WO2008013233A1 - Multilayer steel and method for producing multilayer steel - Google Patents

Multilayer steel and method for producing multilayer steel Download PDF

Info

Publication number
WO2008013233A1
WO2008013233A1 PCT/JP2007/064694 JP2007064694W WO2008013233A1 WO 2008013233 A1 WO2008013233 A1 WO 2008013233A1 JP 2007064694 W JP2007064694 W JP 2007064694W WO 2008013233 A1 WO2008013233 A1 WO 2008013233A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
force
strength
rolling
layer
Prior art date
Application number
PCT/JP2007/064694
Other languages
English (en)
French (fr)
Inventor
Toshihiko Koseki
Toshio Suzuki
Toyonobu Yoshida
Junya Inoue
Mitsuyuki Tanaka
Original Assignee
The University Of Tokyo
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo, Nippon Steel Corporation filed Critical The University Of Tokyo
Priority to US12/374,997 priority Critical patent/US8137819B2/en
Priority to CN2007800283013A priority patent/CN101505906B/zh
Priority to KR1020097001797A priority patent/KR101482282B1/ko
Priority to JP2008526811A priority patent/JP5221348B2/ja
Priority to ES07791394.5T priority patent/ES2583143T3/es
Priority to EP07791394.5A priority patent/EP2050532B1/en
Publication of WO2008013233A1 publication Critical patent/WO2008013233A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12632Four or more distinct components with alternate recurrence of each type component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12639Adjacent, identical composition, components
    • Y10T428/12646Group VIII or IB metal-base
    • Y10T428/12653Fe, containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Definitions

  • Multi-layer steel and method for producing multi-layer steel are Multi-layer steel and method for producing multi-layer steel
  • the present invention relates to a steel / steel stack type multi-layer steel and a method for producing a multi-layer steel that can satisfy both the high strength and high ductility properties of steel.
  • a moving body such as an automobile is required to be light in weight from the viewpoint of performance and environmental friendliness. For this reason, two major approaches have been taken in the field of structural materials. One is to reduce the thickness of steel materials by increasing their strength, and the other is to use low specific gravity / alloys instead of steel materials.
  • the steel is strengthened, and at the same time, the accompanying ductility, toughness, rigidity, workability, safety, embrittlement characteristics, fatigue resistance characteristics, and corrosion resistance.
  • the accompanying ductility, toughness, rigidity, workability, safety, embrittlement characteristics, fatigue resistance characteristics, and corrosion resistance There is a strong demand for steel materials that can solve the degradation of environmental resistance.
  • FIG. 1 is a graph showing a correlation of strength ductility of steel in the related art.
  • the graph shows the tensile strength as the strength and the elongation as the ductility.
  • MART Martensite
  • MART martensitic steel with low ductility and super high strength. From the graph, it can be seen that the ductility decreases with increasing strength in any steel.
  • Examples of the material in which steel or other materials are multilayered include a clad plate, a laminate plate, and a composite material.
  • the clad plate is a steel plate or a metal plate in which steel having excellent corrosion resistance is attached to the surface for the purpose of imparting functions such as corrosion resistance.
  • a method of forming a clad plate a method of cold rolling different steels and annealing them (for example, Patent Document 1) has been proposed.
  • the laminate plate is a steel plate or a metal plate sandwiched with resin for the purpose of imparting functions such as a vibration damping function and a heat insulation function.
  • a method for forming a laminate plate a method in which a resin bonded between two metal plates is melted and pressure-formed (for example, Patent Document 2) has been proposed.
  • the composite material is a plate-like material in which a polymer, a laminated foil such as a metal foil, or a carbon-based material is composited for the purpose of increasing the strength of the material itself.
  • a method of forming composite materials of different materials a method of compressing a composite part made of a pre-preder sheet (for example, Patent Document 3) has been proposed.
  • Patent Document 3 a method of compressing a composite part made of a pre-preder sheet
  • Patent Document 1 JP-A-5-5190
  • Patent Document 2 JP 2001-277271 A
  • Patent Document 3 JP 2005-306039
  • the clad plate is a steel plate or metal plate obtained by rolling different steels or metal plates and annealing, and is mainly intended to provide functions such as surface functions. It is not aimed at improving the performance of the structural material itself that assumes bonding.
  • the laminated plate is a steel plate or metal plate obtained by melting the resin bonded between two metal plates and performing pressure forming, etc., so it has functions such as vibration damping function and heat insulation function. The purpose is to improve the performance of the structural material itself, which is premised on joining!
  • the composite material is a plate-like material obtained by performing compression molding or the like on the material, and is intended to increase the strength of the multi-layered plate-like material itself!
  • the toughness and fatigue properties of brittle materials such as ceramics are improved.
  • the strength ductility tolerance as noted in the present invention and characteristics such as toughness, workability, bondability, and fatigue characteristics.
  • the present invention pays attention to the above-mentioned problems, and can achieve both the strength and the ductility and other conflicting properties, and is excellent in strength, ductility, bondability, embrittlement resistance, and fatigue resistance. It is an object of the present invention to provide a steel / steel laminated type multilayer steel and a method for producing the multilayer steel.
  • the multilayer steel according to claim 1 of the present invention is characterized in that it is formed by combining at least two kinds of steels having different structures or mechanical properties and rolling them.
  • the multilayer steel according to claim 2 of the present invention is obtained by rolling a laminated steel obtained by laminating at least two kinds of steels having different structures or mechanical properties in a layered manner, and performing a predetermined heat treatment. It is characterized by the formation of a first layer whose main phase is a site and a second layer whose main phase is at least one of austenite and ferrite.
  • the multilayer steel according to claim 3 of the present invention is, in mass%, C: 0.05% force, 0.4%, Si: 0.05% to 3.0%, Mn: 0.05% force, 3.0%, and unavoidable.
  • a second layer composed of one or more of the above is combined and formed by rolling.
  • the multilayer steel according to claim 4 of the present invention is characterized in that, in any one of claims 1 to 3, each layer constituting the multilayer steel has a thickness of 125 m or less. .
  • the multilayer steel according to claim 5 of the present invention is characterized in that, in any one of claims 1 to 3, the number of layers constituting the multilayer steel is 5 or more.
  • the method for producing a multilayer steel according to claim 6 of the present invention is characterized in that a multilayer steel is formed by combining and rolling at least two kinds of steels having different structures or mechanical properties. .
  • the method for producing a multi-layer steel according to claim 7 of the present invention includes a laminating step for forming a laminated steel by laminating at least two kinds of steels having different structures or mechanical properties in a layered manner.
  • the laminated steel is rolled and subjected to a predetermined heat treatment to form a first layer containing martensite as a main phase and a second layer containing at least one of austenite and ferrite as a main phase.
  • the method for producing a multilayer steel according to claim 8 of the present invention is, in mass%, C: 0.05% to 0.4%, Si: 0.05% force, et al. 3.0%, Mn: 0.05% force, et al. 3.0% and Karoe the steel a or Oka a containing unavoidable impurities, the mass 0/0, Nb: 0.001% strength, et 0.
  • It is characterized by forming a double layer steel by combining and rolling a second layer composed of one or more of the above.
  • the method for producing a multi-layer steel according to claim 9 of the present invention provides the method according to any one of claims 6 to 8, in which each layer constituting the multi-layer steel has a thickness of 125 m or less. It is characterized by becoming.
  • the method for producing a multilayer steel according to claim 10 of the present invention is characterized in that, in any one of claims 6 to 8, the number of layers constituting the multilayer steel is 5 or more. To do.
  • the method for producing a multi-layer steel according to claim 11 of the present invention is the method according to any one of claims 6 to 8, wherein the final thickness of each layer of the multi-layer steel is determined by rolling each layer before rolling. Of the original thickness of 1 / 2 or less to form multilayer steel
  • a method for producing a multi-layer steel according to claim 12 of the present invention is characterized in that in any one of claims 6 to 8, the rolling is hot rolling. It is characterized by that.
  • a method for producing a multilayer steel according to claim 13 of the present invention is characterized in that in any one of claims 6 to 8, the rolling is cold rolling. .
  • the method for producing a multilayer steel according to claim 14 of the present invention is characterized in that the rolling is warm rolling according to any one of claims 6 to 8. .
  • the method for producing a multilayer steel according to claim 15 of the present invention is the method according to any one of claims 6 to 8, wherein the rolling is at least one of hot rolling, cold rolling and warm rolling. It is characterized by rolling using two or more types in combination.
  • the method for producing a multilayer steel according to claim 16 of the present invention is characterized in that, in claim 6 or 8, heat treatment is performed after the rolling.
  • the method for producing a multilayer steel according to claim 17 of the present invention is characterized in that, in claim 14 or 15, the warm rolling is performed in a range of 200 ° C to 750 ° C. To do.
  • the method for producing a multilayer steel according to claim 18 of the present invention is characterized in that, in the claim 13 or 15, the cold rolling is performed at least once with a rolling reduction of 30% or more.
  • the method for producing a multilayer steel according to claim 19 of the present invention is the method according to claim 7 or 16, wherein the heat treatment is soaked in a range of 900 ° C to 1250 ° C for 1 second or longer. After that, it is cooled to room temperature.
  • a multi-layer steel is formed by rolling a laminated steel in which at least two kinds of steels having different structures or mechanical properties are combined. Therefore, conflicting properties such as strength and ductility can be achieved at the same time, and a steel / steel laminate type multilayer steel excellent in strength, ductility, bondability, embrittlement properties, and fatigue resistance properties can be produced.
  • FIG. 1 is a graph showing a correlation of strength ductility of conventional steel.
  • FIG. 2 is a graph for explaining the improvement in characteristics by multilayering by the method for producing a multilayer steel according to the present invention.
  • FIG. 3 is a diagram showing an example of brittle fracture of a multilayer steel by the multilayer steel manufacturing method of the present invention.
  • FIG. 4 is a diagram for explaining the brittle fracture condition of a multilayer steel by the multilayer steel manufacturing method of the present invention.
  • FIG. 5 is a graph showing conditions for obtaining a crack-free multilayer steel by the multilayer steel manufacturing method of the present invention.
  • FIG. 6 is a view showing an example of necking of a multilayer steel by the method for producing a multilayer steel of the present invention.
  • FIG. 7 is a cross-sectional photograph of laminated steel before rolling by the method for producing a multilayer steel of the present invention.
  • FIG. 8 is a schematic view showing a method for rolling laminated steel by the method for producing a multilayer steel according to the present invention.
  • FIG. 9 is a graph showing the relationship between heat treatment temperature and elongation.
  • FIG. 10 is a graph showing the relationship between the maximum path reduction ratio and elongation.
  • the multilayer steel of the present invention can improve the properties of the steel itself by forming a multilayer by combining at least two kinds of steels having different structures or mechanical properties.
  • FIG. 2 shows a graph for explaining the characteristic improvement by the multilayering of the present invention.
  • the horizontal axis is tensile strength
  • the vertical axis is ductility.
  • Steel I in the graph is a steel with relatively low tensile strength but relatively high ductility
  • Steel II is a steel with relatively high tensile strength but relatively low ductility.
  • the present inventors have made steel I and steel II multi-layered, so that the tensile strength is determined by the arithmetic mean of the lamination ratio of steel I and steel II, when the steel / steel multi-layer interface is formed. Was found to be higher than the arithmetic mean by layering. As a result of further investigation, it was found that the improvement in ductility becomes more remarkable by controlling the thickness and the number of laminated layers.
  • the multilayer steel 10 of the present invention includes a first layer 12 having high strength and low ductility, and a second layer having low strength and high ductility.
  • the first layer 12 is an even layer
  • the second layer 11 is an odd layer
  • an odd number of layers are alternately stacked, whereby the second layer 11 having high ductility is formed on both outer surfaces. Formed to be placed on! /
  • the present invention is not limited to this, and the main point is high strength and low ductility.
  • One layer 12 Is laminated between the second layer 11 having low strength and high ductility, and the second layer 11 is disposed on both outer surfaces, and the other layers such as 11 and 11 other layers are laminated on various other odd-numbered sheets. You may do it.
  • the multilayer steel 10 of the present invention is characterized by being formed by rolling a combination of at least two kinds of steels having different structures or mechanical properties.
  • the first layer 12 in the multi-layer steel 10 has martensite as the main phase, and is formed of steel composed only of martensite or steel composed of martensite and bainite.
  • the second layer 11 is made of steel having at least one of austenite and ferrite as a main phase.
  • the multilayered steel 10 of the present invention the mass 0/0, C: 0.05% force, et 0.4%, Si: 0.05% force, et 3 .0%, Mn: 0.05% force, et 3.0 Steel A with a% and inevitable impurities,
  • a first layer 12 consisting of one or two of
  • the second layer 11 comprising one or more of them is formed by combined rolling.
  • the steel used in the present invention is not limited to a specific steel as long as it has a different structure or mechanical properties.
  • martensitic steel, austenitic steel, IF (Interstitial Free) steel, DP (Dual Phase) Preference is given to alloys such as steel, TRIP steel, precipitation strengthened steel, stainless steel or Ti! /.
  • the first layer 12 used in the present invention is not limited to a specific one as long as it has a high strength, but in mass%, C: 0.05% force, 0.4%, Si: 0.05% Force, et al. 3.0%, Mn: 0.05% force, et al. 3.0% and steel A, steel A containing inevitable impurities, in addition to mass%, Nb: 0.0 01% force, et al. 0.1%, Ti: 0.001% force, et al. 0.1%, V: 0.001% force, et al. 0.5%, Cr: 0.01% force, et al. 16.0%, Ni: 0.01% force, et al. 12.0%, Mo: 0.01% force, et al. 3.0%, Cu: A steel composed of one or two of steel B containing one or more of 0.01% strength and 1.0% is preferable.
  • Nb 0.001% force, etc. 0.1%
  • Ti 0.001% force, et al. 0.1%
  • V 0.001% force, et al.
  • the multi-layer steel of the present invention is not limited to a specific one as long as it is composed of at least two kinds of steels having different structures or mechanical properties.
  • the layer 11 is preferably a multilayer steel 10 made of austenitic steel.
  • High strength and high ductility steel can be obtained by rolling a combination of a plurality of steels having opposite mechanical properties such as steel II having high strength and steel I having high ductility.
  • it may be a laminated steel composed of a plurality of steels such as IF steel, DP steel, TRIP steel, precipitation strengthened steel, and stainless steel.
  • each layer of the laminated steel before rolling the multilayer steel 10 of the present invention is such that each layer constituting the multilayer steel 10 obtained after rolling the laminated steel has a thickness of 125 m or less. It is preferable.
  • the multi-layer steel 10 By forming the multi-layer steel 10 having a thickness of 125 m or less for each layer, the multi-layer steel 10 can be formed without peeling rupture, brittle rupture, local necking, or the like.
  • the number of layers of the multi-layer steel 10 of the present invention is not limited to a specific number in the thickness direction of the multi-layer steel 10 obtained after rolling, but is preferably 5 layers or more. As a result, the mechanical properties and bondability of the entire multilayer steel can be improved.
  • the thickness of each layer of the multilayer steel 10 of the present invention is 1/2 or less of the original thickness before rolling by rolling. Interfacial strength is improved by rolling, and the required strength improvement effect is obtained with S.
  • the method for producing a multilayer steel 10 according to the present invention is characterized in that a multilayer steel is formed by rolling a combination of at least two kinds of steels having different structures or mechanical properties.
  • the method for producing the multilayer steel 10 of the present invention is, in mass%, C: 0.05% force, et al. 0.4%, Si: 0.
  • the second layer 11 composed of one or more of them is combined and rolled to form a multilayer steel 10.
  • the steel used in the present invention is not limited to a specific steel as long as it has a different structure or mechanical properties.
  • martensitic steel, austenitic steel, IF steel, DP steel, TRIP steel, precipitation steel Reinforced steel and stainless steel are preferred.
  • the first layer 12 used in the present invention is not limited to a specific one as long as it has a high strength, but in mass%, C: 0.05% force, 0.4%, Si: 0.05% Force, et al. 3.0%, Mn: 0.05% force, et al. 3.0% and steel A, steel A containing inevitable impurities, in addition to mass%, Nb: 0.0 01% force, et al. 0.1%, Ti: 0.001% force, et al. 0.1%, V: 0.001% force, et al. 0.5%, Cr: 0.01% force, et al. 16.0%, Ni: 0.01% force, et al. 12.0%, Mo: 0.01% force, et al. 3.0%, Cu: 0.01% force, et al 1.
  • a steel composed of one or two of steel B containing one or more of 0% is preferable.
  • Nb 0.001% force, etc. 0.1%
  • Ti 0.001% force, et al. 0.1%
  • V 0.001% force, et al.
  • the multi-layer steel 10 of the present invention is not limited to a specific one as long as it is a multi-layer steel composed of at least two kinds of steels having different structures or mechanical properties, but martensitic steel, austenitic steel, etc.
  • the multi-layer steel 10 is preferable. By rolling a plurality of steels having opposite mechanical properties, such as steel II having high strength and steel I having high ductility, a multi-layer steel having high strength and high ductility can be obtained.
  • laminated steel composed of a plurality of steels such as IF steel, DP steel, TRIP steel, precipitation strengthened steel, and stainless steel may be used.
  • the thickness of each layer of the multilayer steel 10 of the present invention is 125 with respect to the thickness direction obtained after rolling.
  • the thickness is not more than in.
  • a V-type multi-layer steel 10 such as peeling fracture, brittle fracture and local necking can be formed.
  • the number of layers of the multilayer steel 10 of the present invention is preferably 5 or more in the thickness direction.
  • the thickness of each layer of the multilayer steel 10 of the present invention is 1/2 or less of the original thickness before rolling by rolling. Interfacial strength is improved by rolling, and the required strength improvement effect is obtained with S.
  • the rolling of the present invention is preferably hot rolling, cold rolling, warm rolling, hot rolling, rolling using cold rolling, rolling using hot rolling and warm rolling in combination.
  • the rolling of the present invention is preferably hot rolling, cold rolling, warm rolling, hot rolling, rolling using cold rolling, rolling using hot rolling and warm rolling in combination.
  • a rolling roller for rolling the laminated steel is heated to a predetermined temperature, so that the rolling treatment and the heat treatment are simultaneously performed on the laminated steel. Has been made.
  • a laminated steel is first formed by sequentially laminating at least two kinds of steels having different structures or mechanical properties in order.
  • martensite is the main phase, and it has high strength and low ductility.
  • the first layer 12 and the second layer 11 having at least one of austenite and ferrite as a main phase and having low strength and high ductility are formed.
  • the first layer 12 and the second layer 11 can be alternately laminated one after another, and a multilayer steel 10 in which the high ductility second layer 11 is arranged on both outer surfaces can be produced. .
  • multilayer steel is formed by rolling the above-described laminated steel using a rolling roller.
  • martensite is the main phase
  • the first layer 12 having high strength and low ductility, and at least one of austenite and ferrite are used.
  • Form the main phase and the second layer 11 with low strength and high ductility [0068]
  • the first layer 12 and the second layer 11 are alternately laminated in sequence, and a multi-layer steel 10 in which the highly ductile second layer 11 is disposed on both outer surfaces can be produced. .
  • the first transfer of atoms due to thermal diffusion between the first layer and the second layer is achieved by performing at a lower temperature than in hot rolling. It is possible to prevent the synergistic effect of the first layer and the second layer from fading.
  • the rolling when the rolling is mainly performed by warm rolling, most of the rolling is performed in the range of 200 ° C to 750 ° C by heating, cooling after hot rolling, or heating from room temperature. It is preferable to do it. This is because if the temperature is lower than 200 ° C, the deformation resistance of the laminated steel is increased, and if it is higher than 750 ° C, the composition changes and an undesirable steel is formed.
  • the reduction ratio refers to the rate of reduction of the thickness of the layer after rolling relative to the thickness of the layer before rolling.
  • the predetermined heat treatment several hundreds of rolled steel after rolling. Thousands from C. It is desirable to carry out at a temperature of about C for 1 second to several hours (ie, 1 second or more).
  • the temperature when performing the heat treatment if the temperature is lower than 900 ° C or higher than 1250 ° C, the ductility cannot be improved to a desired value, so 900 ° C ⁇ ; 1250 ° C It is desirable to be within the range of.
  • the heat treatment may be performed separately from the rolling without performing the heat treatment simultaneously with the rolling. Further, after the heat treatment, cooling such as air cooling, water cooling or air-water cooling may be performed. By heat-treating the multi-layer steel after rolling, the mechanical properties can be made uniform even if the V in the length direction and the thickness direction of the multi-layer steel is shifted.
  • the present invention will be described in more detail with reference to specific examples.
  • the present invention is not limited to these examples, for example, rolling force, hot rolling, cold rolling, and warm rolling. Of these, rolling using at least two of them may be used.
  • the formation condition of the multilayer steel in which brittle fracture does not occur is determined. Furthermore, based on the conditions for forming a multilayer steel without brittle fracture and necking, a multilayer steel was formed.
  • FIG. 3 shows an example of brittle fracture, which is one of the fracture modes of multi-layer steel.
  • Fig. 3 (A) is an example of brittle fracture
  • Fig. 3 (B) is an example of peel fracture.
  • a brittle fracture is a fracture that occurs when a brittle fracture condition is satisfied.
  • the brittle fracture condition is that the thickness of one intermediate layer in the multilayer steel is equal to or greater than the critical layer thickness.
  • exfoliation rupture is a rupture caused by satisfying the exfoliation condition.
  • the peeling condition is that the interfacial strength with one intermediate layer in the multilayer steel is less than the delamination strength (interlaminar delamination energy).
  • Fig. 4 is a diagram for explaining crack propagation conditions, which are brittle fracture conditions of a multilayer steel.
  • Tunnel crack As shown in Fig. 2, a crack called Tunnel crack is generated.
  • the crack propagation condition can be expressed by the crack generation energy W and the release strain energy W.
  • Equation 1 The crack formation energy W is expressed by Equation 1.
  • t is the layer thickness of layer II
  • is the surface energy of layer II.
  • the release strain energy W is expressed by Formula 2 .
  • t & is the critical layer thickness of layer II
  • is the strength of layer II
  • is the Young's modulus of steel II
  • is the tensile force
  • the critical layer thickness was determined when martensite steel was used as layer II as an intermediate layer. Fracture toughness of martensite ⁇ force 3 ⁇ 40 MPa ⁇ m, Young's modulus E force 3 ⁇ 40
  • the critical layer thickness t & in the case of 0 GPa and tensile strength ⁇ force SlGPa was 125 ⁇ m from Equation 4
  • the layer thickness is 125 m or less, the crack does not progress and brittle fracture does not occur.
  • the peeling conditions of the multi-layer steel are the interface strength ⁇ and delamination strength (delamination energy).
  • G is the delamination strength
  • G is the energy release rate of the crack perpendicular to the lamination interface
  • Equation 5 the energy release rate G of a crack perpendicular to the stack interface is expressed by Equation 5.
  • G Ding [0096] where G is the energy release rate of the crack perpendicular to the lamination interface, t is the layer thickness of layer II, E is the Young's modulus of p II II steel II, and ⁇ is the tensile strength.
  • the peel fracture condition is a condition of interface strength ⁇ ⁇ delamination strength G.
  • the interfacial strength was determined when martensite steel was used as the intermediate layer II. Young's modulus of martensite E force 00GPa, tensile strength ⁇ force SlGPa
  • the interface strength ⁇ is 500 j / m 2
  • FIG. 5 is a graph showing a range in which a multi-layer steel having no brittle fracture and exfoliation fracture is obtained.
  • the horizontal axis is the interface strength ⁇ relative to the strength ⁇ of layer II
  • the vertical axis is the strength of layer II relative to the strength ⁇ .
  • Regions 1 and 2 in the graph are regions where peeling fracture occurs
  • Region 3 is a region where brittle fracture occurs.
  • Fig. 6 shows an example of necking that is one of the fracture modes of multi-layer steel.
  • Fig. 6 (A) shows an example of global necking
  • Fig. 6 (B) shows an example of local necking.
  • the occurrence of necking can be expressed by Equation 6 based on the assumption of Von Mises.
  • k and k are constants
  • n and n are work hardening indices
  • is strain. Origin of local necking
  • the raw conditions can be expressed by Equation 7.
  • ⁇ u uniform elongation, is work hardening index, ⁇ is tensile strength, ⁇ is a constant, ⁇ is the thickness of steel I, t is the thickness of steel II, E is the Young's modulus of steel II 1 is the particle size of Steel II.
  • the multilayer steel of the present invention was formed by rolling a laminated steel in which at least two kinds of steels having different structures or mechanical properties were combined and performing heterointerface control.
  • Table 1 shows the strength and elongation of the steel used in the combination of laminated steels.
  • the steel used for the combination of laminated steels is not limited to Table 1.
  • Steel G and Steel H shown below were also used.
  • the composition of the steel used in the combination of the laminated steels is as follows: Steel A is in mass%, C: 0.05% force, et al. 0.4%, Si: 0.05% force, et al. 3.0%, Mn: 0.05% force, et al. 3.0 % And steel containing inevitable impurities,
  • Nb 0.001% to 0.1%
  • Ti 0.001% force, et al. 0.1%
  • V 0.001% force, et al. 0.5%
  • Cr 0.01% force, et al. 12.0%
  • Ni Steel containing 0.01% force, et al. 12.0%
  • Mo 0.01% force, et al. 3.0%
  • Cu 0.01% force, et al.
  • a multilayer steel was constructed by combining at least two of the steels A to H described above. Note that the force S is used to construct a multi-layer steel composed of the first layer and the second layer using the above steel A to steel H.
  • the first layer was composed of one or two of steel A and steel B, which are steels having high strength.
  • the second layer was composed of one or more of steel C, steel D, steel E, steel F, steel G, and steel H, which are highly ductile steels.
  • a multilayer steel was composed of these first layer and second layer.
  • Fig. 7 is a cross-sectional photograph of the constructed multilayer steel.
  • the steels used for the combination of the multilayer steels are 0.15C-1.5Mn steel and SUS316 steel.
  • the multilayer steel has 11 layers, the layer thickness is 125 ⁇ m, and the multilayer steel itself is lmm.
  • the multi-layer steel was hot rolled up to a thickness of 5 mm, and then cold rolled up to a thickness of 1 mm.
  • FIG. 8 shows a schematic diagram of the rolling method of the laminated steel 6.
  • the brittle fracture and necking determined above do not occur! /
  • the laminated steel 6 is hot-rolled by the rolling roller 5.
  • the multilayer rolled steel 7 can be obtained.
  • the multi-layer rolled steel 7 was hot-rolled up to a thickness of 5 mm, and then cold-rolled to a thickness of 1 mm.
  • heat treatment was performed on the multilayer rolled steel 7 formed by rolling the laminated steel 6 by separately performing the hot treatment and not carrying out the rolling treatment and the heat treatment separately. It was.
  • the heat treatment conditions were a heating temperature of 900 ° C to 1250 ° C, a holding time of 1 second and a force of 3600 seconds.
  • the multilayer rolled steel 7 was cooled to room temperature by water cooling or air cooling to obtain a multilayer steel.
  • the resulting multi-layer steel had a tensile strength of lOOOMPa to 11 OOMPa and an elongation of 40% to 50%.
  • a regular rolling mill is used as the rolling device.
  • a rolling device such as a shearing rolling mill, a drawing rolling mill, a tension drawing rolling mill, a drawing rolling mill, or a molten metal rolling mill is used. May be.
  • the heating temperature which is the heat treatment condition in this example is 900 ° C to 1250 ° C. Thousands from C. C may also be used.
  • the holding time is 1 to 3600 seconds, but it may be several seconds to several hours as long as it can soak for 1 second or more. If necessary, multilayer steel may be formed without performing heat treatment after rolling.
  • the cooling after the heat treatment in this embodiment is air cooling, water cooling or air-water cooling may be used! /.
  • Example 1 plate-like steel A in which the thickness of material 1 (hereinafter referred to as material 1 thickness) is 5. Omm was used as material 1.
  • material 2 thickness plate-like steel C in which the thickness of the material 2 (hereinafter referred to as material 2 thickness) is 5. Omm was used.
  • hot rolling and cold rolling were used as processes for rolling the laminated steel (simply referred to as processes in Table 3).
  • multilayer steel was produced by rolling laminated steel with a rolling roller at 1000 ° C.
  • the multilayer rolled steel was heat-treated at 1000 ° C for about 2 minutes, and then cooled by water cooling to produce the multilayer steel of Example 1.
  • the finished thickness was 1. Omm, and the thickness per layer was 111 mm by this finished thickness.
  • each layer of the multilayer steel of Example 1 produced in this manner was confirmed with an optical microscope or measured for hardness.
  • one layer of material as the first layer that is, formed of material 1
  • the constituent phase of layer 2 was martensite
  • the constituent phase of the second material layer ie, the layer formed of material 2 was austenite.
  • Example 1 As described above, in Example 1, when the results of the strength measurement and the elongation measurement are verified based on Fig. 2, conflicting properties such as strength and ductility can be achieved at the same time. As a result, it was confirmed that a multilayer steel having excellent resistance, embrittlement resistance and fatigue resistance was obtained.
  • Example 2 for example, a plate-like steel A having a thickness of 1. Omm is used as the material 1, and a plate-like steel C having a thickness of 1. Omm is used as the material 2. Was used.
  • Example 1 As a process for rolling the laminated steel, unlike Example 1, only cold rolling was used. Here, cold rolling was performed a plurality of times, and the laminated steel was produced by rolling the laminated steel with a maximum reduction ratio of 50% in one cold rolling.
  • the multilayer rolled steel was subjected to a heat treatment of heating at 1000 ° C for about 2 minutes, and then cooled by water cooling to produce the multilayer steel of Example 2.
  • Example 2 When the strength and elongation of the double layer steel of Example 2 were measured, it was confirmed that the strength was Sl030MPa and the elongation was 27%. When the results of the strength measurement and the elongation measurement are verified based on FIG. 2, in Example 2, the conflicting characteristics such as strength and ductility can be achieved at the same time, and the strength, ductility, bondability, and resistance to embrittlement can be achieved. It was confirmed that a multilayer steel with excellent properties and fatigue resistance was obtained.
  • Comparative Example 1 where the temperature was lowered to 800 ° C, the constituent phase of the material 1 layer was martensite and the constituent phase of the material 2 layer was austenite, but the ductility decreased to 6%. In other words, this Comparative Example 1 is not compatible with conflicting properties such as strength and ductility when verified based on FIG.
  • the temperature of the heat treatment needs to be a temperature that improves the ductility, and is specifically between about 900 ° C and 1250 ° C! Was confirmed.
  • Example 9 in Table 3 as the material 1, a plate-like steel B1 having a material 1 thickness of 1.2 mm was used. As material 2, plate-like steel C with material 2 thickness of 1. Omm was used.
  • the multilayer rolled steel was subjected to a heat treatment of heating at 1000 ° C for about 2 minutes, and then cooled by water cooling to produce the multilayer steel of Example 9.
  • the finished thickness was 1. Omm, and the thickness per layer was 91 ⁇ m due to this finished thickness.
  • each layer of the multilayer steel of Example 9 produced in this way was confirmed with an optical microscope or measured for hardness.
  • the constituent phase of material 1 layer was martensite, and the structure of material 2 layers was It was confirmed that the phase was austenite.
  • Example 9 When the strength measurement and elongation measurement were performed on the double layer steel of Example 9, the strength force was Sl090MPa and the ductility was confirmed to be 27%. [0149] Thus, in Example 9, when the results of the strength measurement and the elongation measurement were verified based on Fig. 2, conflicting properties such as strength and ductility can be achieved at the same time. As a result, it was confirmed that a multilayer steel having excellent resistance, embrittlement resistance and fatigue resistance was obtained.
  • Example 9 only the maximum rolling reduction in cold rolling is different from Example 9, and the maximum rolling reduction in one cold rolling out of multiple cold rollings is reduced to 20%.
  • Comparative Example 2 the constituent phase of the first layer of material was martensite and the constituent phase of the second layer of material was austenite, but the strength decreased to 950 MPa and the ductility decreased to 6%.
  • the maximum pass reduction ratio in cold rolling needs to be a reduction ratio that improves ductility, and specifically, it was confirmed that about 30% or more is preferable.
  • Example 12 in Table 3 As the material 1, a plate-like steel B1 having a material 1 thickness of 1.2 mm was used. As material 2, plate-like steel G with material 2 thickness of 1. Omm was used.
  • the multilayer rolled steel was subjected to a heat treatment of heating at 1000 ° C for about 2 minutes, and then cooled by water cooling to produce the multilayer steel of Example 12.
  • the finished thickness was set to 0.8 mm, and the thickness per layer was 73 ⁇ m due to this finished thickness.
  • each layer of the multilayer steel of Example 12 produced in this way was confirmed with an optical microscope, Alternatively, when the hardness was measured, it was confirmed that the constituent phase of the first layer of material was martensite and the constituent phase of the second layer of material was ferrite.
  • Example 12 when the results of the strength measurement and the elongation measurement are verified from FIG. 2, conflicting properties such as strength and ductility can be compatible, and the strength, ductility, and bonding properties can be achieved. It was confirmed that a multilayer steel excellent in embrittlement resistance and fatigue resistance was obtained.
  • Example 12 differs from Example 12 only in the cooling method after the heat treatment, and in Comparative Example 3 in which cooling was performed instead of water cooling, the constituent phase of the material 2 layers became ferrite, but the material The constituent phase of one layer also became ferrite, the strength decreased to 710 MPa, and the ductility decreased to 19%.
  • Examples 1 to 16 in Table 3 show the results of measuring the strength and ductility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Laminated Bodies (AREA)
  • Heat Treatment Of Steel (AREA)

Description

明 細 書
複層鋼及び複層鋼の製造方法
技術分野
[0001] 本発明は、鋼の高強度と高延性の相反する特性を両立することのできる鋼/鋼積 層型の複層鋼及び複層鋼の製造方法に関するものである。
背景技術
[0002] 自動車などの移動体には、性能や環境対応の観点から軽量化が求められる。その ため、その構造材料において、これまでに大きく 2つのアプローチがなされてきた。 1 つは、鉄鋼材料を高強度化することにより薄肉化することであり、もう 1つは鉄鋼材料 の代わりに比重の小さ!/、合金を用いることである。
[0003] 鉄鋼材料を高強度 ·薄肉化すると、材料の高強度 ·薄肉化にともない延性及び耐疲 労特性の低下、水素脆化などの問題が生じてしまう。
[0004] また、鉄鋼材料の代わりに比重の小さい A1や Mgなどの合金を用いると、強度ゃ剛 性が低いため、鉄鋼材料と同等の強度や剛性を得るためには、板厚を増やすか断 面形状を複雑にしなければならない。したがって、比重差ほどの軽量化効果を得るこ とができないばかりか、成形性の低下、異材接合における脆化、腐食などの問題が 生じてしまう。
[0005] したがって、構造の軽量化を行うために、鋼を高強度化すると同時に、それに付随 して起こる延性、靭性、剛性、加工性、安全性、脆化特性、耐疲労特性、耐腐食性、 耐環境性などの低下を解決した鉄鋼材料が強く求められている。
[0006] しかしながら、特に強度と延性は相反する特性であるため、これまでの鉄鋼材料で は両立させることが困難である。
[0007] 図 1は、従来における鋼の強度一延性の相関を示すグラフである。グラフは、強度と して引張強度、延性として伸びにより表されている。グラフ中の MART (Martensite )は、低延性で超高強度なマルテンサイト鋼である。グラフより、いずれの鋼において も、高強度化すると延性が低下してしまうことが分かる。
[0008] 従来、材料の特性を改善する手段の 1つとして、必要となる特性を有する複数の異 なる材料を用いて複層化することも検討されて!/、る。
[0009] 鋼又は他材料を複層化した材料としては、クラッド板、ラミネート板、コンポジット材 料などがある。
[0010] クラッド板は、耐食性などの機能付与を目的として表面に耐食性に優れた鋼などを 貼り付けた鋼板又は金属板である。クラッド板を形成する方法として、異なる鋼同士を 冷間圧延し、焼鈍する方法 (例えば、特許文献 1)等が提案されている。
[0011] ラミネート板は、制振機能 ·断熱機能などの機能付与を目的として樹脂などを挟ん だ鋼板又は金属板である。ラミネート板を形成する方法として、 2枚の金属板間に接 合された樹脂を溶融させて加圧成形する方法 (例えば、特許文献 2)等が提案されて いる。
[0012] コンポジット材料は、材料自体の高強度化を目的としてポリマー、金属箔などのラミ ネート箔又は炭素系材料などをコンポジットした板状材料である。異なる材料のコン ポジット材料を形成する方法として、プリプレダシートからなるコンポジットパーツを圧 縮成形する方法 (例えば、特許文献 3)等が提案されている。複層化することにより、 材料自体の靭性、疲労特性が向上するという報告がある。
特許文献 1:特開平 5 - 5190
特許文献 2 :特開 2001— 277271
特許文献 3:特開 2005— 306039
発明の開示
発明が解決しょうとする課題
[0013] 従来技術において、クラッド板は、異なる鋼又は金属板同士を圧延し、焼鈍などを 行うことによって得られる鋼板又は金属板であり、主に表面機能などの機能付与が目 的であり、接合を前提とした構造材料自体の高性能化を目的としていない。また、ラミ ネート板は、 2枚の金属板間に接合された樹脂を溶融させて加圧成形などを行うこと によって得られる鋼板又は金属板であるため、制振機能 ·断熱機能などの機能付与 が目的であり、接合を前提とした構造材料自体の高性能化を目的として!/、なレ、。
[0014] コンポジット材料は、材料を圧縮成形など行うことによって得られる板状材料であり、 複層化した板状材料自体の高強度化を目的として!/、る。また複層化することにより、 セラミックスなどの脆性材料の靭性の向上や疲労特性が向上するという報告がある。 本発明ではこれらの知見を参照する力 本発明で注目しているような強度一延性の ノ ランス、および靭性、加工性、接合性、疲労特性などの特性に関する検討はない。
[0015] 結局、従来の!/、ずれの複層化材料にお!/、ても強度、延性などの相反する特性を改 善した構造材料を達成することができなかった。
[0016] そこで、本発明は上記問題点に着目し、強度、延性などの相反する特性を両立す ること力 Sでき、強度、延性、接合性、耐脆化特性、耐疲労特性に優れた鋼/鋼積層 型の複層鋼及び複層鋼の製造方法を提供することを目的とする。
課題を解決するための手段
[0017] 本発明の請求項 1記載の複層鋼は、組織又は機械的特性の異なる少なくとも 2種 以上の鋼を組み合わせ、圧延によって形成したことを特徴とする。
[0018] 本発明の請求項 2記載の複層鋼は、組織又は機械的特性の異なる少なくとも 2種 以上の鋼を層状に重ね合わせた積層鋼を圧延し、所定の熱処理を施すことにより、 マルテンサイトを主たる相とする第一の層と、オーステナイト及びフェライトのうち少な くとも 1種を主たる相とする第二の層とを形成したことを特徴とする。
[0019] 本発明の請求項 3記載の複層鋼は、質量%で、 C:0.05%力、ら 0.4%、 Si:0.05 %から 3.0%、Mn:0.05%力、ら 3.0%及び不可避的不純物を含む鋼 A、 ま岡 Aにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 16.0%、Ni:0.01%力、ら 12.0%、Mo:0.01% 力、ら 3.0%、Cu:0.01%力、ら 1.0%のうちの 1種又は 2種以上を含む鋼 B
のうちの 1種又は 2種からなる第一の層及び
質量0 /0で、 C:0.01%力、ら 0.15%、 Si:0.01%力、ら 1.0%、 Mn:0.01%力、ら 2.0 %、 Cr:12.0%力、ら 24.0%、Ni:4.0%力、ら 14.0%、N:0.001力、ら 0.3%及び不 可避的不純物を含む鋼 C、
ま岡 Cにカロ免、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、Mo:0.01%力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種 以上を含む鋼 D、
質量0 /0で、 C:0.001%力、ら 0.15%、 Si:0.05%力、ら 3.0%、 Mn:15.0%力、ら 32. 0%、及び不可避的不純物を含む鋼 E、
ま岡 Eにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01% 力、ら 3.0%、 Cu:0.01%力、ら 1.0%、 N:0.001%力、ら 0.3%の 1種又は 2種以上を 含む鋼 F、
質量0 /0で、 C:0.0001%力、ら 0.05%、 Si:0.01%力、ら 1.0%、 Mn:0.01%力、ら 2.
0%、及び不可避的不純物を含む鋼 G、
ま岡 Gにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01% 力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種以上を含む鋼 H
のうちの 1種以上からなる第二の層を組み合わせ、圧延によって形成したことを特徴 とする。
[0020] 本発明の請求項 4記載の複層鋼は、請求項 1〜3のうちいずれか 1項において、複 層鋼を構成する各層が 125 m以下の厚さからなることを特徴とする。
[0021] 本発明の請求項 5記載の複層鋼は、請求項 1〜3のうちいずれか 1項において、複 層鋼を構成する層数が 5層以上からなることを特徴とする。
[0022] 本発明の請求項 6記載の複層鋼の製造方法は、組織又は機械的特性の異なる少 なくとも 2種以上の鋼を組み合わせ圧延し、複層鋼を形成することを特徴とする。
[0023] 本発明の請求項 7記載の複層鋼の製造方法は、組織又は機械的特性の異なる少 なくとも 2種以上の鋼を層状に重ね合わせることにより積層鋼を形成する積層ステツ プと、前記積層鋼を圧延し、所定の熱処理を施すことにより、マルテンサイトを主たる 相とする第一の層と、オーステナイト及びフェライトのうち少なくとも 1種を主たる相とす る第二の層とを形成し、前記第一の層及び前記第二の層を備えた複層鋼を作製する 圧延ステップとを備えることを特徴とする。
[0024] 本発明の請求項 8記載の複層鋼の製造方法は、質量%で、 C:0.05%から 0.4% 、 Si:0.05%力、ら 3.0%、Mn:0.05%力、ら 3.0%及び不可避的不純物を含む鋼 A ま岡 Aにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 16.0%、Ni:0.01%力、ら 12.0%、Mo:0.01% 力、ら 3.0%、Cu:0.01%力、ら 1.0%のうちの 1種又は 2種以上を含む鋼 B のうちの 1種又は 2種からなる第一の層及び
質量0 /0で、 C:0.01%力、ら 0.15%、 Si:0.01%力、ら 1.0%、 Mn:0.01%力、ら 2.0 %、 Cr:12.0%力、ら 24.0%、Ni:4.0%力、ら 14.0%、N:0.001力、ら 0.3%及び不 可避的不純物を含む鋼 C、
ま岡 Cにカロ免、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、Mo:0.01%力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種 以上を含む鋼 D、
質量0 /0で、 C:0.001%力、ら 0.15%、 Si:0.05%力、ら 3.0%、 Mn:15.0%力、ら 32.
0%、及び不可避的不純物を含む鋼 E、
ま岡 Eにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01% 力、ら 3.0%、 Cu:0.01%力、ら 1.0%、 N:0.001%力、ら 0.3%の 1種又は 2種以上を 含む鋼 F、
質量0 /0で、 C:0.0001%力、ら 0.05%、 Si:0.01%力、ら 1.0%、 Mn:0.01%力、ら 2.
0%、及び不可避的不純物を含む鋼 G、
ま岡 Gにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01% 力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種以上を含む鋼 H
のうちの 1種以上からなる第二の層を組み合わせ圧延し、複層鋼を形成することを特 徴とする。
[0025] 本発明の請求項 9記載の複層鋼の製造方法は、請求項 6〜8のうちいずれ力、 1項に おいて、複層鋼を構成する各層が 125 m以下の厚さからなることを特徴とする。
[0026] 本発明の請求項 10記載の複層鋼の製造方法は、請求項 6〜8のうちいずれか 1項 において、複層鋼を構成する層数が 5層以上からなることを特徴とする。
[0027] 本発明の請求項 11記載の複層鋼の製造方法は、請求項 6〜8のうちいずれか 1項 において、前記複層鋼の各層の最終厚さを、圧延によって圧延前の各層の元厚の 1 /2以下にして複層鋼を形成する
ことを特徴とする。
[0028] 本発明の請求項 12記載の複層鋼の製造方法は、請求項 6〜8のうちいずれか 1項 にお!/、て、前記圧延が熱間圧延であることを特徴とすることを特徴とする。
[0029] 本発明の請求項 13記載の複層鋼の製造方法は、請求項 6〜8のうちいずれか 1項 にお!/、て、前記圧延が冷間圧延であることを特徴とする。
[0030] 本発明の請求項 14記載の複層鋼の製造方法は、請求項 6〜8のうちいずれか 1項 にお!/、て、前記圧延が温間圧延であることを特徴とする。
[0031] 本発明の請求項 15記載の複層鋼の製造方法は、請求項 6〜8のうちいずれか 1項 において、前記圧延が、熱間圧延、冷間圧延及び温間圧延のうち少なくとも 2種以上 併用した圧延であることを特徴とする。
[0032] 本発明の請求項 16記載の複層鋼の製造方法は、請求項 6又は 8において、前記 圧延後に熱処理を行うことを特徴とする。
[0033] 本発明の請求項 17記載の複層鋼の製造方法は、請求項 14又は 15において、前 記温間圧延は、 200°C〜750°Cの範囲で圧延を行うことを特徴とする。
[0034] 本発明の請求項 18記載の複層鋼の製造方法は、請求項 13又は 15において、前 記冷間圧延は、圧下率が 30%以上の圧延を少なくとも 1回以上行うことを特徴とする
[0035] 本発明の請求項 19記載の複層鋼の製造方法は、請求項 7又は 16において、前記 熱処理は 900°C〜; 1250°Cの範囲内で 1秒以上均熱し、前記熱処理の後常温まで 冷却させることを特徴とする。
発明の効果
[0036] 本発明による複層鋼及び複層鋼の製造方法によれば、組織又は機械的特性の異 なる少なくとも 2種以上の鋼を組み合わせた積層鋼を圧延し複層鋼を形成することに よって、強度、延性などの相反する特性を両立することができ、強度、延性、接合性、 脆化特性、耐疲労特性に優れた鋼/鋼積層型の複層鋼を製造できる。
図面の簡単な説明
[0037] [図 1]従来の鋼の強度一延性の相関を示すグラフである。 [図 2]本発明の複層鋼の製造方法による複層化による特性改善を説明するグラフで ある。
[図 3]本発明の複層鋼の製造方法による複層鋼の脆性破壊の例を示す図である。
[図 4]本発明の複層鋼の製造方法による複層鋼の脆性破断条件を説明する図である
[図 5]本発明の複層鋼の製造方法によるクラックない複層鋼を得るための条件を示す グラフである。
[図 6]本発明の複層鋼の製造方法による複層鋼のネッキングの例を示す図である。
[図 7]本発明の複層鋼の製造方法による圧延前の積層鋼の断面写真である。
[図 8]本発明の複層鋼の製造方法による積層鋼の圧延方法を示す概略図である。
[図 9]熱処理温度と伸びとの関係を示すグラフである。
[図 10]最大パス圧下率と伸びとの関係を示すグラフである。
発明を実施するための最良の形態
[0038] 本発明の複層鋼は、組織又は機械的特性の異なる少なくとも 2種以上の鋼を組み 合わせて複層化することにより鋼自体の特性改善を図ることができる。
[0039] 図 2に、本発明の複層化による特性改善を説明するグラフを示す。横軸は、引張強 度であり、縦軸は、延性である。グラフ中の鋼 Iは、引張強度は比較的低いが、延性は 比較的高い鋼であるのに対し、鋼 IIは、引張強度は比較的高いが、延性は比較的低 い鋼である。本発明者らは、鋼 I及び鋼 IIを複層化することにより、引張強度は鋼 Iと鋼 I Iの積層比による相加平均で決まる力 延性は鋼/鋼の複層界面を作った場合は複 層化により相加平均以上になることを見出した。更に検討した結果、延性の向上は特 に複層の層厚、積層数を制御することでさらに顕著となることが判明した。
[0040] 実際上、図 2に示すように、本発明の複層鋼 10は、高強度であって低延性である第 一の層 12と、低強度であって高延性である第二の層 11とから構成されており、第一の 層 12を偶数層とし、第二の層 11を奇数層として順次交互に奇数枚積層し、これにより 高延性である第二の層 11が両外面に配置されるように形成されて!/、る。
[0041] なお、この実施の形態の場合、奇数枚の積層として、 9枚を積層した場合について 述べたが、本発明はこれに限らず、要は、高強度であって低延性である第一の層 12 を、低強度であって高延性である第二の層 11で挟み込み、かつ第二の層 11が両外 面に配置さればよぐ 5枚や、 11枚等この他種々の奇数枚に積層しても良い。
[0042] 本発明の複層鋼 10は、組織又は機械的特性の異なる少なくとも 2種以上の鋼を組 み合わせて圧延し形成したことを特徴とするものである。
[0043] 実際上、複層鋼 10における第一の層 12は、マルテンサイトを主たる相としており、マ ルテンサイトのみからなる鋼や、マルテンサイト及びべイナイトからなる鋼によって形 成されている。また、第二の層 11は、オーステナイト及びフェライトのうち少なくとも 1種 を主たる相とする鋼によって形成されている。
[0044] また、本発明の複層鋼 10は、質量0 /0で、 C:0.05%力、ら 0.4%、 Si:0.05%力、ら 3 .0%、Mn:0.05%力、ら 3.0%及び不可避的不純物を含む鋼 A、
ま岡 Aにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 16.0%、Ni:0.01%力、ら 12.0%、Mo:0.01% 力、ら 3.0%、Cu:0.01%力、ら 1.0%のうちの 1種又は 2種以上を含む鋼 B
のうちの 1種又は 2種からなる第一の層 12及び
質量0 /0で、 C:0.01%力、ら 0.15%、 Si:0.01%力、ら 1.0%、 Mn:0.01%力、ら 2.0 %、 Cr:12.0%力、ら 24.0%、Ni:4.0%力、ら 14.0%、N:0.001力、ら 0.3%及び不 可避的不純物を含む鋼 C、
ま岡 Cにカロ免、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、Mo:0.01%力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種 以上を含む鋼 D、
質量0 /0で、 C:0.001%力、ら 0.15%、 Si:0.05%力、ら 3.0%、 Mn:15.0%力、ら 32.
0%、及び不可避的不純物を含む鋼 E、
ま岡 Eにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01% 力、ら 3.0%、 Cu:0.01%力、ら 1.0%、 N:0.001%力、ら 0.3%の 1種又は 2種以上を 含む鋼 F、
質量0 /0で、 C:0.0001%力、ら 0.05%、 Si:0.01%力、ら 1.0%、 Mn:0.01%力、ら 2.
0%、及び不可避的不純物を含む鋼 G、 ま岡 Gにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01% 力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種以上を含む鋼 H
のうちの 1種以上からなる第二の層 11を組み合わせ圧延し形成したことを特徴とする ものである。
[0045] 本発明に用いる鋼としては、組織又は機械特性の異なる鋼であれば、特定のもの に限定されないが、例えば、マルテンサイト鋼、オーステナイト鋼、 IF (Interstitial Free)鋼、 DP (Dual Phase)鋼、 TRIP鋼、析出強化型鋼、ステンレス鋼又は Tiな どの合金であるのが好まし!/、。
[0046] 本発明に用いる第一の層 12としては、高強度を有する鋼であれば、特定のものに 限定されないが、質量%で、 C:0.05%力、ら 0.4%、 Si:0.05%力、ら 3.0%、 Mn:0. 05%力、ら 3.0%及び不可避的不純物を含む鋼 A、鋼 Aに加え、質量%で、 Nb:0.0 01%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.001%力、ら 0.5%、Cr:0.01%力、 ら 16.0%、Ni:0.01%力、ら 12.0%、Mo:0.01%力、ら 3.0%、Cu:0.01%力、ら 1. 0%のうちの 1種又は 2種以上を含む鋼 Bのうちの 1種又は 2種からなる鋼であるのが 好ましい。
[0047] 本発明に用いる第二の層 11としては、高延性を有する鋼であれば、特定のものに 限定されないが、質量0 /0で、 C:0.01%力、ら 0.15%、 Si:0.01%力、ら 1.0%、 Mn:0 .01%力、ら 2.0%、Cr:12.0%力、ら 24.0%、Ni:4.0%力、ら 14.0%、N:0.001力、 ら 0.3%及び不可避的不純物を含む鋼 C、鋼 Cに加え、質量%で、 Nb:0.001%力、 ら 0. l%、Ti:0.001%力、ら 0. 1%、V:0.001%力、ら 0.5%、Mo:0.01%力、ら 3.0 %、 Cu:0.01%力、ら 1.0%の 1種又は 2種以上を含む鋼 D、質量0 /0で、 C:0.001% 力、ら 0.15%、Si:0.05%力、ら 3.0%, Mn:15.0%力、ら 32.0%、及び不可避白勺不 純物を含むま岡 E、ま岡 Eにカロ免、質量0 /0で、 Nb:0.001%力、ら 0.1%、 Ti:0.001%力、 ら 0.1%、V:0.001%力、ら 0.5%、Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40. 0%、 Mo:0.01%力、ら 3.0%、 Cu:0.01%力、ら 1.0%、 N:0.001%力、ら 0.3%の 1 種又は 2種以上を含む鋼 F、質量%で、 C:0.0001%力、ら 0.05%、 Si:0.01%から 1.0%、Mn:0.01%から 2.0%、及び不可避的不純物を含む鋼 G、 ま岡 Gにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01% 力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種以上を含む鋼 Hのうちの 1種以 上からなる鋼であるのが好ましレ、。
[0048] 本発明の複層鋼は、組織又は機械特性の異なる少なくとも 2種以上の鋼からなるも のであれば、特定のものに限定されないが、第一の層 12としてマルテンサイト鋼、第 二の層 11としてオーステナイト鋼からなる複層鋼 10であるのが好ましい。高強度を有 する鋼 II、高延性を有する鋼 Iのように相反する機械特性を有する鋼を複数組み合わ せて圧延することにより、高強度 ·高延性の鋼を得ることができる。なお、 IF鋼、 DP鋼 、 TRIP鋼、析出強化型鋼、ステンレス鋼などのうち複数の鋼からなる積層鋼であって あよい。
[0049] 本発明の複層鋼 10を圧延する前の積層鋼の各層の厚さは、積層鋼を圧延した後 に得られる複層鋼 10を構成する各層が 125 m以下の厚さであることが好ましい。各 層の厚さが 125 m以下の層からなる複層鋼 10を形成することにより、剥離破断、脆 性破断、局所ネッキングなどのなレ、複層鋼 10を形成することができる。
[0050] また、本発明の複層鋼 10の層数は、圧延した後に得られる複層鋼 10の厚さ方向に 対して特定のものに限定されないが、 5層以上であることが好ましい。それによつて複 層鋼全体の機械特性及び接合性を向上させることができる。
[0051] さらに、本発明の複層鋼 10の各層の厚さは、圧延によって圧延前の元厚の 1/2以下 になっていることが好ましい。圧延により界面強度が向上し、所定の特性向上効果を 得ること力 Sでさる。
[0052] 本発明の複層鋼 10の製造方法は、組織又は機械的特性の異なる少なくとも 2種以 上の鋼を組み合わせて圧延し複層鋼を形成することを特徴とする。
[0053] また、本発明の複層鋼 10の製造方法は、質量%で、 C:0.05%力、ら 0.4%、 Si:0.
05%力、ら 3.0%、Mn:0.05%力、ら 3.0%及び不可避的不純物を含む鋼 A、 ま岡 Aにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 16.0%、Ni:0.01%力、ら 12.0%、Mo:0.01% 力、ら 3.0%、Cu:0.01%力、ら 1.0%のうちの 1種又は 2種以上を含む鋼 B のうちの 1種又は 2種からなる第一の層 12及び
質量0 /0で、 C:0.01%力、ら 0.15%、 Si:0.01%力、ら 1.0%、 Mn:0.01%力、ら 2.0 %、 Cr:12.0%力、ら 24.0%、Ni:4.0%力、ら 14.0%、N:0.001力、ら 0.3%及び不 可避的不純物を含む鋼 C、
ま岡 Cにカロ免、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、Mo:0.01%力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種 以上を含む鋼 D、
質量0 /0で、 C:0.001%力、ら 0.15%、 Si:0.05%力、ら 3.0%、 Mn:15.0%力、ら 32.
0%、及び不可避的不純物を含む鋼 E、
ま岡 Eにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01% 力、ら 3.0%、 Cu:0.01%力、ら 1.0%、 N:0.001%力、ら 0.3%の 1種又は 2種以上を 含む鋼 F、
質量0 /0で、 C:0.0001%力、ら 0.05%、 Si:0.01%力、ら 1.0%、 Mn:0.01%力、ら 2.
0%、及び不可避的不純物を含む鋼 G、
ま岡 Gにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01% 力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種以上を含む鋼 H
のうちの 1種以上からなる第二の層 11を組み合わせ圧延し複層鋼 10を形成することを 特徴とするものである。
[0054] 本発明に用いる鋼としては、組織又は機械特性の異なる鋼であれば、特定のもの に限定されないが、例えば、マルテンサイト鋼、オーステナイト鋼、 IF鋼、 DP鋼、 TRI P鋼、析出強化型鋼、ステンレス鋼などが好ましい。
[0055] 本発明に用いる第一の層 12としては、高強度を有する鋼であれば、特定のものに 限定されないが、質量%で、 C:0.05%力、ら 0.4%、 Si:0.05%力、ら 3.0%、 Mn:0. 05%力、ら 3.0%及び不可避的不純物を含む鋼 A、鋼 Aに加え、質量%で、 Nb:0.0 01%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.001%力、ら 0.5%、Cr:0.01%力、 ら 16.0%、Ni:0.01%力、ら 12.0%、Mo:0.01%力、ら 3.0%、Cu:0.01%力、ら 1. 0%のうちの 1種又は 2種以上を含む鋼 Bのうちの 1種又は 2種からなる鋼であるのが 好ましい。
[0056] 本発明に用いる第二の層 11としては、高延性を有する鋼であれば、特定のものに 限定されないが、質量0 /0で、 C:0.01%力、ら 0.15%、 Si:0.01%力、ら 1.0%、 Mn:0 .01%力、ら 2.0%、Cr:12.0%力、ら 24.0%、Ni:4.0%力、ら 14.0%、N:0.001力、 ら 0.3%及び不可避的不純物を含む鋼 C、鋼 Cに加え、質量%で、 Nb:0.001%力、 ら 0. l%、Ti:0.001%力、ら 0. 1%、V:0.001%力、ら 0.5%、Mo:0.01%力、ら 3.0 %、 Cu:0.01%力、ら 1.0%の 1種又は 2種以上を含む鋼 D、質量0 /0で、 C:0.001% 力、ら 0.15%、Si:0.05%力、ら 3.0%, Mn:15.0%力、ら 32.0%、及び不可避白勺不 純物を含むま岡 E、ま岡 Eにカロ免、質量0 /0で、 Nb:0.001%力、ら 0.1%、 Ti:0.001%力、 ら 0.1%、V:0.001%力、ら 0.5%、Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40. 0%、 Mo:0.01%力、ら 3.0%、 Cu:0.01%力、ら 1.0%、 N:0.001%力、ら 0.3%の 1 種又は 2種以上を含む鋼 F、質量%で、 C:0.0001%力、ら 0.05%、 Si:0.01%から 1.0%、Mn:0.01%から 2.0%、及び不可避的不純物を含む鋼 G、
ま岡 Gにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01% 力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種以上を含む鋼 Hのうちの 1種以 上からなる鋼であるのが好ましレ、。
[0057] 本発明の複層鋼 10は、組織又は機械特性の異なる少なくとも 2種以上の鋼からなる 複層鋼であれば、特定のものに限定されないが、マルテンサイト鋼、オーステナイト鋼 力、らなる複層鋼 10であるのが好ましい。高強度を有する鋼 II、高延性を有する鋼 Iのよ うに相反する機械特性を有する鋼を複数を重ねて圧延することにより、高強度'高延 性の複層鋼を得ることができる。なお、 IF鋼、 DP鋼、 TRIP鋼、析出強化型鋼、ステ ンレス鋼などののうち複数の鋼からなる積層鋼であってもよい。
[0058] 本発明の複層鋼 10の各層の厚さは、圧延した後に得られる厚さ方向に対して 125
in以下の厚さであることが好ましい。各層の厚さが 125 m以下の層からなる複層 鋼 10を圧延により形成することにより、剥離破断、脆性破断、局所ネッキングなどのな Vヽ複層鋼 10を形成することができる。 [0059] また、本発明の複層鋼 10の層数は、厚さ方向に対して、 5層以上であることが好まし い。 5層以上の層を有する複層鋼を圧延により形成することにより、複層鋼全体の機 械特性及び接合性を著しく向上させることができる。
[0060] さらに、本発明の複層鋼 10の各層の厚さは、圧延によって圧延前の元厚の 1/2以下 になっていることが好ましい。圧延により界面強度が向上し、所定の特性向上効果を 得ること力 Sでさる。
[0061] 本発明の圧延としては、熱間圧延や、冷間圧延、温間圧延、熱間圧延及び冷間圧 延を併用した圧延、熱間圧延及び温間圧延を併用した圧延が好ましい。熱間圧延や 、冷間圧延、温間圧延、熱間圧延及び冷間圧延を併用した圧延、熱間圧延及び温 間圧延を併用した圧延によって複層鋼を形成することにより、層同士の界面強度が 達成できる。
[0062] 実際上、熱間圧延を行う場合には、例えば積層鋼を圧延するための圧延ローラを 所定の温度に加熱させることにより、積層鋼に対して圧延処理と熱処理とを同時に行 うようになされている。
[0063] すなわち、この場合、先ず始めに組織又は機械的特性の異なる少なくとも 2種以上 の鋼を順次交互に層状に重ね合わせることにより積層鋼を形成する。
[0064] 次いで、所定温度に加熱した圧延ローラを用いて積層鋼を圧延すると共に、当該 積層鋼に所定の熱処理を施すことにより、マルテンサイトを主たる相とし、高強度であ つて低延性である第一の層 12と、オーステナイト及びフェライトのうち少なくとも 1種を 主たる相とし、低強度であって高延性である第二の層 11とを形成する。
[0065] このようにして、これら第一の層 12及び第二の層 11が順次交互に積層され、高延性 の第二の層 11が両外面に配置された複層鋼 10が作製され得る。
[0066] これに対して、冷間圧延又は温間圧延を行う場合には、先ず始めに圧延ローラを 用いて上述した積層鋼を圧延することにより多層圧延鋼を形成する。
[0067] 次いで、多層圧延鋼に所定の熱処理を施すことにより、マルテンサイトを主たる相と し、高強度であって低延性である第一の層 12と、オーステナイト及びフェライトのうち 少なくとも 1種を主たる相とし、低強度であって高延性である第二の層 11とを形成する [0068] このようにして、これら第一の層 12及び第二の層 11が順次交互に積層され、高延性 の第二の層 11が両外面に配置された複層鋼 10が作製され得る。
[0069] 因みに、熱間圧延においては、高温にしすぎると、第一の層と第二の層との間で熱 拡散による原子の移動が生じ、第一の層及び第二の層の組成が変わってしまい、第 一の層及び第二の層による相乗効果が薄れてしまう。
[0070] これに対して、温間圧延や冷間圧延では、熱間圧延よりも低温で行うことにより、第 一の層と第二の層との間の熱拡散による原子の移動がなぐ第一の層及び第二の層 による相乗効果が薄れてしまうことを防止できる。
[0071] ここで温間圧延を主体として圧延を行う場合には、加熱或いは熱間圧延後冷却し て、または常温から加熱して、 200°C〜750°Cの範囲で大部分の圧延を行うことが好 ましい。これは、 200°Cよりも低いと、積層鋼の変形抵抗が高くなり、 750°Cよりも高い と、組成が変わり所望しない鋼が形成されるからである。
[0072] また冷間圧延を主体として圧延を行う場合には、 1パスの圧下率が 30%
以上のパスを少なくとも 1回以上含むことが好ましい。これは、 30%よりも低いと、複 層鋼の延性を向上させることができないからである。因みに、ここで圧下率とは、圧延 前の層の厚さに対する圧延後の層の厚さの減少率をいう。
[0073] さらに所定の熱処理としては、圧延後の複層鋼を数百。 Cから千数百。 C程度の温度 で 1秒から数時間程度(すなわち 1秒以上)行うことが望ましい。なお、熱処理を行う場 合の温度としては、 900°Cよりも低ぐまたは 1250°Cよりも高いと、所望する値まで延 性を向上させることができないので、 900°C〜; 1250°Cの範囲内であることが望ましい 。因みに、熱間処理においては、圧延と同時に熱処理を行わずに、圧延とは別に熱 処理を行ってもよい。また、熱処理後は空冷、水冷又は気水冷却などの冷却を行つ てもよい。圧延後の複層鋼を熱処理することにより、複層鋼の長さ方向'厚さ方向の V、ずれにお!/、ても機械的特性を均一にすることができる。
[0074] 以下、具体的な実施例により本発明をさらに詳細に説明するが、本発明はこれらの 実施例に限定されるものではなぐ例えば圧延力 熱間圧延、冷間圧延及び温間圧 延のうち少なくとも 2種以上併用した圧延であってもよい。
実施例 1 [0075] (1)実施例
本発明の強度、延性などの相反する特性を両立することができ、強度、延性、接合 性、脆化特性、耐疲労特性に優れた複層鋼を得るためには、脆性破壊及びネッキン グのな!/ヽ複層鋼を形成しなければならなレ、。
[0076] 本実施例では、脆性破壊が生じない複層鋼の形成条件を決定した後に、ネッキン グが生じない複層鋼の形成条件を決定した。さらに、脆性破壊及びネッキングが生じ なレヽ複層鋼の形成条件に基づ!/、て複層鋼を形成した。
[0077] 図 3は、複層鋼の破壊形態の 1つとなる脆性破壊の例を示す。図 3 (A)は脆性破断 の例であり、図 3 (B)は剥離破断の例である。脆性破断とは、脆性破断条件を満たす ことにより生じる破断である。脆性破断条件は、複層鋼中の 1つの中間層の層厚が臨 界層厚以上になることである。これに対し、剥離破断とは、剥離条件を満たすことによ り生じる破断である。剥離条件は、複層鋼中の 1つの中間層との界面強度が層間剥 離強度(層間剥離エネルギー)以下になることである。
[0078] 図 4は、複層鋼の脆性破断条件である亀裂進展条件を説明する図である。複層鋼 中の層厚 tを有する層 Aが亀裂進展条件を満たし、脆性破断を起こした場合は、図 4
II
に示したような Tunnel crackなる亀裂を生じる。亀裂進展条件は、亀裂生成エネル ギー W及び解放ひずみエネルギー W により表すこと力 Sできる。
c m
[0079] 亀裂生成エネルギー Wは、数 1で表される。
[0080] 國
[0081] ここで、 tは層 IIの層厚、 γ は層 IIの表面エネルギーである。
II II
[0082] また、解放ひずみエネルギー W は、数2で表される。
m
[0083] [数 2]
つ ?
1
Wm =
Figure imgf000017_0001
[0084] :で、 tは鋼 IIの層厚、 Eは鋼 IIのヤング率、 σ は単位面積当たりの引張荷重で ある。 [0085] 亀裂進展条件は、亀裂生成エネルギー W≥解放ひずみエネルギー W の条件で
c m
ある。亀裂生成エネルギー W≥解放ひずみエネルギー W の条件を満たすときは、
c m
亀裂が進展し、脆性破断が生じてしまう。
[0086] 一方、亀裂生成エネルギー W <解放ひずみエネルギー W の条件を満たすときは
c m
、亀裂が進展せず、脆性破断は生じない。
[0087] 層 IIに亀裂が進展せず、脆性破断が生じない臨界層厚 t &は数 3で表すことができ
II
[0088] 園
Figure imgf000018_0001
[0089] ここで、 t &は層 IIの臨界層厚、 γ は層 IIの強度、 Εは鋼 IIのヤング率、 σ は引張
II II II 1 強度である。
[0090] 実際に、複層鋼に用いる層のうち、マルテンサイト鋼を中間層となる層 IIとした場合 の臨界層厚を求めた。マルテンサイトの破壊靱性 Κ 力 ¾0MPa^m、ヤング率 E力 ¾0
IC II
0GPa、引張強度 σ 力 SlGPaである場合の臨界層厚 t &は、数 4より 125 μ mであった
1 II
。従って、層厚 125 m以下であれば、亀裂が進展せず、脆性破断が生じないことが わかった。
[0091] 一方、複層鋼の剥離条件は、界面強度 γ 及び層間剥離強度 (層間剥離エネルギ
mt
一) Gにより表すこと力 Sできる。層間剥離強度 Gは、数 4により表される。
d d
[0092] [数 4]
Gd = .26Gp
[0093] ここで、 Gは層間剥離強度、 Gは積層界面に直交する亀裂のエネルギー解放率
d P
である。
[0094] また、積層界面に直交する亀裂のエネルギー解放率 Gは数 5で表される。
P
[0095] [数 5コ ひ】
G 丁 [0096] ここで、 Gは積層界面に直交する亀裂のエネルギー解放率、 tは層 IIの層厚、 Eは p II II 鋼 IIのヤング率、 σ は引張強度である。
[0097] 剥離破断条件は、界面強度 γ <層間剥離強度 Gの条件である。界面強度 γ mt d mt
<層間剥離強度 Gの条件を満たすときは、剥離破断が生じてしまう。
d
[0098] 一方、界面強度 γ 〉層間剥離強度 Gの条件を満たすときは、剥離破断は生じな
mt d
い。
[0099] 実際に、複層鋼に用いる層のうち、マルテンサイト鋼を中間層となる層 IIとした場合 の界面強度を求めた。マルテンサイトのヤング率 E力 00GPa、引張強度 σ 力 SlGPa
II 1
、臨界層厚 t &が 125 mである場合の界面強度 γ は、数 5及び数 6より 500j/m2
II int
であった。従って、界面強度 Ί は、数 4及び数 5より 500j/m2以上であれば、剥離
mt
破断が生じな!/、ことがわ力、つた。
[0100] 図 5は、脆性破断及び剥離破断のない複層鋼が得られる範囲を示すグラフである。
横軸は、層 IIの強度 γ に対する界面強度 γ であり、縦軸は、層 IIの強度 γ に対す
II int II る層間剥離強度 Gである。グラフ中の領域 1及び領域 2は、剥離破断が生じる領域
d
であり、領域 3は、脆性破断が生じる領域である。領域 1、領域 2、領域 3以外の領域 4 内の条件で複層鋼を形成することにより、脆性破断及び剥離破断のない複層鋼を得 ること力 Sでさる。
[0101] 実際に、積層鋼に用いる層のうち、マルテンサイト鋼を中間層となる層 IIとした場合 、マルテンサイトの破壊靱性 K 力 ¾0MPa^m、ヤング率 E力 00GPa、引張強度 σ
IC II 1 力 SlGPa、臨界層厚 t &が 125 m以下、界面強度 γ が 500j/m2以上である条件
II int
にお!/、て、脆性破断及び剥離破断のな!/、複層鋼を得ること力 Sできる。
[0102] 脆性破断及び剥離破断のない複層鋼において、さらに、もう 1つの破壊形態となる ネッキングを生じない複層鋼を形成するための条件を決定した。
[0103] 図 6は、複層鋼の破壊形態の 1つとなるネッキングの例を示す。図 6 (A)は全体ネッ キングの例であり、図 6 (B)は局所ネッキングの例である。局所ネッキングが起こると 複層鋼板の延性は阻害される。ネッキングの発生は Von Misesを仮定した条件から 数 6により表すことカできる。
[0104] [数 6] d(7 — -1 —n2 -l
άびε
[0105] ここで、 k、 kは定数、 n、 nは加工硬化指数、 εは歪である。局所ネッキングの発
1 2 1 2
生条件は、数 7により表すことができる。
[0106] [数 7]
- σ - α— 一
Figure imgf000020_0001
ε,. η
σ - α
[0107] ここで、 ε uは一様伸び、 は加工硬化指数、 σは引張強度、 αは定数、 ^は鋼 Iの 層厚、 tは鋼 IIの層厚、 Eは鋼 IIのヤング率、 1は鋼 IIの粒径である。
II II II
[0108] 上記で得られた全体ネッキング発生条件又は局所ネッキング発生条件に基づいて 、複層鋼を形成することにより、全体ネッキング及び局所ネッキングのない複層鋼を 得ること力 Sでさる。
[0109] 本発明の強度、延性などの相反する特性を両立することができ、強度、延性、接合 性、脆化特性、耐疲労特性に優れた複層鋼を得るためには、以上で決定した脆性破 壊及びネッキングが生じな!/、複層鋼の形成条件に基づレ、て複層鋼を形成した。
[0110] 本発明の複層鋼は、組織又は機械的特性の異なる少なくとも 2種以上の鋼を組み 合わせた積層鋼を圧延し、ヘテロ界面制御を施すことにより形成した。積層鋼の組み 合わせに用いた鋼の強度及び伸びを表 1に示す。
[0111] [表 1] 材料 強度 (MPa) 伸び (¾
鋼 A 1200 8
鋼 B 1400 5
鋼 c 700 60
鋼 D 800 50
鋼 E 700 50
鋼 F 800 40
積層鋼の組み合わせに用いた鋼は、表 1に限定されず、以下に示す鋼 G、鋼 Hも 用いた。積層鋼の組み合わせに用いた鋼の組成は、それぞれ、鋼 Aが、質量%で、 C:0.05%力、ら 0.4%、Si:0.05%力、ら 3.0%、Mn:0.05%力、ら 3.0%及び不可 避的不純物を含む鋼、
ま岡 B力 ま岡 Aにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1% 、V:0.001%力、ら 0.5%、Cr:0.01%力、ら 16.0%、Ni:0.01%力、ら 12.0%, Mo: 0.01%力、ら 3.0%、Cu:0.01%力、ら 1.0%のうちの 1種又は 2種以上を含む鋼 ま岡 C力 質量0 /0で、 C:0.01%力、ら 0.15%、 Si:0.01%力、ら 1.0%、 Mn:0.01%力、 ら 2.0%、Cr:12.0%力、ら 24.0%、Ni:4.0%力、ら 14.0%、N:0.001力、ら 0.3% 及び不可避的不純物を含む鋼、
ま岡 D力 ま岡 Cにカロえ、質量0 /0で Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、 V:0.001%力、ら 0.5%、Mo:0.01%力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又 は 2種以上を含む鋼、
ま岡 E力 質量0 /0で、 C:0.001%力、ら 0.15%、 Si:0.05%力、ら 3.0%、 Mn:15.0% 力、ら 32.0%、及び不可避的不純物を含む鋼 E、鋼 Eに加え、質量%で、 Nb:0.001 %から 0. l%、Ti:0.001%力、ら 0.1%、V:0.001%力、ら 0.5%、Cr:0.01%力、ら 12.0%、 Ni:0.01%力、ら 12.0%、 Mo:0.01%力、ら 3.0%、 Cu:0.01%力、ら 1.0 %、 N:0.001%力、ら 0.3%の 1種又は 2種以上を含む鋼 F、質量0 /0で、 C:0.0001 %から 0.01%、 Si:0.01%力、ら 1.0%、 Mn:0.01%力、ら 2.0%、及び不可避白勺不 純物を含む鋼、
ま岡 F力 ま岡 Gにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1% 、V:0.001%力、ら 0.5%、Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%, Mo: 0. 01 %力、ら 3. 0%、 Cu : 0. 01 %力、ら 1. 0%の 1種又は 2種以上を含む鋼 Hのうちの 1種以上からなる鋼である。
[0113] 上記の鋼 Aから鋼 Hのうち、少なくとも 2種以上組み合わせて複層鋼を構成した。な お、上記の鋼 Aから鋼 Hを用いて第一の層及び第二の層からなる複層鋼を構成する こと力 Sでさる。
[0114] 第一の層は、高強度を有する鋼である鋼 A、鋼 Bのうちの 1種又は 2種から構成した 。また、第二の層は、高延性を有する鋼である鋼 C、鋼 D、鋼 E、鋼 F、鋼 G、鋼 Hのう ちの 1種以上から構成した。これら第一の層及び第二の層より複層鋼を構成した。
[0115] 本発明の強度、延性などの相反する特性を両立することができ、強度、延性、接合 性、脆化特性、耐疲労特性に優れた複層鋼を得るために、以上で決定した脆性破壊 及びネッキングが生じない複層鋼の形成条件を満たすように構成した。
[0116] 図 7は、構成した複層鋼の断面写真である。複層鋼の組み合わせに用いた鋼は、 0 . 15C- 1. 5Mn鋼及び SUS316鋼である。複層鋼の積層数は 11層、層厚は 125 ^ m,複層鋼自体の厚さは lmmである。本実施例では、複層鋼は層厚 5mmまでは 熱間圧延、それ以降 lmm厚までは冷間圧延で行った。
[0117] 図 8は、積層鋼 6の圧延方法の概略図を示す。本実施例の圧延方法によれば、以 上で決定した脆性破壊及びネッキングが生じな!/、複層鋼の形成条件に基づレ、て、圧 延ローラ 5により積層鋼 6を熱間圧延することにより、多層圧延鋼 7を得ることができる 。本実施例では、多層圧延鋼 7は層厚 5mmまでは熱間圧延、それ以降 lmm厚まで は冷間圧延で fiつた。
[0118] 次いで、ここでは熱間処理において圧延処理と熱処理とを同時に行わずに別途行 うようにしたことにより、積層鋼 6を圧延することにより形成した多層圧延鋼 7に対して 熱処理を行った。熱処理条件は、加熱温度が 900°Cから 1250°C、保持時間が 1秒 力も 3600秒とした。熱処理を行った後に、水冷又は空冷により多層圧延鋼 7を常温 まで冷却することで複層鋼を得た。得られた複層鋼の引張強度は lOOOMPaから 11 OOMPaであり、伸びは 40%から 50%であった。
[0119] なお、本実施例では、圧延装置として定形圧延機を用いているが、せん断付与圧 延機、絞り圧延機、張力絞り圧延機、延伸圧延機、溶湯圧延機などの圧延装置を用 いてもよい。また、本実施例での熱処理条件となる加熱温度は 900°Cから 1250°Cで ある力 数百。 Cから千数百。 Cであってもよい。さらに、保持時間は 1秒から 3600秒で あるが、 1秒以上均熱できれば、数秒から数時間であってもよい。必要に応じて圧延 後の熱処理を行わずに複層鋼を形成してもよい。加えて、本実施例での熱処理後の 冷却は空冷であるが、水冷又は気水冷却でもよ!/、。
[0120] 以上のように、本発明による複層鋼板の製造方法によれば、組織又は機械的特性 の異なる少なくとも 2種以上の鋼を組み合わせて圧延し、複層鋼を形成することによ つて、強度、延性などの相反する特性を両立することができ、強度、延性、接合性、 脆化特性、耐疲労特性に優れた鋼/鋼積層型の複層鋼板を製造できる効果がある ことが確認された。
[0121] (2)実証例
次に、上述した事実について実証するため、複数種類の複層鋼を作製し、これら複 層鋼の強度及び延性について検証した。先ず始めに、表 2に示すように、 C、 Si、 Mn 、 Cu、 Ni、 Cr、 Mo、 V、 Ti及び Nのうち任意に選択した複数種類の物質を所定の質 量%で混合し、材料として鋼 A、鋼 Bl、鋼 B2、鋼 B3、鋼 C、鋼 D、鋼 E、鋼 F及び鋼 Gを作製した。
[0122] [表 2]
供試材化学成分 (wtt)
Figure imgf000023_0001
次いで、表 3に示すように、鋼 A、鋼 Bl、鋼 B2及び鋼 B3のうちいずれ力、 1種を材料 1とし、鋼 C、鋼 D、鋼 E、鋼 F及び鋼 Gのうちいずれか 1種を材料 2とし、これら材料 1 及び材料 2を組み合わせ、実施例 1〜 16及び比較例;!〜 3の合計 19種類の複層鋼 を作製し、これら複層鋼の強度及び延性を測定した。 [0124] [表 3]
Figure imgf000024_0001
[0125] 例えば実施例 1では、材料 1として、当該材料 1の厚さ(以下、これを材料 1厚と呼ぶ )が 5. Ommからなる板状の鋼 Aを用いた。また材料 2としては、当該材料 2の厚さ(以 下、これを材料 2厚と呼ぶ)が 5. Ommからなる板状の鋼 Cを用いた。
[0126] そして、これら材料 1を偶数層とし、材料 2を奇数層として順次交互に合計 9枚積層 し、両外面に材料 2を配置させた積層鋼を作製した。
[0127] 次いで、積層鋼を圧延するプロセス(表 3中、単にプロセスとする)として、熱間圧延 と冷間圧延とを用いた。熱間圧延では、 1000°Cの状態で圧延ローラによって積層鋼 を圧延して多層圧延鋼を作製した。
[0128] その後、多層圧延鋼に対して、 1000°Cで約 2分間加熱する熱処理を施した後、水 冷によって冷却することにより実施例 1の複層鋼を作製した。 [0129] この実施例 1の複層鋼では、仕上げ厚を 1. Ommとし、この仕上げ厚により 1層あた りの厚みが 111〃 mであった。
[0130] そして、このようにして作製した実施例 1の複層鋼の各層を光学顕微鏡で確認し、 或いは硬さ測定したところ、第一の層としての材料 1層(すなわち、材料 1により形成さ れた層)の構成相はマルテンサイトとなり、第二の層としての材料 2層(すなわち、材 料 2により形成された層)の構成相はオーステナイトとなったことが確認できた。
[0131] 続いて、実施例 1の複層鋼について強度測定及び延び測定を行ったところ、強度( 表 3中、 TSと表示する)力 030MPa、延性(表 3中、 ELと表示する)力 ¾7%であるこ とが確認できた。
[0132] このように、実施例 1では、その強度測定及び延び測定の結果を、図 2を基に検証 すると、強度、延性などの相反する特性を両立することができ、強度、延性、接合性、 耐脆化特性、耐疲労特性に優れた複層鋼が得られたことが確認できた。
[0133] また、例えば実施例 2では、材料 1として、材料 1厚が 1. Ommからなる板状の鋼 A を用い、材料 2として、材料 2厚が 1. Ommからなる板状の鋼 Cを用いた。
[0134] そして、積層鋼を圧延するプロセスとして、実施例 1とは異なり冷間圧延のみを用い た。ここでは複数回冷間圧延を行い、そのうち 1回の冷間圧延において最大の圧下 率を 50%として積層鋼を圧延して多層圧延鋼を作製した。
[0135] その後、多層圧延鋼に対して、 1000°Cで約 2分間加熱する熱処理を施した後、水 冷によって冷却することにより実施例 2の複層鋼を作製した。
[0136] このようにして作製した実施例 2の複層鋼の各層を光学顕微鏡で確認し、或いは硬 さ測定したところ、材料 1層の構成相はマルテンサイトとなり、材料 2層の構成相はォ ーステナイトとなったことが確認できた。
[0137] 続!/、て、実施例 2の複層鋼にっレ、て強度測定及び延び測定を行ったところ、強度 力 Sl030MPa、延びが 27%であることが確認できた。この強度測定及び延び測定の 結果を、図 2を基に検証すると、実施例 2においても、強度、延性などの相反する特 性を両立することができ、強度、延性、接合性、耐脆化特性、耐疲労特性に優れた複 層鋼が得られたことが確認できた。
[0138] これに対して、実施例 2とは熱処理の温度条件のみが異なり、当該熱処理の温度を 下げて 800°Cとした比較例 1では、材料 1層の構成相がマルテンサイトとなり、材料 2 層の構成相がオーステナイトとなったものの、延性が 6%に下がった。すなわち、この 比較例 1は、図 2を基に検証すると、強度、延性などの相反する特性を両立できてい ない。
[0139] このことから、熱処理の温度条件を下げた場合には延性が劣ることが確認できた。
そこで、上述した実施例 2や比較例 1と同じ構成からなり、熱処理における温度条件 のみを変えて伸び (すなわち、延性)について測定を行った。
[0140] これにより、図 9に示すような結果が得られ、熱処理の温度を 800°Cよりも上げて約
900°Cにした場合には、延性が 22%となった。
[0141] 従って、熱処理の温度は、延性を向上させるような温度にする必要があることが確 認でき、具体的には約 900°C〜; 1250°Cの間が好まし!/、ことが確認できた。
[0142] また、表 3における実施例 9では、材料 1として、材料 1厚が 1. 2mmからなる板状の 鋼 B1を用いた。また材料 2としては、材料 2厚が 1. Ommからなる板状の鋼 Cを用い た。
[0143] そして、これら材料 1を偶数層とし、材料 2を奇数層として順次交互に合計 11枚積 層し、両外面に材料 2を配置させた積層鋼を作製した。
[0144] 次いで、積層鋼を圧延するプロセスとして、冷間圧延のみを用い、複数回冷間圧延 のうち 1回の冷間圧延において最大の圧下率を 40%として積層鋼を圧延して多層圧 延鋼を作製した。
[0145] その後、多層圧延鋼に対して、 1000°Cで約 2分間加熱する熱処理を施した後、水 冷によって冷却することにより実施例 9の複層鋼を作製した。
[0146] この実施例 9の複層鋼では、仕上げ厚を 1. Ommとし、この仕上げ厚により 1層あた りの厚みが 91 μ mであった。
[0147] そして、このようにして作製した実施例 9の複層鋼の各層を光学顕微鏡で確認し、 或いは硬さ測定したところ、材料 1層の構成相はマルテンサイトとなり、材料 2層の構 成相はオーステナイトとなったことが確認できた。
[0148] 続!/、て、実施例 9の複層鋼につ!/、て強度測定及び延び測定を行ったところ、強度 力 Sl090MPa、延性が 27%であることが確認できた。 [0149] このように、実施例 9では、その強度測定及び延び測定の結果を、図 2を基に検証 すると、強度、延性などの相反する特性を両立することができ、強度、延性、接合性、 耐脆化特性、耐疲労特性に優れた複層鋼が得られたことが確認できた。
[0150] これに対して、実施例 9とは冷間圧延におけるパスの最大の圧下率のみが異なり、 複数回冷間圧延のうち 1回の冷間圧延における最大の圧下率を下げて 20%とした 比較例 2では、材料 1層の構成相がマルテンサイトとなり、材料 2層の構成相がオース テナイトとなったものの、強度が 950MPaに下がり、延性が 6%に下がった。
[0151] このこと力、ら、冷間圧延における最大の圧下率 (最大パス圧下率とも呼ぶ)を下げた 場合には、強度が低下し、延性が劣ることが確認できた。ここで、上述した実施例 9や 比較例 2と同じ構成からなり、冷間圧延における最大パス圧下率のみを変えて伸び( すなわち、延性)について測定を行った。
[0152] これにより、図 10に示すような結果が得られ、最大パス圧下率を 20%よりも上げて 約 30 %にした場合には、延性が 20 %となった。
[0153] 従って、冷間圧延における最大パス圧下率は、延性を向上させるような圧下率にす る必要があることが確認でき、具体的には約 30%以上が好ましいことが確認できた。
[0154] また、表 3における実施例 12では、材料 1として、材料 1厚が 1. 2mmからなる板状 の鋼 B1を用いた。また材料 2としては、材料 2厚が 1. Ommからなる板状の鋼 Gを用 いた。
[0155] そして、これら材料 1を偶数層とし、材料 2を奇数層として順次交互に合計 11枚積 層し、両外面に材料 2を配置させた積層鋼を作製した。
[0156] 次いで、積層鋼を圧延するプロセスとして、冷間圧延のみを用い、複数回冷間圧延 のうち 1回の冷間圧延においてパスの最大の圧下率を 50%として積層鋼を圧延して 多層圧延鋼を作製した。
[0157] その後、多層圧延鋼に対して、 1000°Cで約 2分間加熱する熱処理を施した後、水 冷によって冷却することにより実施例 12の複層鋼を作製した。
[0158] この実施例 12の複層鋼では、仕上げ厚を 0. 8mmとし、この仕上げ厚により 1層あ たりの厚みが 73 μ mであった。
[0159] そして、このようにして作製した実施例 12の複層鋼の各層を光学顕微鏡で確認し、 或いは硬さ測定したところ、材料 1層の構成相はマルテンサイトとなり、材料 2層の構 成相はフェライトとなったことが確認できた。
[0160] 続いて、実施例 12の複層鋼について強度測定及び延び測定を行ったところ、強度 力 S l040MPa、延性が 27%であることが確認できた。
[0161] このように、実施例 12では、その強度測定及び延び測定の結果について、図 2から 検証すると、強度、延性などの相反する特性を両立することができ、強度、延性、接 合性、耐脆化特性、耐疲労特性に優れた複層鋼が得られたことが確認できた。
[0162] これに対して、実施例 12とは熱処理後の冷却方法のみが異なり、水冷に替えて緩 冷を行った比較例 3では、材料 2層の構成相がフェライトとなったものの、材料 1層の 構成相もフェライトとなってしまい、強度が 710MPaに下がり、延性が 19%に下がつ た。
[0163] このこと力 、熱処理後に緩冷を行った場合には、材料 1層の構成相がマルテンサ イトとならず、強度が低下することが確認できた。
[0164] 従って、上述した結果と、表 3中の他の実施例における熱処理等の項目とから、熱 処理後の冷却方法は、水冷又は空冷が好まし!/、ことが確認できた。
[0165] 力べして、表 3における実施例 1〜16は、各強度及び延性を測定した結果について
、図 2を基に検証すると、いずれも、強度、延性などの相反する特性を両立することが でき、強度、延性、接合性、耐脆化特性、耐疲労特性に優れた複層鋼が得られたこと が確認、できた。

Claims

請求の範囲
組織又は機械的特性の異なる少なくとも 2種以上の鋼を組み合わせ、圧延によって 形成したことを特徴とする複層鋼。
組織又は機械的特性の異なる少なくとも 2種以上の鋼を層状に重ね合わせた積層 鋼を圧延し、所定の熱処理を施すことにより、マルテンサイトを主たる相とする第一の 層と、オーステナイト及びフェライトのうち少なくとも 1種を主たる相とする第二の層とを 形成したことを特徴とする複層鋼。
質量0 /0で、 C:0.05%力、ら 0.4%、 Si:0.05%力、ら 3.0%、 Mn:0.05%力、ら 3.0 %及び不可避的不純物を含む鋼 A、
ま岡 Aにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0. 1%、V:0. 001%力、ら 0.5%、Cr:0.01%力、ら 16.0%、Ni:0.01%力、ら 12.0%、Mo:0.01 %から 3.0%、Cu:0.01%力、ら 1.0%のうちの 1種又は 2種以上を含む鋼 B
のうちの 1種又は 2種からなる第一の層及び
質量0 /0で、 C:0.01%力、ら 0.15%、Si:0.01%力、ら 1.0%、Mn:0.01%力、ら
2.0 %、 Cr:12.0%力、ら 24.0%、Ni:4.0%力、ら 14.0%、N:0.001力、ら 0.3%及び不 可避的不純物を含む鋼 C、
ま岡 Cにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0. 001%力、ら 0.5%、Mo:0.01%力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種 以上を含む鋼 D、
質量0 /0で、 C:0.001%力、ら 0.15%、Si:0.05%力、ら 3.0%, Mn:15.0%力、ら 32 .0%、及び不可避的不純物を含む鋼 E、
ま岡 Eにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0. 001%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01 %力、ら 3.0%、 Cu:0.01%力、ら 1.0%、 N:0.001%力、ら 0.
3%の 1種又は 2種以上 を含む鋼 F、
質量0 /0で、 C:0.0001%力、ら 0.05%、 Si:0.01%力、ら 1.0%、 Mn:0.01%力、ら 2 .0%、及び不可避的不純物を含む鋼 G、
ま岡 Gにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0. 001%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01 %から 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種以上を含む鋼 H
のうちの 1種以上からなる第二の層を組み合わせ、圧延によって形成したことを特 徴とする複層鋼。
[4] 複層鋼を構成する各層が 125 in以下の厚さからなることを特徴とする請求項 1〜
3のうちいずれ力、 1項記載の複層鋼。
[5] 複層鋼を構成する層数が 5層以上からなることを特徴とする請求項 1〜3のうちいず れか 1項記載の複層鋼。
[6] 組織又は機械的特性の異なる少なくとも 2種以上の鋼を組み合わせ圧延し、複層 鋼を形成することを特徴とする複層鋼の製造方法。
[7] 組織又は機械的特性の異なる少なくとも 2種以上の鋼を層状に重ね合わせることに より積層鋼を形成する積層ステップと、
前記積層鋼を圧延し、所定の熱処理を施すことにより、マルテンサイトを主たる相と する第一の層と、オーステナイト及びフェライトのうち少なくとも 1種を主たる相とする 第二の層とを形成し、前記第一の層及び前記第二の層を備えた複層鋼を作製する 圧延ステップと
を備えることを特徴とする複層鋼の製造方法。
[8] 質量0 /0で、 C:0.05%力、ら 0.4%、 Si:0.05%力、ら 3.0%、 Mn:0.05%力、ら 3.0 %及び不可避的不純物を含む鋼 A、
ま岡 Aにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0. 1%、V:0. 001%力、ら 0.5%、Cr:0.01%力、ら 16.0%、Ni:0.01%力、ら 12.0%、Mo:0.01 %から 3.0%、Cu:0.01%力、ら 1.0%のうちの 1種又は 2種以上を含む鋼 B
のうちの 1種又は 2種からなる第一の層及び
質量0 /0で、 C:0.01%力、ら 0.15%、Si:0.01%力、ら 1.0%、Mn:0.01%力、ら 2.0 %、 Cr:12.0%力、ら 24.0%、Ni:4.0%力、ら 14.0%、N:0.001力、ら 0.3%及び不 可避的不純物を含む鋼 C、
ま岡 Cにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0.0 01%力、ら 0.5%、Mo:0.01%力、ら 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種 以上を含む鋼 D、
質量0 /0で、 C:0.001%力、ら 0.15%、Si:0.05%力、ら 3.0%, Mn:15.0%力、ら 32 .0%、及び不可避的不純物を含む鋼 E、
ま岡 Eにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0. 001%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01 %力、ら 3.0%、 Cu:0.01%力、ら 1.0%、 N:0.001%力、ら 0.3%の 1種又は 2種以上 を含む鋼 F、
質量0 /0で、 C:0.0001%力、ら 0.05%、 Si:0.01%力、ら 1.0%、 Mn:0.01%力、ら 2 .0%、及び不可避的不純物を含む鋼 G、
ま岡 Gにカロえ、質量0 /0で、 Nb:0.001%力、ら 0. l%、Ti:0.001%力、ら 0.1%、V:0. 001%力、ら 0.5%、 Cr:0.01%力、ら 12.0%、Ni:0.01%力、ら 40.0%、Mo:0.01 %から 3.0%、Cu:0.01%力、ら 1.0%の 1種又は 2種以上を含む鋼 H
のうちの 1種以上からなる第二の層を組み合わせ圧延し、複層鋼を形成することを 特徴とする複層鋼の製造方法。
[9] 複層鋼を構成する各層が 125 m以下の厚さからなることを特徴とする請求項 6〜
8のうちいずれ力、 1項記載の複層鋼の製造方法。
[10] 複層鋼を構成する層数が 5層以上からなることを特徴とする請求項 6〜8のうち!/、ず れか 1項記載の複層鋼の製造方法。
[11] 前記複層鋼の各層の最終厚さを、圧延によって圧延前の各層の元厚の 1/2以下に して複層鋼を形成することを特徴とする請求項 6〜8のうちいずれ力、 1項記載の複層 鋼の製造方法。
[12] 前記圧延が熱間圧延であることを特徴とする請求項 6〜8のうちいずれ力、 1項記載 の複層鋼の製造方法。
[13] 前記圧延が冷間圧延であることを特徴とする請求項 6〜8のうちいずれ力、 1項記載 の複層鋼の製造方法。
[14] 前記圧延が温間圧延であることを特徴とする請求項 6〜8のうちいずれ力、 1項記載 の複層鋼の製造方法。
[15] 前記圧延が、熱間圧延、冷間圧延及び温間圧延のうち少なくとも 2種以上併用した 圧延であることを特徴とする請求項 6〜8のうちいずれ力、 1項記載の複層鋼の製造方 法。
[16] 前記圧延後に熱処理を行うことを特徴とする請求項 6又は 8記載の複層鋼の製造 方法。
[17] 前記温間圧延は、 200°C〜750°Cの範囲で圧延を行うことを特徴とする請求項 14 又は 15記載の複層鋼の製造方法。
[18] 前記冷間圧延は、圧下率が 30%以上の圧延を少なくとも 1回以上行うことを特徴と する請求項 13又は 15記載の複層鋼の製造方法。
[19] 前記熱処理は 900°C〜; 1250°Cの範囲内で 1秒以上均熱し、前記熱処理の後常温 まで冷却させることを特徴とする請求項 7又は 16記載の複層鋼の製造方法。
PCT/JP2007/064694 2006-07-27 2007-07-26 Multilayer steel and method for producing multilayer steel WO2008013233A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/374,997 US8137819B2 (en) 2006-07-27 2007-07-26 Multilayer steel and method for producing multilayer steel
CN2007800283013A CN101505906B (zh) 2006-07-27 2007-07-26 多层钢和多层钢的制造方法
KR1020097001797A KR101482282B1 (ko) 2006-07-27 2007-07-26 복층 강 및 복층 강의 제조 방법
JP2008526811A JP5221348B2 (ja) 2006-07-27 2007-07-26 複層鋼及び複層鋼の製造方法
ES07791394.5T ES2583143T3 (es) 2006-07-27 2007-07-26 Acero de varias capas y procedimiento de producción de acero de varias capas
EP07791394.5A EP2050532B1 (en) 2006-07-27 2007-07-26 Multilayer steel and method for producing multilayer steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006205283 2006-07-27
JP2006-205283 2006-07-27

Publications (1)

Publication Number Publication Date
WO2008013233A1 true WO2008013233A1 (en) 2008-01-31

Family

ID=38981544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064694 WO2008013233A1 (en) 2006-07-27 2007-07-26 Multilayer steel and method for producing multilayer steel

Country Status (8)

Country Link
US (1) US8137819B2 (ja)
EP (1) EP2050532B1 (ja)
JP (1) JP5221348B2 (ja)
KR (1) KR101482282B1 (ja)
CN (1) CN101505906B (ja)
ES (1) ES2583143T3 (ja)
PL (1) PL2050532T3 (ja)
WO (1) WO2008013233A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235493A (ja) * 2008-03-27 2009-10-15 Sophia School Corp 耐水素脆化特性に優れる複層鋼
JP2009235492A (ja) * 2008-03-27 2009-10-15 Toshihiko Koseki 複層鋼およびその製造方法
JP2009299080A (ja) * 2008-03-27 2009-12-24 Toshihiko Koseki 界面剥離破断、ネッキング破断のない強度−延性バランスにすぐれた複層鋼
US20110250465A1 (en) * 2008-09-26 2011-10-13 Andrei Evgenievich Rozen Multilayer material with enhanced corrosion resistance (variants) and methods for preparing same
EP2271541B1 (de) 2008-05-07 2015-09-02 ThyssenKrupp Steel Europe AG Verwendung eines metallischen verbundwerkstoffs in einer fahrzeugstruktur
CN106269865A (zh) * 2016-11-07 2017-01-04 兰州理工大学 多层不锈钢金属复合板的轧制方法
JP2019524986A (ja) * 2016-06-23 2019-09-05 ポスコPosco 強度及び成形性に優れたクラッド鋼板及びその製造方法
JP2021504574A (ja) * 2017-11-28 2021-02-15 宝山鋼鉄股▲分▼有限公司 高強度高靭性耐摩耗複合鋼板及びその製造方法
CN114082874A (zh) * 2021-11-18 2022-02-25 南京理工大学 一种奥氏体/铁素体/马氏体多相异构钢铁材料的制备方法
JP2023503912A (ja) * 2019-11-29 2023-02-01 宝山鋼鉄股▲分▼有限公司 炭素鋼オーステナイト系ステンレス鋼圧延複合板及びその製造方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2387873T3 (pl) 2010-05-19 2017-03-31 Frielinghaus Gmbh Stosowany w rolnictwie lub leśnictwie nóż z wielowarstwowej stali
DE102010026808B4 (de) * 2010-07-10 2013-02-07 Technische Universität Bergakademie Freiberg Korrosionsbeständiger austenithaltiger phosphorlegierter Stahlguss mit TRIP- bzw. TWIP-Eigenschaften und seine Verwendung
DE102010036944B4 (de) 2010-08-11 2013-01-03 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines mehrschichtigen Verbundwerkstoffs
DE102011009443B3 (de) * 2011-01-26 2012-03-29 Daimler Ag Drahtförmiger Spritzwerkstoff
CN103464975A (zh) * 2013-09-10 2013-12-25 西北稀有金属材料研究院 一种制作x射线窗口用铍箔的制备方法
DE102014114365A1 (de) * 2014-10-02 2016-04-07 Thyssenkrupp Steel Europe Ag Mehrschichtiges Stahlflachprodukt und daraus hergestelltes Bauteil
EP3115134A1 (de) * 2015-07-06 2017-01-11 Deutsche Edelstahlwerke GmbH Verfahren zum herstellen eines aus einem vielschichtigen metallwerkstoffverbund bestehenden verbundblechs, mehrschichtiges verbundblech und verwendung eines solchen verbundblechs
EP3162558A1 (en) 2015-10-30 2017-05-03 Outokumpu Oyj Component made of metallic composite material and method for the manufacture of the component by hot forming
CN107310218B (zh) * 2016-04-26 2019-03-29 宝山钢铁股份有限公司 一种复合防弹钢板及其制造方法
CN107310219B (zh) * 2016-04-26 2019-03-29 宝山钢铁股份有限公司 一种冷弯加工性能优良的防弹钢板及其制造方法
RU2627080C1 (ru) * 2016-06-28 2017-08-03 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Плакированная высокопрочная коррозионно-стойкая сталь
DE102016115026B4 (de) 2016-08-12 2018-03-08 Vdm Metals International Gmbh Verfahren zur Herstellung von walzplattierten Blechen sowie walzplattierte Bleche
CN106282838A (zh) * 2016-08-23 2017-01-04 合肥东方节能科技股份有限公司 一种轧辊用耐磨合金材料及轧辊热处理工艺
KR20180070383A (ko) * 2016-12-16 2018-06-26 주식회사 포스코 내지연파괴 특성이 우수한 고강도 클래드 강판
CN106825100B (zh) * 2017-02-16 2018-11-02 重庆大学 一种高强高塑性if钢的制备方法
DE102017208254A1 (de) * 2017-05-16 2018-11-22 Thyssenkrupp Ag Warmumformmaterial, Bauteil und Verwendung
DE102017112164A1 (de) * 2017-06-01 2018-12-06 Benteler Automobiltechnik Gmbh Blechumformbauteil sowie Verfahren zur Herstellung des Blechumformbauteils
CN107236907A (zh) * 2017-06-07 2017-10-10 苏州双金实业有限公司 一种环保耐候复合钢
US10461152B2 (en) * 2017-07-10 2019-10-29 Globalfoundries Inc. Radio frequency switches with air gap structures
KR102157162B1 (ko) * 2018-05-31 2020-09-17 공주대학교 산학협력단 다층소재를 이용한 칼의 제조방법 및 이에 의해 제조된 주방용 칼
KR102098483B1 (ko) 2018-07-27 2020-04-07 주식회사 포스코 성형성 및 피로특성이 우수한 저비중 클래드 강판 및 그 제조방법
KR102109261B1 (ko) 2018-08-07 2020-05-11 주식회사 포스코 강도 및 도금성이 우수한 저비중 클래드 강판 및 그 제조방법
CN111760908A (zh) * 2019-04-02 2020-10-13 中国科学院金属研究所 一种超薄极薄多层金属复合带材及其制备方法
CN111760909B (zh) * 2019-04-02 2021-12-10 中国科学院金属研究所 一种抗高速冲击多层金属复合材料及其制备方法
CN110103530B (zh) * 2019-06-04 2023-03-31 河北工业大学 一种高性能耐蚀twip/不锈钢多层复合材料及制备方法
CN111235370B (zh) * 2020-02-29 2021-07-27 上海材料研究所 层状复合弹塑性阻尼钢板及其制造方法与应用
CN111118402B (zh) * 2020-02-29 2021-02-26 上海材料研究所 一种低强度弹塑性阻尼钢板及其制造方法与应用
CN111235371B (zh) * 2020-02-29 2021-07-27 上海材料研究所 一种具有层状复合结构的弹塑性阻尼钢板及其制造方法与应用
CN113829697B (zh) * 2020-06-24 2022-12-16 宝山钢铁股份有限公司 一种多层复合冷轧钢板及其制造方法
CN111889511B (zh) * 2020-07-16 2021-06-08 中南大学 一种CuFe合金梯度复合材料及其制备方法
US11471943B2 (en) * 2020-12-16 2022-10-18 Mtc Powder Solutions Ab Hot isostatic pressing (HIP) fabrication of multi-metallic components for pressure-controlling equipment
US11919086B2 (en) 2020-12-16 2024-03-05 Schlumberger Technology Corporation Hot isostatic pressing (HIP) fabrication of multi-metallic components for pressure-controlling equipment
CN114686774B (zh) * 2022-03-08 2022-12-02 四川大学 一种高强高韧纳米析出强化超细晶马氏体奥氏体双相钢及其制备方法
CN115352145B (zh) * 2022-06-27 2023-08-01 浙江蜂鸟新材料有限公司 一种阀片用复合钢及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273277A (ja) * 1985-05-29 1986-12-03 Nippon Steel Corp 耐応力腐蝕割れ性のすぐれた引張強さ90Kgf/mm↑2以上の高張力鋼の製造法
JPS6216892A (ja) * 1985-07-15 1987-01-26 Nippon Kokan Kk <Nkk> 耐食性および溶接性に優れた高強度ステンレスクラツド鋼板の製造方法
JPS62110880A (ja) * 1985-11-09 1987-05-21 Sumitomo Metal Ind Ltd 2相ステンレス鋼クラツド鋼板の製造方法
JPH0230712A (ja) * 1988-07-18 1990-02-01 Kobe Steel Ltd クラッド鋼板の製造方法
JPH04232737A (ja) * 1990-12-28 1992-08-21 Nkk Corp 耐水素剥離割れ特性に優れた圧延クラッド鋼板
JPH055190A (ja) 1991-06-18 1993-01-14 Nippon Steel Corp 耐食性と深絞り性に優れた表層オーステナイト系ステンレス複層冷延鋼板及びその製造法
JP2001277271A (ja) 2000-03-31 2001-10-09 Toyota Motor Corp 複層積層金属板の製造方法
WO2004073900A1 (en) * 2003-02-24 2004-09-02 Corus Technology B.V. A method for processing a steel product, and product produced using said method
JP2005298960A (ja) * 2004-03-17 2005-10-27 Sumitomo Metal Ind Ltd 固体高分子型燃料電池セパレータ用多層ステンレスクラッド鋼板、厚板およびそれらの素材、並びにそれらの製造方法
JP2005306039A (ja) 2004-04-23 2005-11-04 Asc Inc コンポジット製品および形成システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1340149A (en) * 1919-06-09 1920-05-18 Vere B Browne Manufacture of steel sheets
US2474682A (en) * 1941-05-21 1949-06-28 Liebowitz Benjamin Composite steel plate
US2562467A (en) * 1946-05-14 1951-07-31 United States Steel Corp Armor plate and method for making same
US2753623A (en) * 1951-01-05 1956-07-10 Metals & Controls Corp Solid phase bonding of metals
US3862484A (en) * 1970-01-02 1975-01-28 Allegheny Ludlum Ind Inc Production of composite material
US3943011A (en) * 1972-03-16 1976-03-09 Texas Instruments Incorporated Deformable composite material
US4178417A (en) * 1977-03-23 1979-12-11 The Japan Steel Works, Ltd. Clad steel
US4399611A (en) * 1980-11-10 1983-08-23 Maringer Thomas E Article of decorative metal manufacture
DE3340031C2 (de) * 1983-11-05 1985-11-21 Thyssen Stahl AG, 4100 Duisburg Panzerblech und Verfahren zu seiner Herstellung
US4736887A (en) 1985-03-08 1988-04-12 Koichi Inaba Extensible straw assembly for beverages
DE3817657A1 (de) * 1988-05-25 1989-12-07 Vdm Nickel Tech Schichtverbundwerkstoff zur herstellung von muenzen
US4881430A (en) * 1988-09-06 1989-11-21 Hubbard Arthur J Method of making heterogeneous blade-like metallic cutter member
FR2673394A1 (fr) * 1991-03-01 1992-09-04 Creusot Loire Procede de realisation d'un produit plat composite, blindage inoxydable et reservoir blinde obtenus par ce procede.
JPH051328A (ja) * 1991-06-17 1993-01-08 Nippon Steel Corp 耐食性と深絞り性に優れた表層フエライト系ステンレス複層熱延鋼板の製造方法
JPH04371526A (ja) * 1991-06-18 1992-12-24 Nippon Steel Corp 耐食性と加工性に優れた表層オーステナイト系ステンレス複層熱延鋼板の製造方法
JPH055129A (ja) * 1991-06-18 1993-01-14 Nippon Steel Corp 耐食性と深絞り性に優れた表層オーステナイト系ステンレス複層熱延鋼板の製造法
US5185044A (en) * 1992-01-29 1993-02-09 Verhoeven John D Method of making "Damascus" blades
FR2690166A1 (fr) * 1992-04-16 1993-10-22 Creusot Loire Procédé de fabrication d'une tôle plaquée comportant une couche résistant à l'abrasion en acier à outil et tôle plaquée obtenue.
JP2674934B2 (ja) * 1993-01-28 1997-11-12 新日本製鐵株式会社 耐食性構造用複層鋼
US6105261A (en) * 1998-05-26 2000-08-22 Globix Technologies, Inc. Self sharpening blades and method for making same
US6749104B2 (en) * 2000-09-15 2004-06-15 Anatol Rabinkin Heat exchanger manufacturing methods and brazing filler metal compositions useful therein, characterized by low nickel leaching rates
US20080251389A1 (en) * 2005-11-07 2008-10-16 William Russell Kingston Metal Laminate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273277A (ja) * 1985-05-29 1986-12-03 Nippon Steel Corp 耐応力腐蝕割れ性のすぐれた引張強さ90Kgf/mm↑2以上の高張力鋼の製造法
JPS6216892A (ja) * 1985-07-15 1987-01-26 Nippon Kokan Kk <Nkk> 耐食性および溶接性に優れた高強度ステンレスクラツド鋼板の製造方法
JPS62110880A (ja) * 1985-11-09 1987-05-21 Sumitomo Metal Ind Ltd 2相ステンレス鋼クラツド鋼板の製造方法
JPH0230712A (ja) * 1988-07-18 1990-02-01 Kobe Steel Ltd クラッド鋼板の製造方法
JPH04232737A (ja) * 1990-12-28 1992-08-21 Nkk Corp 耐水素剥離割れ特性に優れた圧延クラッド鋼板
JPH055190A (ja) 1991-06-18 1993-01-14 Nippon Steel Corp 耐食性と深絞り性に優れた表層オーステナイト系ステンレス複層冷延鋼板及びその製造法
JP2001277271A (ja) 2000-03-31 2001-10-09 Toyota Motor Corp 複層積層金属板の製造方法
WO2004073900A1 (en) * 2003-02-24 2004-09-02 Corus Technology B.V. A method for processing a steel product, and product produced using said method
JP2005298960A (ja) * 2004-03-17 2005-10-27 Sumitomo Metal Ind Ltd 固体高分子型燃料電池セパレータ用多層ステンレスクラッド鋼板、厚板およびそれらの素材、並びにそれらの製造方法
JP2005306039A (ja) 2004-04-23 2005-11-04 Asc Inc コンポジット製品および形成システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2050532A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235493A (ja) * 2008-03-27 2009-10-15 Sophia School Corp 耐水素脆化特性に優れる複層鋼
JP2009235492A (ja) * 2008-03-27 2009-10-15 Toshihiko Koseki 複層鋼およびその製造方法
JP2009299080A (ja) * 2008-03-27 2009-12-24 Toshihiko Koseki 界面剥離破断、ネッキング破断のない強度−延性バランスにすぐれた複層鋼
EP2271541B1 (de) 2008-05-07 2015-09-02 ThyssenKrupp Steel Europe AG Verwendung eines metallischen verbundwerkstoffs in einer fahrzeugstruktur
US20110250465A1 (en) * 2008-09-26 2011-10-13 Andrei Evgenievich Rozen Multilayer material with enhanced corrosion resistance (variants) and methods for preparing same
JP2019524986A (ja) * 2016-06-23 2019-09-05 ポスコPosco 強度及び成形性に優れたクラッド鋼板及びその製造方法
CN106269865A (zh) * 2016-11-07 2017-01-04 兰州理工大学 多层不锈钢金属复合板的轧制方法
JP2021504574A (ja) * 2017-11-28 2021-02-15 宝山鋼鉄股▲分▼有限公司 高強度高靭性耐摩耗複合鋼板及びその製造方法
JP2023503912A (ja) * 2019-11-29 2023-02-01 宝山鋼鉄股▲分▼有限公司 炭素鋼オーステナイト系ステンレス鋼圧延複合板及びその製造方法
CN114082874A (zh) * 2021-11-18 2022-02-25 南京理工大学 一种奥氏体/铁素体/马氏体多相异构钢铁材料的制备方法

Also Published As

Publication number Publication date
CN101505906A (zh) 2009-08-12
US20100003540A1 (en) 2010-01-07
KR101482282B1 (ko) 2015-01-13
JP5221348B2 (ja) 2013-06-26
ES2583143T3 (es) 2016-09-19
JPWO2008013233A1 (ja) 2009-12-17
CN101505906B (zh) 2013-03-13
KR20090038008A (ko) 2009-04-17
EP2050532A1 (en) 2009-04-22
EP2050532A4 (en) 2013-10-02
PL2050532T3 (pl) 2016-11-30
EP2050532B1 (en) 2016-06-15
US8137819B2 (en) 2012-03-20

Similar Documents

Publication Publication Date Title
JP5221348B2 (ja) 複層鋼及び複層鋼の製造方法
Liu et al. The tensile behaviors and fracture characteristics of stainless steel clad plates with different interfacial status
Wu et al. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB)
Koseki et al. Development of multilayer steels for improved combinations of high strength and high ductility
Macwan et al. Effect of annealing on interface microstructures and tensile properties of rolled Al/Mg/Al tri-layer clad sheets
El Mahallawy et al. Microstructure evolution and mechanical properties of Al/Al–12% Si multilayer processed by accumulative roll bonding (ARB)
Tayyebi et al. Investigation of annealing treatment on the interfacial and mechanical properties of Al5052/Cu multilayered composites subjected to ARB process
Kim et al. Effect of component layer thickness on the bending behaviors of roll-bonded tri-layered Mg/Al/STS clad composites
Lee et al. Influence of secondary warm rolling on the interface microstructure and mechanical properties of a roll-bonded three-ply Al/Mg/Al sheet
EP2762589A1 (en) High-strength hot-dip galvanized steel plate having excellent impact resistance and method for producing same, and high-strength alloyed hot-dip galvanized steel sheet and method for producing same
JP4960289B2 (ja) 複層鋼
WO2020071534A1 (ja) オーステナイト系ステンレス鋼板及びその製造方法
Yu et al. Revealing extraordinary strength and toughness of multilayer TWIP/Maraging steels
Liu et al. Effect of heat treatment on the mechanical properties of copper clad steel plates
Li et al. Deformation behavior and crack propagation on interface of Al/Cu laminated composites in uniaxial tensile test
JP2009235492A (ja) 複層鋼およびその製造方法
Cao et al. Effects of the rolling temperature on microstructure and mechanical properties of 2Cr13/316L laminated composites prepared by accumulative roll-bonding (ARB)
Yanagimoto et al. Enhancement of bending formability of brittle sheet metal in multilayer metallic sheets
Cepeda-Jiménez et al. Influence of the thermomechanical processing on the fracture mechanisms of high strength aluminium/pure aluminium multilayer laminate materials
JP2009096023A (ja) 高強度複合金属材料およびその製造方法
JP2023534623A (ja) 多層複合冷間圧延鋼板およびその製造方法
KR20140066413A (ko) 상온 접합력이 향상된 클래드 판재의 제조방법 및 이를 통해 제조된 클래드 판재
JP2023503153A (ja) 多層圧延複合板及びその製造方法
Zhang et al. A new route to fabricate multilayer steel with multiscale hierarchical structure
JPWO2019130914A1 (ja) クラッド鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028301.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12374997

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008526811

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097001797

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007791394

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU