WO2008012559A1 - Procédé de séparation d'un fluoropropène d'un mélange - Google Patents

Procédé de séparation d'un fluoropropène d'un mélange Download PDF

Info

Publication number
WO2008012559A1
WO2008012559A1 PCT/GB2007/002879 GB2007002879W WO2008012559A1 WO 2008012559 A1 WO2008012559 A1 WO 2008012559A1 GB 2007002879 W GB2007002879 W GB 2007002879W WO 2008012559 A1 WO2008012559 A1 WO 2008012559A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
residue
fluoropropene
column
pressure
Prior art date
Application number
PCT/GB2007/002879
Other languages
English (en)
Inventor
Robert Elliott Low
Stuart Corr
Original Assignee
Ineos Fluor Holdings Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ineos Fluor Holdings Limited filed Critical Ineos Fluor Holdings Limited
Publication of WO2008012559A1 publication Critical patent/WO2008012559A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • C07C17/386Separation; Purification; Stabilisation; Use of additives by distillation with auxiliary compounds

Definitions

  • This international search report consists of a total of 4 sheets.
  • This invention relates to the separation of azeotropic or azeotrope-like mixtures comprising a fluorinated propene and other fluorochemicals.
  • Fluids containing fluorinated propenes have been suggested for use in various applications, such as heat transfer compositions, blowing agents, propellants, solvents and foaming agents.
  • the fluorinated propenes are often mixed with other components, such as other fluorochemicals.
  • heat transfer compositions such as refrigerants
  • refrigerants it is often, desirable to use a blend of components which form an azeotrope or azeotrope-like mixture.
  • azeotrope or azeotrope-like mixture provide desirable., properties in use, they can lead to problems when handling the mixtures for disposal or other purposes.
  • heat transfer compositions are often removed from heat transfer devices, such as air conditioning units, during maintenance or decommissioning. It would be desirable to be able to separate at least one of the components of such mixtures in order to make effective use of the various components.
  • a method for the separation of a fluoropropene from a mixture of the fluoropropene and at least one other fluorochemical comprises the step of passing said mixture through a first distillation column whereby to separate a first azeotrope or near-azeotrope of the fluoropropene and at least one other fluorochemical from a first residue comprising the fluoropropene and passing said first residue through a second distillation column whereby to separate a second azeotrope or near-azeotrope of the fluoropropene and at least one other fluorochemical from a second residue comprising at least one other fluorochemical and collecting said second residue from the second distillation column.
  • the fluoropropene is selected from (E)-l,2,3,3,3- pentafluoropropene (R-1225ye), (Z)-l J 2,3,3,3-pentafluoropropene (R- 1225ye), 1,1 ,3 ,3, 3 -pentafluoropropene (R-1225zc) 5 1,1,2,3,3- pentafluoropropene (R-1225yc) 5 cis-l,3,3,3-tetrafluoropropene (R-1234ze), trans-l,3,3,3-tetrafluoropropene (R-1234ze), 2,3,3,3-tetrafluoropropene (R- 1234yf), 3,3,3-trifluoropropene (R-1243zf) 5 and mixtures thereof.
  • the fluoropropene is 2,3,3,3-tetrafluoropropene (R-1234yf).
  • the first residue comprises at least about 90 % by weight ofR-1234yf.
  • the first residue comprises at least about 95 % by weight of R- 1234yf.
  • the first residue comprises at least about 99 % by weight of R-1234yf.
  • the at least one other fluorochemical is selected from iodotrifluoromethane (CF 3 I) and iodopentafluoroethane (CF 3 CF 2 I).
  • the at least one other fluorochemical comprises iodotrifluoromethane (CF 3 I).
  • the second residue comprises at least about 90 % by weight OfCF 3 I.
  • the second residue comprises at least about 95 % by- weight of CF 3 I.
  • the second residue comprises at least about 99 % by weight of CF 3 I.
  • the second column operates at a lower pressure than the first column.
  • the second column operates at about 2 bar (200 kPa).
  • the first column operates at about atmospheric pressure (101 kPa).
  • the second column operates at a lower temperature than the first column.
  • the method further comprises passing the second residue through a third distillation column.
  • the mixture of a fluoropropene and at least one other fluorochemical comprises about 55 % by weight R ⁇ 1234yf and about 45 wt % by weight CF 3 I.
  • the mixture is a heat transfer composition which comprises R-1234yf and CF 3 I.
  • the method further comprises the step of obtaining the mixture of R-1234yf and CF 3 I from a heat transfer device.
  • the heat transfer device is an air-conditioning device.
  • Figure 1 shows a graph of the variation of the R-1234yf/CF 3 I azeotrope with pressure
  • Figure 2 shows a graph of the relative volatility of R-1234yf to CF 3 I
  • Figure 3 shows a graph of the component vapour pressure of R-1234yf and CF 3 I
  • Figure 4 shows a graph of the error plot for the fit of R-1234yf/CF 3 I data .to: the PWRS model, and
  • Figure 5 is a schematic diagram of a distillation process using two columns.
  • the azeotropic composition is a sensitive function of system pressure, and disappears at higher pressures (above about 4 atmospheres).
  • the azeotropes found are minimum-boiling azeotropes; that is, the boiling point is depressed relative to that of the pure components. Above about 4 atmospheres pressure the system no longer exhibits boiling point depression; instead an extremely close-boiling mixture having effectively constant boiling temperature is exhibited at high concentrations of R- 1234yf.
  • Figure 2 shows the variation in relative volatility of R-1234yf to CF 3 I as..a ranction of the mixture composition (expressed as weight fraction of R- 1234yf) at two different pressures.
  • Relative volatility is defined in. many standard chemical engineering textbooks, for example in Perry's Chemical Engineers' Handbook (pub. McGraw Hill).
  • the relative volatility of a fluid in a mixture is a measure of the ease of separation of that fluid from the mixture by distillation.
  • a relative volatility of 1 for a component of a binary mixture signifies an azeotrope.
  • a mixture having a relative volatility of greater than about 1.1 is more economical to separate by distillation and a relative volatility of less than 1.1 signifies increasing difficulty of separation. It is still possible however to design equipment that will effect separation of the mixture if the relative volatility is between 1.1 and 1.0.
  • TMs composition variation in azeotropy and relative volatility makes it possible to design a distillation system for separation of the two fluids by exploiting the sensitivity of the azeotropic composition to pressure. Such separation may be desired: for example in reclamation of mixtures for reuse.
  • the separation process consists of at least two distillation operations.
  • the skilled man can choose to use additional, auxiliary distillation operations, as appropriate, to yield a process optimised for the application requirements; which may be to n ⁇ rimise total operating cost, total capital cost, or purity of one or more of the products.
  • a feed material comprising a mixture of R-1234yf and CF 3 I, having an average R-1234yf composition lower than the azeotropic composition at that column's operating pressure, is separated into a first stream having a composition equivalent to the azeotrope or at some composition intermediate between the azeotrope and the feed; and a second stream, having a composition intermediate between the feed and essentially pure CF 3 I.
  • the first stream is then passed to a second column, operating at a lower pressure than the first column.
  • the pressure may be any convenient value which is lower than that of the first column, providing that it is sufficiently low that the azeotropic composition of R-1234yf at that pressure is lower than the composition of the first stream being fed to the column.
  • this second column is separated a third stream, having a composition equivalent to the azeotrope or at some composition intermediate between the azeotrope and the feed; and a fourth stream, having a composition intermediate between the feed and essentially pure R-1234yf.
  • the third stream is then preferably recycled by a pump or other pressure .
  • It may be admixed with the feed to the first column or may be admitted at some other point in the distillation column. Preferably, it is admitted at a point where the composition of the equivalent phase in the column matches the composition of the third stream. For example if it is recycled as liquid then it is preferably admitted at a point in the column where the the local liquid composition will be close to that of the third stream.
  • a feed mixture F comprising 50% w/w R-1234yf in CF 3 I at a rate of 1000 kg/hr is admitted to column A 5 operating at a pressure of 2 bar absolute (200 kPa).
  • the azeotropic composition of the system at 200 kPa is found from Figure 1 to be 82% w/w R-1234yf.
  • a practical column design will operate at a lower purity than the azeotrope; here a purity of 78% w/w is arbitrarily chosen for illustration.
  • the top product Dl is therefore selected to be of this composition.
  • the bottoms product Bl is specified as 99% pure CF 3 I.
  • the top distillate Dl is then let down in pressure and passed to Column B, operating at atmospheric pressure (101.3 kPa).
  • the azeotropic composition is 71% w/w R-1234yf. Accordingly a tops product purity of 68% w/w is arbitrarily selected.
  • This tops product D2 is pumped back to column Dl 5 where it may be admixed with the feed F or admitted to a different location, depending on the overall economics of the design.
  • the bottoms product B2 from Column B can now be achieved as 99% pure R- 1234yf, as the feed to the column (at 78% purity) was more pure in R- 1234yf than the azeotropic composition at that operating pressure.
  • the flows have been derived from these data by applying the principles of mass balance to the two columns.
  • the solution to the mass balance was chosen so as to minimise the interchange of material between columns.
  • This calculation can be done in any suitable software package, for example; a .. spreadsheeti ⁇ g tool such as Microsoft Excel, or a process simulation package such as Aspen Technology's AES.
  • vapour pressures of R-1234yf, CF 3 I and binary mixtures thereof have been measured in a static cell apparatus of the general type described in "Modelling Fluorocarbon Vapor-Liquid Equilibria Using the Wong-Sandier Model" by MB Shiflett & SI Sandler in Fluid Phase Equilibria 147 (1998)
  • the cell is of accurately known volume and is first purged with nitrogen and evacuated to vacuum, then charged with a known mass of the material (or materials) of interest; whose quantity is accurately determined by weighing.
  • the charge is repeatedly cycled by freezing with liquid nitrogen followed by thawing and venting of pressure, to allow degassing of light impurities. Following this operation the cell is brought to equilibrium in a thermostatically controlled oven.
  • the contents of the cell are stirred throughout the experiment using an agitator inside the cell.
  • the pressure and temperature in the cell are monitored electronically and recorded when they are stable within desired limits for a desired period of time. By variation of the cell temperature this generates a sequence of recorded pressures for a given charge composition.
  • thermodynamic models capable of describing the phase equilibrium of an azeotropic mixture over this range of temperature and pressure.
  • the regression technique used was a modification of the Barker method, in which for each datapoint the thermodynamic model selected is used to calculate the pressure in the cell from knowledge of the cell volume, temperature and mass of materials charged. This calculated pressure is then compared to the measured pressure to yield a pressure deviation (calculated pressure - measured pressure). A suitable mathematical technique is then used to vary the parameters of the phase equilibrium model to nrinimise an objective function derived from the sum of squares of the pressure deviations.
  • the objective function used in this work was a weighted sum of squares of pressure deviations.
  • the weighting factors for each datapoint were calculated using the maximum likelihood principle, as described in "Vapor- Liquid Equilibrium Part V: Data Reduction by Maximum Likelihood” by HC Van Ness, F Pedersen and P Rasmussen, AIChE Journal 24(6) (1978) pp 1055-1063, to account for the effect of measurement errors on pressure and cell temperature.
  • the Barker method also requires a thermodynamic model of the saturated liquid and vapour densities as functions of temperature.
  • the liquid density was modelled using the relation of Hankinson, Brobst and Thomson as described in "The Properties of Gases and Liquids 4 th Edition" by RC Reid, JM Prausnitz and BE Poling (pub. McGraw Hill).
  • the correlation parameters were optimised for prediction of the known density of saturated liquid CF 3 I and R-1234yf.
  • the vapour density was modelled using the Peng Robinson equation of state.
  • thermodynamic models require the critical temperature, critical pressure and acentric factor of each pure fluid.
  • the representation of pure component vapour pressures by the Peng Robinson equation when using the PV ⁇ 7 RS model was improved by fitting the data to the Mathias Copeman function as described in F Rivollet et al, Fluid Phase Equilibria 218 (2004) ⁇ p95-101.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un procédé de séparation d'un fluoropropène d'un mélange constitué du fluoropropène et d'au moins un autre agent fluorochimique, ledit procédé comprenant les étapes consistant: à faire passer ledit mélange dans une première colonne de distillation de manière à séparer un premier azéotrope ou proche-azéotrope du fluoropropène et au moins un autre agent fluorochimique d'un premier résidu comprenant le fluoropropène et à faire passer ledit premier résidu dans une seconde colonne de distillation de manière à séparer un second azéotrope ou proche-azéotrope du fluoropropène et au moins un autre agent fluorochimique d'un second résidu comprenant au moins un autre agent fluorochimique et à récupérer ledit second résidu à partir de la seconde colonne de distillation.
PCT/GB2007/002879 2006-07-27 2007-07-27 Procédé de séparation d'un fluoropropène d'un mélange WO2008012559A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0614927A GB0614927D0 (en) 2006-07-27 2006-07-27 Separation process
GB0614927.2 2006-07-27

Publications (1)

Publication Number Publication Date
WO2008012559A1 true WO2008012559A1 (fr) 2008-01-31

Family

ID=37006265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2007/002879 WO2008012559A1 (fr) 2006-07-27 2007-07-27 Procédé de séparation d'un fluoropropène d'un mélange

Country Status (2)

Country Link
GB (1) GB0614927D0 (fr)
WO (1) WO2008012559A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100029997A1 (en) * 2008-07-31 2010-02-04 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
RU2474569C2 (ru) * 2008-02-21 2013-02-10 Е.И.Дюпон Де Немур Энд Компани Способ отделения 1,3,3,3-тетрафторпропена от фтороводорода азеотропной дистилляцией
RU2476416C2 (ru) * 2008-02-21 2013-02-27 Е.И.Дюпон Де Немур Энд Компани Способы отделения 2,3,3,3-тетрафторпропена от фтористого водорода способом азеотропной дистилляции
RU2485086C2 (ru) * 2008-02-21 2013-06-20 Е.И.Дюпон Де Немур Энд Компани Азеотропные композиции, содержащие 3,3,3-трифторпропен и фтороводород, и способ их разделения
US8518293B2 (en) 2010-09-03 2013-08-27 Honeywell International Inc. 1,3,3,3-tetrafluoropropene process azeotropes with HF
US8747691B2 (en) 2010-05-06 2014-06-10 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and water
CN104024189A (zh) * 2011-12-28 2014-09-03 旭硝子株式会社 2,3,3,3-四氟丙烯的纯化方法,纯化装置及制造方法
US9447004B2 (en) 2013-03-15 2016-09-20 Honeywell International Inc. Methods for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product
WO2022104370A1 (fr) * 2020-11-13 2022-05-19 Honeywell International Inc. Procédés de séparation de compositions azéotropiques ou de type azéotropique de trifluoroiodométhane (cf3i) et de chlorure de trifluoroacétyle (cf3cocl)
US11555001B2 (en) 2018-06-06 2023-01-17 Honeywell International Inc. Method for dehydrochlorination of HCFC-244bb to manufacture HFO-1234yf
EP4328213A3 (fr) * 2006-10-27 2024-04-03 Honeywell International Inc. 2,3,3,3-tétrafluoropropène de haute pureté

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467531B1 (fr) * 1990-07-04 1994-10-05 Imperial Chemical Industries Plc Procédé pour la séparation de 1,1,1,2-tétrafluoroéthane à partir de ses mélanges avec l'acide fluorhydrique et/ou le chloro-1-difluoro-2,2-éthylène
US6407297B1 (en) * 1997-11-25 2002-06-18 Ineos Fluor Holdings Limited Preparation of fluorine-containing organic compounds
US20060094911A1 (en) * 2004-10-29 2006-05-04 Rao Velliyur N M Noncatalytic manufacture of 1,1,3,3,3-pentafluoropropene from 1,1,1,3,3,3-hexafluoropropane
WO2007053689A2 (fr) * 2005-11-01 2007-05-10 E. I. Du Pont De Nemours And Company Compositions azeotropes renfermant e-1,3,3,3-tetrafluoropropene et du fluorure d'hydrogene et leurs utilisations
WO2007053178A1 (fr) * 2005-11-01 2007-05-10 E. I. Du Pont De Nemours And Company Procedes de production et de purification d'hydrofluoroolefines
WO2007053177A1 (fr) * 2005-11-01 2007-05-10 E. I. Du Pont De Nemours And Company Compositions azeotropes renfermant 1,1,3,3,3-pentafluoropropene et du fluorure d'hydrogene et leurs utilisations
WO2007053736A2 (fr) * 2005-11-01 2007-05-10 E. I. Du Pont De Nemours And Company Compositions azeotropes renfermant 2,3,3,3-tetrafluoropropene et du fluorure d'hydrogene et leurs utilisations
WO2007053688A2 (fr) * 2005-11-01 2007-05-10 E. I. Du Pont De Nemours And Company Compositions azeotropes renfermant 1,1,1,2,3-pentafluoropropene et du fluorure d'hydrogene et leurs utilisations

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467531B1 (fr) * 1990-07-04 1994-10-05 Imperial Chemical Industries Plc Procédé pour la séparation de 1,1,1,2-tétrafluoroéthane à partir de ses mélanges avec l'acide fluorhydrique et/ou le chloro-1-difluoro-2,2-éthylène
US6407297B1 (en) * 1997-11-25 2002-06-18 Ineos Fluor Holdings Limited Preparation of fluorine-containing organic compounds
US20060094911A1 (en) * 2004-10-29 2006-05-04 Rao Velliyur N M Noncatalytic manufacture of 1,1,3,3,3-pentafluoropropene from 1,1,1,3,3,3-hexafluoropropane
WO2007053689A2 (fr) * 2005-11-01 2007-05-10 E. I. Du Pont De Nemours And Company Compositions azeotropes renfermant e-1,3,3,3-tetrafluoropropene et du fluorure d'hydrogene et leurs utilisations
WO2007053178A1 (fr) * 2005-11-01 2007-05-10 E. I. Du Pont De Nemours And Company Procedes de production et de purification d'hydrofluoroolefines
WO2007053177A1 (fr) * 2005-11-01 2007-05-10 E. I. Du Pont De Nemours And Company Compositions azeotropes renfermant 1,1,3,3,3-pentafluoropropene et du fluorure d'hydrogene et leurs utilisations
WO2007053736A2 (fr) * 2005-11-01 2007-05-10 E. I. Du Pont De Nemours And Company Compositions azeotropes renfermant 2,3,3,3-tetrafluoropropene et du fluorure d'hydrogene et leurs utilisations
WO2007053688A2 (fr) * 2005-11-01 2007-05-10 E. I. Du Pont De Nemours And Company Compositions azeotropes renfermant 1,1,1,2,3-pentafluoropropene et du fluorure d'hydrogene et leurs utilisations

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140316169A1 (en) * 2005-11-03 2014-10-23 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
US9586876B2 (en) * 2005-11-03 2017-03-07 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
EP3150570A1 (fr) * 2006-10-27 2017-04-05 Honeywell International Inc. Procede pour la production de 2,3,3,3-tetrafluoropropene
EP3147273A1 (fr) * 2006-10-27 2017-03-29 Honeywell International Inc. 2,3,3,3-tetrafluoropropène à haute pureté
EP4328213A3 (fr) * 2006-10-27 2024-04-03 Honeywell International Inc. 2,3,3,3-tétrafluoropropène de haute pureté
RU2474569C2 (ru) * 2008-02-21 2013-02-10 Е.И.Дюпон Де Немур Энд Компани Способ отделения 1,3,3,3-тетрафторпропена от фтороводорода азеотропной дистилляцией
RU2476416C2 (ru) * 2008-02-21 2013-02-27 Е.И.Дюпон Де Немур Энд Компани Способы отделения 2,3,3,3-тетрафторпропена от фтористого водорода способом азеотропной дистилляции
RU2485086C2 (ru) * 2008-02-21 2013-06-20 Е.И.Дюпон Де Немур Энд Компани Азеотропные композиции, содержащие 3,3,3-трифторпропен и фтороводород, и способ их разделения
US8766020B2 (en) * 2008-07-31 2014-07-01 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
US20100029997A1 (en) * 2008-07-31 2010-02-04 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
US8747691B2 (en) 2010-05-06 2014-06-10 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and water
US8518293B2 (en) 2010-09-03 2013-08-27 Honeywell International Inc. 1,3,3,3-tetrafluoropropene process azeotropes with HF
CN104024189B (zh) * 2011-12-28 2016-01-13 旭硝子株式会社 2,3,3,3-四氟丙烯的纯化方法,纯化装置及制造方法
CN104024189A (zh) * 2011-12-28 2014-09-03 旭硝子株式会社 2,3,3,3-四氟丙烯的纯化方法,纯化装置及制造方法
US9447004B2 (en) 2013-03-15 2016-09-20 Honeywell International Inc. Methods for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product
US10676415B2 (en) 2013-03-15 2020-06-09 Honeywell International Inc. Methods for removing halogenated ethylene impurities in 2, 3, 3, 3-tetrafluoropropene product
US10099977B2 (en) 2013-03-15 2018-10-16 Honeywell International Inc. Methods for removing halogenated ethylene impurities in 2, 3, 3, 3-tetrafluoropropene product
US11555001B2 (en) 2018-06-06 2023-01-17 Honeywell International Inc. Method for dehydrochlorination of HCFC-244bb to manufacture HFO-1234yf
WO2022104370A1 (fr) * 2020-11-13 2022-05-19 Honeywell International Inc. Procédés de séparation de compositions azéotropiques ou de type azéotropique de trifluoroiodométhane (cf3i) et de chlorure de trifluoroacétyle (cf3cocl)
US11565992B2 (en) 2020-11-13 2023-01-31 Honeywell International Inc. Methods for separation of azeotrope or azeotrope-like compositions of trifluoroiodomethane (CF3I) and trifluoroacetyl chloride (CF3COCI)

Also Published As

Publication number Publication date
GB0614927D0 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
WO2008012559A1 (fr) Procédé de séparation d'un fluoropropène d'un mélange
CN106905108B (zh) 含e-1,3,3,3-四氟丙烯和氟化氢的共沸组合物及其应用
US20100144994A1 (en) Process for Separation of Tetrafluoroethylene from Carbon Dioxide using Ionic Liquids
Fulgueras et al. Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine
Shiflett et al. Separation of tetrafluoroethylene and carbon dioxide using ionic liquids
JPWO2013154059A1 (ja) 共沸または共沸様組成物、および2,3,3,3−テトラフルオロプロペンまたはクロロメタンの製造方法
JPH09510214A (ja) 抽出蒸留の使用によるテトラフルオロエタンからの不純物の分離および除去
CN104884414A (zh) 四氟丙烯的纯化方法
MX2007001476A (es) Composiciones similares a azeotropos de 1, 1, 1, 3, 3 - pentacloropropano y tetracloruro de carbono.
US7385094B2 (en) Azeotrope compositions comprising tridecafluoro-3-heptene and hydrogen fluoride and uses thereof
JP2018002603A (ja) クロロメタンとヘキサフルオロプロペンの分離方法およびクロロメタンの製造方法
EP0696267B1 (fr) COMPOSITIONS AZEOTROPES ET DE TYPE AZEOTROPE ET PROCEDE POUR SEPARER L'HCl ET LES HALOCARBURES
Li et al. Batch extractive distillation of mixture methanol-acetonitrile using aniline as a asolvent
Wyczesany Simulation of n-propanol dehydration process via heterogeneous azeotropic distillation using the NRTL Equation
US20030009065A1 (en) Azeotrope-like compositions of 1,1,1,3,3-pentafluorobutane and hydrogen fluoride
CN106255538A (zh) R‑1233与氟化氢的分离
Faúndez et al. Activity coefficient models to describe vapor-liquid equilibrium in ternary hydro-alcoholic solutions
CN116437992A (zh) 用于分离三氟碘甲烷(CF3I)和三氟乙酰氯(CF3COCl)的共沸物或类共沸物组合物的方法
US20030015683A1 (en) Azeotrope-like compositions and a process for separating pentafluoroethane and hydrogen chloride
WO2015072305A1 (fr) Procédé de séparation de fluorure de vinylidène et de trifluorométhane et procédé de production de fluorure de vinylidène
US10487031B2 (en) Azeotropic compositions comprising hydrogen fluoride and fluorocarbons
Silva et al. Azeotropic behaviour of (benzene+ cyclohexane+ chlorobenzene) ternary mixture using chlorobenzene as entrainer at 101.3 kPa
US20220363968A1 (en) Azeotrope or azeotrope-like compositions of 3,3,3-trifluoropropyne (tfpy) and hydrogen fluoride (hf)
Pilavachi et al. Design and analysis of separation by distillation: Role of property models
US6846963B2 (en) Process for producing 1,1,1,3,3-pentafluoropropane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07766381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07766381

Country of ref document: EP

Kind code of ref document: A1