持するためのホルダー 2を有し、このホルダー 2には、回路装置 5を検査実行領域 Eにおける適正な位置に配置するための位置決 めピン 3が設けられている。検査実行領域 Eの上方には、図 18に示すような構成の上 部側アダプター装置 laおよび上部側検査ヘッド 50aが下からこの順で配置され、更 に、上部側検査ヘッド 50aの上方には、上部側支持板 56aが配置されており、上部 側検査ヘッド 50aは、支柱 54aによって上部側支持板 56aに固定されている。一方、 検査実行領域 Eの下方には、図 18に示すような構成の下部側アダプター装置 lbお よび下部側検査ヘッド 50bが上からこの順で配置され、更に、下部側検査ヘッド 50b の下方には、下部側支持板 56bが配置されており、下部側検査ヘッド 50bは、支柱 5 4bによって下部側支持板 56bに固定されている。 FIG. 20 is an explanatory diagram showing a configuration of an example of an electrical inspection apparatus for a circuit device according to the present invention. This electrical inspection device performs, for example, an open 'short test on a circuit device 5 such as a printed circuit board having electrodes 6 and 7 to be inspected on both sides. The holder 2 for holding is provided with a positioning pin 3 for arranging the circuit device 5 at an appropriate position in the inspection execution area E. Above the inspection execution area E, an upper adapter device la and an upper inspection head 50a configured as shown in FIG. 18 are arranged in this order from the bottom, and further above the upper inspection head 50a. The upper side support plate 56a is arranged, and the upper side inspection head 50a is fixed to the upper side support plate 56a by the support 54a. On the other hand, below the inspection execution area E, a lower-side adapter device lb and a lower-side inspection head 50b configured as shown in FIG. 18 are arranged in this order from the top, and further below the lower-side inspection head 50b. Is provided with a lower support plate 56b, and the lower inspection head 50b It is fixed to the lower support plate 56b by 4b.
上部側検査ヘッド 50aは、板状の検査電極装置 51aと、この検査電極装置 51aの 下面に固定されて配置された弾性を有する異方導電性エラストマ一シート 55aとによ り構成されている。検査電極装置 51aは、その下面に上部側アダプター装置 laの端 子電極 22と同一のピッチの格子点位置に配列された複数のピン状の検査電極 52a を有し、これらの検査電極 52aの各々は、電線 53aによって、上部側支持板 56aに設 けられたコネクター 57aに電気的に接続され、更に、このコネクター 57aを介してテス ターの検査回路(図示省略)に電気的に接続されて!/、る。  The upper inspection head 50a is composed of a plate-shaped inspection electrode device 51a and an anisotropically conductive elastomer sheet 55a having elasticity and fixed to the lower surface of the inspection electrode device 51a. The inspection electrode device 51a has a plurality of pin-shaped inspection electrodes 52a arranged at lattice point positions at the same pitch as the terminal electrodes 22 of the upper-side adapter device la on its lower surface, and each of these inspection electrodes 52a. Is electrically connected to a connector 57a provided on the upper support plate 56a by an electric wire 53a, and further electrically connected to a test circuit (not shown) of the tester via this connector 57a! /
下部側検査ヘッド 50bは、板状の検査電極装置 51bと、この検査電極装置 51bの 上面に固定されて配置された弾性を有する異方導電性エラストマ一シート 55bとによ り構成されている。検査電極装置 51bは、その上面に下部側アダプター装置 lbの端 子電極 22と同一のピッチの格子点位置に配列された複数のピン状の検査電極 52b を有し、これらの検査電極 52bの各々は、電線 53bによって、下部側支持板 56bに設 けられたコネクター 57bに電気的に接続され、更に、このコネクター 57bを介してテス ターの検査回路(図示省略)に電気的に接続されて!/、る。  The lower side inspection head 50b is composed of a plate-like inspection electrode device 51b and an anisotropically conductive elastomer sheet 55b having elasticity and fixed to the upper surface of the inspection electrode device 51b. The inspection electrode device 51b has a plurality of pin-shaped inspection electrodes 52b arranged on the upper surface thereof at lattice point positions having the same pitch as the terminal electrodes 22 of the lower side adapter device lb, and each of these inspection electrodes 52b. Is electrically connected to the connector 57b provided on the lower support plate 56b by the electric wire 53b, and further electrically connected to the test circuit of the tester (not shown) via the connector 57b! /
[0046] 上部側検査ヘッド 50aおよび下部側検査ヘッド 50bにおける異方導電性エラストマ 一シート 55a, 55bは、いずれもその厚み方向にのみ導電路を形成する導電路形成 部が形成されてなるものである。このような異方導電性エラストマ一シート 55a, 55bと しては、各導電路形成部が少なくとも一面において厚み方向に突出するよう形成され て!/、るものが、高!/、電気的な接触安定性を発揮する点で好ましレ、。  [0046] The anisotropic conductive elastomer sheets 55a and 55b in the upper side inspection head 50a and the lower side inspection head 50b are both formed with conductive path forming portions that form conductive paths only in the thickness direction. is there. In such anisotropic conductive elastomer sheets 55a and 55b, each conductive path forming portion is formed so as to protrude in the thickness direction on at least one surface! /, But what is high! / Preferable in terms of exerting contact stability.
[0047] このような回路装置の電気的検査装置においては、検査対象である回路装置 5が ホルダー 2によって検査実行領域 Eに保持され、この状態で、上部側支持板 56aおよ び下部側支持板 56bの各々が回路装置 5に接近する方向に移動することにより、当 該回路装置 5が上部側アダプター装置 laおよび下部側アダプター装置 lbによって 挟圧される。  In such an electrical inspection device for a circuit device, the circuit device 5 to be inspected is held in the inspection execution region E by the holder 2, and in this state, the upper side support plate 56a and the lower side support As each of the plates 56b moves in a direction approaching the circuit device 5, the circuit device 5 is clamped by the upper adapter device la and the lower adapter device lb.
この状態においては、回路装置 5の上面における被検査電極 6は、上部側アダプタ 一装置 laにおける接続用電極 21に、当該異方導電性コネクター 10を介して電気的 に接続され、この上部側アダプター装置 laの端子電極 22は、異方導電性エラストマ 一シート 55aを介して検査電極装置 51aの検査電極 52aに電気的に接続されている 。一方、回路装置 5の下面における被検査電極 7は、下部側アダプター装置 lbにお ける接続用電極 21に、当該異方導電性コネクター 10を介して電気的に接続され、こ の下部側アダプター装置 lbの端子電極 22は、異方導電性エラストマ一シート 55bを 介して検査電極装置 51bの検査電極 52bに電気的に接続されている。 In this state, the electrode 6 to be inspected on the upper surface of the circuit device 5 is electrically connected to the connection electrode 21 in the upper-side adapter device la via the anisotropic conductive connector 10, and this upper-side adapter is connected. The terminal electrode 22 of the device la is an anisotropic conductive elastomer. It is electrically connected to the inspection electrode 52a of the inspection electrode device 51a through one sheet 55a. On the other hand, the electrode 7 to be inspected on the lower surface of the circuit device 5 is electrically connected to the connection electrode 21 in the lower-side adapter device lb via the anisotropic conductive connector 10, and this lower-side adapter device. The terminal electrode 22 of lb is electrically connected to the inspection electrode 52b of the inspection electrode device 51b via an anisotropic conductive elastomer sheet 55b.
[0048] このようにして、回路装置 5の上面および下面の両方の被検査電極 6, 7の各々力 上部側検査ヘッド 50aにおける検査電極装置 51aの検査電極 52aおよび下部側検 查ヘッド 50bにおける検査電極装置 51bの検査電極 52bの各々に電気的に接続さ れることにより、テスターの検査回路に電気的に接続された状態が達成され、この状 態で所要の電気的検査が行われる。  [0048] In this way, each force of the electrodes 6 and 7 to be inspected on both the upper surface and the lower surface of the circuit device 5 is inspected in the inspection electrode 52a and the lower inspection head 50b of the inspection electrode device 51a in the upper inspection head 50a. By being electrically connected to each of the inspection electrodes 52b of the electrode device 51b, a state of being electrically connected to the inspection circuit of the tester is achieved, and a required electrical inspection is performed in this state.
[0049] 上記の回路装置の電気的検査装置によれば、図 18に示すような構成の上部側ァ ダブター装置 laおよび下部側アダプター装置 lbを有するため、検査対象である回 路装置 5が、隣接する被検査電極 6, 7の間の離間距離が小さぐ被検査電極 6, 7の 高さレベルにバラツキがあるものであっても、当該回路装置 5について所要の電気的 検査を確実に実行することができる。  [0049] According to the electrical inspection device for a circuit device described above, the circuit device 5 to be inspected is provided with the upper side adapter device la and the lower side adapter device lb configured as shown in FIG. Even if there is a variation in the height level of the electrodes 6 and 7 to be inspected, the distance between the electrodes 6 and 7 adjacent to each other is small, the required electrical inspection of the circuit device 5 is reliably performed. can do.
[0050] 本発明は、上記の実施の形態に限定されず、種々の変更を加えることが可能であ 例えば複合導電性シートにおいて、剛性導体のフランジ部は、円板状のものに限 定されず、矩形の板状のものであっても、その他の形状のものであってもよい。 また、異方導電性コネクターにおいては、複合導電性シートの一面のみに異方導 電性エラストマ一シートが配置されてなる構成であってもよレ、。このような構成の異方 導電性コネクターを回路装置や集積回路が形成されたウェハの検査に用いる場合 には、複合導電性シートの剛性導体が被検査電極に接触するよう配置されることが 好ましい。  [0050] The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the composite conductive sheet, the flange portion of the rigid conductor is limited to a disc-shaped one. Instead, it may be a rectangular plate or other shapes. In the anisotropic conductive connector, the anisotropic conductive elastomer sheet may be arranged only on one surface of the composite conductive sheet. When the anisotropic conductive connector having such a configuration is used for inspection of a wafer on which a circuit device or an integrated circuit is formed, it is preferable that the rigid conductor of the composite conductive sheet is disposed so as to contact the electrode to be inspected. .

Claims

請求の範囲 The scope of the claims
[1] それぞれ厚み方向に伸びる複数の貫通孔が形成されたスぺーサーシートと、このス ぺーサ一シートの両面の各々に一体的に積層された 2つのカバーシートと、前記ス ぺーサ一シートの貫通孔の各々に配置された剛性導体とを有してなり、  [1] A spacer sheet in which a plurality of through-holes extending in the thickness direction are formed, two cover sheets integrally laminated on both surfaces of the spacer sheet, and the spacer sheet A rigid conductor disposed in each of the through holes of the sheet,
前記カバーシートの各々には、前記スぺーサーシートの貫通孔に対応して当該ス ぺーサ一シートの貫通孔の径より小さい径を有する複数の貫通孔が形成されており  Each of the cover sheets is formed with a plurality of through holes having a diameter smaller than the diameter of the through hole of the spacer sheet corresponding to the through hole of the spacer sheet.
前記剛性導体の各々は、前記スぺーサーシートの貫通孔内に位置された、前記力 バーシートの貫通孔の径より大きレ、径を有するフランジ部と、このフランジ部の両端の 各々に形成された、前記カバーシートの貫通孔に揷通されて当該カバーシートの表 面から突出する 2つの端子部とからなり、当該剛性導体が、前記スぺーサーシートに 対してその厚み方向に移動可能とされていることを特徴とする複合導電性シート。 Each of the rigid conductors is formed in a flange portion having a diameter larger than the diameter of the through hole of the force bar sheet, which is positioned in the through hole of the spacer sheet, and at both ends of the flange portion. The rigid conductor can be moved in the thickness direction with respect to the spacer sheet, and is formed of two terminal portions that pass through the through-hole of the cover sheet and project from the surface of the cover sheet. A composite conductive sheet characterized by the above.
[2] カバーシートの各々は、接着層を介してスぺーサーシートに一体的に積層されてい ることを特徴とする請求項 1に記載の複合導電性シート。 [2] The composite conductive sheet according to [1], wherein each of the cover sheets is integrally laminated on the spacer sheet via an adhesive layer.
[3] スぺーサーシートの厚み方向における剛性導体の移動可能距離が 3〜; 150 mで あることを特徴とする請求項 1または請求項 2に記載の複合導電性シート。 [3] The composite conductive sheet according to claim 1 or 2, wherein the movable distance of the rigid conductor in the thickness direction of the spacer sheet is 3 to 150 m.
[4] スぺーサーシートが金属よりなることを特徴とする請求項 1乃至請求項 3のいずれか に記載の複合導電性シート。 [4] The composite conductive sheet according to any one of claims 1 to 3, wherein the spacer sheet is made of metal.
[5] 接続すべき電極のパターンに対応するパターンに従って複数の貫通孔が形成され たスぺーサーシートを用意し、このスぺーサーシートの貫通孔内に易エッチング性の 金属体を形成し、 [5] Prepare a spacer sheet with a plurality of through-holes formed according to the pattern corresponding to the pattern of the electrodes to be connected, and form an easily-etchable metal body in the through-holes of the spacer sheet.
スぺーサーシートおよび金属体の各々の表面に接着層を形成すると共に、スぺー サーシートおよび金属体の裏面に、接着層を介してカバーシートを一体的に積層し、 その後、スぺーサーシートの表面に形成された接着層に、金属体を露出する開口を 形成し、当該接着層上に、カバーシートを一体的に積層すると共に、この力パーシー ト上に接着層を介して樹脂シートを一体的に積層し、  An adhesive layer is formed on the surface of each of the spacer sheet and the metal body, and a cover sheet is integrally laminated on the back surface of the spacer sheet and the metal body via the adhesive layer. An opening that exposes the metal body is formed in the adhesive layer formed on the surface, and a cover sheet is integrally laminated on the adhesive layer, and a resin sheet is integrated on the force persheet via the adhesive layer. Laminated
2つの樹脂シート、カバーシート上に形成された接着層、 2つのカバーシートおよび スぺーサーシートの裏面に形成された接着層の各々に、スぺーサーシートの表面に 形成された接着層の開口に連通する貫通孔を形成し、 2つの樹脂シート、カバーシ ート上に形成された接着層、 2つのカバーシートおよびスぺーサーシートの裏面に形 成された接着層の各々の貫通孔の内面並びにスぺーサーシートの裏面に形成され た接着層の開口の内面に、易エッチング性の金属薄層を形成し、 Two resin sheets, an adhesive layer formed on the cover sheet, two cover sheets, and an adhesive layer formed on the back surface of the spacer sheet, respectively, on the surface of the spacer sheet A through hole communicating with the opening of the formed adhesive layer is formed, and two resin sheets, an adhesive layer formed on the cover sheet, two cover sheets, and an adhesive layer formed on the back surface of the spacer sheet An easy-etching thin metal layer is formed on the inner surface of each through-hole and the inner surface of the adhesive layer opening formed on the back surface of the spacer sheet,
この金属薄層に対してメツキ処理を施すことにより、当該金属薄層によって区画され た空間内に金属を充填して剛性導体を形成し、  By applying a plating treatment to this thin metal layer, the space defined by the thin metal layer is filled with metal to form a rigid conductor,
その後、エッチング処理によって金属薄層および金属体を除去する工程を有するこ とを特徴とする複合導電性シートの製造方法。  Then, the manufacturing method of the composite electroconductive sheet characterized by having the process of removing a metal thin layer and a metal body by an etching process.
[6] 請求項 1乃至請求項 4のいずれかに記載の複合導電性シートと、この複合導電性 シートの少なくとも一面に配置された異方導電性エラストマ一シートとを具えてなるこ とを特徴とする異方導電性コネクター。 [6] The composite conductive sheet according to any one of claims 1 to 4 and an anisotropic conductive elastomer sheet disposed on at least one surface of the composite conductive sheet. An anisotropic conductive connector.
[7] 請求項 1乃至請求項 4のいずれかに記載の複合導電性シートと、この複合導電性 シートの一面および他面の各々に配置された 2つの異方導電性エラストマ一シートと を具えてなることを特徴とする異方導電性コネクター。 [7] The composite conductive sheet according to any one of claims 1 to 4, and two anisotropic conductive elastomer sheets disposed on one side and the other side of the composite conductive sheet, respectively. An anisotropic conductive connector characterized by comprising.
[8] 異方導電性エラストマ一シートは、弾性高分子物質中に、磁性を示す導電性粒子 [8] An anisotropically conductive elastomer sheet is a conductive particle exhibiting magnetism in an elastic polymer material.
1S 厚み方向に並ぶよう配向して連鎖が形成された状態で、かつ、当該導電性粒子 による連鎖が面方向に分散した状態で含有されてなることを特徴とする請求項 6また は請求項 7に記載の異方導電性コネクター。  1S is characterized in that it is formed in a state where chains are formed so as to be aligned in the thickness direction and the chains of the conductive particles are dispersed in the plane direction. An anisotropic conductive connector as described in 1.
[9] 異方導電性エラストマ一シートの厚みが 20〜; 100 mであることを特徴とする請求 項 8に記載の異方導電性コネクター。 9. The anisotropic conductive connector according to claim 8, wherein the anisotropic conductive elastomer sheet has a thickness of 20 to 100 m.
[10] 導電性粒子の数平均粒子径が 3〜20 a mであることを特徴とする請求項 9に記載 の異方導電性コネクター。 10. The anisotropic conductive connector according to claim 9, wherein the number average particle diameter of the conductive particles is 3 to 20 am.
[11] 表面に検査すべき回路装置における被検査電極に対応するパターンに従って複 数の接続用電極が形成された接続用電極領域を有するアダプター本体と、 [11] An adapter body having a connection electrode region in which a plurality of connection electrodes are formed according to a pattern corresponding to an electrode to be inspected in a circuit device to be inspected on the surface;
このアダプター本体の接続用電極領域上に配置された、当該アダプター本体にお ける接続用電極に対応するパターンに従って配置された複数の剛性導体を有する、 請求項 6乃至請求項 10のいずれかに記載の異方導電性コネクターと  11. The apparatus according to claim 6, further comprising a plurality of rigid conductors arranged on the connection electrode region of the adapter body and arranged according to a pattern corresponding to the connection electrode in the adapter body. With anisotropic conductive connector
を具えてなることを特徴とするアダプター装置。 請求項 11に記載のアダプター装置を具えてなることを特徴とする回路装置の電気 的検査装置。 An adapter device characterized by comprising: 12. An electrical inspection device for a circuit device comprising the adapter device according to claim 11.
PCT/JP2007/064741 2006-07-31 2007-07-27 Composite conductive sheet, method for manufacturing the same and application of the same WO2008015967A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006208081 2006-07-31
JP2006-208081 2006-07-31

