WO2008041511A1 - Anisotropic conductive connector, adapter device, and device for electrically inspecting circuit device - Google Patents

Anisotropic conductive connector, adapter device, and device for electrically inspecting circuit device Download PDF

Info

Publication number
WO2008041511A1
WO2008041511A1 PCT/JP2007/068372 JP2007068372W WO2008041511A1 WO 2008041511 A1 WO2008041511 A1 WO 2008041511A1 JP 2007068372 W JP2007068372 W JP 2007068372W WO 2008041511 A1 WO2008041511 A1 WO 2008041511A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
anisotropic conductive
conductive
conductive elastomer
insulating sheet
Prior art date
Application number
PCT/JP2007/068372
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Kimura
Sugiro Shimoda
Fujio Hara
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2008041511A1 publication Critical patent/WO2008041511A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/007Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for elastomeric connecting elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to an anisotropic conductive connector that can be suitably used for electrical inspection of a circuit device such as a printed circuit board, an adapter device including the same, and an electric power of the circuit device including the adapter device.
  • the present invention relates to a mechanical inspection device.
  • circuit boards for configuring or mounting electronic components such as package LSIs such as BGA and CSP, MCM, and other integrated circuit devices are mounted before or after assembling the electronic components. Before doing so, it is necessary to inspect the electrical characteristics of the circuit board to confirm that the wiring pattern has the expected performance.
  • an inspection electrode device in which a plurality of inspection electrodes are arranged according to the grid point positions arranged in the vertical and horizontal directions, and the inspection electrode of this inspection electrode device are inspection targets. It is known how to use it in combination with an adapter that electrically connects the electrodes to be inspected on the circuit board!
  • the adapter used in this method is a printed wiring board called a pitch conversion board.
  • This adapter has a plurality of connection electrodes arranged according to a pattern corresponding to the electrode to be inspected on the circuit board to be inspected on one side, and the same pitch as the inspection electrode of the inspection electrode device on the other side Having a plurality of terminal electrodes arranged at the grid point positions of the current supply connection electrodes and voltage measurement connection electrodes arranged according to a pattern corresponding to the electrodes to be inspected on the circuit board to be inspected on one side
  • the former has a plurality of connection electrode pairs made of electrodes, and has a plurality of terminal electrodes arranged on the other surface at lattice point positions having the same pitch as the inspection electrodes of the inspection electrode device.
  • This adapter is used for, for example, an open / short test of each circuit on a circuit board, and the latter adapter is used for an electric resistance measurement test of each circuit on the circuit board. Therefore, in the electrical inspection of a circuit board, generally, in order to achieve a stable electrical connection between the circuit board to be inspected and the adapter, the circuit board to be inspected and the adapter are It is expected to use an anisotropic conductive elastomer sheet as a connector.
  • This anisotropically conductive elastomer sheet has conductivity only in the thickness direction, or a number of pressure-conductive conductive portions that show conductivity only in the thickness direction when pressed. It has something.
  • Patent Document 1 conductive particles exhibiting magnetism are arranged in the thickness direction in an elastic polymer material.
  • An anisotropic conductive elastomer sheet (hereinafter referred to as a “dispersion type anisotropic conductive sheet”), which is formed in such a state that the chain is formed in such a manner that the chain is formed in such a manner that the chain is dispersed in the plane direction.
  • Patent Document 2 discloses a number of conductive path forming portions extending in the thickness direction by non-uniformly dispersing conductive particles exhibiting magnetism in an elastic polymer material, and these.
  • Patent Document 3 discloses a conductive path. A step between the surface of the forming portion and the insulating portion There uneven distribution type anisotropic conductive sheet is formed is disclosed! /, Ru.
  • anisotropically conductive elastomer sheets are, for example, for a molding material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material-forming material that is cured to become an elastic polymer material. It is obtained by applying a magnetic field in the thickness direction or by performing a curing process after applying a magnetic field.
  • conductive particles are contained in a base material made of an elastic polymer substance so that the conductive particles are aligned in the thickness direction so as to form a chain. By applying pressure, a conductive path is formed by a chain of conductive particles.
  • the distributed anisotropic conductive sheet is manufactured at a low cost without using a special and expensive mold.
  • This is advantageous compared to the unevenly distributed anisotropic conductive sheet in that it can be used regardless of the pattern of the electrode to be connected and has versatility.
  • the unevenly-distributed anisotropic conductive sheet has an insulating portion that isolates them from each other between adjacent conductive path forming portions. Even in the case of an object, it is possible to achieve an electrical connection to each of the electrodes in a state where necessary insulation is ensured between adjacent electrodes, that is, a high resolution. This is advantageous as compared with the dispersion-type anisotropic conductive sheet.
  • the anisotropic conductive elastomer sheet having a small thickness absorbs the variation in the height level of each electrode to be connected, and can achieve electrical connection to each of the electrodes, that is, unevenness.
  • absorption capacity is low.
  • the unevenness absorption capacity of the anisotropic conductive elastomer sheet is about 20% of the thickness of the anisotropic conductive elastomer sheet.
  • an anisotropic conductive elastomer sheet with a thickness of 50 m It is difficult to achieve a stable electrical connection for connecting objects whose height level variation exceeds 10 m.
  • a tapered movable conductor adapted to the through hole is provided in the tapered through hole formed in the insulating sheet so as to be movable in the thickness direction with respect to the insulating sheet.
  • An anisotropic conductive connector comprising a composite conductive sheet and two anisotropic conductive elastomer sheets disposed on one side and the other side of the composite conductive sheet has been proposed (for example, Patent Documents). (Refer to 4 etc.)
  • the anisotropic conductive connector having such a composite conductive sheet, since the movable electrode in the composite conductive sheet is movable in the thickness direction, when the pressure is applied in the thickness direction, the composite conductive sheet Since the two anisotropically conductive elastomer sheets placed on one side and the other side of each other are compressed and deformed in conjunction with each other, the sum of the concave and convex absorbent capacity of the two is the uneven conductive capacity of the anisotropic conductive connector. Therefore, high unevenness absorbing ability can be obtained.
  • the thickness required to obtain the required uneven absorption capacity is two anisotropic conductive elastomers. Since it is possible to use individual anisotropic conductive elastomer sheets having a small thickness as long as they are secured by the total thickness of one sheet, high resolution can be obtained.
  • the movable conductor of the composite conductive sheet is supported by both the insulating sheet and the anisotropic conductive elastomer sheet, and the composite conductive sheet and the anisotropic conductive elastomer
  • the composite conductive sheet and the anisotropic conductive elastomer When the sheet is separated, the movable conductor may fall off the insulating sheet, so it is practically difficult to handle the composite conductive sheet alone. Therefore, when a failure occurs in either the composite conductive sheet or the anisotropic conductive elastomer sheet in the anisotropic conductive connector, only the composite conductive sheet or the anisotropic conductive elastomer sheet is replaced with a new one. The entire anisotropically conductive connector must be replaced with a new one.
  • the movable conductor of the composite conductive sheet is formed by depositing a metal by a plating process in a tapered through hole formed in the insulating sheet to form a metal body, and mechanically pressing the metal body.
  • the metal body adhered to the inner surface of the through hole is separated.
  • an insulating sheet in which a plurality of through-holes are formed, and the insulating sheet penetrates at both ends of a body portion passed through the through-holes of the insulating sheet.
  • a rigid conductor formed with a terminal portion having a diameter larger than the diameter of the hole, and comprising a composite conductive sheet provided so that the rigid conductor is movable in the thickness direction of the insulating sheet.
  • An anisotropic conductive connector has been proposed! /, (See Patent Document 5).
  • anisotropically conductive connector when it is repeatedly used in the inspection of a circuit board, charges are accumulated due to static electricity on the surface of the anisotropically conductive elastomer sheet. As a result, failure of anisotropic conductive elastomer sheet and composite conductive sheet will result in failure to obtain a long service life. It turned out that there was a problem.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 51-93393
  • Patent Document 2 Japanese Patent Laid-Open No. 53-147772
  • Patent Document 3 Japanese Patent Application Laid-Open No. 61-250906
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-351702
  • Patent Document 5 Japanese Patent Application 2005-374809 Specification
  • an object of the present invention is a connection object having a variation in height level of electrodes with a small separation distance between adjacent electrodes.
  • Another object of the present invention is to provide an anisotropic conductive connector that can be suppressed and have a long service life, an adapter device including the anisotropic conductive connector, and an electrical inspection device for a circuit device.
  • An anisotropic conductive connector includes an insulating sheet in which a plurality of through-holes each extending in the thickness direction are formed, and each of the through-holes of the insulating sheet is provided on both sides of the insulating sheet. Rigid conductors arranged so as to protrude from each of them, and each force of each of the rigid conductors is connected to both ends of a body portion passed through the through-hole of the insulating sheet by a diameter of the through-hole of the insulating sheet.
  • a composite conductive sheet formed with a terminal portion having a large diameter and movable in the thickness direction with respect to the insulating sheet, and a first difference disposed on one surface of the composite conductive sheet.
  • At least one of the first anisotropic conductive elastomer sheet and the second anisotropic conductive elastomer sheet has a plurality of openings on a surface opposite to a surface in contact with the composite conductive sheet.
  • Each of the rigid conductors in the composite conductive sheet is positioned within the opening of the charge removal layer when the composite conductive sheet and the charge removal layer are seen through in the thickness direction.
  • the neutralization layer is connected to earth.
  • the movable distance of the rigid conductor in the thickness direction of the insulating sheet of the composite conductive sheet is 3 to 150 m.
  • Each of the first anisotropically conductive elastomer sheet and the second anisotropically conductive elastomer sheet is oriented so that the conductive particles exhibiting magnetism are aligned in the thickness direction in the elastic polymer material. It is preferable that the chain is formed in a state where the chain is formed and the chain of the conductive particles is dispersed in the plane direction.
  • each of the first anisotropically conductive elastomer sheet and the second anisotropically conductive elastomer sheet is preferably 20 to 100 m.
  • the number average particle diameter of electroconductive particle is 3-20 m.
  • the adapter device of the present invention includes an adapter body having a connection electrode region in which a plurality of connection electrodes are formed according to a pattern corresponding to an electrode to be inspected in a circuit device to be inspected on the surface;
  • the anisotropic conductive connector having a plurality of rigid conductors arranged according to a pattern corresponding to the connection electrode in the adapter body, disposed on the connection electrode region of the adapter body;
  • An electrical inspection device for a circuit device comprises the adapter device described above.
  • each of the rigid conductors in the composite conductive sheet is movable in the thickness direction with respect to the insulating sheet.
  • the first anisotropic conductive elastomer sheet disposed on one surface of the composite conductive sheet and the second anisotropic conductive elastomer disposed on the other surface of the composite conductive sheet When pressed in the direction, the first anisotropic conductive elastomer sheet disposed on one surface of the composite conductive sheet and the second anisotropic conductive elastomer disposed on the other surface of the composite conductive sheet.
  • One sheet compresses and deforms in conjunction with each other as the rigid conductor moves in the thickness direction of the insulating sheet. Therefore, the total uneven absorption capacity of both sheets is equal to that of the anisotropic conductive connector. It is expressed as a concave / convex absorbability, and therefore a high concave / convex absorbability can be obtained.
  • the thickness required to obtain the required unevenness absorption capacity is ensured by the total thickness of the first anisotropic conductive elastomer sheet and the second anisotropic conductive elastomer sheet.
  • the anisotropic conductive elastomer sheet a sheet having a small thickness can be used, so that high resolution and high resolution can be obtained.
  • At least one of the first anisotropic conductive elastomer sheet and the second anisotropic conductive elastomer sheet has a plurality of openings on a surface opposite to the surface in contact with the composite conductive sheet. Since the charge removal layer having the above is formed, the charge removal due to static electricity can be prevented or suppressed by connecting the charge removal layer to the ground. Therefore, it is possible to avoid the occurrence of failure in the anisotropic conductive elastomer sheet and the composite conductive sheet due to the discharge of the accumulated electric charge, so that a long service life can be obtained.
  • the circuit device to be inspected since the anisotropic conductive connector is provided, the circuit device to be inspected has a small separation distance between adjacent test electrodes. Even if there are variations in the height level, it is possible to reliably achieve electrical connection to each of the electrodes to be inspected while ensuring the necessary insulation between adjacent electrodes to be inspected. In addition, accumulation of static electricity on the surface can be prevented or suppressed, and a long service life can be obtained.
  • the electrical inspection device for a circuit device of the present invention since the adapter device is provided, the circuit device to be inspected has a small separation distance between adjacent electrodes to be inspected. Even if there are variations in the height level of the electrodes, the required electrical inspection can be reliably performed on the circuit device. In addition, since the anisotropic conductive connector has a long service life, the frequency of replacing the anisotropic conductive connector with a new one when the anisotropic conductive connector fails is reduced, and high inspection efficiency can be obtained.
  • FIG. 1 is a cross-sectional view for explaining the structure of an example of the anisotropic conductive connector of the present invention.
  • FIG. 2 is an explanatory view showing an enlarged main part of the anisotropic conductive connector shown in FIG. It is sectional drawing.
  • 3] An enlarged cross-sectional view illustrating the main part of the composite conductive sheet.
  • FIG. 5 is a cross-sectional view illustrating a state in which an opening is formed in a metal layer in the laminated material.
  • FIG. 7 is an explanatory cross-sectional view showing a configuration of a composite laminated material.
  • FIG. 8 is a cross-sectional view for explaining a state in which a resist film is formed on the composite laminated material.
  • FIG. 9] is a cross-sectional view for explaining a state where a rigid conductor is formed in the through hole of the insulating sheet in the composite laminated material.
  • FIG. 10 is a cross-sectional view for explaining the state in which the composite laminated material force is also removed from the resist film.
  • FIG. 11 A cross-sectional view for explaining the one-side molded member, the other-side molded member, and the spacer for manufacturing the first anisotropic conductive elastomer sheet.
  • FIG. 14 is an enlarged cross-sectional view illustrating the conductive elastomer material layer shown in FIG.
  • FIG. 15 is an explanatory cross-sectional view showing a state in which a magnetic field is applied in the thickness direction to the material layer for conductive elastomer shown in FIG.
  • FIG. 17 is a cross-sectional view illustrating the configuration of the adapter body in the adapter device illustrated in FIG.
  • FIG. 18 is an explanatory diagram showing a configuration of an example of an electrical inspection device for a circuit device according to the present invention.
  • FIG. 19] is an explanatory view showing a modification of the static elimination layer.
  • FIG. 20 is an explanatory view showing another modification of the charge removal layer. Explanation of symbols
  • FIG. 1 is a cross-sectional view for explaining the structure of an example of the anisotropically conductive connector of the present invention.
  • FIG. 2 is an explanatory cross-sectional view showing an enlarged main part of the anisotropic conductive connector shown in FIG.
  • the anisotropic conductive connector 15 includes a composite conductive sheet 10, a first anisotropic conductive elastomer sheet 16 disposed on one surface (the upper surface in FIG. 1) of the composite conductive sheet 10, and a composite conductive sheet. And a second anisotropic conductive elastomer sheet 17 disposed on the other surface of the conductive sheet 10.
  • the composite conductive sheet 10 includes an insulating sheet 11 formed according to a pattern corresponding to a pattern of electrodes to which a plurality of through holes 11H extending in the thickness direction are to be connected,
  • the insulating sheet 11 includes a plurality of rigid conductors 12 arranged so as to protrude from both surfaces of the insulating sheet 11 in the through holes 11H.
  • Each of the rigid conductors 12 includes a cylindrical body portion 12a threaded through the through hole 11H of the insulating sheet 11, and an insulating sheet 1 formed integrally connected to both ends of the body portion 12a. 1 and a terminal portion 12b exposed on the surface.
  • the length L of the body portion 12a of the rigid conductor 12 is larger than the thickness d of the insulating sheet 11, and the diameter r2 of the body portion 12a is smaller than the through hole of the insulating sheet 11; smaller than the diameter rl of 11H. Accordingly, the rigid conductor 12 can be moved in the thickness direction of the insulating sheet 11. Further, the diameter r3 of the terminal portion 12b in the rigid conductor 12 is larger than the diameter rl of the through hole 11H of the insulating sheet 11.
  • the material constituting the insulating sheet 11 includes resin materials such as liquid crystal polymer, polyimide resin, polyester resin, polyaramid resin, and polyamide resin, glass fiber reinforced epoxy resin, glass fiber reinforced polyester resin, and glass fiber.
  • resin materials such as liquid crystal polymer, polyimide resin, polyester resin, polyaramid resin, and polyamide resin, glass fiber reinforced epoxy resin, glass fiber reinforced polyester resin, and glass fiber.
  • a fiber reinforced resin material such as a reinforced polyimide resin, a composite resin material containing an inorganic material such as alumina or boron nitride as a filler in an epoxy resin, or the like can be used.
  • the insulating sheet 11 when using a composite conductive sheet 10 in a high temperature environment, preferably from preferably be linear thermal expansion coefficient used the following 3 X 10- 5 / K instrument the 1 X 10- 6 ⁇ 2 ⁇ 10- 5 / ⁇ , particularly preferably 1 X 10- 6 ⁇ 6 ⁇ 10- 6 / ⁇ .
  • the insulating sheet 11 By using such an insulating sheet 11, it is possible to suppress the displacement of the rigid conductor 12 due to the thermal expansion of the insulating sheet 11.
  • the thickness d of the insulating sheet 11 is preferably 10 to 200 111, more preferably (Between 15 and 100 m.
  • the through hole of the insulating sheet 11; the diameter rl of 11H is preferably 20 to 300 111, more preferably 30 to 150.
  • a metal material having rigidity can be preferably used, and in particular, a material that is less likely to be etched than a thin metal layer formed on an insulating sheet in the manufacturing method described later is used. I like it.
  • a metal material include a single metal such as nickel, cobalt, gold, and aluminum, or an alloy thereof.
  • the diameter r2 of the body 12a of the rigid conductor 12 is preferably 18 m or more, more preferably 25 m or more. If the diameter r2 is too small, the strength required for the rigid conductor 12 may not be obtained. Further, the difference (rl ⁇ r2) between the diameter rl of the through hole 11H of the insulating sheet 11 and the diameter r2 of the body 12a of the rigid conductor 12 is preferably 1 m or more, more preferably 2 m or more. When this difference is too small, there is a force S that makes it difficult to move the rigid conductor 12 in the thickness direction of the insulating sheet 11.
  • the diameter r3 of the terminal portion 12b in the rigid conductor 12 is preferably 70 to 150% of the diameter of the electrode to be connected, for example, the electrode to be inspected. Further, it is preferable that the difference (r3 ⁇ rl) between the diameter r3 of the terminal portion 12b in the rigid conductor 12 and the through hole of the insulating sheet 11; the diameter rl of 11H is 5 111 or more, more preferably 10 m or more. If this difference is too small, the rigid conductor 12 may fall off the insulating sheet 11.
  • the thickness of the terminal portion 12b in the rigid conductor 12 is preferably 5 to 50 111, more preferably 8 to 40 ⁇ m.
  • the movable distance of the rigid conductor 12 in the thickness direction of the insulating sheet 11, that is, the difference (L d) between the length L of the body 12a of the rigid conductor 12 and the thickness d of the insulating sheet 1 1 is 3 to 1 50.
  • a force of being ⁇ m S is preferable, more preferably 5 to; 100 ⁇ m, still more preferably 10 to 50 ⁇ m. If the movable distance of the rigid conductor 12 is too small, it may be difficult to obtain sufficient unevenness absorbing capability in the anisotropic conductive connector described later.
  • the movable distance of the rigid conductor 12 is excessive, the length of the body 12a of the rigid conductor 12 exposed from the through hole 11H of the insulating sheet 11 becomes large, and when used for inspection, The body 12a of the rigid conductor 12 may be buckled or damaged.
  • Such a composite conductive sheet 10 has a rigid conductor 12 that can move in the thickness direction in the through-hole 11H of the insulating sheet 11, and the rigid conductor 12 has both ends of its trunk 12a.
  • the terminal portion 12b having a diameter larger than the diameter of the through hole 11H of the insulating sheet 11 is formed! /, So that the terminal portion 12b functions as a stopper, so that the rigid conductor 12 is insulative.
  • the composite conductive sheet 10 that does not fall off the sheet 11 is easy to handle even by itself.
  • the composite conductive sheet 10 can be manufactured, for example, as follows.
  • a laminate material 10B is prepared in which an easily-etchable metal layer 13A is integrally laminated on one surface of an insulating sheet 11, and etching is performed on the metal layer 13A in the laminate material 10B.
  • etching is performed on the metal layer 13A in the laminate material 10B.
  • a plurality of openings 13K are formed according to the pattern corresponding to the pattern of the electrodes to be connected to the metal layer 13A as shown in FIG.
  • through-holes 11H that extend in the thickness direction are formed in the insulating sheet 11 in the laminated material 10B and communicate with the openings 13K of the metal layer 13A.
  • an easily etchable cylindrical metal thin layer 13B is formed so as to cover the inner wall surface of the through hole 11H of the insulating sheet 11 and the opening edge of the metal layer 13A.
  • the insulating sheet 11 having a plurality of through holes 11H extending in the thickness direction and the through holes 11H of the insulating sheet 11 stacked on one surface of the insulating sheet 11 are communicated.
  • a composite laminate material 1 with OA is manufactured.
  • a laser processing method As a method for forming the through hole 11H of the insulating sheet 11, a laser processing method, a drill processing method, an etching processing method, or the like can be used.
  • Copper or the like can be used as an easily-etchable metal material constituting the metal layer 13A and the metal thin layer 13B.
  • the thickness of the metal layer 13A is set in consideration of the movable distance of the target rigid conductor 12, and specifically, it is preferably 3 to 75 111, more preferably 5 to 50 mm. 111 More preferably, it is 8-25111.
  • the thickness of the thin metal layer 13B is set in consideration of the diameter of the through hole 11H of the insulating sheet 11 and the diameter of the body portion 12a in the rigid conductor 12 to be formed.
  • an electroless plating method or the like can be used as a method of forming the thin metal layer 13B.
  • a rigid conductor 12 is formed in each of the through holes 11H of the insulating sheet 11 by subjecting the composite laminated material 10A to a photo plating process. More specifically, as shown in FIG. 8, the terminal portion 12b of the rigid conductor 12 to be formed on the surface of the metal layer 13A formed on one surface of the insulating sheet 11 and the other surface of the insulating sheet 11, respectively.
  • a resist film 14 having a plurality of pattern holes 14H communicating with the through holes 11H of the insulating sheet 11 is formed according to a pattern corresponding to each pattern.
  • an electrolytic plating process is performed using the metal layer 13A as a common electrode to deposit a metal on the exposed portion of the metal layer 13A, and a metal is deposited on the surface of the metal thin layer 13B to form a through hole 11H in the insulating sheet 11
  • the rigid conductor 12 extending in the thickness direction of the insulating sheet 11 is formed as shown in FIG.
  • the resist film 14 is removed from the surface of the metal layer 13A, thereby exposing the metal layer 13A as shown in FIG.
  • the composite conductive sheet 10 shown in FIG. 3 is obtained by performing an etching process to remove the metal layer 13A and the metal thin layer 13B.
  • No. 17 is a state in which the conductive particles P exhibiting magnetism are aligned so as to be aligned in the thickness direction in the insulating elastic polymer substance, and the chain is formed by the conductive particles P. It is contained in a state dispersed in the plane direction.
  • a polymer material having a cross-linked structure is preferred as the elastic polymer material forming the first anisotropic conductive elastomer sheet 16 and the second anisotropic conductive elastomer sheet 17.
  • Durability, moldability From the viewpoint of electrical characteristics, it is more preferable to use silicone rubber.
  • First anisotropically conductive elastomer sheet 16 and second anisotropically conductive elastomer sheet As the conductive particles P contained in 17, conductive particles exhibiting magnetism are used because the particles can be easily aligned in the thickness direction by a method described later.
  • Specific examples of such conductive particles include particles of a metal having magnetism such as iron, cobalt and nickel, particles of these alloys, particles containing these metals, or particles of these particles as core particles.
  • the surface of the core particle is made of a metal having a good conductivity such as gold, silver, palladium, rhodium, or inorganic substance particles such as non-magnetic metal particles or glass beads, or polymer particles.
  • the surface of the core particle may be a conductive magnetic metal such as nickel or cobalt.
  • nickel particles as core particles and the surface of which is provided with gold or silver plating with good conductivity! /.
  • the means for coating the surface of the core particles with the conductive metal is not particularly limited.
  • chemical plating or electrolytic plating, sputtering, vapor deposition, or the like is used.
  • the conductive particle P When the conductive particle P is used in which the surface of the core particle is coated with a conductive metal, good conductivity can be obtained, so that the conductive metal coverage on the particle surface (The ratio of the coated area of the conductive metal to the surface area of the core particles) is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
  • the coating amount of the conductive metal is preferably 0.5 to 50% by mass of the core particles.
  • the number average particle diameter of the conductive particles P is preferably 3 to 20, 1 m, and more preferably 5 to 15. When this number average particle diameter is too small, it may be difficult to orient the conductive particles P in the thickness direction in the production method described later. On the other hand, when the number average particle diameter is excessive, it may be difficult to obtain an anisotropic conductive elastomer sheet with high resolution.
  • the particle size distribution (Dw / Dn) of the conductive particles P is preferably 1 to 10; more preferably 1.01-7, still more preferably 1.05 to 5, particularly preferably 1. ; ⁇ 4.
  • the shape of the conductive particles P is not particularly limited.
  • the conductive particles P can be easily dispersed in the polymer material-forming material. It is preferable that they are agglomerated secondary particles.
  • Such conductive particles P are preferably contained in the anisotropic conductive elastomer sheet in a volume fraction of 10 to 40%, particularly 15 to 35%.
  • a volume fraction of 10 to 40% particularly 15 to 35%.
  • an anisotropic conductive elastomer sheet having sufficiently high conductivity in the thickness direction may not be obtained.
  • this ratio is excessive, the anisotropically conductive elastomer sheet obtained becomes fragile and the necessary elasticity as an anisotropically conductive elastomer sheet cannot be obtained immediately. is there.
  • the thickness of each of the first anisotropic conductive elastomer sheet 16 and the second anisotropic conductive elastomer sheet 17 is 20 to 100 m, preferably S, more preferably 25-7 O ⁇ m. If this thickness is too small, sufficient unevenness absorbing ability may not be obtained. On the other hand, if this thickness is excessive, high resolution may not be obtained.
  • Each of the first anisotropic conductive elastomer sheet 16 and the second anisotropic conductive elastomer sheet 17 has a surface opposite to the surface in contact with the composite conductive sheet 10 on the first anisotropic conductive elastomer sheet 16.
  • Discharge layers 18 and 19 having dimensions larger than those of the anisotropically conductive elastomer sheet 16 and the second anisotropically conductive elastomer sheet 17 are formed in a body.
  • a plurality of openings 18H are formed in the static elimination layer 18 formed in the first anisotropic conductive elastomer sheet 16 so as to be positioned immediately above each of the rigid conductors 12 in the composite conductive sheet 10.
  • a plurality of openings 19H are formed in the static elimination layer 19 formed in the second anisotropic conductive elastomer sheet 17 so as to be positioned immediately below each of the rigid conductors 12 in the composite conductive sheet 10. . Then, when the composite conductive sheet 10 and the static elimination layers 18 and 19 are seen through in the thickness direction, the force of the rigid conductor 12 in the composite conductive sheet 10 is positioned in the openings 18H and 19H of the static elimination layers 18 and 19, respectively. Has been.
  • a metal material or a material obtained by curing a conductive paste containing a metal powder in a curable resin can be used.
  • examples of the metal material include metals such as iron, copper, gold, nickel, and titanium, alloys or alloy steels in which two or more of these are combined, Invar type alloys such as Invar, Elinvar type alloys such as Elinba, and Super Invar. , Kovar, alloy such as 42 alloy or Alloy steel or the like can be used.
  • the thickness of the charge removal layers 18 and 19 is preferably 5 to 50 111, more preferably 10 to 30 111. If this thickness is too small, the neutralization layers 18 and 19 will crack and become anisotropic due to repeated compression in the thickness direction of the anisotropic conductive elastomer sheet when the anisotropic conductive connector is used for inspection. Separation of the charge removal layers 18 and 19 from the conductive elastomer sheet may occur. On the other hand, if this thickness is excessive, it may be difficult to compress the anisotropic conductive elastomer sheet in the thickness direction when the anisotropic conductive connector is used for inspection.
  • the depth of the openings 18H and 19H formed in 18 and 19 is increased, and the electrical connection between the electrode to be inspected of the object to be inspected or the electrode for connecting the adapter body described later and the rigid conductor 12 of the composite conductive sheet 10
  • the neutralization layers 18 and 19 are manufactured by a method using a plating process or a sputtering process, separately manufacturing a metal film having an opening, and transferring the metal film.
  • the conductive paste can be formed by applying and curing the conductive paste.
  • the diameters of the openings 18H and 19H of the static elimination layers 18 and 19 are larger than the diameter of the terminal portion 12b of the rigid conductor 12 in the composite conductive sheet 10, and specifically, the terminal portion 12b It is preferable that the diameter is 1. to 15 times, more preferably 1.5 to 10 times. If the diameters 18H and 19H of the neutralization layers 18 and 19 are too small, adjacent electrodes or adjacent rigid conductors 12 may be short-circuited. On the other hand, when the diameters of the openings 18H and 19H of the static elimination layers 18 and 19 are excessive, it may be difficult to prevent or suppress charging.
  • the first anisotropically conductive elastomer sheet 16 can be manufactured as follows.
  • each of the sheet-shaped one-surface-side molded member 30 and the other-surface-side molded member 31 and a shape that conforms to the planar shape of the target first anisotropic conductive elastomer sheet 16 are used.
  • a frame-shaped spacer 32 having an opening 32K and a thickness corresponding to the thickness of the first anisotropic conductive elastomer sheet 16 is prepared and cured.
  • a conductive elastomer material is prepared in which conductive particles are contained in a liquid polymer material-forming material that is an elastic polymer material.
  • a spacer 32 is disposed on the molding surface (the upper surface in FIG. 12) of the other surface side molding member 31, and the spacer 32 on the molding surface of the other surface side molding member 31 is disposed.
  • the prepared conductive elastomer material 16B is applied to the opening 32K, and then a metal film 18A is disposed on the conductive elastomer material 16B, and the one-side molded member 30 is disposed on the metal film 18A. Place.
  • the one side molding member 30 and the other side molding member 31 resin sheets made of polyimide resin, polyester resin, acrylic resin, or the like can be used.
  • the thickness of the resin sheet constituting the one-surface-side molded member 30 and the other-surface-side molded member 31 is preferably 50 to 500 mm 111, more preferably 75 to 300 mm 111. If this thickness is less than 50 m, the strength required for molded parts may not be obtained. On the other hand, when the thickness exceeds 500 m, it may be difficult to apply a magnetic field having a required strength to the conductive elastomer material layer described later.
  • the conductive elastomer material 16B is sandwiched between the one-side molded member 30 and the other-side molded member 31 using the pressure roll device 35 including the pressure roll 33 and the support roll 34.
  • a conductive elastomer material layer 16A having a required thickness is formed between the other surface side molding member 31 and the metal film 18A.
  • the conductive particles P are contained in a uniformly dispersed state.
  • a pair of electromagnets is arranged on the back surface of the one-surface-side molded member 30 and the back surface of the other-surface-side molded member 31, and the electromagnet is operated to be parallel to the thickness direction of the conductive elastomer material layer 16A. Apply a magnetic field.
  • the conductive particles P dispersed in the conductive elastomer material layer 16A were dispersed in the plane direction as shown in FIG. While maintaining the state, it is oriented so as to be aligned in the thickness direction, whereby a chain of a plurality of conductive particles P each extending in the thickness direction is formed in a state dispersed in the plane direction.
  • the conductive elastomer material layer 16A is cured. Accordingly, the elastic polymer material contains the first different particles that are contained in a state in which the conductive particles P are aligned in the thickness direction and the chain of the conductive particles P is dispersed in the plane direction.
  • the electrically conductive elastomer sheet 16 is manufactured in a state of being integrally bonded to the metal film 18A. Thereafter, a part of the metal film 18A is subjected to photolithography and etching to remove a part of the metal film 18A, whereby the charge removal layer 18 having the opening 18H is obtained.
  • the hardening process of the conductive elastomer material layer 16A can be performed after the action of the force parallel magnetic field which can be performed with the parallel magnetic field applied is stopped.
  • the action of the parallel magnetic field may be temporarily stopped, and then the direction of the applied magnetic field may be reversed.
  • the intensity of the parallel magnetic field applied to the conductive elastomer material layer 16A preferably has an average magnitude of 0.02 to 2.5 Tesla.
  • the curing treatment of the conductive elastomer material layer 16A is appropriately selected depending on the material to be used, but is usually performed by heat treatment.
  • the specific heating temperature and heating time are appropriately selected in consideration of the type of the polymer material constituting the conductive elastomer material layer 16A, the time required to move the conductive particles, and the like.
  • the second anisotropically conductive elastomer sheet 17 can be manufactured by the same method as that for the first anisotropically conductive elastomer sheet 16.
  • each of the rigid conductors 12 in the composite conductive sheet 10 is movable in the thickness direction with respect to the insulating sheet 11! / Therefore, when pressed in the thickness direction by the electrodes to be connected, the first anisotropic conductive elastomer sheet 16 disposed on one surface of the composite conductive sheet 10 and the other surface of the composite conductive sheet 10 Since the second anisotropically conductive elastomer sheet 17 disposed in the space is compressed and deformed in conjunction with the movement of the rigid conductor 12, the total of the uneven absorption capacity of both is anisotropically conductive. This is manifested as a concave / convex absorbing capacity of the conductive connector 15, so that a high concave / convex absorbing capacity can be obtained.
  • the thickness required to obtain the required unevenness absorbability is determined by the total thickness of the first anisotropic conductive elastomer sheet 16 and the second anisotropic conductive elastomer sheet 17. Since it is possible to use an anisotropic conductive elastomer sheet that has a small thickness, it is possible to use V and force S, so that high resolution can be obtained.
  • each of the first anisotropic conductive elastomer sheet 16 and the second anisotropic conductive elastomer sheet 17 has a surface on the opposite side to the surface in contact with the composite conductive sheet 10 and the composite conductive material. Since the static elimination layers 18 and 19 having a plurality of openings formed immediately above each of the rigid conductors 12 in the sheet 10 are formed, the static elimination layers 18 and 19 are connected to the ground, thereby causing static electricity. Charge accumulation can be prevented or suppressed. Therefore, it is possible to prevent the first anisotropic conductive elastomer sheet 16, the second anisotropic conductive elastomer sheet 17 and the composite conductive sheet 10 from being damaged due to the discharge of the accumulated charge. Therefore, a long service life can be obtained.
  • FIG. 16 is an explanatory cross-sectional view showing a configuration of an example of the adapter device according to the present invention
  • FIG. 17 is an explanatory cross-sectional view showing an adapter main body in the adapter device shown in FIG.
  • This adapter device is for inspecting a circuit device used for, for example, an open / short test of a circuit device such as a printed circuit board, and has an adapter body 20 made of a multilayer wiring board.
  • connection electrode region in which a plurality of connection electrodes 21 are arranged according to a specific pattern corresponding to the pattern of the electrode to be inspected of the circuit device to be inspected. 25 is formed.
  • a plurality of terminal electrodes 22 are arranged on the back surface of the adapter body 20 according to the grid point positions of, for example, a pitch of 0.8 mm, 0.75 mm, 1.5 mm, 1.8 mm, and 2.54 mm. Are electrically connected to the connection electrode 21 by the internal wiring portion 23.
  • an anisotropic conductive connector 15 having the structure shown in FIG. 1 is basically provided on the connection electrode region 25, and a second anisotropic conductive elastomer sheet 17 is an adapter. Arranged in contact with the main body 20, the adapter main body 20 has an appropriate means. (Not shown).
  • this anisotropic conductive connector 15 a plurality of rigid conductors 12 are arranged on the composite conductive sheet 10 according to the same pattern as the specific pattern related to the connection electrode 21 in the adapter single body 20.
  • the directionally conductive connector 15 is arranged such that each of the rigid conductors 12 in the composite conductive sheet 10 is positioned directly above the connection electrode 21 of the adapter body 20! /.
  • the circuit device to be inspected since the anisotropic conductive connector 15 having the configuration shown in Fig. 1 is provided, the circuit device to be inspected has a small distance between adjacent electrodes to be inspected. Even if there are variations in the height level of the inspection electrodes, the electrical connection to each of the electrodes to be inspected can be reliably achieved with the necessary insulation between the adjacent electrodes to be inspected. Moreover, it is possible to prevent or suppress the accumulation of electric charges due to static electricity on the surface and to obtain a long service life.
  • FIG. 18 is an explanatory diagram showing a configuration of an example of an electrical inspection device for a circuit device according to the present invention.
  • This electrical inspection device performs, for example, an open 'short test on a circuit device 5 such as a printed circuit board having electrodes 6 and 7 to be inspected on both sides.
  • the holder 2 for holding is provided with a positioning pin 3 for arranging the circuit device 5 at an appropriate position in the inspection execution area E.
  • an upper side adapter device la and an upper side inspection head 50a configured as shown in FIG.
  • the upper side support plate 56a is arranged, and the upper side inspection head 50a is fixed to the upper side support plate 56a by the support 54a.
  • the lower adapter device lb and the lower inspection head 50b configured as shown in FIG. 17 are arranged in this order from the top, and further below the lower inspection head 50b.
  • the lower side support plate 56b is arranged, and the lower side inspection head 50b is fixed to the lower side support plate 56b by a support 54b.
  • the upper inspection head 50a is composed of a plate-shaped inspection electrode device 51a and an elastically conductive anisotropic elastomer sheet 55a that is fixedly disposed on the lower surface of the inspection electrode device 51a. It is configured.
  • the inspection electrode device 51a has a plurality of pin-shaped inspection electrodes 52a arranged at lattice point positions at the same pitch as the terminal electrodes 22 of the upper-side adapter device la on its lower surface, and each of these inspection electrodes 52a. Is electrically connected to a connector 57a provided on the upper support plate 56a by an electric wire 53a, and further electrically connected to a test circuit (not shown) of the tester via this connector 57a! /
  • the lower side inspection head 50b is composed of a plate-like inspection electrode device 51b and an anisotropically conductive elastomer sheet 55b having elasticity and fixed to the upper surface of the inspection electrode device 51b.
  • the inspection electrode device 51b has a plurality of pin-shaped inspection electrodes 52b arranged on the upper surface thereof at lattice point positions having the same pitch as the terminal electrodes 22 of the lower side adapter device lb, and each of these inspection electrodes 52b. Is electrically connected to the connector 57b provided on the lower support plate 56b by the electric wire 53b, and further electrically connected to the test circuit of the tester (not shown) via the connector 57b! /
  • each of the anisotropic conductive elastomer sheets 55a and 55b in the upper inspection head 50a and the lower inspection head 50b is formed with a conductive path forming portion that forms a conductive path only in the thickness direction. It will be.
  • each conductive path forming portion is formed so as to protrude in the thickness direction on at least one surface. Preferable in terms of demonstrating!
  • the circuit device 5 to be inspected is held in the inspection execution region E by the holder 2, and in this state, the upper side support plate 56a and the lower side support As each of the plates 56b moves in a direction approaching the circuit device 5, the circuit device 5 is clamped by the upper adapter device la and the lower adapter device lb.
  • the electrode 6 to be inspected on the upper surface of the circuit device 5 is electrically connected to the connection electrode 21 in the upper-side adapter device la via the anisotropic conductive connector 10, and this upper-side adapter is connected.
  • the terminal electrode 22 of the device la is an anisotropic conductive elastomer. It is electrically connected to the inspection electrode 52a of the inspection electrode device 51a through one sheet 55a.
  • the electrode 7 to be inspected on the lower surface of the circuit device 5 is electrically connected to the connection electrode 21 in the lower-side adapter device lb via the anisotropic conductive connector 10, and this lower-side adapter device.
  • the terminal electrode 22 of lb is electrically connected to the inspection electrode 52b of the inspection electrode device 51b via an anisotropic conductive elastomer sheet 55b.
  • each force of the electrodes 6 and 7 to be inspected on both the upper surface and the lower surface of the circuit device 5 is inspected in the inspection electrode 52a of the inspection electrode device 51a and the lower inspection head 50b in the upper inspection head 50a.
  • a state of being electrically connected to the inspection circuit of the tester is achieved, and a required electrical inspection is performed in this state.
  • the electrical inspection device for a circuit device described above since the upper side adapter device la and the lower side adapter device lb are configured as shown in FIG. Even if there is a variation in the height level of the electrodes 6 and 7 to be inspected, the distance between the electrodes 6 and 7 adjacent to each other is small, the required electrical inspection of the circuit device 5 is reliably performed. can do. In addition, since the anisotropic conductive connector 15 has a long service life, when the anisotropic conductive connector 15 breaks down, the frequency of replacement with a new one is reduced, so that high inspection efficiency is achieved. can get.
  • the neutralization layer may be configured to be formed on only one of the first anisotropic conductive elastomer sheet 16 and the second anisotropic conductive elastomer sheet 17.
  • the material constituting the rigid conductor 12 is not limited to a metal material as long as it is a rigid conductor.
  • a rigid resin contains conductive powder such as metal. Can be used.
  • the laminated material and the composite laminated material may be formed by forming metal layers on both sides of the insulating sheet.
  • the unevenly anisotropic anisotropic conductor is used as one or both of the first anisotropically conductive elastomer sheet and the second anisotropically conductive elastomer sheet.
  • An electrically conductive elastomer sheet can be used.
  • the openings 18H and 19H of the charge removal layers 18 and 19 are formed corresponding to the rigid conductor 12 in the composite conductive sheet 10.
  • the plurality of rigid conductors 12 may be formed in one opening 18H.
  • an opening 18H may be formed in addition to the region where the rigid conductor 12 is located.
  • the circuit device to be inspected is not limited to a printed circuit board, but may be a package, a semiconductor integrated circuit device such as an MCM, or a wafer on which an integrated circuit is formed.

Abstract

Provided is an anisotropic conductive connector having a small distance between electrodes, capable of surely achieving electric connection in a state when necessary insulation is assured between the electrodes even if the electrodes have irregular height levels, and preventing accumulation of electric charges on the surface, thereby obtaining a long service life. Also provided is its application. The anisotropic conductive connector has a rigid conductor arranged in a through hole of an insulating sheet so as to protrude from both surfaces of the insulating sheet. The rigid conductor includes: a composite conductive sheet having a terminal unit formed with a greater diameter than the diameter of the through hole at both ends of the portion of the rigid conductor inserted into the through hole of the insulating sheet in such a way that the terminal unit can move in the thickness direction of the insulating sheet; and two anisotropic conductive elastomer sheets arranged on both surfaces of the composite conductive sheet. At least one of the anisotropic conductive elastomer sheets includes an electricity removal layer having a plurality of openings and formed on the surface opposite to the surface which is in contact with the composite conductive sheet. When viewed in the thickness direction, the rigid conductor is positioned in the openings of the electricity removal layer, which is grounded.

Description

明 細 書  Specification
異方導電性コネクター、アダプター装置および回路装置の電気的検査装 置  Electrical inspection equipment for anisotropic conductive connectors, adapter devices and circuit devices
技術分野  Technical field
[0001] 本発明は、例えばプリント回路基板などの回路装置の電気的検査に好適に用いる ことができる異方導電性コネクター、これを具えたアダプター装置およびこのアダプタ 一装置を具えた回路装置の電気的検査装置に関するものである。  [0001] The present invention relates to an anisotropic conductive connector that can be suitably used for electrical inspection of a circuit device such as a printed circuit board, an adapter device including the same, and an electric power of the circuit device including the adapter device. The present invention relates to a mechanical inspection device.
背景技術  Background art
[0002] 一般に、 BGAや CSP等のパッケージ LSI、 MCM、その他の集積回路装置などの 電子部品を構成するための或いは搭載するための回路基板については、電子部品 を組み立てる以前に或いは電子部品を搭載する以前に、当該回路基板の配線バタ ーンが所期の性能を有することを確認するためにその電気的特性を検査することが 必要である。  [0002] Generally, circuit boards for configuring or mounting electronic components such as package LSIs such as BGA and CSP, MCM, and other integrated circuit devices are mounted before or after assembling the electronic components. Before doing so, it is necessary to inspect the electrical characteristics of the circuit board to confirm that the wiring pattern has the expected performance.
従来、回路基板の電気的検査を実行する方法としては、縦横に並ぶ格子点位置に 従って複数の検査電極が配置されてなる検査電極装置と、この検査電極装置の検 查電極に検査対象である回路基板の被検査電極を電気的に接続するアダプターと を組み合わせて用いる方法などが知られて!/、る。この方法にお!/、て用いられるァダプ ターは、ピッチ変換ボードと称されるプリント配線板よりなるものである。  Conventionally, as a method of performing an electrical inspection of a circuit board, an inspection electrode device in which a plurality of inspection electrodes are arranged according to the grid point positions arranged in the vertical and horizontal directions, and the inspection electrode of this inspection electrode device are inspection targets. It is known how to use it in combination with an adapter that electrically connects the electrodes to be inspected on the circuit board! The adapter used in this method is a printed wiring board called a pitch conversion board.
このアダプタ一としては、一面に検査対象である回路基板の被検査電極に対応す るパターンに従って配置された複数の接続用電極を有し、他面に検査電極装置の検 查電極と同一のピッチの格子点位置に配置された複数の端子電極を有するもの、一 面に検査対象である回路基板の被検査電極に対応するパターンに従って配置され た、電流供給用接続用電極および電圧測定用接続用電極よりなる複数の接続用電 極対を有し、他面に検査電極装置の検査電極と同一のピッチの格子点位置に配置 された複数の端子電極を有するものなどが知られており、前者のアダプタ一は、例え ば回路基板における各回路のオープン 'ショート試験などに用いられ、後者のァダプ ターは、回路基板における各回路の電気抵抗測定試験に用いられている。 而して、回路基板の電気的検査においては、一般に、検査対象である回路基板と アダプターとの安定な電気的接続を達成するために、検査対象である回路基板とァ ダプターとの間に、コネクタ一として異方導電性エラストマ一シートを介在させることが ネ亍われている。 This adapter has a plurality of connection electrodes arranged according to a pattern corresponding to the electrode to be inspected on the circuit board to be inspected on one side, and the same pitch as the inspection electrode of the inspection electrode device on the other side Having a plurality of terminal electrodes arranged at the grid point positions of the current supply connection electrodes and voltage measurement connection electrodes arranged according to a pattern corresponding to the electrodes to be inspected on the circuit board to be inspected on one side The former has a plurality of connection electrode pairs made of electrodes, and has a plurality of terminal electrodes arranged on the other surface at lattice point positions having the same pitch as the inspection electrodes of the inspection electrode device. This adapter is used for, for example, an open / short test of each circuit on a circuit board, and the latter adapter is used for an electric resistance measurement test of each circuit on the circuit board. Therefore, in the electrical inspection of a circuit board, generally, in order to achieve a stable electrical connection between the circuit board to be inspected and the adapter, the circuit board to be inspected and the adapter are It is expected to use an anisotropic conductive elastomer sheet as a connector.
[0003] この異方導電性エラストマ一シートは、厚さ方向にのみ導電性を示すもの、あるい は加圧されたときに厚さ方向にのみ導電性を示す多数の加圧導電性導電部を有す るものである。  [0003] This anisotropically conductive elastomer sheet has conductivity only in the thickness direction, or a number of pressure-conductive conductive portions that show conductivity only in the thickness direction when pressed. It has something.
このような異方導電性エラストマ一シートとしては、従来、種々の構造のものが知ら れており、例えば特許文献 1には、弾性高分子物質中に磁性を示す導電性粒子が 厚み方向に並ぶよう配向して連鎖を形成した状態でかつ当該導電性粒子による連 鎖が面方向に分散した状態で含有されてなる異方導電性エラストマ一シート(以下、 これを「分散型異方導電性シート」という。)が開示され、特許文献 2には、弾性高分 子物質中に磁性を示す導電性粒子を不均一に分散させることにより、厚み方向に伸 びる多数の導電路形成部と、これらを相互に絶縁する絶縁部とが形成されてなる異 方導電性エラストマ一シート(以下、これを「偏在型異方導電性シート」という。)が開 示され、特許文献 3には、導電路形成部の表面と絶縁部との間に段差が形成された 偏在型異方導電性シートが開示されて!/、る。  As such an anisotropically conductive elastomer sheet, those having various structures are conventionally known. For example, in Patent Document 1, conductive particles exhibiting magnetism are arranged in the thickness direction in an elastic polymer material. An anisotropic conductive elastomer sheet (hereinafter referred to as a “dispersion type anisotropic conductive sheet”), which is formed in such a state that the chain is formed in such a manner that the chain is formed in such a manner that the chain is dispersed in the plane direction. Patent Document 2 discloses a number of conductive path forming portions extending in the thickness direction by non-uniformly dispersing conductive particles exhibiting magnetism in an elastic polymer material, and these. An anisotropic conductive elastomer sheet (hereinafter referred to as an “unevenly anisotropic conductive sheet”) formed by insulating portions that insulate each other is disclosed. Patent Document 3 discloses a conductive path. A step between the surface of the forming portion and the insulating portion There uneven distribution type anisotropic conductive sheet is formed is disclosed! /, Ru.
これらの異方導電性エラストマ一シートは、例えば硬化されて弾性高分子物質とな る液状の高分子物質形成材料中に磁性を示す導電性粒子が含有されてなる成形材 料層に対して、その厚み方向に磁場を作用させながら或いは磁場を作用させた後に 硬化処理を行うことにより得られるものである。この異方導電性エラストマ一シートに おいては、弾性高分子物質よりなる基材中に導電性粒子が厚み方向に並ぶよう配向 して連鎖が形成された状態で含有されており、厚み方向に加圧されることによって導 電性粒子の連鎖による導電路が形成される。  These anisotropically conductive elastomer sheets are, for example, for a molding material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material-forming material that is cured to become an elastic polymer material. It is obtained by applying a magnetic field in the thickness direction or by performing a curing process after applying a magnetic field. In this anisotropic conductive elastomer sheet, conductive particles are contained in a base material made of an elastic polymer substance so that the conductive particles are aligned in the thickness direction so as to form a chain. By applying pressure, a conductive path is formed by a chain of conductive particles.
[0004] そして、分散型異方導電性シートおよび偏在型異方導電性シートを比較すると、分 散型異方導電性シートは、特殊で高価な金型を用いずに小さいコストで製造すること が可能なものである点、接続すべき電極のパターンに関わらず使用することができ、 汎用性を有するものである点で、偏在型異方導電性シートに比較して有利である。 一方、偏在型異方導電性シートは、隣接する導電路形成部間にこれらを相互に絶 縁する絶縁部が形成されてレ、るため、隣接する電極間の離間距離が小さレ、接続対 象体にっレ、ても、隣接する電極間に必要な絶縁性が確保された状態で当該電極の 各々に対する電気的な接続を達成することができる性能、すなわち分解能が高いも のである点で、分散型異方導電性シートに比較して有利である。 [0004] Then, comparing the dispersed anisotropic conductive sheet and the unevenly distributed anisotropic conductive sheet, the distributed anisotropic conductive sheet is manufactured at a low cost without using a special and expensive mold. This is advantageous compared to the unevenly distributed anisotropic conductive sheet in that it can be used regardless of the pattern of the electrode to be connected and has versatility. On the other hand, the unevenly-distributed anisotropic conductive sheet has an insulating portion that isolates them from each other between adjacent conductive path forming portions. Even in the case of an object, it is possible to achieve an electrical connection to each of the electrodes in a state where necessary insulation is ensured between adjacent electrodes, that is, a high resolution. This is advantageous as compared with the dispersion-type anisotropic conductive sheet.
而して、分散型異方導電性シートにおいて、分解能を向上させるためには、当該分 散型異方導電性シートの厚みを小さくすることが肝要である。  Thus, in order to improve the resolution of the dispersed anisotropic conductive sheet, it is important to reduce the thickness of the distributed anisotropic conductive sheet.
然るに、厚みの小さい異方導電性エラストマ一シートにおいては、接続すべき電極 の各々における高さレベルのバラツキを吸収して当該電極の各々に対する電気的な 接続を達成することができる性能、すなわち凹凸吸収能が低い、という問題がある。 具体的には、異方導電性エラストマ一シートの凹凸吸収能は、当該異方導電性エラ ストマーシートの厚みの 20%程度であり、例えば厚みが 100 mの異方導電性エラ ストマーシートにおいては、電極の高さレベルのバラツキが 20 m程度の接続対象 体に対しても安定な電気的接続を達成することができる力 厚みが 50 mの異方導 電性エラストマ一シートにおいては、電極の高さレベルのバラツキが 10 mを超える 接続対象体に対しては、安定な電気的接続を達成することが困難となる。  However, the anisotropic conductive elastomer sheet having a small thickness absorbs the variation in the height level of each electrode to be connected, and can achieve electrical connection to each of the electrodes, that is, unevenness. There is a problem that absorption capacity is low. Specifically, the unevenness absorption capacity of the anisotropic conductive elastomer sheet is about 20% of the thickness of the anisotropic conductive elastomer sheet. For example, in the anisotropic conductive elastomer sheet having a thickness of 100 m, The force that can achieve a stable electrical connection even with a connection object with an electrode height level variation of about 20 m. In an anisotropic conductive elastomer sheet with a thickness of 50 m, It is difficult to achieve a stable electrical connection for connecting objects whose height level variation exceeds 10 m.
このような問題を解決するため、絶縁性シートに形成されたテーパ状の貫通孔内に 、当該貫通孔に適合するテーパ状の可動導体が絶縁性シートに対して厚み方向に 移動可能に設けられた複合導電性シートと、この複合導電性シートの一面および他 面の各々に配置された 2つの異方導電性エラストマ一シートとよりなる異方導電性コ ネクターが提案されている(例えば特許文献 4等参照。)。  In order to solve such a problem, a tapered movable conductor adapted to the through hole is provided in the tapered through hole formed in the insulating sheet so as to be movable in the thickness direction with respect to the insulating sheet. An anisotropic conductive connector comprising a composite conductive sheet and two anisotropic conductive elastomer sheets disposed on one side and the other side of the composite conductive sheet has been proposed (for example, Patent Documents). (Refer to 4 etc.)
このような複合導電性シートを有する異方導電性コネクターによれば、複合導電性 シートにおける可動電極が厚み方向に移動可能とされているため、厚み方向に加圧 されたときには、複合導電性シートの一面および他面の各々に配置された 2つの異 方導電性エラストマ一シートが互いに連動して圧縮変形するため、両者の有する凹 凸吸収能の合計が異方導電性コネクターの凹凸吸収能として発現され、従って、高 い凹凸吸収能を得ることができる。  According to the anisotropic conductive connector having such a composite conductive sheet, since the movable electrode in the composite conductive sheet is movable in the thickness direction, when the pressure is applied in the thickness direction, the composite conductive sheet Since the two anisotropically conductive elastomer sheets placed on one side and the other side of each other are compressed and deformed in conjunction with each other, the sum of the concave and convex absorbent capacity of the two is the uneven conductive capacity of the anisotropic conductive connector. Therefore, high unevenness absorbing ability can be obtained.
また、所要の凹凸吸収能を得るために必要な厚みは、 2つの異方導電性エラストマ 一シートの合計の厚みによって確保すればよぐ個々の異方導電性エラストマーシー トとしては、厚みが小さいものを用いることができるので、高い分解能を得ることができ In addition, the thickness required to obtain the required uneven absorption capacity is two anisotropic conductive elastomers. Since it is possible to use individual anisotropic conductive elastomer sheets having a small thickness as long as they are secured by the total thickness of one sheet, high resolution can be obtained.
[0006] しかしながら、上記の異方導電性コネクターにおいては、実用上、以下のような問 題がある。 [0006] However, the above anisotropic conductive connector has the following problems in practice.
上記の異方導電性コネクターにおいて、複合導電性シートの可動導体は、絶縁性 シートおよび異方導電性エラストマ一シートの両方に支持されており、複合導電性シ 一トと異方導電性エラストマ一シートとを分離した場合には、可動導体が絶縁性シー トから脱落するおそれがあるため、複合導電性シートを単独で取り扱うことは実際上 極めて困難である。従って、異方導電性コネクターにおける複合導電性シートおよび 異方導電性エラストマ一シートのいずれか一方に故障が生じたときには、当該複合 導電性シートまたは当該異方導電性エラストマ一シートのみを新たなものに交換する ことができず、異方導電性コネクター全体を新たなものに交換しなければならない。 また、複合導電性シートの可動導体は、絶縁性シートに形成されたテーパ状の貫 通孔内にメツキ処理によって金属を堆積させて金属体を形成し、この金属体を機械 的に押圧することにより、貫通孔の内面に接着していた金属体を分離させることによ つて得られる。然るに、多数の可動導体を有する異方導電性コネクターを製造する場 合には、絶縁性シートに形成された全ての金属体を当該絶縁性シートの内面から確 実に分離させることが困難であるため、一部の可動導体の機能に不具合が生じる。  In the above anisotropic conductive connector, the movable conductor of the composite conductive sheet is supported by both the insulating sheet and the anisotropic conductive elastomer sheet, and the composite conductive sheet and the anisotropic conductive elastomer When the sheet is separated, the movable conductor may fall off the insulating sheet, so it is practically difficult to handle the composite conductive sheet alone. Therefore, when a failure occurs in either the composite conductive sheet or the anisotropic conductive elastomer sheet in the anisotropic conductive connector, only the composite conductive sheet or the anisotropic conductive elastomer sheet is replaced with a new one. The entire anisotropically conductive connector must be replaced with a new one. In addition, the movable conductor of the composite conductive sheet is formed by depositing a metal by a plating process in a tapered through hole formed in the insulating sheet to form a metal body, and mechanically pressing the metal body. Thus, the metal body adhered to the inner surface of the through hole is separated. However, when manufacturing an anisotropically conductive connector having a large number of movable conductors, it is difficult to reliably separate all metal bodies formed on the insulating sheet from the inner surface of the insulating sheet. A malfunction occurs in the function of some movable conductors.
[0007] このような問題を解決するため、複数の貫通孔が形成された絶縁性シートと、この絶 縁性シートの貫通孔に揷通された胴部の両端に、当該絶縁性シートの貫通孔の径よ り大きい径を有する端子部が形成されてなる剛性導体とを有してなり、剛性導体が絶 縁性シートの厚み方向に移動可能に設けられた複合導電性シートを具えてなる異方 導電性コネクターが提案されて!/、る(特許文献 5参照。 )。 [0007] In order to solve such a problem, an insulating sheet in which a plurality of through-holes are formed, and the insulating sheet penetrates at both ends of a body portion passed through the through-holes of the insulating sheet. A rigid conductor formed with a terminal portion having a diameter larger than the diameter of the hole, and comprising a composite conductive sheet provided so that the rigid conductor is movable in the thickness direction of the insulating sheet. An anisotropic conductive connector has been proposed! /, (See Patent Document 5).
しかしながら、この異方導電性コネクターにおいては、回路基板の検査において繰 り返し使用する場合には、異方導電性エラストマ一シートの表面に静電気による電荷 が蓄積され、これが大量に蓄積された後放電することによって、異方導電性エラスト マーシートや複合導電性シートに故障が生じるため、長い使用寿命が得られない、と いう問題があることが判明した。 However, in this anisotropically conductive connector, when it is repeatedly used in the inspection of a circuit board, charges are accumulated due to static electricity on the surface of the anisotropically conductive elastomer sheet. As a result, failure of anisotropic conductive elastomer sheet and composite conductive sheet will result in failure to obtain a long service life. It turned out that there was a problem.
[0008] 特許文献 1 :特開昭 51— 93393号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 51-93393
特許文献 2:特開昭 53— 147772号公報  Patent Document 2: Japanese Patent Laid-Open No. 53-147772
特許文献 3:特開昭 61— 250906号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 61-250906
特許文献 4 :特開 2001— 351702号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-351702
特許文献 5:特願 2005— 374809号明細書  Patent Document 5: Japanese Patent Application 2005-374809 Specification
発明の開示  Disclosure of the invention
[0009] 本発明は、以上のような事情に基づいてなされたものであって、その目的は、隣接 する電極間の離間距離が小さぐ電極の高さレベルにバラツキがある接続対象体に ついても、隣接する電極間に必要な絶縁性が確保された状態で当該電極の各々に 対する電気的な接続を確実に達成することができ、しかも、表面に静電気による電荷 が蓄積されることが防止または抑制されて長い使用寿命が得られる異方導電性コネ クタ一、この異方導電性コネクターを具えたアダプター装置および回路装置の電気 的検査装置を提供することにある。  [0009] The present invention has been made based on the circumstances as described above, and an object of the present invention is a connection object having a variation in height level of electrodes with a small separation distance between adjacent electrodes. However, it is possible to reliably achieve electrical connection to each of the electrodes while ensuring the necessary insulation between adjacent electrodes, and to prevent static charges from accumulating on the surface. Another object of the present invention is to provide an anisotropic conductive connector that can be suppressed and have a long service life, an adapter device including the anisotropic conductive connector, and an electrical inspection device for a circuit device.
[0010] 本発明の異方導電性コネクタ一は、それぞれ厚み方向に伸びる複数の貫通孔が 形成された絶縁性シートと、この絶縁性シートの貫通孔の各々に、当該絶縁性シート の両面の各々から突出するよう配置された剛性導体とを有し、前記剛性導体の各々 力 前記絶縁性シートの貫通孔に揷通された胴部の両端に、当該絶縁性シートの貫 通孔の径より大きい径を有する端子部が形成されてなり、当該絶縁性シートに対して その厚み方向に移動可能とされている複合導電性シートと、この複合導電性シートの 一面に配置された第 1の異方導電性エラストマ一シートと、当該複合導電性シートの 他面に配置された第 2の異方導電性エラストマ一シートとを具えてなり、  [0010] An anisotropic conductive connector according to the present invention includes an insulating sheet in which a plurality of through-holes each extending in the thickness direction are formed, and each of the through-holes of the insulating sheet is provided on both sides of the insulating sheet. Rigid conductors arranged so as to protrude from each of them, and each force of each of the rigid conductors is connected to both ends of a body portion passed through the through-hole of the insulating sheet by a diameter of the through-hole of the insulating sheet. A composite conductive sheet formed with a terminal portion having a large diameter and movable in the thickness direction with respect to the insulating sheet, and a first difference disposed on one surface of the composite conductive sheet. An electrically conductive elastomer sheet and a second anisotropically conductive elastomer sheet disposed on the other side of the composite conductive sheet,
前記第 1の異方導電性エラストマ一シートおよび前記第 2の異方導電性エラストマ 一シートの少なくともいずれか一方には、前記複合導電性シートと接する面とは反対 の面に、複数の開口を有する除電層が形成され、前記複合導電性シートおよび前記 除電層を厚み方向に透視したときに、当該複合導電性シートにおける剛性導体の各 々が前記除電層の開口内に位置されており、当該除電層がアースに接続されること を特徴とする。 [0011] 本発明の異方導電性コネクターにおいては、複合導電性シートの絶縁性シートの 厚み方向における剛性導体の移動可能距離が 3〜; 150 mであることが好ましい。 また、第 1の異方導電性エラストマ一シートおよび第 2の異方導電性エラストマーシ ートの各々は、弾性高分子物質中に、磁性を示す導電性粒子が、厚み方向に並ぶ よう配向して連鎖が形成された状態で、かつ、当該導電性粒子による連鎖が面方向 に分散した状態で含有されてなることが好ましレ、。 At least one of the first anisotropic conductive elastomer sheet and the second anisotropic conductive elastomer sheet has a plurality of openings on a surface opposite to a surface in contact with the composite conductive sheet. Each of the rigid conductors in the composite conductive sheet is positioned within the opening of the charge removal layer when the composite conductive sheet and the charge removal layer are seen through in the thickness direction. The neutralization layer is connected to earth. In the anisotropic conductive connector of the present invention, it is preferable that the movable distance of the rigid conductor in the thickness direction of the insulating sheet of the composite conductive sheet is 3 to 150 m. Each of the first anisotropically conductive elastomer sheet and the second anisotropically conductive elastomer sheet is oriented so that the conductive particles exhibiting magnetism are aligned in the thickness direction in the elastic polymer material. It is preferable that the chain is formed in a state where the chain is formed and the chain of the conductive particles is dispersed in the plane direction.
また、第 1の異方導電性エラストマ一シートおよび第 2の異方導電性エラストマーシ ートの各々の厚みが 20〜100 mであることが好ましい。  The thickness of each of the first anisotropically conductive elastomer sheet and the second anisotropically conductive elastomer sheet is preferably 20 to 100 m.
また、導電性粒子の数平均粒子径が 3〜20 mであることが好ましい。  Moreover, it is preferable that the number average particle diameter of electroconductive particle is 3-20 m.
[0012] 本発明のアダプター装置は、表面に検査すべき回路装置における被検査電極に 対応するパターンに従って複数の接続用電極が形成された接続用電極領域を有す るアダプター本体と、 [0012] The adapter device of the present invention includes an adapter body having a connection electrode region in which a plurality of connection electrodes are formed according to a pattern corresponding to an electrode to be inspected in a circuit device to be inspected on the surface;
このアダプター本体の接続用電極領域上に配置された、当該アダプター本体にお ける接続用電極に対応するパターンに従って配置された複数の剛性導体を有する、 上記の異方導電性コネクターと  The anisotropic conductive connector having a plurality of rigid conductors arranged according to a pattern corresponding to the connection electrode in the adapter body, disposed on the connection electrode region of the adapter body;
を具えてなることを特徴とする。  It is characterized by comprising.
[0013] 本発明の回路装置の電気的検査装置は、上記のアダプター装置を具えてなること を特徴とする。 [0013] An electrical inspection device for a circuit device according to the present invention comprises the adapter device described above.
[0014] 本発明の異方導電性コネクターによれば、複合導電性シートにおける剛性導体の 各々は、絶縁性シートに対してその厚み方向に移動可能とされているため、接続す べき電極によって厚み方向に加圧されたときには、複合導電性シートの一面に配置 された第 1の異方導電性エラストマ一シートおよび当該複合導電性シートの他面に配 置された第 2の異方導電性エラストマ一シートは、剛性導体が絶縁性シートの厚み方 向に移動することによつて互!/、に連動して圧縮変形するため、両者の有する凹凸吸 収能の合計が異方導電性コネクターの凹凸吸収能として発現され、従って、高い凹 凸吸収能を得ることができる。  [0014] According to the anisotropic conductive connector of the present invention, each of the rigid conductors in the composite conductive sheet is movable in the thickness direction with respect to the insulating sheet. When pressed in the direction, the first anisotropic conductive elastomer sheet disposed on one surface of the composite conductive sheet and the second anisotropic conductive elastomer disposed on the other surface of the composite conductive sheet. One sheet compresses and deforms in conjunction with each other as the rigid conductor moves in the thickness direction of the insulating sheet. Therefore, the total uneven absorption capacity of both sheets is equal to that of the anisotropic conductive connector. It is expressed as a concave / convex absorbability, and therefore a high concave / convex absorbability can be obtained.
また、所要の凹凸吸収能を得るために必要な厚みは、第 1の異方導電性エラストマ 一シートおよび第 2の異方導電性エラストマ一シートの合計の厚みによって確保すれ ばよく、個々の異方導電性エラストマ一シートとしては、厚みが小さいものを用いるこ とができるので、高!/、分解能を得ることができる。 In addition, the thickness required to obtain the required unevenness absorption capacity is ensured by the total thickness of the first anisotropic conductive elastomer sheet and the second anisotropic conductive elastomer sheet. As the anisotropic conductive elastomer sheet, a sheet having a small thickness can be used, so that high resolution and high resolution can be obtained.
従って、隣接する電極間の離間距離が小さぐ電極の高さレベルにバラツキがある 接続対象体についても、隣接する電極間に必要な絶縁性が確保された状態で当該 電極の各々に対する電気的な接続を確実に達成することができる。  Therefore, even when the distance between the adjacent electrodes is small and the height level of the electrodes varies, the electrical connection to each of the electrodes is ensured with the necessary insulation between the adjacent electrodes. Connection can be reliably achieved.
また、第 1の異方導電性エラストマ一シートおよび前記第 2の異方導電性エラストマ 一シートの少なくともいずれか一方には、前記複合導電性シートと接する面とは反対 の面に、複数の開口を有する除電層が形成されているため、当該除電層がアースに 接続されることにより、静電気による電荷が蓄積されることを防止または抑制すること ができる。従って、蓄積された電荷の放電によって異方導電性エラストマ一シートお よび複合導電性シートに故障が生ずることが回避されるので、長レ、使用寿命が得ら れる。  Further, at least one of the first anisotropic conductive elastomer sheet and the second anisotropic conductive elastomer sheet has a plurality of openings on a surface opposite to the surface in contact with the composite conductive sheet. Since the charge removal layer having the above is formed, the charge removal due to static electricity can be prevented or suppressed by connecting the charge removal layer to the ground. Therefore, it is possible to avoid the occurrence of failure in the anisotropic conductive elastomer sheet and the composite conductive sheet due to the discharge of the accumulated electric charge, so that a long service life can be obtained.
[0015] 本発明のアダプター装置によれば、上記の異方導電性コネクターを具えてなるため 、検査対象である回路装置が、隣接する被検査電極の間の離間距離が小さぐ被検 查電極の高さレベルにバラツキがあるものであっても、隣接する被検査電極間に必 要な絶縁性が確保された状態で当該被検査電極の各々に対する電気的な接続を確 実に達成することができ、しかも、表面に静電気による電荷が蓄積されることが防止ま たは抑制されて長!/、使用寿命が得られる。  According to the adapter device of the present invention, since the anisotropic conductive connector is provided, the circuit device to be inspected has a small separation distance between adjacent test electrodes. Even if there are variations in the height level, it is possible to reliably achieve electrical connection to each of the electrodes to be inspected while ensuring the necessary insulation between adjacent electrodes to be inspected. In addition, accumulation of static electricity on the surface can be prevented or suppressed, and a long service life can be obtained.
[0016] 本発明の回路装置の電気的検査装置によれば、上記のアダプター装置を具えて なるため、検査対象である回路装置が、隣接する被検査電極の間の離間距離が小さ ぐ被検査電極の高さレベルにバラツキがあるものであっても、当該回路装置につい て所要の電気的検査を確実に実行することができる。しかも、異方導電性コネクター には、長い使用寿命が得られるので、当該異方導電性コネクターが故障した場合に 新たなものに交換する作業の頻度が低くなるため、高い検査効率が得られる。  [0016] According to the electrical inspection device for a circuit device of the present invention, since the adapter device is provided, the circuit device to be inspected has a small separation distance between adjacent electrodes to be inspected. Even if there are variations in the height level of the electrodes, the required electrical inspection can be reliably performed on the circuit device. In addition, since the anisotropic conductive connector has a long service life, the frequency of replacing the anisotropic conductive connector with a new one when the anisotropic conductive connector fails is reduced, and high inspection efficiency can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の異方導電性コネクターの一例における構成を示す説明用断面図であ [図 2]図 1に示す異方導電性コネクターの要部を拡大して示す説明用断面図である。 園 3]複合導電性シートの要部を拡大して示す説明用断面図である。 1 is a cross-sectional view for explaining the structure of an example of the anisotropic conductive connector of the present invention. FIG. 2 is an explanatory view showing an enlarged main part of the anisotropic conductive connector shown in FIG. It is sectional drawing. 3] An enlarged cross-sectional view illustrating the main part of the composite conductive sheet.
園 4]複合導電性シートを製造するための積層材料の構成を示す説明用断面図であ 園 5]積層材料における金属層に開口が形成された状態を示す説明用断面図である4] A cross-sectional view illustrating the structure of a laminated material for producing a composite conductive sheet. [5] FIG. 5 is a cross-sectional view illustrating a state in which an opening is formed in a metal layer in the laminated material.
Yes
園 6]積層材料における絶縁性シートに貫通孔が形成された状態を示す説明用断面 図である。 6] A sectional view for explanation showing a state in which a through hole is formed in an insulating sheet in a laminated material.
[図 7]複合積層材料の構成を示す説明用断面図である。  FIG. 7 is an explanatory cross-sectional view showing a configuration of a composite laminated material.
園 8]複合積層材料にレジスト膜が形成された状態を示す説明用断面図である。 園 9]複合積層材料における絶縁性シートの貫通孔に剛性導体が形成された状態を 示す説明用断面図である。 FIG. 8 is a cross-sectional view for explaining a state in which a resist film is formed on the composite laminated material. FIG. 9] is a cross-sectional view for explaining a state where a rigid conductor is formed in the through hole of the insulating sheet in the composite laminated material.
園 10]複合積層材料力もレジスト膜が除去された状態を示す説明用断面図である。 園 11]第 1の異方導電性エラストマ一シートを製造するための一面側成形部材、他面 側成形部材およびスぺーサーを示す説明用断面図である。 FIG. 10] is a cross-sectional view for explaining the state in which the composite laminated material force is also removed from the resist film. FIG. 11] A cross-sectional view for explaining the one-side molded member, the other-side molded member, and the spacer for manufacturing the first anisotropic conductive elastomer sheet.
園 12]他面側成形部材の表面に導電性エラストマ一用材料が塗布された状態を示 す説明用断面図である。 12] A sectional view for explanation showing a state in which the material for the conductive elastomer is applied to the surface of the other side molding member.
園 13]他面側成形部材と金属膜との間に導電性エラストマ一用材料層が形成された 状態を示す説明用断面図である。 13] A sectional view for explanation showing a state in which a conductive elastomer material layer is formed between the other side molding member and the metal film.
園 14]図 13に示す導電性エラストマ一用材料層を拡大して示す説明用断面図であ 14] FIG. 14 is an enlarged cross-sectional view illustrating the conductive elastomer material layer shown in FIG.
[図 15]図 13に示す導電性エラストマ一用材料層に対して厚み方向に磁場を作用さ せた状態を示す説明用断面図である。 FIG. 15 is an explanatory cross-sectional view showing a state in which a magnetic field is applied in the thickness direction to the material layer for conductive elastomer shown in FIG.
園 16]本発明に係るアダプター装置の一例における構成を示す説明用断面図であ 園 17]図 16に示すアダプター装置におけるアダプター本体の構成を示す説明用断 面図である。 16] A cross-sectional view illustrating the configuration of an example of the adapter device according to the present invention. 17] FIG. 17 is a cross-sectional view illustrating the configuration of the adapter body in the adapter device illustrated in FIG.
[図 18]本発明に係る回路装置の電気的検査装置の一例における構成を示す説明図 である。 園 19]除電層の変形例を示す説明図である。 FIG. 18 is an explanatory diagram showing a configuration of an example of an electrical inspection device for a circuit device according to the present invention. FIG. 19] is an explanatory view showing a modification of the static elimination layer.
[図 20]除電層の他の変形例を示す説明図である。 符号の説明 FIG. 20 is an explanatory view showing another modification of the charge removal layer. Explanation of symbols
la 上部側アダプター装置  la Upper adapter device
lb 下部側アダプター装置  lb Lower adapter device
2 ホノレダー  2 Honoreda
3 位置決めピン  3 Positioning pin
5 回路装置  5 Circuit equipment
6, 7 被検査電極  6, 7 Inspected electrode
10 複合導電性シート 10 Composite conductive sheet
10A 複合積層材料 10A composite laminate material
10B 積層材料 10B Laminate material
11 絶縁性シート 11 Insulating sheet
11H 貫通孔 11H Through hole
12 剛性導体 12 Rigid conductor
12a 胴部 12a torso
12b 端子部 12b terminal
13A 金属層 13A metal layer
13B 金属薄層 13B thin metal layer
13K 開口 13K aperture
14 レジスト膜 14 Resist film
14H パターン孔 14H pattern hole
15 異方導電性コネクター 15 Anisotropic conductive connector
16 第 1の異方導電性エラストマ一シート 16 First anisotropically conductive elastomer sheet
16A 導電性エラストマ一用材料層 16A Material layer for conductive elastomer
16B 導電性エラストマ一用材料 16B Material for conductive elastomer
17 第 2の異方導電性エラストマ一シート 17 Second anisotropically conductive elastomer sheet
18, 19 除電層 18A 金属膜 18, 19 Static electricity removal layer 18A metal film
18H, 19H 開口  18H, 19H opening
20 アダプター本体  20 Adapter body
21 接続用電極  21 Connecting electrode
22 端子電極  22 Terminal electrode
23 内部配線部  23 Internal wiring
25 接続用電極領域  25 Electrode area for connection
30 一面側成形部材  30 One side molded member
31 他面側成形部材  31 Other side molding
32 スぺーサー  32 Spacer
32K 開口  32K opening
33 加圧ロール  33 Pressure roll
34 支持ロール  34 Support roll
35 加圧ロール装置  35 Pressure roll device
50a 上部側検査ヘッド  50a Upper inspection head
50b 下部側検査ヘッド  50b Lower inspection head
51 a, 51b 検査電極装置  51 a, 51b Inspection electrode device
52a, 52b 検査電極  52a, 52b Test electrode
53a, 53b 電線  53a, 53b Electric wire
54a, 54b 支柱  54a, 54b Prop
55a, 55b 異方導電性エラストマ一シート  55a, 55b Anisotropic conductive elastomer sheet
56a 上部側支持板 56a Upper support plate
56b 下部側支持板 56b Lower support plate
57a, 57b コネクター 57a, 57b connector
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
〈異方導電性コネクター〉 <Anisotropic conductive connector>
図 1は、本発明の異方導電性コネクターの一例における構成を示す説明用断面図 であり、図 2は図 1に示す異方導電性コネクターの要部を拡大して示す説明用断面 図である。この異方導電性コネクター 15は、複合導電性シート 10と、この複合導電性 シート 10の一面(図 1において上面)に配置された第 1の異方導電性エラストマーシ ート 16と、複合導電性シート 10の他面に配置された第 2の異方導電性エラストマ一 シート 17とにより構成されている。 FIG. 1 is a cross-sectional view for explaining the structure of an example of the anisotropically conductive connector of the present invention. FIG. 2 is an explanatory cross-sectional view showing an enlarged main part of the anisotropic conductive connector shown in FIG. The anisotropic conductive connector 15 includes a composite conductive sheet 10, a first anisotropic conductive elastomer sheet 16 disposed on one surface (the upper surface in FIG. 1) of the composite conductive sheet 10, and a composite conductive sheet. And a second anisotropic conductive elastomer sheet 17 disposed on the other surface of the conductive sheet 10.
[0020] 複合導電性シート 10は、図 3に示すように、それぞれ厚み方向に伸びる複数の貫 通孔 11Hが接続すべき電極のパターンに対応するパターンに従って形成された絶 縁性シート 11と、この絶縁性シート 11の各貫通孔 11 Hに当該絶縁性シート 11の両 面の各々から突出するよう配置された複数の剛性導体 12とにより構成されている。 剛性導体 12の各々は、絶縁性シート 11の貫通孔 11Hに揷通された円柱状の胴部 12aと、この胴部 12aの両端の各々に一体に連結されて形成された、絶縁性シート 1 1の表面に露出する端子部 12bとにより構成されている。剛性導体 12における胴部 1 2aの長さ Lは、絶縁性シート 11の厚み dより大きぐまた、当該胴部 12aの径 r2は、絶 縁性シート 11の貫通孔; 11Hの径 rlより小さいものとされており、これにより、当該剛 性導体 12は、絶縁性シート 11の厚み方向に移動可能とされている。また、剛性導体 12における端子部 12bの径 r3は、絶縁性シート 11の貫通孔 11Hの径 rlより大きい ものとされている。 As shown in FIG. 3, the composite conductive sheet 10 includes an insulating sheet 11 formed according to a pattern corresponding to a pattern of electrodes to which a plurality of through holes 11H extending in the thickness direction are to be connected, The insulating sheet 11 includes a plurality of rigid conductors 12 arranged so as to protrude from both surfaces of the insulating sheet 11 in the through holes 11H. Each of the rigid conductors 12 includes a cylindrical body portion 12a threaded through the through hole 11H of the insulating sheet 11, and an insulating sheet 1 formed integrally connected to both ends of the body portion 12a. 1 and a terminal portion 12b exposed on the surface. The length L of the body portion 12a of the rigid conductor 12 is larger than the thickness d of the insulating sheet 11, and the diameter r2 of the body portion 12a is smaller than the through hole of the insulating sheet 11; smaller than the diameter rl of 11H. Accordingly, the rigid conductor 12 can be moved in the thickness direction of the insulating sheet 11. Further, the diameter r3 of the terminal portion 12b in the rigid conductor 12 is larger than the diameter rl of the through hole 11H of the insulating sheet 11.
[0021] 絶縁性シート 11を構成する材料としては、液晶ポリマー、ポリイミド樹脂、ポリエステ ル樹脂、ポリアラミド樹脂、ポリアミド樹脂等の樹脂材料、ガラス繊維補強型エポキシ 樹脂、ガラス繊維補強型ポリエステル樹脂、ガラス繊維補強型ポリイミド樹脂等の繊 維補強型樹脂材料、エポキシ樹脂等にアルミナ、ボロンナイトライド等の無機材料を フイラ一として含有した複合樹脂材料などを用いることができる。  [0021] The material constituting the insulating sheet 11 includes resin materials such as liquid crystal polymer, polyimide resin, polyester resin, polyaramid resin, and polyamide resin, glass fiber reinforced epoxy resin, glass fiber reinforced polyester resin, and glass fiber. A fiber reinforced resin material such as a reinforced polyimide resin, a composite resin material containing an inorganic material such as alumina or boron nitride as a filler in an epoxy resin, or the like can be used.
また、複合導電性シート 10を高温環境下で使用する場合には、絶縁性シート 11と して、線熱膨張係数が 3 X 10— 5/K以下のものを用いることが好ましぐより好ましくは 1 X 10— 6〜2 Χ 10— 5/Κ、特に好ましくは 1 X 10— 6〜6 Χ 10— 6/Κである。このような絶 縁性シート 11を用いることにより、当該絶縁性シート 11の熱膨張による剛性導体 12 の位置ずれを抑制することができる。 Also, when using a composite conductive sheet 10 in a high temperature environment, the insulating sheet 11, preferably from preferably be linear thermal expansion coefficient used the following 3 X 10- 5 / K instrument the 1 X 10- 6 ~2 Χ 10- 5 / Κ, particularly preferably 1 X 10- 6 ~6 Χ 10- 6 / Κ. By using such an insulating sheet 11, it is possible to suppress the displacement of the rigid conductor 12 due to the thermal expansion of the insulating sheet 11.
また、絶縁性シート 11の厚み dは、 10〜200 111でぁることカ好ましく、より好ましく (ま 15〜; 100〃 mである。 The thickness d of the insulating sheet 11 is preferably 10 to 200 111, more preferably (Between 15 and 100 m.
また、絶縁性シート 11の貫通孔; 11Hの径 rlは、 20〜300 111でぁることカ好ましく 、より好ましくは 30〜; 150 である。  Further, the through hole of the insulating sheet 11; the diameter rl of 11H is preferably 20 to 300 111, more preferably 30 to 150.
剛性導体 12を構成する材料としては、剛性を有する金属材料を好適に用いること ができ、特に、後述する製造方法において絶縁性シートに形成される金属薄層よりも エッチングされにくいものを用いることが好ましレ、。このような金属材料の具体例として は、ニッケル、コバルト、金、アルミニウムなどの単体金属またはこれらの合金などを 挙げること力 Sでさる。  As the material constituting the rigid conductor 12, a metal material having rigidity can be preferably used, and in particular, a material that is less likely to be etched than a thin metal layer formed on an insulating sheet in the manufacturing method described later is used. I like it. Specific examples of such a metal material include a single metal such as nickel, cobalt, gold, and aluminum, or an alloy thereof.
剛性導体 12における胴部 12aの径 r2は、 18 m以上であることが好ましぐより好 ましくは 25 m以上である。この径 r2が過小である場合には、当該剛性導体 12に必 要な強度が得られないことがある。また、絶縁性シート 11の貫通孔 11Hの径 rlと剛 性導体 12における胴部 12aの径 r2との差 (rl— r2)は、; 1 m以上であることが好ま しぐより好ましくは 2 m以上である。この差が過小である場合には、絶縁性シート 1 1の厚み方向に対して剛性導体 12を移動させることが困難となること力 Sある。  The diameter r2 of the body 12a of the rigid conductor 12 is preferably 18 m or more, more preferably 25 m or more. If the diameter r2 is too small, the strength required for the rigid conductor 12 may not be obtained. Further, the difference (rl−r2) between the diameter rl of the through hole 11H of the insulating sheet 11 and the diameter r2 of the body 12a of the rigid conductor 12 is preferably 1 m or more, more preferably 2 m or more. When this difference is too small, there is a force S that makes it difficult to move the rigid conductor 12 in the thickness direction of the insulating sheet 11.
剛性導体 12における端子部 12bの径 r3は、接続すべき電極例えば被検査電極の 径の 70〜150%であることが好ましい。また、剛性導体 12における端子部 12bの径 r 3と絶縁性シート 11の貫通孔; 11Hの径 rlとの差(r3— rl)は、 5 111以上であること が好ましぐより好ましくは 10 m以上である。この差が過小である場合には、剛性導 体 12が絶縁性シート 11から脱落する恐れがある。  The diameter r3 of the terminal portion 12b in the rigid conductor 12 is preferably 70 to 150% of the diameter of the electrode to be connected, for example, the electrode to be inspected. Further, it is preferable that the difference (r3−rl) between the diameter r3 of the terminal portion 12b in the rigid conductor 12 and the through hole of the insulating sheet 11; the diameter rl of 11H is 5 111 or more, more preferably 10 m or more. If this difference is too small, the rigid conductor 12 may fall off the insulating sheet 11.
剛性導体 12における端子部 12bの厚みは、 5〜50 111であることが好ましぐより 好ましくは 8〜40 μ mである。  The thickness of the terminal portion 12b in the rigid conductor 12 is preferably 5 to 50 111, more preferably 8 to 40 μm.
絶縁性シート 11の厚み方向における剛性導体 12の移動可能距離、すなわち剛性 導体 12における胴部 12aの長さ Lと絶縁性シート 1 1の厚み dとの差 (L d)は、 3〜 1 50 μ mであること力 S好ましく、より好ましくは 5〜; 100 μ m、さらに好ましくは 10〜50 μ mである。剛性導体 12の移動可能距離が過小である場合には、後述する異方導電 性コネクターにおいて、十分な凹凸吸収能を得ることが困難となることがある。一方、 剛性導体 12の移動可能距離が過大である場合には、絶縁性シート 11の貫通孔 11 Hから露出する剛性導体 12の胴部 12aの長さが大きくなり、検査に使用したときに、 剛性導体 12の胴部 12aが座屈または損傷するおそれがある。 The movable distance of the rigid conductor 12 in the thickness direction of the insulating sheet 11, that is, the difference (L d) between the length L of the body 12a of the rigid conductor 12 and the thickness d of the insulating sheet 1 1 is 3 to 1 50. A force of being μm S is preferable, more preferably 5 to; 100 μm, still more preferably 10 to 50 μm. If the movable distance of the rigid conductor 12 is too small, it may be difficult to obtain sufficient unevenness absorbing capability in the anisotropic conductive connector described later. On the other hand, when the movable distance of the rigid conductor 12 is excessive, the length of the body 12a of the rigid conductor 12 exposed from the through hole 11H of the insulating sheet 11 becomes large, and when used for inspection, The body 12a of the rigid conductor 12 may be buckled or damaged.
[0023] このような複合導電性シート 10は、絶縁性シート 11の貫通孔 11Hに、その厚み方 向に移動可能な剛性導体 12を有し、当該剛性導体 12は、その胴部 12aの両端に絶 縁性シート 11の貫通孔 11Hの径より大き!/、径を有する端子部 12bが形成されて!/、る ため、当該端子部 12bがストッパーとして機能する結果、剛性導体 12が絶縁性シート 11から脱落することがなぐ当該複合導電性シート 10単独でも取り扱い易いものであ [0023] Such a composite conductive sheet 10 has a rigid conductor 12 that can move in the thickness direction in the through-hole 11H of the insulating sheet 11, and the rigid conductor 12 has both ends of its trunk 12a. As a result, the terminal portion 12b having a diameter larger than the diameter of the through hole 11H of the insulating sheet 11 is formed! /, So that the terminal portion 12b functions as a stopper, so that the rigid conductor 12 is insulative. The composite conductive sheet 10 that does not fall off the sheet 11 is easy to handle even by itself.
[0024] 上記の複合導電性シート 10は、例えば以下のようにして製造することができる。 [0024] The composite conductive sheet 10 can be manufactured, for example, as follows.
先ず、図 4に示すように、絶縁性シート 11の一面に易エッチング性の金属層 13Aが 一体的に積層されてなる積層材料 10Bを用意し、この積層材料 10Bにおける金属層 13Aに対してエッチング処理を施してその一部を除去することにより、図 5に示すよう に、金属層 13Aに接続すべき電極のパターンに対応するパターンに従って複数の 開口 13Kを形成する。次いで、図 6に示すように、積層材料 10Bにおける絶縁性シ ート 11に、それぞれ金属層 13Aの開口 13Kに連通して厚み方向に伸びる貫通孔 11 Hを形成する。そして、図 7に示すように、絶縁性シート 11の貫通孔 11Hの内壁面お よび金属層 13Aの開口縁を覆うよう、易エッチング性の筒状の金属薄層 13Bを形成 する。このようにして、それぞれ厚み方向に伸びる複数の貫通孔 11Hが形成された 絶縁性シート 11と、この絶縁性シート 11の一面に積層された、それぞれ絶縁性シー ト 11の貫通孔 11 Hに連通する複数の開口 13Kを有する易エッチング性の金属層 13 Aと、絶縁性シート 11の貫通孔 11Hの内壁面および金属層 13Aの開口縁を覆うよう 形成された易エッチング性の金属薄層 13Bとを有してなる複合積層材料 1 OAが製造 される。  First, as shown in FIG. 4, a laminate material 10B is prepared in which an easily-etchable metal layer 13A is integrally laminated on one surface of an insulating sheet 11, and etching is performed on the metal layer 13A in the laminate material 10B. By removing the part by performing the treatment, a plurality of openings 13K are formed according to the pattern corresponding to the pattern of the electrodes to be connected to the metal layer 13A as shown in FIG. Next, as shown in FIG. 6, through-holes 11H that extend in the thickness direction are formed in the insulating sheet 11 in the laminated material 10B and communicate with the openings 13K of the metal layer 13A. Then, as shown in FIG. 7, an easily etchable cylindrical metal thin layer 13B is formed so as to cover the inner wall surface of the through hole 11H of the insulating sheet 11 and the opening edge of the metal layer 13A. In this way, the insulating sheet 11 having a plurality of through holes 11H extending in the thickness direction and the through holes 11H of the insulating sheet 11 stacked on one surface of the insulating sheet 11 are communicated. An easily-etchable metal layer 13A having a plurality of openings 13K, and an easily-etchable thin metal layer 13B formed so as to cover the inner wall surface of the through-hole 11H of the insulating sheet 11 and the opening edge of the metal layer 13A. A composite laminate material 1 with OA is manufactured.
以上において、絶縁性シート 11の貫通孔 11Hを形成する方法としては、レーザー 加工法、ドリル加工法、エッチング加工法などを利用することができる。  In the above, as a method for forming the through hole 11H of the insulating sheet 11, a laser processing method, a drill processing method, an etching processing method, or the like can be used.
金属層 13Aおよび金属薄層 13Bを構成する易エッチング性の金属材料としては、 銅などを用いることができる。  Copper or the like can be used as an easily-etchable metal material constituting the metal layer 13A and the metal thin layer 13B.
また、金属層 13Aの厚みは、 目的とする剛性導体 12の移動可能距離などを考慮し て設定され、具体的には、 3〜75 111であることが好ましぐより好ましくは 5〜50〃111 、さらに好ましくは 8〜25 111である。 In addition, the thickness of the metal layer 13A is set in consideration of the movable distance of the target rigid conductor 12, and specifically, it is preferably 3 to 75 111, more preferably 5 to 50 mm. 111 More preferably, it is 8-25111.
また、金属薄層 13Bの厚みは、絶縁性シート 11の貫通孔 11Hの径と形成すべき剛 性導体 12における胴部 12aの径とを考慮して設定される。  Further, the thickness of the thin metal layer 13B is set in consideration of the diameter of the through hole 11H of the insulating sheet 11 and the diameter of the body portion 12a in the rigid conductor 12 to be formed.
また、金属薄層 13Bを形成する方法としては、無電解メツキ法などを利用することが できる。  Further, as a method of forming the thin metal layer 13B, an electroless plating method or the like can be used.
[0025] そして、この複合積層材料 10Aに対してフォトメツキ処理を施すことにより、絶縁性 シート 11の貫通孔 11Hの各々に剛性導体 12を形成する。具体的に説明すると、図 8に示すように、絶縁性シート 11の一面に形成された金属層 13Aの表面および絶縁 性シート 11の他面の各々に、形成すべき剛性導体 12における端子部 12bのパター ンに対応するパターンに従ってそれぞれ絶縁性シート 11の貫通孔 11Hに連通する 複数のパターン孔 14Hが形成されたレジスト膜 14を形成する。次いで、金属層 13A を共通電極として電解メツキ処理を施して当該金属層 13Aにおける露出した部分に 金属を堆積させると共に、金属薄層 13Bの表面に金属を堆積させて絶縁性シート 11 の貫通孔 11H内およびレジスト膜 14のパターン孔 14H内に金属を充填することによ り、図 9に示すように、絶縁性シート 11の厚み方向に伸びる剛性導体 12を形成する。 このようにして剛性導体 12を形成した後、金属層 13Aの表面からレジスト膜 14を除 去することにより、図 10に示すように、金属層 13Aを露出させる。そして、エッチング 処理を施して金属層 13Aおよび金属薄層 13Bを除去することにより、図 3に示す複 合導電性シート 10が得られる。  [0025] Then, a rigid conductor 12 is formed in each of the through holes 11H of the insulating sheet 11 by subjecting the composite laminated material 10A to a photo plating process. More specifically, as shown in FIG. 8, the terminal portion 12b of the rigid conductor 12 to be formed on the surface of the metal layer 13A formed on one surface of the insulating sheet 11 and the other surface of the insulating sheet 11, respectively. A resist film 14 having a plurality of pattern holes 14H communicating with the through holes 11H of the insulating sheet 11 is formed according to a pattern corresponding to each pattern. Next, an electrolytic plating process is performed using the metal layer 13A as a common electrode to deposit a metal on the exposed portion of the metal layer 13A, and a metal is deposited on the surface of the metal thin layer 13B to form a through hole 11H in the insulating sheet 11 By filling the inside and the pattern hole 14H of the resist film 14 with metal, the rigid conductor 12 extending in the thickness direction of the insulating sheet 11 is formed as shown in FIG. After forming the rigid conductor 12 in this way, the resist film 14 is removed from the surface of the metal layer 13A, thereby exposing the metal layer 13A as shown in FIG. Then, the composite conductive sheet 10 shown in FIG. 3 is obtained by performing an etching process to remove the metal layer 13A and the metal thin layer 13B.
[0026] 第 1の異方導電性エラストマ一シート 16および第 2の異方導電性エラストマ一シート  [0026] First anisotropically conductive elastomer sheet 16 and second anisotropically conductive elastomer sheet
17は、いずれも絶縁性の弾性高分子物質中に、磁性を示す導電性粒子 Pが、厚み 方向に並ぶよう配向して連鎖が形成された状態で、かつ、当該導電性粒子 Pによる 連鎖が面方向に分散した状態で含有されてなるものである。  No. 17 is a state in which the conductive particles P exhibiting magnetism are aligned so as to be aligned in the thickness direction in the insulating elastic polymer substance, and the chain is formed by the conductive particles P. It is contained in a state dispersed in the plane direction.
第 1の異方導電性エラストマ一シート 16および第 2の異方導電性エラストマ一シート 17を形成する弾性高分子物質としては、架橋構造を有する高分子物質が好ましぐ 耐久性、成形加工性および電気特性の観点から、シリコーンゴムを用いることがより 好ましい。  A polymer material having a cross-linked structure is preferred as the elastic polymer material forming the first anisotropic conductive elastomer sheet 16 and the second anisotropic conductive elastomer sheet 17. Durability, moldability From the viewpoint of electrical characteristics, it is more preferable to use silicone rubber.
[0027] 第 1の異方導電性エラストマ一シート 16および第 2の異方導電性エラストマ一シート 17に含有される導電性粒子 Pとしては、後述する方法により当該粒子を容易に厚み 方向に並ぶよう配向させることができることから、磁性を示す導電性粒子が用いられる 。このような導電性粒子の具体例としては、鉄、コバルト、ニッケルなどの磁性を有す る金属の粒子若しくはこれらの合金の粒子またはこれらの金属を含有する粒子、また はこれらの粒子を芯粒子とし、当該芯粒子の表面に金、銀、パラジウム、ロジウムなど の導電性の良好な金属のメツキを施したもの、あるいは非磁性金属粒子若しくはガラ スビーズなどの無機物質粒子またはポリマー粒子を芯粒子とし、当該芯粒子の表面 に、ニッケル、コバルトなどの導電性磁性金属のメツキを施したものなどが挙げられる[0027] First anisotropically conductive elastomer sheet 16 and second anisotropically conductive elastomer sheet As the conductive particles P contained in 17, conductive particles exhibiting magnetism are used because the particles can be easily aligned in the thickness direction by a method described later. Specific examples of such conductive particles include particles of a metal having magnetism such as iron, cobalt and nickel, particles of these alloys, particles containing these metals, or particles of these particles as core particles. The surface of the core particle is made of a metal having a good conductivity such as gold, silver, palladium, rhodium, or inorganic substance particles such as non-magnetic metal particles or glass beads, or polymer particles. In addition, the surface of the core particle may be a conductive magnetic metal such as nickel or cobalt.
Yes
これらの中では、ニッケル粒子を芯粒子とし、その表面に導電性の良好な金または 銀のメツキを施したものを用いることが好まし!/、。  Of these, it is preferable to use nickel particles as core particles and the surface of which is provided with gold or silver plating with good conductivity! /.
芯粒子の表面に導電性金属を被覆する手段としては、特に限定されるものではな いが、例えば化学メツキまたは電解メツキ法、スパッタリング法、蒸着法などが用いら れている。  The means for coating the surface of the core particles with the conductive metal is not particularly limited. For example, chemical plating or electrolytic plating, sputtering, vapor deposition, or the like is used.
[0028] 導電性粒子 Pとして、芯粒子の表面に導電性金属が被覆されてなるものを用いる場 合には、良好な導電性が得られることから、粒子表面における導電性金属の被覆率( 芯粒子の表面積に対する導電性金属の被覆面積の割合)が 40%以上であることが 好ましぐさらに好ましくは 45%以上、特に好ましくは 47〜95%である。  [0028] When the conductive particle P is used in which the surface of the core particle is coated with a conductive metal, good conductivity can be obtained, so that the conductive metal coverage on the particle surface ( The ratio of the coated area of the conductive metal to the surface area of the core particles) is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
また、導電性金属の被覆量は、芯粒子の 0. 5〜50質量%であることが好ましい。  Further, the coating amount of the conductive metal is preferably 0.5 to 50% by mass of the core particles.
[0029] また、導電性粒子 Pの数平均粒子径は、 3〜20 ,1 mであることが好ましく、より好ま しくは 5〜; 15 である。この数平均粒子径が過小である場合には、後述する製造 方法において、導電性粒子 Pを厚み方向に配向させることが困難となることがある。 一方、この数平均粒子径が過大である場合には、分解能の高い異方導電性エラスト マーシートを得ることが困難となることがある。 [0029] The number average particle diameter of the conductive particles P is preferably 3 to 20, 1 m, and more preferably 5 to 15. When this number average particle diameter is too small, it may be difficult to orient the conductive particles P in the thickness direction in the production method described later. On the other hand, when the number average particle diameter is excessive, it may be difficult to obtain an anisotropic conductive elastomer sheet with high resolution.
また、導電性粒子 Pの粒子径分布(Dw/Dn)は、 1〜; 10であることが好ましぐより 好ましくは 1. 01-7,さらに好ましくは 1. 05〜5、特に好ましくは 1. ;!〜 4である。 また、導電性粒子 Pの形状は、特に限定されるものではないが、高分子物質形成材 料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれ らが凝集した 2次粒子であることが好ましレ、。 Further, the particle size distribution (Dw / Dn) of the conductive particles P is preferably 1 to 10; more preferably 1.01-7, still more preferably 1.05 to 5, particularly preferably 1. ; ~ 4. In addition, the shape of the conductive particles P is not particularly limited. However, the conductive particles P can be easily dispersed in the polymer material-forming material. It is preferable that they are agglomerated secondary particles.
[0030] このような導電性粒子 Pは、異方導電性エラストマ一シート中に体積分率で 10〜40 %、特に 15〜35%となる割合で含有されていることが好ましい。この割合が過小であ る場合には、厚み方向に十分に高い導電性を有する異方導電性エラストマ一シート が得られないことがある。一方、この割合が過大である場合には、得られる異方導電 性エラストーシートは脆弱なものとなりやすぐ異方導電性エラストマ一シートとして必 要な弾性が得られな!/、こと力 Sある。 [0030] Such conductive particles P are preferably contained in the anisotropic conductive elastomer sheet in a volume fraction of 10 to 40%, particularly 15 to 35%. When this ratio is too small, an anisotropic conductive elastomer sheet having sufficiently high conductivity in the thickness direction may not be obtained. On the other hand, if this ratio is excessive, the anisotropically conductive elastomer sheet obtained becomes fragile and the necessary elasticity as an anisotropically conductive elastomer sheet cannot be obtained immediately. is there.
[0031] また、第 1の異方導電性エラストマ一シート 16および第 2の異方導電性エラストマ一 シート 17の各々の厚みは、 20〜; 100〃 mであること力 S好ましく、より好ましくは 25〜7 O ^ mである。この厚みが過小である場合には、十分な凹凸吸収能が得られないこと がある。一方、この厚みが過大である場合には、高い分解能が得られないことがある[0031] Also, the thickness of each of the first anisotropic conductive elastomer sheet 16 and the second anisotropic conductive elastomer sheet 17 is 20 to 100 m, preferably S, more preferably 25-7 O ^ m. If this thickness is too small, sufficient unevenness absorbing ability may not be obtained. On the other hand, if this thickness is excessive, high resolution may not be obtained.
Yes
[0032] 第 1の異方導電性エラストマ一シート 16および第 2の異方導電性エラストマ一シート 17の各々には、複合導電性シート 10と接する面とは反対の面に、当該第 1の異方導 電性エラストマ一シート 16および当該第 2の異方導電性エラストマ一シート 17より大 きい寸法の除電層 18, 19がー体的に形成されている。第 1の異方導電性エラストマ 一シート 16に形成された除電層 18には、複合導電性シート 10における剛性導体 12 の各々の直上位置に位置するよう複数の開口 18Hが形成されている。また、第 2の 異方導電性エラストマ一シート 17に形成された除電層 19には、複合導電性シート 10 における剛性導体 12の各々の直下位置に位置するよう複数の開口 19Hが形成され ている。そして、複合導電性シート 10および除電層 18, 19を厚み方向に透視したと きに、当該複合導電性シート 10における剛性導体 12の各々力 除電層 18, 19の開 口 18H, 19H内に位置されている。  [0032] Each of the first anisotropic conductive elastomer sheet 16 and the second anisotropic conductive elastomer sheet 17 has a surface opposite to the surface in contact with the composite conductive sheet 10 on the first anisotropic conductive elastomer sheet 16. Discharge layers 18 and 19 having dimensions larger than those of the anisotropically conductive elastomer sheet 16 and the second anisotropically conductive elastomer sheet 17 are formed in a body. A plurality of openings 18H are formed in the static elimination layer 18 formed in the first anisotropic conductive elastomer sheet 16 so as to be positioned immediately above each of the rigid conductors 12 in the composite conductive sheet 10. Further, a plurality of openings 19H are formed in the static elimination layer 19 formed in the second anisotropic conductive elastomer sheet 17 so as to be positioned immediately below each of the rigid conductors 12 in the composite conductive sheet 10. . Then, when the composite conductive sheet 10 and the static elimination layers 18 and 19 are seen through in the thickness direction, the force of the rigid conductor 12 in the composite conductive sheet 10 is positioned in the openings 18H and 19H of the static elimination layers 18 and 19, respectively. Has been.
除電層 18, 19を構成する材料としては、金属材料、硬化性樹脂中に金属粉末が 含有されてなる導電性ペーストを硬化してなるものを用いることができる。  As a material constituting the charge removal layers 18 and 19, a metal material or a material obtained by curing a conductive paste containing a metal powder in a curable resin can be used.
ここで、金属材料としては、鉄、銅、金、ニッケル、チタンなどの金属またはこれらを 2 種以上組み合わせた合金若しくは合金鋼、インバーなどのインバー型合金、エリンバ 一などのエリンバー型合金、スーパーインバー、コバール、 42合金などの合金または 合金鋼などを用いることができる。 Here, examples of the metal material include metals such as iron, copper, gold, nickel, and titanium, alloys or alloy steels in which two or more of these are combined, Invar type alloys such as Invar, Elinvar type alloys such as Elinba, and Super Invar. , Kovar, alloy such as 42 alloy or Alloy steel or the like can be used.
また、除電層 18, 19の厚みは、 5〜50 111であることが好ましぐより好ましくは 10 〜30 111である。この厚みが過小である場合には、異方導電性コネクターを検査に 使用する際に行われる異方導電性エラストマ一シートの厚み方向の圧縮の繰り返し により、除電層 18, 19のひび割れゃ異方導電性エラストマ一シートからの除電層 18 , 19の剥離が生じることがある。一方、この厚みが過大である場合には、異方導電性 コネクターを検査に使用する際に行われる異方導電性エラストマ一シートの厚み方 向の圧縮が困難となることがあり、また除電層 18, 19に形成された開口 18H, 19H の深さが大きくなり、被検査物の被検査電極または後述するアダプター本体の接続 用電極と、複合導電性シート 10の剛性導体 12との電気的接続が困難となることがあ 除電層 18, 19は、金属材料を用いる場合には、メツキ処理またはスパッタ処理によ る方法、開口を有する金属膜を別個に製造し、当該金属膜を転写して一体化する方 法等により形成することができ、導電性ペーストを用いる場合には、当該導電性ぺー ストを塗布して硬化することにより形成することができる。  Further, the thickness of the charge removal layers 18 and 19 is preferably 5 to 50 111, more preferably 10 to 30 111. If this thickness is too small, the neutralization layers 18 and 19 will crack and become anisotropic due to repeated compression in the thickness direction of the anisotropic conductive elastomer sheet when the anisotropic conductive connector is used for inspection. Separation of the charge removal layers 18 and 19 from the conductive elastomer sheet may occur. On the other hand, if this thickness is excessive, it may be difficult to compress the anisotropic conductive elastomer sheet in the thickness direction when the anisotropic conductive connector is used for inspection. The depth of the openings 18H and 19H formed in 18 and 19 is increased, and the electrical connection between the electrode to be inspected of the object to be inspected or the electrode for connecting the adapter body described later and the rigid conductor 12 of the composite conductive sheet 10 When using a metal material, the neutralization layers 18 and 19 are manufactured by a method using a plating process or a sputtering process, separately manufacturing a metal film having an opening, and transferring the metal film. The conductive paste can be formed by applying and curing the conductive paste.
また、図示の例では、除電層 18, 19の開口 18H, 19Hの径は、複合導電性シート 10における剛性導体 12の端子部 12bの径より大きいものとされ、具体的には、端子 部 12bの径の 1. ;!〜 15倍であることが好ましぐより好ましくは 1. 5〜; 10倍である。除 電層 18, 19の開口 18H, 19Hの径が過小である場合には、隣接する電極同士また は隣接する剛性導体 12同士が短絡するおそれがある。一方、除電層 18, 19の開口 18H, 19Hの径が過大である場合には、帯電の防止または抑制が困難となることが ある。  In the illustrated example, the diameters of the openings 18H and 19H of the static elimination layers 18 and 19 are larger than the diameter of the terminal portion 12b of the rigid conductor 12 in the composite conductive sheet 10, and specifically, the terminal portion 12b It is preferable that the diameter is 1. to 15 times, more preferably 1.5 to 10 times. If the diameters 18H and 19H of the neutralization layers 18 and 19 are too small, adjacent electrodes or adjacent rigid conductors 12 may be short-circuited. On the other hand, when the diameters of the openings 18H and 19H of the static elimination layers 18 and 19 are excessive, it may be difficult to prevent or suppress charging.
第 1の異方導電性エラストマ一シート 16は、以下のようにして製造することができる The first anisotropically conductive elastomer sheet 16 can be manufactured as follows.
Yes
先ず、図 11に示すように、それぞれシート状の一面側成形部材 30および他面側成 形部材 31と、 目的とする第 1の異方導電性エラストマ一シート 16の平面形状に適合 する形状の開口 32Kを有すると共に当該第 1の異方導電性エラストマ一シート 16の 厚みに対応する厚みを有する枠状のスぺーサー 32とを用意すると共に、硬化されて 弾性高分子物質となる液状の高分子物質形成材料中に導電性粒子が含有されてな る導電性エラストマ一用材料を調製する。 First, as shown in FIG. 11, each of the sheet-shaped one-surface-side molded member 30 and the other-surface-side molded member 31 and a shape that conforms to the planar shape of the target first anisotropic conductive elastomer sheet 16 are used. A frame-shaped spacer 32 having an opening 32K and a thickness corresponding to the thickness of the first anisotropic conductive elastomer sheet 16 is prepared and cured. A conductive elastomer material is prepared in which conductive particles are contained in a liquid polymer material-forming material that is an elastic polymer material.
そして、図 12に示すように、他面側成形部材 31の成形面(図 12において上面)上 にスぺーサー 32を配置し、他面側成形部材 31の成形面上におけるスぺーサー 32 の開口 32K内に、調製した導電性エラストマ一用材料 16Bを塗布し、その後、この導 電性エラストマ一用材料 16B上に、金属膜 18Aを配置し、この金属膜 18A上に一面 側成形部材 30を配置する。  Then, as shown in FIG. 12, a spacer 32 is disposed on the molding surface (the upper surface in FIG. 12) of the other surface side molding member 31, and the spacer 32 on the molding surface of the other surface side molding member 31 is disposed. The prepared conductive elastomer material 16B is applied to the opening 32K, and then a metal film 18A is disposed on the conductive elastomer material 16B, and the one-side molded member 30 is disposed on the metal film 18A. Place.
以上において、一面側成形部材 30および他面側成形部材 31としては、ポリイミド 樹脂、ポリエステル樹脂、アクリル樹脂などよりなる樹脂シートを用いることができる。 また、一面側成形部材 30および他面側成形部材 31を構成する樹脂シートの厚み は、 50〜500〃111でぁることカ 子ましく、より好ましくは 75〜300〃111である。この厚 みが 50 m未満である場合には、成形部材として必要な強度が得られないことがあ る。一方、この厚みが 500 mを超える場合には、後述する導電性エラストマ一用材 料層に所要の強度の磁場を作用させることが困難となることがある。  In the above, as the one side molding member 30 and the other side molding member 31, resin sheets made of polyimide resin, polyester resin, acrylic resin, or the like can be used. The thickness of the resin sheet constituting the one-surface-side molded member 30 and the other-surface-side molded member 31 is preferably 50 to 500 mm 111, more preferably 75 to 300 mm 111. If this thickness is less than 50 m, the strength required for molded parts may not be obtained. On the other hand, when the thickness exceeds 500 m, it may be difficult to apply a magnetic field having a required strength to the conductive elastomer material layer described later.
次いで、図 13に示すように、加圧ロール 33および支持ロール 34よりなる加圧ロー ル装置 35を用い、一面側成形部材 30および他面側成形部材 31によって導電性ェ ラストマー用材料 16Bを挟圧することにより、他面側成形部材 31と金属膜 18Aとの間 に、所要の厚みの導電性エラストマ一用材料層 16Aを形成する。この導電性エラスト マー用材料層 16Aにおいては、図 14に拡大して示すように、導電性粒子 Pが均一に 分散した状態で含有されて!/、る。  Next, as shown in FIG. 13, the conductive elastomer material 16B is sandwiched between the one-side molded member 30 and the other-side molded member 31 using the pressure roll device 35 including the pressure roll 33 and the support roll 34. By pressing, a conductive elastomer material layer 16A having a required thickness is formed between the other surface side molding member 31 and the metal film 18A. In the conductive elastomer material layer 16A, as shown in an enlarged view in FIG. 14, the conductive particles P are contained in a uniformly dispersed state.
その後、一面側成形部材 30の裏面および他面側成形部材 31の裏面に、例えば一 対の電磁石を配置し、当該電磁石を作動させることにより、導電性エラストマ一用材 料層 16Aの厚み方向に平行磁場を作用させる。その結果、導電性エラストマ一用材 料層 16 Aにおいては、当該導電性エラストマ一用材料層 16A中に分散されている導 電性粒子 Pが、図 15に示すように、面方向に分散された状態を維持しながら厚み方 向に並ぶよう配向し、これにより、それぞれ厚み方向に伸びる複数の導電性粒子 Pに よる連鎖が、面方向に分散した状態で形成される。  After that, for example, a pair of electromagnets is arranged on the back surface of the one-surface-side molded member 30 and the back surface of the other-surface-side molded member 31, and the electromagnet is operated to be parallel to the thickness direction of the conductive elastomer material layer 16A. Apply a magnetic field. As a result, in the conductive elastomer material layer 16A, the conductive particles P dispersed in the conductive elastomer material layer 16A were dispersed in the plane direction as shown in FIG. While maintaining the state, it is oriented so as to be aligned in the thickness direction, whereby a chain of a plurality of conductive particles P each extending in the thickness direction is formed in a state dispersed in the plane direction.
そして、この状態において、導電性エラストマ一用材料層 16Aを硬化処理すること により、弾性高分子物質中に、導電性粒子 Pが厚み方向に並ぶよう配向した状態で、 かつ、当該導電性粒子 Pによる連鎖が面方向に分散された状態で含有されてなる第 1の異方導電性エラストマ一シート 16が金属膜 18Aに一体的に接着された状態で製 造される。その後、金属膜 18Aに対してフォトリソグラフィーおよびエッチング処理を 施してその一部を除去することにより、開口 18Hが形成された除電層 18が得られる。 In this state, the conductive elastomer material layer 16A is cured. Accordingly, the elastic polymer material contains the first different particles that are contained in a state in which the conductive particles P are aligned in the thickness direction and the chain of the conductive particles P is dispersed in the plane direction. The electrically conductive elastomer sheet 16 is manufactured in a state of being integrally bonded to the metal film 18A. Thereafter, a part of the metal film 18A is subjected to photolithography and etching to remove a part of the metal film 18A, whereby the charge removal layer 18 having the opening 18H is obtained.
[0035] 以上において、導電性エラストマ一用材料層 16Aの硬化処理は、平行磁場を作用 させたままの状態で行うこともできる力 平行磁場の作用を停止させた後に行うことも できる。 In the above, the hardening process of the conductive elastomer material layer 16A can be performed after the action of the force parallel magnetic field which can be performed with the parallel magnetic field applied is stopped.
また、平行磁場の作用を一旦停止し、その後、作用させる磁場の方向を反転させて あよい。  In addition, the action of the parallel magnetic field may be temporarily stopped, and then the direction of the applied magnetic field may be reversed.
導電性エラストマ一用材料層 16Aに作用される平行磁場の強度は、平均で 0. 02 〜2· 5テスラとなる大きさが好ましい。  The intensity of the parallel magnetic field applied to the conductive elastomer material layer 16A preferably has an average magnitude of 0.02 to 2.5 Tesla.
導電性エラストマ一用材料層 16Aの硬化処理は、使用される材料によって適宜選 定されるが、通常、加熱処理によって行われる。具体的な加熱温度および加熱時間 は、導電性エラストマ一用材料層 16Aを構成する高分子物質用材料などの種類、導 電性粒子 Ρの移動に要する時間などを考慮して適宜選定される。  The curing treatment of the conductive elastomer material layer 16A is appropriately selected depending on the material to be used, but is usually performed by heat treatment. The specific heating temperature and heating time are appropriately selected in consideration of the type of the polymer material constituting the conductive elastomer material layer 16A, the time required to move the conductive particles, and the like.
[0036] また、第 2の異方導電性エラストマ一シート 17は、第 1の異方導電性エラストマーシ ート 16と同様の方法によって製造することができる。 The second anisotropically conductive elastomer sheet 17 can be manufactured by the same method as that for the first anisotropically conductive elastomer sheet 16.
[0037] このような異方導電性コネクター 15によれば、複合導電性シート 10における剛性導 体 12の各々は、絶縁性シート 11に対してその厚み方向に移動可能とされて!/、るため 、接続すべき電極によって厚み方向に加圧されたときには、複合導電性シート 10の 一面に配置された第 1の異方導電性エラストマ一シート 16および当該複合導電性シ ート 10の他面に配置された第 2の異方導電性エラストマ一シート 17は、剛性導体 12 が移動することによって互!/、に連動して圧縮変形するため、両者の有する凹凸吸収 能の合計が異方導電性コネクター 15の凹凸吸収能として発現され、従って、高い凹 凸吸収能を得ることができる。 [0037] According to such an anisotropic conductive connector 15, each of the rigid conductors 12 in the composite conductive sheet 10 is movable in the thickness direction with respect to the insulating sheet 11! / Therefore, when pressed in the thickness direction by the electrodes to be connected, the first anisotropic conductive elastomer sheet 16 disposed on one surface of the composite conductive sheet 10 and the other surface of the composite conductive sheet 10 Since the second anisotropically conductive elastomer sheet 17 disposed in the space is compressed and deformed in conjunction with the movement of the rigid conductor 12, the total of the uneven absorption capacity of both is anisotropically conductive. This is manifested as a concave / convex absorbing capacity of the conductive connector 15, so that a high concave / convex absorbing capacity can be obtained.
また、所要の凹凸吸収能を得るために必要な厚みは、第 1の異方導電性エラストマ 一シート 16および第 2の異方導電性エラストマ一シート 17の合計の厚みによって確 保すればよぐ個々の異方導電性エラストマ一シートとしては、厚みが小さいものを用 V、ること力 Sできるので、高!/、分解能を得ることができる。 In addition, the thickness required to obtain the required unevenness absorbability is determined by the total thickness of the first anisotropic conductive elastomer sheet 16 and the second anisotropic conductive elastomer sheet 17. Since it is possible to use an anisotropic conductive elastomer sheet that has a small thickness, it is possible to use V and force S, so that high resolution can be obtained.
従って、隣接する電極間の離間距離が小さぐ電極の高さレベルにバラツキがある 接続対象体についても、隣接する電極間に必要な絶縁性が確保された状態で当該 電極の各々に対する電気的な接続を確実に達成することができる。  Therefore, even when the distance between the adjacent electrodes is small and the height level of the electrodes varies, the electrical connection to each of the electrodes is ensured with the necessary insulation between the adjacent electrodes. Connection can be reliably achieved.
また、第 1の異方導電性エラストマ一シート 16および第 2の異方導電性エラストマ一 シート 17の各々には、複合導電性シート 10と接する面とは反対の面に、当該複合導 電性シート 10における剛性導体 12の各々の直上位置に形成された複数の開口を有 する除電層 18, 19が形成されているため、当該除電層 18, 19がアースに接続され ることにより、静電気による電荷が蓄積されることを防止または抑制することができる。 従って、蓄積された電荷の放電によって第 1の異方導電性エラストマ一シート 16、第 2の異方導電性エラストマ一シート 17およひ複合導電性シート 10に故障が生ずるこ とが回避されるので、長い使用寿命が得られる。  In addition, each of the first anisotropic conductive elastomer sheet 16 and the second anisotropic conductive elastomer sheet 17 has a surface on the opposite side to the surface in contact with the composite conductive sheet 10 and the composite conductive material. Since the static elimination layers 18 and 19 having a plurality of openings formed immediately above each of the rigid conductors 12 in the sheet 10 are formed, the static elimination layers 18 and 19 are connected to the ground, thereby causing static electricity. Charge accumulation can be prevented or suppressed. Therefore, it is possible to prevent the first anisotropic conductive elastomer sheet 16, the second anisotropic conductive elastomer sheet 17 and the composite conductive sheet 10 from being damaged due to the discharge of the accumulated charge. Therefore, a long service life can be obtained.
〈アダプター装置〉 <Adapter device>
図 16は、本発明に係るアダプター装置の一例における構成を示す説明用断面図 であり、図 17は、図 16に示すアダプター装置におけるアダプター本体を示す説明用 断面図である。このアダプター装置は、例えばプリント回路基板などの回路装置につ いて、例えばオープン 'ショート試験を行うために用いられる回路装置検査用のもの であって、多層配線板よりなるアダプター本体 20を有する。  FIG. 16 is an explanatory cross-sectional view showing a configuration of an example of the adapter device according to the present invention, and FIG. 17 is an explanatory cross-sectional view showing an adapter main body in the adapter device shown in FIG. This adapter device is for inspecting a circuit device used for, for example, an open / short test of a circuit device such as a printed circuit board, and has an adapter body 20 made of a multilayer wiring board.
アダプター本体 20の表面(図 16および図 17において上面)には、検査対象である 回路装置の被検査電極のパターンに対応する特定のパターンに従って複数の接続 用電極 21が配置された接続用電極領域 25が形成されている。  On the surface of the adapter body 20 (upper surface in FIGS. 16 and 17), a connection electrode region in which a plurality of connection electrodes 21 are arranged according to a specific pattern corresponding to the pattern of the electrode to be inspected of the circuit device to be inspected. 25 is formed.
アダプター本体 20の裏面には、例えばピッチが 0. 8mm、 0. 75mm, 1. 5mm、 1 . 8mm、 2. 54mmの格子点位置に従って複数の端子電極 22が配置され、端子電 極 22の各々は、内部配線部 23によって接続用電極 21に電気的に接続されている。 このアダプター本体 20の表面には、その接続用電極領域 25上に、基本的に図 1に 示す構成の異方導電性コネクター 15が、その第 2の異方導電性エラストマ一シート 1 7がアダプター本体 20に接するよう配置され、当該アダプター本体 20に適宜の手段 (図示省略)によって固定されている。 A plurality of terminal electrodes 22 are arranged on the back surface of the adapter body 20 according to the grid point positions of, for example, a pitch of 0.8 mm, 0.75 mm, 1.5 mm, 1.8 mm, and 2.54 mm. Are electrically connected to the connection electrode 21 by the internal wiring portion 23. On the surface of the adapter body 20, an anisotropic conductive connector 15 having the structure shown in FIG. 1 is basically provided on the connection electrode region 25, and a second anisotropic conductive elastomer sheet 17 is an adapter. Arranged in contact with the main body 20, the adapter main body 20 has an appropriate means. (Not shown).
この異方導電性コネクター 15において、複合導電性シート 10には、アダプタ一本 体 20における接続用電極 21に係る特定のパターンと同一のパターンに従って複数 の剛性導体 12が配置されており、当該異方導電性コネクター 15は、複合導電性シ ート 10における剛性導体 12の各々がアダプター本体 20の接続用電極 21の直上位 置に位置するよう配置されて!/、る。  In this anisotropic conductive connector 15, a plurality of rigid conductors 12 are arranged on the composite conductive sheet 10 according to the same pattern as the specific pattern related to the connection electrode 21 in the adapter single body 20. The directionally conductive connector 15 is arranged such that each of the rigid conductors 12 in the composite conductive sheet 10 is positioned directly above the connection electrode 21 of the adapter body 20! /.
[0039] このようなアダプター装置によれば、図 1に示す構成の異方導電性コネクター 15を 有するため、検査対象である回路装置が、隣接する被検査電極の間の離間距離が 小さぐ被検査電極の高さレベルにバラツキがあるものであっても、隣接する被検査 電極間に必要な絶縁性が確保された状態で当該被検査電極の各々に対する電気 的な接続を確実に達成することができ、しかも、表面に静電気による電荷が蓄積され ることが防止または抑制されて長い使用寿命が得られる。  [0039] According to such an adapter device, since the anisotropic conductive connector 15 having the configuration shown in Fig. 1 is provided, the circuit device to be inspected has a small distance between adjacent electrodes to be inspected. Even if there are variations in the height level of the inspection electrodes, the electrical connection to each of the electrodes to be inspected can be reliably achieved with the necessary insulation between the adjacent electrodes to be inspected. Moreover, it is possible to prevent or suppress the accumulation of electric charges due to static electricity on the surface and to obtain a long service life.
[0040] 〈回路装置の電気的検査装置〉  <Electrical Inspection Device for Circuit Device>
図 18は、本発明に係る回路装置の電気的検査装置の一例における構成を示す説 明図である。この電気的検査装置は、両面に被検査電極 6, 7が形成されたプリント 回路基板などの回路装置 5について、例えばオープン 'ショート試験を行うものであつ て、回路装置 5を検査実行領域 Eに保持するためのホルダー 2を有し、このホルダー 2には、回路装置 5を検査実行領域 Eにおける適正な位置に配置するための位置決 めピン 3が設けられている。検査実行領域 Eの上方には、図 17に示すような構成の上 部側アダプター装置 laおよび上部側検査ヘッド 50aが下からこの順で配置され、更 に、上部側検査ヘッド 50aの上方には、上部側支持板 56aが配置されており、上部 側検査ヘッド 50aは、支柱 54aによって上部側支持板 56aに固定されている。一方、 検査実行領域 Eの下方には、図 17に示すような構成の下部側アダプター装置 lbお よび下部側検査ヘッド 50bが上からこの順で配置され、更に、下部側検査ヘッド 50b の下方には、下部側支持板 56bが配置されており、下部側検査ヘッド 50bは、支柱 5 4bによって下部側支持板 56bに固定されている。  FIG. 18 is an explanatory diagram showing a configuration of an example of an electrical inspection device for a circuit device according to the present invention. This electrical inspection device performs, for example, an open 'short test on a circuit device 5 such as a printed circuit board having electrodes 6 and 7 to be inspected on both sides. The holder 2 for holding is provided with a positioning pin 3 for arranging the circuit device 5 at an appropriate position in the inspection execution area E. Above the inspection execution area E, an upper side adapter device la and an upper side inspection head 50a configured as shown in FIG. 17 are arranged in this order from the bottom, and further above the upper side inspection head 50a, The upper side support plate 56a is arranged, and the upper side inspection head 50a is fixed to the upper side support plate 56a by the support 54a. On the other hand, below the inspection execution area E, the lower adapter device lb and the lower inspection head 50b configured as shown in FIG. 17 are arranged in this order from the top, and further below the lower inspection head 50b. The lower side support plate 56b is arranged, and the lower side inspection head 50b is fixed to the lower side support plate 56b by a support 54b.
上部側検査ヘッド 50aは、板状の検査電極装置 51aと、この検査電極装置 51aの 下面に固定されて配置された弾性を有する異方導電性エラストマ一シート 55aとによ り構成されている。検査電極装置 51aは、その下面に上部側アダプター装置 laの端 子電極 22と同一のピッチの格子点位置に配列された複数のピン状の検査電極 52a を有し、これらの検査電極 52aの各々は、電線 53aによって、上部側支持板 56aに設 けられたコネクター 57aに電気的に接続され、更に、このコネクター 57aを介してテス ターの検査回路(図示省略)に電気的に接続されて!/、る。 The upper inspection head 50a is composed of a plate-shaped inspection electrode device 51a and an elastically conductive anisotropic elastomer sheet 55a that is fixedly disposed on the lower surface of the inspection electrode device 51a. It is configured. The inspection electrode device 51a has a plurality of pin-shaped inspection electrodes 52a arranged at lattice point positions at the same pitch as the terminal electrodes 22 of the upper-side adapter device la on its lower surface, and each of these inspection electrodes 52a. Is electrically connected to a connector 57a provided on the upper support plate 56a by an electric wire 53a, and further electrically connected to a test circuit (not shown) of the tester via this connector 57a! /
下部側検査ヘッド 50bは、板状の検査電極装置 51bと、この検査電極装置 51bの 上面に固定されて配置された弾性を有する異方導電性エラストマ一シート 55bとによ り構成されている。検査電極装置 51bは、その上面に下部側アダプター装置 lbの端 子電極 22と同一のピッチの格子点位置に配列された複数のピン状の検査電極 52b を有し、これらの検査電極 52bの各々は、電線 53bによって、下部側支持板 56bに設 けられたコネクター 57bに電気的に接続され、更に、このコネクター 57bを介してテス ターの検査回路(図示省略)に電気的に接続されて!/、る。  The lower side inspection head 50b is composed of a plate-like inspection electrode device 51b and an anisotropically conductive elastomer sheet 55b having elasticity and fixed to the upper surface of the inspection electrode device 51b. The inspection electrode device 51b has a plurality of pin-shaped inspection electrodes 52b arranged on the upper surface thereof at lattice point positions having the same pitch as the terminal electrodes 22 of the lower side adapter device lb, and each of these inspection electrodes 52b. Is electrically connected to the connector 57b provided on the lower support plate 56b by the electric wire 53b, and further electrically connected to the test circuit of the tester (not shown) via the connector 57b! /
そして、上部側アダプター装置 laおよび下部側アダプター装置 lbの各々における 異方導電性コネクター 15の除電層 18, 19は、それぞれアースに接続されている。  And the static elimination layers 18 and 19 of the anisotropic conductive connector 15 in each of the upper side adapter device la and the lower side adapter device lb are respectively connected to the ground.
[0041] 以上において、上部側検査ヘッド 50aおよび下部側検査ヘッド 50bにおける異方 導電性エラストマ一シート 55a, 55bは、いずれもその厚み方向にのみ導電路を形成 する導電路形成部が形成されてなるものである。このような異方導電性エラストマ一 シート 55a, 55bとしては、各導電路形成部が少なくとも一面において厚み方向に突 出するよう形成されてレ、るものが、高!/、電気的な接触安定性を発揮する点で好まし!/、In the above, each of the anisotropic conductive elastomer sheets 55a and 55b in the upper inspection head 50a and the lower inspection head 50b is formed with a conductive path forming portion that forms a conductive path only in the thickness direction. It will be. As such anisotropic conductive elastomer sheets 55a and 55b, each conductive path forming portion is formed so as to protrude in the thickness direction on at least one surface. Preferable in terms of demonstrating!
Yes
[0042] このような回路装置の電気的検査装置においては、検査対象である回路装置 5が ホルダー 2によって検査実行領域 Eに保持され、この状態で、上部側支持板 56aおよ び下部側支持板 56bの各々が回路装置 5に接近する方向に移動することにより、当 該回路装置 5が上部側アダプター装置 laおよび下部側アダプター装置 lbによって 挟圧される。  In such an electrical inspection device for a circuit device, the circuit device 5 to be inspected is held in the inspection execution region E by the holder 2, and in this state, the upper side support plate 56a and the lower side support As each of the plates 56b moves in a direction approaching the circuit device 5, the circuit device 5 is clamped by the upper adapter device la and the lower adapter device lb.
この状態においては、回路装置 5の上面における被検査電極 6は、上部側アダプタ 一装置 laにおける接続用電極 21に、当該異方導電性コネクター 10を介して電気的 に接続され、この上部側アダプター装置 laの端子電極 22は、異方導電性エラストマ 一シート 55aを介して検査電極装置 51aの検査電極 52aに電気的に接続されている 。一方、回路装置 5の下面における被検査電極 7は、下部側アダプター装置 lbにお ける接続用電極 21に、当該異方導電性コネクター 10を介して電気的に接続され、こ の下部側アダプター装置 lbの端子電極 22は、異方導電性エラストマ一シート 55bを 介して検査電極装置 51bの検査電極 52bに電気的に接続されている。 In this state, the electrode 6 to be inspected on the upper surface of the circuit device 5 is electrically connected to the connection electrode 21 in the upper-side adapter device la via the anisotropic conductive connector 10, and this upper-side adapter is connected. The terminal electrode 22 of the device la is an anisotropic conductive elastomer. It is electrically connected to the inspection electrode 52a of the inspection electrode device 51a through one sheet 55a. On the other hand, the electrode 7 to be inspected on the lower surface of the circuit device 5 is electrically connected to the connection electrode 21 in the lower-side adapter device lb via the anisotropic conductive connector 10, and this lower-side adapter device. The terminal electrode 22 of lb is electrically connected to the inspection electrode 52b of the inspection electrode device 51b via an anisotropic conductive elastomer sheet 55b.
[0043] このようにして、回路装置 5の上面および下面の両方の被検査電極 6, 7の各々力 上部側検査ヘッド 50aにおける検査電極装置 51aの検査電極 52aおよび下部側検 查ヘッド 50bにおける検査電極装置 51bの検査電極 52bの各々に電気的に接続さ れることにより、テスターの検査回路に電気的に接続された状態が達成され、この状 態で所要の電気的検査が行われる。  [0043] In this way, each force of the electrodes 6 and 7 to be inspected on both the upper surface and the lower surface of the circuit device 5 is inspected in the inspection electrode 52a of the inspection electrode device 51a and the lower inspection head 50b in the upper inspection head 50a. By being electrically connected to each of the inspection electrodes 52b of the electrode device 51b, a state of being electrically connected to the inspection circuit of the tester is achieved, and a required electrical inspection is performed in this state.
[0044] 上記の回路装置の電気的検査装置によれば、図 16に示すような構成の上部側ァ ダブター装置 laおよび下部側アダプター装置 lbを有するため、検査対象である回 路装置 5が、隣接する被検査電極 6, 7の間の離間距離が小さぐ被検査電極 6, 7の 高さレベルにバラツキがあるものであっても、当該回路装置 5について所要の電気的 検査を確実に実行することができる。しかも、異方導電性コネクター 15には、長い使 用寿命が得られるので、当該異方導電性コネクター 15が故障した場合に新たなもの に交換する作業の頻度が低くなるため、高い検査効率が得られる。  [0044] According to the electrical inspection device for a circuit device described above, since the upper side adapter device la and the lower side adapter device lb are configured as shown in FIG. Even if there is a variation in the height level of the electrodes 6 and 7 to be inspected, the distance between the electrodes 6 and 7 adjacent to each other is small, the required electrical inspection of the circuit device 5 is reliably performed. can do. In addition, since the anisotropic conductive connector 15 has a long service life, when the anisotropic conductive connector 15 breaks down, the frequency of replacement with a new one is reduced, so that high inspection efficiency is achieved. can get.
[0045] 本発明においては、上記の実施の形態に限定されず、以下のような種々の変更を 加えることが可能である。  [0045] The present invention is not limited to the above-described embodiment, and various modifications as described below can be added.
除電層は、第 1の異方導電性エラストマ一シート 16および第 2の異方導電性エラス トマ一シート 17のいずれか一方のみに形成された構成であってもよい。  The neutralization layer may be configured to be formed on only one of the first anisotropic conductive elastomer sheet 16 and the second anisotropic conductive elastomer sheet 17.
複合導電性シート 10において、剛性導体 12を構成する材料としては、剛性を有す る導体であれば金属材料に限定されるものではなぐ例えば、剛性樹脂中に金属な どの導電性粉末が含有されてなるものなどを用いることができる。  In the composite conductive sheet 10, the material constituting the rigid conductor 12 is not limited to a metal material as long as it is a rigid conductor.For example, a rigid resin contains conductive powder such as metal. Can be used.
複合導電性シート 10の製造方法において、積層材料および複合積層材料は、絶 縁性シートの両面に金属層が形成されてなるものであってもよい。  In the method for manufacturing the composite conductive sheet 10, the laminated material and the composite laminated material may be formed by forming metal layers on both sides of the insulating sheet.
異方導電性コネクター 15において、第 1の異方導電性エラストマ一シートおよび第 2の異方導電性エラストマ一シートの!/、ずれか一方または両方として、偏在型異方導 電性エラストマ一シートを用いることができる。 In the anisotropically conductive connector 15, the unevenly anisotropic anisotropic conductor is used as one or both of the first anisotropically conductive elastomer sheet and the second anisotropically conductive elastomer sheet. An electrically conductive elastomer sheet can be used.
また、除電層 18, 19の開口 18H, 19Hは、複合導電性シート 10における剛性導 体 12に対応して形成されていることは必須ではなぐ例えば図 19に示すように、複合 導電性シート 10および除電層 18を厚み方向に透視したときに、一つの開口 18H内 に複数の剛性導体 12が位置されるよう形成されていてもよい。また、図 20に示すよう に、複合導電性シート 10および除電層 18を厚み方向に透視したときに、剛性導体 1 2が位置される領域の他に、開口 18Hが形成されていてもよい。  Further, it is not essential that the openings 18H and 19H of the charge removal layers 18 and 19 are formed corresponding to the rigid conductor 12 in the composite conductive sheet 10. For example, as shown in FIG. When the charge removal layer 18 is seen through in the thickness direction, the plurality of rigid conductors 12 may be formed in one opening 18H. Further, as shown in FIG. 20, when the composite conductive sheet 10 and the charge removal layer 18 are seen through in the thickness direction, an opening 18H may be formed in addition to the region where the rigid conductor 12 is located.
また、電気的検査装置において、検査対象である回路装置は、プリント回路基板に 限定されず、パッケージ 、 MCMなどの半導体集積回路装置または集積回路が形 成されたウェハであってもよレ、。  In the electrical inspection apparatus, the circuit device to be inspected is not limited to a printed circuit board, but may be a package, a semiconductor integrated circuit device such as an MCM, or a wafer on which an integrated circuit is formed.

Claims

請求の範囲 The scope of the claims
[1] それぞれ厚み方向に伸びる複数の貫通孔が形成された絶縁性シートと、この絶縁 性シートの貫通孔の各々に、当該絶縁性シートの両面の各々力 突出するよう配置 された剛性導体とを有し、前記剛性導体の各々が、前記絶縁性シートの貫通孔に揷 通された胴部の両端に、当該絶縁性シートの貫通孔の径より大きい径を有する端子 部が形成されてなり、当該絶縁性シートに対してその厚み方向に移動可能とされて いる複合導電性シートと、この複合導電性シートの一面に配置された第 1の異方導電 性エラストマ一シートと、当該複合導電性シートの他面に配置された第 2の異方導電 性エラストマ一シートとを具えてなり、  [1] An insulating sheet in which a plurality of through holes each extending in the thickness direction are formed, and a rigid conductor arranged so that each of the both sides of the insulating sheet protrudes into each of the through holes of the insulating sheet. Each of the rigid conductors is formed with terminal portions having a diameter larger than the diameter of the through hole of the insulating sheet at both ends of the body portion passed through the through hole of the insulating sheet. A composite conductive sheet that is movable in the thickness direction relative to the insulating sheet, a first anisotropic conductive elastomer sheet disposed on one surface of the composite conductive sheet, and the composite conductive sheet. A second anisotropic conductive elastomer sheet disposed on the other surface of the conductive sheet,
前記第 1の異方導電性エラストマ一シートおよび前記第 2の異方導電性エラストマ 一シートの少なくともいずれか一方には、前記複合導電性シートと接する面とは反対 の面に、複数の開口を有する除電層が形成され、前記複合導電性シートおよび前記 除電層を厚み方向に透視したときに、当該複合導電性シートにおける剛性導体の各 々が前記除電層の開口内に位置されており、当該除電層がアースに接続されること を特徴とする異方導電性コネクター。  At least one of the first anisotropic conductive elastomer sheet and the second anisotropic conductive elastomer sheet has a plurality of openings on a surface opposite to a surface in contact with the composite conductive sheet. Each of the rigid conductors in the composite conductive sheet is positioned within the opening of the charge removal layer when the composite conductive sheet and the charge removal layer are seen through in the thickness direction. An anisotropic conductive connector, characterized in that the static elimination layer is connected to ground.
[2] 複合導電性シートの絶縁性シートの厚み方向における剛性導体の移動可能距離 力 ¾〜; 150 mであることを特徴とする請求項 1に記載の異方導電性コネクター。  [2] The anisotropic conductive connector according to claim 1, wherein the movable conductor has a movable distance in the thickness direction of the insulating sheet of the composite conductive sheet.
[3] 第 1の異方導電性エラストマ一シートおよび第 2の異方導電性エラストマ一シートの 各々は、弾性高分子物質中に、磁性を示す導電性粒子が、厚み方向に並ぶよう配 向して連鎖が形成された状態で、かつ、当該導電性粒子による連鎖が面方向に分散 した状態で含有されてなることを特徴とする請求項 1または請求項 2に記載の異方導 電性コネクター。  [3] Each of the first anisotropic conductive elastomer sheet and the second anisotropic conductive elastomer sheet is oriented so that the conductive particles exhibiting magnetism are arranged in the thickness direction in the elastic polymer substance. The anisotropic conductive material according to claim 1 or 2, wherein the chain is formed in a state where a chain is formed and the chain of conductive particles is dispersed in a plane direction. connector.
[4] 第 1の異方導電性エラストマ一シートおよび第 2の異方導電性エラストマ一シートの 各々の厚みが 20〜; 100 mであることを特徴とする請求項 3に記載の異方導電性コ ネクター。  [4] The anisotropic conductive material according to claim 3, wherein each of the first anisotropic conductive elastomer sheet and the second anisotropic conductive elastomer sheet has a thickness of 20 to 100 m. Sex connector.
[5] 導電性粒子の数平均粒子径が 3〜20 a mであることを特徴とする請求項 3または 請求項 4に記載の異方導電性コネクター。  [5] The anisotropic conductive connector according to claim 3 or 4, wherein the number average particle diameter of the conductive particles is 3 to 20 am.
[6] 表面に検査すべき回路装置における被検査電極に対応するパターンに従って複 数の接続用電極が形成された接続用電極領域を有するアダプター本体と、 [6] Duplicate according to the pattern corresponding to the electrode under test in the circuit device to be inspected on the surface An adapter body having a connection electrode region in which a number of connection electrodes are formed;
このアダプター本体の接続用電極領域上に配置された、当該アダプター本体にお ける接続用電極に対応するパターンに従って配置された複数の剛性導体を有する、 請求項 1乃至請求項 5のいずれかに記載の異方導電性コネクターとを具えてなること を特徴とするアダプター装置。  6. The apparatus according to claim 1, further comprising a plurality of rigid conductors arranged on the connection electrode region of the adapter body and arranged according to a pattern corresponding to the connection electrode in the adapter body. An adapter device comprising an anisotropic conductive connector.
[7] 請求項 6に記載のアダプター装置を具えてなることを特徴とする回路装置の電気的 検査装置。 [7] An electrical inspection device for a circuit device comprising the adapter device according to [6].
PCT/JP2007/068372 2006-09-25 2007-09-21 Anisotropic conductive connector, adapter device, and device for electrically inspecting circuit device WO2008041511A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006259058 2006-09-25
JP2006-259058 2006-09-25

Publications (1)

Publication Number Publication Date
WO2008041511A1 true WO2008041511A1 (en) 2008-04-10

Family

ID=39268373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068372 WO2008041511A1 (en) 2006-09-25 2007-09-21 Anisotropic conductive connector, adapter device, and device for electrically inspecting circuit device

Country Status (2)

Country Link
TW (1) TW200835060A (en)
WO (1) WO2008041511A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101204941B1 (en) * 2012-04-27 2012-11-27 주식회사 아이에스시 Socket for test with electrode supporting member and fabrication method thereof
TWI750578B (en) * 2020-02-04 2021-12-21 吳在淑 Data signal transmission connector and manufacturing method for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093338A (en) * 1999-09-21 2001-04-06 Jsr Corp Anisotropic conductive sheet and its manufacturing method
JP2001188071A (en) * 1999-12-28 2001-07-10 Jsr Corp Connector device
JP2002208447A (en) * 2001-01-12 2002-07-26 Jsr Corp Anisotropic conductive sheet and method of manufacturing the same
JP2005338073A (en) * 2004-04-27 2005-12-08 Jsr Corp Method of manufacturing sheetlike probe and its application
JP2006053137A (en) * 2004-07-15 2006-02-23 Jsr Corp Device and method for inspection of circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093338A (en) * 1999-09-21 2001-04-06 Jsr Corp Anisotropic conductive sheet and its manufacturing method
JP2001188071A (en) * 1999-12-28 2001-07-10 Jsr Corp Connector device
JP2002208447A (en) * 2001-01-12 2002-07-26 Jsr Corp Anisotropic conductive sheet and method of manufacturing the same
JP2005338073A (en) * 2004-04-27 2005-12-08 Jsr Corp Method of manufacturing sheetlike probe and its application
JP2006053137A (en) * 2004-07-15 2006-02-23 Jsr Corp Device and method for inspection of circuit board

Also Published As

Publication number Publication date
TW200835060A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
US7618266B2 (en) Anisotropic conductive connector, conversion adapter for inspection device having the anisotropic conductive connector, and method for manufacturing the anisotropic conductive connector
KR101359065B1 (en) Anisotropic conductive connector and anisotropic conductive connector device
KR101030360B1 (en) Anisotropic conductive connector and inspection equipment for circuit device
KR20080079670A (en) Circuit board apparatus for wafer inspection, probe card, and wafer inspection apparatus
EP1193757A2 (en) Conductive metal particles, conductive composite metal particles and applied products using the same
WO2006087877A1 (en) Composite conductive sheet, method for producing the same, anisotropic conductive connector, adapter, and circuit device electric inspection device
WO2004112195A1 (en) Anisotropc conductive connector device and production method therefor and circuit device inspection device
WO2008038573A1 (en) Anisotropic conductive connector and method for inspecting article inspected using this anisotropic conductive connector
JP3788258B2 (en) Anisotropic conductive connector and its application products
TW200537116A (en) Adapter for circuit board examination and device for circuit board examination
JP3573120B2 (en) Anisotropic conductive connector, method of manufacturing the same, and application product thereof
CN101346813A (en) Circuit board apparatus for wafer inspection, probe card, and wafer inspection apparatus
JP4725318B2 (en) COMPOSITE CONDUCTIVE SHEET AND METHOD FOR MANUFACTURING THE SAME, ANISOTROPIC CONDUCTIVE CONNECTOR, ADAPTER DEVICE, AND ELECTRIC INSPECTION DEVICE FOR CIRCUIT DEVICE
JP2006040632A (en) Anisotropic conductive connector, its manufacturing method, adapter device and electrical inspection device of circuit device
WO2008041511A1 (en) Anisotropic conductive connector, adapter device, and device for electrically inspecting circuit device
JP2005050782A (en) Anisotropic connector device and its manufacturing method, and inspection device of circuit device
JP2008164476A (en) Anisotropic conductive connector apparatus and manufacturing method of the same, and inspection apparatus for circuit apparatus
JP3928607B2 (en) Anisotropic conductive sheet, its production method and its application
JP2009129609A (en) Composite conductive sheet, anisotropic conductive connector, adapter device, and electrical inspection device for circuit device
WO2007026663A1 (en) Circuit board inspection instrument, circuit board inspection method, and anisotropic conductivity connector
WO2008015967A1 (en) Composite conductive sheet, method for manufacturing the same and application of the same
JP2008101931A (en) Composite conductive sheet, anisotropic conductive connector, adapter device, and electric inspection device for circuit device
JP2007265705A (en) Anisotropic conductive connector and its application
JP2007225534A (en) Compound conductive sheet, anisotropic conductive connector, adapter device, and electrical inspection device of circuit device
JP2007193972A (en) Connector device, circuit board inspection device, and conductive connection structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07828293

Country of ref document: EP

Kind code of ref document: A1