WO2006043628A1 - Anisotropic conductive connector and production method therefor, adaptor device and electrical inspection device - Google Patents

Anisotropic conductive connector and production method therefor, adaptor device and electrical inspection device Download PDF

Info

Publication number
WO2006043628A1
WO2006043628A1 PCT/JP2005/019306 JP2005019306W WO2006043628A1 WO 2006043628 A1 WO2006043628 A1 WO 2006043628A1 JP 2005019306 W JP2005019306 W JP 2005019306W WO 2006043628 A1 WO2006043628 A1 WO 2006043628A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
path forming
material layer
conductive path
layer
Prior art date
Application number
PCT/JP2005/019306
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Kimura
Fujio Hara
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2006043628A1 publication Critical patent/WO2006043628A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2414Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means conductive elastomers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/20Connectors or connections adapted for particular applications for testing or measuring purposes

Definitions

  • the present invention relates to an anisotropic conductive connector that can be suitably used for electrical inspection of a circuit device such as a printed circuit board, a method for manufacturing the same, an adapter device including the anisotropic conductive connector, and the adapter.
  • the present invention relates to an electrical inspection device for a circuit device including the device.
  • a circuit board for constituting or mounting an integrated circuit device or other electronic components is not suitable before assembling the electronic components or before mounting the electronic components.
  • an inspection electrode device in which a plurality of inspection electrodes are arranged according to the grid point positions arranged in the vertical and horizontal directions, and the inspection electrode of this inspection electrode device are inspection targets.
  • a method of using a combination with an adapter for electrically connecting an electrode to be inspected on a circuit board is known.
  • the adapter used is a printed wiring board called a pitch conversion board.
  • This adapter has a plurality of connection electrodes arranged on one side according to a pattern corresponding to the electrodes to be inspected on the circuit board to be inspected, and has the same pitch as the inspection electrodes of the inspection electrode device on the other side. Having a plurality of terminal electrodes arranged at the grid point positions of the current supply connection electrodes and voltage measurement connection electrodes arranged according to a pattern corresponding to the electrodes to be inspected on the circuit board to be inspected on one side
  • the former has a plurality of connection electrode pairs made of electrodes, and has a plurality of terminal electrodes arranged on the other surface at lattice point positions having the same pitch as the inspection electrodes of the inspection electrode device.
  • This adapter is used for, for example, an open / short test of each circuit on a circuit board, and the latter adapter is used for an electric resistance measurement test of each circuit on the circuit board. Therefore, in the electrical inspection of the circuit board, in general, in order to achieve a stable electrical connection between the circuit board to be inspected and the adapter, the circuit board to be inspected and the adapter are An anisotropic conductive elastomer sheet is interposed as a connector.
  • This anisotropically conductive elastomer sheet has conductivity only in the thickness direction, or there are a number of pressure-conducting conductive portions that exhibit conductivity only in the thickness direction when pressed. It has something.
  • Such anisotropically conductive elastomer sheets are conventionally known in various structures, and typical examples thereof are those obtained by uniformly dispersing metal particles in an elastomer ( For example, refer to Patent Document 1.) By disperse the conductive magnetic metal particles unevenly in the elastomer, many conductive path forming portions extending in the thickness direction and insulating portions that insulate them from each other are formed. (For example, see Patent Document 2), and those in which a step is formed between the surface of the conductive path forming portion and the insulating portion (for example, see Patent Document 3).
  • electrode pitch the arrangement pitch of the electrodes to be inspected on the circuit board to be inspected. That is, there is a problem that it becomes difficult to align and hold the anisotropic conductive elastomer sheet as the distance between the centers of the electrodes to be inspected adjacent to each other becomes smaller.
  • Such an anisotropic conductive connector 1 is manufactured as follows, for example.
  • a mold having a structure as shown in FIG. 55 is prepared.
  • a ferromagnetic part 82 is arranged on a substrate 81 in accordance with the same pattern as, for example, an electrode to be inspected on a circuit board to be inspected, and a non-magnetic part is formed on a part other than the ferromagnetic part 82.
  • Ferromagnetic material is formed on one template 80 (hereinafter referred to as “upper die”) in which the body part 83 is disposed, and on the substrate 86 according to the pattern of the electrode to be inspected and the palm of the circuit board to be inspected.
  • the other mold plate hereinafter referred to as “lower mold”) 85 in which the non-magnetic part 88 is arranged in a part other than the ferromagnetic part 87. .
  • a frame plate 90 having an opening 91 is disposed in the mold, and an anisotropic conductive elastomer material layer 95A is formed so as to close the opening 91 of the frame plate 90.
  • the anisotropic conductive elastomer material layer 95A is formed by containing conductive particles P exhibiting magnetism in a liquid polymer material forming material that is cured to become an elastic high molecular material.
  • a pair of electromagnets (not shown) are arranged on the upper surface of the upper die 80 and the lower surface of the lower die 85, and by operating the electromagnet, the lower die 85 corresponding to the lower die 85 from the ferromagnetic portion 82 of the upper die 80 is operated.
  • a parallel magnetic field is applied to the ferromagnet part 87 in the direction of the direction of force.
  • the ferromagnetic part 82 of the upper mold 80 and the ferromagnetic part 87 of the lower mold 85 acts as a magnetic pole, the ferromagnetic part 82 of the upper mold 80 and the ferromagnetic part 87 of the lower mold 85 are used.
  • a magnetic field with a greater strength than the other areas acts on the area between the two.
  • the conductive particles P dispersed in the anisotropic conductive elastomer material layer 95A are dispersed in the upper 80 ferromagnetic material.
  • the portion to be placed is moved by force and gathers in the portion, and is further aligned in the thickness direction.
  • the anisotropic conductive elastomer material layer 95A is hardened by heating, for example, so that a large number of layers extending in the thickness direction containing the conductive particles P as shown in FIG.
  • An anisotropic conductive connector is manufactured in which an anisotropic conductive elastomer sheet 95 composed of the conductive path forming portion 96 and an insulating portion 97 that insulates the conductive path forming portion 96 from each other is supported by the frame plate 90.
  • the anisotropic conductive connector has the following problems.
  • circuit board for configuring or mounting an electronic component one in which electrodes are arranged in a frame shape along, for example, four sides of a rectangle is known.
  • the anisotropic path having the anisotropic conductive elastomer sheet 95 in which the conductive path forming portion 96 is arranged in a frame shape along the four sides of the rectangle It is necessary to use conductive connectors.
  • the anisotropic conductive elastomer sheet 95 since the central portion surrounded by the conductive path forming portion 96 is all the insulating portion 97, the anisotropic conductive elastomer sheet 95 is different in forming the anisotropic conductive elastomer sheet 95.
  • the conductive particles present in the central part of the material layer 95A for the conductive elastomer the moving distance is extremely long. It is difficult. Therefore, the obtained conductive path forming part 96 is not filled with a required amount of conductive particles, and a considerable amount of conductive particles remain in the insulating part 97. A conductive elastomer sheet cannot be reliably formed.
  • the number of electrodes increases with the increase in functionality and capacity, and the arrangement pitch of electrodes, that is, the distance force between the centers of adjacent electrodes, increases the density. Tend to be further promoted. Therefore, such an integrated circuit device is configured or
  • anisotropic conductive connectors that have a small pitch at the conductive path forming portion and are arranged with high density.
  • the conductive magnetic particles are located between the ferromagnetic portion 82a of the upper die 80 and the corresponding ferromagnetic portion 87a of the lower die 85.
  • a conductive elastomer layer containing conductive particles aligned in a thickness direction is formed by laser processing to be arranged according to a target pattern.
  • a plurality of conductive path forming portion to form a method of forming an insulating portion between these conductive path-shaped forming portion has been proposed (see Patent Document 5.) 0
  • Patent Document 5. it has been found that such a method has the following problems.
  • a large thickness containing conductive particles at a high rate is used. It is necessary to form one conductive elastomer layer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 51-93393
  • Patent Document 2 Japanese Patent Laid-Open No. 53-147772
  • Patent Document 3 Japanese Patent Application Laid-Open No. 61-250906
  • Patent Document 4 JP-A-11-40224
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-342597
  • the present invention has been made based on the circumstances as described above.
  • the first object of the present invention is to provide required electric power for each of the electrodes regardless of the arrangement pattern of the electrodes to be connected. Reliable connection to each of the electrodes, even if the electrodes to be connected are arranged with a small pitch and high density. It is another object of the present invention to provide an anisotropic conductive connector that can be achieved at a low cost, and a method for manufacturing the same.
  • the second object of the present invention is to reliably achieve the required electrical connection for the circuit device regardless of the arrangement pattern of the electrode to be inspected of the circuit device to be inspected. Even when the pitch is very small and densely arranged, the adapter device can reliably achieve the required electrical connection for the circuit device and can be manufactured at low cost. Is to provide.
  • a third object of the present invention is to provide an arrangement pattern of electrodes to be inspected of a circuit device to be inspected. Regardless of this, the required electrical inspection can be reliably performed on the circuit device, and the electrodes to be inspected of the circuit device to be inspected are arranged with a small pitch and a high density.
  • an anisotropic conductive connector of the present invention a plurality of conductive path forming portions extending in the thickness direction, which are contained in a state where the conductive particles exhibiting magnetism are aligned in the thickness direction, are insulated.
  • a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an elastic polymer material is formed.
  • a contact member made of a metal exhibiting magnetism is disposed on the surface of the material layer for the conductive elastomer according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed.
  • a conductive elastomer layer is formed by applying a magnetic field to the material layer in the thickness direction and curing the material layer for the conductive elastomer.
  • the conductive elastomer layer is laser-processed to remove a portion other than the portion where the contact member is disposed, whereby a plurality of conductive layers disposed according to the specific pattern on the releasable support plate.
  • a path forming part is formed, and between these conductive path forming parts, an insulating part material layer made of a polymer material forming material that is cured and becomes an elastic polymer substance is formed and cured to form an insulating part. It has the process of forming, It is characterized by the above-mentioned.
  • the method for manufacturing an anisotropic conductive connector includes a frame plate in which one or more openings are formed, and is arranged so as to close the opening of the frame plate and is supported by the frame plate.
  • one or more elastic differences in which a plurality of conductive path forming portions extending in the thickness direction, which are contained in a state where the conductive particles exhibiting magnetism are aligned in the thickness direction, are insulated from each other by the insulating portion.
  • a contact member made of a metal exhibiting magnetism is disposed on the surface of the material layer for the conductive elastomer according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed.
  • a conductive elastomer layer is formed by applying a magnetic field to the material layer in the thickness direction and curing the material layer for the conductive elastomer.
  • the conductive elastomer layer is laser processed to remove a portion other than the portion where the contact member is disposed, so that the conductive member is disposed according to the specific pattern on the releasable support plate.
  • each of the conductive path forming portions provided with the contact member is formed so as to close the opening of the frame plate, and is cured to be highly elastic. It is characterized by having a process of forming an insulating part by infiltrating into an insulating part material layer made of a liquid polymer substance forming material that becomes a molecular substance and curing the insulating part material layer.
  • a resist layer having an opening formed in accordance with a specific pattern is formed on a metal foil, and the opening force of the resist layer in the metal foil is exposed.
  • a contact member composite in which a contact member is formed in each of the openings of the resist layer is manufactured by performing a plating treatment with a metal exhibiting magnetism on the surface of the resist, and this contact member composite is used for a conductive elastomer.
  • By stacking on the surface of the material layer it is preferable to arrange a contact member made of a metal exhibiting magnetic properties according to the specific pattern on the surface of the conductive elastomer material layer.
  • the method for manufacturing an anisotropic conductive connector of the present invention includes a plurality of conductive path forming portions extending in the thickness direction, which are contained in a state where the conductive particles exhibiting magnetism are aligned so as to be aligned in the thickness direction.
  • a material layer for a conductive elastomer is formed, in which a liquid polymer material forming material that is cured to become an elastic polymer material contains conductive particles exhibiting magnetism.
  • a metal mask showing magnetism is disposed on the surface of the conductive elastomer material layer according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed.
  • the conductive elastomer material layer is formed on the conductive elastomer material layer.
  • a conductive elastomer layer is formed by applying a magnetic field in the thickness direction and curing the conductive elastomer material layer.
  • the conductive elastomer layer is laser-processed to remove a portion other than the portion where the metal mask is disposed, whereby a plurality of conductive layers disposed in accordance with the specific pattern on the releasable support plate.
  • a path forming part is formed, and between these conductive path forming parts, an insulating part material layer made of a polymer material forming material that is cured and becomes an elastic polymer substance is formed and cured to form an insulating part. It has the process of forming, It is characterized by the above-mentioned.
  • the method for manufacturing an anisotropic conductive connector includes a frame plate having one or more openings formed therein, and a frame plate arranged so as to close the opening of the frame plate and supported by the frame plate.
  • Two or more elastic anisotropic conductive films wherein the elastic anisotropic conductive film is disposed in the opening of the frame plate and oriented so that the conductive particles exhibiting magnetism are aligned in the thickness direction.
  • a method of manufacturing an anisotropic conductive connector comprising a plurality of conductive path forming portions extending in the thickness direction, and an insulating portion formed around the conductive path forming portion,
  • a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an elastic polymer material is formed.
  • a metal mask showing magnetism is disposed on the surface of the conductive elastomer material layer according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed.
  • the conductive elastomer material layer is formed on the conductive elastomer material layer.
  • a conductive elastomer layer is formed by applying a magnetic field in the thickness direction and curing the conductive elastomer material layer.
  • the conductive elastomer layer is laser-processed to remove portions other than the portion where the metal mask is disposed, thereby following the specific pattern on the releasable support plate. Forming a plurality of conductive path forming portions arranged
  • Each of the conductive path forming portions formed on the releasable support plate is used for an insulating portion made of a liquid polymer material forming material that is cured and becomes an elastic polymer material so as to close the opening of the frame plate. It has the process of forming an insulating part by making it infiltrate into a material layer and carrying out the hardening process of the said insulating part material layer in this state, It is characterized by the above-mentioned.
  • a resist layer having an opening formed in accordance with a specific pattern is formed on a metal foil, and the opening force of the resist layer in the metal foil is exposed.
  • a metal mask composite in which a metal mask is formed in each of the openings of the resist layer is manufactured by applying a metal-plating treatment to the surface of the resist layer, and the metal mask composite is used for a conductive elastomer.
  • By stacking on the surface of the material layer it is preferable to dispose a metal mask made of a metal exhibiting magnetism according to the specific pattern on the surface of the material layer for conductive elastomer.
  • An anisotropic conductive connector according to the present invention is obtained by the above-described manufacturing method.
  • the adapter device of the present invention includes an adapter main body having a connection electrode region in which a plurality of connection electrodes are formed according to a pattern corresponding to an electrode to be inspected in a circuit device to be inspected on the surface;
  • the anisotropic conductive connector having a plurality of conductive path forming portions arranged on the connection electrode region of the adapter body and formed according to a pattern corresponding to the connection electrode in the adapter body.
  • the adapter device of the present invention is for a plurality of connections comprising two connection electrodes for current supply and voltage measurement, respectively, according to a pattern corresponding to the inspected electrode in the circuit device to be inspected on the surface.
  • An adapter body having an electrode region for connection in which an electrode pair is formed;
  • the anisotropic conductive connector having a plurality of conductive path forming portions arranged on the connection electrode region of the adapter body and formed according to a pattern corresponding to the connection electrode in the adapter body.
  • An electrical inspection device for a circuit device comprises the adapter device described above.
  • a contact member or a metal mask exhibiting magnetism is arranged on a conductive elastomer material layer according to a specific pattern of a conductive path forming portion to be formed.
  • a magnetic field is applied in the thickness direction of the conductive elastomer material layer and the conductive elastomer material layer is cured.
  • the conductive particles in the portion where the contact member or the metal mask is arranged that is, the portion forming the conductive path is dense, and the conductive particles in other portions are sparse.
  • the conductive path forming portion of the desired form can be reliably formed by laser processing one layer of the conductive elastomer through the contact member or the metal mask.
  • an insulating portion material layer is formed between these conductive path forming portions and cured to form an insulating portion.
  • the insulating portion can be reliably obtained. For this reason, it is not necessary to use a mold in which a large number of ferromagnetic parts used to manufacture a conventional anisotropically conductive connector are arranged.
  • the required electrical connection can be reliably achieved for each of the electrodes regardless of the arrangement pattern of the electrodes to be connected.
  • the required electrical connection can be reliably achieved for each of the electrodes, and the force can be reduced at a low cost. Can be manufactured.
  • the adapter device of the present invention since the anisotropic conductive connector is provided, regardless of the arrangement pattern of the electrodes to be inspected of the circuit device to be inspected, the circuit device Therefore, the required electrical connection can be reliably achieved, and the circuit device is required even when the electrodes to be inspected are arranged with a small pitch and a high density. The electrical connection can be reliably achieved, and the force can be manufactured at a low cost.
  • the circuit device required for the circuit device is required regardless of the arrangement pattern of the electrodes to be inspected of the circuit device to be inspected.
  • the electrical inspection can be performed reliably, and the required electrical inspection can be performed for the circuit device even when the electrodes to be inspected of the circuit device are arranged with a small pitch and a high density. It can be executed reliably.
  • FIG. 1 is an explanatory sectional view showing a configuration in a first example of an anisotropically conductive connector according to the present invention.
  • FIG. 2 is an explanatory cross-sectional view showing an enlarged configuration of a main part of the anisotropic conductive connector shown in FIG.
  • FIG. 3 is an explanatory cross-sectional view showing a state in which a resist layer having a plurality of openings formed according to a specific pattern is formed on a metal foil.
  • FIG. 4 is an explanatory sectional view showing a state in which a contact member is formed in each opening of a resist layer to form a contact member composite.
  • FIG. 5 is an explanatory cross-sectional view showing a state in which a conductive elastomer material layer is formed on a releasable support plate.
  • FIG. 6 is an explanatory cross-sectional view showing a state in which the contact member composite is disposed on the surface of the conductive elastomer material layer.
  • FIG. 7 is an explanatory sectional view showing a state in which a magnetic field is applied to the conductive elastomer material layer in the thickness direction.
  • FIG. 8 is an explanatory sectional view showing a state in which a conductive elastomer layer is formed on a releasable support plate.
  • FIG. 9 is an explanatory cross-sectional view showing a state where the metal foil of the contact member composite is removed.
  • FIG. 10 A plurality of conductive path forming portions are formed on a releasable support according to a specific pattern. It is sectional drawing for description which shows the state.
  • FIG. 11 is an explanatory cross-sectional view showing a state in which an insulating material layer is formed on a releasable support.
  • FIG. 12 is an explanatory cross-sectional view showing a state in which a releasable support plate on which a conductive path forming portion is formed is superimposed on a releasable support plate on which an insulating material layer is formed.
  • FIG. 13 is an explanatory sectional view showing a state in which an insulating part is formed between adjacent conductive path forming parts.
  • FIG. 15 is an explanatory cross-sectional view showing an enlarged configuration of a main part of the anisotropic conductive connector shown in FIG.
  • FIG. 16 is an explanatory cross-sectional view showing a state in which a frame plate is disposed on a releasable support and an insulating material layer is formed.
  • FIG. 17 is an explanatory cross-sectional view showing a state in which a releasable support plate on which a conductive path forming portion is formed is superimposed on a releasable support plate on which an insulating material layer is formed.
  • FIG. 18 is an explanatory sectional view showing a state in which an insulating portion is formed between adjacent conductive path forming portions.
  • FIG. 19 is an explanatory sectional view showing a configuration of a third example of the anisotropic conductive connector according to the present invention.
  • FIG. 20 is an explanatory cross-sectional view showing an enlarged configuration of a main part of the anisotropic conductive connector shown in FIG.
  • FIG. 21 is an explanatory sectional view showing a state in which a resist layer having a plurality of openings formed according to a specific pattern is formed on a metal foil.
  • FIG. 22 is an explanatory cross-sectional view showing a state in which a metal mask is formed by forming a metal mask in each opening of a resist layer.
  • FIG. 23 (a) is an explanatory sectional view showing a state in which a conductive elastomer material layer is formed on a releasable support plate, and (b) is an enlarged view of the conductive elastomer material layer. It is sectional drawing for description shown.
  • FIG. 24 is an explanatory cross-sectional view showing a state in which a metal mask composite is disposed on the surface of a conductive elastomer material layer.
  • FIG. 26 is an explanatory sectional view showing a state in which a conductive elastomer layer is formed on the releasable support plate.
  • FIG. 27 is an explanatory cross-sectional view showing a state in which the metal foil of the metal mask composite has been removed.
  • FIG. 28 is an explanatory cross-sectional view showing a state in which a plurality of conductive path forming portions are formed according to a specific pattern on a releasable support.
  • FIG. 29 A sectional view for explanation showing a state in which an insulating material layer is formed on a releasable support.
  • FIG. 30 is an explanatory cross-sectional view showing a state in which a releasable support plate on which a conductive path forming portion is formed is superimposed on a releasable support plate on which an insulating material layer is formed.
  • FIG. 31 is an explanatory cross-sectional view showing a state in which an insulating portion is formed between adjacent conductive path forming portions.
  • FIG. 32 is an explanatory sectional view showing a configuration in a fourth example of the anisotropic conductive connector according to the present invention.
  • FIG. 33 is an explanatory sectional view showing, in an enlarged manner, a configuration of a main part of the anisotropic conductive connector shown in FIG.
  • FIG. 34 is an explanatory cross-sectional view showing a state in which a frame plate is disposed on a releasable support and an insulating material layer is formed.
  • FIG. 35 is an explanatory cross-sectional view showing a state in which a releasable support plate on which a conductive path forming portion is formed is superimposed on a releasable support plate on which an insulating material layer is formed.
  • FIG. 36 is a cross-sectional view for explaining a state where an insulating portion is formed between adjacent conductive path forming portions.
  • FIG. 37 is a cross-sectional view illustrating the configuration of the adapter device according to the first example of the present invention.
  • FIG. 39 is a cross-sectional view illustrating the configuration of the adapter device according to the second example of the present invention.
  • FIG. 40 is an explanatory sectional view showing the configuration of the adapter main body in the adapter device shown in FIG.
  • FIG. 41 is an explanatory diagram showing a configuration in the first example of the electrical inspection device for a circuit device according to the present invention.
  • FIG. 42 is an explanatory diagram showing a configuration in a second example of the electrical inspection device for a circuit device according to the present invention.
  • FIG. 43 is an explanatory cross-sectional view showing a configuration in another example of a releasable support plate for forming a conductive path forming portion.
  • FIG. 44 is an explanatory cross-sectional view showing a state in which a nonmagnetic part is formed on a metal film.
  • FIG. 45 is an explanatory cross-sectional view showing a state in which the contact member composite is disposed on the surface of the conductive elastomer material layer formed on the releasable support plate shown in FIG.
  • FIG. 46 is an explanatory cross-sectional view showing a state where a magnetic field is applied to the material layer for conductive elastomer in the thickness direction.
  • FIG. 47 A sectional view for explanation showing a state in which a conductive elastomer layer is formed on the releasable support plate shown in FIG.
  • FIG. 48 is an explanatory cross-sectional view showing a state where the metal foil of the contact member composite is removed.
  • FIG. 49 is an explanatory cross-sectional view showing a state in which a plurality of conductive path forming portions are formed according to a specific pattern on the releasable support.
  • FIG. 50 is a cross-sectional view illustrating the configuration of another example of a releasable support plate for forming an insulating portion.
  • FIG. 51 is an explanatory view showing a state in which a conductive path forming portion is formed by removing only a peripheral portion of a conductive elastomer forming layer in a portion that becomes a conductive path forming portion.
  • FIG. 52 is an explanatory cross-sectional view showing a state in which a conductive path forming portion is formed by removing only a peripheral portion of a conductive elastomer forming layer in the conductive elastomer layer.
  • FIG. 53 is an explanatory view showing a configuration in another example of the anisotropic conductive connector according to the present invention.
  • FIG. 54 is an explanatory diagram showing a configuration of still another example of the anisotropic conductive connector according to the present invention.
  • FIG. 55 is a cross-sectional view illustrating the structure of a mold for forming an anisotropic conductive elastomer sheet in the conventional method for manufacturing an anisotropic conductive connector.
  • FIG. 56 is an explanatory cross-sectional view showing a state in which a frame plate is arranged in the mold shown in FIG. 55 and an anisotropic conductive elastomer material layer is formed.
  • FIG. 57 is an explanatory sectional view showing a state in which a conventional anisotropically conductive connector is manufactured.
  • FIG. 58 is a cross-sectional view illustrating the direction of a magnetic field applied to the anisotropic conductive elastomer material layer in the conventional method for manufacturing an anisotropic conductive connector.
  • Terminal electrode 23 Internal wiring area Connection electrode area
  • Nonmagnetic part 85 The other template Substrate 87, 87a, 87b Ferromagnetic part Nonmagnetic part 90 Frame plate Opening
  • FIG. 1 is an explanatory cross-sectional view showing the configuration of a first example of an anisotropic conductive connector according to the present invention
  • FIG. 2 shows an enlarged main portion of the anisotropic conductive connector shown in FIG. It is sectional drawing for description.
  • this anisotropic conductive connector 10 a plurality of conductive path forming portions 16 extending in the thickness direction are arranged according to a specific pattern, and an insulating portion 17 that insulates them from each other between adjacent conductive path forming portions 16. Is formed in a state of being integrally bonded to the conductive path forming portion 16, whereby the elastic anisotropic conductive film 15 is formed.
  • the specific pattern of the conductive path forming unit 16 is a pattern corresponding to a pattern of an electrode to be connected, for example, a test electrode of a circuit device to be inspected.
  • the conductive path forming portion 16 is configured by containing conductive particles P exhibiting magnetism in an insulating elastic polymer substance so as to be aligned in the thickness direction.
  • the insulating portion 17 is made of an elastic polymer material that does not contain the conductive particles P at all.
  • the elastic polymer material constituting the conductive path forming portion 16 and the elastic polymer material constituting the insulating portion 17 may be of different types or the same type.
  • the conductive path forming portion 16 is formed so that the double-sided force of the insulating portion 17 protrudes.
  • the degree of compression by pressurization is larger than that of the insulating part 17 in the conductive path forming part 16, so that the resistance value is sufficiently low!
  • the change in the resistance value can be reduced with respect to the change or fluctuation of the applied pressure, and as a result, even if the applied pressure acting on the anisotropic conductive connector 10 is not uniform, It is possible to prevent the conductive variation between the conductive path forming portions 16.
  • the elastic polymer materials constituting the conductive path forming portion 16 and the insulating portion 17 may be the same or different from each other! /.
  • a polymer material having a crosslinked structure is preferable.
  • Various materials can be used as the curable polymer substance-forming material that can be used to obtain such an elastic polymer substance. Specific examples of these include conjugated rubbers such as polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, acrylonitrile butadiene copolymer rubber, hydrogenated products thereof, and styrene butadiene gen block copolymer.
  • Combined rubber, block copolymer rubber such as styrene isoprene block copolymer and hydrogenated products thereof, black-opened plane, urethane rubber, polyester rubber, epichlorohydrin rubber, silicone rubber, ethylene-propylene copolymer Examples thereof include a combined rubber and an ethylene / propylene / copolymer rubber.
  • the anisotropic conductive connector 10 when the anisotropic conductive connector 10 is required to have weather resistance, it is preferable to use a rubber other than the conjugated gen-based rubber. Silicone rubber is particularly preferable from the viewpoint of molding processability and electrical characteristics. U, prefer to use.
  • the silicone rubber is preferably one obtained by crosslinking or condensing liquid silicone rubber.
  • the liquid silicone rubber preferably has a viscosity of 10 5 poise or less at a strain rate of 10- ⁇ ec, and is any of a condensation type, an addition type, a bur group or a hydroxyl group-containing one. May be. Specific examples include dimethyl silicone raw rubber, methyl beer silicone raw rubber, and methyl vinyl silicone raw rubber.
  • the silicone rubber preferably has a molecular weight Mw (standard polystyrene equivalent weight average molecular weight; the same shall apply hereinafter) of 10,000 to 40,000.
  • Mw standard polystyrene equivalent weight average molecular weight; the same shall apply hereinafter
  • Mn standard polystyrene equivalent weight average molecular weight
  • the molecular weight distribution index is preferably 2 or less.
  • magnetic particles are used because the particles can be easily aligned in the thickness direction by a method described later.
  • conductive particles include particles of magnetic metals such as iron, cobalt and nickel, particles of alloys thereof, particles containing these metals, or particles containing these metals as core particles.
  • the core particles are made of metal particles with good conductivity such as gold, silver, palladium, rhodium, etc., or inorganic particles such as non-magnetic metal particles or glass beads, or polymer particles.
  • the surface of the core particle is plated with a conductive magnetic metal such as nickel or cobalt. And so on.
  • a nickel particle as a core particle and a surface with a gold mesh having good conductivity.
  • the means for coating the surface of the core particles with the conductive metal is not particularly limited, and for example, an electrochemical plating method, an electrolytic plating method, a sputtering method, a vapor deposition method or the like is used.
  • the conductive particles P used are those in which the surface of the core particles is coated with a conductive metal, good conductivity can be obtained. Therefore, the coverage of the conductive metal on the particle surface ( The ratio of the covering area of the conductive metal to the surface area of the core particles is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
  • the coating amount of the conductive metal is preferably 0.5 to 50% by mass of the core particles, more preferably 2 to 30% by mass, further preferably 3 to 25% by mass, and particularly preferably 4%. ⁇ 20% by mass.
  • the coating amount is preferably 0.5 to 30% by mass of the core particles, more preferably 2 to 20% by mass, and still more preferably 3 to 15% by mass.
  • the conductive particles P preferably have a particle size of 1 to: LOO / zm, more preferably 2 to 50 ⁇ m, still more preferably 3 to 30 ⁇ m, and particularly preferably 4-20 ⁇ m.
  • the particle size distribution (DwZDn) of the conductive particles P is preferably 1 to: LO, more preferably 1.01 to 7, still more preferably 1.05 to 5, particularly preferably 1.1. ⁇ 4.
  • the obtained conductive path forming part 16 can be easily deformed under pressure, and the conductive path forming part 16 has sufficient space between the conductive particles. Electrical contact can be obtained.
  • the shape of the conductive particles P is not particularly limited, but is spherical, star-shaped or aggregated in that they can be easily dispersed in the polymer material-forming material. Preferred to be secondary particles.
  • the conductive particles P those whose surfaces are treated with a coupling agent such as a silane coupling agent or a lubricant can be appropriately used. By treating the particle surface with a coupling agent or lubricant, the durability of the anisotropically conductive connector is improved.
  • the conductive particles P are contained in the conductive path forming part 16 in a volume fraction of 15 to 45%, preferably 20 to 40%. If this ratio is too small, the conductive path forming portion 16 having a sufficiently small electric resistance value may not be obtained. On the other hand, when this ratio is excessive, the obtained conductive path forming portion 16 becomes fragile and the necessary elasticity as the conductive path forming portion 16 may not be obtained immediately.
  • a flat plate-like contact member 18 made of metal is provided integrally with the conductive path forming portion 16.
  • the metal constituting the contact member 18 a material exhibiting magnetism is used, and specific examples thereof include nickel, cobalt, and alloys thereof.
  • the thickness of the contact member 18 is preferably 1 to: LOO / zm, more preferably 5 to 40 / zm. If this thickness is too small, it may be difficult to use as a mask in laser processing in the manufacturing method described later. On the other hand, when this thickness is excessive, a large pressure may be required to compressively deform the conductive path forming portion when used for electrical inspection of the circuit device, which is not preferable.
  • the anisotropic conductive connector 10 includes conductive particles exhibiting magnetism in a liquid polymer material-forming material that is cured to become an elastic polymer material on a releasable support plate.
  • a conductive elastomer material layer containing a child is formed, and a contact member 18 made of a metal exhibiting magnetism according to a specific pattern is disposed on the surface of the conductive elastomer material layer.
  • a magnetic field is applied to the conductive elastomer material layer in the thickness direction, and the conductive elastomer material layer is cured to form a conductive elastomer layer, and this conductive elastomer layer is formed.
  • a plurality of conductive path forming portions 16 arranged according to a specific pattern are formed on the releasable support plate by removing a portion other than the portion where the contact member 18 is arranged by laser processing one layer, An insulating material layer made of a polymer material forming material that is cured to become an elastic polymer material is formed between these conductive path forming portions 16, and the insulating material layer is cured to be insulated. It is obtained by forming part 17.
  • a contact member composite 18F having a plurality of contact members 18 arranged according to a specific pattern is manufactured.
  • openings are formed on the metal foil 14 according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed, that is, the pattern of the electrode to be connected, by a photolithography technique.
  • a resist layer 19 in which 19K is formed is formed.
  • the surface of the exposed portion of the metal foil 14 through the opening 19 of the resist layer 19 is subjected to a plating treatment with a metal exhibiting magnetism, thereby forming each of the openings 19K of the resist layer 19 as shown in FIG.
  • a contact member 18 is formed.
  • a contact member composite 18F is obtained in which the contact member 18 is formed on the metal foil 14 according to a specific pattern.
  • the metal foil 14 copper, nickel, or the like can be used.
  • the metal foil may be laminated on a resin film.
  • the thickness of the metal foil 14 is preferably 0.05-2111, more preferably 0.1-1 ⁇ m. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by, for example, etching.
  • the thickness of the resist layer 19 is set according to the thickness of the contact member 18 to be formed.
  • a conductive elastomer material is prepared by dispersing conductive particles exhibiting magnetism in a liquid polymer material-forming material that is cured to become an elastic polymer material.
  • the conductive elastomer material layer 16A is formed by applying the conductive elastomer material on the releasable support plate 13 for forming the conductive path forming portion.
  • the contact member composite 18F is arranged on the conductive elastomer material layer 16A so that each of the contact members 18 is in contact with the conductive elastomer material layer 16A.
  • the conductive elastomer material layer 16A contains the conductive particles P exhibiting magnetism in a dispersed state.
  • a magnetic field is applied to the conductive elastomer material layer 16A via the contact member 18 in the thickness direction of the conductive elastomer material layer 16A.
  • the contact member 18 is made of a metal exhibiting magnetism, so that the portion of the conductive elastomer material layer 16 A where the contact member 18 is disposed has a higher strength than the other portions.
  • a field is formed.
  • the conductive particles P dispersed in the conductive elastomer material layer 16A gather in the portion where the contact member 18 is arranged, and further, the conductive elastomer material material. Orient so that it is aligned in the thickness direction of layer 16A.
  • a conductive elastomer layer 16B is formed in a state in which the conductive particles P are aligned in the thickness direction in the elastic polymer material so as to be supported on the releasable support plate 13.
  • a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
  • the thickness of the conductive elastomer material layer 16A is set according to the thickness of the conductive path forming portion to be formed.
  • an electromagnet As means for applying a magnetic field to the conductive elastomer material layer 16A, an electromagnet, a permanent magnet, or the like can be used.
  • the strength of the magnetic field applied to the conductive elastomer material layer 16A is preferably 0.2 to 2.5 Tesla.
  • the curing process of the conductive elastomer material layer 16A is usually performed by a heating process.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of polymer substance forming material constituting the conductive elastomer material layer 16A, the time required to move the conductive particles, and the like.
  • the contact member 18 and the resist layer are removed. Expose 19 Then, the conductive elastomer layer 16B and the resist layer 19 are subjected to laser processing using the contact member 18 as a mask to remove a part of the resist layer 19 and the conductive elastomer layer 16B.
  • a plurality of conductive path forming portions 16 arranged according to a specific pattern and each provided with a contact member 18 are formed on the releasable support plate 13.
  • the laser processing a carbon dioxide laser or an ultraviolet laser is preferable, so that the conductive path forming portion 16 having a desired form can be surely formed.
  • a releasable support plate 13A for forming an insulating portion is prepared, and a liquid polymer material that is cured on the surface of the releasable support plate 13A to become an insulating elastic polymer material.
  • the insulating material layer 17A is formed by applying the forming material.
  • the releasable support plate 13 formed with the plurality of conductive path forming portions 16 each provided with the contact member 18 is replaced with the releasable property formed with the insulating material layer 17A.
  • the conductive path forming portion 16 By superimposing on the support plate 13A, the conductive path forming portion 16 enters into the insulating material layer 17A to bring each of the contact members 18 into contact with the releasable support plate 13A, and further pressurizing. Each of the conductive path forming portions 16 is deformed to be compressed in the thickness direction, and an insulating portion material layer 17A is formed between adjacent conductive path forming portions 16. Thereafter, in this state, the insulating portion material layer 17A is cured, so that the insulating portions 17 that insulate them from each other between the adjacent conductive path forming portions 16 as shown in FIG. The elastic anisotropic conductive film 15 is formed integrally with the conductive path forming portion 16.
  • each of the compressed conductive path forming portions 16 is restored to its original form, and as a result, protrudes from both surfaces of the insulating portion 17.
  • the anisotropic conductive connector 10 having the configuration shown in FIG. 1 is obtained.
  • the same material as the releasable support plate 13 for forming the conductive path forming portion can be used as the material constituting the releasable support plate 13A.
  • a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
  • the thickness of the insulating part material layer 17A is set according to the thickness of the insulating part to be formed.
  • the curing process of the insulating layer material layer 17A is usually performed by a heating process.
  • the specific heating temperature and heating time are determined by the polymer material forming material that constitutes the insulating material layer 17A. It is set as appropriate in consideration of the type of fee.
  • the contact member 18 as a mask and laser processing the conductive elastomer layer 16B, it is possible to reliably form the conductive path forming portion 16 having the desired form. Then, after forming a plurality of conductive path forming portions 16 arranged according to a specific pattern, an insulating portion material layer 17A is formed between these conductive path forming portions 16 and subjected to curing treatment, whereby the insulating portions 17 Therefore, it is possible to reliably obtain the insulating portion 17 in which no conductive particles are present. However, it is not necessary to use a mold that is used to manufacture a conventional anisotropically conductive connector and in which a large number of ferromagnetic parts are arranged.
  • the anisotropic conductive connector 10 obtained by such a method, it is possible to reliably achieve the required electrical connection to each of the electrodes regardless of the arrangement pattern of the electrodes to be connected.
  • the electrodes to be connected are arranged with a small pitch and a high density, it is possible to reliably achieve the required electrical connection to each of the electrodes, The manufacturing cost can be reduced.
  • FIG. 14 is an explanatory cross-sectional view showing the configuration of the anisotropic conductive connector according to the second example of the present invention
  • FIG. 15 is an enlarged view of the main part of the anisotropic conductive connector shown in FIG. It is sectional drawing for description shown.
  • This anisotropic conductive connector 10 is arranged so as to close each of the opening 12 of the frame plate 11 and the frame plate 11 formed with a plurality of openings 12, and is supported by the frame plate 11. And an anisotropic conductive film 15.
  • a plurality of conductive path forming portions 16 extending in the thickness direction are arranged so as to be positioned in the openings 12 of the frame plate 11 according to a specific pattern.
  • a single insulating portion 17 that insulates the adjacent conductive path forming portions 16 from each other is formed in a state of being integrally bonded to the conductive path forming portion 16! Speak.
  • the specific pattern of the conductive path forming portion 16 is a pattern corresponding to the pattern of the electrode to be connected, for example, the electrode to be inspected of the circuit device to be inspected.
  • the conductive path forming portion 16 is configured by containing conductive particles P exhibiting magnetism in an insulating elastic polymer substance so as to be aligned in the thickness direction.
  • the insulating portion 17 is made of an elastic polymer material that does not contain the conductive particles P at all.
  • each of the conductive path forming portions 16 is formed with a protruding portion that also protrudes the surface force of the insulating portion 17.
  • a flat plate-like contact member 18 made of metal is provided integrally with the conductive path forming portion 16.
  • the frame plate 11 As a material constituting the frame plate 11, various non-metallic materials and metallic materials having high mechanical strength can be used.
  • non-metallic materials include liquid crystal polymers, polyimide resins, polyester resins, polyaramide resins, polyamide resins, and other resin materials, glass fiber reinforced epoxy resins, glass fiber reinforced polyester resins, Examples thereof include a fiber reinforced resin material such as a glass fiber reinforced polyimide resin, and a composite resin material containing an inorganic material such as alumina or boron nitride as a filler in an epoxy resin.
  • Examples of the metal material include gold, silver, copper, iron, nickel, cobalt, alloys thereof, and alloy steels.
  • the frame plate 11 a coefficient of linear thermal expansion 3 X 10- 5 ZK following more preferably it is preferred instrument to use a 1 X 10- 6 ⁇ 2 X 10- 5 / ⁇ , particularly preferably 1 X 10- 6 ⁇ 6 X 10- 6 / ⁇ .
  • a coefficient of linear thermal expansion 3 X 10- 5 ZK following more preferably it is preferred instrument to use a 1 X 10- 6 ⁇ 2 X 10- 5 / ⁇ , particularly preferably 1 X 10- 6 ⁇ 6 X 10- 6 / ⁇ .
  • the thickness of the frame plate 11 is preferably 10 to 200 m, more preferably 15 to L00 m. If this thickness is too small, the frame plate 11 may not have the required strength. On the other hand, if this thickness is excessive, inertia anisotropic conductivity The thickness of the film 15 is inevitably increased, so that good conductivity may not be obtained.
  • the elastic polymer material, conductive particles, and other specific configurations of the elastic anisotropic conductive film 15 are the same as those of the anisotropic conductive connector 10 according to the first example.
  • the material and dimensions of the contact member 18 are the same as those of the anisotropic conductive connector 10 according to the first example described above.
  • the anisotropically conductive connector 10 described above can be manufactured as follows.
  • a plurality of conductive paths are formed on the releasable support 13 according to a specific pattern and provided with contact members 18.
  • a portion 16 is formed (see FIGS. 3 to 10).
  • a releasable support plate 13A for forming an insulating portion is prepared, and a frame plate 11 is disposed on the surface of the releasable support plate 13A and cured to be an insulating elastic polymer.
  • the insulating material layer 17A is formed by applying a liquid elastomer material that is a substance.
  • the releasable support plate 13 formed with the plurality of conductive path forming portions 16 each provided with the contact member 18 is replaced with the releasable support formed with the insulating portion material layer 17A.
  • the conductive path forming part 16 enters the insulating part material layer 17A to bring each of the contact members 18 into contact with the releasable support plate 13A and further pressurize, thereby conducting the conductive.
  • Each of the path forming portions 16 is deformed into a compressed state in the thickness direction, and an insulating material layer 17A is formed between the adjacent conductive path forming portions 16. Thereafter, the insulating material layer 17A is cured in this state, so that the insulating portion 17 that insulates them from each other is provided between the adjacent conductive path forming portions 16, as shown in FIG.
  • the elastic anisotropic conductive film 15 is formed integrally with the conductive path forming portion 16.
  • each of the compressed conductive path forming portions 16 is restored to its original form, and as a result, protrudes from both surfaces of the insulating portion 17.
  • the anisotropic conductive connector 10 having the configuration shown in FIG. 14 is obtained.
  • the material constituting the releasable support plate 13A is for forming a conductive path forming portion.
  • the same releasable support plate 13 can be used.
  • a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
  • the thickness of the insulating part material layer 17A is set according to the thickness of the insulating part 17 to be formed.
  • the curing process of the insulating part material layer 17A is usually performed by heat treatment.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of polymer substance forming material constituting the insulating part material layer 17A.
  • the conductive elastomer material By applying a magnetic field in the thickness direction of the layer 16A and curing the conductive elastomer material layer 16A, the resulting conductive elastomer layer 16B has conductive particles in the portion where the contact member 18 is disposed. P becomes dense, and the conductive particles P in the other portions become sparse, which makes it very easy to remove the portions other than the portions forming the conductive path in the conductive elastomer layer 16B by laser processing.
  • the conductive path forming portion 16 having the desired shape can be formed by laser processing the conductive elastomer layer 16B using the contact member 18 as a mask. Then, after forming a plurality of conductive path forming portions 16 arranged according to a specific pattern, an insulating portion material layer 17A is formed between the conductive path forming portions 16 and cured to form the insulating portion 17. Therefore, it is possible to reliably obtain the insulating portion 17 in which no conductive particles are present. However, it is not necessary to use a mold in which a large number of ferromagnetic parts are arranged, which is used to manufacture a conventional anisotropically conductive connector.