Publications (1)

Publication Number Publication Date
WO2008015967A1 true WO2008015967A1 (en) 2008-02-07

Family

ID=38997147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064741 WO2008015967A1 (en) 2006-07-31 2007-07-27 Composite conductive sheet, method for manufacturing the same and application of the same

Country Status (2)

Country Link
TW (1) TW200807815A (en)
WO (1) WO2008015967A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101204941B1 (en) * 2012-04-27 2012-11-27 주식회사 아이에스시 Socket for test with electrode supporting member and fabrication method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378069A (en) * 1986-09-19 1988-04-08 Fujitsu Ltd Semiconductor socket
JP2001351702A (en) * 2000-06-09 2001-12-21 Jsr Corp Sheet-shaped connector, its method of manufacture and electrical inspection apparatus
JP2002107408A (en) * 2000-09-28 2002-04-10 Toshiba Corp High-frequency socket for bga
JP2002139529A (en) * 2000-11-01 2002-05-17 Jsr Corp Electric resistance measuring connector, and electric resistance measuring device and measuring method for circuit board
JP2003322665A (en) * 2002-05-01 2003-11-14 Jsr Corp Connector for electric resistance measurement and device and method for measuring electric resistance of circuit board
WO2005103734A1 (en) * 2004-04-27 2005-11-03 Jsr Corporation Sheet-like probe, method of producing the probe, and application of the probe
WO2006009070A1 (en) * 2004-07-15 2006-01-26 Jsr Corporation Inspection equipment of circuit board and inspection method of circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378069A (en) * 1986-09-19 1988-04-08 Fujitsu Ltd Semiconductor socket
JP2001351702A (en) * 2000-06-09 2001-12-21 Jsr Corp Sheet-shaped connector, its method of manufacture and electrical inspection apparatus
JP2002107408A (en) * 2000-09-28 2002-04-10 Toshiba Corp High-frequency socket for bga
JP2002139529A (en) * 2000-11-01 2002-05-17 Jsr Corp Electric resistance measuring connector, and electric resistance measuring device and measuring method for circuit board
JP2003322665A (en) * 2002-05-01 2003-11-14 Jsr Corp Connector for electric resistance measurement and device and method for measuring electric resistance of circuit board
WO2005103734A1 (en) * 2004-04-27 2005-11-03 Jsr Corporation Sheet-like probe, method of producing the probe, and application of the probe
WO2006009070A1 (en) * 2004-07-15 2006-01-26 Jsr Corporation Inspection equipment of circuit board and inspection method of circuit board

Also Published As

Publication number Publication date
TW200807815A (en) 2008-02-01

Similar Documents

Publication Publication Date Title
US6663799B2 (en) Conductive metal particles, conductive composite metal particles and applied products using the same
JP5050856B2 (en) Method for manufacturing anisotropic conductive connector
KR101030360B1 (en) Anisotropic conductive connector and inspection equipment for circuit device
KR20080079670A (en) Circuit board apparatus for wafer inspection, probe card, and wafer inspection apparatus
WO2006087877A1 (en) Composite conductive sheet, method for producing the same, anisotropic conductive connector, adapter, and circuit device electric inspection device
WO2008038573A1 (en) Anisotropic conductive connector and method for inspecting article inspected using this anisotropic conductive connector
JP3753145B2 (en) Anisotropic conductive sheet and method for manufacturing the same, adapter device and method for manufacturing the same, and electrical inspection device for circuit device
WO2006009144A1 (en) Anisotropic conductive connector and production method therefor, adaptor device and electric inspection device for circuit device
CN101346813A (en) Circuit board apparatus for wafer inspection, probe card, and wafer inspection apparatus
JP4725318B2 (en) COMPOSITE CONDUCTIVE SHEET AND METHOD FOR MANUFACTURING THE SAME, ANISOTROPIC CONDUCTIVE CONNECTOR, ADAPTER DEVICE, AND ELECTRIC INSPECTION DEVICE FOR CIRCUIT DEVICE
JP2007087709A (en) Anisotropic conductive connector and method of manufacturing same, and electric inspection device of adapter and circuit device
WO2008015967A1 (en) Composite conductive sheet, method for manufacturing the same and application of the same
JP2009129609A (en) Composite conductive sheet, anisotropic conductive connector, adapter device, and electrical inspection device for circuit device
WO2008041511A1 (en) Anisotropic conductive connector, adapter device, and device for electrically inspecting circuit device
WO2006043629A1 (en) Adapter, manufacturing method thereof, and electric inspection device for circuit device
JP2007265705A (en) Anisotropic conductive connector and its application
JPWO2007026663A1 (en) Circuit board inspection apparatus, circuit board inspection method, and anisotropic conductive connector
WO2006043628A1 (en) Anisotropic conductive connector and production method therefor, adaptor device and electrical inspection device
JP2008101931A (en) Composite conductive sheet, anisotropic conductive connector, adapter device, and electric inspection device for circuit device
JP2007225534A (en) Compound conductive sheet, anisotropic conductive connector, adapter device, and electrical inspection device of circuit device
JP2007193972A (en) Connector device, circuit board inspection device, and conductive connection structure
JP2008027818A (en) Composite conductive sheet, anisotropic conductive connector, and adapter device
JP2007220534A (en) Composite conductive sheet and its manufacturing method, anisotropic connector, adapter device as well as electric inspection device of circuit device
JP2007192799A (en) Circuit board device for inspecting wafer, probe card, and wafer inspection device
JPH10339744A (en) Circuit board for check and circuit board device for check

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07791435

Country of ref document: EP

Kind code of ref document: A1