  • FIG. 19 is a cross-sectional view illustrating the configuration of the anisotropic conductive connector according to the third example of the invention
  • FIG. 20 is an enlarged view of the main part of the anisotropic conductive connector shown in FIG. It is sectional drawing for description shown.
  • the anisotropic conductive connector 10 is composed only of an elastic anisotropic conductive film 15.
  • a plurality of conductive path forming portions 16 extending in the thickness direction are arranged according to a specific pattern.
  • An insulating portion 17 that insulates the conductive path forming portions 16 from each other is formed in a state of being integrally bonded to the conductive path forming portions 16.
  • the specific pattern of the conductive path forming portion 16 is a pattern corresponding to the pattern of the electrode to be connected, for example, the electrode to be inspected of the circuit device to be inspected.
  • the conductive path forming portion 16 is configured by containing conductive particles P exhibiting magnetism in an insulating elastic polymer substance so as to be aligned in the thickness direction.
  • the insulating portion 17 is made of an elastic polymer material that does not contain the conductive particles P at all.
  • the conductive path forming portion 16 is formed so that the one surface force of the insulating portion 17 protrudes.
  • the elastic polymer material, conductive particles, and other specific configurations forming the elastic anisotropic conductive film 15 are the same as those of the anisotropic conductive connector 10 according to the first example.
  • the anisotropic conductive connector 10 can be manufactured as follows.
  • a metal mask composite having a plurality of metal masks arranged according to a specific pattern is manufactured.
  • a resist layer 28 having openings 28K is formed.
  • the surface of the exposed portion of the metal foil 27 through the opening 28K of the resist layer 28 is subjected to a plating treatment with a metal exhibiting magnetism, thereby forming each of the openings 28K of the resist layer 28 as shown in FIG.
  • a metal mask 26 is formed. Thereby, a metal mask composite 26F in which the metal mask 26 is formed on the metal foil 27 according to a specific pattern is obtained.
  • the material constituting the metal mask 26 a material exhibiting magnetism is used, and specific examples thereof include iron, nickel, cobalt, and alloys thereof.
  • the thickness of the metal mask 26 is preferably 2 m or more, more preferably 5 to 150 m. If this thickness is too small, it may be unsuitable as a mask for the laser.
  • the metal foil 27 copper, gold, aluminum, rhodium, or the like can be used. Further, the metal foil 27 may be laminated on a resin film.
  • the thickness of the metal foil 27 is preferably 0.05-2111, more preferably 0.1-1 ⁇ m. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by, for example, etching.
  • the thickness of the resist layer 28 is set according to the thickness of the metal mask 26 to be formed.
  • a conductive elastomer material is prepared by dispersing conductive particles exhibiting magnetism in a liquid polymer material-forming material that is cured to become an elastic polymer material, as shown in Fig. 23 (a).
  • the conductive elastomer material layer 16A is formed by applying the conductive elastomer material on the releasable support plate 13 for forming the conductive path forming portion.
  • the conductive particles P exhibiting magnetism are contained in a dispersed state. Then, as shown in FIG.
  • a metal mask composite 26F is arranged on the conductive elastomer material layer 16A so that each of the metal masks 26 is in contact with the conductive elastomer material layer 16A.
  • a magnetic field is applied to the conductive elastomer material layer 16A through the metal mask 26 in the thickness direction of the conductive elastomer material layer 16A.
  • the metal mask 26 is formed of a metal exhibiting magnetism, a portion of the conductive elastomer material layer 16A where the metal mask 26 is disposed has a stronger magnetic field than the other portions. It is formed. As a result, as shown in FIG.
  • the conductive particles P dispersed in the conductive elastomer material layer 16A gather at the portion where the metal mask 26 is arranged, and further, the conductive elastomer material material. Orient so that it is aligned in the thickness direction of layer 16A. Then, while continuing the action of the magnetic field on the conductive elastomer material layer 16A, or after stopping the magnetic field action, the conductive elastomer material layer 16A is cured, as shown in FIG. In addition, the conductive particles P are arranged in the thickness direction in the elastic polymer material. A conductive elastomer layer 16B, which is contained in such an oriented state, is formed in a state of being supported on the releasable support plate 13.
  • the material constituting the releasable support plate 13 the method of applying the conductive elastomer material, the means for applying a magnetic field to the conductive elastomer material layer 16A, the strength of the magnetic field, the conductivity
  • the conditions for the curing treatment of the material layer 16A for the elastomeric elastomer are the same as the method for manufacturing the anisotropic conductive connector of the first example described above.
  • the metal foil 27 in the metal mask composite 26F disposed on the conductive elastomer layer 16B is removed by, for example, etching treatment to remove the metal mask 26 and the resist as shown in FIG. Layer 28 is exposed. Then, the conductive elastomer layer 16B and the resist layer 28 are subjected to laser processing through the metal mask 26, whereby a part of the resist layer 28 and the conductive elastomer layer 16B is removed. As shown in 28, a plurality of conductive path forming portions 16 arranged according to a specific pattern are formed in a state of being supported on the releasable support plate 13. Thereafter, the surface force of each of the conductive path forming portions 16 also peels off the metal mask 26.
  • the laser processing is preferably performed using a carbon dioxide laser, whereby the conductive path forming portion 16 having a desired form can be reliably formed.
  • a releasable support plate 13A for forming an insulating portion is prepared, and a liquid polymer material that is cured on the surface of the releasable support plate 13A to become an insulating elastic polymer material.
  • the insulating material layer 17A is formed by applying the forming material.
  • the releasable support plate 13 formed with a plurality of conductive path forming portions 16 is overlaid on the releasable support plate 13A formed with the insulating material layer 17A.
  • the conductive path forming portion 16 is infiltrated into the insulating portion material layer 17A and brought into contact with the releasable support plate 13A.
  • the insulating material layer 17A is formed between the adjacent conductive path forming portions 16. Thereafter, in this state, the insulating portion material layer 17A is cured to insulate the adjacent conductive path forming portions 16 from each other as shown in FIG.
  • the elastic anisotropic conductive film is formed integrally with the forming portion 16 and thereby formed. Then, the anisotropically conductive connector 10 having the configuration shown in FIG. 19 is obtained by releasing the molds by releasing the support plates 13 and 13A.
  • the material constituting the releasable support plate 13A, the method of applying the polymer substance-forming material, and the conditions for the curing treatment of the insulating material layer 17A are as described in the first example of the anisotropic conductive connector 10 This is the same as the manufacturing method.
  • the metal mask 26 showing magnetism is arranged on the conductive elastomer material layer 16A according to the specific pattern of the conductive path forming portion 16 to be formed.
  • the resulting conductive elastomer layer 16B is formed at the portion where the contact member 18 is disposed.
  • the conductive particles P become dense, and the conductive particles P in other parts become sparse, so that it is very easy to remove the parts other than the conductive path forming part in the conductive elastomer layer 16B by laser processing. It becomes.
  • the conductive path forming portion 16 having the expected form can be reliably formed by laser processing the conductive elastomer layer 16 B through the metal mask 26. Then, after forming a plurality of conductive path forming portions 16 arranged according to a specific pattern, an insulating portion material layer 17A is formed between the conductive path forming portions 16 and cured, thereby insulating portions 17 Therefore, it is possible to reliably obtain the insulating portion 17 in which no conductive particles are present. For this reason, it is not necessary to use a mold in which a large number of ferromagnetic parts, which have been used for manufacturing a conventional anisotropically conductive connector, are arranged.
  • the anisotropic conductive connector 10 obtained by such a method, it is possible to reliably achieve the required electrical connection to each of the electrodes regardless of the arrangement pattern of the electrodes to be connected.
  • the electrodes to be connected are arranged with a small pitch and a high density, it is possible to reliably achieve the required electrical connection to each of the electrodes, The manufacturing cost can be reduced.
  • FIG. 32 is a cross-sectional view illustrating the configuration of the fourth example of the anisotropic conductive connector according to the present invention
  • FIG. 33 is an enlarged view of the main part of the anisotropic conductive connector shown in FIG. It is sectional drawing for description shown.
  • the anisotropic conductive connector 10 has a plurality of openings 12 formed therein.
  • the frame plate 11 and a single elastic anisotropic conductive film 15 arranged so as to close each of the openings 12 of the frame plate 11 and supported by the frame plate 11 may be used.
  • a plurality of conductive path forming portions 16 1S extending in the thickness direction are arranged so as to be positioned in the openings 12 of the frame plate 11 according to a specific pattern, and around each of the conductive path forming portions 16. Is formed in a state where a single insulating portion 17 that insulates the adjacent conductive path forming portions 16 from each other is integrally bonded to the conductive path forming portion 16! Speak.
  • the specific pattern of the conductive path forming portion 16 is a pattern corresponding to the pattern of the electrode to be connected, for example, the electrode to be inspected of the circuit device to be inspected.
  • the conductive path forming portion 16 is configured by containing conductive particles P exhibiting magnetism in an insulating elastic polymer substance so as to be aligned in the thickness direction.
  • the insulating portion 17 is made of an elastic polymer material that does not contain the conductive particles P at all.
  • each of the conductive path forming portions 16 is formed with a protruding portion protruding from one surface of the insulating portion 17.
  • the material constituting the frame plate 11 and the thickness of the frame plate 11 are the same as those of the anisotropic conductive connector 10 of the second example described above.
  • the elastic polymer material, conductive particles and other specific configurations of the elastic anisotropic conductive film 15 are the same as those of the anisotropic conductive connector 10 according to the first example.
  • the anisotropic conductive connector 10 described above can be manufactured as follows.
  • a plurality of conductive path forming portions 16 arranged and supported according to a specific pattern are formed on the releasable support 13. (Refer to Fig. 21 to Fig. 28).
  • a releasable support plate 13A for forming an insulating portion is prepared, and a frame plate 11 is arranged on the surface of the releasable support plate 13A and cured to be an insulating elastic polymer.
  • the insulating material layer 17A is formed by applying a liquid elastomer material that is a substance.
  • the releasable support plate 13 formed with a plurality of conductive path forming portions 16 is superimposed on the releasable support plate 13A formed with the insulating material layer 17A.
  • the conductive path forming portion 16 enters the insulating portion material layer 17A and is brought into contact with the releasable support plate 13A.
  • the insulating material layer 17A is formed between the adjacent conductive path forming portions 16.
  • the insulating portion material layer 17A is cured, so that the insulating portions 17 that insulate them from each other between the adjacent conductive path forming portions 16 as shown in FIG.
  • An anisotropic anisotropic conductive film is formed integrally with the conductive path forming portion 16, thereby forming an anisotropic anisotropic conductive film.
  • the anisotropic conductive connector 10 having the configuration shown in FIG. 32 is obtained by releasing from the releasable support plates 13 and 13A.
  • the material constituting the releasable support plate 13A, the method of applying the polymer substance forming material, and the conditions for the curing treatment of the insulating material layer 17A are the anisotropic conductive connectors 10 of the second example described above. This is the same as the manufacturing method.
  • the conductive elastomer material By applying a magnetic field in the thickness direction of the layer 16A and curing the conductive elastomer material layer 16A, the resulting conductive elastomer layer 16B has conductive particles in the portion where the contact member 18 is disposed. P becomes dense, and the conductive particles P in the other portions become sparse, which makes it very easy to remove the portions other than the portions forming the conductive path in the conductive elastomer layer 16B by laser processing.
  • the contact member 18 as a mask and laser processing the conductive elastomer layer 16B, it is possible to reliably form the conductive path forming portion 16 having the desired form. Then, after forming a plurality of conductive path forming portions 16 arranged according to a specific pattern, an insulating portion material layer 17A is formed between these conductive path forming portions 16 and subjected to curing treatment, whereby the insulating portions 17 Therefore, it is possible to reliably obtain the insulating portion 17 in which no conductive particles are present. However, it is not necessary to use a mold that is used to manufacture a conventional anisotropically conductive connector and in which a large number of ferromagnetic parts are arranged.
  • the anisotropic conductive connector 10 obtained by such a method, it is possible to reliably achieve the required electrical connection to each of the electrodes regardless of the arrangement pattern of the electrodes to be connected.
  • the electrodes to be connected have a small and high pitch. Even if the electrodes are arranged at a high density, it is possible to reliably achieve the required electrical connection to each of the electrodes, and to reduce the manufacturing cost.
  • FIG. 37 is an explanatory cross-sectional view showing the configuration of the adapter device according to the first example of the present invention
  • FIG. 38 is an explanatory cross-sectional view showing the adapter body in the adapter device shown in FIG.
  • the adapter device is a circuit device such as a printed circuit board, for example, for testing a circuit device used for performing an open / short test, and has an adapter body 20 made of a multilayer wiring board.
  • connection electrode region in which a plurality of connection electrodes 21 are arranged according to a specific pattern corresponding to the pattern of the electrode to be inspected of the circuit device to be inspected. 25 is formed.
  • a plurality of terminal electrodes 22 are arranged on the back surface of the adapter body 20 according to the grid point positions of pitches of 0.8 mm, 0.75 mm, 1.5 mm, 1.8 mm, and 2.54 mm, for example. Are electrically connected to the connection electrode 21 by the internal wiring portion 23.
  • the anisotropic conductive connector 10 of the second example shown in FIG. 14 is disposed on the connection electrode region 25.
  • the adapter body 20 has an appropriate means (not shown). It is fixed by.
  • a plurality of conductive path forming portions 16 are formed according to the same pattern as the specific pattern related to the connection electrode 21 in the adapter body 20, and the anisotropic conductive connector 10 Each of the conductive path forming portions 16 is arranged so as to be positioned on the connection electrode 21 of the adapter main body 20.
  • each of the electrodes to be inspected regardless of the arrangement pattern of the inspection electrodes of the circuit device to be inspected.
  • the required electrical connection can be reliably achieved with respect to each of the electrodes to be inspected even when the electrodes to be inspected are arranged with a small pitch and a high density.
  • the required electrical connection can be reliably achieved, and the manufacturing cost can be reduced.
  • FIG. 39 is a cross-sectional view illustrating the configuration of the adapter device according to the second example of the invention.
  • FIG. 40 is a cross-sectional view illustrating the adapter body in the adapter device shown in FIG. This adapter device is for testing a circuit device used for conducting an electrical resistance measurement test of each wiring pattern by a circuit device such as a printed circuit board, for example.
  • connection electrodes (hereinafter referred to as “the current supply electrodes”) that are spaced apart from each other and are electrically connected to the same electrode to be inspected. Also referred to as “current supply electrode”.) 21b and connection electrode for voltage measurement (hereinafter also referred to as “voltage measurement electrode”) Connection electrode region in which a plurality of connection electrode pairs 21a made of 21c are arranged 25 is formed. These connection electrode pairs 21a are arranged according to a pattern corresponding to the pattern of the electrode to be inspected of the circuit device to be inspected.
  • the pitch of the adapter body 20 on the back surface is 0.8 mm, 0.75 mm, 1
  • a plurality of terminal electrodes 22 are arranged according to the grid point positions of 5 mm, 1.8 mm, and 2.54 mm.
  • Each of the current supply electrode 21b and the voltage measurement electrode 21c is electrically connected to the terminal electrode 22 by the internal wiring portion 23.
  • the anisotropic conductive connector 10 of the second example shown in FIG. 14 is basically disposed on the electrode region 25 for connection. (Omitted).
  • a plurality of conductive path forming portions 16 are formed according to the same pattern as the specific pattern related to the connection electrodes 21b, 21c in the adapter body 20, and the anisotropic conductive connector 10 Each of the conductive path forming portions 16 is disposed on the connection electrodes 21b and 21c of the adapter body 20.
  • the anisotropic conductive connector 10 of the second example since the anisotropic conductive connector 10 of the second example is provided, it is necessary for each of the electrodes to be inspected regardless of the arrangement pattern of the inspection electrodes of the circuit device to be inspected. Electrical connection can be reliably achieved, and even when the test electrodes are arranged with a small pitch and a high density, the required test electrodes are required for each of the test electrodes. The electrical connection can be achieved reliably, and the manufacturing force can be reduced. ⁇ Electrical inspection equipment for circuit devices>
  • FIG. 41 is an explanatory diagram showing the configuration of the first example of the electrical inspection apparatus for circuit boards according to the present invention.
  • This electrical inspection device performs, for example, an open / short test on a circuit device 5 such as a printed circuit board on which electrodes 6 and 7 to be inspected are formed on both sides.
  • the holder 2 is provided with a positioning pin 3 for arranging the circuit device 5 at an appropriate position in the inspection execution region E.
  • the upper side adapter device la and the upper side inspection head 50a configured as shown in FIG. 37 are arranged in this order, and further above the upper side inspection head 50a, A side support plate 56a is arranged, and the upper side inspection head 50a is fixed to the support plate 56a by a column 54a.
  • the lower side adapter device lb and the lower side inspection head 50b configured as shown in FIG. 37 are arranged in this order, and further below the lower side inspection head 50b.
  • the lower side support plate 56b is arranged, and the lower side inspection head 50b is fixed to the lower side support plate 56b by a support 54b.
  • the upper inspection head 50a is composed of a plate-shaped inspection electrode device 5la and an anisotropically conductive sheet 55a having elasticity arranged and fixed to the lower surface of the inspection electrode device 5la.
  • the inspection electrode device 51a has a plurality of pin-shaped inspection electrodes 52a arranged at lattice point positions at the same pitch as the terminal electrodes 22 of the upper-side adapter device la on the lower surface thereof, and each of these inspection electrodes 52a.
  • the electric wire 53a is electrically connected to a connector 57a provided on the upper support plate 56a, and is further electrically connected to a tester inspection circuit (not shown) via the connector 57a.
  • the lower inspection head 50b is composed of a plate-shaped inspection electrode device 5 lb and an anisotropically conductive sheet 55b having elasticity arranged and fixed to the upper surface of the inspection electrode device 51b.
  • the inspection electrode device 5 lb has a plurality of pin-shaped inspection electrodes 52b arranged on the upper surface thereof at lattice point positions having the same pitch as the terminal electrodes 22 of the lower adapter device lb.
  • Each is electrically connected to a connector 57b provided on the lower support plate 56b by an electric wire 53b, and further electrically connected to an inspection circuit (not shown) of the tester via this connector 57b.
  • the anisotropic conductive sheets 55a and 55b in the upper side inspection head 50a and the lower side inspection head 50b are each formed with a conductive path forming portion that forms a conductive path only in the thickness direction.
  • each of the conductive path forming portions is formed so as to protrude in the thickness direction at least on one surface, and exhibits high electrical contact stability. It is preferable in point to do.
  • the circuit device 5 to be inspected is held in the inspection execution region E by the holder 2, and in this state, the upper support plate 56a and the lower support plate are supported. As each of the plates 56b moves in a direction approaching the circuit device 5, the circuit device 5 is clamped by the upper adapter device la and the lower adapter device lb.
  • the electrode 6 to be inspected on the upper surface of the circuit device 5 is electrically connected to the connection electrode 21 of the upper-side adapter device la through the conductive path forming portion 16 of the anisotropic conductive connector 10.
  • the terminal electrode 22 of the upper adapter device la is electrically connected to the test electrode 52a of the test electrode device 5la via an anisotropic conductive sheet 55a.
  • the electrode 7 to be inspected on the lower surface of the circuit device 5 is electrically connected to the connection electrode 21 of the lower-side adapter device lb through the conductive path forming portion 16 of the anisotropic conductive connector 10.
  • the terminal electrode 22 of the side adapter device lb is electrically connected to the test electrode 52b of the test electrode device 5 lb through the anisotropic conductive sheet 55b.
  • each of the test electrodes 6 and 7 on both the upper surface and the lower surface of the circuit device 5 is connected to the test electrode 52a and the lower test head 50b of the test electrode device 51a in the upper test head 50a.
  • a state of being electrically connected to the inspection circuit of the tester is achieved, and a required electrical inspection is performed in this state.
  • the electrical inspection apparatus for a circuit board described above since it has the upper side adapter device la and the lower side adapter device lb configured as shown in FIG. Regardless of the arrangement pattern of 7, the required electrical inspection can be reliably performed on the circuit device 5, and the electrodes 6 and 7 to be inspected of the circuit device 5 have minute pitches and high density. Required for the circuit device 5 even if it is placed It is possible to reliably perform the electrical inspection.
  • FIG. 42 is an explanatory view showing the configuration of the second example of the electrical inspection apparatus for circuit boards according to the present invention.
  • This electrical inspection device is for performing an electrical resistance measurement test of each wiring pattern on a circuit device 5 such as a printed circuit board on which both electrodes 6 and 7 are formed on both sides.
  • a holder 2 for holding 5 in the inspection execution area E is provided, and the holder 2 is provided with a positioning pin 3 for arranging the circuit device 5 at an appropriate position in the inspection execution area E.
  • an upper adapter device la and an upper inspection head 50a configured as shown in FIG. 39 are arranged in this order, and further above the upper inspection head 5 Oa,
  • the upper side support plate 56a is arranged, and the upper side inspection head 50a is fixed to the support plate 56a by a support column 54a.
  • the lower side adapter device lb and the lower side inspection head 50b configured as shown in FIG. 39 are arranged in this order, and further below the lower side inspection head 50b.
  • the lower side support plate 56b is arranged, and the lower side inspection head 50b is fixed to the support plate 56b by a support 54b.
  • the upper inspection head 50a is composed of a plate-shaped inspection electrode device 5la and an anisotropically conductive sheet 55a having elasticity arranged and fixed to the lower surface of the inspection electrode device 5la.
  • the inspection electrode device 51a has a plurality of pin-shaped inspection electrodes 52a arranged at lattice point positions at the same pitch as the terminal electrodes 22 of the upper-side adapter device la on the lower surface thereof, and each of these inspection electrodes 52a.
  • the electric wire 53a is electrically connected to a connector 57a provided on the upper support plate 56a, and is further electrically connected to a tester inspection circuit (not shown) via the connector 57a.
  • the lower inspection head 50b is composed of a plate-shaped inspection electrode device 5 lb and an anisotropically conductive sheet 55b having elasticity arranged and fixed to the upper surface of the inspection electrode device 51b.
  • the inspection electrode device 5 lb has a plurality of pin-shaped inspection electrodes 52b arranged on the upper surface thereof at lattice point positions having the same pitch as the terminal electrodes 22 of the lower adapter device lb.
  • Each is electrically connected to a connector 57b provided on the lower support plate 56b by an electric wire 53b, and further, a tester inspection is performed via this connector 57b. It is electrically connected to a circuit (not shown).
  • the anisotropic conductive sheets 55a and 55b in the upper side inspection head 50a and the lower side inspection head 50b have basically the same configuration as that of the electrical inspection apparatus of the first example.
  • the circuit device 5 to be inspected is held in the inspection execution region E by the holder 2, and in this state, the upper side support plate 56a and the lower side support As each of the plates 56b moves in a direction approaching the circuit device 5, the circuit device 5 is clamped by the upper adapter device la and the lower adapter device lb.
  • the electrode 6 to be inspected on the upper surface of the circuit device 5 is anisotropically conductive to both the current supply electrode 21b and the voltage measurement electrode 21c in the connection electrode pair 21a of the upper-side adapter device la.
  • the terminal electrode 22 of the upper adapter device la is electrically connected to the inspection electrode 52a of the inspection electrode device 51a via the anisotropic conductive sheet 55a.
  • the electrode 7 to be inspected on the lower surface of the circuit device 5 is connected to both the current supply electrode 21b and the voltage measurement electrode 21c in the connection electrode pair 21a of the lower adapter device lb.
  • the terminal electrode 22 of this lower side adapter device lb is electrically connected to the inspection electrode device 5 lb of the inspection electrode 52b via the anisotropic conductive sheet 55b. Electrically connected.
  • each of the electrodes to be inspected 6, 7 on both the upper surface and the lower surface of the circuit device 5 is in the inspection electrode 52a and the lower inspection head 50b of the inspection electrode device 51a in the upper inspection head 50a.
  • a state of being electrically connected to the inspection circuit of the tester is achieved, and a required electrical inspection is performed in this state.
  • a constant current is supplied between the current supply electrode 21b in the upper adapter device la and the current supply electrode 21b in the lower adapter device lb, and the upper adapter device la.
  • the electrical inspection apparatus for a circuit board described above since it has the upper side adapter device la and the lower side adapter device lb configured as shown in FIG. Regardless of the arrangement pattern of 7, the required electrical inspection can be reliably performed on the circuit device 5, and the electrodes 6 and 7 to be inspected of the circuit device 5 have minute pitches and high density. Even if it is arranged, the required electrical inspection can be reliably performed on the circuit device 5.
  • the present invention is not limited to the above-described embodiment, and various changes such as the following can be covered.
  • the anisotropic conductive connector 10 it is not essential that the conductive path forming portion 16 of the elastic anisotropic conductive film 15 has a protruding portion, and the entire surface of the elastic anisotropic conductive film 15 Even flat ones! /.
  • the anisotropic conductive connector 10 may be arranged so as to cover only the connection electrode region 25 of the adapter body 20.
  • the circuit device to be inspected is not limited to a printed circuit board, but may be a semiconductor integrated circuit device such as a knock IC or MCM, or a circuit device formed on a wafer.
  • the anisotropic conductive connector of the second example instead of the anisotropic conductive connector of the second example, the anisotropic conductive connector of the first example, the anisotropic conductive connector of the third example, or the anisotropic of the fourth example Conductive connectors can be used.
  • the anisotropic conductive connector 10 In the method for manufacturing the anisotropic conductive connector 10, according to the pattern corresponding to the pattern of the conductive path forming portion 16 to be formed as the releasable support plate for forming the conductive path forming portion.
  • a material in which a ferromagnetic part is arranged can be used.
  • the configuration of an example of such a releasable support plate is shown in FIG.
  • the releasable support plate 30 has a metal film 31 having a releasable surface (upper surface in FIG. 43) on which a conductive elastomer material layer is formed.
  • a ferromagnetic portion 32 On the back surface of the metal film 31, a ferromagnetic portion 32 is arranged according to a pattern corresponding to the pattern of the conductive path forming portion 16 to be formed, and a nonmagnetic portion 33 is arranged in the other region. Yes.
  • nickel, gold, copper, or the like can be used.
  • nickel, cobalt, or an alloy thereof can be used.
  • a photoresist can be used as a material constituting the nonmagnetic part 33.
  • a photoresist can be used as a material constituting the nonmagnetic part 33.
  • FIG. 44 such a releasable support plate 30 is formed by using a photoresist to form a non-magnetic part 33 having openings 33K formed on the metal film 31 according to the pattern of the ferromagnetic part 32 to be formed. After the formation, the surface of the portion exposed through the opening 33K of the non-magnetic portion 33 in the metal film 31 can be manufactured by performing a plating process.
  • the conductive path forming portion 16 is formed as follows.
  • a conductive elastomer material layer 16A is formed on the surface of the metal film 31 of the releasable support plate 30, and a contact member composite is formed on the conductive elastomer material layer 16A.
  • 18F is arranged so that each of its contact members 18 is in contact with the conductive elastomer material layer 16A.
  • a magnetic field is applied to the conductive elastomer material layer 16A via the contact member 18 and the ferromagnetic portion 32 of the releasable support plate 30 in the thickness direction of the conductive elastomer material layer 16A.
  • a portion of the conductive elastomer material layer 16 A located between the contact member 18 and the ferromagnetic portion 32 of the releasable support plate 30 has a stronger magnetic field than the other portions. It is formed.
  • the conductive particles P dispersed in the conductive elastomer material layer 16A are formed between the contact member 18 and the ferromagnetic portion 32 of the releasable support plate 30 as shown in FIG. Are aligned in the thickness direction of the material layer 16A for the conductive elastomer.
  • a conductive elastomer layer 16B which is contained in an elastic polymer material in a state in which the conductive particles P are aligned in the thickness direction, is supported on the releasable support plate 13. It is formed in a held state.
  • the metal foil 14 in the contact member composite 18F disposed on the conductive elastomer layer 16B is removed by etching to remove the contact member 18 and the resist layer 19 as shown in FIG. Expose.
  • laser processing is performed on the conductive elastomer layer 16B and the resist layer 19 using the contact member 18 as a mask to remove a part of the resist layer 19 and the conductive elastomer layer 16B.
  • FIG. 2 a plurality of conductive path forming portions 16 arranged according to a specific pattern and each provided with a contact member 18 are formed on the releasable support plate 30.
  • the magnetic material having a higher strength than the other portions in the portion where the contact member 18 is disposed with respect to the conductive elastomer material layer 16A.
  • the conductive particles P in the portion where the contact member 18 is disposed become dense, and the conductive particles P in the other portions become the layer. Sparse. Therefore, even if the thickness of the conductive elastomer layer 16 is considerably large, the conductive path forming portion of the desired form can be obtained by laser processing the conductive elastomer layer 16 B using the contact member 18 as a mask. 16 can be formed.
  • a metal film 37 is disposed on the elastic substrate 36 as the releasable support plate 35 for forming the insulating portion. You can use what you have!
  • an elastic polymer substance such as a hardened rubber or a thermoplastic elastomer can be used.
  • metal film 37 As a material constituting the metal film 37, copper, gold, nickel, silver, iron, cobalt, alloys thereof, alloy steels thereof, or the like can be used.
  • the conductive path forming portion 16 is infiltrated into the insulating material layer 17A formed on the releasable support plate 35 so that each contact member 18 is By making contact with the releasable support plate 35 and further pressurization, the pressurized portion of the releasable support plate 35 is deformed into a compressed state in the thickness direction, and thereby, the insulating portion material.
  • the contact member 18 and the conductive path forming portion 16 are also in a state where the bottom surface force of the insulating material layer 17A also protrudes, so that the anisotropic conductive connector 10 having the protruding portion is reliably manufactured. can do.
  • the conductive path forming portion 16 all of the conductive elastomer layer 16B other than the portion that becomes the conductive path forming portion is removed by laser processing, whereby the conductive path forming portion is removed.
  • the conductive path forming portion 16 can be formed by removing only the peripheral portion of the conductive elastomer layer 16B that becomes the conductive path forming portion. You can also. In this case, the remaining portion of the conductive elastomer layer 16B can be removed by mechanically peeling from the releasable support plate 15.
  • the anisotropically conductive connector 10 is arranged so as to close the frame plate 11 formed with a single opening 12 and the opening 12 of the frame plate 11.
  • a structure composed of a single elastic anisotropic conductive film 15 may be used.
  • the anisotropically conductive connector 10 includes a frame plate 11 having a plurality of openings 12 and a plurality of elastic plates each arranged so as to close one opening 12 of the frame plate 11.
  • a structure composed of the directionally conductive film 15 may be used.
  • the anisotropic conductive connector 10 includes a frame plate in which a plurality of openings are formed, one or more elastic anisotropic conductive films arranged so as to close one opening of the frame plate, and a frame plate.
  • a configuration including one or two or more elastic anisotropic conductive films arranged to block a plurality of openings may be used.
  • a metal foil (14) made of copper with a thickness of S18 ⁇ m is peeled and laminated on one surface of a 100 ⁇ m thick resin film made of polyethylene terephthalate.
  • a photolithography technique 4800 rectangular (19K) forces each having a dimension of 120 m x m Minimum separation distance Force S30 m (minimum center-to-center distance of 90 ⁇ m) resist layer with a thickness of 80 ⁇ m (19) was formed (see FIG. 3).
  • electrolytic nickel plating is applied to the surface of the metal foil (14) to form a contact member (18) made of nickel having a thickness of about 80 m in each opening (19K) of the resist layer (19). Therefore, the contact member composite (18F) was manufactured (see Fig. 4).
  • This conductive elastomer material is applied to the surface of a releasable support plate (13) made of stainless steel having a thickness of 5 mm by screen printing, so that the thickness of the conductive elastomer material is increased on the releasable support plate (13).
  • the contact member composite (18F) is disposed on the conductive elastomer material layer (16A) such that each of the contact members (18) is in contact with the conductive elastomer material layer (16A).
  • the material layer for conductive conductive elastomer (16A) is cured at 120 ° C for 1 hour while applying a magnetic field of 2 Tesla in the thickness direction with an electromagnet.
  • a conductive elastomer layer (16B) having a thickness of 150 m supported on the releasable support plate 13 was formed (see FIGS. 6 to 8).
  • the laser processing conditions by the carbon dioxide laser device are as follows.
  • a carbon dioxide laser processing machine “ML-605GTX” manufactured by Mitsubishi Electric Corporation
  • the laser beam diameter is 60 m and the laser output is 0.8 mJ.
  • the laser processing was performed by irradiating 10 shots of the laser beam at one processing point.
  • a frame plate (11) was produced as follows. Prepare a laminated sheet (“Espanex LB18—50—18NEP” made by Nippon Steel Engineering Co., Ltd.) in which copper foil is laminated on both sides of a resin sheet made of a liquid crystal polymer with a thickness of 50 ⁇ m. A resist film was formed by laminating a dry film resist on the copper foil on one side of the sheet. Next, by performing exposure processing and development processing on the formed resist film, pattern holes corresponding to the opening of the target frame plate are formed in the resist film, and further, etching processing is performed. An opening having a pattern corresponding to the opening of the target frame plate was formed in the copper foil, and then the resist film was removed.
  • a laminated sheet (“Espanex LB18—50—18NEP” made by Nippon Steel Engineering Co., Ltd.) in which copper foil is laminated on both sides of a resin sheet made of a liquid crystal polymer with a thickness of 50 ⁇ m.
  • a resist film was formed by
  • the resin sheet in the laminated sheet is subjected to laser processing through the opening formed in the copper foil to form an opening, and thereafter, the copper foil on both sides of the laminated sheet is subjected to etching treatment. By removing, a frame plate (11) was created.
  • This frame plate (11) is made of liquid crystal polymer and has dimensions of 190mm XI 30mm X 50 / zm, the opening (12) is a circle with a diameter force of OO / zm, and the total number of openings (12) is 2400 It is.
  • a coating film having a thickness of 10 m is formed, and a frame plate (11) is disposed on the coating film.
  • an insulating material layer (17A) with a total thickness of 100 m was formed, which was placed to close the opening (12) of the frame plate (11) (see Fig. 16). ).
  • the releasable support plate (13) on which 4800 conductive path forming parts (16) each having contact members (18) are formed is aligned and overlapped.
  • each of the conductive path forming portions (16) was allowed to enter the insulating material layer (17A), and the contact member (18) was brought into contact with the releasable support plate (13A). . Then, by applying a pressure of 800 kgf to the releasable support plate (13), the thickness of the conductive path forming part (16) was inertially compressed to 1200 / zm even at 150 ⁇ m force (see Fig. 17). In this state, 120 ° C for 1 hour In this case, the insulating material layer (17A) is hardened to form an integral insulating portion (17) around the conductive path forming portion (16), and thus an elastic anisotropic conductive film (15 ) (See FIG.
  • the elastic anisotropic conductive film (15) has a conductive path forming part (16) having a thickness of 150 111, an insulating part (17) having a thickness of 100 ⁇ m, a conductive path forming part ( 16)
  • the minimum separation distance is 30 m (minimum center-to-center distance is 90 m)
  • the two conductive path forming parts (16) are positioned within the opening (12) of the frame plate (11) Has been.
  • the conductive path forming portion (17) protrudes from both surfaces of the insulating portion (17), and the protruding height of the conductive path forming portion (16) is 50 m in total.
  • an adapter body (20) having the following specifications was manufactured. That is, the adapter body (20) has a vertical and horizontal dimension of 160 mm X 120 mm, and the substrate material is a glass fiber reinforced epoxy resin.
  • the connection electrode region on the surface of the adapter body (20) includes A rectangular connecting electrode with dimensions of 120 m x 60 m (21) force The minimum separation distance is 30 m (minimum center-to-center distance is 90 m).
  • the anisotropic conductive connector (10) is placed on the connection electrode region on the surface of the adapter body (20), and each of the conductive path forming portions (16) is positioned on the connection electrode (21).
  • the adapter device of the present invention was manufactured by arranging and fixing as described above.
  • an electrical resistance measuring instrument is used to electrically connect each of the conductive path forming portions to the surface of the conductive path forming portion and the conductive path forming portion in a state where each of the conductive path forming portions is compressed 5% in the thickness direction.
  • the electrical resistance hereinafter referred to as “conducting resistance”
  • the ratio of the conductive path forming part having this conducting resistance of 0.1 ⁇ or less was found to be 100%.
  • conductive path forming part pair two conductive path forming parts adjacent to each other (hereinafter referred to as “conductive path forming part pair”) in a state where each of the conductive path forming parts is compressed 5% in the thickness direction using an electric resistance measuring instrument.
  • the electrical resistance (hereinafter referred to as “insulation resistance”) was measured, and the ratio of the pair of conductive path forming portions having an insulation resistance of 100 ⁇ or more was determined to be 100%.
  • a metal foil (27) made of copper with a thickness of S18 ⁇ m is peeled and laminated on one surface of a 100 ⁇ m thick resin film made of polyethylene terephthalate.
  • a photolithographic technique 4800 rectangular (28K) forces each with a dimension of 120 m x m Minimum separation distance Force S30 m (minimum center-to-center distance of 90 A resist layer (28) with a thickness of 80 ⁇ m was formed (see FIG. 21).
  • the surface of the metal foil (27) is subjected to electrolytic nickel plating treatment, so that a metal mask (26) made of approximately 80 m thick in each opening (28K) of the resist layer (28).
  • a metal smack composite (26F) was produced (see FIG. 22).
  • the plating treatment was performed under the conditions of a plating bath temperature of 50 ° C, a current density of 2.5 AZdm, and a plating treatment time of 2 hours.
  • This conductive elastomer material is applied to the surface of a releasable support plate (13) made of stainless steel having a thickness of 5 mm by screen printing, so that the thickness of the conductive elastomer material is increased on the releasable support plate (13).
  • the metal mask composite (26F) is disposed on the conductive elastomer material layer (16A) so that each of the metal masks (26) is in contact with the conductive elastomer material layer (16A).
  • the electroconductive elastomer material layer (16A) is electromagnetized.
  • a conductive elastomer layer with a thickness of 150 m supported on the releasable support plate 13 is obtained by performing a curing process at 120 ° C for 1 hour while applying a magnetic field of 2 Tesla in the thickness direction. (16B) was formed (see FIGS. 24 to 26).
  • each of the conductive elastomer layer (16B) and the resist layer (28) is subjected to laser processing with a carbon dioxide gas laser device through a metal mask (26), thereby providing a releasable support plate.
  • (13) 4800 conductive path forming portions (16) supported on the top were formed (see FIG. 28).
  • the laser processing conditions by the carbon dioxide laser device are as follows.
  • the carbon dioxide laser processing machine “ML-605GTX” manufactured by Mitsubishi Electric Corporation was used as the equipment, the laser beam diameter was 60 m, and the laser output was 0.8 mJ. Laser processing was performed by irradiating the laser beam with 10 shots.
  • a frame plate (11) was produced as follows. Prepare a laminate sheet (“Espanex LB18—50—18NEP” made by Nippon Steel Engineering Co., Ltd.) in which copper foil is laminated on both sides of a resin sheet made of a liquid crystal polymer with a thickness of 50 ⁇ m. A resist film was formed by laminating a dry film resist on the copper foil on one side of the sheet. Next, by performing exposure processing and development processing on the formed resist film, pattern holes corresponding to the opening of the target frame plate are formed in the resist film, and further, etching processing is performed. An opening having a pattern corresponding to the opening of the target frame plate was formed in the copper foil, and then the resist film was removed.
  • a laminate sheet (“Espanex LB18—50—18NEP” made by Nippon Steel Engineering Co., Ltd.) in which copper foil is laminated on both sides of a resin sheet made of a liquid crystal polymer with a thickness of 50 ⁇ m.
  • a resist film was formed by lamin
  • This frame plate (11) is made of liquid crystal polymer and has dimensions of 190mm XI 30mm X 50 / zm, the opening (12) is a circle with a diameter force of OO / zm, and the total number of openings (12) is 2400 It is.
  • a coating film having a thickness of 10 m is formed, and a frame plate (11) is disposed on the coating film.
  • an insulating material layer (17A) having a total thickness of 100 m is formed to close the opening (12) of the frame plate (11).
  • the releasable support plate (13) on which 4800 conductive path forming parts (16) are formed is aligned and overlapped to form the conductive path forming part (16). Each of these was infiltrated into the insulating material layer (17A) and brought into contact with the releasable support plate (13A) (see FIGS. 34 and 35).
  • the thickness of the conductive path forming part (16) is inertially compressed from 150 m to 120 m, and in this state, 120 ° C, 1
  • the insulating material layer (17A) is cured under conditions of time to form an integral insulating portion (17) around the conductive path forming portion (16), and thus the elastic anisotropic conductive film is formed.
  • the anisotropic conductive film (10) of the present invention was manufactured by releasing the elastic anisotropic conductive film from the release support plate (13, 13A).
  • the elastic anisotropic conductive film (15) in this anisotropic conductive connector (10) has a conductive path forming part (16) thickness of 15 O ⁇ m, an insulating part (17) thickness of 100 m, and a conductive path forming part.
  • the minimum separation distance of (16) is 3 O ⁇ m (minimum center-to-center distance is 90 ⁇ m), and two conductive path forming parts (16) are placed in the opening (12) of the frame plate (11). It is arranged to be located. Further, the conductive path forming portion (17) protrudes on both sides of the insulating portion (17), and the total projecting height of the conductive path forming portion (16) is 50 ⁇ m.
  • an adapter body (20) having the following specifications was manufactured. That is, the adapter body (20) has a vertical and horizontal dimension of 160 mm X 120 mm, and the substrate material is a glass fiber reinforced epoxy resin.
  • the connection electrode region on the surface of the adapter body (20) includes Rectangular connection electrode with dimensions of 120 m x 60 m (21) force The minimum separation distance is 30 m (minimum center distance is 90 m), and a total of 4800 are arranged.
  • a total of 4800 terminals are arranged at a pitch of a circular terminal electrode (22) force of 750 ⁇ m with a diameter of 400 m.
  • the anisotropic conductive connector (10) is placed on the connection electrode region on the surface of the adapter body (20), and each of the conductive path forming portions (16) is positioned on the connection electrode (21).
  • the adapter device of the present invention was manufactured by arranging and fixing as described above.
  • an electrical resistance measuring instrument is used to electrically connect each of the conductive path forming portions to the surface of the conductive path forming portion and the conductive path forming portion in a state where each of the conductive path forming portions is compressed 5% in the thickness direction.
  • the electrical resistance hereinafter referred to as “conducting resistance”
  • the ratio of the conductive path forming part having this conducting resistance of 0.1 ⁇ or less was found to be 100%.
  • conductive path forming part pair two conductive path forming parts adjacent to each other (hereinafter referred to as “conductive path forming part pair”) in a state where each of the conductive path forming parts is compressed 5% in the thickness direction using an electric resistance measuring instrument.
  • the electrical resistance (hereinafter referred to as “insulation resistance”) was measured, and the ratio of the pair of conductive path forming portions having an insulation resistance of 100 ⁇ or more was determined to be 100%.
  • the substrate (81, 86) in each of the upper mold (80) and the lower mold (85) is made of iron and has a thickness of omm.
  • the ferromagnetic part (82, 87) is made of nickel, is rectangular with dimensions of 120 m x 60 m in length and width, is 100 m in thickness, and is the smallest of the plate-like ferromagnetic parts (82, 87).
  • the total number of ferromagnetic layers is 4800 with a separation distance of 30 ⁇ m (minimum center-to-center distance is 90 ⁇ m).
  • the non-magnetic part (83, 88) is made of a hardened dry film resist and has a thickness of 0.125 mm.
  • a frame plate (90) was produced in the same manner as in Example 1.
  • conductive particles By adding 60 parts by weight of conductive particles with an average particle diameter of 12 m to 100 parts by weight of addition-type liquid silicone rubber, mixing, and then subjecting to degassing treatment under reduced pressure, a material for anisotropic conductive elastomers was prepared.
  • the conductive particles those obtained by subjecting core particles made of nickel to gold plating (average coating amount: 2% by weight of the weight of the core particles) were used.
  • a spacer with a thickness of 25 ⁇ m with an opening of 160mm x 120mm formed is aligned and placed in the opening of this spacer.
  • the prepared anisotropic conductive elastomer material was applied by screen printing to form an anisotropic conductive elastomer material layer having a thickness of 25 m.
  • the spacer and the spacer with the thickness of 25 ⁇ m in which the prepared frame plate (90) and 160mm X 1 20mm opening were formed on the spacer and anisotropic conductive elastomer layer were aligned in this order.
  • An anisotropic conductive elastomer material layer (95A) having a form corresponding to the target elastic anisotropic conductive film was formed by applying the arranged and adjusted anisotropic conductive elastomer material by screen printing. .
  • the upper mold (80) is positioned and arranged on the anisotropic conductive elastomer material layer (95A), and the ferromagnetic part (82A) is placed against the anisotropic conductive elastomer material layer (95A).
  • 87) by applying a 2T magnetic field in the thickness direction with an electromagnet to the part located between 120 ° C and 1 hour for the thickness between the conductive particles.
  • An anisotropic anisotropic conductive film composed of 4800 conductive path forming portions extending in the direction and insulating portions formed around the conductive path forming portions was formed.
  • an anisotropic conductive connector for comparison was manufactured.
  • the elastic anisotropic conductive film in this anisotropic conductive connector has a conductive path forming portion thickness of 1 m, an insulating portion thickness of 100 m, and a minimum separation distance of the conductive path forming portion of 30 m (maximum The small center-to-center distance is 90 m), and the two conductive path forming portions are arranged so as to be positioned in the opening of the frame plate.
  • the conductive path forming part protrudes from each side of the insulating part, and the total projecting height of the conductive path forming part is 50 m.
  • the content ratio of the conductive particles in the conductive path forming portion is about 30% in volume fraction.
  • An adapter body having the same specifications as in Example 1 was prepared, and the anisotropic conductive connector was placed on the connection electrode area on the surface of the adapter body, and each of the conductive path forming portions was a connection electrode.
  • An adapter device for comparison was manufactured by placing and fixing it so as to be positioned above.
  • the conduction resistance was measured in the same manner as in Example 1, and the ratio of the conductive path forming portion having the conduction resistance of 0.1 ⁇ or less was determined to be 100%. Further, the insulation resistance was measured in the same manner as in Example 1, and the ratio of the conductive path forming portion pair having an insulation resistance of 100 ⁇ or more was determined to be 97%.

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

An anisotropic conductive connector for positively achieving a specified electric connection independent of an electrode pattern or even if an electrode pitch is fine and at high density, and requiring a small production cost, and a production method therefor; an adaptor device; and an electrical inspection device for a circuit device. The anisotropic conductive connector is obtained by disposing a metal contact member exhibiting magnetism corresponding to the pattern of a conductive path forming unit on the surface of a conductive elastomer-use material layer formed on a mold-releasing support plate and formed by including magnetic conductive particles in a liquid polymer substance forming material, allowing magnetic field to act on the conductive elastomer-use material layer in a thickness direction and curing the conductive elastomer-use material layer to forma a conductive elastomer layer, laser processing the conductive elastomer layer to form a plurality of conductive path forming units, and forming an insulation unit-use material layer consisting of a polymer substance forming material between these conductive path forming units and curing it.

Description

明 細 書  Specification
異方導電性コネクターおよびその製造方法、アダプター装置並びに回路 装置の電気的検査装置  Anisotropic conductive connector and method for manufacturing the same, adapter device and circuit device electrical inspection device
技術分野  Technical field
[0001] 本発明は、例えばプリント回路基板などの回路装置の電気的検査に好適に用いる ことができる異方導電性コネクターおよびその製造方法、この異方導電性コネクター を具えたアダプター装置並びにこのアダプター装置を具えた回路装置の電気的検 查装置に関するものである。  [0001] The present invention relates to an anisotropic conductive connector that can be suitably used for electrical inspection of a circuit device such as a printed circuit board, a method for manufacturing the same, an adapter device including the anisotropic conductive connector, and the adapter. The present invention relates to an electrical inspection device for a circuit device including the device.
背景技術  Background art
[0002] 一般に集積回路装置、その他の電子部品などを構成するまたは搭載するための回 路基板にっ 、ては、電子部品などを組み立てる以前に或 、は電子部品などを搭載 する以前に、当該回路基板の配線パターンが所期の性能を有することを確認するた めにその電気的特性を検査することが必要である。  [0002] Generally, a circuit board for constituting or mounting an integrated circuit device or other electronic components is not suitable before assembling the electronic components or before mounting the electronic components. In order to confirm that the circuit board wiring pattern has the expected performance, it is necessary to inspect its electrical characteristics.
従来、回路基板の電気的検査を実行する方法としては、縦横に並ぶ格子点位置に 従って複数の検査電極が配置されてなる検査電極装置と、この検査電極装置の検 查電極に検査対象である回路基板の被検査電極を電気的に接続するアダプターと を組み合わせて用いる方法などが知られて 、る。この方法にぉ 、て用いられるァダプ ターは、ピッチ変換ボードと称されるプリント配線板よりなるものである。  Conventionally, as a method of performing an electrical inspection of a circuit board, an inspection electrode device in which a plurality of inspection electrodes are arranged according to the grid point positions arranged in the vertical and horizontal directions, and the inspection electrode of this inspection electrode device are inspection targets. A method of using a combination with an adapter for electrically connecting an electrode to be inspected on a circuit board is known. In this method, the adapter used is a printed wiring board called a pitch conversion board.
このアダプタ一としては、一面に検査対象である回路基板の被検査電極に対応す るパターンに従って配置された複数の接続用電極を有し、他面に検査電極装置の検 查電極と同一のピッチの格子点位置に配置された複数の端子電極を有するもの、一 面に検査対象である回路基板の被検査電極に対応するパターンに従って配置され た、電流供給用接続用電極および電圧測定用接続用電極よりなる複数の接続用電 極対を有し、他面に検査電極装置の検査電極と同一のピッチの格子点位置に配置 された複数の端子電極を有するものなどが知られており、前者のアダプタ一は、例え ば回路基板における各回路のオープン 'ショート試験などに用いられ、後者のァダプ ターは、回路基板における各回路の電気抵抗測定試験に用いられている。 而して、回路基板の電気的検査においては、一般に、検査対象である回路基板と アダプターとの安定な電気的接続を達成するために、検査対象である回路基板とァ ダブターとの間に、コネクタ一として異方導電性エラストマ一シートを介在させることが 行われている。 This adapter has a plurality of connection electrodes arranged on one side according to a pattern corresponding to the electrodes to be inspected on the circuit board to be inspected, and has the same pitch as the inspection electrodes of the inspection electrode device on the other side. Having a plurality of terminal electrodes arranged at the grid point positions of the current supply connection electrodes and voltage measurement connection electrodes arranged according to a pattern corresponding to the electrodes to be inspected on the circuit board to be inspected on one side The former has a plurality of connection electrode pairs made of electrodes, and has a plurality of terminal electrodes arranged on the other surface at lattice point positions having the same pitch as the inspection electrodes of the inspection electrode device. This adapter is used for, for example, an open / short test of each circuit on a circuit board, and the latter adapter is used for an electric resistance measurement test of each circuit on the circuit board. Therefore, in the electrical inspection of the circuit board, in general, in order to achieve a stable electrical connection between the circuit board to be inspected and the adapter, the circuit board to be inspected and the adapter are An anisotropic conductive elastomer sheet is interposed as a connector.
[0003] この異方導電性エラストマ一シートは、厚さ方向にのみ導電性を示すもの、ある ヽ は加圧されたときに厚さ方向にのみ導電性を示す多数の加圧導電性導電部を有す るものである。  [0003] This anisotropically conductive elastomer sheet has conductivity only in the thickness direction, or there are a number of pressure-conducting conductive portions that exhibit conductivity only in the thickness direction when pressed. It has something.
このような異方導電性エラストマ一シートとしては、従来、種々の構造のものが知ら れており、その代表的な例としては、金属粒子をエラストマ一中に均一に分散して得 られるもの(例えば特許文献 1参照。)、導電性磁性金属粒子をエラストマ一中に不均 一に分散させることにより、厚み方向に伸びる多数の導電路形成部と、これらを相互 に絶縁する絶縁部とが形成されてなるもの (例えば特許文献 2参照。)、導電路形成 部の表面と絶縁部との間に段差が形成されたもの (例えば特許文献 3参照。)などが 挙げられる。  Such anisotropically conductive elastomer sheets are conventionally known in various structures, and typical examples thereof are those obtained by uniformly dispersing metal particles in an elastomer ( For example, refer to Patent Document 1.) By disperse the conductive magnetic metal particles unevenly in the elastomer, many conductive path forming portions extending in the thickness direction and insulating portions that insulate them from each other are formed. (For example, see Patent Document 2), and those in which a step is formed between the surface of the conductive path forming portion and the insulating portion (for example, see Patent Document 3).
そして、配置ピッチの小さい被検査電極を有する回路基板に対しては、当該回路 基板の被検査電極のパターンに対応するパターンに従って導電路形成部が形成さ れてなる異方導電性エラストマ一シートが、高 、接続信頼性が得られる点で好まし ヽ  For a circuit board having electrodes to be inspected with a small arrangement pitch, there is an anisotropic conductive elastomer sheet in which a conductive path forming portion is formed according to a pattern corresponding to the pattern of the electrodes to be inspected on the circuit board. High, preferred in terms of connection reliability ヽ
[0004] 然るに、このような異方導電性エラストマ一シートは、それ自体が単独の製品として 製造され、また単独で取り扱われるものであって、電気的接続作業においてはァダプ ターおよび回路基板に対して特定の位置関係をもって保持固定することが必要であ る。 [0004] However, such an anisotropically conductive elastomer sheet is manufactured as a single product and handled alone, and is used for an adapter and a circuit board in electrical connection work. Therefore, it is necessary to hold and fix with a specific positional relationship.
しカゝしながら、独立した異方導電性エラストマ一シートを利用して回路基板の電気 的接続を達成する手段においては、検査対象である回路基板における被検査電極 の配列ピッチ(以下「電極ピッチ」という。 )、すなわち互いに隣接する被検査電極の 中心間距離が小さくなるに従って異方導電性エラストマ一シートの位置合わせおよ び保持固定が困難となる、という問題点がある。  However, in the means for achieving the electrical connection of the circuit board by using an independent anisotropic conductive elastomer sheet, the arrangement pitch of the electrodes to be inspected on the circuit board to be inspected (hereinafter referred to as “electrode pitch”). That is, there is a problem that it becomes difficult to align and hold the anisotropic conductive elastomer sheet as the distance between the centers of the electrodes to be inspected adjacent to each other becomes smaller.
また、ー且は所望の位置合わせおよび保持固定が実現された場合においても、温 度変化による熱履歴を受けた場合などには、熱膨張および熱収縮による応力の程度 力 検査対象である回路基板を構成する材料と異方導電性エラストマ一シートを構 成する材料との間で大きく異なるため、電気的接続状態が変化して安定な接続状態 が維持されない、という問題点がある。 Also, even when the desired alignment and holding / fixing is achieved, When the thermal history due to temperature change is received, the degree of stress due to thermal expansion and contraction Force between the material composing the circuit board to be inspected and the material composing the anisotropic conductive elastomer sheet Because of the large difference, there is a problem that the electrical connection state changes and the stable connection state cannot be maintained.
そして、最近においては、上記の問題を解決するために、異方導電性エラストマ一 シートの周縁部が金属よりなるフレーム板によって支持されてなる異方導電性コネク ターが提案されている (例えば特許文献 4参照。 )0 Recently, in order to solve the above problems, an anisotropic conductive connector in which the peripheral edge portion of the anisotropic conductive elastomer sheet is supported by a frame plate made of metal has been proposed (for example, a patent). See Reference 4.) 0
このような異方導電性コネクタ一は、例えば次のようにして製造される。  Such an anisotropic conductive connector 1 is manufactured as follows, for example.
先ず、図 55に示すような構成の金型を用意する。この金型は、基板 81上に、例え ば検査対象である回路基板の被検査電極と同一のパターンに従って強磁性体部 82 が配置されると共に、当該強磁性体部 82以外の部分に非磁性体部 83が配置されて なる一方の型板 (以下、「上型」という。)80と、基板 86上に、検査対象である回路基 板の被検査電極と対掌のパターンに従って強磁性体部 87が配置されると共に、当 該強磁性体部 87以外の部分に非磁性体部 88が配置されてなる他方の型板 (以下、 「下型」という。)85とにより構成されている。  First, a mold having a structure as shown in FIG. 55 is prepared. In this mold, a ferromagnetic part 82 is arranged on a substrate 81 in accordance with the same pattern as, for example, an electrode to be inspected on a circuit board to be inspected, and a non-magnetic part is formed on a part other than the ferromagnetic part 82. Ferromagnetic material is formed on one template 80 (hereinafter referred to as “upper die”) in which the body part 83 is disposed, and on the substrate 86 according to the pattern of the electrode to be inspected and the palm of the circuit board to be inspected. And the other mold plate (hereinafter referred to as “lower mold”) 85 in which the non-magnetic part 88 is arranged in a part other than the ferromagnetic part 87. .
そして、この金型内に、図 56に示すように、開口 91を有するフレーム板 90を配置 すると共に、このフレーム板 90の開口 91を塞ぐよう異方導電性エラストマ一用材料層 95Aを形成する。この異方導電性エラストマ一用材料層 95Aは、硬化されて弾性高 分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子 Pが含有さ れてなるものである。  Then, as shown in FIG. 56, a frame plate 90 having an opening 91 is disposed in the mold, and an anisotropic conductive elastomer material layer 95A is formed so as to close the opening 91 of the frame plate 90. . The anisotropic conductive elastomer material layer 95A is formed by containing conductive particles P exhibiting magnetism in a liquid polymer material forming material that is cured to become an elastic high molecular material.
次いで、上型 80の上面および下型 85の下面に一対の電磁石(図示省略)を配置し 、この電磁石を作動させることにより、上型 80の強磁性体部 82からこれに対応する下 型 85の強磁性体部 87に向力 方向に平行磁場を作用させる。このとき、上型 80の 強磁性体部 82および下型 85の強磁性体部 87の各々が磁極として作用するため、 上型 80の強磁性体部 82と下型 85の強磁性体部 87との間の領域には、それ以外の 領域よりも大きい強度の磁場が作用する。その結果、異方導電性エラストマ一用材料 層 95Aにお ヽては、当該異方導電性エラストマ一用材料層 95A中に分散されて!ヽ た導電性粒子 Pが、上型 80の強磁性体部 82と下型 85の強磁性体部 87との間に位 置する部分に向力つて移動して当該部分に集合し、更に厚み方向に並ぶよう配向す る。 Next, a pair of electromagnets (not shown) are arranged on the upper surface of the upper die 80 and the lower surface of the lower die 85, and by operating the electromagnet, the lower die 85 corresponding to the lower die 85 from the ferromagnetic portion 82 of the upper die 80 is operated. A parallel magnetic field is applied to the ferromagnet part 87 in the direction of the direction of force. At this time, since each of the ferromagnetic part 82 of the upper mold 80 and the ferromagnetic part 87 of the lower mold 85 acts as a magnetic pole, the ferromagnetic part 82 of the upper mold 80 and the ferromagnetic part 87 of the lower mold 85 are used. A magnetic field with a greater strength than the other areas acts on the area between the two. As a result, in the anisotropic conductive elastomer material layer 95A, the conductive particles P dispersed in the anisotropic conductive elastomer material layer 95A are dispersed in the upper 80 ferromagnetic material. Between the body part 82 and the ferromagnetic part 87 of the lower mold 85. The portion to be placed is moved by force and gathers in the portion, and is further aligned in the thickness direction.
この状態で、異方導電性エラストマ一用材料層 95Aに対して例えば加熱による硬 化処理を行うことにより、図 57に示すように、導電性粒子 Pが含有されてなる厚み方 向に伸びる多数の導電路形成部 96とこれらを相互に絶縁する絶縁部 97とよりなる異 方導電性エラストマ一シート 95が、フレーム板 90に支持されてなる異方導電性コネク ターが製造される。  In this state, the anisotropic conductive elastomer material layer 95A is hardened by heating, for example, so that a large number of layers extending in the thickness direction containing the conductive particles P as shown in FIG. An anisotropic conductive connector is manufactured in which an anisotropic conductive elastomer sheet 95 composed of the conductive path forming portion 96 and an insulating portion 97 that insulates the conductive path forming portion 96 from each other is supported by the frame plate 90.
[0006] このような異方導電性コネクターによれば、回路基板の電気的検査において、回路 基板に対する異方導電性エラストマ一シートの位置合わせ作業を容易に行うことがで き、また、異方導電性エラストマ一シートの熱膨張をフレーム板によって規制すること ができるので、温度変化による熱履歴などの環境の変化に対しても良好な電気的接 続状態が安定に維持され、従って高!ヽ接続信頼性が得られる。  [0006] According to such an anisotropically conductive connector, it is possible to easily perform the alignment work of the anisotropically conductive elastomer sheet with respect to the circuit board in the electrical inspection of the circuit board. Since the thermal expansion of the conductive elastomer sheet can be regulated by the frame plate, a good electrical connection state is stably maintained even with environmental changes such as thermal history due to temperature changes, and therefore high! Connection reliability can be obtained.
[0007] し力しながら、上記の異方導電性コネクターにおいては、以下のような問題がある。  [0007] However, the anisotropic conductive connector has the following problems.
電子部品を構成または搭載するための回路基板としては、その電極が例えば矩形 の四辺に沿って枠状に配置されてなるものが知られている。而して、このような回路 基板の電気的検査を行うためには、導電路形成部 96が矩形の四辺に沿って枠状に 配置されてなる異方導電性エラストマ一シート 95を有する異方導電性コネクターを用 いることが必要である。然るに、このような異方導電性エラストマ一シート 95は、導電 路形成部 96に囲まれた中央部分がすべて絶縁部 97となるため、当該異方導電性ェ ラストマーシート 95の形成において、異方導電性エラストマ一用材料層 95Aの中央 部分に存在する導電性粒子についてはその移動距離が極めて長いものとなる結果、 当該導電性粒子を導電路形成部となるべき部分に確実に集合させることは困難であ る。そのため、得られる導電路形成部 96には、所要の量の導電性粒子が充填されず 、し力も、絶縁部 97には、相当な量の導電性粒子が残存するため、所期の異方導電 性エラストマ一シートを確実に形成することができない。  As a circuit board for configuring or mounting an electronic component, one in which electrodes are arranged in a frame shape along, for example, four sides of a rectangle is known. Thus, in order to perform an electrical inspection of such a circuit board, the anisotropic path having the anisotropic conductive elastomer sheet 95 in which the conductive path forming portion 96 is arranged in a frame shape along the four sides of the rectangle. It is necessary to use conductive connectors. However, in such an anisotropic conductive elastomer sheet 95, since the central portion surrounded by the conductive path forming portion 96 is all the insulating portion 97, the anisotropic conductive elastomer sheet 95 is different in forming the anisotropic conductive elastomer sheet 95. As for the conductive particles present in the central part of the material layer 95A for the conductive elastomer, the moving distance is extremely long. It is difficult. Therefore, the obtained conductive path forming part 96 is not filled with a required amount of conductive particles, and a considerable amount of conductive particles remain in the insulating part 97. A conductive elastomer sheet cannot be reliably formed.
[0008] また、現在、集積回路装置においては、その高機能化、高容量化に伴って電極数 が増加し、電極の配置ピッチすなわち隣接する電極の中心間距離力 、さくなつて高 密度化が一層推進される傾向にある。従って、このような集積回路装置を構成または 搭載するための回路基板に対して電気的検査を行う場合には、導電路形成部のピッ チが小さくて高密度に配置された異方導電性コネクターを用いることが必要である。 而して、このような異方導電性コネクターの製造においては、当然のことながら強磁 性体部 82, 87が極めて小さいピッチで配置された上型 80および下型 85を用いるこ とが必要である。 [0008] In addition, in an integrated circuit device, the number of electrodes increases with the increase in functionality and capacity, and the arrangement pitch of electrodes, that is, the distance force between the centers of adjacent electrodes, increases the density. Tend to be further promoted. Therefore, such an integrated circuit device is configured or When an electrical inspection is performed on a circuit board to be mounted, it is necessary to use anisotropic conductive connectors that have a small pitch at the conductive path forming portion and are arranged with high density. Thus, in manufacturing such an anisotropic conductive connector, it is natural that it is necessary to use the upper die 80 and the lower die 85 in which the ferromagnetic parts 82 and 87 are arranged at an extremely small pitch. It is.
[0009] 然るに、このような上型 80および下型 85を用い、上述のようにして異方導電性エラ ストマーシート 95を形成する場合には、図 58に示すように、上型 80および下型 85の 各々において、或る強磁性体部 82a, 87aとこれに隣接する強磁性体部 82b, 87bと の間の離間距離が小さいため、上型 80の強磁性体部 82aからこれに対応する下型 8 5の強磁性体部 87aに向力う方向(矢印 Xで示す)のみならず、例えば上型 80の強磁 性体部 82aからこれに対応する下型 85の強磁性体部 87aに隣接する強磁性体部 87 bに向かう方向(矢印 Yで示す)〖こも磁場が作用することとなる。そのため、異方導電 性エラストマ一用材料層 95Aにおいて、導電性磁性体粒子を、上型 80の強磁性体 部 82aとこれに対応する下型 85の強磁性体部 87aとの間に位置する部分に集合さ せることが困難となり、上型 80の強磁性体部 82aと下型 85の強磁性体部 87bとの間 に位置する部分にも導電性磁性体粒子が集合してしまい、また、導電性粒子を異方 導電性エラストマ一用材料層 95Aの厚み方向に十分に配向させることが困難となり、 その結果、所期の導電路形成部および絶縁部を有する異方導電性コネクターが得ら れない。  However, when such an upper die 80 and lower die 85 are used to form the anisotropic conductive elastomer sheet 95 as described above, as shown in FIG. 58, the upper die 80 and the lower die 85 are formed. In each of the molds 85, since the separation distance between a certain ferromagnetic part 82a, 87a and the adjacent ferromagnetic parts 82b, 87b is small, it corresponds to the ferromagnetic part 82a of the upper mold 80. Not only in the direction (indicated by the arrow X) in the direction of the ferromagnetic part 87a of the lower mold 85, but also from the ferromagnetic part 82a of the upper mold 80 to the corresponding lower ferromagnetic part 85 of the lower mold 85. The magnetic field also acts in the direction toward the ferromagnetic part 87 b adjacent to 87a (indicated by the arrow Y). Therefore, in the anisotropic conductive elastomer material layer 95A, the conductive magnetic particles are located between the ferromagnetic portion 82a of the upper die 80 and the corresponding ferromagnetic portion 87a of the lower die 85. It becomes difficult to assemble them into the part, and the conductive magnetic particles also gather in the part located between the ferromagnetic part 82a of the upper die 80 and the ferromagnetic part 87b of the lower die 85. Therefore, it becomes difficult to sufficiently orient the conductive particles in the thickness direction of the anisotropic conductive elastomer material layer 95A, and as a result, an anisotropic conductive connector having a desired conductive path forming portion and insulating portion is obtained. I can't.
[0010] また、異方導電性エラストマ一シートの形成においては、前述したように、上型 80お よび下型 85の 2つの型板が必要である。これらの型板は、例えば検査対象である回 路基板に応じて個別的に製造されるものであり、また、その製造工程が煩雑なもので あるため、異方導電性コネクターの製造コストが極めて高いものとなり、延いては回路 装置の検査コストの増大を招く。  [0010] In addition, in forming the anisotropic conductive elastomer sheet, as described above, two mold plates of the upper mold 80 and the lower mold 85 are required. These templates are individually manufactured according to the circuit board to be inspected, for example, and the manufacturing process is complicated, so that the manufacturing cost of the anisotropic conductive connector is extremely high. This leads to an increase in the inspection cost of the circuit device.
[0011] このような問題を解決するため、導電性粒子が厚み方向に並ぶよう配向した状態で 含有されてなる導電性エラストマ一層をレーザー加工して成形することにより、目的と するパターンに従って配置された複数の導電路形成部を形成し、これらの導電路形 成部の間に絶縁部を形成する方法が提案されている (特許文献 5参照。 )0 し力しながら、このような方法においては、以下のような問題があることが判明した。 高 、導電性を有する異方導電性エラストマ一シートを得るためには、導電性粒子が 高い割合で含有された導電路形成部を形成することが肝要である。一方、高い凹凸 吸収性を有する異方導電性エラストマ一シートを得るためには、厚みの大きい導電 路形成部を形成することが肝要である。 [0011] In order to solve such a problem, a conductive elastomer layer containing conductive particles aligned in a thickness direction is formed by laser processing to be arranged according to a target pattern. a plurality of conductive path forming portion to form a method of forming an insulating portion between these conductive path-shaped forming portion has been proposed (see Patent Document 5.) 0 However, it has been found that such a method has the following problems. In order to obtain an anisotropic conductive elastomer sheet having high conductivity, it is important to form a conductive path forming portion containing a high proportion of conductive particles. On the other hand, in order to obtain an anisotropic conductive elastomer sheet having high unevenness absorbability, it is important to form a conductive path forming portion having a large thickness.
而して、上記の製造方法において、導電性粒子が高い割合で含有された厚みの大 き ヽ導電路形成部を形成するためには、導電性粒子が高 ヽ割合で含有された厚み の大きい導電性エラストマ一層を形成することが必要となる。  Thus, in the manufacturing method described above, in order to form a conductive path forming part with a large thickness containing conductive particles at a high rate, a large thickness containing conductive particles at a high rate is used. It is necessary to form one conductive elastomer layer.
然るに、このような導電性エラストマ一層は、レーザー加工によって成形しにくいも のであるため、所期の導電路形成部を得ることが困難である。  However, since such a conductive elastomer layer is difficult to be formed by laser processing, it is difficult to obtain a desired conductive path forming portion.
[0012] 特許文献 1 :特開昭 51— 93393号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 51-93393
特許文献 2:特開昭 53— 147772号公報  Patent Document 2: Japanese Patent Laid-Open No. 53-147772
特許文献 3:特開昭 61 - 250906号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 61-250906
特許文献 4:特開平 11—40224号公報  Patent Document 4: JP-A-11-40224
特許文献 5:特開 2004— 342597号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-342597
発明の開示  Disclosure of the invention
[0013] 本発明は、以上のような事情に基づいてなされたものであって、その第 1の目的は、 接続すべき電極の配置パターンに関わらず、当該電極の各々に対して所要の電気 的接続を確実に達成することができると共に、接続すべき電極が、そのピッチが微小 で高密度に配置されている場合であっても、当該電極の各々に対して所要の電気的 接続を確実に達成することができ、しかも、小さいコストで製造することができる異方 導電性コネクターおよびその製造方法を提供することにある。  [0013] The present invention has been made based on the circumstances as described above. The first object of the present invention is to provide required electric power for each of the electrodes regardless of the arrangement pattern of the electrodes to be connected. Reliable connection to each of the electrodes, even if the electrodes to be connected are arranged with a small pitch and high density. It is another object of the present invention to provide an anisotropic conductive connector that can be achieved at a low cost, and a method for manufacturing the same.
本発明の第 2の目的は、検査対象である回路装置の被検査電極の配置パターンに 関わらず、当該回路装置について所要の電気的接続を確実に達成することができる と共に、被検査電極が、そのピッチが微小で高密度に配置されている場合であっても 、当該回路装置について所要の電気的接続を確実に達成することができ、し力も、小 さいコストで製造することができるアダプター装置を提供することにある。  The second object of the present invention is to reliably achieve the required electrical connection for the circuit device regardless of the arrangement pattern of the electrode to be inspected of the circuit device to be inspected. Even when the pitch is very small and densely arranged, the adapter device can reliably achieve the required electrical connection for the circuit device and can be manufactured at low cost. Is to provide.
本発明の第 3の目的は、検査対象である回路装置の被検査電極の配置パターンに 関わらず、当該回路装置について所要の電気的検査を確実に実行することができる と共に、検査対象である回路装置の被検査電極が、そのピッチが微小で高密度に配 置されている場合であっても、当該回路装置について所要の電気的検査を確実に実 行することができる回路装置の電気的検査装置を提供することにある。 A third object of the present invention is to provide an arrangement pattern of electrodes to be inspected of a circuit device to be inspected. Regardless of this, the required electrical inspection can be reliably performed on the circuit device, and the electrodes to be inspected of the circuit device to be inspected are arranged with a small pitch and a high density. However, it is an object of the present invention to provide an electrical inspection device for a circuit device that can surely execute a required electrical inspection for the circuit device.
[0014] 本発明の異方導電性コネクターの製造方法は、磁性を示す導電性粒子が厚み方 向に並ぶよう配向した状態で含有されてなる厚み方向に伸びる複数の導電路形成 部が、絶縁部によって相互に絶縁されてなる弾性異方導電膜と、前記導電路形成部 上に一体的に設けられた金属よりなる接点部材とを有する異方導電性コネクターを 製造する方法であって、  [0014] In the method for manufacturing an anisotropic conductive connector of the present invention, a plurality of conductive path forming portions extending in the thickness direction, which are contained in a state where the conductive particles exhibiting magnetism are aligned in the thickness direction, are insulated. A method of manufacturing an anisotropic conductive connector having an elastic anisotropic conductive film insulated from each other by a portion and a contact member made of metal integrally provided on the conductive path forming portion,
離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材 料中に磁性を示す導電性粒子が含有されてなる導電性エラストマ一用材料層を形 成し、  On the releasable support plate, a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an elastic polymer material is formed.
この導電性エラストマ一用材料層の表面に、形成すべき導電路形成部のパターン に対応する特定のパターンに従って磁性を示す金属よりなる接点部材を配置し、こ の状態で、当該導電性エラストマ一用材料層に対して、その厚み方向に磁場を作用 させると共に、当該導電性エラストマ一用材料層を硬化処理することにより、導電性 エラストマ一層を形成し、  A contact member made of a metal exhibiting magnetism is disposed on the surface of the material layer for the conductive elastomer according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed. A conductive elastomer layer is formed by applying a magnetic field to the material layer in the thickness direction and curing the material layer for the conductive elastomer.
この導電性エラストマ一層をレーザー加工して前記接点部材が配置された部分以 外の部分を除去することにより、前記離型性支持板上に、前記特定のパターンに従 つて配置された複数の導電路形成部を形成し、これらの導電路形成部の間に、硬化 されて弾性高分子物質となる高分子物質形成材料よりなる絶縁部用材料層を形成し て硬化処理することにより絶縁部を形成する工程を有することを特徴とする。  The conductive elastomer layer is laser-processed to remove a portion other than the portion where the contact member is disposed, whereby a plurality of conductive layers disposed according to the specific pattern on the releasable support plate. A path forming part is formed, and between these conductive path forming parts, an insulating part material layer made of a polymer material forming material that is cured and becomes an elastic polymer substance is formed and cured to form an insulating part. It has the process of forming, It is characterized by the above-mentioned.
[0015] また、本発明の異方導電性コネクターの製造方法は、 1または 2以上の開口が形成 されたフレーム板と、このフレーム板の開口を塞ぐよう配置されて当該フレーム板に支 持された、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で含有されて なる厚み方向に伸びる複数の導電路形成部が、絶縁部によって相互に絶縁されて なる 1または 2以上の弾性異方導電膜と、前記導電路形成部上に一体的に設けられ た金属よりなる接点部材とを有する異方導電性コネクターを製造する方法であって、 離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材 料中に磁性を示す導電性粒子が含有されてなる導電性エラストマ一用材料層を形 成し、 [0015] Further, the method for manufacturing an anisotropic conductive connector according to the present invention includes a frame plate in which one or more openings are formed, and is arranged so as to close the opening of the frame plate and is supported by the frame plate. In addition, one or more elastic differences in which a plurality of conductive path forming portions extending in the thickness direction, which are contained in a state where the conductive particles exhibiting magnetism are aligned in the thickness direction, are insulated from each other by the insulating portion. A method of manufacturing an anisotropic conductive connector having a conductive film and a contact member made of metal integrally provided on the conductive path forming portion, On the releasable support plate, a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an elastic polymer material is formed.
この導電性エラストマ一用材料層の表面に、形成すべき導電路形成部のパターン に対応する特定のパターンに従って磁性を示す金属よりなる接点部材を配置し、こ の状態で、当該導電性エラストマ一用材料層に対して、その厚み方向に磁場を作用 させると共に、当該導電性エラストマ一用材料層を硬化処理することにより、導電性 エラストマ一層を形成し、  A contact member made of a metal exhibiting magnetism is disposed on the surface of the material layer for the conductive elastomer according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed. A conductive elastomer layer is formed by applying a magnetic field to the material layer in the thickness direction and curing the material layer for the conductive elastomer.
この導電性エラストマ一層をレーザー加工して前記接点部材が配置された部分以 外の部分を除去することにより、前記離型性支持板上に、前記特定のパターンに従 つて配置され、前記接点部材が設けられた複数の導電路形成部を形成し、この状態 で、当該接点部材が設けられた導電路形成部の各々を、フレーム板の開口を塞ぐよ う形成された、硬化されて弾性高分子物質となる液状の高分子物質形成材料よりな る絶縁部用材料層中に浸入させ、当該絶縁部用材料層を硬化処理して絶縁部を形 成する工程を有することを特徴とする。  The conductive elastomer layer is laser processed to remove a portion other than the portion where the contact member is disposed, so that the conductive member is disposed according to the specific pattern on the releasable support plate. In this state, each of the conductive path forming portions provided with the contact member is formed so as to close the opening of the frame plate, and is cured to be highly elastic. It is characterized by having a process of forming an insulating part by infiltrating into an insulating part material layer made of a liquid polymer substance forming material that becomes a molecular substance and curing the insulating part material layer.
[0016] 上記の異方導電性コネクターの製造方法においては、金属箔上に、特定のパター ンに従って開口が形成されたレジスト層を形成し、前記金属箔における前記レジスト 層の開口力 露出した部分の表面に磁性を示す金属によるメツキ処理を施すことに より、当該レジスト層の開口の各々に接点部材が形成されてなる接点部材複合体を 製造し、この接点部材複合体を導電性エラストマ一用材料層の表面に積重すること により、当該導電性エラストマ一用材料層の表面に、前記特定のパターンに従って磁 性を示す金属よりなる接点部材を配置することが好ましい。  [0016] In the above method for manufacturing an anisotropic conductive connector, a resist layer having an opening formed in accordance with a specific pattern is formed on a metal foil, and the opening force of the resist layer in the metal foil is exposed. A contact member composite in which a contact member is formed in each of the openings of the resist layer is manufactured by performing a plating treatment with a metal exhibiting magnetism on the surface of the resist, and this contact member composite is used for a conductive elastomer. By stacking on the surface of the material layer, it is preferable to arrange a contact member made of a metal exhibiting magnetic properties according to the specific pattern on the surface of the conductive elastomer material layer.
[0017] また、本発明の異方導電性コネクターの製造方法は、磁性を示す導電性粒子が厚 み方向に並ぶよう配向した状態で含有されてなる厚み方向に伸びる複数の導電路 形成部が、絶縁部によって相互に絶縁されてなる弾性異方導電膜を有する異方導 電性コネクターを製造する方法であって、  [0017] Further, the method for manufacturing an anisotropic conductive connector of the present invention includes a plurality of conductive path forming portions extending in the thickness direction, which are contained in a state where the conductive particles exhibiting magnetism are aligned so as to be aligned in the thickness direction. A method for producing an anisotropic conductive connector having an elastic anisotropic conductive film insulated from each other by an insulating part, comprising:
離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材 料中に磁性を示す導電性粒子が含有されてなる導電性エラストマ一用材料層を形 成し、 On the releasable support plate, a material layer for a conductive elastomer is formed, in which a liquid polymer material forming material that is cured to become an elastic polymer material contains conductive particles exhibiting magnetism. And
この導電性エラストマ一用材料層の表面に、形成すべき導電路形成部のパターン に対応する特定のパターンに従って磁性を示す金属マスクを配置し、この状態で、 当該導電性エラストマ一用材料層に対して、その厚み方向に磁場を作用させると共 に、当該導電性エラストマ一用材料層を硬化処理することにより、導電性エラストマ一 層を形成し、  A metal mask showing magnetism is disposed on the surface of the conductive elastomer material layer according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed. In this state, the conductive elastomer material layer is formed on the conductive elastomer material layer. On the other hand, a conductive elastomer layer is formed by applying a magnetic field in the thickness direction and curing the conductive elastomer material layer.
この導電性エラストマ一層をレーザー加工して前記金属マスクが配置された部分以 外の部分を除去することにより、前記離型性支持板上に、前記特定のパターンに従 つて配置された複数の導電路形成部を形成し、これらの導電路形成部の間に、硬化 されて弾性高分子物質となる高分子物質形成材料よりなる絶縁部用材料層を形成し て硬化処理することにより絶縁部を形成する工程を有することを特徴とする。  The conductive elastomer layer is laser-processed to remove a portion other than the portion where the metal mask is disposed, whereby a plurality of conductive layers disposed in accordance with the specific pattern on the releasable support plate. A path forming part is formed, and between these conductive path forming parts, an insulating part material layer made of a polymer material forming material that is cured and becomes an elastic polymer substance is formed and cured to form an insulating part. It has the process of forming, It is characterized by the above-mentioned.
また、本発明の異方導電性コネクターの製造方法は、 1または 2以上の開口が形成 されたフレーム板と、このフレーム板の開口を塞ぐよう配置され、当該フレーム板に支 持された 1または 2以上の弾性異方導電膜とを有してなり、前記弾性異方導電膜は、 前記フレーム板の開口内に配置された、磁性を示す導電性粒子が厚み方向に並ぶ よう配向した状態で含有されてなる厚み方向に伸びる複数の導電路形成部と、導電 路形成部の周囲に形成された絶縁部とよりなる異方導電性コネクターを製造する方 法であって、  In addition, the method for manufacturing an anisotropic conductive connector according to the present invention includes a frame plate having one or more openings formed therein, and a frame plate arranged so as to close the opening of the frame plate and supported by the frame plate. Two or more elastic anisotropic conductive films, wherein the elastic anisotropic conductive film is disposed in the opening of the frame plate and oriented so that the conductive particles exhibiting magnetism are aligned in the thickness direction. A method of manufacturing an anisotropic conductive connector comprising a plurality of conductive path forming portions extending in the thickness direction, and an insulating portion formed around the conductive path forming portion,
離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材 料中に磁性を示す導電性粒子が含有されてなる導電性エラストマ一用材料層を形 成し、  On the releasable support plate, a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an elastic polymer material is formed.
この導電性エラストマ一用材料層の表面に、形成すべき導電路形成部のパターン に対応する特定のパターンに従って磁性を示す金属マスクを配置し、この状態で、 当該導電性エラストマ一用材料層に対して、その厚み方向に磁場を作用させると共 に、当該導電性エラストマ一用材料層を硬化処理することにより、導電性エラストマ一 層を形成し、  A metal mask showing magnetism is disposed on the surface of the conductive elastomer material layer according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed. In this state, the conductive elastomer material layer is formed on the conductive elastomer material layer. On the other hand, a conductive elastomer layer is formed by applying a magnetic field in the thickness direction and curing the conductive elastomer material layer.
この導電性エラストマ一層をレーザー加工して前記金属マスクが配置された部分以 外の部分を除去することにより、前記離型性支持板上に、前記特定のパターンに従 つて配置された複数の導電路形成部を形成し、 The conductive elastomer layer is laser-processed to remove portions other than the portion where the metal mask is disposed, thereby following the specific pattern on the releasable support plate. Forming a plurality of conductive path forming portions arranged
この離型性支持板に形成された導電路形成部の各々を、フレーム板の開口を塞ぐ よう形成された、硬化されて弾性高分子物質となる液状の高分子物質形成材料より なる絶縁部用材料層中に浸入させ、この状態で前記絶縁部用材料層を硬化処理す ることにより絶縁部を形成する工程を有することを特徴とする。  Each of the conductive path forming portions formed on the releasable support plate is used for an insulating portion made of a liquid polymer material forming material that is cured and becomes an elastic polymer material so as to close the opening of the frame plate. It has the process of forming an insulating part by making it infiltrate into a material layer and carrying out the hardening process of the said insulating part material layer in this state, It is characterized by the above-mentioned.
[0019] 上記の異方導電性コネクターの製造方法においては、金属箔上に、特定のパター ンに従って開口が形成されたレジスト層を形成し、前記金属箔における前記レジスト 層の開口力 露出した部分の表面に磁性を示す金属によるメツキ処理を施すことに より、当該レジスト層の開口の各々に金属マスクが形成されてなる金属マスク複合体 を製造し、この金属マスク複合体を導電性エラストマ一用材料層の表面に積重するこ とにより、当該導電性エラストマ一用材料層の表面に、前記特定のパターンに従って 磁性を示す金属よりなる金属マスクを配置することが好ましい。  [0019] In the above method for manufacturing an anisotropic conductive connector, a resist layer having an opening formed in accordance with a specific pattern is formed on a metal foil, and the opening force of the resist layer in the metal foil is exposed. A metal mask composite in which a metal mask is formed in each of the openings of the resist layer is manufactured by applying a metal-plating treatment to the surface of the resist layer, and the metal mask composite is used for a conductive elastomer. By stacking on the surface of the material layer, it is preferable to dispose a metal mask made of a metal exhibiting magnetism according to the specific pattern on the surface of the material layer for conductive elastomer.
[0020] 本発明の異方導電性コネクターの製造方法において、レーザー加工としては、炭 酸ガスレーザーまたは紫外線レーザーによるものを好適に利用することができる。  [0020] In the method for producing an anisotropic conductive connector of the present invention, laser processing using a carbon dioxide gas laser or an ultraviolet laser can be preferably used.
[0021] 本発明の異方導電性コネクタ一は、上記の製造方法によって得られることを特徴と する。 [0021] An anisotropic conductive connector according to the present invention is obtained by the above-described manufacturing method.
[0022] 本発明のアダプター装置は、表面に検査すべき回路装置における被検査電極に 対応するパターンに従って複数の接続用電極が形成された接続用電極領域を有す るアダプター本体と、  [0022] The adapter device of the present invention includes an adapter main body having a connection electrode region in which a plurality of connection electrodes are formed according to a pattern corresponding to an electrode to be inspected in a circuit device to be inspected on the surface;
このアダプター本体の接続用電極領域上に配置された、当該アダプター本体にお ける接続用電極に対応するパターンに従って形成された複数の導電路形成部を有 する、上記の異方導電性コネクターと  The anisotropic conductive connector having a plurality of conductive path forming portions arranged on the connection electrode region of the adapter body and formed according to a pattern corresponding to the connection electrode in the adapter body.
を具えてなることを特徴とする。  It is characterized by comprising.
[0023] また、本発明のアダプター装置は、表面に検査すべき回路装置における被検査電 極に対応するパターンに従ってそれぞれ電流供給用および電圧測定用の 2つの接 続用電極からなる複数の接続用電極対が形成された接続用電極領域を有するァダ プター本体と、 このアダプター本体の接続用電極領域上に配置された、当該アダプター本体にお ける接続用電極に対応するパターンに従って形成された複数の導電路形成部を有 する、上記の異方導電性コネクターと [0023] In addition, the adapter device of the present invention is for a plurality of connections comprising two connection electrodes for current supply and voltage measurement, respectively, according to a pattern corresponding to the inspected electrode in the circuit device to be inspected on the surface. An adapter body having an electrode region for connection in which an electrode pair is formed; The anisotropic conductive connector having a plurality of conductive path forming portions arranged on the connection electrode region of the adapter body and formed according to a pattern corresponding to the connection electrode in the adapter body.
を具えてなることを特徴とする。  It is characterized by comprising.
[0024] 本発明の回路装置の電気的検査装置は、上記のアダプター装置を具えてなること を特徴とする。  [0024] An electrical inspection device for a circuit device according to the present invention comprises the adapter device described above.
[0025] 本発明の異方導電性コネクターの製造方法によれば、導電性エラストマ一用材料 層上に、形成すべき導電路形成部の特定のパターンに従って磁性を示す接点部材 または金属マスクを配置した状態で、当該導電性エラスマー用材料層の厚み方向に 磁場を作用させると共に当該導電性エラストマ一用材料層を硬化処理することにより [0025] According to the method for manufacturing an anisotropic conductive connector of the present invention, a contact member or a metal mask exhibiting magnetism is arranged on a conductive elastomer material layer according to a specific pattern of a conductive path forming portion to be formed. In such a state, a magnetic field is applied in the thickness direction of the conductive elastomer material layer and the conductive elastomer material layer is cured.
、得られる導電性エラストマ一層は、接点部材または金属マスクが配置された部分す なわち導電路形成部となる部分における導電性粒子が密となると共に、それ以外の 部分における導電性粒子が疎となり、これにより、当該導電性エラストマ一層におけ る導電路形成部となる部分以外の部分をレーザー加工によって除去することが極め て容易となる。そのため、接点部材または金属マスクを介して導電性エラストマ一層 をレーザー加工することにより、所期の形態の導電路形成部を確実に形成することが できる。そして、特定のパターンに従って配置された複数の導電路形成部を形成した うえで、これらの導電路形成部の間に絶縁部用材料層を形成して硬化処理すること により絶縁部を形成するため、導電性粒子が全く存在しな 、絶縁部を確実に得ること ができる。し力も、従来の異方導電性コネクターを製造するために使用されていた多 数の強磁性体部が配列されてなる金型を用いることが不要である。 In the obtained conductive elastomer layer, the conductive particles in the portion where the contact member or the metal mask is arranged, that is, the portion forming the conductive path is dense, and the conductive particles in other portions are sparse. As a result, it becomes extremely easy to remove a portion other than the portion forming the conductive path in the conductive elastomer layer by laser processing. For this reason, the conductive path forming portion of the desired form can be reliably formed by laser processing one layer of the conductive elastomer through the contact member or the metal mask. Then, after forming a plurality of conductive path forming portions arranged according to a specific pattern, an insulating portion material layer is formed between these conductive path forming portions and cured to form an insulating portion. In the absence of conductive particles, the insulating portion can be reliably obtained. For this reason, it is not necessary to use a mold in which a large number of ferromagnetic parts used to manufacture a conventional anisotropically conductive connector are arranged.
従って、このような方法によって得られる本発明の異方導電性コネクターによれば、 接続すべき電極の配置パターンに関わらず、当該電極の各々に対して所要の電気 的接続が確実に達成されると共に、接続すべき電極が、そのピッチが微小で高密度 に配置されている場合であっても、当該電極の各々に対して所要の電気的接続が確 実に達成され、し力も、小さいコストで製造することができる。  Therefore, according to the anisotropic conductive connector of the present invention obtained by such a method, the required electrical connection can be reliably achieved for each of the electrodes regardless of the arrangement pattern of the electrodes to be connected. At the same time, even if the electrodes to be connected are arranged with a small pitch and a high density, the required electrical connection can be reliably achieved for each of the electrodes, and the force can be reduced at a low cost. Can be manufactured.
[0026] 本発明のアダプター装置によれば、上記の異方導電性コネクターを具えてなるため 、検査対象である回路装置の被検査電極の配置パターンに関わらず、当該回路装 置につ ヽて所要の電気的接続を確実に達成することができると共に、被検査電極が 、そのピッチが微小で高密度に配置されている場合であっても、当該回路装置につ いて所要の電気的接続を確実に達成することができ、し力も、小さいコストで製造す ることがでさる。 [0026] According to the adapter device of the present invention, since the anisotropic conductive connector is provided, regardless of the arrangement pattern of the electrodes to be inspected of the circuit device to be inspected, the circuit device Therefore, the required electrical connection can be reliably achieved, and the circuit device is required even when the electrodes to be inspected are arranged with a small pitch and a high density. The electrical connection can be reliably achieved, and the force can be manufactured at a low cost.
[0027] 本発明の回路装置の電気的検査装置によれば、上記のアダプター装置を具えて なるため、検査対象である回路装置の被検査電極の配置パターンに関わらず、当該 回路装置について所要の電気的検査を確実に実行することができると共に、回路装 置の被検査電極が、そのピッチが微小で高密度に配置されている場合であっても、 当該回路装置について所要の電気的検査を確実に実行することができる。  [0027] According to the electrical inspection device for a circuit device of the present invention, since the adapter device described above is provided, the circuit device required for the circuit device is required regardless of the arrangement pattern of the electrodes to be inspected of the circuit device to be inspected. The electrical inspection can be performed reliably, and the required electrical inspection can be performed for the circuit device even when the electrodes to be inspected of the circuit device are arranged with a small pitch and a high density. It can be executed reliably.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]本発明に係る異方導電性コネクターの第 1の例における構成を示す説明用断 面図である。  FIG. 1 is an explanatory sectional view showing a configuration in a first example of an anisotropically conductive connector according to the present invention.
[図 2]図 1に示す異方導電性コネクターの要部の構成を拡大して示す説明用断面図 である。  2 is an explanatory cross-sectional view showing an enlarged configuration of a main part of the anisotropic conductive connector shown in FIG.
[図 3]金属箔上に特定のパターンに従って形成された複数の開口を有するレジスト層 が形成された状態を示す説明用断面図である。  FIG. 3 is an explanatory cross-sectional view showing a state in which a resist layer having a plurality of openings formed according to a specific pattern is formed on a metal foil.
[図 4]レジスト層の各開口内に接点部材が形成されて接点部材複合体が形成された 状態を示す説明用断面図である。  FIG. 4 is an explanatory sectional view showing a state in which a contact member is formed in each opening of a resist layer to form a contact member composite.
[図 5]離型性支持板上に導電性エラストマ一用材料層が形成された状態を示す説明 用断面図である。  FIG. 5 is an explanatory cross-sectional view showing a state in which a conductive elastomer material layer is formed on a releasable support plate.
[図 6]導電性エラストマ一用材料層の表面に接点部材複合体が配置された状態を示 す説明用断面図である。  FIG. 6 is an explanatory cross-sectional view showing a state in which the contact member composite is disposed on the surface of the conductive elastomer material layer.
[図 7]導電性エラストマ一用材料層にその厚み方向に磁場が作用された状態を示す 説明用断面図である。  FIG. 7 is an explanatory sectional view showing a state in which a magnetic field is applied to the conductive elastomer material layer in the thickness direction.
[図 8]離型性支持板上に導電性エラストマ一層が形成された状態を示す説明用断面 図である。  FIG. 8 is an explanatory sectional view showing a state in which a conductive elastomer layer is formed on a releasable support plate.
[図 9]接点部材複合体の金属箔が除去された状態を示す説明用断面図である。  FIG. 9 is an explanatory cross-sectional view showing a state where the metal foil of the contact member composite is removed.
[図 10]離型性支持体上に特定のパターンに従って複数の導電路形成部が形成され た状態を示す説明用断面図である。 [FIG. 10] A plurality of conductive path forming portions are formed on a releasable support according to a specific pattern. It is sectional drawing for description which shows the state.
[図 11]離型性支持体上に絶縁部用材料層が形成された状態を示す説明用断面図 である。  FIG. 11 is an explanatory cross-sectional view showing a state in which an insulating material layer is formed on a releasable support.
[図 12]絶縁部用材料層が形成された離型性支持板上に、導電路形成部が形成され た離型性支持板が重ね合わされた状態を示す説明用断面図である。  FIG. 12 is an explanatory cross-sectional view showing a state in which a releasable support plate on which a conductive path forming portion is formed is superimposed on a releasable support plate on which an insulating material layer is formed.
圆 13]隣接する導電路形成部間に絶縁部が形成された状態を示す説明用断面図で ある。 FIG. 13 is an explanatory sectional view showing a state in which an insulating part is formed between adjacent conductive path forming parts.
圆 14]本発明に係る異方導電性コネクターの第 2の例における構成を示す説明用断 面図である。 14] A sectional view for explanation showing the configuration of the anisotropic conductive connector according to the second example of the present invention.
圆 15]図 14に示す異方導電性コネクターの要部の構成を拡大して示す説明用断面 図である。 15] FIG. 15 is an explanatory cross-sectional view showing an enlarged configuration of a main part of the anisotropic conductive connector shown in FIG.
[図 16]離型性支持体上に、フレーム板が配置されると共に、絶縁部用材料層が形成 された状態を示す説明用断面図である。  FIG. 16 is an explanatory cross-sectional view showing a state in which a frame plate is disposed on a releasable support and an insulating material layer is formed.
[図 17]絶縁部用材料層が形成された離型性支持板上に、導電路形成部が形成され た離型性支持板が重ね合わされた状態を示す説明用断面図である。  FIG. 17 is an explanatory cross-sectional view showing a state in which a releasable support plate on which a conductive path forming portion is formed is superimposed on a releasable support plate on which an insulating material layer is formed.
圆 18]隣接する導電路形成部間に絶縁部が形成された状態を示す説明用断面図で ある。 FIG. 18 is an explanatory sectional view showing a state in which an insulating portion is formed between adjacent conductive path forming portions.
圆 19]本発明に係る異方導電性コネクターの第 3の例における構成を示す説明用断 面図である。 [19] FIG. 19 is an explanatory sectional view showing a configuration of a third example of the anisotropic conductive connector according to the present invention.
[図 20]図 19に示す異方導電性コネクターの要部の構成を拡大して示す説明用断面 図である。  20 is an explanatory cross-sectional view showing an enlarged configuration of a main part of the anisotropic conductive connector shown in FIG.
[図 21]金属箔上に特定のパターンに従って形成された複数の開口を有するレジスト 層が形成された状態を示す説明用断面図である。  FIG. 21 is an explanatory sectional view showing a state in which a resist layer having a plurality of openings formed according to a specific pattern is formed on a metal foil.
[図 22]レジスト層の各開口内に金属マスクが形成されて金属マスク複合体が形成さ れた状態を示す説明用断面図である。  FIG. 22 is an explanatory cross-sectional view showing a state in which a metal mask is formed by forming a metal mask in each opening of a resist layer.
[図 23] (a)は離型性支持板上に導電性エラストマ一用材料層が形成された状態を示 す説明用断面図であり、 (b)は導電性エラストマ一用材料層を拡大して示す説明用 断面図である。 圆 24]導電性エラストマ一用材料層の表面に金属マスク複合体が配置された状態を 示す説明用断面図である。 [FIG. 23] (a) is an explanatory sectional view showing a state in which a conductive elastomer material layer is formed on a releasable support plate, and (b) is an enlarged view of the conductive elastomer material layer. It is sectional drawing for description shown. FIG. 24 is an explanatory cross-sectional view showing a state in which a metal mask composite is disposed on the surface of a conductive elastomer material layer.
圆 25]導電性エラストマ一用材料層にその厚み方向に磁場が作用された状態を示す 説明用断面図である。 25] A sectional view for explanation showing a state where a magnetic field is applied to the material layer for conductive elastomer in the thickness direction.
圆 26]離型性支持板上に導電性エラストマ一層が形成された状態を示す説明用断 面図である。 FIG. 26 is an explanatory sectional view showing a state in which a conductive elastomer layer is formed on the releasable support plate.
圆 27]金属マスク複合体の金属箔が除去された状態を示す説明用断面図である。 [27] FIG. 27 is an explanatory cross-sectional view showing a state in which the metal foil of the metal mask composite has been removed.
[図 28]離型性支持体上に特定のパターンに従って複数の導電路形成部が形成され た状態を示す説明用断面図である。 FIG. 28 is an explanatory cross-sectional view showing a state in which a plurality of conductive path forming portions are formed according to a specific pattern on a releasable support.
圆 29]離型性支持体上に絶縁部用材料層が形成された状態を示す説明用断面図 である。 29] A sectional view for explanation showing a state in which an insulating material layer is formed on a releasable support.
[図 30]絶縁部用材料層が形成された離型性支持板上に、導電路形成部が形成され た離型性支持板が重ね合わされた状態を示す説明用断面図である。  FIG. 30 is an explanatory cross-sectional view showing a state in which a releasable support plate on which a conductive path forming portion is formed is superimposed on a releasable support plate on which an insulating material layer is formed.
圆 31]隣接する導電路形成部間に絶縁部が形成された状態を示す説明用断面図で ある。 [31] FIG. 31 is an explanatory cross-sectional view showing a state in which an insulating portion is formed between adjacent conductive path forming portions.
圆 32]本発明に係る異方導電性コネクターの第 4の例における構成を示す説明用断 面図である。 FIG. 32 is an explanatory sectional view showing a configuration in a fourth example of the anisotropic conductive connector according to the present invention.
圆 33]図 32に示す異方導電性コネクターの要部の構成を拡大して示す説明用断面 図である。 [33] FIG. 33 is an explanatory sectional view showing, in an enlarged manner, a configuration of a main part of the anisotropic conductive connector shown in FIG.
[図 34]離型性支持体上に、フレーム板が配置されると共に、絶縁部用材料層が形成 された状態を示す説明用断面図である。  FIG. 34 is an explanatory cross-sectional view showing a state in which a frame plate is disposed on a releasable support and an insulating material layer is formed.
[図 35]絶縁部用材料層が形成された離型性支持板上に、導電路形成部が形成され た離型性支持板が重ね合わされた状態を示す説明用断面図である。  FIG. 35 is an explanatory cross-sectional view showing a state in which a releasable support plate on which a conductive path forming portion is formed is superimposed on a releasable support plate on which an insulating material layer is formed.
圆 36]隣接する導電路形成部間に絶縁部が形成された状態を示す説明用断面図で ある。 FIG. 36 is a cross-sectional view for explaining a state where an insulating portion is formed between adjacent conductive path forming portions.
圆 37]本発明に係るアダプター装置の第 1の例における構成を示す説明用断面図で ある。 [37] FIG. 37 is a cross-sectional view illustrating the configuration of the adapter device according to the first example of the present invention.
圆 38]図 37に示すアダプター装置におけるアダプター本体の構成を示す説明用断 面図である。 圆 38] Description of the configuration of the adapter body in the adapter device shown in FIG. FIG.
圆 39]本発明に係るアダプター装置の第 2の例における構成を示す説明用断面図で ある。 [39] FIG. 39 is a cross-sectional view illustrating the configuration of the adapter device according to the second example of the present invention.
圆 40]図 39に示すアダプター装置におけるアダプター本体の構成を示す説明用断 面図である。 40] FIG. 40 is an explanatory sectional view showing the configuration of the adapter main body in the adapter device shown in FIG.
圆 41]本発明に係る回路装置の電気的検査装置の第 1の例における構成を示す説 明図である。 [41] FIG. 41 is an explanatory diagram showing a configuration in the first example of the electrical inspection device for a circuit device according to the present invention.
圆 42]本発明に係る回路装置の電気的検査装置の第 2の例における構成を示す説 明図である。 [42] FIG. 42 is an explanatory diagram showing a configuration in a second example of the electrical inspection device for a circuit device according to the present invention.
[図 43]導電路形成部形成用の離型性支持板の他の例における構成を示す説明用 断面図である。  FIG. 43 is an explanatory cross-sectional view showing a configuration in another example of a releasable support plate for forming a conductive path forming portion.
圆 44]金属膜上に非磁性体部分が形成された状態を示す説明用断面図である。 圆 45]図 43に示す離型性支持板上に形成された導電性エラストマ一用材料層の表 面に接点部材複合体が配置された状態を示す説明用断面図である。 FIG. 44 is an explanatory cross-sectional view showing a state in which a nonmagnetic part is formed on a metal film. 45] FIG. 45 is an explanatory cross-sectional view showing a state in which the contact member composite is disposed on the surface of the conductive elastomer material layer formed on the releasable support plate shown in FIG.
[図 46]導電性エラストマ一用材料層にその厚み方向に磁場が作用された状態を示す 説明用断面図である。 FIG. 46 is an explanatory cross-sectional view showing a state where a magnetic field is applied to the material layer for conductive elastomer in the thickness direction.
圆 47]図 43に示す離型性支持板上に導電性エラストマ一層が形成された状態を示 す説明用断面図である。 47] A sectional view for explanation showing a state in which a conductive elastomer layer is formed on the releasable support plate shown in FIG.
圆 48]接点部材複合体の金属箔が除去された状態を示す説明用断面図である。 FIG. 48 is an explanatory cross-sectional view showing a state where the metal foil of the contact member composite is removed.
[図 49]離型性支持体上に特定のパターンに従って複数の導電路形成部が形成され た状態を示す説明用断面図である。 FIG. 49 is an explanatory cross-sectional view showing a state in which a plurality of conductive path forming portions are formed according to a specific pattern on the releasable support.
圆 50]絶縁部形成用の離型性支持板の他の例における構成を示す説明用断面図 である。 FIG. 50 is a cross-sectional view illustrating the configuration of another example of a releasable support plate for forming an insulating portion.
圆 51]導電性エラストマ一層における導電路形成部となる部分の周辺部分のみが除 去されることにより、導電路形成部が形成された状態を示す説明図である。 [51] FIG. 51 is an explanatory view showing a state in which a conductive path forming portion is formed by removing only a peripheral portion of a conductive elastomer forming layer in a portion that becomes a conductive path forming portion.
圆 52]導電性エラストマ一層における導電路形成部となる部分の周辺部分のみが除 去されることにより、導電路形成部が形成された状態を示す説明用断面図である。 圆 53]本発明に係る異方導電性コネクターの他の例における構成を示す説明図であ る。 FIG. 52 is an explanatory cross-sectional view showing a state in which a conductive path forming portion is formed by removing only a peripheral portion of a conductive elastomer forming layer in the conductive elastomer layer. [53] FIG. 53 is an explanatory view showing a configuration in another example of the anisotropic conductive connector according to the present invention. The
[図 54]本発明に係る異方導電性コネクターの更に他の例における構成を示す説明 図である。  FIG. 54 is an explanatory diagram showing a configuration of still another example of the anisotropic conductive connector according to the present invention.
[図 55]従来の異方導電性コネクターの製造方法にぉ 、て、異方導電性エラストマ一 シートを成形するための金型の構成を示す説明用断面図である。  FIG. 55 is a cross-sectional view illustrating the structure of a mold for forming an anisotropic conductive elastomer sheet in the conventional method for manufacturing an anisotropic conductive connector.
[図 56]図 55に示す金型内に、フレーム板が配置されると共に、異方導電性エラストマ 一用材料層が形成された状態を示す説明用断面図である。 FIG. 56 is an explanatory cross-sectional view showing a state in which a frame plate is arranged in the mold shown in FIG. 55 and an anisotropic conductive elastomer material layer is formed.
[図 57]従来の異方導電性コネクターが製造された状態を示す説明用断面図である。  FIG. 57 is an explanatory sectional view showing a state in which a conventional anisotropically conductive connector is manufactured.
[図 58]従来の異方導電性コネクターの製造方法にぉ 、て、異方導電性エラストマ一 用材料層に作用される磁場の方向を示す説明用断面図である。 FIG. 58 is a cross-sectional view illustrating the direction of a magnetic field applied to the anisotropic conductive elastomer material layer in the conventional method for manufacturing an anisotropic conductive connector.
符号の説明 Explanation of symbols
la 上部側アダプター装置  la Upper adapter device
lb 下部側アダプター装置  lb Lower adapter device
2 ホルダー 3 位置決めピン  2 Holder 3 Positioning pin
5 回路装置 6, 7 被検査電極  5 Circuit device 6, 7 Electrode to be inspected
10 異方導電性コネクター  10 Anisotropic conductive connector
11 フレーム板 12 開口 11 Frame plate 12 Opening
13, 13A 離型性支持板 13, 13A releasable support plate
14 金属箔 15 弾性異方導電膜 14 Metal foil 15 Elastic anisotropic conductive film
16 導電路形成部  16 Conductive path forming section
16A 導電性エラストマ一用材料層 16A Material layer for conductive elastomer
16B 導電性エラストマ一層 16B conductive elastomer layer
17 絶縁部 17A 絶縁部用材料層 17 Insulation part 17A Insulation part material layer
18 接点部材  18 Contact material
18F 接点部材複合体 19 レジスト層  18F contact member composite 19 resist layer
19K 開口  19K opening
20 アダプター本体  20 Adapter body
21, 21b, 21c 接続用電極 a 接続用電極対 21, 21b, 21c Connecting electrode a Connection electrode pair
端子電極 23 内部配線部 接続用電極領域  Terminal electrode 23 Internal wiring area Connection electrode area
金属マスク 26F 金属マスク複合体 金属箔 28 レジスト層 Metal mask 26F Metal mask composite Metal foil 28 Resist layer
K 開口 K opening
離型性支持板 31 金属膜  Releasable support plate 31 Metal film
強磁性体部分 33 非磁性体部分K 開口 35 離型性支持板  Ferromagnetic part 33 Non-magnetic part K Opening 35 Releasable support plate
弾性基板 37 金属膜 Elastic substrate 37 Metal film
a 上部側検査ヘッドa Upper inspection head
b 下部側検査ヘッドb Lower side inspection head
a, 51b 検査電極装置a, 51b Inspection electrode device
a, 52b 検査電極a, 52b Test electrode
a, 53b 電線a, 53b Electric wire
a, 54b 支柱a, 54b strut
a, 55b 異方導電性シートa, 55b Anisotropic conductive sheet
a 上部側支持板 56b 下部側支持板a, 57b コネクター a Upper support plate 56b Lower support plate a, 57b Connector
一方の型板 81 基板 One template 81 substrate
, 82a, 82b 強磁性体部 , 82a, 82b Ferromagnetic part
非磁性体部 85 他方の型板 基板 87, 87a, 87b 強磁性体部 非磁性体部 90 フレーム板 開口  Nonmagnetic part 85 The other template Substrate 87, 87a, 87b Ferromagnetic part Nonmagnetic part 90 Frame plate Opening
異方導電性エラストマ一シート Anisotropic conductive elastomer sheet
A 異方導電性エラストマ一用材料層 A Material layer for anisotropic conductive elastomer
導電路形成部 97 絶縁部 発明を実施するための最良の形態 Conductive path forming part 97 Insulating part BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
〈異方導電性コネクター〉  <Anisotropic conductive connector>
図 1は、本発明に係る異方導電性コネクターの第 1の例における構成を示す説明用 断面図であり、図 2は、図 1に示す異方導電性コネクターの要部を拡大して示す説明 用断面図である。この異方導電性コネクター 10においては、厚み方向に伸びる複数 の導電路形成部 16が特定のパターンに従って配置され、隣接する導電路形成部 16 の間には、これらを相互に絶縁する絶縁部 17が導電路形成部 16に一体的に接着し た状態で形成され、これにより,弾性異方導電膜 15が形成されている。導電路形成 部 16の特定のパターンは、接続すべき電極例えば検査対象である回路装置の被検 查電極のパターンに対応するパターンである。  FIG. 1 is an explanatory cross-sectional view showing the configuration of a first example of an anisotropic conductive connector according to the present invention, and FIG. 2 shows an enlarged main portion of the anisotropic conductive connector shown in FIG. It is sectional drawing for description. In this anisotropic conductive connector 10, a plurality of conductive path forming portions 16 extending in the thickness direction are arranged according to a specific pattern, and an insulating portion 17 that insulates them from each other between adjacent conductive path forming portions 16. Is formed in a state of being integrally bonded to the conductive path forming portion 16, whereby the elastic anisotropic conductive film 15 is formed. The specific pattern of the conductive path forming unit 16 is a pattern corresponding to a pattern of an electrode to be connected, for example, a test electrode of a circuit device to be inspected.
導電路形成部 16は、絶縁性の弾性高分子物質中に磁性を示す導電性粒子 Pが厚 み方向に並ぶよう配向した状態で含有されて構成されている。これに対し、絶縁部 1 7は、導電性粒子 Pを全く含有しない弾性高分子物質により構成されている。導電路 形成部 16を構成する弾性高分子物質と絶縁部 17を構成する弾性高分子物質とは、 互いに異なる種類のものであっても同じ種類のものであってもよ 、。  The conductive path forming portion 16 is configured by containing conductive particles P exhibiting magnetism in an insulating elastic polymer substance so as to be aligned in the thickness direction. On the other hand, the insulating portion 17 is made of an elastic polymer material that does not contain the conductive particles P at all. The elastic polymer material constituting the conductive path forming portion 16 and the elastic polymer material constituting the insulating portion 17 may be of different types or the same type.
[0031] 図示の例において、導電路形成部 16は絶縁部 17の両面力も突出するよう形成さ れている。このような例によれば、加圧による圧縮の程度が絶縁部 17より導電路形成 部 16にお ヽて大き 、ために十分に抵抗値の低!ヽ導電路が確実に導電路形成部 16 に形成され、これにより、加圧力の変化乃至変動に対して抵抗値の変化を小さくする ことができ、その結果、異方導電性コネクター 10に作用される加圧力が不均一であつ ても、各導電路形成部 16間における導電性のバラツキの発生を防止することができ る。  In the illustrated example, the conductive path forming portion 16 is formed so that the double-sided force of the insulating portion 17 protrudes. According to such an example, the degree of compression by pressurization is larger than that of the insulating part 17 in the conductive path forming part 16, so that the resistance value is sufficiently low! As a result, the change in the resistance value can be reduced with respect to the change or fluctuation of the applied pressure, and as a result, even if the applied pressure acting on the anisotropic conductive connector 10 is not uniform, It is possible to prevent the conductive variation between the conductive path forming portions 16.
[0032] 導電路形成部 16および絶縁部 17を構成する弾性高分子物質は、互いに同一のも のであっても異なるものであってもよ!/、。  [0032] The elastic polymer materials constituting the conductive path forming portion 16 and the insulating portion 17 may be the same or different from each other! /.
導電路形成部 16および絶縁部 17を構成する弾性高分子物質としては、架橋構造 を有する高分子物質が好まし 、。このような弾性高分子物質を得るために用いること のできる硬化性の高分子物質形成材料としては、種々のものを用いることができ、そ の具体例としては、ポリブタジエンゴム、天然ゴム、ポリイソプレンゴム、スチレンーブ タジェン共重合体ゴム、アクリロニトリル ブタジエン共重合体ゴムなどの共役ジェン 系ゴムおよびこれらの水素添カ卩物、スチレン ブタジエン ジェンブロック共重合体 ゴム、スチレン イソプレンブロック共重合体などのブロック共重合体ゴムおよびこれ らの水素添加物、クロ口プレン、ウレタンゴム、ポリエステル系ゴム、ェピクロルヒドリン ゴム、シリコーンゴム、エチレン一プロピレン共重合体ゴム、エチレン一プロピレン一 ジェン共重合体ゴムなどが挙げられる。 As the elastic polymer material constituting the conductive path forming portion 16 and the insulating portion 17, a polymer material having a crosslinked structure is preferable. Various materials can be used as the curable polymer substance-forming material that can be used to obtain such an elastic polymer substance. Specific examples of these include conjugated rubbers such as polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, acrylonitrile butadiene copolymer rubber, hydrogenated products thereof, and styrene butadiene gen block copolymer. Combined rubber, block copolymer rubber such as styrene isoprene block copolymer and hydrogenated products thereof, black-opened plane, urethane rubber, polyester rubber, epichlorohydrin rubber, silicone rubber, ethylene-propylene copolymer Examples thereof include a combined rubber and an ethylene / propylene / copolymer rubber.
以上において、異方導電性コネクター 10に耐候性が要求される場合には、共役ジ ェン系ゴム以外のものを用いることが好ましぐ特に、成形加工性および電気特性の 観点から、シリコーンゴムを用いることが好ま U、。  In the above, when the anisotropic conductive connector 10 is required to have weather resistance, it is preferable to use a rubber other than the conjugated gen-based rubber. Silicone rubber is particularly preferable from the viewpoint of molding processability and electrical characteristics. U, prefer to use.
[0033] シリコーンゴムとしては、液状シリコーンゴムを架橋または縮合したものが好ましい。  [0033] The silicone rubber is preferably one obtained by crosslinking or condensing liquid silicone rubber.
液状シリコーンゴムは、その粘度が歪速度 10— ^ecで 105ポアズ以下のものが好ましく 、縮合型のもの、付加型のもの、ビュル基ゃヒドロキシル基を含有するものなどのいず れであってもよい。具体的には、ジメチルシリコーン生ゴム、メチルビ-ルシリコーン生 ゴム、メチルフエ-ルビ-ルシリコーン生ゴムなどを挙げることができる。 The liquid silicone rubber preferably has a viscosity of 10 5 poise or less at a strain rate of 10- ^ ec, and is any of a condensation type, an addition type, a bur group or a hydroxyl group-containing one. May be. Specific examples include dimethyl silicone raw rubber, methyl beer silicone raw rubber, and methyl vinyl silicone raw rubber.
また、シリコーンゴムは、その分子量 Mw (標準ポリスチレン換算重量平均分子量を いう。以下同じ。)が 10, 000-40, 000のものであることが好ましい。また、得られる 導電路形成部 16に良好な耐熱性が得られることから、分子量分布指数 (標準ポリス チレン換算重量平均分子量 Mwと標準ポリスチレン換算数平均分子量 Mnとの比 M wZMnの値をいう。以下同じ。)が 2以下のものが好ましい。  The silicone rubber preferably has a molecular weight Mw (standard polystyrene equivalent weight average molecular weight; the same shall apply hereinafter) of 10,000 to 40,000. In addition, since good heat resistance is obtained in the obtained conductive path forming part 16, the molecular weight distribution index (the ratio MwZMn of the standard polystyrene equivalent weight average molecular weight Mw and the standard polystyrene equivalent number average molecular weight Mn is referred to. The same shall apply hereinafter) is preferably 2 or less.
[0034] 導電路形成部 16に含有される導電性粒子 Pとしては、後述する方法により当該粒 子を容易に厚み方向に並ぶよう配向させることができることから、磁性を示す導電性 粒子が用いられる。このような導電性粒子の具体例としては、鉄、コバルト、ニッケル などの磁性を有する金属の粒子若しくはこれらの合金の粒子またはこれらの金属を 含有する粒子、またはこれらの粒子を芯粒子とし、当該芯粒子の表面に金、銀、パラ ジゥム、ロジウムなどの導電性の良好な金属のメツキを施したもの、あるいは非磁性金 属粒子若しくはガラスビーズなどの無機物質粒子またはポリマー粒子を芯粒子とし、 当該芯粒子の表面に、ニッケル、コバルトなどの導電性磁性金属のメツキを施したも のなどが挙げられる。 [0034] As the conductive particles P contained in the conductive path forming portion 16, magnetic particles are used because the particles can be easily aligned in the thickness direction by a method described later. . Specific examples of such conductive particles include particles of magnetic metals such as iron, cobalt and nickel, particles of alloys thereof, particles containing these metals, or particles containing these metals as core particles. The core particles are made of metal particles with good conductivity such as gold, silver, palladium, rhodium, etc., or inorganic particles such as non-magnetic metal particles or glass beads, or polymer particles. The surface of the core particle is plated with a conductive magnetic metal such as nickel or cobalt. And so on.
これらの中では、ニッケル粒子を芯粒子とし、その表面に導電性の良好な金のメッ キを施したものを用いることが好ま 、。  Among these, it is preferable to use a nickel particle as a core particle and a surface with a gold mesh having good conductivity.
芯粒子の表面に導電性金属を被覆する手段としては、特に限定されるものではな いが、例えばィ匕学メツキまたは電解メツキ法、スパッタリング法、蒸着法などが用いら れている。  The means for coating the surface of the core particles with the conductive metal is not particularly limited, and for example, an electrochemical plating method, an electrolytic plating method, a sputtering method, a vapor deposition method or the like is used.
[0035] 導電性粒子 Pとして、芯粒子の表面に導電性金属が被覆されてなるものを用いる場 合には、良好な導電性が得られることから、粒子表面における導電性金属の被覆率( 芯粒子の表面積に対する導電性金属の被覆面積の割合)が 40%以上であることが 好ましぐさらに好ましくは 45%以上、特に好ましくは 47〜95%である。  [0035] When the conductive particles P used are those in which the surface of the core particles is coated with a conductive metal, good conductivity can be obtained. Therefore, the coverage of the conductive metal on the particle surface ( The ratio of the covering area of the conductive metal to the surface area of the core particles is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
また、導電性金属の被覆量は、芯粒子の 0. 5〜50質量%であることが好ましぐよ り好ましくは 2〜30質量%、さらに好ましくは 3〜25質量%、特に好ましくは 4〜20質 量%である。被覆される導電性金属が金である場合には、その被覆量は、芯粒子の 0. 5〜30質量%であることが好ましぐより好ましくは 2〜20質量%、さらに好ましくは 3〜15質量%でぁる。  The coating amount of the conductive metal is preferably 0.5 to 50% by mass of the core particles, more preferably 2 to 30% by mass, further preferably 3 to 25% by mass, and particularly preferably 4%. ~ 20% by mass. When the conductive metal to be coated is gold, the coating amount is preferably 0.5 to 30% by mass of the core particles, more preferably 2 to 20% by mass, and still more preferably 3 to 15% by mass.
[0036] また、導電性粒子 Pの粒子径は、 1〜: LOO /z mであることが好ましぐより好ましくは 2 〜50 μ m、さらに好ましくは 3〜30 μ m、特〖こ好ましくは 4〜20 μ mである。 また、 導電性粒子 Pの粒子径分布 (DwZDn)は、 1〜: LOであることが好ましぐより好ましく は 1. 01〜7、さらに好ましくは 1. 05〜5、特に好ましくは 1. 1〜4である。  [0036] The conductive particles P preferably have a particle size of 1 to: LOO / zm, more preferably 2 to 50 μm, still more preferably 3 to 30 μm, and particularly preferably 4-20 μm. The particle size distribution (DwZDn) of the conductive particles P is preferably 1 to: LO, more preferably 1.01 to 7, still more preferably 1.05 to 5, particularly preferably 1.1. ~ 4.
このような条件を満足する導電性粒子を用いることにより、得られる導電路形成部 1 6は、加圧変形が容易なものとなり、また、当該導電路形成部 16において導電性粒 子間に十分な電気的接触が得られる。  By using conductive particles satisfying such conditions, the obtained conductive path forming part 16 can be easily deformed under pressure, and the conductive path forming part 16 has sufficient space between the conductive particles. Electrical contact can be obtained.
また、導電性粒子 Pの形状は、特に限定されるものではないが、高分子物質形成材 料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれ らが凝集した 2次粒子であることが好ま 、。  In addition, the shape of the conductive particles P is not particularly limited, but is spherical, star-shaped or aggregated in that they can be easily dispersed in the polymer material-forming material. Preferred to be secondary particles.
また、導電性粒子 Pとして、その表面がシランカップリング剤などのカップリング剤や 潤滑剤で処理されたものを適宜用いることができる。カップリング剤や潤滑剤で粒子 表面を処理することにより、異方導電性性コネクターの耐久性が向上する。 [0037] このような導電性粒子 Pは、導電路形成部 16中に体積分率で 15〜45%、好ましく は 20〜40%となる割合で含有されて 、ることが好ま 、。この割合が過小である場 合には、十分に電気抵抗値の小さい導電路形成部 16が得られないことがある。一方 、この割合が過大である場合には、得られる導電路形成部 16は脆弱なものとなりや すぐ導電路形成部 16として必要な弾性が得られないことがある。 Further, as the conductive particles P, those whose surfaces are treated with a coupling agent such as a silane coupling agent or a lubricant can be appropriately used. By treating the particle surface with a coupling agent or lubricant, the durability of the anisotropically conductive connector is improved. [0037] It is preferable that the conductive particles P are contained in the conductive path forming part 16 in a volume fraction of 15 to 45%, preferably 20 to 40%. If this ratio is too small, the conductive path forming portion 16 having a sufficiently small electric resistance value may not be obtained. On the other hand, when this ratio is excessive, the obtained conductive path forming portion 16 becomes fragile and the necessary elasticity as the conductive path forming portion 16 may not be obtained immediately.
[0038] 弾性異方導電膜 15における導電路形成部 16の各々の表面には、金属よりなる平 板状の接点部材 18が当該導電路形成部 16に一体的に設けられて 、る。  [0038] On each surface of the conductive path forming portion 16 in the elastic anisotropic conductive film 15, a flat plate-like contact member 18 made of metal is provided integrally with the conductive path forming portion 16.
接点部材 18を構成する金属としては、磁性を示すものが用いられ、その具体例とし ては、ニッケル、コバルトまたはこれらの合金などが挙げられる。  As the metal constituting the contact member 18, a material exhibiting magnetism is used, and specific examples thereof include nickel, cobalt, and alloys thereof.
また、接点部材 18の厚みは、 1〜: LOO /z mであることが好ましぐより好ましくは 5〜 40 /z mである。この厚みが過小である場合には、後述する製造方法において、レー ザ一加工におけるマスクとして利用することが困難となることがある。一方、この厚み が過大である場合には、回路装置の電気的検査に用いた場合に、導電路形成部を 圧縮変形するために大きな加圧力が必要となることがあり、好ましくない。  The thickness of the contact member 18 is preferably 1 to: LOO / zm, more preferably 5 to 40 / zm. If this thickness is too small, it may be difficult to use as a mask in laser processing in the manufacturing method described later. On the other hand, when this thickness is excessive, a large pressure may be required to compressively deform the conductive path forming portion when used for electrical inspection of the circuit device, which is not preferable.
[0039] 本発明において、上記の異方導電性コネクター 10は、離型性支持板上に、硬化さ れて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒 子が含有されてなる導電性エラストマ一用材料層を形成し、この導電性エラストマ一 用材料層の表面に、特定のパターンに従って磁性を示す金属よりなる接点部材 18を 配置し、この状態で、当該導電性エラストマ一用材料層に対して、その厚み方向に磁 場を作用させると共に、当該導電性エラストマ一用材料層を硬化処理することにより、 導電性エラストマ一層を形成し、この導電性エラストマ一層をレーザー加工して接点 部材 18が配置された部分以外の部分を除去することにより、離型性支持板上に、特 定のパターンに従って配置された複数の導電路形成部 16を形成し、これらの導電路 形成部 16の間に、硬化されて弾性高分子物質となる高分子物質形成材料よりなる絶 縁部用材料層を形成し、当該絶縁部用材料層を硬化処理して絶縁部 17を形成する こと〖こよって、得られる。  [0039] In the present invention, the anisotropic conductive connector 10 includes conductive particles exhibiting magnetism in a liquid polymer material-forming material that is cured to become an elastic polymer material on a releasable support plate. A conductive elastomer material layer containing a child is formed, and a contact member 18 made of a metal exhibiting magnetism according to a specific pattern is disposed on the surface of the conductive elastomer material layer. In this state, A magnetic field is applied to the conductive elastomer material layer in the thickness direction, and the conductive elastomer material layer is cured to form a conductive elastomer layer, and this conductive elastomer layer is formed. A plurality of conductive path forming portions 16 arranged according to a specific pattern are formed on the releasable support plate by removing a portion other than the portion where the contact member 18 is arranged by laser processing one layer, An insulating material layer made of a polymer material forming material that is cured to become an elastic polymer material is formed between these conductive path forming portions 16, and the insulating material layer is cured to be insulated. It is obtained by forming part 17.
以下、異方導電性コネクター 10の製造方法を具体的に説明する。  Hereinafter, a method for manufacturing the anisotropic conductive connector 10 will be specifically described.
[0040] 《導電性エラストマ一層の形成》 先ず、特定のパターンに従って配置された複数の接点部材 18を有する接点部材 複合体 18Fを製造する。 [0040] << Formation of one layer of conductive elastomer >> First, a contact member composite 18F having a plurality of contact members 18 arranged according to a specific pattern is manufactured.
具体的に説明すると、図 3に示すように、金属箔 14上に、フォトリソグラフィ一の手法 により、形成すべき導電路形成部のパターンすなわち接続すべき電極のパターンに 対応する特定のパターンに従って開口 19Kが形成されたレジスト層 19を形成する。 その後、金属箔 14におけるレジスト層 19の開口 19を介して露出した部分の表面に、 磁性を示す金属によるメツキ処理を施すことにより、図 4に示すように、レジスト層 19の 開口 19Kの各々に接点部材 18を形成する。これにより、金属箔 14上に特定のパタ ーンに従って接点部材 18が形成されてなる接点部材複合体 18Fが得られる。  Specifically, as shown in FIG. 3, openings are formed on the metal foil 14 according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed, that is, the pattern of the electrode to be connected, by a photolithography technique. A resist layer 19 in which 19K is formed is formed. Thereafter, the surface of the exposed portion of the metal foil 14 through the opening 19 of the resist layer 19 is subjected to a plating treatment with a metal exhibiting magnetism, thereby forming each of the openings 19K of the resist layer 19 as shown in FIG. A contact member 18 is formed. As a result, a contact member composite 18F is obtained in which the contact member 18 is formed on the metal foil 14 according to a specific pattern.
[0041] 以上において、金属箔 14としては、銅、ニッケルなどを用いることができる。また、金 属箔は、榭脂フィルム上に積層されたものであってもよい。 In the above, as the metal foil 14, copper, nickel, or the like can be used. The metal foil may be laminated on a resin film.
金属箔 14の厚みは、 0. 05〜2 111でぁることカ 子ましく、より好ましくは 0. 1〜1 μ mである。この厚みが過小である場合には、均一な薄層が形成されず、メツキ電極と して不適なものとなることがある。一方、この厚みが過大である場合には、例えばエツ チングによって除去することが困難となることがある。  The thickness of the metal foil 14 is preferably 0.05-2111, more preferably 0.1-1 μm. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by, for example, etching.
レジスト層 19の厚みは、形成すべき接点部材 18の厚みに応じて設定される。  The thickness of the resist layer 19 is set according to the thickness of the contact member 18 to be formed.
[0042] 次 ヽで、硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性 を示す導電性粒子が分散されてなる導電性エラストマ一用材料を調製し、図 5に示 すように、導電路形成部形成用の離型性支持板 13上に、導電性エラストマ一用材料 を塗布することによって導電性エラストマ一用材料層 16Aを形成する。そして、図 6に 示すように、この導電性エラストマ一用材料層 16A上に、接点部材複合体 18Fをそ の接点部材 18の各々が当該導電性エラストマ一用材料層 16Aに接するよう配置す る。ここで、導電性エラストマ一用材料層 16A中においては、磁性を示す導電性粒子 Pが分散された状態で含有されて 、る。 [0042] Next, a conductive elastomer material is prepared by dispersing conductive particles exhibiting magnetism in a liquid polymer material-forming material that is cured to become an elastic polymer material. As described above, the conductive elastomer material layer 16A is formed by applying the conductive elastomer material on the releasable support plate 13 for forming the conductive path forming portion. Then, as shown in FIG. 6, the contact member composite 18F is arranged on the conductive elastomer material layer 16A so that each of the contact members 18 is in contact with the conductive elastomer material layer 16A. . Here, the conductive elastomer material layer 16A contains the conductive particles P exhibiting magnetism in a dispersed state.
次いで、導電性エラストマ一用材料層 16Aに対し、接点部材 18を介して当該導電 性エラストマ一用材料層 16Aの厚み方向に磁場を作用させる。これにより、接点部材 18が磁性を示す金属により形成されて!ヽるため、導電性エラストマ一用材料層 16 A における接点部材 18が配置された部分には、それ以外の部分より大きい強度の磁 場が形成される。その結果、導電性エラストマ一用材料層 16A中に分散されていた 導電性粒子 Pは、図 7に示すように、接点部材 18が配置された部分に集合し、更に 当該導電性エラストマ一用材料層 16Aの厚み方向に並ぶよう配向する。そして、導 電性エラストマ一用材料層 16Aに対する磁場の作用を継続しながら、或いは磁場の 作用を停止した後、導電性エラストマ一用材料層 16Aの硬化処理を行うことにより、 図 8に示すように、弾性高分子物質中に導電性粒子 Pが厚み方向に並ぶよう配向し た状態で含有されてなる導電性エラストマ一層 16Bが、離型性支持板 13上に支持さ れた状態で形成される。 Next, a magnetic field is applied to the conductive elastomer material layer 16A via the contact member 18 in the thickness direction of the conductive elastomer material layer 16A. As a result, the contact member 18 is made of a metal exhibiting magnetism, so that the portion of the conductive elastomer material layer 16 A where the contact member 18 is disposed has a higher strength than the other portions. A field is formed. As a result, as shown in FIG. 7, the conductive particles P dispersed in the conductive elastomer material layer 16A gather in the portion where the contact member 18 is arranged, and further, the conductive elastomer material material. Orient so that it is aligned in the thickness direction of layer 16A. Then, while continuing the action of the magnetic field on the conductive elastomer material layer 16A, or after stopping the action of the magnetic field, the conductive elastomer material layer 16A is cured, as shown in FIG. In addition, a conductive elastomer layer 16B is formed in a state in which the conductive particles P are aligned in the thickness direction in the elastic polymer material so as to be supported on the releasable support plate 13. The
[0043] 以上において、離型性支持板 13を構成する材料としては、金属、セラミックス、榭 脂およびこれらの複合材などを用いることができる。 [0043] In the above, as a material constituting the releasable support plate 13, metals, ceramics, resins, composite materials thereof, and the like can be used.
導電性エラストマ一用材料を塗布する方法としては、スクリーン印刷などの印刷法、 ロール塗布法、ブレード塗布法などを利用することができる。  As a method of applying the conductive elastomer material, a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
導電性エラストマ一用材料層 16Aの厚みは、形成すべき導電路形成部の厚みに 応じて設定される。  The thickness of the conductive elastomer material layer 16A is set according to the thickness of the conductive path forming portion to be formed.
導電性エラストマ一用材料層 16Aに磁場を作用させる手段としては、電磁石、永久 磁石などを用いることができる。  As means for applying a magnetic field to the conductive elastomer material layer 16A, an electromagnet, a permanent magnet, or the like can be used.
導電性エラストマ一用材料層 16Aに作用させる磁場の強度は、 0. 2〜2. 5テスラと なる大きさが好ましい。  The strength of the magnetic field applied to the conductive elastomer material layer 16A is preferably 0.2 to 2.5 Tesla.
導電性エラストマ一用材料層 16Aの硬化処理は、通常、加熱処理によって行われ る。具体的な加熱温度および加熱時間は、導電性エラストマ一用材料層 16Aを構成 する高分子物質形成材料の種類、導電性粒子の移動に要する時間などを考慮して 適宜設定される。  The curing process of the conductive elastomer material layer 16A is usually performed by a heating process. The specific heating temperature and heating time are appropriately set in consideration of the type of polymer substance forming material constituting the conductive elastomer material layer 16A, the time required to move the conductive particles, and the like.
[0044] 《導電路形成部の形成》 <Formation of conductive path forming part>
先ず、導電性エラストマ一層 16B上に配置された接点部材複合体 18Fにおける金 属箔 14に対して、エッチング処理を施して除去することにより、図 9に示すように、接 点部材 18およびレジスト層 19を露出させる。そして、導電性エラストマ一層 16Bおよ びレジスト層 19に対して、接点部材 18をマスクとしてレーザー加工を施すことにより、 レジスト層 19および導電性エラストマ一層 16Bの一部が除去され、その結果、図 10 に示すように、特定のパターンに従って配置され、それぞれ接点部材 18がー体的に 設けられた複数の導電路形成部 16が離型性支持板 13上に支持された状態で形成 される。 ここで、レーザー加工としては、炭酸ガスレーザーまたは紫外線レーザーに よるものが好ましぐこれにより、目的とする形態の導電路形成部 16を確実に形成す ることがでさる。 First, as shown in FIG. 9, by removing the metal foil 14 in the contact member composite 18F disposed on the conductive elastomer layer 16B by etching, the contact member 18 and the resist layer are removed. Expose 19 Then, the conductive elastomer layer 16B and the resist layer 19 are subjected to laser processing using the contact member 18 as a mask to remove a part of the resist layer 19 and the conductive elastomer layer 16B. Ten As shown in FIG. 2, a plurality of conductive path forming portions 16 arranged according to a specific pattern and each provided with a contact member 18 are formed on the releasable support plate 13. Here, as the laser processing, a carbon dioxide laser or an ultraviolet laser is preferable, so that the conductive path forming portion 16 having a desired form can be surely formed.
[0045] 《絶縁部の形成》 [0045] <Formation of insulating part>
図 11に示すように、絶縁部形成用の離型性支持板 13Aを用意し、この離型性支持 板 13Aの表面に、硬化されて絶縁性の弾性高分子物質となる液状の高分子物質形 成材料を塗布することにより、絶縁部用材料層 17Aを形成する。次いで、図 12に示 すように、それぞれ接点部材 18が設けられた複数の導電路形成部 16が形成された 離型性支持板 13を、絶縁部用材料層 17Aが形成された離型性支持板 13A上に重 ね合わせることにより、絶縁部用材料層 17A中に導電路形成部 16を浸入させて接 点部材 18の各々を離型性支持板 13Aに接触させ、更に加圧することにより、導電路 形成部 16の各々は厚み方向に圧縮した状態に変形されると共に、隣接する導電路 形成部 16の間には、絶縁部用材料層 17Aが形成された状態となる。その後、この状 態で、絶縁部用材料層 17Aの硬化処理を行うことにより、図 13に示すように、隣接す る導電路形成部 16の間にこれらを相互に絶縁する絶縁部 17が、導電路形成部 16 に一体的に形成され、以て弾性異方導電膜 15が形成される。  As shown in FIG. 11, a releasable support plate 13A for forming an insulating portion is prepared, and a liquid polymer material that is cured on the surface of the releasable support plate 13A to become an insulating elastic polymer material. The insulating material layer 17A is formed by applying the forming material. Next, as shown in FIG. 12, the releasable support plate 13 formed with the plurality of conductive path forming portions 16 each provided with the contact member 18 is replaced with the releasable property formed with the insulating material layer 17A. By superimposing on the support plate 13A, the conductive path forming portion 16 enters into the insulating material layer 17A to bring each of the contact members 18 into contact with the releasable support plate 13A, and further pressurizing. Each of the conductive path forming portions 16 is deformed to be compressed in the thickness direction, and an insulating portion material layer 17A is formed between adjacent conductive path forming portions 16. Thereafter, in this state, the insulating portion material layer 17A is cured, so that the insulating portions 17 that insulate them from each other between the adjacent conductive path forming portions 16 as shown in FIG. The elastic anisotropic conductive film 15 is formed integrally with the conductive path forming portion 16.
そして、離型性支持板 13, 13A力ゝら離型させることにより、圧縮された導電路形成 部 16の各々は、元の形態に復元する結果、絶縁部 17の両面から突出した状態とな り、以て、図 1に示す構成の異方導電性コネクター 10が得られる。  Then, by releasing from the releasable support plates 13 and 13A, each of the compressed conductive path forming portions 16 is restored to its original form, and as a result, protrudes from both surfaces of the insulating portion 17. Thus, the anisotropic conductive connector 10 having the configuration shown in FIG. 1 is obtained.
[0046] 以上にお ヽて、離型性支持板 13Aを構成する材料としては、導電路形成部形成用 の離型性支持板 13と同様のものを用いることができる。 As described above, as the material constituting the releasable support plate 13A, the same material as the releasable support plate 13 for forming the conductive path forming portion can be used.
高分子物質形成材料を塗布する方法としては、スクリーン印刷などの印刷法、ロー ル塗布法、ブレード塗布法などを利用することができる。  As a method for applying the polymer material forming material, a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
絶縁部用材料層 17Aの厚みは、形成すべき絶縁部の厚みに応じて設定される。 絶縁部用材料層 17Aの硬化処理は、通常、加熱処理によって行われる。具体的な 加熱温度および加熱時間は、絶縁部用材料層 17Aを構成する高分子物質形成材 料の種類などを考慮して適宜設定される。 The thickness of the insulating part material layer 17A is set according to the thickness of the insulating part to be formed. The curing process of the insulating layer material layer 17A is usually performed by a heating process. The specific heating temperature and heating time are determined by the polymer material forming material that constitutes the insulating material layer 17A. It is set as appropriate in consideration of the type of fee.
[0047] 上記の製造方法によれば、導電性エラストマ一用材料層 16A上に、形成すべき導 電路形成部 16の特定のパターンに従って磁性を示す接点部材 18を配置した状態 で、当該導電性エラスマー用材料層 16Aの厚み方向に磁場を作用させると共に当 該導電性エラストマ一用材料層 16Aを硬化処理することにより、得られる導電性エラ ストマー層 16Bは、接点部材 18が配置された部分における導電性粒子 Pが密となり、 それ以外の部分における導電性粒子 Pが疎となり、これにより、導電性エラストマ一層 16Bにおける導電路形成部となる部分以外の部分をレーザー加工によって除去する ことが極めて容易となる。そのため、接点部材 18をマスクとして利用して導電性エラス トマ一層 16Bをレーザー加工することにより、所期の形態の導電路形成部 16を確実 に形成することができる。そして、特定のパターンに従って配置された複数の導電路 形成部 16を形成したうえで、これらの導電路形成部 16の間に絶縁部用材料層 17A を形成して硬化処理することにより絶縁部 17を形成するため、導電性粒子が全く存 在しない絶縁部 17を確実に得ることができる。し力も、従来の異方導電性コネクター を製造するために使用されて 、た多数の強磁性体部が配列されてなる金型を用いる ことが不要である。  [0047] According to the above manufacturing method, in a state where the contact member 18 showing magnetism is disposed on the conductive elastomer material layer 16A according to the specific pattern of the conductive path forming portion 16 to be formed, By applying a magnetic field in the thickness direction of the elastomer material layer 16A and curing the conductive elastomer material layer 16A, the resulting conductive elastomer layer 16B is formed at the portion where the contact member 18 is disposed. The conductive particles P become dense, and the conductive particles P in other parts become sparse, so that it is very easy to remove the parts other than the conductive path forming part in the conductive elastomer layer 16B by laser processing. It becomes. Therefore, by using the contact member 18 as a mask and laser processing the conductive elastomer layer 16B, it is possible to reliably form the conductive path forming portion 16 having the desired form. Then, after forming a plurality of conductive path forming portions 16 arranged according to a specific pattern, an insulating portion material layer 17A is formed between these conductive path forming portions 16 and subjected to curing treatment, whereby the insulating portions 17 Therefore, it is possible to reliably obtain the insulating portion 17 in which no conductive particles are present. However, it is not necessary to use a mold that is used to manufacture a conventional anisotropically conductive connector and in which a large number of ferromagnetic parts are arranged.
従って、このような方法によって得られる異方導電性コネクター 10によれば、接続 すべき電極の配置パターンに関わらず、当該電極の各々に対して所要の電気的接 続を確実に達成することができると共に、接続すべき電極が、そのピッチが微小で高 密度に配置されている場合であっても、当該電極の各々に対して所要の電気的接続 を確実に達成することができ、しかも、製造コストの低減ィ匕を図ることができる。  Therefore, according to the anisotropic conductive connector 10 obtained by such a method, it is possible to reliably achieve the required electrical connection to each of the electrodes regardless of the arrangement pattern of the electrodes to be connected. In addition, even if the electrodes to be connected are arranged with a small pitch and a high density, it is possible to reliably achieve the required electrical connection to each of the electrodes, The manufacturing cost can be reduced.
[0048] 図 14は、本発明に係る異方導電性コネクターの第 2の例における構成を示す説明 用断面図であり、図 15は、図 14に示す異方導電性コネクターの要部を拡大して示す 説明用断面図である。この異方導電性コネクター 10は、複数の開口 12が形成された フレーム板 11と、このフレーム板 11の開口 12の各々を塞ぐよう配置され、当該フレー ム板 11に支持された単一の弾性異方導電膜 15とを有する。 FIG. 14 is an explanatory cross-sectional view showing the configuration of the anisotropic conductive connector according to the second example of the present invention, and FIG. 15 is an enlarged view of the main part of the anisotropic conductive connector shown in FIG. It is sectional drawing for description shown. This anisotropic conductive connector 10 is arranged so as to close each of the opening 12 of the frame plate 11 and the frame plate 11 formed with a plurality of openings 12, and is supported by the frame plate 11. And an anisotropic conductive film 15.
弾性異方導電膜 15においては、その厚み方向に伸びる複数の導電路形成部 16 力 特定のパターンに従ってフレーム板 11の開口 12内に位置するよう配置され、導 電路形成部 16の各々の周囲には、隣接する導電路形成部 16を相互に絶縁する一 体の絶縁部 17が導電路形成部 16に一体的に接着した状態で形成されて!ヽる。導電 路形成部 16の特定のパターンは、接続すべき電極例えば検査対象である回路装置 の被検査電極のパターンに対応するパターンである。 In the elastic anisotropic conductive film 15, a plurality of conductive path forming portions 16 extending in the thickness direction are arranged so as to be positioned in the openings 12 of the frame plate 11 according to a specific pattern. Around each of the electric circuit forming portions 16, a single insulating portion 17 that insulates the adjacent conductive path forming portions 16 from each other is formed in a state of being integrally bonded to the conductive path forming portion 16! Speak. The specific pattern of the conductive path forming portion 16 is a pattern corresponding to the pattern of the electrode to be connected, for example, the electrode to be inspected of the circuit device to be inspected.
導電路形成部 16は、絶縁性の弾性高分子物質中に磁性を示す導電性粒子 Pが厚 み方向に並ぶよう配向した状態で含有されて構成されている。これに対し、絶縁部 1 7は、導電性粒子 Pを全く含有しない弾性高分子物質により構成されている。図示の 例において、導電路形成部 16の各々は、絶縁部 17の表面力も突出する突出部が形 成されている。  The conductive path forming portion 16 is configured by containing conductive particles P exhibiting magnetism in an insulating elastic polymer substance so as to be aligned in the thickness direction. On the other hand, the insulating portion 17 is made of an elastic polymer material that does not contain the conductive particles P at all. In the illustrated example, each of the conductive path forming portions 16 is formed with a protruding portion that also protrudes the surface force of the insulating portion 17.
弾性異方導電膜 15における導電路形成部 16の各々の表面には、金属よりなる平 板状の接点部材 18が当該導電路形成部 16に一体的に設けられて 、る。  On each surface of the conductive path forming portion 16 in the elastic anisotropic conductive film 15, a flat plate-like contact member 18 made of metal is provided integrally with the conductive path forming portion 16.
フレーム板 11を構成する材料としては、機械的強度の高 、種々の非金属材料およ び金属材料を用いることができる。  As a material constituting the frame plate 11, various non-metallic materials and metallic materials having high mechanical strength can be used.
非金属材料の具体例としては、液晶ポリマー、ポリイミド榭脂、ポリエステル榭脂、ポ リアラミド榭脂、ポリアミド榭脂等の榭脂材料、ガラス繊維補強型エポキシ榭脂、ガラス 繊維補強型ポリエステル榭脂、ガラス繊維補強型ポリイミド榭脂等の繊維補強型榭脂 材料、エポキシ榭脂等にアルミナ、ボロンナイトライド等の無機材料をフイラ一として 含有した複合榭脂材料などが挙げられる。  Specific examples of non-metallic materials include liquid crystal polymers, polyimide resins, polyester resins, polyaramide resins, polyamide resins, and other resin materials, glass fiber reinforced epoxy resins, glass fiber reinforced polyester resins, Examples thereof include a fiber reinforced resin material such as a glass fiber reinforced polyimide resin, and a composite resin material containing an inorganic material such as alumina or boron nitride as a filler in an epoxy resin.
金属材料としては、金、銀、銅、鉄、ニッケル、コバルト若しくはこれらの合金または 合金鋼なとが挙げられる。  Examples of the metal material include gold, silver, copper, iron, nickel, cobalt, alloys thereof, and alloy steels.
また、異方導電性コネクターを高温環境下で使用する場合には、フレーム板 11とし て、線熱膨張係数が 3 X 10— 5ZK以下のものを用いることが好ましぐより好ましくは 1 X 10— 6〜2 X 10— 5/Κ、特に好ましくは 1 X 10— 6〜6 X 10— 6/Κである。このようなフレ ーム板 11を用いることにより、弾性異方導電膜 15の熱膨張による位置ずれを抑制す ることがでさる。 In the case of using the anisotropic conductive connector in a high temperature environment, the frame plate 11, a coefficient of linear thermal expansion 3 X 10- 5 ZK following more preferably it is preferred instrument to use a 1 X 10- 6 ~2 X 10- 5 / Κ , particularly preferably 1 X 10- 6 ~6 X 10- 6 / Κ. By using such a frame plate 11, it is possible to suppress displacement due to thermal expansion of the elastic anisotropic conductive film 15.
また、フレーム板 11の厚みは、 10〜200 mであることが好ましぐより好ましくは 1 5〜: L00 mである。この厚みが過小である場合には、当該フレーム板 11に必要な 強度が得られないことがある。一方、この厚みが過大である場合には、弹性異方導電 膜 15の厚みが必然的に大きくなり、従って、良好な導電性が得られないことがある。 The thickness of the frame plate 11 is preferably 10 to 200 m, more preferably 15 to L00 m. If this thickness is too small, the frame plate 11 may not have the required strength. On the other hand, if this thickness is excessive, inertia anisotropic conductivity The thickness of the film 15 is inevitably increased, so that good conductivity may not be obtained.
[0050] 弾性異方導電膜 15の弾性高分子物質、導電性粒子およびその他の具体的な構 成は、前述の第 1の例に係る異方導電性コネクター 10と同様である。 [0050] The elastic polymer material, conductive particles, and other specific configurations of the elastic anisotropic conductive film 15 are the same as those of the anisotropic conductive connector 10 according to the first example.
また、接点部材 18の材質および寸法は、前述の第 1の例に係る異方導電性コネク ター 10と同様の構成である。  The material and dimensions of the contact member 18 are the same as those of the anisotropic conductive connector 10 according to the first example described above.
[0051] 上記の異方導電性コネクター 10は、以下のようにして製造することができる。 [0051] The anisotropically conductive connector 10 described above can be manufactured as follows.
《導電路形成部の形成》  << Formation of conductive path forming part >>
先ず、第 1の例に係る異方導電性コネクター 10の製造方法と同様にして、離型性 支持体 13上に、特定のパターンに従って配置され、接点部材 18が設けられた複数 の導電路形成部 16を形成する(図 3乃至図 10参照)。  First, in the same manner as in the method for manufacturing the anisotropic conductive connector 10 according to the first example, a plurality of conductive paths are formed on the releasable support 13 according to a specific pattern and provided with contact members 18. A portion 16 is formed (see FIGS. 3 to 10).
[0052] 《絶縁部の形成》 [0052] << Formation of Insulating Portion >>
図 16に示すように、絶縁部形成用の離型性支持板 13Aを用意し、この離型性支持 板 13Aの表面に、フレーム板 11を配置すると共に、硬化されて絶縁性の弾性高分子 物質となる液状のエラストマ一用材料を塗布することにより、絶縁部用材料層 17Aを 形成する。次いで、図 17に示すように、それぞれ接点部材 18が設けられた複数の導 電路形成部 16が形成された離型性支持板 13を、絶縁部用材料層 17Aが形成され た離型性支持板 13A上に重ね合わせることにより、絶縁部用材料層 17A中に導電 路形成部 16を浸入させて接点部材 18の各々を離型性支持板 13Aに接触させ、更 に加圧することにより、導電路形成部 16の各々は厚み方向に圧縮した状態に変形さ れると共に、隣接する導電路形成部 16の間には、絶縁部用材料層 17Aが形成され た状態となる。その後、この状態で、絶縁部用材料層 17Aの硬化処理を行うことによ り、図 18に示すように、隣接する導電路形成部 16の間にこれらを相互に絶縁する絶 縁部 17が、導電路形成部 16に一体的に形成され、以て弾性異方導電膜 15が形成 される。  As shown in FIG. 16, a releasable support plate 13A for forming an insulating portion is prepared, and a frame plate 11 is disposed on the surface of the releasable support plate 13A and cured to be an insulating elastic polymer. The insulating material layer 17A is formed by applying a liquid elastomer material that is a substance. Next, as shown in FIG. 17, the releasable support plate 13 formed with the plurality of conductive path forming portions 16 each provided with the contact member 18 is replaced with the releasable support formed with the insulating portion material layer 17A. By superimposing on the plate 13A, the conductive path forming part 16 enters the insulating part material layer 17A to bring each of the contact members 18 into contact with the releasable support plate 13A and further pressurize, thereby conducting the conductive. Each of the path forming portions 16 is deformed into a compressed state in the thickness direction, and an insulating material layer 17A is formed between the adjacent conductive path forming portions 16. Thereafter, the insulating material layer 17A is cured in this state, so that the insulating portion 17 that insulates them from each other is provided between the adjacent conductive path forming portions 16, as shown in FIG. Thus, the elastic anisotropic conductive film 15 is formed integrally with the conductive path forming portion 16.
そして、離型性支持板 13, 13A力ゝら離型させることにより、圧縮された導電路形成 部 16の各々は、元の形態に復元する結果、絶縁部 17の両面から突出した状態とな り、以て、図 14に示す構成の異方導電性コネクター 10が得られる。  Then, by releasing from the releasable support plates 13 and 13A, each of the compressed conductive path forming portions 16 is restored to its original form, and as a result, protrudes from both surfaces of the insulating portion 17. Thus, the anisotropic conductive connector 10 having the configuration shown in FIG. 14 is obtained.
[0053] 以上において、離型性支持板 13Aを構成する材料としては、導電路形成部形成用 の離型性支持板 13と同様のものを用いることができる。 [0053] In the above, the material constituting the releasable support plate 13A is for forming a conductive path forming portion. The same releasable support plate 13 can be used.
高分子物質形成材料を塗布する方法としては、スクリーン印刷などの印刷法、ロー ル塗布法、ブレード塗布法などを利用することができる。  As a method for applying the polymer material forming material, a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
絶縁部用材料層 17Aの厚みは、形成すべき絶縁部 17の厚みに応じて設定される 絶縁部用材料層 17Aの硬化処理は、通常、加熱処理によって行われる。具体的な 加熱温度および加熱時間は、絶縁部用材料層 17Aを構成する高分子物質形成材 料の種類などを考慮して適宜設定される。  The thickness of the insulating part material layer 17A is set according to the thickness of the insulating part 17 to be formed. The curing process of the insulating part material layer 17A is usually performed by heat treatment. The specific heating temperature and heating time are appropriately set in consideration of the type of polymer substance forming material constituting the insulating part material layer 17A.
上記の製造方法によれば、導電性エラストマ一用材料層 16A上に、形成すべき導 電路形成部 16の特定のパターンに従って磁性を示す接点部材 18を配置した状態 で、当該導電性エラスマー用材料層 16Aの厚み方向に磁場を作用させると共に当 該導電性エラストマ一用材料層 16Aを硬化処理することにより、得られる導電性エラ ストマー層 16Bは、接点部材 18が配置された部分における導電性粒子 Pが密となり、 それ以外の部分における導電性粒子 Pが疎となり、これにより、導電性エラストマ一層 16Bにおける導電路形成部となる部分以外の部分をレーザー加工によって除去する ことが極めて容易となる。そのため、接点部材 18をマスクとして利用して導電性エラス トマ一層 16Bをレーザー加工することにより、所期の形態の導電路形成部 16を形成 することができる。そして、特定のパターンに従って配置された複数の導電路形成部 16を形成したうえで、これらの導電路形成部 16の間に絶縁部用材料層 17Aを形成 して硬化処理することにより絶縁部 17を形成するため、導電性粒子が全く存在しない 絶縁部 17を確実に得ることができる。し力も、従来の異方導電性コネクターを製造す るために使用されて 、た多数の強磁性体部が配列されてなる金型を用いることが不 要である。  According to the above manufacturing method, in the state where the contact member 18 showing magnetism is arranged on the conductive elastomer material layer 16A according to the specific pattern of the conductive path forming portion 16 to be formed, the conductive elastomer material By applying a magnetic field in the thickness direction of the layer 16A and curing the conductive elastomer material layer 16A, the resulting conductive elastomer layer 16B has conductive particles in the portion where the contact member 18 is disposed. P becomes dense, and the conductive particles P in the other portions become sparse, which makes it very easy to remove the portions other than the portions forming the conductive path in the conductive elastomer layer 16B by laser processing. Therefore, the conductive path forming portion 16 having the desired shape can be formed by laser processing the conductive elastomer layer 16B using the contact member 18 as a mask. Then, after forming a plurality of conductive path forming portions 16 arranged according to a specific pattern, an insulating portion material layer 17A is formed between the conductive path forming portions 16 and cured to form the insulating portion 17. Therefore, it is possible to reliably obtain the insulating portion 17 in which no conductive particles are present. However, it is not necessary to use a mold in which a large number of ferromagnetic parts are arranged, which is used to manufacture a conventional anisotropically conductive connector.
従って、このような方法によって得られる異方導電性コネクター 10によれば、接続 すべき電極の配置パターンに関わらず、当該電極の各々に対して所要の電気的接 続を確実に達成することができると共に、接続すべき電極が、そのピッチが微小で高 密度に配置されている場合であっても、当該電極の各々に対して所要の電気的接続 を確実に達成することができ、しかも、製造コストの低減ィ匕を図ることができる。 [0055] 図 19は、本発明に係る異方導電性コネクターの第 3の例における構成を示す説明 用断面図であり、図 20は、図 19に示す異方導電性コネクターの要部を拡大して示す 説明用断面図である。この異方導電性コネクター 10は弾性異方導電膜 15のみよりな るものであって、この弾性異方導電膜 15においては、厚み方向に伸びる複数の導電 路形成部 16が特定のパターンに従って配置され、隣接する導電路形成部 16の間に は、これらを相互に絶縁する絶縁部 17が導電路形成部 16に一体的に接着した状態 で形成されている。導電路形成部 16の特定のパターンは、接続すべき電極例えば 検査対象である回路装置の被検査電極のパターンに対応するパターンである。 導電路形成部 16は、絶縁性の弾性高分子物質中に磁性を示す導電性粒子 Pが厚 み方向に並ぶよう配向した状態で含有されて構成されている。これに対し、絶縁部 1 7は、導電性粒子 Pを全く含有しない弾性高分子物質により構成されている。図示の 例にお 、て、導電路形成部 16は絶縁部 17の一面力も突出するよう形成されて 、る。 弾性異方導電膜 15を形成する弾性高分子物質、導電性粒子およびその他の具体 的な構成は、前述の第 1の例に係る異方導電性コネクター 10と同様である。 Therefore, according to the anisotropic conductive connector 10 obtained by such a method, it is possible to reliably achieve the required electrical connection to each of the electrodes regardless of the arrangement pattern of the electrodes to be connected. In addition, even if the electrodes to be connected are arranged with a small pitch and a high density, it is possible to reliably achieve the required electrical connection to each of the electrodes, The manufacturing cost can be reduced. FIG. 19 is a cross-sectional view illustrating the configuration of the anisotropic conductive connector according to the third example of the invention, and FIG. 20 is an enlarged view of the main part of the anisotropic conductive connector shown in FIG. It is sectional drawing for description shown. The anisotropic conductive connector 10 is composed only of an elastic anisotropic conductive film 15. In the elastic anisotropic conductive film 15, a plurality of conductive path forming portions 16 extending in the thickness direction are arranged according to a specific pattern. An insulating portion 17 that insulates the conductive path forming portions 16 from each other is formed in a state of being integrally bonded to the conductive path forming portions 16. The specific pattern of the conductive path forming portion 16 is a pattern corresponding to the pattern of the electrode to be connected, for example, the electrode to be inspected of the circuit device to be inspected. The conductive path forming portion 16 is configured by containing conductive particles P exhibiting magnetism in an insulating elastic polymer substance so as to be aligned in the thickness direction. On the other hand, the insulating portion 17 is made of an elastic polymer material that does not contain the conductive particles P at all. In the example shown in the figure, the conductive path forming portion 16 is formed so that the one surface force of the insulating portion 17 protrudes. The elastic polymer material, conductive particles, and other specific configurations forming the elastic anisotropic conductive film 15 are the same as those of the anisotropic conductive connector 10 according to the first example.
[0056] 上記の異方導電性コネクター 10は、以下のようにして製造することができる。 [0056] The anisotropic conductive connector 10 can be manufactured as follows.
《導電性エラストマ一層の形成》  <Formation of conductive elastomer layer>
先ず、特定のパターンに従って配置された複数の金属マスクを有する金属マスク複 合体を製造する。  First, a metal mask composite having a plurality of metal masks arranged according to a specific pattern is manufactured.
具体的に説明すると、図 21に示すように、金属箔 27上に、フォトリソグラフィ一の手 法により、形成すべき導電路形成部のパターンすなわち接続すべき電極のパターン に対応する特定のパターンに従って開口 28Kが形成されたレジスト層 28を形成する 。その後、金属箔 27におけるレジスト層 28の開口 28Kを介して露出した部分の表面 に、磁性を示す金属によるメツキ処理を施すことにより、図 22に示すように、レジスト 層 28の開口 28Kの各々に金属マスク 26を形成する。これにより、金属箔 27上に特 定のパターンに従って金属マスク 26が形成されてなる金属マスク複合体 26Fが得ら れる。  Specifically, as shown in FIG. 21, according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed on the metal foil 27, that is, the pattern of the electrode to be connected, by one photolithography method. A resist layer 28 having openings 28K is formed. After that, the surface of the exposed portion of the metal foil 27 through the opening 28K of the resist layer 28 is subjected to a plating treatment with a metal exhibiting magnetism, thereby forming each of the openings 28K of the resist layer 28 as shown in FIG. A metal mask 26 is formed. Thereby, a metal mask composite 26F in which the metal mask 26 is formed on the metal foil 27 according to a specific pattern is obtained.
[0057] 以上において、金属マスク 26を構成する材料としては、磁性を示すものが用いられ 、その具体例としては、鉄、ニッケル、コバルトまたはこれらの合金などが挙げられる。 金属マスク 26の厚みは、 2 m以上であることが好ましぐより好ましくは 5〜150 mである。この厚みが過小である場合には、レーザーに対するマスクとして不適なも のとなることがある。 In the above, as the material constituting the metal mask 26, a material exhibiting magnetism is used, and specific examples thereof include iron, nickel, cobalt, and alloys thereof. The thickness of the metal mask 26 is preferably 2 m or more, more preferably 5 to 150 m. If this thickness is too small, it may be unsuitable as a mask for the laser.
また、金属箔 27としては、銅、金、アルミニウム、ロジウムなどを用いることができる。 また、金属箔 27は、榭脂フィルム上に積層されたものであってもよい。  As the metal foil 27, copper, gold, aluminum, rhodium, or the like can be used. Further, the metal foil 27 may be laminated on a resin film.
金属箔 27の厚みは、 0. 05〜2 111でぁることカ 子ましく、より好ましくは 0. 1〜1 μ mである。この厚みが過小である場合には、均一な薄層が形成されず、メツキ電極と して不適なものとなることがある。一方、この厚みが過大である場合には、例えばエツ チングによって除去することが困難となることがある。  The thickness of the metal foil 27 is preferably 0.05-2111, more preferably 0.1-1 μm. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by, for example, etching.
レジスト層 28の厚みは、形成すべき金属マスク 26の厚みに応じて設定される。 次 ヽで、硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性 を示す導電性粒子が分散されてなる導電性エラストマ一用材料を調製し、図 23 (a) に示すように、導電路形成部形成用の離型性支持板 13上に、導電性エラストマ一用 材料を塗布することによって導電性エラストマ一用材料層 16Aを形成する。ここで、 導電性エラストマ一用材料層 16A中においては、図 23 (b)に拡大して示すように、 磁性を示す導電性粒子 Pが分散された状態で含有されている。そして、図 24に示す ように、この導電性エラストマ一用材料層 16A上に、金属マスク複合体 26Fをその金 属マスク 26の各々が当該導電性エラストマ一用材料層 16Aに接するよう配置する。 次いで、導電性エラストマ一用材料層 16Aに対し、金属マスク 26を介して当該導 電性エラストマ一用材料層 16Aの厚み方向に磁場を作用させる。これにより、金属マ スク 26が磁性を示す金属により形成されているため、導電性エラストマ一用材料層 1 6Aにおける金属マスク 26が配置された部分には、それ以外の部分より大きい強度 の磁場が形成される。その結果、導電性エラストマ一用材料層 16A中に分散されて いた導電性粒子 Pは、図 25に示すように、金属マスク 26が配置された部分に集合し 、更に当該導電性エラストマ一用材料層 16Aの厚み方向に並ぶよう配向する。そし て、導電性エラストマ一用材料層 16Aに対する磁場の作用を継続しながら、或いは 磁場の作用を停止した後、導電性エラストマ一用材料層 16Aの硬化処理を行うこと により、図 26に示すように、弾性高分子物質中に導電性粒子 Pが厚み方向に並ぶよ う配向した状態で含有されてなる導電性エラストマ一層 16Bが、離型性支持板 13上 に支持された状態で形成される。 The thickness of the resist layer 28 is set according to the thickness of the metal mask 26 to be formed. Next, a conductive elastomer material is prepared by dispersing conductive particles exhibiting magnetism in a liquid polymer material-forming material that is cured to become an elastic polymer material, as shown in Fig. 23 (a). As described above, the conductive elastomer material layer 16A is formed by applying the conductive elastomer material on the releasable support plate 13 for forming the conductive path forming portion. Here, in the conductive elastomer material layer 16A, as shown in an enlarged view in FIG. 23 (b), the conductive particles P exhibiting magnetism are contained in a dispersed state. Then, as shown in FIG. 24, a metal mask composite 26F is arranged on the conductive elastomer material layer 16A so that each of the metal masks 26 is in contact with the conductive elastomer material layer 16A. Next, a magnetic field is applied to the conductive elastomer material layer 16A through the metal mask 26 in the thickness direction of the conductive elastomer material layer 16A. As a result, since the metal mask 26 is formed of a metal exhibiting magnetism, a portion of the conductive elastomer material layer 16A where the metal mask 26 is disposed has a stronger magnetic field than the other portions. It is formed. As a result, as shown in FIG. 25, the conductive particles P dispersed in the conductive elastomer material layer 16A gather at the portion where the metal mask 26 is arranged, and further, the conductive elastomer material material. Orient so that it is aligned in the thickness direction of layer 16A. Then, while continuing the action of the magnetic field on the conductive elastomer material layer 16A, or after stopping the magnetic field action, the conductive elastomer material layer 16A is cured, as shown in FIG. In addition, the conductive particles P are arranged in the thickness direction in the elastic polymer material. A conductive elastomer layer 16B, which is contained in such an oriented state, is formed in a state of being supported on the releasable support plate 13.
[0059] 以上において、離型性支持板 13を構成する材料、導電性エラストマ一用材料を塗 布する方法、導電性エラストマ一用材料層 16Aに磁場を作用させる手段、磁場の強 度、導電性エラストマ一用材料層 16Aの硬化処理の条件等は、前述の第 1の例の異 方導電性コネクターの製造方法と同様である。  [0059] In the above, the material constituting the releasable support plate 13, the method of applying the conductive elastomer material, the means for applying a magnetic field to the conductive elastomer material layer 16A, the strength of the magnetic field, the conductivity The conditions for the curing treatment of the material layer 16A for the elastomeric elastomer are the same as the method for manufacturing the anisotropic conductive connector of the first example described above.
[0060] 《導電路形成部の形成》  [0060] <Formation of conductive path forming portion>
先ず、導電性エラストマ一層 16B上に配置された金属マスク複合体 26Fにおける 金属箔 27に対して、例えばエッチング処理を施してこれを除去することにより、図 27 に示すように、金属マスク 26およびレジスト層 28を露出させる。そして、導電性エラス トマ一層 16Bおよびレジスト層 28に対して、金属マスク 26を介してレーザー加工を施 すことにより、レジスト層 28および導電性エラストマ一層 16Bの一部が除去され、その 結果、図 28に示すように、特定のパターンに従って配置された複数の導電路形成部 16が離型性支持板 13上に支持された状態で形成される。その後、導電路形成部 16 の各々の表面力も金属マスク 26を剥離する。  First, the metal foil 27 in the metal mask composite 26F disposed on the conductive elastomer layer 16B is removed by, for example, etching treatment to remove the metal mask 26 and the resist as shown in FIG. Layer 28 is exposed. Then, the conductive elastomer layer 16B and the resist layer 28 are subjected to laser processing through the metal mask 26, whereby a part of the resist layer 28 and the conductive elastomer layer 16B is removed. As shown in 28, a plurality of conductive path forming portions 16 arranged according to a specific pattern are formed in a state of being supported on the releasable support plate 13. Thereafter, the surface force of each of the conductive path forming portions 16 also peels off the metal mask 26.
ここで、レーザー加工は、炭酸ガスレーザーによるものが好ましぐこれにより、目的 とする形態の導電路形成部 16を確実に形成することができる。  Here, the laser processing is preferably performed using a carbon dioxide laser, whereby the conductive path forming portion 16 having a desired form can be reliably formed.
[0061] 《絶縁部の形成》  [0061] << Formation of Insulating Portion >>
図 29に示すように、絶縁部形成用の離型性支持板 13Aを用意し、この離型性支持 板 13Aの表面に、硬化されて絶縁性の弾性高分子物質となる液状の高分子物質形 成材料を塗布することにより、絶縁部用材料層 17Aを形成する。次いで、図 30に示 すように、複数の導電路形成部 16が形成された離型性支持板 13を、絶縁部用材料 層 17Aが形成された離型性支持板 13A上に重ね合わせることにより、絶縁部用材料 層 17A中に導電路形成部 16を浸入させて離型性支持板 13Aに接触させる。これに より、隣接する導電路形成部 16の間には、絶縁部用材料層 17Aが形成された状態 となる。その後、この状態で、絶縁部用材料層 17Aの硬化処理を行うことにより、図 3 1に示すように、隣接する導電路形成部 16の間にこれらを相互に絶縁する絶縁部 17 力 導電路形成部 16に一体的に形成され、以て弾性異方導電膜が形成される。 そして、離型性支持板 13, 13A力ゝら離型させることにより、図 19に示す構成の異方 導電性コネクター 10が得られる。 As shown in FIG. 29, a releasable support plate 13A for forming an insulating portion is prepared, and a liquid polymer material that is cured on the surface of the releasable support plate 13A to become an insulating elastic polymer material. The insulating material layer 17A is formed by applying the forming material. Next, as shown in FIG. 30, the releasable support plate 13 formed with a plurality of conductive path forming portions 16 is overlaid on the releasable support plate 13A formed with the insulating material layer 17A. Thus, the conductive path forming portion 16 is infiltrated into the insulating portion material layer 17A and brought into contact with the releasable support plate 13A. As a result, the insulating material layer 17A is formed between the adjacent conductive path forming portions 16. Thereafter, in this state, the insulating portion material layer 17A is cured to insulate the adjacent conductive path forming portions 16 from each other as shown in FIG. The elastic anisotropic conductive film is formed integrally with the forming portion 16 and thereby formed. Then, the anisotropically conductive connector 10 having the configuration shown in FIG. 19 is obtained by releasing the molds by releasing the support plates 13 and 13A.
以上において、離型性支持板 13Aを構成する材料、高分子物質形成材料を塗布 する方法、絶縁部用材料層 17Aの硬化処理の条件は、前述の第 1の例の異方導電 性コネクター 10の製造方法と同様である。  In the above, the material constituting the releasable support plate 13A, the method of applying the polymer substance-forming material, and the conditions for the curing treatment of the insulating material layer 17A are as described in the first example of the anisotropic conductive connector 10 This is the same as the manufacturing method.
[0062] 上記の製造方法によれば、導電性エラストマ一用材料層 16A上に、形成すべき導 電路形成部 16の特定のパターンに従って磁性を示す金属マスク 26を配置した状態 で、当該導電性エラスマー用材料層 16Aの厚み方向に磁場を作用させると共に当 該導電性エラストマ一用材料層 16Aを硬化処理することにより、得られる導電性エラ ストマー層 16Bは、接点部材 18が配置された部分における導電性粒子 Pが密となり、 それ以外の部分における導電性粒子 Pが疎となり、これにより、導電性エラストマ一層 16Bにおける導電路形成部となる部分以外の部分をレーザー加工によって除去する ことが極めて容易となる。そのため、金属マスク 26を介して導電性エラストマ一層 16 Bをレーザー加工することにより、所期の形態の導電路形成部 16を確実に形成する ことができる。そして、特定のパターンに従って配置された複数の導電路形成部 16を 形成したうえで、これらの導電路形成部 16の間に絶縁部用材料層 17Aを形成して 硬化処理することにより絶縁部 17を形成するため、導電性粒子が全く存在しない絶 縁部 17を確実に得ることができる。し力も、従来の異方導電性コネクターを製造する ために使用されていた多数の強磁性体部が配列されてなる金型を用いることが不要 である。 [0062] According to the above manufacturing method, in a state where the metal mask 26 showing magnetism is arranged on the conductive elastomer material layer 16A according to the specific pattern of the conductive path forming portion 16 to be formed, By applying a magnetic field in the thickness direction of the elastomer material layer 16A and curing the conductive elastomer material layer 16A, the resulting conductive elastomer layer 16B is formed at the portion where the contact member 18 is disposed. The conductive particles P become dense, and the conductive particles P in other parts become sparse, so that it is very easy to remove the parts other than the conductive path forming part in the conductive elastomer layer 16B by laser processing. It becomes. Therefore, the conductive path forming portion 16 having the expected form can be reliably formed by laser processing the conductive elastomer layer 16 B through the metal mask 26. Then, after forming a plurality of conductive path forming portions 16 arranged according to a specific pattern, an insulating portion material layer 17A is formed between the conductive path forming portions 16 and cured, thereby insulating portions 17 Therefore, it is possible to reliably obtain the insulating portion 17 in which no conductive particles are present. For this reason, it is not necessary to use a mold in which a large number of ferromagnetic parts, which have been used for manufacturing a conventional anisotropically conductive connector, are arranged.
従って、このような方法によって得られる異方導電性コネクター 10によれば、接続 すべき電極の配置パターンに関わらず、当該電極の各々に対して所要の電気的接 続を確実に達成することができると共に、接続すべき電極が、そのピッチが微小で高 密度に配置されている場合であっても、当該電極の各々に対して所要の電気的接続 を確実に達成することができ、しかも、製造コストの低減ィ匕を図ることができる。  Therefore, according to the anisotropic conductive connector 10 obtained by such a method, it is possible to reliably achieve the required electrical connection to each of the electrodes regardless of the arrangement pattern of the electrodes to be connected. In addition, even if the electrodes to be connected are arranged with a small pitch and a high density, it is possible to reliably achieve the required electrical connection to each of the electrodes, The manufacturing cost can be reduced.
[0063] 図 32は、本発明に係る異方導電性コネクターの第 4の例における構成を示す説明 用断面図であり、図 33は、図 32に示す異方導電性コネクターの要部を拡大して示す 説明用断面図である。この異方導電性コネクター 10は、複数の開口 12が形成された フレーム板 11と、このフレーム板 11の開口 12の各々を塞ぐよう配置され、当該フレー ム板 11に支持された単一の弾性異方導電膜 15とにより構成されて ヽる。 [0063] FIG. 32 is a cross-sectional view illustrating the configuration of the fourth example of the anisotropic conductive connector according to the present invention, and FIG. 33 is an enlarged view of the main part of the anisotropic conductive connector shown in FIG. It is sectional drawing for description shown. The anisotropic conductive connector 10 has a plurality of openings 12 formed therein. The frame plate 11 and a single elastic anisotropic conductive film 15 arranged so as to close each of the openings 12 of the frame plate 11 and supported by the frame plate 11 may be used.
弾性異方導電膜 15においては、その厚み方向に伸びる複数の導電路形成部 16 1S 特定のパターンに従ってフレーム板 11の開口 12内に位置するよう配置され、導 電路形成部 16の各々の周囲には、隣接する導電路形成部 16を相互に絶縁する一 体の絶縁部 17が導電路形成部 16に一体的に接着した状態で形成されて!ヽる。導電 路形成部 16の特定のパターンは、接続すべき電極例えば検査対象である回路装置 の被検査電極のパターンに対応するパターンである。  In the elastic anisotropic conductive film 15, a plurality of conductive path forming portions 16 1S extending in the thickness direction are arranged so as to be positioned in the openings 12 of the frame plate 11 according to a specific pattern, and around each of the conductive path forming portions 16. Is formed in a state where a single insulating portion 17 that insulates the adjacent conductive path forming portions 16 from each other is integrally bonded to the conductive path forming portion 16! Speak. The specific pattern of the conductive path forming portion 16 is a pattern corresponding to the pattern of the electrode to be connected, for example, the electrode to be inspected of the circuit device to be inspected.
導電路形成部 16は、絶縁性の弾性高分子物質中に磁性を示す導電性粒子 Pが厚 み方向に並ぶよう配向した状態で含有されて構成されている。これに対し、絶縁部 1 7は、導電性粒子 Pを全く含有しない弾性高分子物質により構成されている。図示の 例において、導電路形成部 16の各々は、絶縁部 17の一面から突出する突出部が形 成されている。  The conductive path forming portion 16 is configured by containing conductive particles P exhibiting magnetism in an insulating elastic polymer substance so as to be aligned in the thickness direction. On the other hand, the insulating portion 17 is made of an elastic polymer material that does not contain the conductive particles P at all. In the illustrated example, each of the conductive path forming portions 16 is formed with a protruding portion protruding from one surface of the insulating portion 17.
[0064] フレーム板 11を構成する材料およびフレーム板 11の厚みは、前述の第 2の例の異 方導電性コネクター 10と同様である。  [0064] The material constituting the frame plate 11 and the thickness of the frame plate 11 are the same as those of the anisotropic conductive connector 10 of the second example described above.
また、弾性異方導電膜 15の弾性高分子物質、導電性粒子およびその他の具体的 な構成は、前述の第 1の例に係る異方導電性コネクター 10と同様である。  The elastic polymer material, conductive particles and other specific configurations of the elastic anisotropic conductive film 15 are the same as those of the anisotropic conductive connector 10 according to the first example.
[0065] 上記の異方導電性コネクター 10は、以下のようにして製造することができる。  [0065] The anisotropic conductive connector 10 described above can be manufactured as follows.
《導電路形成部の形成》  << Formation of conductive path forming part >>
先ず、第 3の例に係る異方導電性コネクター 10の製造方法と同様にして、離型性 支持体 13上に、特定のパターンに従って配置されて支持された複数の導電路形成 部 16を形成する(図 21乃至図 28参照)。  First, in the same manner as the method for manufacturing the anisotropic conductive connector 10 according to the third example, a plurality of conductive path forming portions 16 arranged and supported according to a specific pattern are formed on the releasable support 13. (Refer to Fig. 21 to Fig. 28).
[0066] 《絶縁部の形成》  [0066] <Formation of insulating portion>
図 34に示すように、絶縁部形成用の離型性支持板 13Aを用意し、この離型性支持 板 13Aの表面に、フレーム板 11を配置すると共に、硬化されて絶縁性の弾性高分子 物質となる液状のエラストマ一用材料を塗布することにより、絶縁部用材料層 17Aを 形成する。次いで、図 35に示すように、複数の導電路形成部 16が形成された離型 性支持板 13を、絶縁部用材料層 17Aが形成された離型性支持板 13A上に重ね合 わせることにより、絶縁部用材料層 17A中に導電路形成部 16を浸入させて離型性 支持板 13Aに接触させる。これ〖こより、隣接する導電路形成部 16の間には、絶縁部 用材料層 17Aが形成された状態となる。その後、この状態で、絶縁部用材料層 17A の硬化処理を行うことにより、図 36に示すように、隣接する導電路形成部 16の間にこ れらを相互に絶縁する絶縁部 17が、導電路形成部 16に一体的に形成され、以て弹 性異方導電膜が形成される。 そして、離型性支持板 13, 13Aから離型させることに より、図 32に示す構成の異方導電性コネクター 10が得られる。 As shown in FIG. 34, a releasable support plate 13A for forming an insulating portion is prepared, and a frame plate 11 is arranged on the surface of the releasable support plate 13A and cured to be an insulating elastic polymer. The insulating material layer 17A is formed by applying a liquid elastomer material that is a substance. Next, as shown in FIG. 35, the releasable support plate 13 formed with a plurality of conductive path forming portions 16 is superimposed on the releasable support plate 13A formed with the insulating material layer 17A. As a result, the conductive path forming portion 16 enters the insulating portion material layer 17A and is brought into contact with the releasable support plate 13A. As a result, the insulating material layer 17A is formed between the adjacent conductive path forming portions 16. Thereafter, in this state, the insulating portion material layer 17A is cured, so that the insulating portions 17 that insulate them from each other between the adjacent conductive path forming portions 16 as shown in FIG. An anisotropic anisotropic conductive film is formed integrally with the conductive path forming portion 16, thereby forming an anisotropic anisotropic conductive film. Then, the anisotropic conductive connector 10 having the configuration shown in FIG. 32 is obtained by releasing from the releasable support plates 13 and 13A.
以上において、離型性支持板 13Aを構成する材料、高分子物質形成材料を塗布 する方法、絶縁部用材料層 17Aの硬化処理の条件は、前述の第 2の例の異方導電 性コネクター 10の製造方法と同様である。  In the above, the material constituting the releasable support plate 13A, the method of applying the polymer substance forming material, and the conditions for the curing treatment of the insulating material layer 17A are the anisotropic conductive connectors 10 of the second example described above. This is the same as the manufacturing method.
上記の製造方法によれば、導電性エラストマ一用材料層 16A上に、形成すべき導 電路形成部 16の特定のパターンに従って磁性を示す接点部材 18を配置した状態 で、当該導電性エラスマー用材料層 16Aの厚み方向に磁場を作用させると共に当 該導電性エラストマ一用材料層 16Aを硬化処理することにより、得られる導電性エラ ストマー層 16Bは、接点部材 18が配置された部分における導電性粒子 Pが密となり、 それ以外の部分における導電性粒子 Pが疎となり、これにより、導電性エラストマ一層 16Bにおける導電路形成部となる部分以外の部分をレーザー加工によって除去する ことが極めて容易となる。そのため、接点部材 18をマスクとして利用して導電性エラス トマ一層 16Bをレーザー加工することにより、所期の形態の導電路形成部 16を確実 に形成することができる。そして、特定のパターンに従って配置された複数の導電路 形成部 16を形成したうえで、これらの導電路形成部 16の間に絶縁部用材料層 17A を形成して硬化処理することにより絶縁部 17を形成するため、導電性粒子が全く存 在しない絶縁部 17を確実に得ることができる。し力も、従来の異方導電性コネクター を製造するために使用されて 、た多数の強磁性体部が配列されてなる金型を用いる ことが不要である。  According to the above manufacturing method, in the state where the contact member 18 showing magnetism is arranged on the conductive elastomer material layer 16A according to the specific pattern of the conductive path forming portion 16 to be formed, the conductive elastomer material By applying a magnetic field in the thickness direction of the layer 16A and curing the conductive elastomer material layer 16A, the resulting conductive elastomer layer 16B has conductive particles in the portion where the contact member 18 is disposed. P becomes dense, and the conductive particles P in the other portions become sparse, which makes it very easy to remove the portions other than the portions forming the conductive path in the conductive elastomer layer 16B by laser processing. Therefore, by using the contact member 18 as a mask and laser processing the conductive elastomer layer 16B, it is possible to reliably form the conductive path forming portion 16 having the desired form. Then, after forming a plurality of conductive path forming portions 16 arranged according to a specific pattern, an insulating portion material layer 17A is formed between these conductive path forming portions 16 and subjected to curing treatment, whereby the insulating portions 17 Therefore, it is possible to reliably obtain the insulating portion 17 in which no conductive particles are present. However, it is not necessary to use a mold that is used to manufacture a conventional anisotropically conductive connector and in which a large number of ferromagnetic parts are arranged.
従って、このような方法によって得られる異方導電性コネクター 10によれば、接続 すべき電極の配置パターンに関わらず、当該電極の各々に対して所要の電気的接 続を確実に達成することができると共に、接続すべき電極が、そのピッチが微小で高 密度に配置されている場合であっても、当該電極の各々に対して所要の電気的接続 を確実に達成することができ、しかも、製造コストの低減ィ匕を図ることができる。 Therefore, according to the anisotropic conductive connector 10 obtained by such a method, it is possible to reliably achieve the required electrical connection to each of the electrodes regardless of the arrangement pattern of the electrodes to be connected. In addition, the electrodes to be connected have a small and high pitch. Even if the electrodes are arranged at a high density, it is possible to reliably achieve the required electrical connection to each of the electrodes, and to reduce the manufacturing cost.
[0068] 〈アダプター装置〉  [0068] <Adapter device>
図 37は、本発明に係るアダプター装置の第 1の例における構成を示す説明用断面 図であり、図 38は、図 37に示すアダプター装置におけるアダプター本体を示す説明 用断面図である。このアダプター装置は、例えばプリント回路基板などの回路装置に っ 、て、例えばオープン 'ショート試験を行うために用いられる回路装置検査用のも のであって、多層配線板よりなるアダプター本体 20を有する。  FIG. 37 is an explanatory cross-sectional view showing the configuration of the adapter device according to the first example of the present invention, and FIG. 38 is an explanatory cross-sectional view showing the adapter body in the adapter device shown in FIG. The adapter device is a circuit device such as a printed circuit board, for example, for testing a circuit device used for performing an open / short test, and has an adapter body 20 made of a multilayer wiring board.
アダプター本体 20の表面(図 37および図 38において上面)には、検査対象である 回路装置の被検査電極のパターンに対応する特定のパターンに従って複数の接続 用電極 21が配置された接続用電極領域 25が形成されている。  On the surface of the adapter body 20 (upper surface in FIGS. 37 and 38), a connection electrode region in which a plurality of connection electrodes 21 are arranged according to a specific pattern corresponding to the pattern of the electrode to be inspected of the circuit device to be inspected. 25 is formed.
アダプター本体 20の裏面には、例えばピッチが 0. 8mm、 0. 75mm, 1. 5mm、 1 . 8mm, 2. 54mmの格子点位置に従って複数の端子電極 22が配置され、端子電 極 22の各々は、内部配線部 23によって接続用電極 21に電気的に接続されている。 このアダプター本体 20の表面には、その接続用電極領域 25上に、図 14に示す第 2の例の異方導電性コネクター 10が配置され、当該アダプター本体 20に適宜の手 段(図示省略)によって固定されている。  A plurality of terminal electrodes 22 are arranged on the back surface of the adapter body 20 according to the grid point positions of pitches of 0.8 mm, 0.75 mm, 1.5 mm, 1.8 mm, and 2.54 mm, for example. Are electrically connected to the connection electrode 21 by the internal wiring portion 23. On the surface of the adapter body 20, the anisotropic conductive connector 10 of the second example shown in FIG. 14 is disposed on the connection electrode region 25. The adapter body 20 has an appropriate means (not shown). It is fixed by.
この異方導電性コネクター 10においては、アダプター本体 20における接続用電極 21に係る特定のパターンと同一のパターンに従って複数の導電路形成部 16が形成 されており、当該異方導電性コネクター 10は、導電路形成部 16の各々がアダプター 本体 20の接続用電極 21上に位置されるよう配置されている。  In this anisotropic conductive connector 10, a plurality of conductive path forming portions 16 are formed according to the same pattern as the specific pattern related to the connection electrode 21 in the adapter body 20, and the anisotropic conductive connector 10 Each of the conductive path forming portions 16 is arranged so as to be positioned on the connection electrode 21 of the adapter main body 20.
[0069] このようなアダプター装置によれば、第 2の例の異方導電性コネクター 10を有する ため、検査対象である回路装置の検査電極の配置パターンに関わらず、当該被検 查電極の各々に対して所要の電気的接続を確実に達成することができると共に、被 検査電極が、そのピッチが微小で高密度に配置されている場合であっても、当該被 検査電極の各々に対して所要の電気的接続を確実に達成することができ、しカゝも、 製造コストの低減ィ匕を図ることができる。 [0069] According to such an adapter device, since the anisotropic conductive connector 10 of the second example is provided, each of the electrodes to be inspected regardless of the arrangement pattern of the inspection electrodes of the circuit device to be inspected. The required electrical connection can be reliably achieved with respect to each of the electrodes to be inspected even when the electrodes to be inspected are arranged with a small pitch and a high density. The required electrical connection can be reliably achieved, and the manufacturing cost can be reduced.
[0070] 図 39は、本発明に係るアダプター装置の第 2の例における構成を示す説明用断面 図であり、図 40は、図 39に示すアダプター装置におけるアダプター本体を示す説明 用断面図である。このアダプター装置は、例えばプリント回路基板などの回路装置に っ 、て、各配線パターンの電気抵抗測定試験を行うために用いられる回路装置検査 用のものであって、多層配線板よりなるアダプター本体 20を有する。 FIG. 39 is a cross-sectional view illustrating the configuration of the adapter device according to the second example of the invention. FIG. 40 is a cross-sectional view illustrating the adapter body in the adapter device shown in FIG. This adapter device is for testing a circuit device used for conducting an electrical resistance measurement test of each wiring pattern by a circuit device such as a printed circuit board, for example. Have
アダプター本体 20の表面(図 39および図 40において上面)には、それぞれ同一の 被検査電極に電気的に接続される互 ヽに離間して配置された電流供給用の接続用 電極 (以下、「電流供給用電極」ともいう。) 21bおよび電圧測定用の接続用電極 (以 下、「電圧測定用電極」ともいう。) 21cよりなる複数の接続用電極対 21aが配置され た接続用電極領域 25が形成されている。これらの接続用電極対 21aは、検査対象で ある回路装置の被検査電極のパターンに対応するパターンに従って配置されている アダプター本体 20の裏面には、例えばピッチが 0. 8mm、 0. 75mm, 1. 5mm、 1 . 8mm、 2. 54mmの格子点位置に従って複数の端子電極 22が配置されている。 そして、電流供給用電極 21bおよび電圧測定用電極 21cの各々は、内部配線部 2 3によって端子電極 22に電気的に接続されて!ヽる。  On the surface of the adapter body 20 (upper surface in FIGS. 39 and 40), connection electrodes (hereinafter referred to as “the current supply electrodes”) that are spaced apart from each other and are electrically connected to the same electrode to be inspected. Also referred to as “current supply electrode”.) 21b and connection electrode for voltage measurement (hereinafter also referred to as “voltage measurement electrode”) Connection electrode region in which a plurality of connection electrode pairs 21a made of 21c are arranged 25 is formed. These connection electrode pairs 21a are arranged according to a pattern corresponding to the pattern of the electrode to be inspected of the circuit device to be inspected. For example, the pitch of the adapter body 20 on the back surface is 0.8 mm, 0.75 mm, 1 A plurality of terminal electrodes 22 are arranged according to the grid point positions of 5 mm, 1.8 mm, and 2.54 mm. Each of the current supply electrode 21b and the voltage measurement electrode 21c is electrically connected to the terminal electrode 22 by the internal wiring portion 23.
このアダプター本体 20の表面には、その接続用電極領域 25上に、基本的に図 14 に示す第 2の例の異方導電性コネクター 10が配置され、当該アダプター本体 20に 適宜の手段(図示省略)によって固定されている。  On the surface of the adapter body 20, the anisotropic conductive connector 10 of the second example shown in FIG. 14 is basically disposed on the electrode region 25 for connection. (Omitted).
この異方導電性コネクター 10においては、アダプター本体 20における接続用電極 21b, 21cに係る特定のパターンと同一のパターンに従って複数の導電路形成部 16 が形成されており、当該異方導電性コネクター 10は、導電路形成部 16の各々がァダ プター本体 20の接続用電極 21b, 21c上に位置されるよう配置されている。  In this anisotropic conductive connector 10, a plurality of conductive path forming portions 16 are formed according to the same pattern as the specific pattern related to the connection electrodes 21b, 21c in the adapter body 20, and the anisotropic conductive connector 10 Each of the conductive path forming portions 16 is disposed on the connection electrodes 21b and 21c of the adapter body 20.
上記のアダプター装置によれば、第 2の例の異方導電性コネクター 10を有するた め、検査対象である回路装置の検査電極の配置パターンに関わらず、当該被検査 電極の各々に対して所要の電気的接続を確実に達成することができると共に、被検 查電極が、そのピッチが微小で高密度に配置されている場合であっても、当該被検 查電極の各々に対して所要の電気的接続を確実に達成することができ、し力も、製 造コストの低減ィ匕を図ることができる。 〈回路装置の電気的検査装置〉 According to the adapter device described above, since the anisotropic conductive connector 10 of the second example is provided, it is necessary for each of the electrodes to be inspected regardless of the arrangement pattern of the inspection electrodes of the circuit device to be inspected. Electrical connection can be reliably achieved, and even when the test electrodes are arranged with a small pitch and a high density, the required test electrodes are required for each of the test electrodes. The electrical connection can be achieved reliably, and the manufacturing force can be reduced. <Electrical inspection equipment for circuit devices>
図 41は、本発明に係る回路基板の電気的検査装置の第 1の例における構成を示 す説明図である。この電気的検査装置は、両面に被検査電極 6, 7が形成されたプリ ント回路基板などの回路装置 5について、例えばオープン 'ショート試験を行うもので あって、回路装置 5を検査実行領域 Eに保持するためのホルダー 2を有し、このホル ダー 2には、回路装置 5を検査実行領域 Eにおける適正な位置に配置するための位 置決めピン 3が設けられている。検査実行領域 Eの上方には、図 37に示すような構成 の上部側アダプター装置 laおよび上部側検査ヘッド 50aが下力 この順で配置され 、更に、上部側検査ヘッド 50aの上方には、上部側支持板 56aが配置されており、上 部側検査ヘッド 50aは、支柱 54aによって支持板 56aに固定されている。一方、検査 実行領域 Eの下方には、図 37に示すような構成の下部側アダプター装置 lbおよび 下部側検査ヘッド 50bが上力 この順で配置され、更に、下部側検査ヘッド 50bの下 方には、下部側支持板 56bが配置されており、下部側検査ヘッド 50bは、支柱 54bに よって下部側支持板 56bに固定されている。  FIG. 41 is an explanatory diagram showing the configuration of the first example of the electrical inspection apparatus for circuit boards according to the present invention. This electrical inspection device performs, for example, an open / short test on a circuit device 5 such as a printed circuit board on which electrodes 6 and 7 to be inspected are formed on both sides. The holder 2 is provided with a positioning pin 3 for arranging the circuit device 5 at an appropriate position in the inspection execution region E. Above the inspection execution area E, the upper side adapter device la and the upper side inspection head 50a configured as shown in FIG. 37 are arranged in this order, and further above the upper side inspection head 50a, A side support plate 56a is arranged, and the upper side inspection head 50a is fixed to the support plate 56a by a column 54a. On the other hand, below the inspection execution area E, the lower side adapter device lb and the lower side inspection head 50b configured as shown in FIG. 37 are arranged in this order, and further below the lower side inspection head 50b. The lower side support plate 56b is arranged, and the lower side inspection head 50b is fixed to the lower side support plate 56b by a support 54b.
上部側検査ヘッド 50aは、板状の検査電極装置 5 laと、この検査電極装置 5 laの 下面に固定されて配置された弾性を有する異方導電性シート 55aとにより構成されて いる。検査電極装置 51aは、その下面に上部側アダプター装置 laの端子電極 22と 同一のピッチの格子点位置に配列された複数のピン状の検査電極 52aを有し、これ らの検査電極 52aの各々は、電線 53aによって、上部側支持板 56aに設けられたコ ネクター 57aに電気的に接続され、更に、このコネクター 57aを介してテスターの検査 回路(図示省略)に電気的に接続されている。  The upper inspection head 50a is composed of a plate-shaped inspection electrode device 5la and an anisotropically conductive sheet 55a having elasticity arranged and fixed to the lower surface of the inspection electrode device 5la. The inspection electrode device 51a has a plurality of pin-shaped inspection electrodes 52a arranged at lattice point positions at the same pitch as the terminal electrodes 22 of the upper-side adapter device la on the lower surface thereof, and each of these inspection electrodes 52a. The electric wire 53a is electrically connected to a connector 57a provided on the upper support plate 56a, and is further electrically connected to a tester inspection circuit (not shown) via the connector 57a.
下部側検査ヘッド 50bは、板状の検査電極装置 5 lbと、この検査電極装置 51bの 上面に固定されて配置された弾性を有する異方導電性シート 55bとにより構成されて いる。検査電極装置 5 lbは、その上面に下部側アダプター装置 lbの端子電極 22と 同一のピッチの格子点位置に配列された複数のピン状の検査電極 52bを有し、これ らの検査電極 52bの各々は、電線 53bによって、下部側支持板 56bに設けられたコ ネクター 57bに電気的に接続され、更に、このコネクター 57bを介してテスターの検査 回路(図示省略)に電気的に接続されている。 [0073] 上部側検査ヘッド 50aおよび下部側検査ヘッド 50bにおける異方導電性シート 55a , 55bは、いずれもその厚み方向にのみ導電路を形成する導電路形成部が形成され てなるものである。このような異方導電性シート 55a, 55bとしては、各導電路形成部 が少なくとも一面にぉ 、て厚み方向に突出するよう形成されて 、るものが、高 、電気 的な接触安定性を発揮する点で好まし ヽ。 The lower inspection head 50b is composed of a plate-shaped inspection electrode device 5 lb and an anisotropically conductive sheet 55b having elasticity arranged and fixed to the upper surface of the inspection electrode device 51b. The inspection electrode device 5 lb has a plurality of pin-shaped inspection electrodes 52b arranged on the upper surface thereof at lattice point positions having the same pitch as the terminal electrodes 22 of the lower adapter device lb. Each is electrically connected to a connector 57b provided on the lower support plate 56b by an electric wire 53b, and further electrically connected to an inspection circuit (not shown) of the tester via this connector 57b. . [0073] The anisotropic conductive sheets 55a and 55b in the upper side inspection head 50a and the lower side inspection head 50b are each formed with a conductive path forming portion that forms a conductive path only in the thickness direction. As such anisotropically conductive sheets 55a and 55b, each of the conductive path forming portions is formed so as to protrude in the thickness direction at least on one surface, and exhibits high electrical contact stability. It is preferable in point to do.
[0074] このような回路基板の電気的検査装置においては、検査対象である回路装置 5が ホルダー 2によって検査実行領域 Eに保持され、この状態で、上部側支持板 56aおよ び下部側支持板 56bの各々が回路装置 5に接近する方向に移動することにより、当 該回路装置 5が上部側アダプター装置 laおよび下部側アダプター装置 lbによって 挟圧される。  In such an electrical inspection device for circuit boards, the circuit device 5 to be inspected is held in the inspection execution region E by the holder 2, and in this state, the upper support plate 56a and the lower support plate are supported. As each of the plates 56b moves in a direction approaching the circuit device 5, the circuit device 5 is clamped by the upper adapter device la and the lower adapter device lb.
この状態においては、回路装置 5の上面における被検査電極 6は、上部側アダプタ 一装置 laの接続用電極 21に、当該異方導電性コネクター 10の導電路形成部 16を 介して電気的に接続され、この上部側アダプター装置 laの端子電極 22は、異方導 電性シート 55aを介して検査電極装置 5 laの検査電極 52aに電気的に接続されてい る。一方、回路装置 5の下面における被検査電極 7は、下部側アダプター装置 lbの 接続用電極 21に、当該異方導電性コネクター 10の導電路形成部 16を介して電気 的に接続され、この下部側アダプター装置 lbの端子電極 22は、異方導電性シート 5 5bを介して検査電極装置 5 lbの検査電極 52bに電気的に接続されて!、る。  In this state, the electrode 6 to be inspected on the upper surface of the circuit device 5 is electrically connected to the connection electrode 21 of the upper-side adapter device la through the conductive path forming portion 16 of the anisotropic conductive connector 10. The terminal electrode 22 of the upper adapter device la is electrically connected to the test electrode 52a of the test electrode device 5la via an anisotropic conductive sheet 55a. On the other hand, the electrode 7 to be inspected on the lower surface of the circuit device 5 is electrically connected to the connection electrode 21 of the lower-side adapter device lb through the conductive path forming portion 16 of the anisotropic conductive connector 10. The terminal electrode 22 of the side adapter device lb is electrically connected to the test electrode 52b of the test electrode device 5 lb through the anisotropic conductive sheet 55b.
[0075] このようにして、回路装置 5の上面および下面の両方の被検査電極 6, 7の各々が、 上部側検査ヘッド 50aにおける検査電極装置 51aの検査電極 52aおよび下部側検 查ヘッド 50bにおける検査電極装置 51bの検査電極 52bの各々に電気的に接続さ れること〖こより、テスターの検査回路に電気的に接続された状態が達成され、この状 態で所要の電気的検査が行われる。  [0075] In this way, each of the test electrodes 6 and 7 on both the upper surface and the lower surface of the circuit device 5 is connected to the test electrode 52a and the lower test head 50b of the test electrode device 51a in the upper test head 50a. As a result of being electrically connected to each of the inspection electrodes 52b of the inspection electrode device 51b, a state of being electrically connected to the inspection circuit of the tester is achieved, and a required electrical inspection is performed in this state.
[0076] 上記の回路基板の電気的検査装置によれば、図 37に示すような構成の上部側ァ ダブター装置 laおよび下部側アダプター装置 lbを有するため、回路装置 5の被検 查電極 6, 7の配置パターンに関わらず、当該回路装置 5について所要の電気的検 查を確実に実行することができると共に、回路装置 5の被検査電極 6, 7が、そのピッ チが微小で高密度に配置されている場合であっても、当該回路装置 5について所要 の電気的検査を確実に実行することができる。 [0076] According to the electrical inspection apparatus for a circuit board described above, since it has the upper side adapter device la and the lower side adapter device lb configured as shown in FIG. Regardless of the arrangement pattern of 7, the required electrical inspection can be reliably performed on the circuit device 5, and the electrodes 6 and 7 to be inspected of the circuit device 5 have minute pitches and high density. Required for the circuit device 5 even if it is placed It is possible to reliably perform the electrical inspection.
図 42は、本発明に係る回路基板の電気的検査装置の第 2の例における構成を示 す説明図である。この電気的検査装置は、両面に被検査電極 6, 7が形成されたプリ ント回路基板などの回路装置 5について、各配線パターンの電気抵抗測定試験を行 うためのものであって、回路装置 5を検査実行領域 Eに保持するためのホルダー 2を 有し、このホルダー 2には、回路装置 5を検査実行領域 Eにおける適正な位置に配置 するための位置決めピン 3が設けられている。  FIG. 42 is an explanatory view showing the configuration of the second example of the electrical inspection apparatus for circuit boards according to the present invention. This electrical inspection device is for performing an electrical resistance measurement test of each wiring pattern on a circuit device 5 such as a printed circuit board on which both electrodes 6 and 7 are formed on both sides. A holder 2 for holding 5 in the inspection execution area E is provided, and the holder 2 is provided with a positioning pin 3 for arranging the circuit device 5 at an appropriate position in the inspection execution area E.
検査実行領域 Eの上方には、図 39に示すような構成の上部側アダプター装置 la および上部側検査ヘッド 50aが下力 この順で配置され、更に、上部側検査ヘッド 5 Oaの上方には、上部側支持板 56aが配置されており、上部側検査ヘッド 50aは、支 柱 54aによって支持板 56aに固定されている。一方、検査実行領域 Eの下方には、図 39に示すような構成の下部側アダプター装置 lbおよび下部側検査ヘッド 50bが上 力もこの順で配置され、更に、下部側検査ヘッド 50bの下方には、下部側支持板 56 bが配置されており、下部側検査ヘッド 50bは、支柱 54bによって支持板 56bに固定 されている。  Above the inspection execution area E, an upper adapter device la and an upper inspection head 50a configured as shown in FIG. 39 are arranged in this order, and further above the upper inspection head 5 Oa, The upper side support plate 56a is arranged, and the upper side inspection head 50a is fixed to the support plate 56a by a support column 54a. On the other hand, below the inspection execution area E, the lower side adapter device lb and the lower side inspection head 50b configured as shown in FIG. 39 are arranged in this order, and further below the lower side inspection head 50b. The lower side support plate 56b is arranged, and the lower side inspection head 50b is fixed to the support plate 56b by a support 54b.
上部側検査ヘッド 50aは、板状の検査電極装置 5 laと、この検査電極装置 5 laの 下面に固定されて配置された弾性を有する異方導電性シート 55aとにより構成されて いる。検査電極装置 51aは、その下面に上部側アダプター装置 laの端子電極 22と 同一のピッチの格子点位置に配列された複数のピン状の検査電極 52aを有し、これ らの検査電極 52aの各々は、電線 53aによって、上部側支持板 56aに設けられたコ ネクター 57aに電気的に接続され、更に、このコネクター 57aを介してテスターの検査 回路(図示省略)に電気的に接続されている。  The upper inspection head 50a is composed of a plate-shaped inspection electrode device 5la and an anisotropically conductive sheet 55a having elasticity arranged and fixed to the lower surface of the inspection electrode device 5la. The inspection electrode device 51a has a plurality of pin-shaped inspection electrodes 52a arranged at lattice point positions at the same pitch as the terminal electrodes 22 of the upper-side adapter device la on the lower surface thereof, and each of these inspection electrodes 52a. The electric wire 53a is electrically connected to a connector 57a provided on the upper support plate 56a, and is further electrically connected to a tester inspection circuit (not shown) via the connector 57a.
下部側検査ヘッド 50bは、板状の検査電極装置 5 lbと、この検査電極装置 51bの 上面に固定されて配置された弾性を有する異方導電性シート 55bとにより構成されて いる。検査電極装置 5 lbは、その上面に下部側アダプター装置 lbの端子電極 22と 同一のピッチの格子点位置に配列された複数のピン状の検査電極 52bを有し、これ らの検査電極 52bの各々は、電線 53bによって、下部側支持板 56bに設けられたコ ネクター 57bに電気的に接続され、更に、このコネクター 57bを介してテスターの検査 回路(図示省略)に電気的に接続されている。 The lower inspection head 50b is composed of a plate-shaped inspection electrode device 5 lb and an anisotropically conductive sheet 55b having elasticity arranged and fixed to the upper surface of the inspection electrode device 51b. The inspection electrode device 5 lb has a plurality of pin-shaped inspection electrodes 52b arranged on the upper surface thereof at lattice point positions having the same pitch as the terminal electrodes 22 of the lower adapter device lb. Each is electrically connected to a connector 57b provided on the lower support plate 56b by an electric wire 53b, and further, a tester inspection is performed via this connector 57b. It is electrically connected to a circuit (not shown).
上部側検査ヘッド 50aおよび下部側検査ヘッド 50bにおける異方導電性シート 55a , 55bは、第 1の例の電気的検査装置と基本的に同様の構成である。  The anisotropic conductive sheets 55a and 55b in the upper side inspection head 50a and the lower side inspection head 50b have basically the same configuration as that of the electrical inspection apparatus of the first example.
[0078] このような回路基板の電気的検査装置においては、検査対象である回路装置 5が ホルダー 2によって検査実行領域 Eに保持され、この状態で、上部側支持板 56aおよ び下部側支持板 56bの各々が回路装置 5に接近する方向に移動することにより、当 該回路装置 5が上部側アダプター装置 laおよび下部側アダプター装置 lbによって 挟圧される。 In such an electrical inspection device for circuit boards, the circuit device 5 to be inspected is held in the inspection execution region E by the holder 2, and in this state, the upper side support plate 56a and the lower side support As each of the plates 56b moves in a direction approaching the circuit device 5, the circuit device 5 is clamped by the upper adapter device la and the lower adapter device lb.
この状態においては、回路装置 5の上面における被検査電極 6は、上部側アダプタ 一装置 laの接続用電極対 21aにおける電流供給用電極 21bおよび電圧測定用電 極 21cの両方に、異方導電性コネクター 10の導電路形成部 16を介して電気的に接 続され、この上部側アダプター装置 laの端子電極 22は、異方導電性シート 55aを介 して検査電極装置 51aの検査電極 52aに電気的に接続されている。一方、回路装置 5の下面における被検査電極 7は、下部側アダプター装置 lbの接続用電極対 21 aに おける電流供給用電極 21bおよび電圧測定用電極 21cの両方に、異方導電性コネ クタ一 10の導電路形成部 16を介して電気的に接続され、この下部側アダプター装 置 lbの端子電極 22は、異方導電性シート 55bを介して検査電極装置 5 lbの検查電 極 52bに電気的に接続されている。  In this state, the electrode 6 to be inspected on the upper surface of the circuit device 5 is anisotropically conductive to both the current supply electrode 21b and the voltage measurement electrode 21c in the connection electrode pair 21a of the upper-side adapter device la. The terminal electrode 22 of the upper adapter device la is electrically connected to the inspection electrode 52a of the inspection electrode device 51a via the anisotropic conductive sheet 55a. Connected. On the other hand, the electrode 7 to be inspected on the lower surface of the circuit device 5 is connected to both the current supply electrode 21b and the voltage measurement electrode 21c in the connection electrode pair 21a of the lower adapter device lb. The terminal electrode 22 of this lower side adapter device lb is electrically connected to the inspection electrode device 5 lb of the inspection electrode 52b via the anisotropic conductive sheet 55b. Electrically connected.
[0079] このようにして、回路装置 5の上面および下面の両方の被検査電極 6, 7の各々が、 上部側検査ヘッド 50aにおける検査電極装置 51aの検査電極 52aおよび下部側検 查ヘッド 50bにおける検査電極装置 51bの検査電極 52bの各々に電気的に接続さ れること〖こより、テスターの検査回路に電気的に接続された状態が達成され、この状 態で所要の電気的検査が行われる。具体的には、上部側アダプター装置 laにおけ る電流供給用電極 21bと下部側アダプター装置 lbにおける電流供給用電極 21bと の間に一定の値の電流が供給されると共に、上部側のアダプター装置 laにおける複 数の電圧測定用電極 21cの中から 1つを指定し、当該指定された 1つの電圧測定用 電極 21cと、当該電圧測定用電極 21cに電気的に接続された上面側の被検査電極 5に対応する下面側の被検査電極 6に電気的に接続された、下部側アダプター装置 lbにおける電圧測定用電極 21cとの間の電圧が測定され、得られた電圧値に基づ いて、当該指定された 1つの電圧測定用電極 21cに電気的に接続された上面側の 被検査電極 5とこれに対応する他面側の被検査電極 6との間に形成された配線バタ ーンの電気抵抗値が取得される。そして、指定する電圧測定用電極 21cを順次変更 することにより、全ての配線パターンの電気抵抗の測定が行われる。 [0079] In this way, each of the electrodes to be inspected 6, 7 on both the upper surface and the lower surface of the circuit device 5 is in the inspection electrode 52a and the lower inspection head 50b of the inspection electrode device 51a in the upper inspection head 50a. As a result of being electrically connected to each of the inspection electrodes 52b of the inspection electrode device 51b, a state of being electrically connected to the inspection circuit of the tester is achieved, and a required electrical inspection is performed in this state. Specifically, a constant current is supplied between the current supply electrode 21b in the upper adapter device la and the current supply electrode 21b in the lower adapter device lb, and the upper adapter device la. Designate one of the multiple voltage measurement electrodes 21c in la, the one specified voltage measurement electrode 21c, and the upper surface side inspected electrically connected to the voltage measurement electrode 21c Lower side adapter device electrically connected to the electrode 6 to be inspected on the lower surface side corresponding to the electrode 5 The voltage between the electrode 21c for voltage measurement at lb is measured, and based on the obtained voltage value, the electrode to be inspected on the upper surface side electrically connected to the one specified voltage measuring electrode 21c The electric resistance value of the wiring pattern formed between 5 and the corresponding electrode 6 to be inspected on the other side is obtained. Then, the electrical resistances of all the wiring patterns are measured by sequentially changing the designated voltage measuring electrode 21c.
[0080] 上記の回路基板の電気的検査装置によれば、図 39に示すような構成の上部側ァ ダブター装置 laおよび下部側アダプター装置 lbを有するため、回路装置 5の被検 查電極 6, 7の配置パターンに関わらず、当該回路装置 5について所要の電気的検 查を確実に実行することができると共に、回路装置 5の被検査電極 6, 7が、そのピッ チが微小で高密度に配置されている場合であっても、当該回路装置 5について所要 の電気的検査を確実に実行することができる。  [0080] According to the electrical inspection apparatus for a circuit board described above, since it has the upper side adapter device la and the lower side adapter device lb configured as shown in FIG. Regardless of the arrangement pattern of 7, the required electrical inspection can be reliably performed on the circuit device 5, and the electrodes 6 and 7 to be inspected of the circuit device 5 have minute pitches and high density. Even if it is arranged, the required electrical inspection can be reliably performed on the circuit device 5.
[0081] 本発明においては、上記の実施の形態に限定されず、例えば以下のような種々の 変更をカ卩えることが可能である。  In the present invention, the present invention is not limited to the above-described embodiment, and various changes such as the following can be covered.
(1)異方導電性コネクター 10においては、弾性異方導電膜 15における導電路形成 部 16に突出部が形成されることは必須のことではなく、弾性異方導電膜 15の表面全 体が平坦なものであってもよ!/、。  (1) In the anisotropic conductive connector 10, it is not essential that the conductive path forming portion 16 of the elastic anisotropic conductive film 15 has a protruding portion, and the entire surface of the elastic anisotropic conductive film 15 Even flat ones! /.
(2)アダプター装置において、異方導電性コネクター 10は、アダプター本体 20の接 続用電極領域 25のみを覆うよう配置されて 、てもよ 、。  (2) In the adapter device, the anisotropic conductive connector 10 may be arranged so as to cover only the connection electrode region 25 of the adapter body 20.
(3)検査対象である回路装置は、プリント回路基板に限定されず、ノ ッケージ IC、 M CMなどの半導体集積回路装置、ウェハに形成された回路装置であってもよい。 (3) The circuit device to be inspected is not limited to a printed circuit board, but may be a semiconductor integrated circuit device such as a knock IC or MCM, or a circuit device formed on a wafer.
(4)アダプター装置において、第 2の例の異方導電性コネクターの代わりに、第 1の 例の異方導電性コネクター、第 3の例の異方導電性コネクターまたは第 4の例の異方 導電性コネクターを用いることができる。 (4) In the adapter device, instead of the anisotropic conductive connector of the second example, the anisotropic conductive connector of the first example, the anisotropic conductive connector of the third example, or the anisotropic of the fourth example Conductive connectors can be used.
[0082] (5)異方導電性コネクター 10の製造方法においては、導電路形成部形成用の離型 性支持板として、形成すべき導電路形成部 16のパターンに対応するパターンに従つ て強磁性体部分が配置されてなるものを用いることができる。このような離型性支持 板の一例における構成を図 43に示す。この離型性支持板 30は、導電性エラストマ一 用材料層が形成される離型性の表面(図 43において上面)を有する金属膜 31を有 し、この金属膜 31の裏面には、形成すべき導電路形成部 16のパターンに対応する パターンに従って強磁性体部分 32が配置され、それ以外の領域には非磁性体部分 33が配置されている。 [0082] (5) In the method for manufacturing the anisotropic conductive connector 10, according to the pattern corresponding to the pattern of the conductive path forming portion 16 to be formed as the releasable support plate for forming the conductive path forming portion. A material in which a ferromagnetic part is arranged can be used. The configuration of an example of such a releasable support plate is shown in FIG. The releasable support plate 30 has a metal film 31 having a releasable surface (upper surface in FIG. 43) on which a conductive elastomer material layer is formed. On the back surface of the metal film 31, a ferromagnetic portion 32 is arranged according to a pattern corresponding to the pattern of the conductive path forming portion 16 to be formed, and a nonmagnetic portion 33 is arranged in the other region. Yes.
金属膜 31を構成する材料としては、ニッケル、金、銅などを用いることができる。 強磁性体部分 32を構成する材料としては、ニッケル、コバルトまたはこれらの合金 などを用いることができる。  As a material constituting the metal film 31, nickel, gold, copper, or the like can be used. As a material constituting the ferromagnetic portion 32, nickel, cobalt, or an alloy thereof can be used.
非磁性体部分 33を構成する材料としては、フォトレジストを用いることができる。 このような離型性支持板 30は、図 44に示すように、金属膜 31上に、形成すべき強 磁性体部分 32のパターンに従って開口 33Kが形成された非磁性体部分 33をフォト レジストによって形成し、その後、金属膜 31における非磁性体部分 33の開口 33Kを 介して露出した部分の表面に、メツキ処理を施すことにより、製造することができる。 このような離型性支持板 30においては、以下のようにして導電路形成部 16が形成 される。  As a material constituting the nonmagnetic part 33, a photoresist can be used. As shown in FIG. 44, such a releasable support plate 30 is formed by using a photoresist to form a non-magnetic part 33 having openings 33K formed on the metal film 31 according to the pattern of the ferromagnetic part 32 to be formed. After the formation, the surface of the portion exposed through the opening 33K of the non-magnetic portion 33 in the metal film 31 can be manufactured by performing a plating process. In such a releasable support plate 30, the conductive path forming portion 16 is formed as follows.
先ず、図 45に示すように、離型性支持板 30における金属膜 31の表面に、導電性 エラストマ一用材料層 16Aを形成し、この導電性エラストマ一材料層 16A上に、接点 部材複合体 18Fをその接点部材 18の各々が当該導電性エラストマ一材料層 16Aに 接するよう配置する。次いで、導電性エラストマ一用材料層 16Aに対し、接点部材 18 および離型性支持板 30の強磁性体部分 32を介して当該導電性エラストマ一用材料 層 16Aの厚み方向に磁場を作用させ、これにより、導電性エラストマ一用材料層 16 Aにおける接点部材 18と離型性支持板 30の強磁性体部分 32との間に位置する部 分には、それ以外の部分より大きい強度の磁場が形成される。その結果、導電性エラ ストマー用材料層 16A中に分散されていた導電性粒子 Pは、図 46に示すように、接 点部材 18と離型性支持板 30の強磁性体部分 32との間に位置する部分に集合し、 更に当該導電性エラストマ一用材料層 16Aの厚み方向に並ぶよう配向する。そして 、導電性エラストマ一用材料層 16Aに対する磁場の作用を継続しながら、或いは磁 場の作用を停止した後、導電性エラストマ一用材料層 16Aの硬化処理を行うことによ り、図 47に示すように、弾性高分子物質中に導電性粒子 Pが厚み方向に並ぶよう配 向した状態で含有されてなる導電性エラストマ一層 16Bが、離型性支持板 13上に支 持された状態で形成される。 First, as shown in FIG. 45, a conductive elastomer material layer 16A is formed on the surface of the metal film 31 of the releasable support plate 30, and a contact member composite is formed on the conductive elastomer material layer 16A. 18F is arranged so that each of its contact members 18 is in contact with the conductive elastomer material layer 16A. Next, a magnetic field is applied to the conductive elastomer material layer 16A via the contact member 18 and the ferromagnetic portion 32 of the releasable support plate 30 in the thickness direction of the conductive elastomer material layer 16A. As a result, a portion of the conductive elastomer material layer 16 A located between the contact member 18 and the ferromagnetic portion 32 of the releasable support plate 30 has a stronger magnetic field than the other portions. It is formed. As a result, the conductive particles P dispersed in the conductive elastomer material layer 16A are formed between the contact member 18 and the ferromagnetic portion 32 of the releasable support plate 30 as shown in FIG. Are aligned in the thickness direction of the material layer 16A for the conductive elastomer. Then, while continuing the action of the magnetic field on the conductive elastomer material layer 16A or after stopping the action of the magnetic field, the conductive elastomer material layer 16A is subjected to a curing process to obtain the result shown in FIG. As shown, a conductive elastomer layer 16B, which is contained in an elastic polymer material in a state in which the conductive particles P are aligned in the thickness direction, is supported on the releasable support plate 13. It is formed in a held state.
その後、導電性エラストマ一層 16B上に配置された接点部材複合体 18Fにおける 金属箔 14に対して、エッチング処理を施して除去することにより、図 48に示すように、 接点部材 18およびレジスト層 19を露出させる。そして、導電性エラストマ一層 16Bお よびレジスト層 19に対して、接点部材 18をマスクとしてレーザー加工を施すことにより 、レジスト層 19および導電性エラストマ一層 16Bの一部が除去され、その結果、図 49 に示すように、特定のパターンに従って配置され、それぞれ接点部材 18がー体的に 設けられた複数の導電路形成部 16が離型性支持板 30上に支持された状態で形成 される。  Thereafter, the metal foil 14 in the contact member composite 18F disposed on the conductive elastomer layer 16B is removed by etching to remove the contact member 18 and the resist layer 19 as shown in FIG. Expose. Then, laser processing is performed on the conductive elastomer layer 16B and the resist layer 19 using the contact member 18 as a mask to remove a part of the resist layer 19 and the conductive elastomer layer 16B. As a result, as shown in FIG. As shown in FIG. 2, a plurality of conductive path forming portions 16 arranged according to a specific pattern and each provided with a contact member 18 are formed on the releasable support plate 30.
[0084] このような離型性支持板 30を用いる方法によれば、導電性エラストマ一材料層 16 Aに対し、接点部材 18が配置された部分に、それ以外の部分より一層高い強度の磁 場を作用させることができるので、得られる導電性エラストマ一層 16Bは、接点部材 1 8が配置された部分における導電性粒子 Pがー層密となり、それ以外の部分における 導電性粒子 Pがー層疎となる。そのため、導電性エラストマ一層 16の厚みが相当に 大きいものであっても、接点部材 18をマスクとして利用して導電性エラストマ一層 16 Bをレーザー加工することにより、所期の形態の導電路形成部 16を形成することがで きる。  [0084] According to such a method using the releasable support plate 30, the magnetic material having a higher strength than the other portions in the portion where the contact member 18 is disposed with respect to the conductive elastomer material layer 16A. In the resulting conductive elastomer layer 16B, the conductive particles P in the portion where the contact member 18 is disposed become dense, and the conductive particles P in the other portions become the layer. Sparse. Therefore, even if the thickness of the conductive elastomer layer 16 is considerably large, the conductive path forming portion of the desired form can be obtained by laser processing the conductive elastomer layer 16 B using the contact member 18 as a mask. 16 can be formed.
[0085] (6)異方導電性コネクター 10の製造方法においては、図 50に示すように、絶縁部形 成用の離型性支持板 35として、弾性基板 36上に金属膜 37が配置されてなるものを 用!/、ることができる。  [0085] (6) In the method of manufacturing the anisotropic conductive connector 10, as shown in FIG. 50, a metal film 37 is disposed on the elastic substrate 36 as the releasable support plate 35 for forming the insulating portion. You can use what you have!
弾性基板 36を構成する材料としては、硬化ゴム、熱可塑性エラストマ一などの弾性 高分子物質を用いることができる。  As a material constituting the elastic substrate 36, an elastic polymer substance such as a hardened rubber or a thermoplastic elastomer can be used.
金属膜 37を構成する材料としては、銅、金、ニッケル、銀、鉄、コバルト若しくはこれ らの合金またはこれらの合金鋼などを用いることができる。  As a material constituting the metal film 37, copper, gold, nickel, silver, iron, cobalt, alloys thereof, alloy steels thereof, or the like can be used.
このような離型性支持板 35を用いる方法によれば、離型性支持板 35上に形成され た絶縁部用材料層 17A中に導電路形成部 16を浸入させて接点部材 18の各々を離 型性支持板 35に接触させ、更に加圧することにより、当該離型性支持板 35における 加圧された部分が厚み方向に圧縮した状態に変形され、これにより、絶縁部用材料 層 17Aを硬化する前に、接点部材 18および導電路形成部 16が当該絶縁部用材料 層 17Aの下面力も突出した状態となるため、突出部を有する異方導電性コネクター 1 0を確実に製造することができる。 According to such a method using the releasable support plate 35, the conductive path forming portion 16 is infiltrated into the insulating material layer 17A formed on the releasable support plate 35 so that each contact member 18 is By making contact with the releasable support plate 35 and further pressurization, the pressurized portion of the releasable support plate 35 is deformed into a compressed state in the thickness direction, and thereby, the insulating portion material. Before the layer 17A is cured, the contact member 18 and the conductive path forming portion 16 are also in a state where the bottom surface force of the insulating material layer 17A also protrudes, so that the anisotropic conductive connector 10 having the protruding portion is reliably manufactured. can do.
[0086] また、導電路形成部 16の形成においては、レーザー加工によって導電性エラスト マー層 16Bにおける導電路形成部となる部分以外の部分の全部が除去されることに より、導電路形成部を形成することもできるが、図 51および図 52に示すように、導電 性エラストマ一層 16Bにおける導電路形成部となる部分の周辺部分のみが除去され ることにより、導電路形成部 16を形成することもできる。この場合には、導電性エラス トマ一層 16Bの残部は、離型性支持板 15から機械的に剥離することによって除去す ることがでさる。 [0086] Further, in forming the conductive path forming portion 16, all of the conductive elastomer layer 16B other than the portion that becomes the conductive path forming portion is removed by laser processing, whereby the conductive path forming portion is removed. However, as shown in FIGS. 51 and 52, the conductive path forming portion 16 can be formed by removing only the peripheral portion of the conductive elastomer layer 16B that becomes the conductive path forming portion. You can also. In this case, the remaining portion of the conductive elastomer layer 16B can be removed by mechanically peeling from the releasable support plate 15.
[0087] (7)異方導電性コネクター 10としては、図 53に示すように、単一の開口 12が形成さ れたフレーム板 11と、このフレーム板 11の開口 12を塞ぐよう配置された単一の弾性 異方導電膜 15とよりなる構成のものであってもよい。  (7) As shown in FIG. 53, the anisotropically conductive connector 10 is arranged so as to close the frame plate 11 formed with a single opening 12 and the opening 12 of the frame plate 11. A structure composed of a single elastic anisotropic conductive film 15 may be used.
また、異方導電性コネクター 10としては、図 54に示すように、複数の開口 12が形成 されたフレーム板 11と、それぞれフレーム板 11の一の開口 12を塞ぐよう配置された 複数の弾性異方導電膜 15とよりなる構成のものであってもよい。  Further, as shown in FIG. 54, the anisotropically conductive connector 10 includes a frame plate 11 having a plurality of openings 12 and a plurality of elastic plates each arranged so as to close one opening 12 of the frame plate 11. A structure composed of the directionally conductive film 15 may be used.
更に、異方導電性コネクター 10としては、複数の開口が形成されたフレーム板と、 フレーム板の一の開口を塞ぐよう配置された 1または 2以上の弾性異方導電膜と、フ レーム板の複数の開口を塞ぐよう配置された 1つまたは 2以上の弾性異方導電膜とよ りなる構成であってもよい。  Further, the anisotropic conductive connector 10 includes a frame plate in which a plurality of openings are formed, one or more elastic anisotropic conductive films arranged so as to close one opening of the frame plate, and a frame plate. A configuration including one or two or more elastic anisotropic conductive films arranged to block a plurality of openings may be used.
実施例  Example
[0088] 〈実施例 1〉 <Example 1>
(1)接点部材複合体の製造:  (1) Manufacture of contact member composite:
ポリエチレンテレフタレートよりなる厚みが 100 μ mの榭脂フィルムの一面に、厚み 力 S18 μ mの銅よりなる金属箔(14)が剥離可能に積層されてなる積層材料を用意し、 この積層材料における金属箔(14)の表面に、フォトリソグラフィ一の手法により、それ ぞれ寸法が 120 m X mの矩形の 4800個の開口(19K)力 最小の離間距離 力 S30 m (最小の中心間距離が 90 μ m)で形成された、厚みが 80 μ mのレジスト層 (19)を形成した(図 3参照)。その後、金属箔(14)の表面に電解ニッケルメツキ処理 を施すことにより、レジスト層(19)の各開口(19K)内に厚みが約 80 mのニッケル よりなる接点部材 (18)を形成し、以て、接点部材複合体 (18F)を製造した (図 4参照Prepare a laminated material in which a metal foil (14) made of copper with a thickness of S18 μm is peeled and laminated on one surface of a 100 μm thick resin film made of polyethylene terephthalate. On the surface of the foil (14), using a photolithography technique, 4800 rectangular (19K) forces each having a dimension of 120 m x m Minimum separation distance Force S30 m (minimum center-to-center distance of 90 μm) resist layer with a thickness of 80 μm (19) was formed (see FIG. 3). Thereafter, electrolytic nickel plating is applied to the surface of the metal foil (14) to form a contact member (18) made of nickel having a thickness of about 80 m in each opening (19K) of the resist layer (19). Therefore, the contact member composite (18F) was manufactured (see Fig. 4).
) o ) o
(2)導電性エラストマ一層の形成:  (2) Formation of one layer of conductive elastomer:
付加型液状シリコーンゴム 100重量部中に、ニッケルよりなる芯粒子に金が被覆さ れてなる導電性粒子 (数平均粒子径が 12 m,芯粒子に対する金の割合が 2重量 %) 70重量部を分散させることにより、導電性エラストマ一用材料を調製した。この導 電性エラストマ一用材料を、厚みが 5mmのステンレスよりなる離型性支持板(13)の 表面に、スクリーン印刷により塗布することにより、当該離型性支持板(13)上に、厚 みが 150 mの導電性エラストマ一用材料層(16A)を形成した(図 5参照)。  Additive liquid silicone rubber 100 parts by weight of conductive particles in which core particles made of nickel are coated with gold (number average particle diameter is 12 m, the ratio of gold to core particles is 2% by weight) 70 parts by weight Was dispersed to prepare a conductive elastomer material. This conductive elastomer material is applied to the surface of a releasable support plate (13) made of stainless steel having a thickness of 5 mm by screen printing, so that the thickness of the conductive elastomer material is increased on the releasable support plate (13). A conductive elastomer material layer (16A) with a thickness of 150 m was formed (see Fig. 5).
次いで、導電性エラストマ一用材料層(16A)上に、接点部材複合体(18F)をその 接点部材(18)の各々が当該導電性エラストマ一用材料層 (16A)に接するよう配置 し、この状態で、導電性導電性エラストマ一用材料層 (16A)に対して、電磁石によつ て厚み方向に 2テスラの磁場を作用させながら、 120°C、 1時間の条件で硬化処理を 行うことにより、離型性支持板 13上に支持された厚みが 150 mの導電性エラストマ 一層(16B)を形成した (図 6乃至図 8参照)。  Next, the contact member composite (18F) is disposed on the conductive elastomer material layer (16A) such that each of the contact members (18) is in contact with the conductive elastomer material layer (16A). In this state, the material layer for conductive conductive elastomer (16A) is cured at 120 ° C for 1 hour while applying a magnetic field of 2 Tesla in the thickness direction with an electromagnet. Thus, a conductive elastomer layer (16B) having a thickness of 150 m supported on the releasable support plate 13 was formed (see FIGS. 6 to 8).
(3)導電路形成部の形成: (3) Formation of conductive path forming part:
接点部材複合体(18F)における金属箔(14)の表面力 榭脂フィルムを剥離し、当 該金属箔(14)をエッチング処理によって除去することにより、接点部材(18)および レジスト層(19)を露出させた(図 9参照)。そして、この状態で、導電性エラストマ一層 (16B)およびレジスト層(18)に対して、接点部材(14)をマスクとして炭酸ガスレーザ 一装置によってレーザー加工を施すことにより、それぞれ離型性支持板(13)上に支 持され、それぞれ接点部材(18)—体的に設けられた 4800個の導電路形成部(16) を形成した(図 10参照)。  Surface force of the metal foil (14) in the contact member composite (18F) The resin film is peeled off, and the metal foil (14) is removed by an etching process, whereby the contact member (18) and the resist layer (19) Was exposed (see Figure 9). Then, in this state, the conductive elastomer layer (16B) and the resist layer (18) are subjected to laser processing with a carbon dioxide laser device using the contact member (14) as a mask, so that the releasable support plates ( 13) 4800 conductive path forming portions (16) supported on each of the contact members (18) and physically formed were formed (see FIG. 10).
以上において、炭酸ガスレーザー装置によるレーザー加工条件は、以下の通りで ある。 すなわち、装置として、炭酸ガスレーザー加工機「ML— 605GTX」(三菱電 機 (株)製)を用い、レーザービーム径が直径 60 m,レーザー出力が 0. 8mJの条 件で、 1つの加工点にレーザービームを 10ショット照射することによりレーザー加工を 行った。 In the above, the laser processing conditions by the carbon dioxide laser device are as follows. In other words, a carbon dioxide laser processing machine “ML-605GTX” (manufactured by Mitsubishi Electric Corporation) is used as the equipment, and the laser beam diameter is 60 m and the laser output is 0.8 mJ. The laser processing was performed by irradiating 10 shots of the laser beam at one processing point.
[0090] (4)フレーム板の作製:  [0090] (4) Fabrication of frame plate:
図 14に示す構成に従 ヽ、以下のようにしてフレーム板(11)を作製した。 厚みが 50 μ mの液晶ポリマーよりなる樹脂シートの両面に銅箔が積層されてなる積 層シート (新日鐡ィ匕学製の「エスパネックス LB18— 50— 18NEP」)を用意し、この 積層シートの一面の銅箔上にドライフィルムレジストをラミネートすることによりレジスト 膜を形成した。次いで、形成されたレジスト膜に対して露光処理および現像処理を施 すことにより、当該レジスト膜に目的とするフレーム板の開口に対応するパターン孔を 形成し、更に、エッチング処理を行うことにより、銅箔に目的とするフレーム板の開口 に対応するパターンの開口を形成し、その後、レジスト膜を除去した。  In accordance with the configuration shown in FIG. 14, a frame plate (11) was produced as follows. Prepare a laminated sheet (“Espanex LB18—50—18NEP” made by Nippon Steel Engineering Co., Ltd.) in which copper foil is laminated on both sides of a resin sheet made of a liquid crystal polymer with a thickness of 50 μm. A resist film was formed by laminating a dry film resist on the copper foil on one side of the sheet. Next, by performing exposure processing and development processing on the formed resist film, pattern holes corresponding to the opening of the target frame plate are formed in the resist film, and further, etching processing is performed. An opening having a pattern corresponding to the opening of the target frame plate was formed in the copper foil, and then the resist film was removed.
そして、積層シートにおける榭脂シートに対して、銅箔に形成された開口を介してレ 一ザ一加工を施して開口を形成し、その後、積層シートにおける両面の銅箔を、エツ チング処理によって除去することにより、フレーム板(11)を作成した。  Then, the resin sheet in the laminated sheet is subjected to laser processing through the opening formed in the copper foil to form an opening, and thereafter, the copper foil on both sides of the laminated sheet is subjected to etching treatment. By removing, a frame plate (11) was created.
このフレーム板(11)は、材質が液晶ポリマーで、寸法が 190mm X I 30mm X 50 /z mであり、開口(12)は、直径力 OO /z mの円形であり、開口(12)の総数は 2400 である。  This frame plate (11) is made of liquid crystal polymer and has dimensions of 190mm XI 30mm X 50 / zm, the opening (12) is a circle with a diameter force of OO / zm, and the total number of openings (12) is 2400 It is.
[0091] (5)絶縁部の形成: [0091] (5) Formation of insulating portion:
離型性支持板(13A)の表面に、付加型液状シリコーンゴムを塗布することにより、 厚みが 10 mの塗布膜を形成し、この塗布膜上にフレーム板(11)を配置し、更に、 付加型液状シリコーンゴムを塗布することにより、フレーム板(11)の開口(12)を塞ぐ よう配置された、全体の厚みが 100 mの絶縁部用材料層(17A)を形成した(図 16 参照)。この絶縁部用材料層(12)上に、それぞれ接点部材(18)が設けられた 4800 個の導電路形成部(16)が形成された離型性支持板(13)を位置合わせして重ね合 わせること〖こより、当該導電路形成部(16)の各々を絶縁部用材料層 (17A)中に浸 入させ、接点部材(18)を離型性支持板(13A)に接触させた。そして、離型性支持 板( 13)に 800kgfの圧力を加えることにより、導電路形成部( 16)の厚みを 150 μ m 力も 1200 /z mに弹性的に圧縮させた(図 17参照)。この状態で、 120°C、 1時間の条 件で、絶縁部用材料層 (17A)の硬化処理を行うことにより、導電路形成部(16)の周 囲に一体の絶縁部 ( 17)を形成し、以て弾性異方導電膜 (15)を形成し (図 18参照) 、その後、弾性異方導電膜 (15)を離型性支持板(13, 13A)力ゝら離型させることによ り、本発明の異方導電性コネクター(10)を製造した。この異方導電性コネクター(10 )における弾性異方導電膜(15)は、導電路形成部(16)の厚みが 150 111、絶縁部 (17)の厚みが 100 μ m、導電路形成部(16)の最小の離間距離が 30 m (最小の 中心間距離が 90 m)であり、 2個の導電路形成部(16)がフレーム板(11)の開口( 12)内に位置するよう配置されている。また、導電路形成部(17)は絶縁部(17)の両 面の各々力 突出しており、導電路形成部(16)の突出高さが合計で 50 mである。 By applying addition-type liquid silicone rubber to the surface of the releasable support plate (13A), a coating film having a thickness of 10 m is formed, and a frame plate (11) is disposed on the coating film. By applying additional liquid silicone rubber, an insulating material layer (17A) with a total thickness of 100 m was formed, which was placed to close the opening (12) of the frame plate (11) (see Fig. 16). ). On this insulating part material layer (12), the releasable support plate (13) on which 4800 conductive path forming parts (16) each having contact members (18) are formed is aligned and overlapped. Thus, each of the conductive path forming portions (16) was allowed to enter the insulating material layer (17A), and the contact member (18) was brought into contact with the releasable support plate (13A). . Then, by applying a pressure of 800 kgf to the releasable support plate (13), the thickness of the conductive path forming part (16) was inertially compressed to 1200 / zm even at 150 μm force (see Fig. 17). In this state, 120 ° C for 1 hour In this case, the insulating material layer (17A) is hardened to form an integral insulating portion (17) around the conductive path forming portion (16), and thus an elastic anisotropic conductive film (15 ) (See FIG. 18), and then the anisotropic anisotropic conductive film (15) is released with the release support plate (13, 13A) force, so that the anisotropic conductive connector of the present invention is released. (10) was produced. In this anisotropic conductive connector (10), the elastic anisotropic conductive film (15) has a conductive path forming part (16) having a thickness of 150 111, an insulating part (17) having a thickness of 100 μm, a conductive path forming part ( 16) The minimum separation distance is 30 m (minimum center-to-center distance is 90 m), and the two conductive path forming parts (16) are positioned within the opening (12) of the frame plate (11) Has been. In addition, the conductive path forming portion (17) protrudes from both surfaces of the insulating portion (17), and the protruding height of the conductive path forming portion (16) is 50 m in total.
[0092] (6)アダプター装置の製造: [0092] (6) Manufacture of adapter device:
図 38に示す構成に従い、下記の仕様のアダプター本体(20)を製造した。 すなわち、このアダプター本体(20)は、縦横の寸法が 160mm X 120mmで、基板 材質がガラス繊維補強型エポキシ榭脂であり、当該アダプター本体 (20)の表面にお ける接続用電極領域には、寸法が 120 m X 60 mの矩形の接続用電極(21)力 最小の離間距離が 30 m (最小の中心間距離が 90 m)で合計で 4800個配置さ れている。また、アダプター本体(20)の裏面には、直径が 400 mの円形の端子電 極(22)力 750 μ mのピッチで合計で 4800個配置されている。  According to the configuration shown in FIG. 38, an adapter body (20) having the following specifications was manufactured. That is, the adapter body (20) has a vertical and horizontal dimension of 160 mm X 120 mm, and the substrate material is a glass fiber reinforced epoxy resin. The connection electrode region on the surface of the adapter body (20) includes A rectangular connecting electrode with dimensions of 120 m x 60 m (21) force The minimum separation distance is 30 m (minimum center-to-center distance is 90 m). On the back of the adapter body (20), a total of 4800 terminals are arranged at a pitch of a circular terminal electrode (22) force of 750 μm with a diameter of 400 m.
そして、このアダプター本体(20)の表面における接続用電極領域上に、上記の異 方導電性コネクター(10)を、その導電路形成部(16)の各々が接続用電極 (21)上 に位置するよう配置して固定することにより、本発明のアダプター装置を製造した。  The anisotropic conductive connector (10) is placed on the connection electrode region on the surface of the adapter body (20), and each of the conductive path forming portions (16) is positioned on the connection electrode (21). The adapter device of the present invention was manufactured by arranging and fixing as described above.
[0093] (7)アダプター装置の評価: [0093] (7) Evaluation of adapter device:
上記のアダプター装置について、電気抵抗測定器を用い、導電路形成部の各々を その厚み方向に 5%圧縮した状態で、当該導電路形成部の表面と当該導電路形成 部に電気的に接続された端子電極との間の電気抵抗 (以下、「導通抵抗」という。)を 測定し、この導通抵抗が 0. 1 Ω以下である導電路形成部の割合を求めたところ 100 %であった。  For the adapter device described above, an electrical resistance measuring instrument is used to electrically connect each of the conductive path forming portions to the surface of the conductive path forming portion and the conductive path forming portion in a state where each of the conductive path forming portions is compressed 5% in the thickness direction. The electrical resistance (hereinafter referred to as “conducting resistance”) between the terminal electrode and the terminal electrode was measured, and the ratio of the conductive path forming part having this conducting resistance of 0.1 Ω or less was found to be 100%.
また、電気抵抗測定器を用い、導電路形成部の各々をその厚み方向に 5%圧縮し た状態で、互いに隣接する 2つの導電路形成部 (以下、「導電路形成部対」という。 ) の間の電気抵抗 (以下、「絶縁抵抗」という。)を測定し、この絶縁抵抗が 100Μ Ω以 上である導電路形成部対の割合を求めたところ、 100%であった。 Also, two conductive path forming parts adjacent to each other (hereinafter referred to as “conductive path forming part pair”) in a state where each of the conductive path forming parts is compressed 5% in the thickness direction using an electric resistance measuring instrument. The electrical resistance (hereinafter referred to as “insulation resistance”) was measured, and the ratio of the pair of conductive path forming portions having an insulation resistance of 100 μΩ or more was determined to be 100%.
このように、上記のアダプター装置においては、全ての導電路形成部に高い導電 性が得られ、しかも、全ての導電路形成部について、隣接する導電路形成部の間に ぉ 、て十分な絶縁状態が達成されて 、ることが確認された。  Thus, in the adapter device described above, high conductivity is obtained in all the conductive path forming portions, and all the conductive path forming portions are sufficiently insulated between the adjacent conductive path forming portions. It was confirmed that the condition was achieved.
〈実施例 2〉 <Example 2>
(1)金属マスク複合体の作製  (1) Fabrication of metal mask composite
ポリエチレンテレフタレートよりなる厚みが 100 μ mの榭脂フィルムの一面に、厚み 力 S18 μ mの銅よりなる金属箔(27)が剥離可能に積層されてなる積層材料を用意し、 この積層材料における金属箔(27)の表面に、フォトリソグラフィ一の手法により、それ ぞれ寸法が 120 m X mの矩形の 4800個の開口(28K)力 最小の離間距離 力 S30 m (最小の中心間距離が 90 μ m)で形成された、厚みが 80 μ mのレジスト層 (28)を形成した(図 21参照)。その後、金属箔(27)の表面に電解ニッケルメツキ処 理を施すことにより、レジスト層(28)の各開口(28K)内に厚みが約 80 mの-ッケ ルよりなる金属マスク(26)を形成し、以て、金属スマク複合体(26F)を製造した(図 2 2参照)。  Prepare a laminated material in which a metal foil (27) made of copper with a thickness of S18 μm is peeled and laminated on one surface of a 100 μm thick resin film made of polyethylene terephthalate. On the surface of the foil (27), using a photolithographic technique, 4800 rectangular (28K) forces each with a dimension of 120 m x m Minimum separation distance Force S30 m (minimum center-to-center distance of 90 A resist layer (28) with a thickness of 80 μm was formed (see FIG. 21). After that, the surface of the metal foil (27) is subjected to electrolytic nickel plating treatment, so that a metal mask (26) made of approximately 80 m thick in each opening (28K) of the resist layer (28). Thus, a metal smack composite (26F) was produced (see FIG. 22).
ここで、メツキ処理は、メツキ浴の温度が 50°Cで、電流密度が 2. 5AZdmで、メツキ 処理時間が 2時間の条件で行った。  Here, the plating treatment was performed under the conditions of a plating bath temperature of 50 ° C, a current density of 2.5 AZdm, and a plating treatment time of 2 hours.
(2)導電性エラストマ一層の形成:  (2) Formation of one layer of conductive elastomer:
付加型液状シリコーンゴム 100重量部中に、ニッケルよりなる芯粒子に金が被覆さ れてなる導電性粒子 (数平均粒子径が 12 m,芯粒子に対する金の割合が 2重量 %) 76重量部を分散させることにより、導電性エラストマ一用材料を調製した。この導 電性エラストマ一用材料を、厚みが 5mmのステンレスよりなる離型性支持板(13)の 表面に、スクリーン印刷により塗布することにより、当該離型性支持板(13)上に、厚 みが 150 mの導電性エラストマ一用材料層(16A)を形成した(図 23参照)。  Conductive particles in which gold is coated on nickel core particles in 100 parts by weight of addition type liquid silicone rubber (number average particle diameter is 12 m, the ratio of gold to core particles is 2% by weight) 76 parts by weight Was dispersed to prepare a conductive elastomer material. This conductive elastomer material is applied to the surface of a releasable support plate (13) made of stainless steel having a thickness of 5 mm by screen printing, so that the thickness of the conductive elastomer material is increased on the releasable support plate (13). A conductive elastomer material layer (16A) having a thickness of 150 m was formed (see FIG. 23).
次いで、導電性エラストマ一用材料層(16A)上に、金属マスク複合体(26F)をそ の金属マスク(26)の各々が当該導電性エラストマ一用材料層 (16A)に接するよう配 置し、この状態で、導電性導電性エラストマ一用材料層 (16A)に対して、電磁石によ つて厚み方向に 2テスラの磁場を作用させながら、 120°C、 1時間の条件で硬化処理 を行うことにより、離型性支持板 13上に支持された厚みが 150 mの導電性エラスト マー層(16B)を形成した(図 24乃至図 26参照)。 Next, the metal mask composite (26F) is disposed on the conductive elastomer material layer (16A) so that each of the metal masks (26) is in contact with the conductive elastomer material layer (16A). In this state, the electroconductive elastomer material layer (16A) is electromagnetized. Thus, a conductive elastomer layer with a thickness of 150 m supported on the releasable support plate 13 is obtained by performing a curing process at 120 ° C for 1 hour while applying a magnetic field of 2 Tesla in the thickness direction. (16B) was formed (see FIGS. 24 to 26).
[0095] (3)導電路形成部の形成 [0095] (3) Formation of conductive path forming portion
金属マスク複合体(26F)における金属箔(27)の表面力 榭脂フィルムを剥離し、 露出した金属箔 (27)に対して、塩化第二鉄系エッチング液を用い、 50°C、 30秒間 の条件でエッチング処理によって、当該金属箔(27)を除去することにより、金属マス ク(26)およびレジスト層(28)を露出させた(図 27参照)。そして、この状態で、導電 性エラストマ一層(16B)およびレジスト層(28)に対して、金属マスク(26)を介して炭 酸ガスレーザー装置によってレーザー加工を施すことにより、それぞれ離型性支持 板(13)上に支持された 4800個の導電路形成部(16)を形成した(図 28参照)。 以上において、炭酸ガスレーザー装置によるレーザー加工条件は、以下の通りで ある。 すなわち、装置として、炭酸ガスレーザー加工機「ML— 605GTX」(三菱電 機 (株)製)を用い、レーザービーム径が直径 60 m,レーザー出力が 0. 8mJの条 件で、 1つの加工点にレーザービームを 10ショット照射することによりレーザー加工を 行った。  Surface force of metal foil (27) in metal mask composite (26F) Peel off the resin film, and use ferric chloride etching solution on the exposed metal foil (27) at 50 ° C for 30 seconds. By removing the metal foil (27) by etching under the conditions described above, the metal mask (26) and the resist layer (28) were exposed (see FIG. 27). In this state, each of the conductive elastomer layer (16B) and the resist layer (28) is subjected to laser processing with a carbon dioxide gas laser device through a metal mask (26), thereby providing a releasable support plate. (13) 4800 conductive path forming portions (16) supported on the top were formed (see FIG. 28). In the above, the laser processing conditions by the carbon dioxide laser device are as follows. In other words, the carbon dioxide laser processing machine “ML-605GTX” (manufactured by Mitsubishi Electric Corporation) was used as the equipment, the laser beam diameter was 60 m, and the laser output was 0.8 mJ. Laser processing was performed by irradiating the laser beam with 10 shots.
[0096] (4)フレーム板の作製:  [0096] (4) Fabrication of frame plate:
図 32に示す構成に従 ヽ、以下のようにしてフレーム板(11)を作製した。 厚みが 50 μ mの液晶ポリマーよりなる樹脂シートの両面に銅箔が積層されてなる積 層シート (新日鐡ィ匕学製の「エスパネックス LB18— 50— 18NEP」)を用意し、この 積層シートの一面の銅箔上にドライフィルムレジストをラミネートすることによりレジスト 膜を形成した。次いで、形成されたレジスト膜に対して露光処理および現像処理を施 すことにより、当該レジスト膜に目的とするフレーム板の開口に対応するパターン孔を 形成し、更に、エッチング処理を行うことにより、銅箔に目的とするフレーム板の開口 に対応するパターンの開口を形成し、その後、レジスト膜を除去した。  In accordance with the configuration shown in FIG. 32, a frame plate (11) was produced as follows. Prepare a laminate sheet (“Espanex LB18—50—18NEP” made by Nippon Steel Engineering Co., Ltd.) in which copper foil is laminated on both sides of a resin sheet made of a liquid crystal polymer with a thickness of 50 μm. A resist film was formed by laminating a dry film resist on the copper foil on one side of the sheet. Next, by performing exposure processing and development processing on the formed resist film, pattern holes corresponding to the opening of the target frame plate are formed in the resist film, and further, etching processing is performed. An opening having a pattern corresponding to the opening of the target frame plate was formed in the copper foil, and then the resist film was removed.
そして、積層シートにおける榭脂シートに対して、銅箔に形成された開口を介してレ 一ザ一加工を施して開口を形成し、その後、積層シートにおける両面の銅箔を、エツ チング処理によって除去することにより、フレーム板(11)を作成した。 このフレーム板(11)は、材質が液晶ポリマーで、寸法が 190mm X I 30mm X 50 /z mであり、開口(12)は、直径力 OO /z mの円形であり、開口(12)の総数は 2400 である。 Then, the resin sheet in the laminated sheet is subjected to laser processing through the opening formed in the copper foil to form an opening, and thereafter, the copper foil on both sides of the laminated sheet is subjected to etching treatment. By removing, a frame plate (11) was created. This frame plate (11) is made of liquid crystal polymer and has dimensions of 190mm XI 30mm X 50 / zm, the opening (12) is a circle with a diameter force of OO / zm, and the total number of openings (12) is 2400 It is.
[0097] (5)絶縁部の形成: [0097] (5) Formation of insulating portion:
離型性支持板(13A)の表面に、付加型液状シリコーンゴムを塗布することにより、 厚みが 10 mの塗布膜を形成し、この塗布膜上にフレーム板(11)を配置し、更に、 付加型液状シリコーンゴムを塗布することにより、フレーム板(11)の開口(12)を塞ぐ よう配置された、全体の厚みが 100 mの絶縁部用材料層(17A)を形成し、この絶 縁部用材料層 (127)上に、 4800個の導電路形成部(16)が形成された離型性支持 板(13)を位置合わせして重ね合わせることにより、当該導電路形成部(16)の各々 を絶縁部用材料層 (17A)中に浸入させて離型性支持板(13A)に接触させた(図 34 および図 35参照)。そして、離型性支持板(13)に 800kgfの圧力を加えることにより 、導電路形成部(16)の厚みを 150 mから 120 mに弹性的に圧縮させ、この状態 で、 120°C、 1時間の条件で、絶縁部用材料層(17A)の硬化処理を行うことにより、 導電路形成部(16)の周囲に一体の絶縁部(17)を形成し、以て弾性異方導電膜を 形成し (図 36参照)、その後、弾性異方導電膜を離型性支持板(13, 13A)力ゝら離型 させることにより、本発明の異方導電性コネクター(10)を製造した。この異方導電性 コネクター(10)における弾性異方導電膜(15)は、導電路形成部(16)の厚みが 15 O ^ m,絶縁部(17)の厚みが 100 m、導電路形成部(16)の最小の離間距離が 3 O ^ m (最小の中心間距離が 90 μ m)であり、 2個の導電路形成部(16)がフレーム板 (11)の開口(12)内に位置するよう配置されている。また、導電路形成部(17)は絶 縁部(17)の両面の各々力 突出しており、導電路形成部(16)の突出高さが合計で 50 μ mである。  By applying addition-type liquid silicone rubber to the surface of the releasable support plate (13A), a coating film having a thickness of 10 m is formed, and a frame plate (11) is disposed on the coating film. By applying the addition type liquid silicone rubber, an insulating material layer (17A) having a total thickness of 100 m is formed to close the opening (12) of the frame plate (11). On the part material layer (127), the releasable support plate (13) on which 4800 conductive path forming parts (16) are formed is aligned and overlapped to form the conductive path forming part (16). Each of these was infiltrated into the insulating material layer (17A) and brought into contact with the releasable support plate (13A) (see FIGS. 34 and 35). Then, by applying a pressure of 800 kgf to the releasable support plate (13), the thickness of the conductive path forming part (16) is inertially compressed from 150 m to 120 m, and in this state, 120 ° C, 1 The insulating material layer (17A) is cured under conditions of time to form an integral insulating portion (17) around the conductive path forming portion (16), and thus the elastic anisotropic conductive film is formed. After forming (see FIG. 36), the anisotropic conductive film (10) of the present invention was manufactured by releasing the elastic anisotropic conductive film from the release support plate (13, 13A). The elastic anisotropic conductive film (15) in this anisotropic conductive connector (10) has a conductive path forming part (16) thickness of 15 O ^ m, an insulating part (17) thickness of 100 m, and a conductive path forming part. The minimum separation distance of (16) is 3 O ^ m (minimum center-to-center distance is 90 μm), and two conductive path forming parts (16) are placed in the opening (12) of the frame plate (11). It is arranged to be located. Further, the conductive path forming portion (17) protrudes on both sides of the insulating portion (17), and the total projecting height of the conductive path forming portion (16) is 50 μm.
[0098] (6)アダプター装置の製造: [0098] (6) Manufacture of adapter device:
図 38に示す構成に従い、下記の仕様のアダプター本体(20)を製造した。 すなわち、このアダプター本体(20)は、縦横の寸法が 160mm X 120mmで、基板 材質がガラス繊維補強型エポキシ榭脂であり、当該アダプター本体 (20)の表面にお ける接続用電極領域には、寸法が 120 m X 60 mの矩形の接続用電極(21)力 最小の離間距離が 30 m (最小の中心間距離が 90 m)で合計で 4800個配置さ れている。また、アダプター本体(20)の裏面には、直径が 400 mの円形の端子電 極(22)力 750 μ mのピッチで合計で 4800個配置されている。 According to the configuration shown in FIG. 38, an adapter body (20) having the following specifications was manufactured. That is, the adapter body (20) has a vertical and horizontal dimension of 160 mm X 120 mm, and the substrate material is a glass fiber reinforced epoxy resin. The connection electrode region on the surface of the adapter body (20) includes Rectangular connection electrode with dimensions of 120 m x 60 m (21) force The minimum separation distance is 30 m (minimum center distance is 90 m), and a total of 4800 are arranged. On the back of the adapter body (20), a total of 4800 terminals are arranged at a pitch of a circular terminal electrode (22) force of 750 μm with a diameter of 400 m.
そして、このアダプター本体(20)の表面における接続用電極領域上に、上記の異 方導電性コネクター(10)を、その導電路形成部(16)の各々が接続用電極 (21)上 に位置するよう配置して固定することにより、本発明のアダプター装置を製造した。  The anisotropic conductive connector (10) is placed on the connection electrode region on the surface of the adapter body (20), and each of the conductive path forming portions (16) is positioned on the connection electrode (21). The adapter device of the present invention was manufactured by arranging and fixing as described above.
[0099] (7)アダプター装置の評価: [0099] (7) Evaluation of adapter device:
上記のアダプター装置について、電気抵抗測定器を用い、導電路形成部の各々を その厚み方向に 5%圧縮した状態で、当該導電路形成部の表面と当該導電路形成 部に電気的に接続された端子電極との間の電気抵抗 (以下、「導通抵抗」という。)を 測定し、この導通抵抗が 0. 1 Ω以下である導電路形成部の割合を求めたところ 100 %であった。  For the adapter device described above, an electrical resistance measuring instrument is used to electrically connect each of the conductive path forming portions to the surface of the conductive path forming portion and the conductive path forming portion in a state where each of the conductive path forming portions is compressed 5% in the thickness direction. The electrical resistance (hereinafter referred to as “conducting resistance”) between the terminal electrode and the terminal electrode was measured, and the ratio of the conductive path forming part having this conducting resistance of 0.1 Ω or less was found to be 100%.
また、電気抵抗測定器を用い、導電路形成部の各々をその厚み方向に 5%圧縮し た状態で、互いに隣接する 2つの導電路形成部 (以下、「導電路形成部対」という。 ) の間の電気抵抗 (以下、「絶縁抵抗」という。)を測定し、この絶縁抵抗が 100Μ Ω以 上である導電路形成部対の割合を求めたところ、 100%であった。  Also, two conductive path forming parts adjacent to each other (hereinafter referred to as “conductive path forming part pair”) in a state where each of the conductive path forming parts is compressed 5% in the thickness direction using an electric resistance measuring instrument. The electrical resistance (hereinafter referred to as “insulation resistance”) was measured, and the ratio of the pair of conductive path forming portions having an insulation resistance of 100 μΩ or more was determined to be 100%.
このように、上記のアダプター装置においては、全ての導電路形成部に高い導電 性が得られ、しかも、全ての導電路形成部について、隣接する導電路形成部の間に ぉ 、て十分な絶縁状態が達成されて 、ることが確認された。  Thus, in the adapter device described above, high conductivity is obtained in all the conductive path forming portions, and all the conductive path forming portions are sufficiently insulated between the adjacent conductive path forming portions. It was confirmed that the condition was achieved.
[0100] 〈比較例 1〉 [0100] <Comparative Example 1>
(1)金型の作製:  (1) Mold making:
図 55に示す構成に示す構成に従い、下記の仕様の異方導電膜成形用の金型を 作製した。  In accordance with the configuration shown in FIG. 55, a mold for forming an anisotropic conductive film having the following specifications was produced.
上型(80)および下型(85)の各々における基板 (81, 86)は、材質が鉄で、厚みが ommで to 。  The substrate (81, 86) in each of the upper mold (80) and the lower mold (85) is made of iron and has a thickness of omm.
強磁性体部(82, 87)は、材質がニッケルで、縦横の寸法が 120 m X 60 mの 矩形で、厚みが 100 mであり、板状の強磁性体部(82、 87)の最小の離間距離 30 μ m (最小の中心間距離が 90 μ m)で、強磁性体層の総数は 4800個である。 非磁性体部(83, 88)は、材質がドライフィルムレジストを硬化処理したものであり、 厚みが 0. 125mmである。 The ferromagnetic part (82, 87) is made of nickel, is rectangular with dimensions of 120 m x 60 m in length and width, is 100 m in thickness, and is the smallest of the plate-like ferromagnetic parts (82, 87). The total number of ferromagnetic layers is 4800 with a separation distance of 30 μm (minimum center-to-center distance is 90 μm). The non-magnetic part (83, 88) is made of a hardened dry film resist and has a thickness of 0.125 mm.
(2)フレーム板の作製:  (2) Fabrication of frame plate:
実施例 1と同様にしてフレーム板 (90)を作製した。  A frame plate (90) was produced in the same manner as in Example 1.
(3)異方導電性エラストマ一用材料の調製:  (3) Preparation of anisotropic conductive elastomer material:
付加型液状シリコーンゴム 100重量部に、平均粒子径が 12 mの導電性粒子 60 重量部を添加して混合し、その後、減圧による脱泡処理を施すことにより、異方導電 性エラストマ一用材料を調製した。以上において、導電性粒子としては、ニッケルより なる芯粒子に金メッキが施されてなるもの(平均被覆量:芯粒子の重量の 2重量%)を 用いた。  By adding 60 parts by weight of conductive particles with an average particle diameter of 12 m to 100 parts by weight of addition-type liquid silicone rubber, mixing, and then subjecting to degassing treatment under reduced pressure, a material for anisotropic conductive elastomers Was prepared. In the above, as the conductive particles, those obtained by subjecting core particles made of nickel to gold plating (average coating amount: 2% by weight of the weight of the core particles) were used.
(4)弾性異方導電膜の形成: (4) Formation of elastic anisotropic conductive film:
上記の金型の下型(85)の成形面に、 160mmX 120mmの開口が形成された厚 みが 25 μ mのスぺーサーを位置合わせして配置し、このスぺーサ一の開口内に、調 製した異方導電性エラストマ一用材料をスクリーン印刷によって塗布することにより、 厚みが 25 mの異方導電性エラストマ一用材料層を形成した。次いで、スぺーサー および異方導電性エラストマ一層上に、作製したフレーム板(90)および 160mm X 1 20mmの開口が形成された厚みが 25 μ mのスぺーサーをこの順で位置合わせして 配置し、調整した異方導電性エラストマ一用材料をスクリーン印刷によって塗布する ことにより、目的とする弾性異方導電膜に対応する形態の異方導電性エラストマ一用 材料層(95A)を形成した。  On the molding surface of the lower mold (85) of the above-mentioned mold, a spacer with a thickness of 25 μm with an opening of 160mm x 120mm formed is aligned and placed in the opening of this spacer. The prepared anisotropic conductive elastomer material was applied by screen printing to form an anisotropic conductive elastomer material layer having a thickness of 25 m. Next, the spacer and the spacer with the thickness of 25 μm in which the prepared frame plate (90) and 160mm X 1 20mm opening were formed on the spacer and anisotropic conductive elastomer layer were aligned in this order. An anisotropic conductive elastomer material layer (95A) having a form corresponding to the target elastic anisotropic conductive film was formed by applying the arranged and adjusted anisotropic conductive elastomer material by screen printing. .
そして、上型 (80)を異方導電性エラストマ一用材料層 (95A)上に位置合わせして 配置し、異方導電性エラストマ一用材料層(95A)に対し、強磁性体部(82, 87)の 間に位置する部分に、電磁石によって厚み方向に 2Tの磁場を作用させながら、 120 °C、 1時間の条件で硬化処理を施すことにより、導電性粒子が密に含有された厚み 方向に伸びる 4800個の導電路形成部と、これらの周囲に形成された絶縁部とよりな る弾性異方導電膜を形成し、以て、比較用の異方導電性コネクターを製造した。 この異方導電性コネクターにおける弾性異方導電膜は、導電路形成部の厚みが 1 m、絶縁部の厚みが 100 m、導電路形成部の最小の離間距離が 30 m (最 小の中心間距離が 90 m)であり、 2個の導電路形成部がフレーム板の開口内に位 置するよう配置されている。また、導電路形成部は絶縁部の両面の各々から突出して おり、導電路形成部の突出高さが合計で 50 mである。また、導電路形成部におけ る導電性粒子の含有割合は、体積分率で約 30%である。 Then, the upper mold (80) is positioned and arranged on the anisotropic conductive elastomer material layer (95A), and the ferromagnetic part (82A) is placed against the anisotropic conductive elastomer material layer (95A). , 87) by applying a 2T magnetic field in the thickness direction with an electromagnet to the part located between 120 ° C and 1 hour for the thickness between the conductive particles. An anisotropic anisotropic conductive film composed of 4800 conductive path forming portions extending in the direction and insulating portions formed around the conductive path forming portions was formed. Thus, an anisotropic conductive connector for comparison was manufactured. The elastic anisotropic conductive film in this anisotropic conductive connector has a conductive path forming portion thickness of 1 m, an insulating portion thickness of 100 m, and a minimum separation distance of the conductive path forming portion of 30 m (maximum The small center-to-center distance is 90 m), and the two conductive path forming portions are arranged so as to be positioned in the opening of the frame plate. In addition, the conductive path forming part protrudes from each side of the insulating part, and the total projecting height of the conductive path forming part is 50 m. In addition, the content ratio of the conductive particles in the conductive path forming portion is about 30% in volume fraction.
(5)アダプター装置の製造: (5) Manufacture of adapter device:
実施例 1と同様の仕様のアダプター本体を作製し、このアダプター本体の表面にお ける接続用電極領域上に、上記の異方導電性コネクターを、その導電路形成部の各 々が接続用電極上に位置するよう配置して固定することにより、比較用のアダプター 装置を製造した。  An adapter body having the same specifications as in Example 1 was prepared, and the anisotropic conductive connector was placed on the connection electrode area on the surface of the adapter body, and each of the conductive path forming portions was a connection electrode. An adapter device for comparison was manufactured by placing and fixing it so as to be positioned above.
(6)アダプター装置の評価: (6) Evaluation of adapter device:
上記のアダプター装置について、実施例 1と同様にして導通抵抗を測定し、この導 通抵抗が 0. 1 Ω以下である導電路形成部の割合を求めたところ 100%であった。 また、実施例 1と同様にして絶縁抵抗を測定し、この絶縁抵抗が 100Μ Ω以上であ る導電路形成部対の割合を求めたところ、 97%であった。  With respect to the adapter device, the conduction resistance was measured in the same manner as in Example 1, and the ratio of the conductive path forming portion having the conduction resistance of 0.1 Ω or less was determined to be 100%. Further, the insulation resistance was measured in the same manner as in Example 1, and the ratio of the conductive path forming portion pair having an insulation resistance of 100 μΩ or more was determined to be 97%.
このように、上記の比較用のアダプター装置においては、全ての導電路形成部に 高い導電性が得られたが、全ての導電路形成部について、隣接する導電路形成部 の間において十分な絶縁状態を達成することができな力つた。  As described above, in the comparative adapter device described above, high conductivity was obtained in all the conductive path forming portions, but sufficient insulation was provided between adjacent conductive path forming portions for all the conductive path forming portions. The force was unable to achieve the condition.

Claims

請求の範囲 The scope of the claims
[1] 磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で含有されてなる厚み 方向に伸びる複数の導電路形成部が、絶縁部によって相互に絶縁されてなる弾性 異方導電膜と、前記導電路形成部上に一体的に設けられた金属よりなる接点部材と を有する異方導電性コネクターを製造する方法であって、  [1] An elastic anisotropic conductive film in which a plurality of conductive path forming portions extending in the thickness direction, which are contained in a state in which the conductive particles exhibiting magnetism are aligned in the thickness direction, are insulated from each other by an insulating portion; A method of manufacturing an anisotropic conductive connector having a contact member made of metal integrally provided on the conductive path forming portion,
離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材 料中に磁性を示す導電性粒子が含有されてなる導電性エラストマ一用材料層を形 成し、  On the releasable support plate, a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an elastic polymer material is formed.
この導電性エラストマ一用材料層の表面に、形成すべき導電路形成部のパターン に対応する特定のパターンに従って磁性を示す金属よりなる接点部材を配置し、こ の状態で、当該導電性エラストマ一用材料層に対して、その厚み方向に磁場を作用 させると共に、当該導電性エラストマ一用材料層を硬化処理することにより、導電性 エラストマ一層を形成し、  A contact member made of a metal exhibiting magnetism is disposed on the surface of the material layer for the conductive elastomer according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed. A conductive elastomer layer is formed by applying a magnetic field to the material layer in the thickness direction and curing the material layer for the conductive elastomer.
この導電性エラストマ一層をレーザー加工して前記接点部材が配置された部分以 外の部分を除去することにより、前記離型性支持板上に、前記特定のパターンに従 つて配置された複数の導電路形成部を形成し、これらの導電路形成部の間に、硬化 されて弾性高分子物質となる高分子物質形成材料よりなる絶縁部用材料層を形成し て硬化処理することにより絶縁部を形成する工程を有することを特徴とする異方導電 性コネクターの製造方法。  The conductive elastomer layer is laser-processed to remove a portion other than the portion where the contact member is disposed, whereby a plurality of conductive layers disposed according to the specific pattern on the releasable support plate. A path forming part is formed, and between these conductive path forming parts, an insulating part material layer made of a polymer material forming material that is cured and becomes an elastic polymer substance is formed and cured to form an insulating part. A method for manufacturing an anisotropically conductive connector, comprising the step of forming.
[2] 1または 2以上の開口が形成されたフレーム板と、このフレーム板の開口を塞ぐよう 配置されて当該フレーム板に支持された、磁性を示す導電性粒子が厚み方向に並 ぶよう配向した状態で含有されてなる厚み方向に伸びる複数の導電路形成部が、絶 縁部によって相互に絶縁されてなる 1または 2以上の弾性異方導電膜と、前記導電 路形成部上に一体的に設けられた金属よりなる接点部材とを有する異方導電性コネ クタ一を製造する方法であって、  [2] A frame plate in which one or more openings are formed, and oriented so that the conductive particles exhibiting magnetism arranged to close the opening of the frame plate and supported by the frame plate are aligned in the thickness direction. A plurality of conductive path forming portions that extend in the thickness direction and are contained in an isolated state are integrally formed on one or two or more elastic anisotropic conductive films that are insulated from each other by insulating portions. A method of manufacturing an anisotropic conductive connector having a contact member made of metal provided on
離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材 料中に磁性を示す導電性粒子が含有されてなる導電性エラストマ一用材料層を形 成し、 この導電性エラストマ一用材料層の表面に、形成すべき導電路形成部のパターン に対応する特定のパターンに従って磁性を示す金属よりなる接点部材を配置し、こ の状態で、当該導電性エラストマ一用材料層に対して、その厚み方向に磁場を作用 させると共に、当該導電性エラストマ一用材料層を硬化処理することにより、導電性 エラストマ一層を形成し、 On the releasable support plate, a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an elastic polymer material is formed. A contact member made of a metal exhibiting magnetism is disposed on the surface of the material layer for the conductive elastomer according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed. A conductive elastomer layer is formed by applying a magnetic field to the material layer in the thickness direction and curing the material layer for the conductive elastomer.
この導電性エラストマ一層をレーザー加工して前記接点部材が配置された部分以 外の部分を除去することにより、前記離型性支持板上に、前記特定のパターンに従 つて配置され、前記接点部材が設けられた複数の導電路形成部を形成し、この状態 で、当該接点部材が設けられた導電路形成部の各々を、フレーム板の開口を塞ぐよ う形成された、硬化されて弾性高分子物質となる液状の高分子物質形成材料よりな る絶縁部用材料層中に浸入させ、当該絶縁部用材料層を硬化処理して絶縁部を形 成する工程を有することを特徴とする異方導電性コネクターの製造方法。  The conductive elastomer layer is laser processed to remove a portion other than the portion where the contact member is disposed, so that the conductive member is disposed according to the specific pattern on the releasable support plate. In this state, each of the conductive path forming portions provided with the contact member is formed so as to close the opening of the frame plate, and is cured to be highly elastic. A process of forming an insulating part by infiltrating into an insulating part material layer made of a liquid polymer substance forming material that becomes a molecular substance, and curing the insulating part material layer. A method of manufacturing a conductive connector.
[3] 金属箔上に、特定のパターンに従って開口が形成されたレジスト層を形成し、前記 金属箔における前記レジスト層の開口力 露出した部分の表面に磁性を示す金属に よるメツキ処理を施すことにより、当該レジスト層の開口の各々に接点部材が形成され てなる接点部材複合体を製造し、この接点部材複合体を導電性エラストマ一用材料 層の表面に積重することにより、当該導電性エラストマ一用材料層の表面に、前記特 定のパターンに従って磁性を示す金属よりなる接点部材を配置することを特徴とする 請求項 1または請求項 2に記載の異方導電性コネクターの製造方法。  [3] A resist layer having openings formed according to a specific pattern is formed on the metal foil, and the opening force of the resist layer in the metal foil is subjected to a plating process with a metal exhibiting magnetism. By manufacturing a contact member composite in which contact members are formed in each of the openings of the resist layer, and stacking the contact member composite on the surface of the material layer for the conductive elastomer, 3. The method of manufacturing an anisotropic conductive connector according to claim 1, wherein a contact member made of a metal exhibiting magnetism is disposed on the surface of the material layer for an elastomer according to the specific pattern.
[4] 磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で含有されてなる厚み 方向に伸びる複数の導電路形成部が、絶縁部によって相互に絶縁されてなる弾性 異方導電膜を有する異方導電性コネクターを製造する方法であって、  [4] An elastic anisotropic conductive film in which a plurality of conductive path forming portions extending in the thickness direction, which are contained in a state where the conductive particles exhibiting magnetism are aligned in the thickness direction, are insulated from each other by an insulating portion. A method of manufacturing an anisotropic conductive connector having:
離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材 料中に磁性を示す導電性粒子が含有されてなる導電性エラストマ一用材料層を形 成し、  On the releasable support plate, a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an elastic polymer material is formed.
この導電性エラストマ一用材料層の表面に、形成すべき導電路形成部のパターン に対応する特定のパターンに従って磁性を示す金属マスクを配置し、この状態で、 当該導電性エラストマ一用材料層に対して、その厚み方向に磁場を作用させると共 に、当該導電性エラストマ一用材料層を硬化処理することにより、導電性エラストマ一 層を形成し、 A metal mask showing magnetism is disposed on the surface of the conductive elastomer material layer according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed. In this state, the conductive elastomer material layer is formed on the conductive elastomer material layer. On the other hand, if a magnetic field is applied in the thickness direction, Next, the conductive elastomer material layer is cured to form a conductive elastomer layer,
この導電性エラストマ一層をレーザー加工して前記金属マスクが配置された部分以 外の部分を除去することにより、前記離型性支持板上に、前記特定のパターンに従 つて配置された複数の導電路形成部を形成し、これらの導電路形成部の間に、硬化 されて弾性高分子物質となる高分子物質形成材料よりなる絶縁部用材料層を形成し て硬化処理することにより絶縁部を形成する工程を有することを特徴とする異方導電 性コネクターの製造方法。  The conductive elastomer layer is laser-processed to remove a portion other than the portion where the metal mask is disposed, whereby a plurality of conductive layers disposed in accordance with the specific pattern on the releasable support plate. A path forming part is formed, and between these conductive path forming parts, an insulating part material layer made of a polymer material forming material that is cured and becomes an elastic polymer substance is formed and cured to form an insulating part. A method for manufacturing an anisotropically conductive connector, comprising the step of forming.
1または 2以上の開口が形成されたフレーム板と、このフレーム板の開口を塞ぐよう 配置され、当該フレーム板に支持された 1または 2以上の弾性異方導電膜とを有して なり、前記弾性異方導電膜は、前記フレーム板の開口内に配置された、磁性を示す 導電性粒子が厚み方向に並ぶよう配向した状態で含有されてなる厚み方向に伸び る複数の導電路形成部と、導電路形成部の周囲に形成された絶縁部とよりなる異方 導電性コネクターを製造する方法であって、  A frame plate in which one or more openings are formed, and one or more elastic anisotropic conductive films arranged to close the frame plate and supported by the frame plate. The elastic anisotropic conductive film includes a plurality of conductive path forming portions extending in the thickness direction, which are disposed in the openings of the frame plate, and are contained in a state where the conductive particles exhibiting magnetism are aligned in the thickness direction. A method of manufacturing an anisotropic conductive connector comprising an insulating portion formed around a conductive path forming portion,
離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材 料中に磁性を示す導電性粒子が含有されてなる導電性エラストマ一用材料層を形 成し、  On the releasable support plate, a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an elastic polymer material is formed.
この導電性エラストマ一用材料層の表面に、形成すべき導電路形成部のパターン に対応する特定のパターンに従って磁性を示す金属マスクを配置し、この状態で、 当該導電性エラストマ一用材料層に対して、その厚み方向に磁場を作用させると共 に、当該導電性エラストマ一用材料層を硬化処理することにより、導電性エラストマ一 層を形成し、  A metal mask showing magnetism is disposed on the surface of the conductive elastomer material layer according to a specific pattern corresponding to the pattern of the conductive path forming portion to be formed. In this state, the conductive elastomer material layer is formed on the conductive elastomer material layer. On the other hand, a conductive elastomer layer is formed by applying a magnetic field in the thickness direction and curing the conductive elastomer material layer.
この導電性エラストマ一層をレーザー加工して前記金属マスクが配置された部分以 外の部分を除去することにより、前記離型性支持板上に、前記特定のパターンに従 つて配置された複数の導電路形成部を形成し、  The conductive elastomer layer is laser-processed to remove a portion other than the portion where the metal mask is disposed, whereby a plurality of conductive layers disposed in accordance with the specific pattern on the releasable support plate. Forming a path forming section,
この離型性支持板に形成された導電路形成部の各々を、フレーム板の開口を塞ぐ よう形成された、硬化されて弾性高分子物質となる液状の高分子物質形成材料より なる絶縁部用材料層中に浸入させ、この状態で前記絶縁部用材料層を硬化処理す ることにより絶縁部を形成する工程を有することを特徴とする異方導電性コネクターの 製造方法。 Each of the conductive path forming portions formed on the releasable support plate is used for an insulating portion made of a liquid polymer material forming material that is cured and becomes an elastic polymer material so as to close the opening of the frame plate. Penetration into the material layer, and in this state, the insulating material layer is cured. A method for manufacturing an anisotropic conductive connector, comprising a step of forming an insulating portion by forming an insulating portion.
[6] 金属箔上に、特定のパターンに従って開口が形成されたレジスト層を形成し、前記 金属箔における前記レジスト層の開口力 露出した部分の表面に磁性を示す金属に よるメツキ処理を施すこと〖こより、当該レジスト層の開口の各々に金属マスクが形成さ れてなる金属マスク複合体を製造し、この金属マスク複合体を導電性エラストマ一用 材料層の表面に積重することにより、当該導電性エラストマ一用材料層の表面に、前 記特定のパターンに従って磁性を示す金属よりなる金属マスクを配置することを特徴 とする請求項 4または請求項 5に記載の異方導電性コネクターの製造方法。  [6] A resist layer having openings formed according to a specific pattern is formed on the metal foil, and the opening force of the resist layer in the metal foil is subjected to a plating process with a metal exhibiting magnetism. From this, a metal mask composite in which a metal mask is formed in each of the openings of the resist layer is manufactured, and the metal mask composite is stacked on the surface of the material layer for the conductive elastomer. 6. The anisotropic conductive connector according to claim 4, wherein a metal mask made of a metal exhibiting magnetism is disposed on the surface of the material layer for the conductive elastomer according to the specific pattern. Method.
[7] 請求項 1乃至請求項 6のいずれかに記載の製造方法によって得られることを特徴と する異方導電性コネクター。  [7] An anisotropic conductive connector obtained by the manufacturing method according to any one of [1] to [6].
[8] 表面に検査すべき回路装置における被検査電極に対応するパターンに従って複 数の接続用電極が形成された接続用電極領域を有するアダプター本体と、 このアダプター本体の接続用電極領域上に配置された、当該アダプター本体にお ける接続用電極に対応するパターンに従って形成された複数の導電路形成部を有 する、請求項 7に記載の異方導電性コネクターと  [8] An adapter body having a connection electrode area in which a plurality of connection electrodes are formed according to a pattern corresponding to an electrode to be inspected in a circuit device to be inspected on the surface, and disposed on the connection electrode area of the adapter body The anisotropic conductive connector according to claim 7, further comprising a plurality of conductive path forming portions formed according to a pattern corresponding to a connection electrode in the adapter body.
を具えてなることを特徴とするアダプター装置。  An adapter device characterized by comprising:
[9] 表面に検査すべき回路装置における被検査電極に対応するパターンに従ってそ れぞれ電流供給用および電圧測定用の 2つの接続用電極からなる複数の接続用電 極対が形成された接続用電極領域を有するアダプター本体と、  [9] A connection in which a plurality of connection electrode pairs each consisting of two connection electrodes for current supply and voltage measurement are formed according to the pattern corresponding to the electrode to be inspected in the circuit device to be inspected on the surface. An adapter body having an electrode region for,
このアダプター本体の接続用電極領域上に配置された、当該アダプター本体にお ける接続用電極に対応するパターンに従って形成された複数の導電路形成部を有 する、請求項 7に記載の異方導電性コネクターと  The anisotropic conductive material according to claim 7, further comprising a plurality of conductive path forming portions arranged on a connection electrode region of the adapter body and formed according to a pattern corresponding to the connection electrode in the adapter body. Sex connector and
を具えてなることを特徴とするアダプター装置。  An adapter device characterized by comprising:
[10] 請求項 8または請求項 9に記載のアダプター装置を具えてなることを特徴とする回 路装置の電気的検査装置。  [10] An electrical inspection device for a circuit device comprising the adapter device according to claim 8 or 9.
PCT/JP2005/019306 2004-10-22 2005-10-20 Anisotropic conductive connector and production method therefor, adaptor device and electrical inspection device WO2006043628A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004308963 2004-10-22
JP2004-308963 2004-10-22
JP2005-021477 2005-01-28
JP2005021477 2005-01-28

Publications (1)

Publication Number Publication Date
WO2006043628A1 true WO2006043628A1 (en) 2006-04-27

Family

ID=36203044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019306 WO2006043628A1 (en) 2004-10-22 2005-10-20 Anisotropic conductive connector and production method therefor, adaptor device and electrical inspection device

Country Status (2)

Country Link
TW (1) TW200635158A (en)
WO (1) WO2006043628A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359434A1 (en) * 2018-10-11 2021-11-18 Sekisui Polymatech Co., Ltd. Electrical connection sheet and terminal-equipped glass plate structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930623B2 (en) * 2009-04-28 2012-05-16 日立化成工業株式会社 Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and circuit member connection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193393A (en) * 1975-02-12 1976-08-16 Erasuteitsuku kontakutoshiitonoseizohoho
JPS53147772A (en) * 1977-05-31 1978-12-22 Japan Synthetic Rubber Co Ltd Manufacture of pressure-conductive elastomer
JPS61250906A (en) * 1985-04-26 1986-11-08 ジェイエスアール株式会社 Conductive elastomer sheet
JPH1140224A (en) * 1997-07-11 1999-02-12 Jsr Corp Anisotropic conductive sheet
JP2002280092A (en) * 2001-03-19 2002-09-27 Jsr Corp Anisotropic electrical conductive sheet and application product thereof
WO2004086062A1 (en) * 2003-03-26 2004-10-07 Jsr Corporation Connecteur de mesure de resistances electriques, dispositif de connecteur de mesure de resistances electriques et leur procede de fabrication, dispositif de mesure de la resistance electrique de circuits substrats, et methode de mesure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193393A (en) * 1975-02-12 1976-08-16 Erasuteitsuku kontakutoshiitonoseizohoho
JPS53147772A (en) * 1977-05-31 1978-12-22 Japan Synthetic Rubber Co Ltd Manufacture of pressure-conductive elastomer
JPS61250906A (en) * 1985-04-26 1986-11-08 ジェイエスアール株式会社 Conductive elastomer sheet
JPH1140224A (en) * 1997-07-11 1999-02-12 Jsr Corp Anisotropic conductive sheet
JP2002280092A (en) * 2001-03-19 2002-09-27 Jsr Corp Anisotropic electrical conductive sheet and application product thereof
WO2004086062A1 (en) * 2003-03-26 2004-10-07 Jsr Corporation Connecteur de mesure de resistances electriques, dispositif de connecteur de mesure de resistances electriques et leur procede de fabrication, dispositif de mesure de la resistance electrique de circuits substrats, et methode de mesure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359434A1 (en) * 2018-10-11 2021-11-18 Sekisui Polymatech Co., Ltd. Electrical connection sheet and terminal-equipped glass plate structure
US12021322B2 (en) * 2018-10-11 2024-06-25 Sekisui Polymatech Co., Ltd. Electrical connection sheet and terminal-equipped glass plate structure

Also Published As

Publication number Publication date
TW200635158A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
WO2007043350A1 (en) Anisotropic conductive connector and inspection equipment of circuit device
JP3753145B2 (en) Anisotropic conductive sheet and method for manufacturing the same, adapter device and method for manufacturing the same, and electrical inspection device for circuit device
WO2006009144A1 (en) Anisotropic conductive connector and production method therefor, adaptor device and electric inspection device for circuit device
WO2004112195A1 (en) Anisotropc conductive connector device and production method therefor and circuit device inspection device
WO2006087877A1 (en) Composite conductive sheet, method for producing the same, anisotropic conductive connector, adapter, and circuit device electric inspection device
WO2007072852A1 (en) Circuit board apparatus for wafer inspection, probe card, and wafer inspection apparatus
WO2006008784A1 (en) Anisotropic conductive connector and inspection equipment for circuit device
WO2004021516A1 (en) Anisotropic conductive sheet, its manufacturing method, and its application
WO2008038573A1 (en) Anisotropic conductive connector and method for inspecting article inspected using this anisotropic conductive connector
WO2005080996A1 (en) Adapter for circuit board examination and device for circuit board examination
US20060176064A1 (en) Connector for measurement of electric resistance, connector device for measurement of electric resistance and production process thereof, and measuring apparatus and measuring method of electric resistance for circuit board
JP2002289277A (en) Anisotropic conductive connector and applied product thereof
WO2007007869A1 (en) Connector for measuring electrical resistance, and apparatus and method for measuring electrical resistance of circuit board
JP3573120B2 (en) Anisotropic conductive connector, method of manufacturing the same, and application product thereof
JP4380373B2 (en) Electrical resistance measurement connector, electrical resistance measurement connector device and manufacturing method thereof, and circuit board electrical resistance measurement device and measurement method
JP4725318B2 (en) COMPOSITE CONDUCTIVE SHEET AND METHOD FOR MANUFACTURING THE SAME, ANISOTROPIC CONDUCTIVE CONNECTOR, ADAPTER DEVICE, AND ELECTRIC INSPECTION DEVICE FOR CIRCUIT DEVICE
JPH11204176A (en) Conductive rubber sheet
JP2007087709A (en) Anisotropic conductive connector and method of manufacturing same, and electric inspection device of adapter and circuit device
WO2006043629A1 (en) Adapter, manufacturing method thereof, and electric inspection device for circuit device
WO2006043628A1 (en) Anisotropic conductive connector and production method therefor, adaptor device and electrical inspection device
JP2008164476A (en) Anisotropic conductive connector apparatus and manufacturing method of the same, and inspection apparatus for circuit apparatus
JP3928607B2 (en) Anisotropic conductive sheet, its production method and its application
JP2007040952A (en) Adapter device, method for manufacturing the same, and electrical inspection device for circuit device
JP2008101931A (en) Composite conductive sheet, anisotropic conductive connector, adapter device, and electric inspection device for circuit device
WO2007026663A1 (en) Circuit board inspection instrument, circuit board inspection method, and anisotropic conductivity connector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP