WO2008007574A1 - Aimant supraconducteur, unité d'imagerie par résonance magnétique, et procédé de détermination de la capacité de refroidissement d'un refroidisseur cryogénique - Google Patents

Aimant supraconducteur, unité d'imagerie par résonance magnétique, et procédé de détermination de la capacité de refroidissement d'un refroidisseur cryogénique Download PDF

Info

Publication number
WO2008007574A1
WO2008007574A1 PCT/JP2007/063225 JP2007063225W WO2008007574A1 WO 2008007574 A1 WO2008007574 A1 WO 2008007574A1 JP 2007063225 W JP2007063225 W JP 2007063225W WO 2008007574 A1 WO2008007574 A1 WO 2008007574A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
cooling capacity
heat
amount
gas
Prior art date
Application number
PCT/JP2007/063225
Other languages
English (en)
French (fr)
Inventor
Munetaka Tsuda
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to US12/304,950 priority Critical patent/US7994787B2/en
Priority to JP2008524760A priority patent/JP5016600B2/ja
Publication of WO2008007574A1 publication Critical patent/WO2008007574A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3804Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) using a superconducting magnet, and more particularly to selection of a cryocooler having a necessary cooling capacity.
  • An MRI apparatus that arranges a subject in a uniform magnetic field space and performs a medical diagnosis from the nuclear magnetic resonance (hereinafter referred to as NMR) signal is the same as a conventional CT apparatus or RI apparatus. It is used in medical institutions. In particular, examinations using MRI equipment have excellent focus detection capabilities. This high focus detection capability is due to the fact that MRI images can be used not only for morphological diagnostic images but also for various examination methods that image functional diagnostic information such as metabolism.
  • a magnetic field generating means is necessary.
  • a superconducting magnet is used that is constructed by accommodating a superconducting coil in a cryostat.
  • a cylindrical superconducting magnet in which a superconducting solenoid coil is accommodated in a cylindrical cryostat and a two-part cryostat are arranged facing each other, and a superconducting loop coil is concentrically placed in each cryostat.
  • Open-type superconducting magnets housed in a shape see Patent Document 1).
  • the vaporized helium gas is completely condensed into liquid.
  • the amount of heat intrusion into the cryostat, the cooling capacity of the cryocooler when it is incorporated in the cryostat, and the change in the cooling capacity over time are quantitatively determined. A grasp is necessary.
  • the conventional method of observing the change in the liquid level of liquid helium with a liquid level gauge incorporated in the cryostat is a method for grasping the cooling capacity of the entire cryostat apparatus incorporating the cryocooler. is there.
  • the pressure inside the liquid storage tank is set to an arbitrary value at the outlet of a gas discharge pipe that discharges the evaporated gas of the refrigerant to the outside of the liquid storage tank.
  • Patent Document 3 proposes an apparatus for measuring a heat penetration amount of a cryostat by measuring a flow rate of an evaporative gas discharged through the gas discharge pipe. See also.) 0
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-336216
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-237417
  • Patent Document 3 Japanese Patent Laid-Open No. 5-172924
  • a cryostat is used to reduce heat penetration into a helium container that stores liquid helium as much as possible. It is a vacuum vessel that is built into the inside of the device for heat shielding. If the arrangement space of the heat shield plate and the spar insulator is enlarged, the space of the subject is reduced. Therefore, these are required to be incorporated in a narrow gap as much as possible, and it is difficult to improve the mounting accuracy. A slight error in the size and mounting accuracy of the heat shield plate and the spar insulator greatly affects the amount of heat entering the helium vessel. Therefore, since the amount of heat penetration varies depending on the device, the amount of evaporation of liquid helium in the superconducting magnet after completion also varies depending on the device.
  • the heat shield plate and the spar insulator are slightly displaced by vibration caused by transport from the superconducting magnet manufacturing site to the medical facility.
  • a superconducting magnet may generate taenchi during the excitation process.
  • the sudden magnetic field change caused by this Taenti may apply electromagnetic force to the heat shield plate, and the amount of heat penetration may change due to a slight change in its shape.
  • the pulse operation of the gradient magnetic field and the high-frequency magnetic field for obtaining the MRI image induces eddy currents and mechanical vibrations in the helium container, resulting in an increase in intrusion heat.
  • Increasing the strength and rate of change of gradient magnetic fields and high-frequency magnetic fields due to the acceleration of MRI imaging technology and new imaging techniques tend to increase the heat penetration into helium containers.
  • the amount of heat penetration into the cryostat varies in a complicated manner. Therefore, in order to properly balance the amount of heat intrusion into the cryostat and the cooling capacity of the cryocooler, the accurate amount of heat intrusion into the cryostat and the cooling capacity of the entire device including the cryostat are immediately grasped. Need to be done.
  • the present invention has been made in view of the above problems, and an object of the present invention is to appropriately adjust the amount of heat intrusion into the cryostat and the cooling capacity of the cryocooler regardless of the situation and environment of the apparatus.
  • the balance is to make the consumption of refrigerant substantially zero.
  • the present invention provides a superconducting coil for generating a static magnetic field, a cryostat containing a refrigerant for cooling the superconducting coil, and a vaporization built into the cryostat.
  • the magnetic resonance imaging apparatus comprising a superconducting magnet having a cryocooler that recondenses the refrigerant, a heater that gives heat to the cryostat, and a pipe that discharges gas vaporized by the refrigerant to the outside.
  • the heater is configured to reduce the discharge of the gas based on the gas flow rate measured by a gas flow rate measuring device that measures the gas flow rate by controlling the gas flowing through the pipe to a constant pressure.
  • a magnetic resonance imaging apparatus is provided that includes a calorific value control unit that controls the calorific value of the image.
  • the present invention provides a superconducting coil for generating a static magnetic field, a cryostat containing a refrigerant for cooling the superconducting coil, and a vaporization incorporated in the cryostat.
  • a superconducting magnet comprising a cryocooler that recondenses the refrigerant, a heater that gives heat to the cryostat, and a pipe that discharges gas vaporized by the refrigerant to the outside. Based on the gas flow rate measured by the gas flow rate measurement device that controls the gas flowing through the chamber to a constant pressure, the heating value of the heater is controlled to reduce the gas discharge.
  • a superconducting magnet including a calorific value control unit.
  • the present invention provides a superconducting coil for generating a static magnetic field, a cryostat containing a refrigerant for cooling the superconducting coil, and a vaporization incorporated in the cryostat.
  • a magnetic resonance imaging apparatus comprising a superconducting magnet having a cryocooler that recondenses the refrigerant, a heater that gives heat to the cryostat, and a pipe that discharges gas vaporized by the refrigerant to the outside.
  • a step of measuring the gas pressure of the refrigerant gas flowing through the pipe, and the refrigerant gas pipe so that the measured gas pressure becomes a predetermined gas pressure.
  • a step of controlling the flow rate a step of measuring the flow rate of the gas flowing in the pipe, and the measured gas flow rate.
  • Zui and provides a refrigerant evaporation reducing method characterized by comprising the steps of: control the heating value of the heater.
  • the present invention recycles a superconducting coil for generating a static magnetic field, a cryostat containing a refrigerant for cooling the superconducting coil, and a gas vaporized by the refrigerant.
  • a magnetic resonance imaging apparatus comprising a superconducting magnet having a cryocooler for condensing and a pipe for discharging the gas vaporized by the refrigerant from the cryostat, the cooling capacity required for the cryocooler is calculated.
  • a method for calculating a cooling capacity is a step of measuring a gas pressure of the refrigerant gas flowing in the pipe, and a flow rate of the refrigerant gas in the pipe so that the measured gas pressure becomes a predetermined gas pressure. Controlling the gas flow rate in the pipe, and measuring the cryostat based on the measured gas flow rate. Providing a Sutetsu flop obtaining heat penetration amount of the bets, calculating the cooling capacity of the cryocooler on the basis of the heat invasion amount, the cooling capacity calculation method, characterized in that it comprises a.
  • the present invention it is possible to immediately and accurately grasp the amount of heat intrusion into the cryostat. This makes it possible to appropriately balance the amount of heat intrusion into the cryostat and the cooling capacity of the cryocooler, and to substantially reduce the consumption of refrigerant, regardless of the state of the apparatus and the environment.
  • the superconducting magnet can be operated while maintaining the refrigerant amount at a stable level.
  • the amount of heat intrusion into the cryostat and the cooling capacity of the entire apparatus including the cryostat can be immediately grasped and presented to the operator or the maintenance manager.
  • the amount of heat penetration into the helium container is accurately obtained by controlling the pressure in the helium container to be constant and measuring the amount of helium gas flowing out of the helium container force. Then, by selecting an optimal cryocooler with a cooling capacity that exceeds the required amount of heat penetration and incorporating it into the superconducting magnet, a cryosystem with the optimal cooling capacity corresponding to the solid difference of the superconducting magnet is constructed. To do.
  • the present embodiment will be described in detail with reference to FIGS.
  • FIG. 1 is a diagram showing the overall configuration of a superconducting MRI apparatus using a superconducting magnet to which the present invention is applied.
  • a so-called open type using an open type superconducting magnet is used.
  • a case of a superconducting MRI apparatus will be described as an example.
  • a so-called closed superconducting MRI apparatus using a cylindrical superconducting magnet that generates a horizontal magnetic field is also acceptable.
  • a superconducting magnet 101 having an open structure for generating a static magnetic field of the open superconducting MRI apparatus is composed of an upper cryostat 103 and a lower cryostat 104 across an imaging space in which the subject 102 is placed. Therefore, the front, back, left and right of the shooting space are greatly open.
  • the upper cryostat 103 and the lower cryostat 104 are connected by a thin connecting pipe 105, and a plurality of sensor circuits for monitoring the supply of liquid to the upper and lower cryostats 103, 104 and the operating state of the magnet are incorporated.
  • the connecting pipe 105 By arranging the connecting pipe 105 in this way, the superconducting magnet 101 with two cryostats divided into two, like the superconducting magnet of one cryostat, is sealed so that the vaporized helium gas is recondensed and reused.
  • Type cryostats can be configured and managed.
  • the output signal of the sensor circuit is taken out from the terminal 106 of the upper cryostat 103 and input to the cryocontrol unit 107.
  • a cryocooler 108 is attached to the upper part of the upper cryostat 103.
  • the cryocooler 108 is connected to a compressor unit 109 that sends helium gas compressed to the cryocooler 108.
  • a service port 110 having a function of injecting liquid helium and a function of discharging helium gas that cannot be condensed due to a failure of the cryocooler 108 or the like is attached to the upper part of the upper cryostat 103.
  • a helium gas measurement unit 111 which will be described in detail later, is connected to the tip of the service port 110.
  • a gradient coil 112 for generating a gradient magnetic field is attached inside the superconducting magnet 101.
  • the gradient coil 112 is a flat coil so as not to obstruct the open structure of the superconducting magnet 101.
  • a pair of upper and lower coils, x, y, and z coils (not distinguished in the figure) that generate magnetic field gradients in three orthogonal directions are stacked. For example, when a current is applied to the upper z coil and the lower z coil, the upper z coil generates a magnetic flux in the same direction as the magnetic flux generated by the superconducting magnet 101, and the lower z coil is 180 degrees different from that. Generate magnetic flux.
  • a gradient magnetic field is created in which the magnetic flux density gradually decreases from the top to the bottom of the vertical axis (z-axis) of the imaging space in which the subject 102 is placed.
  • both the X coil and the y coil impart gradients to the magnetic flux density generated by the superconducting magnet 101 along the X axis and the y axis, respectively.
  • the gradient coil 112 has an X coil, a y coil, and a z coil.
  • the gradient magnetic field power amplifier 113 is connected so that a current flows independently for a desired time.
  • a high frequency coil 114 is incorporated inside the gradient coil 112.
  • the high-frequency coil 114 also does not interfere with the open structure of the superconducting magnet 101!
  • a flat-plate coil is adopted.
  • the pair of upper and lower high-frequency coils 114 are supplied with a high-frequency current corresponding to the resonance frequency of the nuclear spin from the high-frequency power amplifier 115, and are necessary for resonance excitation of the nuclear spin in the imaging space in which the subject 102 is arranged.
  • 29.8 MHz in which hydrogen nuclei cause nuclear magnetic resonance at a magnetic field strength of 0.7 Tesla, is selected.
  • a detection coil 116 for detecting NMR signals is placed on the innermost side, that is, in the vicinity of the examination site of the subject 102.
  • the detection coil 116 efficiently detects the precession of the nuclear spin as an electric signal.
  • the NMR signal converted into an electrical signal is input to the high frequency amplification unit 117, amplified, and converted into a digital signal suitable for computer processing.
  • the cryo control unit 107, the compressor unit 109, the gradient magnetic field power amplifier 113, the high frequency power amplifier 115, and the high frequency amplification unit 117 are connected to the computer 118 via the system signal bus line 119.
  • the operation of each unit is controlled via a system signal bus line 119 by a control signal of a pulse sequencer (not shown) in the computer 118.
  • the computer 118 converts the MR signal converted into a digital signal into an image or the like for diagnosis and stores it in a memory device (not shown) in the computer 118, and displays the display 120. To display.
  • the computer 118 monitors the operation status of each unit via the system signal bus line 119 constantly or at regular intervals, and records the status of the unit, and also manages the operation management information of the device as a modem or LA.
  • the data is transmitted to the remote monitoring center 123 via the communication control device 121 such as N.
  • the remote monitoring center 123 performs remote monitoring based on this information.
  • a value indicating the remaining amount of helium in the liquid of the superconducting magnet 101 is calculated based on the signal from the cryocontrol 107 force.
  • the data 118 is recorded in the memory at a certain time interval, for example, first in the morning, the consumption is calculated and managed, the information is output from the communication control device 121, and the content is displayed on the display 120. To do.
  • FIG. 2 is a cross-sectional view parallel to the static magnetic field direction showing in detail the superconducting magnet 101 used in the open MRI apparatus shown in FIG.
  • the upper cryostat 103 and the lower cryostat 104 contain an upper superconducting coil 201 and a lower superconducting coil 202 that generate a magnetic field.
  • the magnetic field strength is 0.7 Tesla and the magnetic field uniformity is 3 ppm or less.
  • each is composed of one superconducting coil, but it is usually composed of a combination of multiple superconducting coils in order to improve the magnetic field strength and uniformity of the magnetic field and reduce the strength of the leakage magnetic field.
  • a pair of shim plates 204 are arranged on the side facing the imaging space 203.
  • a plurality of shim coils (not shown) are incorporated in the shim plate 204, and these shim coils are supplied with a current to generate a necessary correction magnetic field.
  • This embodiment further provides a method of correcting the magnetic flux distribution generated by the upper and lower superconducting coils 201 and 202 by incorporating a plurality of small iron pieces (not shown) in the shim plate 204 and improving the magnetic field uniformity. combine.
  • the upper and lower superconducting coils 201 and 202 are surrounded by an upper helium vessel 205 and a lower helium vessel 206, which store liquid helium, respectively.
  • the upper helium vessel 205 and the lower helium vessel 206 are connected by a connecting pipe 105, and the upper helium vessel 205 and the lower helium vessel 206 are filled with liquid helium at the same time.
  • a superconducting lead wire for connecting the upper and lower superconducting coils 201 and 202 and a sensor circuit to be described later are arranged on the connecting pipe 105.
  • a heat shielding plate 207 is incorporated on the outer periphery of the upper and lower helium containers 205, 206.
  • the heat shield plate 2007 is a copper plate or an aluminum-humum plate with good heat conduction, and its thickness is, for example, 2 mm.
  • a polyethylene film spar-insulator 208 finished with a mirror surface by vapor deposition of aluminum is adhered to the outside of the heat shielding plate 207 without any gaps.
  • the vacuum vessel 209 made of stainless steel with a thickness of 15 mm is provided at the outermost part. It is done.
  • the gap between vacuum vessel 209 and upper helium vessel 205, lower helium vessel 206 and connecting tube 105 is a vacuum layer, each of which is made of multiple load supports made of glass fiber reinforced plastic (F RP) with low thermal conductivity Fixed with a rod (not shown).
  • F RP glass fiber reinforced plastic
  • the inner vacuum layer is formed as narrow as possible, and the heat shielding plate 207 and the spa insulator 208 are incorporated therein.
  • a liquid level sensor 210 for measuring the liquid helium level, a temperature sensor 211, and a heater 212 are incorporated in the upper helium container 205, and the signal line thereof is connected to the terminal 106 so that it can be output to the outside.
  • the cryo control unit 107 has a built-in power supply unit for the heater 212, and the heat control amount of the heater 212 is controlled by directly controlling the power supply unit by the cryo control unit 107.
  • the upper helium container 205 is provided with a service port 110 for injecting liquid helium and releasing the helium gas vaporized in the upper and lower helium containers 205 and 206 to the outside.
  • the service port 110 has a valve 213 that can be manually opened and closed when liquid helium is injected, etc. Two valves with 214 are incorporated.
  • a cryocooler insertion hole 215 is provided in the upper center of the upper helium container 205, and the tip of the cryocooler 108 is incorporated.
  • the compressor unit 109 is connected to an injection port 216 of the cryocooler 108 so that compressed helium gas is applied.
  • the compressed helium gas expands in the process of moving the regenerator material in the displacer and lowers its temperature.
  • the expanded helium gas is returned to the compressor unit 109 through the exhaust port 217, and is again compressed and circulated.
  • the cryocooler 10 8 has a two-stage displacer, the first-stage displacer is packed with a lead ball regenerator, and the first-stage displacer outer case 218 has a 50 ° Kelvin temperature. Until it is cooled.
  • the second-stage displacer is filled with a cold storage material of horobium copper compound (HoCu2), and the outer case 219 of the second-stage displacer is cooled to 3.7 degrees Kelvin temperature.
  • HoCu2 horobium copper compound
  • the outer case 218 of the first-stage displacer is disposed so as to be in thermal contact with the heat shielding plate 207 covering the outer periphery of the upper and lower helium containers 205, 206.
  • the first stage Good heat conduction is obtained by combining a material having good heat conduction, for example, an indium wire (not shown), between the contact surfaces of the outer case 218 of the sprayer and the heat shielding plate 207.
  • the outer case 219 of the second stage displacer is disposed in the cryocooler insertion hole 215 of the upper helium container 205 and is configured to directly cool the vaporized helium gas.
  • the outer case 219 of the second-stage displacer uses a method of directly cooling helium gas, but a part of the upper helium vessel 205 is cooled via an indium material having good heat conduction.
  • an indirect method of liquidizing helium gas may be used.
  • the ratio of the cryocooler 108 in which helium gas is liquefied is equal to the amount of helium gas vaporized from the upper and lower helium containers 205, 206.
  • the cooling capacity of the cryocooler 108 is equal to the heat penetration amount into the upper and lower helium containers 205 and 206.
  • a cryocooler 108 having a cooling capacity sufficiently higher than the heat penetration amount into the upper and lower helium containers 205 and 206 is used, and further, the upper helium container is provided with a heater 212 and the cryocooler 108 is cooled. Eliminate excess capacity with the heating value of heater 212.
  • FIG. 3 is a diagram showing an overall configuration of an example of the helium gas measurement unit 111 shown in FIG. T-joint 301 is attached to service port 110.
  • One of the T-shaped joints 301 is connected to a regulator 303 via a rubber hose 302, and the other is attached to a pressure sensor 304 via a rubber hose 302.
  • the output signal of the pressure sensor 304 is input to the input terminal of the control circuit 305, and the output signal of the control circuit 305 is input to the control unit 306 of the regulator 303.
  • the other cap 307 of the regulator 303 is connected to the flow meter 308 via a rubber hose 302.
  • a flow rate display 309 is connected to the flow meter 308 for converting the measured signal into a flow rate and displaying it.
  • the control circuit 305 and the flow rate indicator 309 are connected to the computer 118 via the system signal bus line 119, and transmit and receive control signals and various measurement information.
  • a detailed configuration of the regulator 303 will be described with reference to FIG.
  • a needle 401 and a pedestal 402 into which the dollar 401 is housed and fitted are incorporated in the inside of the regulator 303.
  • the needle 401 has a conical tip portion and a cylindrical body portion.
  • the pedestal 402 has a conical recess that fits with the tip of the needle 401 and a cylindrical gap that fits with the body of the dollar 401.
  • the body portion of the needle 401 is connected to the control unit 306 so that the side surface sealed by the O-ring 403 can slide up and down along the side surface of the gap portion of the base 402.
  • the O-ring 403 is incorporated and fixed in the side recess of the cylindrical gap portion of the base 402.
  • the controller 306 moves the conical tip of the dollar 401 up and down to change the gap between the base 402 and the conical recess, thereby changing the gas flow rate from the inlet gold 404 to the outlet gold 307.
  • the gas pressures in the upper and lower helium containers 205, 206 are controlled so as to always have a predetermined constant value.
  • the control circuit 305 controls the control unit 306 of the regulator 303 so that the input signal from the pressure sensor 304 always maintains a predetermined constant value. For example, when the gas flow rate in the regulator 303 increases and the pressure of the inlet 404 on the supply side falls below a predetermined value, the pressure value changes as the output signal of the pressure sensor 304 and the input of the control circuit 305. Is transmitted to the terminal.
  • the output signal of the control circuit 303 is applied to the control unit 306 of the regulator 303, and the needle 401 is lowered to control the gap between the conical tip of the needle 401 and the conical recess of the pedestal 402.
  • the gas flow rate decreases, and the gas pressure in the upper and lower helium containers 205 and 206 on the supply side returns to a predetermined value.
  • the control circuit 305 raises the needle 401 so that the conical tip portion and the conical concave portion of the pedestal 402 are separated. Control to widen the gap.
  • the gas flow rate increases, and the gas pressure in the upper and lower helium containers 205 and 206 on the supply side decreases and returns to a predetermined value.
  • the configuration shown in FIGS. 3 and 4 can be regarded as a feedback control loop for constantly maintaining the gas pressure in the upper and lower helium containers 205 and 206 at a predetermined constant value. From the perspective of this control loop, the configuration shown in Figs. 3 and 4 can be re-expressed as shown in Fig. 5.
  • the pressure sensor 304 and the control circuit The path 305 and the regulator 303 constitute a feedback control loop.
  • the gas pressure is controlled so as to be always at a predetermined constant value extremely accurately.
  • the gas flow rate is detected by the flow meter 308, and the signal is converted into a flow rate and displayed on the flow rate display meter 309.
  • FIG. 3 An example of measuring the gas flow rate while keeping the gas pressure constant with the configuration shown in Figs. 3 to 5 is as follows. That is, after the helium gas measurement unit 111 shown in FIG. 3 is connected to the service port 110 of the superconducting magnet 101, the manual valve 213 is opened and the output of the unidirectional valve 214 is completely closed. As a result of this change, the helium gas vaporized in the upper and lower helium containers 205, 206 is released to the outside via the manual valve 213, the regulator 303, and the flow meter 308. Next, the operator sets a pressure value via input means (not shown) provided in the control circuit 305. For example, set it to 760mmAq.
  • the control circuit 305 controls the control unit 306 of the regulator 303 so that the input signal from the pressure sensor 304 always becomes a set pressure value (here, 760 mmAq). In this way, the operator can read the vaporized helium gas amount with the flow indicator 309 while keeping the upper cryocontainer 205 under a constant pressure of 760 mmAq.
  • the computer 118 reads the set gas pressure and the gas flow rate measured at that time via the system signal bus line 119 and stores it in the memory device in the computer 118 or displays it on the display 120. You may do it.
  • the upper helium vessel 205 can be kept constant at all times without changing the pressure.
  • the helium gas flow rate vaporized in 206 can be accurately measured.
  • FIG. 6 shows the control flow for measuring the gas flow rate while keeping the gas pressure constant.
  • FIG. 6 is a flowchart showing this control flow. Hereinafter, each step constituting the control flow of FIG. 6 will be described in detail.
  • Helium gas is supplied to the helium gas measurement unit 111 (step 601). concrete After the helium measurement unit 111 is connected to the service port 110 of the superconducting magnet 101, the operator opens the manual valve 213 and completely closes the output of the one-way valve 214.
  • a pressure value that should be constant by the operator is set (step 602). Specifically, the pressure value is set in the control circuit 305. For example, set 760mmAq.
  • the gas pressure sensor 304 measures the gas pressure in the upper and lower helium containers 205, 206 (step 603). Specifically, the gas pressure sensor 304 measures the pressure of the gas flowing through the rubber hose 302. The measured gas pressure is input to the control circuit 305.
  • the control circuit 305 determines whether or not the gas pressure measured in step 603 is larger than the set value of the gas pressure set in step 602 (step 604). If the measured value is large, the process proceeds to step 605. If the measured value is not large, the process proceeds to step 606.
  • the control circuit 305 reduces the gas pressure (step 605). Specifically, the control circuit 305 performs control so that the dollar 401 of the regulator 303 is raised to widen the gap between the conical tip and the conical recess of the pedestal 402. As a result, the gas flow rate of the gas flowing through the rubber hose 3002 increases, and the gas pressure in the upper and lower helium containers 205 and 206 on the supply side decreases and approaches the set value. After this, the process returns to step 603, and the control circuit 303 again measures the gas pressure.
  • control circuit 305 determines that the gas pressure measured in step 603 is not greater than the gas pressure set in step 602, this time, the control circuit 305 next sets the gas pressure set in step 602. It is determined whether or not the pressure is smaller than the set value (step 606). If the measured value is small, the process proceeds to step 607. If the measured value is not small, it means that the gas pressure is equal to the set value, and so a signal indicating that the gas pressure is equal to the set value is sent to the computer 118. Move on to step 608.
  • the control circuit 305 increases the gas pressure (step 607). Specifically, the control circuit 305 controls to lower the dollar 401 of the regulator 303 so as to narrow the gap between the conical tip and the conical recess of the pedestal 402. As a result, the gas flow rate of the gas flowing through the rubber hose 302 decreases, and the gas pressure in the helium container (205, 206) on the supply side increases and approaches the set value. After this, return to step 603 to control circuit 305. Measure the gas pressure again.
  • the flow meter 308 measures the gas flow rate. (Step 608). Specifically, the flow rate of gas flowing through the rubber hose 302 is acquired by the flow meter 308 and displayed on the flow rate indicator 309. Furthermore, the computer 118 reads the set gas pressure and the gas flow rate measured at that time via the system signal bus line 119 and stores them in the memory device in the computer 118 or displays them on the display 120. You can show it.
  • the control circuit 305 determines whether or not the force is sufficient to end the measurement of the gas flow rate (step 609). When continuing, it returns to step 603 and repeats said step 603-step 608. Such a control flow makes it possible to measure the gas flow rate while maintaining the gas pressure at the set pressure.
  • FIG. 7 is a configuration diagram in which the configuration shown in FIGS. 1 to 5 is re-expressed from the viewpoint of heat balance.
  • the helium measurement unit 111 by connecting the helium measurement unit 111 to the service port 110 of the superconducting magnet 101, the amount of helium gas vaporized in the upper and lower helium vessels 205, 206 without changing the pressure in the upper helium vessel 205 can be reduced. Accurate measurement is possible.
  • the gas pressure is controlled to be constant.
  • the pressure inside the upper helium container 205 is kept constant without changing, and the heater 212 and the cryocooler 108 are stopped when the heater 212 and the cryocooler 108 are stopped.
  • the lithium gas flow rate can be measured with a flow meter 308.
  • the amount of heat intrusion into the upper and lower helium containers 205 and 206 is calculated using the helium gas flow rate acquired by the flow meter 308 and displayed on the flow rate indicator 309 under a constant pressure. This calculation calibrates the amount of helium gas released per minute, the latent heat of liquid helium, and the pressure due to the volume change of liquid helium and helium gas in the liquid helium container, and also calculates the amount of helium gas released. The amount of heat generated can be accurately calculated.
  • the amount of helium gas released per minute is calibrated at 0 ° C and 1 atm, LHe (liter Zmin), the latent heat of vaporization of liquid helium is HHe (kcal / kg), and the density of helium gas is D He (g / m 3 )
  • the calorific value CV (W) for which the released helium gas force is calculated is expressed by the following (Equation 1).
  • the amount of heat CV that is, the amount of heat penetration
  • the volume of the upper and lower helium containers (205, 206) is 370 liters, and as an example, the gas pressure is set to 760 mmAq every minute.
  • the amount of heat entering the upper and lower helium containers is 343 milliwatts.
  • the volume of the vaporized helium gas easily changes depending on the pressure. Therefore, measuring the flow rate of the helium gas discharged from the superconducting magnet at a constant pressure is essential for calculating an accurate amount of heat. .
  • the cryocooler 108 to be incorporated in the superconducting magnet having the heat penetration amount as described above has a loss occurring at the time of combination, for example, 50 milliwatts, and further changes over time until the next periodical maintenance of the cryocooler.
  • a cooling capacity that deteriorates for example, 70 milliwatts
  • it is judged that a cooling capacity of about 500 milliwatts or more by adding 120 milliwatts to 378 milliwatts is required.
  • the amount of heat generated by the heater 212 is controlled by constantly controlling the amount of heat generated by the heater 212. To be equal to the sum of the calorific value B of
  • the heat generation amount B of the heater 212 is controlled as follows, for example. Using the helium gas measurement unit 111 having the configuration shown in FIG. 3, the flow rate of helium gas from the upper and lower helium containers 205 and 206 is determined under a set pressure value. If the helium gas flow rate is zero, it means that the cooling capacity C of the cryocooler 108 is equal to the sum of the amount of heat A entering the upper and lower helium containers 205 and 206 and the amount of heat generated B of the heater 212.
  • the cooling capacity of the cryocooler 108 C Is smaller than the sum of the amount of heat A entering the upper and lower helium vessels 205 and 206 and the amount of heat generated B of the heater 212 (C ⁇ A + B).
  • This helium gas flow rate is a decrease in the cooling capacity of the cryocooler 108, and a virtual heat intrusion amount into the upper and lower helium containers 205 and 206 corresponding to the decrease can be obtained.
  • the heat generation amount B of the heater 212 is controlled, and the cooling capacity C of the cryocooler 108 is changed to the heat amount A entering the upper and lower helium containers 205 and 206 and the heat generation amount B of the heater 212.
  • the heat generation amount B of the heater 212 is reduced by the virtual heat penetration amount.
  • the maintenance or operation of the cryocooler 108 is performed. Try to exchange. Specifically, at a predetermined threshold B of the heat generation amount B of the heater 212, C
  • the computer 118 may read the heat generation amount of the heater 212 via the cryocontrol unit 107 and the system signal bus line 119 and store it in the memory device or display it on the display 120. In addition, the computer 118 later reads out the calorific value data stored in time series and predicts the maintenance or replacement timing of the cryocooler 108 or displays the temporal change on the display 120. May be
  • FIG. 8 is a flowchart showing the processing flow of this processing. Hereinafter, each step constituting the processing flow of FIG. 8 will be described in detail.
  • the heat generation amount threshold value B force ⁇ for determining whether or not maintenance inspection is necessary will be described as an example.
  • the flow rate of helium gas from the upper and lower helium containers 205, 206 is measured (step 801).
  • This measurement is performed with the heater 212 and the cryocooler 108 stopped.
  • the helium gas flow rate is measured while executing a sequence for obtaining a diffusion weighted image or an EPI sequence.
  • Helium gas The details of the flow rate measurement are as described above.
  • step 802 Based on the helium gas flow rate measured in step 801, the amount of heat penetration into the upper and lower helium containers 205, 206 is determined (step 802).
  • the cooling capacity required for the cryocooler is determined, and the cryocooler having the cooling capacity is selected (step 803).
  • the cryocooler 108 having the cooling capacity selected in Step 803 is incorporated into the superconducting magnet (Step 804). Then, the amount corresponding to the excessive cooling capacity of the selected cryocooler 108 is set as the heat generation amount of the heater 212. In such a combined state, the cooling capacity C of the cryocooler 108 becomes equal to the sum of the amount of heat A entering the helium vessel and the amount of heat generated B of the heater 212, and the evaporation of liquid helium is suppressed. In this state, the following steps 805 to 809 are repeated while operating the MRI apparatus for a while and performing actual imaging.
  • the helium gas flow rate is measured after a certain time (step 805). Specifically, while the cryocooler 108 and the heater 212 are operating, the helium gas flow rate from the helium vessel is set under the set pressure value using the helium gas measurement unit 111 having the configuration shown in FIG. Desired.
  • step 806 The presence or absence of a helium gas flow rate is determined (step 806). If there is a helium gas flow rate, the process proceeds to step 807. If not, the process returns to step 805 and the helium gas flow rate measurement is repeated.
  • the amount of heat generated by the heater 212 is controlled (step 807).
  • the cooling capacity C of the cryocooler 108 is the sum of the amount of heat A entering the upper and lower helium containers 205 and 206 and the amount of heat generated B of the heater 212.
  • the heating value B of the heater 212 is reduced so as to be equal to.
  • the virtual heat penetration amount into the upper and lower helium containers 205 and 206 is evaluated. This virtual heat penetration amount corresponds to the decrease in the cooling capacity of the cryocooler 108.
  • the heat generation amount B of the heater 212 is reduced by this virtual heat penetration amount.
  • step 808 It is determined whether or not the amount of heat generated by the heater 212 is zero (step 808). If zero Is displayed and the process proceeds to step 809. If it is not zero, the process proceeds to step 805.
  • the heat generation amount of the heater 212 is 0, it means that the cooling capacity C of the cryocooler 108 is lowered to be less than the heat penetration amount A into the upper and lower helium containers 205 and 206. Maintain and replace the cryocooler 108. After maintenance and replacement, if necessary, start again from step 801 (step 809).
  • the cryocooler 108 having an appropriate cooling capacity can be selected and the cooling capacity C of the cryocooler 108 can always exceed the heat penetration amount A into the upper and lower helium vessels 205 and 206. Can be controlled. Furthermore, even when the cooling capacity C of the cryocooler 108 falls below the heat penetration amount A into the upper and lower helium containers 205 and 206, the cryocooler 108 can be maintained and replaced at an appropriate timing.
  • the amount of heat penetration into the helium vessel can be accurately obtained, so that a cryocooler having an optimal cooling capacity can be selected according to the amount of heat penetration into the helium vessel.
  • This basic effect makes it possible to properly balance the amount of heat penetrating into the helium vessel and the cooling capacity of the cryocooler, and to substantially reduce the consumption of liquid helium as a refrigerant over a long period of time.
  • even if the amount of heat intrusion into the helium vessel changes it is possible to quantitatively grasp the change and combine a cryocooler with appropriate cooling capacity to reduce the consumption of refrigerant to substantially zero.
  • the amount of heat intrusion into the helium container can be quantitatively grasped by various imaging methods used in medical facilities, and a cryocooler with an appropriate cooling capacity can be combined to substantially reduce the consumption of refrigerant.
  • the measurement of the helium gas flow rate and the control of the heating value of the heater are performed at regular intervals, and the maintenance and replacement of the cryocooler is notified. Since the MRI apparatus, the measurement of the helium gas flow rate, and the control of the heating value of the heater in this embodiment are the same as those in the first embodiment described above, these Detailed description will be omitted, and only different points will be described in detail below. Hereinafter, the present embodiment will be described in detail based on FIG. 1 and FIG.
  • the helium measurement unit 111 is always connected to the service port 110 of the superconducting magnet 101.
  • Each of the valve 213 and the one-way valve 214 includes a drive unit (valve drive unit) (not shown) and a control unit (valve control unit) that controls the valve drive unit.
  • the valve control unit is connected to the computer 118 and controls the valve driving unit under the control of the computer 118.
  • the helium gas measurement unit 111 is connected to a computer 118, operates by a control signal of the computer 118, and notifies the computer 118 of the measurement result. More specifically, as shown in FIG.
  • the control circuit 305 and the flow rate indicator 309 in the helium gas measurement unit 111 are connected to the computer 118, and operate according to the control signal from the computer 118, and the measurement result is displayed. Notify the computer. For example, the pressure setting value is input from the computer 118 to the control circuit 305, and the gas flow rate value is notified from the flow rate indicator 309 to the computer 118.
  • the heater 212 is connected to the computer 118 via the cryo control unit 107, and the amount of heat generated is controlled via the cryo control unit 107 under the control of the computer 118.
  • the computer 118 opens the valve 213 and completely closes the output of the directional valve 214, and then performs constant processing from step 805 to step 808 of the processing flow shown in FIG.
  • the control circuit 305, the flow rate indicator 309, and the heater 212 are controlled so as to be repeated at intervals.
  • the gas flow set in the control circuit 305, the gas flow rate obtained from the flow rate indicator 309, and the heat generation amount of the heater 212 may be sequentially displayed on the display 120. If the cooling capacity C of the cryocooler 108 falls below the heat intrusion amount A into the helium vessel, the operator is informed in step 809 to warn the operator and urge maintenance / replacement of the cryocooler 108.
  • a warning message may be displayed on the display 120 or an alarm may be sounded.
  • the cooling capacity C of the cryocooler 108 exceeds the heat intrusion amount A into the helium vessel when the processing of step 805 to step 808 is completed, the gas flow rate measurement is completed and the valve 213 is closed. Is completely closed and the output of the one-way valve 214 is opened to return to the state before measurement.
  • the amount of heat penetration of the helium vessel and the cooling capacity of the cryocooler are periodically measured, and it is determined whether the entire apparatus is operated with an appropriate cooling capacity! By urging the operator to take corrective action in the case of no, it becomes possible to operate the superconducting magnet while maintaining the refrigerant amount at a stable level.
  • the remote gas monitoring is used to measure the helium gas flow rate and control the heating value of the heater at a constant period, and to grasp whether the cryocooler needs to be maintained or replaced. Since the MRI apparatus, the measurement of the helium gas flow rate, and the control of the heating value of the heater in this embodiment are the same as those in the first embodiment described above, a detailed description thereof will be omitted, and only the differences will be described in detail below. Explain to. Hereinafter, the present embodiment will be described in detail based on FIG.
  • the computer 118 of this embodiment is connected to the remote monitoring center 123 via a communication control device 121 such as a modem or a LAN.
  • a communication control device 121 such as a modem or a LAN.
  • the remote monitoring center 123 performs remote monitoring of the MRI apparatus.
  • control information from the remote monitoring center 123 is transmitted to the computer 118.
  • the helium gas measurement unit 111 is controlled according to the control information from the remote monitoring center 123 via the computer 118 and notifies the remote monitoring center 123 of the measurement result. .
  • the pressure setting value is input from the remote monitoring center 123 to the control circuit 305 via the computer 118, and the gas flow rate value is notified from the flow indicator 309 to the remote monitoring center 123 via the computer 118. .
  • the amount of heat generated by the heater 212 is controlled from the remote monitoring center 123 via the computer 118.
  • the remote monitoring center 123 periodically repeats the processing from step 805 to step 808 (remote monitoring processing) of the processing flow shown in FIG.
  • the control circuit 305, the flow rate indicator 309, and the heater 212 are controlled.
  • gas obtained from the gas pressure and flow rate indicator 309 set in the control circuit 305 The flow rate and the heat generation amount of the heater 212 may be sequentially displayed on the display of the remote monitoring center 123.
  • the cooling capacity C of the cryocooler 108 falls below the heat intrusion amount A into the helium vessel when the processing of step 805 to step 808 is completed, the fact is notified to the administrator of the remote monitoring center 123. Warning.
  • a warning message may be displayed on the display or an alarm may be sounded.
  • the administrator of the remote monitoring center 123 immediately maintains the “replacement” of the cryocooler 108 by directing the location of the MRI apparatus.
  • the cooling capacity C of the cryocooler 108 exceeds the heat penetration A into the helium vessel, do nothing and wait for the next remote monitoring process.
  • remote monitoring from the remote monitoring center monitors the amount of heat intrusion into the helium vessel and the cooling capacity of the cryocooler at any time, 24 hours a day, 365 days a year without bothering the operator of the MRI apparatus. Therefore, it is possible to determine whether or not the entire system is operated with an appropriate cooling capacity, and corrective action can be taken immediately in case of failure, so that the amount of refrigerant in the superconducting magnet can be kept at a stable level. It will be possible to maintain and drive.
  • the measurement of the MRI apparatus, the helium gas flow rate, and the control of the heating value of the heater in the present embodiment are basically the same as the shifting force in each of the above embodiments.
  • the computer 118 of the present embodiment calculates the cooling capacity of the cryocooler 108 and the amount of heat penetration of the cryostats 101 and 104 into the helium containers 205 and 206 to determine whether or not the force is within a predetermined appropriate range. And, it has a function to present the discrimination result to the worker. Further, in the present embodiment, the difference between the cooling capacity of the cryocooler 108 and the amount of heat penetration into the helium containers 205 and 206, not the amount of heat generated by the heater 212, is monitored, and the timing of maintenance inspection is extracted.
  • the cryostats 103 and 104 have different amounts of heat penetration into the helium containers 205 and 206 of the individual devices depending on the dimensions and mounting accuracy of the heat shield plates and the spar insulator. There are also individual differences in the cryocooler 108 to be incorporated. For this reason, the manufacturing completion stage Therefore, it is necessary to determine the force with which the heat penetration amount into the helium containers 205 and 206 and the cooling capacity of the cryocooler 108 are within the allowable range. Further, as described above, the cryostats 101 and 104 are made of a helium container between the manufacturing stage and after installation at the medical site due to the displacement of the heat shield plate spur in transit from the manufacturing site to the medical site. There is a difference in the amount of heat intrusion into and the cooling capacity of the cryocooler 108.
  • the cryostat 101, 104 of each of the above embodiments has a function of accurately measuring the flow rate of helium gas evaporated from the helium containers 205, 206, and the manufacturing stage and the medical site.
  • the amount of heat penetration into the helium containers 205 and 206 and the cooling capacity of the cryocooler 108 at the time of installation are calculated, and it is determined whether the calculated result is within the allowable range.
  • the discrimination result is notified to the worker by means such as display. Workers will take countermeasures as necessary based on the notification results.
  • the computer 118 includes a heat penetration amount calculation unit, a cooling capacity calculation unit, a device state recording unit, a graph creation unit, a device state determination unit, a state monitoring control unit, and a device permission A degree determination unit.
  • the heat penetration amount calculation unit calculates the heat penetration amount of the helium containers 205 and 206 measured by the helium gas measurement unit 111 using the same method as the above embodiments.
  • the heater 212 and the cryocooler 108 are stopped, and measurement is performed by the method of step 801 of the first embodiment. To calculate. If the cryocooler 108 is not installed, stop the heater 212 only and measure.
  • the cooling capacity calculation unit calculates the cooling capacity of the cryocooler 108.
  • the cooling capacity of the cryocooler 108 is the difference between the heat intrusion amount into the helium containers 205 and 206 and the heat generation amount of the heater 212 when the heat generation amount of the heater 212 is adjusted so that the helium gas flow rate ⁇ Total.
  • the cooling capacity calculation unit also receives an instruction from the operator or an instruction from the state monitoring control unit, the heat penetration amount is measured, and the heat generation amount of the heater 212 is summed and calculated.
  • the apparatus status recording unit includes the heat penetration amount into the helium containers 205 and 206 calculated by the heat penetration amount calculation unit and the cooling capacity calculation unit at each time point, and the cooling capacity of the cryocooler 108, respectively.
  • recording means such as a memory in association with the received timing.
  • the recording unit is a daily unit. It should be noted that at the time of completion of manufacture and installation at a medical site, it may be configured to record in association with information identifying the time of completion of manufacture and the time of installation rather than the date.
  • the graph creation unit creates graph screen data for displaying a graph in which at least one of the cooling capacity and the heat penetration amount is plotted in time series using the data held by the device status recording unit! .
  • the graph is created at the timing when these data are stored in the device status recording unit, or at the timing when an instruction from the operator is received.
  • the graph screen data displays the latest values of the amount of heat penetration and cooling capacity displayed in a graph along with the graph.
  • the apparatus state determination unit calculates an allowance (Allowance) indicating the degree of cooling capacity margin of the cryocooler 108, and determines whether or not there is a cooling capacity margin of the cryocooler. Tolerance is calculated by subtracting the amount of heat penetration from the cooling capacity of the cryocooler 108. When the value calculated as the tolerance is positive, the device status determination unit determines that the cooling capacity is sufficient and normal operation is being performed, and if the value is negative, it determines that the cooling capacity is insufficient. To do. The tolerance calculation result and the discrimination result are passed to the graph creation unit, and are incorporated into the graph screen data as display information. The device state determination unit calculates the tolerance based on the timing when the data is stored in the device state recording unit.
  • FIG. 9 is an example of a graph screen 900 displayed on a display device such as the display 120 based on the graph screen data created by the graph creation unit.
  • the graph screen 900 includes a graph part 910 and a numerical value display part 920.
  • the vertical axis of the graph displayed in the graph part 910 is the amount of heat expressed in milliwatts (mW), and the horizontal axis is time (here, the unit is days).
  • (Cryo-Cooler) indicates the cooling capacity of the cryocooler 108
  • (Magnet) indicates the amount of heat penetration of the superconducting magnets into the helium containers 205 and 206.
  • the numerical display unit 920 displays the latest data and tolerance of the cooling capacity and the heat penetration amount of the cryocooler 108 as numerical values. Also, “Warning” is displayed when the tolerance is a positive value as the status display, and “Norm alj force is a negative value”.
  • the graph screen 900 further includes cooling capacity and heat during installation.
  • An installation data display button 930 that receives an instruction to display the intrusion amount may be provided.
  • the graph creation unit displays the cooling capacity and the heat penetration amount at the time of installation on the graph of the graph unit 910.
  • the state monitoring control unit performs the heat penetration amount into the helium containers 205 and 206 and the cooling capacity of the cryocooler 108 respectively at the heat penetration amount calculation unit and the cooling capacity calculation unit at predetermined time intervals. And measure.
  • the condition monitoring and control unit operates upon receiving an instruction that the operator-powered MRI system has entered operation.
  • the equipment tolerance judgment unit determines that the amount of heat penetration into the helium containers 205 and 206 and the cooling capacity of the cryocooler calculated at each time point are within a predetermined tolerance range based on a standard value held in advance. It is determined whether or not there is, and the determination result is presented to the worker by means such as display. If the amount of heat penetration is less than a predetermined value, it is determined to be within the allowable range. If the cooling capacity is greater than the predetermined value, it is determined to be within the allowable range.
  • the device tolerance determination unit may not be provided.
  • the graph screen 900 is used to display the calculated amount of heat penetration into the helium containers 205 and 206 and the cooling capacity of the cryocooler on a display device, etc., so that the user can determine whether or not it is appropriate and input the determination result. You can do it.
  • the display of the graph screen data created by the graph creation unit is not limited to the display 120 connected directly to the computer 118, but the display of the remote monitoring center 123 connected via the communication control device 121. You may comprise so that it may display on an apparatus.
  • Each function provided in the computer 118 is realized by the CPU of the computer 118 executing a program stored in a memory included in the computer 118.
  • FIG. 11 is a diagram for explaining the work flow of the MRI apparatus of the present embodiment.
  • the worker causes the MRI apparatus of this embodiment to perform a performance check process during manufacturing (step 1131).
  • the cooling capacity is calculated at the manufacturing site (step 1103).
  • the worker Upon receiving a notification that at least one of the heat penetration amount and the cooling capacity is out of the allowable range, the worker takes measures (step 1121) and instructs to perform the performance check process at the time of manufacture again. If it is determined in step 1121 that the heat penetration amount is poor, the worker takes heat insulation measures for the cryostat. Here, for example, displacement due to reduced vacuum or transportation is repaired. In addition, when it is determined that the cooling capacity is poor, the operator takes measures such as re-inserting the cryocooler. Here, for example, the quality of the work for ensuring the thermal contact between the low-temperature part of the cryocooler and the heat shielding plate in the cryostat is enhanced. If both are defective, take both measures.
  • the worker transports the MRI apparatus to the medical site and installs it (Step 1 106).
  • the operator causes the MRI apparatus of this embodiment to perform a performance check process during installation (step 1132).
  • the amount of heat penetration and cooling capacity are calculated at the installation site (step 1107), and whether these performances are within a predetermined allowable range. (Step 1108). If both are within the allowable range, the calculation result is recorded (step 1109) and a notification to that effect is given. On the other hand, if at least one of the heat penetration amount and the cooling capacity is outside the allowable range, a notification to that effect is given.
  • the worker Upon receiving a notification that at least one of the heat penetration amount and the cooling capacity is out of the allowable range, the worker takes measures (step 1122) and instructs to perform the performance check process during manufacturing again. .
  • the measures taken here are the same as those during the performance check process during manufacturing.
  • step 1110 In the performance check process during installation, if both the heat penetration amount and the cooling capacity are within the allowable range, the worker starts the operation of the MRI apparatus (step 1110) and performs the state monitoring process on the MRI apparatus. Instruct to start (step 1133). Here, every time a predetermined time passes (step 1111), the amount of heat penetration and the cooling capacity are calculated (step 1112), and it is determined whether or not the power required for both forces is less than zero ( Step 1113). If the margin is not less than 0, a graph is displayed (step 1114), the process returns to step 1111 and waits for the next calculation time. On the other hand, if the margin is less than 0, the operator is notified of this. The worker receives the notification, finishes the condition monitoring process, and performs maintenance and inspection. During operation of the MRI apparatus, the heating value of the heater is controlled in this embodiment as well as in the first embodiment.
  • FIG. 12 is a process flow of the required cooling capacity calculation process of the present embodiment.
  • the computer 118 Upon receiving an instruction to start the required cooling capacity calculation process, the computer 118 causes the heat penetration amount calculation unit to calculate the heat penetration amounts into the helium containers 205 and 206 (step 1201). Then, the computer 118 stores the calculated heat penetration amount in a memory and calculates the cooling capacity required for the cryocooler by the method of the first embodiment (step 1202). The computer 118 presents the result to the worker (step 1203) and ends the process.
  • the power configured to allow the computer 118 to calculate the cooling capacity required for the cryocooler to be incorporated is not limited to this.
  • the heat penetration amount calculation unit The calculated heat penetration amount may be presented to the worker, and the worker may be configured to calculate the cooling capacity required for the cryocooler that penetrates the yarn.
  • FIG. 13 is a processing flow of the performance check process before the start of operation of this embodiment.
  • the computer 118 Upon receiving an instruction to start the performance check process before the start of operation, the computer 118 calculates the heat intrusion amount and the cooling capacity in the heat intrusion amount calculation unit and the cooling capacity calculation unit, respectively. (Steps 1301 and 1302). When the calculation is completed, the computer 118 causes the device tolerance determination unit to determine whether or not the heat penetration amount and the cooling capacity are within the allowable range (step 1303). In the performance check process at the time of manufacture, the heat intrusion amount is not calculated by the heat intrusion amount calculation unit in step 1301, and the determination in step 1303 is performed using the heat intrusion amount held in the memory during the cooling capacity calculation processing. .
  • step 1303 Determination result power in step 1303
  • the computer 118 records the calculation result in the device status recording unit (step 1 304) and the graph generating unit. Generate and display graph screen data (step 13 05).
  • step 1304 at the time of manufacture, recording is performed in association with information indicating that it is a record at the time of manufacture, and at the time of installation, recording is performed in association with information indicating that it is a record at the time of installation. Configure to display the discrimination result of the device tolerance judgment unit on the graph screen data.
  • step 1303 determines that at least one of the heat penetration amount and the cooling capacity is outside the allowable range.
  • the computer 118 displays the determination result in the device tolerance determination unit. (Step 1306) The operator can determine the necessity of countermeasures by looking at this display.
  • step 1303 and step 1306 are not performed.
  • the process of step 1301 may be performed in the performance check process during manufacturing.
  • FIG. 14 shows the embodiment. This is the performance check process flow after the start of operation.
  • the computer 118 Upon receiving an instruction to start the state monitoring process, the computer 118 activates the state monitoring control unit (step 1401).
  • the state monitoring control unit causes the heat intrusion amount calculating unit and the cooling capacity calculating unit to calculate the heat intrusion amount and the cooling capacity, respectively, when a predetermined time has elapsed since the instruction was received (steps 1402 and 1403).
  • the calculation of the heat penetration amount and the cooling capacity may be performed when a predetermined time comes.
  • the state monitoring control unit causes the device state determination unit to calculate the tolerance (step 1404), and the device state recording unit together with information specifying the calculation time, the heat penetration amount, the cooling capacity , And allowance to be recorded (step 1405). If the tolerance is 0 or more in the calculation result (step 1406), the graph creation unit generates and displays graph screen data (step 1408). On the other hand, if the margin is less than 0, display data indicating that maintenance inspection is necessary is generated and displayed on the graph creation unit (step 1407). Here, the data with the state “warning” is displayed in the dull screen data. Then, the state monitoring control unit resets the count of a predetermined time and returns to step 1401 if the worker power does not accept the termination instruction (step 1409).
  • the flow rate of the helium gas that evaporates in the upper and lower helium vessel can be accurately measured, so that the amount of heat intrusion into the cryostat can be measured immediately and using it. It can be calculated accurately. Therefore, by calculating the amount of heat intrusion into the cryostat with the heater stopped, the amount of heat intrusion (basic heat intrusion amount) into the cryostat due to conduction and radiation can be calculated immediately and accurately and presented to the manufacturer. Can do. The manufacturer can easily select a cryocooler that has sufficient cooling capacity for each MRI device at the time of installation based on the obtained basic heat penetration amount.
  • the flow rate of helium gas that evaporates in the upper and lower helium vessel can be accurately measured, and this can be used to control the amount of heat generated by the heater.
  • the amount of heat generated by the heater it is possible to balance the amount of heat penetration during operation of the MRI system and the cooling capacity of the cryocooler, thereby reducing the consumption of refrigerant.
  • the cryocooler in a state of being incorporated in the cryostat from the heat penetration amount into the cryostat in which the helium gas flow force is also calculated and the heat generation amount of the heater. Cooling capacity, that is, the cooling capacity of the entire apparatus including the cryostat can be calculated. Therefore, the heat penetration amount and the cooling capacity can be obtained immediately with a simple configuration including one helium gas flow rate measurement unit.
  • the cooling capacity immediately after the insertion of the cryocooler yarn can be calculated using them. Can be presented to the worker. Based on this result, the operator can determine the quality of the cryocooler installation work on the spot.
  • the heat penetration amount and the cooling capacity at the time of installation are calculated using them. Can be shown to the worker. This allows the operator to determine the quality of the installation work if trouble occurs during transportation.
  • the present embodiment it is possible to immediately obtain the heat penetration amount and the cooling capacity S as described above. Therefore, the heat penetration amount and the cooling capacity can be easily calculated at predetermined time intervals after the operation is started.
  • the calculation result is displayed as a graph showing changes in the heat penetration amount and the cooling capacity with the passage of operation time, so that the operator can obtain an indication of when maintenance is required. Can do.
  • the heat penetration amount and the cooling capacity at the time of installation can be displayed on a graph. For this reason, the difference from the time of installation can be clearly shown to the worker. Workers should understand the operating status and environment of the equipment and take necessary measures as soon as possible. be able to.
  • the above indication may be the values at the time of completion of manufacture instead of the heat penetration amount and the cooling capacity at the time of installation.
  • the installation operator can easily grasp the changes during the transportation of the equipment and the state of the equipment after installation.
  • the value at the time of completion of manufacture may be held, and after completion of installation, the value at the time of completion of manufacture may be written to the value at the time of installation. Note that this area may be configured to retain data at a specific time other than the time of completion of manufacture and installation. Also, not only the value at 1 time
  • a plurality of time points may be held and displayed.
  • the degree of cooling capacity margin is calculated from the calculated heat penetration amount and cooling capacity, and is presented together with the above graph and information indicating the state of the cryostat. Therefore, the worker can intuitively know the necessity of maintenance and inspection of the cryocooler.
  • the computer can automatically calculate the amount of heat penetration after the start of operation and the cooling capacity and present the result. Therefore, it is possible to balance the amount of heat penetration and the cooling capacity of the cryocooler and optimize the refrigerant consumption without the operator's involvement, while the operator knows the timing of maintenance and inspection. it can.
  • the difference between the cooling capacity of the cryocooler 108 and the amount of heat penetration into the helium containers 205 and 206 is monitored, and the maintenance inspection timing is presented to the operator.
  • the amount of heat generated by the heater 212 may be monitored, the timing determined by this, and presented to the operator.
  • FIG. 1 is a block diagram showing the overall configuration of an open MRI apparatus of the present embodiment.
  • FIG. 2 is an explanatory view showing a schematic configuration of a cross section of a superconducting magnet constituting the MRI apparatus of FIG.
  • FIG. 3 is a detailed configuration diagram of the helium gas measurement unit of the MRI apparatus of FIG.
  • FIG. 4 is a diagram showing an outline of the internal structure of the regulator shown in FIG.
  • FIG. 5 is an explanatory diagram showing the operation of the helium gas measurement unit of FIG.
  • FIG. 6 is a flowchart showing a control flow for measuring the helium gas flow rate by controlling the helium gas pressure to be constant.
  • FIG. 7 is an explanatory diagram showing the helium measurement function of the MRI apparatus of FIG.
  • FIG. 9 is a diagram showing an example of a graph screen according to the fourth embodiment.
  • FIG. 10 is a diagram showing another example of the graph screen of the fourth embodiment.
  • FIG. 11 is a diagram for explaining the work flow of the fourth embodiment.
  • FIG. 12 is a process flowchart of a required cooling capacity calculation process according to the fourth embodiment.
  • FIG. 13 is a process flowchart of a performance check process before starting operation according to the fourth embodiment.
  • FIG. 14 is a processing flowchart of performance check processing after the start of operation according to the fourth embodiment. Explanation of symbols

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

明 細 書
超電導磁石、磁気共鳴イメージング装置、及びクライオクーラの冷却能力 算出方法
技術分野
[0001] 本発明は、超電導磁石を用いた磁気共鳴イメージング装置 (以下、 MRI装置と称 する)に係わり、特に、必要な冷却能力を有するクライオクーラの選択に関する。 背景技術
[0002] 被検体を均一な磁場空間に配置して、その核磁気共鳴 (以下、 NMRと称する)信 号から医学的診断を行う MRI装置は、従来の CT装置や RI装置での検査と同じよう に医療機関で用いられる。特に、 MRI装置を用いた検査は優れた病巣検出能力が ある。この高い病巣検出能力は、 MRI画像が単なる形態的な診断画像のみならず、 代謝などの機能的な診断情報をも画像ィ匕する多様な検査法が可能なことによる。
[0003] この MRI装置において医学的に有効な MRI画像を得るには、高い磁場強度と、そ の偏差が PPMオーダーの高い均一磁場空間とを長期にわたって安定に保持するこ ととが可能な静磁場発生手段が必要である。これらの必要条件を満たす静磁場発生 装置として、クライオスタツト内に超電導コイルを収容して構成された超電導磁石が用 いられる。
[0004] この超電導磁石には、円筒形状のクライオスタツト内に超電導ソレノイドコイルを収 容した円筒型超電導磁石と、 2分割されたクライオスタツトを対向配置して各クライオ スタツト内に超電導ループコイルを同心円状に収容した開放型超電導磁石とがある( 特許文献 1参照。)。
[0005] Vヽずれの型の超電導磁石にぉ ヽても、伝導ゃ輯射によるクライオスタツト内への熱 侵入により、超電導コイルを冷却するために用いられる液体へリウム冷媒を気化させ て消費してしまう問題がある。そこで、液体ヘリウムの消費を防ぐために、一度気化し たヘリウムガスを再び凝縮する冷却能力を有するクライオクーラを組み込んだ超電導 磁石も開発されている (特許文献 2参照。 )0
[0006] 組み込まれたクライオクーラで、気化したヘリウムガスを完全に凝縮して液体へリウ ムに戻す密閉型のクライオスタツトを実現するには、クライオスタツトへの熱侵入量と、 クライオスタツトに組み込んだ状態でのクライオクーラの冷却能力と、その冷却能力の 経時的変化との定量的な把握が必要である。
[0007] なぜなら、クライオクーラの冷却能力は経時的に劣化していくので、クライオスタツト への熱侵入量とクライオクーラの冷却能力の劣化とに対応して、ヘリウム消費を抑制 する必要があるためである。また、クライオクーラの冷却能力を維持するために一定 間隔 (通常は稼働 1万時間毎)で分解清掃作業が必要で、新し 、クライオクーラを付 け直すか、保守作業後に再びクライオスタツトに組み込む。この付け直しまたは組み 込み作業には、クライオクーラの低温部分とクライオスタツト内の熱遮蔽板との熱接触 を確保する作業が含まれ、その作業の質が装置全体の冷却能力を大きく左右する。 それ故、ヘリウム消費を抑制するためには、クライオクーラ単体ではなぐクライオスタ ットに組み込んだ状態でのクライオクーラの冷却能力の定量的把握が必要となるため である。
[0008] クライオクーラを組み込んだクライオスタツトの装置全体の冷却能力の把握法には、 クライオスタツト内に組み込まれた液面計により、液体ヘリウムの液面の変化を観察す るという従来の方法がある。
[0009] 一方、クライオスタツトの熱侵入量測定装置として、冷媒の蒸発ガスを冷媒の貯液 槽の外部に放出するガス放出管の出口部に前記貯液槽の内部の圧力を任意の値 に保つ精密圧力制御装置を備え、前記ガス放出管を通って放出される蒸発ガスの流 量を測定することにより、クライオスタツトの熱侵入量を測定する装置が提案されてい る (例えば、特許文献 3参照。 ) 0
特許文献 1 :特開 2002— 336216号公報
特許文献 2:特開 2005 - 237417号公報
特許文献 3:特開平 5 - 172924号公報
発明の開示
発明が解決しょうとする課題
[0010] 通常、クライオスタツトは、液体へリウムを蓄えるヘリウム容器への熱侵入を極力下 げるために、銅やアルミ-ユームで構成された熱遮蔽板やアルミ蒸着フィルム (スパ 一インシユレータと称する)を熱遮蔽のためにその内部に組み込んだ真空容器となつ ている。熱遮蔽板ゃスパーインシュレータの配置空間を大きくすると被検体の空間が 縮小されるので、これらは出来るだけ狭い間隙に組み込むことを要求され、取り付け 精度を上げることは難し 、。熱遮蔽板ゃスパーインシュレータの寸法や取付け精度 の僅かな誤差はヘリウム容器への熱侵入量に大きく影響する。従って、装置によって 熱侵入量が異なるため、完成後の超電導磁石の液体へリウムの蒸発量も装置によつ て異なる。
[0011] また、超電導磁石の製造場所から、医療施設までの輸送による振動で、熱遮蔽板 ゃスパーインシユレータは多少変位する。この結果、製造段階でのヘリウム容器への 熱侵入量と医療施設に設置後の熱侵入量との間にも差異が生じる場合がある。ある いは、超電導磁石は励磁過程などでタエンチが発生する場合がある。このタエンチに よる急激な磁場変化で、熱遮蔽板に電磁力が加わり、その形状が多少変化すること により熱侵入量が変化することがある。
[0012] 更には、 MRI画像を得るための傾斜磁場や高周波磁場のパルス動作がヘリウム容 器に渦電流や機械的振動を誘起させ、結果的に侵入熱が増加する。 MRI撮像技術 の高速化や、新たな撮像手法により、傾斜磁場や高周波磁場の強度と変化速度の 向上も、ヘリウム容器への熱侵入を益々増加させる傾向にある。
[0013] 以上のように、クライオスタツトへの熱侵入量は複雑に変化する。従って、クライオス タツトへの熱侵入量とクライオクーラの冷却能力とを適正にバランスさせるために、クラ ィォスタツトへの正確な熱侵入量と、クライオスタツトを含めた装置全体の冷却能力と を即座に把握する必要が生じる。
[0014] しかし、液面計を用いる従来技術では、ヘリウムガスの凝縮の状態を把握するには 比較的長い時間を要する。そのため、クライオクーラの組み込み作業の質や、新たに 組み込んだクライオクーラがクライオスタツトへの熱侵入量に対して適正な冷却能力 を有して!/、る力否かを即座に判定することができな!/、。
[0015] また、特許文献 3に開示された技術では、クライオスタツトへの熱侵入量を正確に測 定できても、クライオスタツトに組み込んだ状態でのクライオクーラの冷却能力及び装 置全体の冷却能力やその取り付け作業の品質を評価する手段を有していない。また 、クライオクーラの冷却能力の経時的劣化に対応して、ヘリウム消費を抑制することは 考慮されていない。また、製造過程'医療サイト設置時'日常の可動時の管理運用に つ!ヽては考慮されて ヽな 、。
[0016] また、クライオスタツトを含めた装置全体の冷却能力は、稼動状況、環境により変化 する。特許文献 3に開示された技術では、クライオスタツトを含めた装置全体の冷却 能力を即座に把握できないため、保守、点検のタイミングを知ることは未解決の課題 として残されている。
[0017] 本発明は上記問題に鑑みてなされたものであり、本発明の目的は、装置の状況や 環境等によらずに、クライオスタツトへの熱侵入量とクライオクーラの冷却能力を適正 にバランスさせ、冷媒の消費を実質ゼロにすることである。
課題を解決するための手段
[0018] 上記課題を解決するため、本発明は、静磁場を発生するための超電導コイルおよ び該超電導コイルを冷却するための冷媒を内包するクライオスタツトと、前記クライオ スタツトに組み込まれて気化した前記冷媒を再凝縮させるクライオクーラと、前記クラ ィォスタツトに熱量を与えるヒータと、前記冷媒が気化したガスを外部に排出するパイ プと、を有する超電導磁石を備える磁気共鳴イメージング装置において、前記パイプ に接続されて該パイプ内を流れるガスを一定圧力に制御してガス流量を計測するガ ス流量計測装置により計測されたガス流量に基づ 、て、前記ガスの排出を低減する ように前記ヒータの発熱量を制御する発熱量制御部を備えることを特徴とする磁気共 鳴イメージング装置を提供する。
[0019] また、上記課題を解決するため、本発明は、静磁場を発生するための超電導コイル および該超電導コイルを冷却するための冷媒を内包するクライオスタツトと、前記クラ ィォスタツトに組み込まれて気化した前記冷媒を再凝縮させるクライオクーラと、前記 クライオスタツトに熱量を与えるヒータと、前記冷媒が気化したガスを外部に排出する パイプと、を備える超電導磁石において、前記ノイブに接続されて該パイプ内を流れ るガスを一定圧力に制御してガス流量を計測するガス流量計測装置により計測され たガス流量に基づ ヽて、前記ガスの排出を低減するように前記ヒータの発熱量を制 御する発熱量制御部を備えることを特徴とする超電導磁石を提供する。 [0020] また、上記課題を解決するため、本発明は、静磁場を発生するための超電導コイル および該超電導コイルを冷却するための冷媒を内包するクライオスタツトと、前記クラ ィォスタツトに組み込まれて気化した前記冷媒を再凝縮させるクライオクーラと、前記 クライオスタツトに熱量を与えるヒータと、前記冷媒が気化したガスを外部に排出する パイプと、を有する超電導磁石を備える磁気共鳴イメージング装置において、冷媒の 蒸発を低減する冷媒蒸発低減方法であって、前記パイプ内を流れる前記冷媒ガスの ガス圧力を計測するステップと、前記計測されたガス圧が所定のガス圧となるように前 記冷媒ガスのパイプ内流量を制御するステップと、前記パイプ内を流れるガス流量を 計測するステップと、前記計測されたガス流量に基づいて、前記ヒータの発熱量を制 御するステップと、を備えることを特徴とする冷媒蒸発低減方法を提供する。
[0021] また、上記課題を解決するため、本発明は、静磁場を発生するための超電導コイル および該超電導コイルを冷却するための冷媒を内包するクライオスタツトと、前記冷媒 が気化したガスを再凝縮させるためのクライオクーラと、前記冷媒が気化したガスを前 記クライオスタツトから排出するパイプと、を有する超電導磁石を備える磁気共鳴ィメ 一ジング装置において、前記クライオクーラに必要な冷却能力を算出する冷却能力 算出方法であって、前記パイプ内を流れる前記冷媒ガスのガス圧力を計測するステ ップと、前記計測されたガス圧が所定のガス圧となるように前記冷媒ガスのパイプ内 流量を制御するステップと、前記パイプ内を流れるガス流量を計測するステップと、前 記計測されたガス流量に基づいて前記クライオスタツトへの熱侵入量を求めるステツ プと、前記熱侵入量に基づいて前記クライオクーラの冷却能力を算出するステップと 、を備えることを特徴とする冷却能力算出方法を提供する。
発明の効果
[0022] 本発明によれば、クライオスタツトへの熱侵入量を即座に正確に把握することができ る。これにより、装置の状況や環境等によらずに、クライオスタツトへの熱侵入量とクラ ィォクーラの冷却能力を適正にバランスさせ、冷媒の消費を実質ゼロにすることがで きる。
[0023] 上記本発明の基本的効果は、以下の具体的場面では、それぞれ以下のような具体 的効果を有することになる。即ち、 (1)医療施設に設置されたクライオスタツトの熱侵入量とクライオクーラの冷却能力と を適正にバランスさせ、冷媒の消費を実質ゼロにすることができる。
(2)超電導磁石の輸送やタエンチなどの原因により、クライオスタットへの熱侵入量が 変化した場合でも、その変化を定量的に把握して、適正な冷却能力を有するクライオ クーラを組み合わせ、冷媒の消費を実質ゼロにすることができる。
(3)医療施設で用いられる種々の撮像法によるクライオスタツトの熱侵入量を定量的 に把握して、適正な冷却能力のクライオクーラを組み合わせ、冷媒の消費を実質ゼロ にすることができる。
(4)クライオスタツトの熱侵入量とクライオクーラの冷却能力とを定期的に計測し、装 置全体が適正な冷却能力で運転されて!、るか否かを判定し、否の場合の是正処置 を実施することで、超電導磁石の冷媒量を安定なレベルに維持し運転することができ る。
[0024] また、本発明によれば、クライオスタツトへの熱侵入量とクライオスタツトを含めた装 置全体の冷却能力とを即座に把握し、作業者または保守管理者に提示できる。 発明を実施するための最良の形態
[0025] 以下、本発明の実施の形態を添付図面に基づいて説明する。尚、発明の実施の形 態を説明するための全図において、同一機能を有するものは同一符号を付け、その 繰り返し説明は省略する。
[0026] (第一の実施形態)
本発明の第一の実施形態を説明する。本実施形態は、ヘリウム容器内圧力を一定 に制御して、ヘリウム容器力 のヘリウムガス流出量を計測することにより、ヘリウム容 器への熱侵入量を正確に求める形態である。そして、この求められた熱侵入量を上 回る冷却能力を有する最適なクライオクーラを選択して超電導磁石に組み込むこと により、超電導磁石の固体差に対応して最適な冷却能力を有するクライオ系を構成 する。以下、図 1〜図 5に基づいて本実施形態を詳細に説明する。
[0027] 最初に、本実施形態の全体構成の概要を図 1に基づいて説明する。図 1は本発明 が適用された超電導磁石を用いた超電導 MRI装置の全体構成を示す図である。な お、本実施形態では、図 1に示すように開放型の超電導磁石を用いた所謂オープン 超電導 MRI装置の場合を例に挙げて説明する。しかし、水平磁場を発生する円筒 形状の超電導磁石を用いた所謂クローズ超電導 MRI装置でも良 ヽ。
[0028] このオープン超電導 MRI装置の静磁場を発生する開放構造の超電導磁石 101は 被検体 102が配置される撮影空間を挟んで、上クライオスタツト 103と下クライオスタ ット 104とから構成される。そのため、撮影空間の前後左右は大きく開放された構造と なる。上クライオスタツト 103と下クライオスタット 104とは細い連結管 105で接続され、 上下クライオスタツト 103、 104への液体へリウムの供給や磁石の運転状態などをモ ユタする複数のセンサ回路が組み込まれる。このように連結管 105を配することで、ク ライォスタツトを 2つに分割した超電導磁石 101でも、一個のクライオスタツトの超電導 磁石と同じように、気化したヘリウムガスを再凝縮して再利用する密閉型のクライオス タツトを構成して運転管理することが可能になる。センサ回路の出力信号は、上クライ ォスタツト 103の端子 106から取り出され、クライオ制御ユニット 107に入力される。更 に、上クライオスタツト 103の上部にはクライオクーラ 108が取付けられる。クライオク ーラ 108は、クライオクーラ 108に圧縮されたヘリウムガスを送る圧縮機ユニット 109 に接続される。また、上クライオスタツト 103の上部には、液体ヘリウムを注入する機 能やクライオクーラ 108の故障などで凝縮できなくなったヘリウムガスを外部に放出 する機能を有するサービスポート 110が取付けられる。サービスポート 110の先端に は後で詳述するヘリウムガス計測ユニット 111が接続される。
[0029] 超電導磁石 101の内側には勾配磁場を発生する傾斜磁場コイル 112が取付けら れる。この傾斜磁場コイル 112は超電導磁石 101の開放的な構造を妨げることがな いように平板構造のコイルが用いられる。上下一対のコイルによって、互いに直交す る 3軸方向に磁場勾配を生じさせる x、 y、 zのコイル(図では区別されてない)が積層 される。例えば、上 zコイルと下 zコイルとに電流が印加されると、上 zコイルは超電導 磁石 101の発生する磁束と同じ向きの磁束を発生し、下 zコイルはそれとは 180度向 きの異なる磁束を発生する。この結果、被検体 102が配置される撮影空間の垂直軸( z軸)の上から下に向けて磁束密度が徐々に少なくなる勾配磁場が作られる。同様に 、 Xコイルも yコイルもそれぞれ X軸、 y軸に沿って超電導磁石 101の発生する磁束密 度に勾配を付与する。この傾斜磁場コイル 112の Xコイル、 yコイル、 zコイルにそれぞ れ独立して所望の時間だけ電流が流れるように傾斜磁場パワーアンプ 113が接続さ れる。
[0030] 傾斜磁場コイル 112の内側には高周波コイル 114が組込まれる。この高周波コイル 114も超電導磁石 101の開放的な構造を妨げることがな!ヽように平板構造のコイル が採用される。上下一対の高周波コイル 114は、高周波パワーアンプ 115より核スピ ンの共鳴周波数に対応する高周波電流が供給されて、被検体 102が配置される撮 影空間に核スピンを共鳴励起するために必要な高周波磁界を発生する。本実施形 態の場合では、例えば、 0. 7テスラの磁場強度で水素原子核が核磁気共鳴を起こす 29. 8メガヘルツが選ばれている。前述の傾斜磁場と、この高周波磁場とを組み合わ せ、被検体 102の特定部位の水素原子核スピンを選択的に共鳴励起し、歳差運動 する核スピンに三次元的な位置の情報を付与する。
[0031] 最も内側、即ち、被検体 102の検査部位の近傍に、 NMR信号を検出する検出コィ ル 116が置かれる。この検出コイル 116は前述の核スピンの歳差運動を電気信号と して効率よく検出する。電気信号に変換された NMR信号は高周波増幅ユニット 117 に入力され、増幅された後、コンピュータ処理に適したディジタル信号に変換処理さ れる。
[0032] 上述のクライオ制御ユニット 107、圧縮機ユニット 109、傾斜磁場パワーアンプ 113 、高周波パワーアンプ 115、及び高周波増幅ユニット 117は、コンピュータ 118にシス テム信号バスライン 119で接続される。コンピュータ 118内のパルスシーケンサ(不図 示)の制御信号により、システム信号バスライン 119を介して各ユニットの動作は制御 される。一方で、コンピュータ 118は、ディジタル信号に変換された MR信号を診断に 供するための画像等に変換処理してコンピュータ 118内のメモリ装置(図には示して ない)に保存し、また、ディスプレイ 120に表示する。更に、コンピュータ 118は、シス テム信号バスライン 119を介して各ユニットの動作状態を常時あるいは一定の間隔を おいて監視し、その状態の記録を掌るとともに、装置の動作管理情報をモデムや LA Nなどの通信制御装置 121を経由して遠隔監視センタ 123に送信する。遠隔監視セ ンタ 123はこれらの情報に基づいて遠隔監視を行う。一例として、クライオ制御ュ-ッ ト 107力らの信号〖こより、超電導磁石 101の液体へリウムの残量を示す値を、コンビュ ータ 118は、一定の時間間隔、例えば、朝一番に、メモリ内に記録し、その消費量を 計算して管理し、通信制御装置 121よりその情報を出力し、ディスプレイ 120にその 内容を表示する。
[0033] 次に、図 2を用いて超電導磁石 101の詳細構成を説明する。図 2は図 1に示したォ ープン MRI装置に用 ヽられる超電導磁石 101を詳細に示した静磁場方向に平行な 断面図である。本図において、上クライオスタツト 103と下クライオスタツト 104とには 磁場を発生する上超電導コイル 201と下超電導コイル 202とが収められて ヽる。上下 超電導コイル 201、 202の中心である直径約 40センチメートルの撮影空間 203では 、磁場強度 0. 7テスラ、その磁場均一度は 3ppm以下を達成している。本図ではそれ ぞれ、 1個の超電導コイルから構成される場合を示すが、通常は磁場強度や磁場均 一度の向上と漏洩磁場の強度を下げるために複数の超電導コイルを組合せて構成 される。目的の磁場均一度を達成するために本実施形態の超電導磁石 101では、 撮影空間 203に面する側に一対のシムプレート 204が配置される。このシムプレート 204内には複数のシムコイル(不図示)が組み込まれ、これらのシムコイルは電流を 供給されて、必要な補正磁場を発生する。本実施形態はさらに、シムプレート 204内 に複数の小鉄片(不図示)を組み込むことで、上下超電導コイル 201、 202が発生す る磁束分布を補正して、その磁場均一度を向上する方法を組み合わせる。
[0034] 上下超電導コイル 201、 202は、それぞれその周囲を液体ヘリウムを蓄える上ヘリ ゥム容器 205と下ヘリウム容器 206とに囲まれる。上ヘリウム容器 205と下ヘリウム容 器 206とは連結管 105で接続され、上ヘリウム容器 205と下ヘリウム容器 206とに同 時に液体ヘリウムが充たされる。また、連結管 105には上下超電導コイル 201、 202 を接続する超電導リード線や、後述のセンサ回路が配置される。
[0035] 上下ヘリウム容器 205、 206の外周には熱遮蔽板 207が組み込まれる。熱遮蔽板 2 07は熱伝導の良好な銅板やアルミ-ユーム板で、その厚さを例えば 2ミリメートルに 構成される。上下ヘリウム容器 205、 206への輯射熱侵入防ぐため、熱遮蔽板 207の 外側にはアルミ蒸着で鏡面に仕上げたポリエチレンフィルムのスパーインシユレータ 208が隙間なく貼り付けられる。
[0036] 最外部には 15ミリメートル厚のステンレススチールで作られた真空容器 209が設け られる。真空容器 209と、上ヘリウム容器 205、下ヘリウム容器 206および連結管 10 5との間隙は真空層であり、それぞれ熱伝導率の低いガラス繊維強化プラスチック (F RP)で作られた複数の荷重支持棒 (不図示)で固定される。撮影空間 203をできるだ け広く確保するため、内側の真空層は極力狭く形成され、そこに熱遮蔽板 207とスパ 一インシユレータ 208とが組み込まれる。上ヘリウム容器 205には液体ヘリウム液面を 計測する液面センサ 210、温度センサ 211、ヒータ 212が組み込まれ、その信号線は 端子 106より外部に出力できるよう接続される。また、クライオ制御ユニット 107はヒー タ 212用の電源部が内蔵されており、クライオ制御ユニット 107によって直接的にこの 電源部が制御されることにより、ヒータ 212の発熱量が制御される。
[0037] また、上ヘリウム容器 205には、液体ヘリウムの注入と、上下ヘリウム容器 205、 20 6で気化したヘリウムガスの外部への放出のためのサービスポート 110が取付けられ る。サービスポート 110には液体ヘリウム注入時等に手動で開閉できるバルブ 213と 、内部力もの気化したヘリウムガスを外部に放出し、外気が上ヘリウム容器 205に逆 流するのを防止する一方向性バルブ 214との二つのバルブが組み込まれる。
[0038] 更に、上ヘリウム容器 205の上部中央にはクライオクーラ挿入孔 215が設けられ、ク ライォクーラ 108の先端が組込まれている。圧縮機ユニット 109から圧縮されたへリウ ムガスが印加されるようにクライオクーラ 108の注入ポート 216に接続される。クライオ クーラ 108に組み込まれているディスプレーサ(不図示)の往復運動に同期して、圧 縮されたヘリウムガスはディスプレーサ内の蓄冷材を移動する過程で膨脹し、その温 度を低下させる。膨張したヘリウムガスは排気ポート 217より圧縮機ユニット 109に戻 され、再び圧縮されて循環するように配管される。本実施形態では、クライオクーラ 10 8は 2段のディスプレーサを有し、 1段目のディスプレーサ内には鉛玉の蓄冷材が詰 められ、 1段目のディスプレーサのアウターケース 218は 50度ケルビン温度まで冷却 される。 2段目のディスプレーサ内にはホロビゥム銅化合物(HoCu2)の蓄冷材が詰 められ、 2段目のディスプレーサのアウターケース 219は 3. 7度ケルビン温度にまで 冷却される。
[0039] 一段目のディスプレーサのアウターケース 218は上下ヘリウム容器 205、 206の外 周を覆う熱遮蔽板 207に熱接触するよう配置される。この熱接触では、一段目のディ スプレーサのアウターケース 218と熱遮蔽板 207との接触面間に熱伝導の良好な材 料、例えばインジユーム線 (不図示)を嚙合せることで良好な熱伝導を得る。二段目 のディスプレーサのアウターケース 219は上ヘリウム容器 205のクライオクーラ揷入孔 215の中に配置され、気化したヘリウムガスを直接冷却する様に構成される。本実施 形態では、二段目のディスプレーサのアウターケース 219が直接ヘリウムガスを冷却 する方法を用いているが、熱伝導の良好なインジユーム材等を介して上ヘリウム容器 205の一部を冷却することでヘリウムガスを液ィ匕する間接的な方法でもよい。
[0040] ここで、クライオクーラ 108のヘリウムガスを液ィ匕する割合は上下ヘリウム容器 205、 206から気化するヘリウムガス量と等しいことが理想である。すなわち、クライオクーラ 108の冷却能力と上下ヘリウム容器 205、 206への熱侵入量とが等しくすることが望 ましい。本実施形態では、クライオクーラ 108として上下ヘリウム容器 205、 206への 熱侵入量より充分に高い冷却能力を有するものを用い、さらに、上ヘリウム容器にヒ ータ 212を備え、クライオクーラ 108の冷却能力の過剰分をヒータ 212の発熱量で相 殺する。
[0041] 次に、図 3〜図 5を用いてヘリウム容器への熱侵入量を計測する手段及び方法の 詳細を説明する。
(ヘリウムガス流量の計測)
最初に図 3を用いてヘリウムガス計測ユニット 111の全体構成を説明する。図 3は、 図 1に示したヘリウムガス計測ユニット 111の一例の全体構成を表す図である。サー ビスポート 110に T型ジョイント 301が取付けられる。 T型ジョイント 301の一方はゴム ホース 302を介してレギユレータ 303に接続され、他方はゴムホース 302を介して圧 力センサ 304に取り付けられる。また、圧力センサ 304の出力信号はコントロール回 路 305の入力端に入力され、コントロール回路 305の出力信号はレギユレータ 303の 制御部 306に入力される。また、レギユレータ 303の他方の口金 307はゴムホース 30 2を介して流量計 308に接続される。流量計 308には計測した信号を流量に換算し て表示する流量表示計 309が接続される。また、コントロール回路 305と流量表示計 309とは、システム信号バスライン 119を介してコンピュータ 118に接続され、制御信 号及び各種計測情報の送受信を行う。 [0042] 次に、図 4を用いてレギユレータ 303の詳細構成を説明する。レギユレータ 303の内 部には、図 4に示すように、ニードル 401とその-一ドル 401を内部に収容して嵌合 する台座 402とが組み込まれる。ニードル 401は、円錐形状の先端部と円柱形状の 胴体部とを有する。台座 402は、ニードル 401の先端部と嵌合する円錐形状の凹部 と-一ドル 401の胴体部と嵌合する円柱形状の空隙部を有する。ニードル 401の胴 体部は、 O—リング 403でシールされた側面が台座 402の空隙部側面に沿って上下 に摺動可能なように制御部 306に繋がる。 O—リング 403は、台座 402の円柱形状空 隙部の側面凹部に組み込まれて固定される。制御部 306が-一ドル 401の円錐形 状先端部を上下移動させて台座 402の円錐形状凹部との間隙を変化させることで、 入り口金 404から出口金 307へのガス流量を変化させる。
[0043] 上記図 3、図 4に示す構成により、上下ヘリウム容器 205、 206内ガス圧が常に所定 の一定値となるように制御される。具体的には、コントロール回路 305が、圧力センサ 304からの入力信号が常に所定の一定値を保つようにレギユレータ 303の制御部 30 6を制御する。例えば、レギユレータ 303内のガス流量が大きくなり、供給側である入 口金 404の圧力が所定値よりも低下すると、その圧力値は圧力センサ 304の出力信 号の変化となってコントロール回路 305の入力端子に伝達される。コントロール回路 3 05の出力信号はレギユレータ 303の制御部 306に印加され、ニードル 401を下降さ せ、ニードル 401の円錐形状先端部と台座 402の円錐形状凹部との間隙を狭めるよ うに制御する。これで、ガス流量が減少し供給側の上下ヘリウム容器 205、 206内の ガス圧力が所定値に戻る。逆に、ガス流量が小さくなつて、供給側である入口金 404 の圧力が所定値より増大すると、コントロール回路 305は、ニードル 401を上昇させて 円錐形状先端部と台座 402の円錐形状凹部との間隙を広げるように制御する。これ により、ガス流量が増大し供給側の上下ヘリウム容器 205、 206内のガス圧力が低下 して所定値に戻る。
[0044] つまり、図 3、図 4に示す構成は、上下ヘリウム容器 205、 206内のガス圧を常に所 定の一定値に保持するためのフィードバック制御ループとみなすことができる。この 制御ループと!/、う観点で図 3と図 4に示す構成を再表現すると図 5の様になる。ゴムホ ース 302を流れるガスの流量と圧力とを媒体として、圧力センサ 304、コントロール回 路 305、及びレギユレータ 303がフィードバック制御ループを構成する。そして、コント ロール回路 305や制御部 306の速度を調整し、ニードル 401の上下運動のレスポン スを適正に設定することで、ガスの圧力を極めて正確に常に所定の一定値になるよう に制御する。以上のように制御された一定圧力の下で、流量計 308によりガス流量が 検出され、その信号は流量に換算され流量表示計 309に表示される。
[0045] 図 3〜図 5に示す構成によりガス圧を一定に保持してガス流量を計測する実例は次 の通りである。即ち、超電導磁石 101のサービスポート 110に図 3に示すヘリウムガス 計測ユニット 111の接続を実施した後、手動バルブ 213をオープンするとともに、一 方向性バルブ 214の出力を完全に閉じる。この換作により、上下ヘリウム容器 205、 2 06内で気化するヘリウムガスは手動バルブ 213、レギユレータ 303、及び流量計 308 を経由して外部に放出される。次に、操作者はコントロール回路 305に備えられた入 力手段 (不図示)を介して圧力値を設定する。例えば 760mmAqに設定する。コント ロール回路 305は圧力センサ 304からの入力信号が常に設定された圧力値 (ここで は、 760mmAq)になるようにレギユレータ 303の制御部 306を制御する。このように して、上クライオ容器 205を 760mmAqの一定圧力下に保ったまま、操作者は気化 したヘリウムガス量を流量表示計 309で読み取ることができる。あるいは、システム信 号バスライン 119を経由してコンピュータ 118が設定されたガス圧とそのときに計測さ れたガス流量とを読み取り、コンピュータ 118内のメモリ装置に保存したり、ディスプレ ィ 120に表示したりしてもよい。
[0046] 以上の様にして、超電導磁石 101のサービスポート 110にヘリウム計測ユニット 11 1を接続することで、上ヘリウム容器 205の圧力を変化させることなく常に一定に保持 でき、上下ヘリウム容器 205、 206で気化したヘリウムガス流量を正確に計測すること ができる。
[0047] 以上がガス圧を一定に保持してガス流量を計測するための各部の構成及び動作の 説明である。ガス圧を一定に保持してガス流量を計測するための制御フローを纏める と図 6の様になる。図 6は、この制御フローを示すフローチャートである。以下、図 6の 制御フローを構成する各ステップを詳細に説明する。
[0048] ヘリウムガス計測ユニット 111にヘリウムガスが供給される(ステップ 601)。具体的 には、超電導磁石 101のサービスポート 110にヘリウム計測ユニット 111を接続した 後、操作者が手動バルブ 213をオープンするとともに、一方向性バルブ 214の出力 を完全に閉じる。
[0049] 操作者が一定とすべき圧力値を設定する (ステップ 602)。具体的には、コントロー ル回路 305に圧力値を設定する。例えば 760mmAqを設定する。
[0050] ガス圧センサ 304は、上下ヘリウム容器 205、 206内ガス圧を計測する(ステップ 60 3)。具体的には、ゴムホース 302を流れるガスの圧力をガス圧センサ 304が計測する 。計測されたガス圧は、コントロール回路 305に入力される。
[0051] コントロール回路 305は、ステップ 603で計測されたガス圧がステップ 602で設定さ れたガス圧の設定値よりも大き!/、か否か判別する (ステップ 604)。計測値が大きけれ ばステップ 605に移行し、大きくなければステップ 606に移行する。
[0052] コントロール回路 305は、ガス圧を低下させる(ステップ 605)。具体的には、コント口 ール回路 305は、レギユレータ 303の-一ドル 401を上昇させて円錐形状先端部と 台座 402の円錐形状凹部との間隙を広げるように制御する。これにより、ゴムホース 3 02を流れるガスのガス流量が増大して、供給側の上下ヘリウム容器 205、 206内の ガス圧が減少して設定値に近づく。この後、ステップ 603にもどり、コントロール回路 3 03は、再度ガス圧を計測する。
[0053] 一方、コントロール回路 305は、ステップ 603で計測されたガス圧がステップ 602で 設定されたガス圧の設定値よりも大きくないと判別された場合、今度は、ステップ 602 で設定されたガス圧の設定値よりも小さ 、か否か判別する (ステップ 606)。計測値が 小さければステップ 607に移行し、小さくなければガス圧が設定値に等 、ことを意 味するため、ガス圧が設定値に等しくなつたことを示す信号をコンピュータ 118に送 信し、ステップ 608に移行する。
[0054] コントロール回路 305は、ガス圧を増大させる(ステップ 607)。具体的には、コント口 ール回路 305が、レギユレータ 303の-一ドル 401を下降させて円錐形状先端部と 台座 402の円錐形状凹部との間隙を狭めるように制御する。これにより、ゴムホース 3 02を流れるガスのガス流量が減少して、供給側のヘリウム容器(205、 206)内のガス 圧が増大して設定値に近づく。この後、ステップ 603にもどり、コントロール回路 305 は、再度ガス圧を計測する。
[0055] 上下ヘリウム容器 205、 206内のガス圧がステップ 602で設定されたガス圧の設定 値と等しい状態となったことをコンピュータ 118から通知されると、流量計 308は、ガス 流量を計測する(ステップ 608)。具体的には、ゴムホース 302を流れるガス流量を流 量計 308により取得し、流量表示計 309に表示する。さら〖こ、システム信号バスライン 119を経由してコンピュータ 118が設定されたガス圧とそのときに計測されたガス流 量とを読み取り、コンピュータ 118内のメモリ装置に保存したり、ディスプレイ 120に表 示したりしてちよい。
[0056] コントロール回路 305は、ガス流量の計測を終了する力否かを判断する (ステップ 6 09)。継続する場合はステップ 603に戻って、上記ステップ 603〜ステップ 608を繰り 返す。このような制御フローにより、設定された圧力にガス圧を保持してガス流量を計 測することが可能になる。
[0057] (ヘリウム容器への熱侵入量の推定)
次に、図 7に基づいてヘリウム容器に侵入する熱量の推定について説明する。図 7 は、前述の図 1〜図 5に示す構成を、熱収支の観点力も再表現した構成図である。図 3に示すように、超電導磁石 101のサービスポート 110にヘリウム計測ユニット 111を 接続することで、上ヘリウム容器 205内圧力を変化させることなぐ上下ヘリウム容器 2 05、 206で気化したヘリウムガス量を正確に計測することができる。この様な構成に おいて、上下ヘリウム容器 205、 206に侵入する熱量 Aと上ヘリウム容器 205に取付 けたヒータ 212の発熱量 Bとの和がクライオクーラ 108の冷却能力 Cに等しいときは、 液体ヘリウムは気化することがない。ここで、ヒータ 212とクライオクーラ 108とを停止 すると、上ヘリウム容器 205の上部には伝導や輻射による熱侵入 Aにより気化したへ リウムガスが蓄えられる。この蓄えられたヘリウムガスは、サービスポート 110からレギ ユレータ 303を経由して外部に放出される。その際、圧力センサ 304とコントロール回 路 305とレギユレータ 303とはゴムホース 302内を流れるヘリウムガスを介して図 5に 示すフィードバック制御ループを構成するため、ガス圧が一定になるように制御され る。このようにして、上ヘリウム容器 205内圧力を変化させることなく一定に保持して、 ヒータ 212とクライオクーラ 108とを停止した際に上ヘリウム容器 205に蓄えられたへ リウムガス流量を流量計 308で測定することができる。
[0058] 上記のように一定圧力の下で流量計 308で取得され流量表示計 309に表示される ヘリウムガス流量を用い、上下ヘリウム容器 205、 206への熱侵入量を計算する。こ の計算は、毎分放出されるヘリウムガス量、液体ヘリウムの潜熱、液体ヘリウム容器内 での液体ヘリウムとヘリウムガスとの占める容積変化による圧力を校正して、放出され るヘリウムガス量力も計算される熱量として正確に計算で求めることができる。すなわ ち、毎分放出されるヘリウムガス量を 0°C1気圧で校正して LHe (リットル Zmin)、液 体ヘリウムの蒸発潜熱を HHe (kcal/kg)、ヘリウムガスの密度を D He (g/m3)とする
G
と、この放出されるヘリウムガス量力も計算される熱量 CV(W)は以下の(式 1)で表さ れる。
CV=LHe X D He X HHe X 10"3 X 4. 2/60 (式 1)
G
ここで、 lcal = 4. 2J、 lj/sec = lWである。
[0059] ヘリウムの物理 Z化学定数は以下の通りである。
液体へリウムの蒸発潜熱 HHe: 5. 50kcal/kg
ヘリウムガスの密度 D He : 178gZm3 (0°C、 1 気圧)
G
従って、超電導磁石より消費された液体へリウムが 0°C1気圧の下で 1.0リットル Zmi n放出されたとすると、熱量 CV、すなわち、熱侵入量は以下のとおり求められる。
CV= 1. 0リットル ZminX 178g/m3 X 5. 5kcal/kg X 10"3 X 4. 2j/cal/60 =0. 069W ( lj/sec = lW)
[0060] また、例えば、図 1に示す MRI装置の場合は、上下ヘリウム容器(205, 206)の容 積はそれぞれ 370リットルであり、一例として、ガス圧 760mmAqに設定保持された 状態で毎分 5リットルのヘリウムガスが放出される場合の上下ヘリウム容器への進入 熱量は 343ミリワットと求められる。このように、気化したヘリウムガスは圧力によって容 易にその体積が変化するので、一定圧力で超電導磁石カゝら排出されるヘリウムガス 流量を測ることが正確な熱量を計算するうえで必須となる。
[0061] (クライオクーラの選択)
最後に、前述の様にして正確に求められたヘリウム容器への熱侵入量に対して充 分な冷却能力を有するクライオクーラの選択について説明する。例えば、容量 740リ ットルのヘリウム容器を有する超電導磁石を何もせずに放置した状態でガス圧を 760 mmAqに設定保持しているときのヘリウムガスの放出量が 1分間あたり 5リットルの場 合、そのヘリウム容器への侵入熱量は 343ミリワットと計算される。この状態で更に、 撮影のための傾斜磁場や高周波磁場を駆動させた時に放出するヘリウムガスが 0. 5 リットル増加して、全体のヘリウムガスの放出量が 5. 5リットルとなった場合は、 35ミリ ワットが撮影時に増加する熱侵入量で、熱侵入量の総量は 378ミリワットと求めること ができる。
[0062] 上記の様な熱侵入量を有する超電導磁石に組み込むべきクライオクーラ 108には 、組み合わせ時に発生する損失、例えば 50ミリワット、更に、クライオクーラの次の定 期保守の期間までに経時変化で劣化する冷却能力、例えば、 70ミリワットを考慮して 、 378ミリワットに 120ミリワットをプラスした約 500ミリワット以上の冷却能力が必要に なると判断される。このような冷却能力を有するクライオクーラ 108を選択して超電導 磁石に組み合わせることで、安定してヘリウムガスを液ィ匕して、安定して超電導コイル を冷却する液体ヘリウムをヘリウム容器内に蓄えることができる。
[0063] 上記の様に選択された冷却能力を有するクライオクーラ 108を超電導磁石に組み 込んだ当初は、クライオクーラ 108の冷却能力がクライオスタツトへの熱侵入量を上 回る。このため、ヒータ 212による発熱量を増加させてクライオクーラ 108の冷却能力 Cが上下ヘリウム容器 205、 206に侵入する熱量 Aとヒータ 212の発熱量 Bとの和に 等しくなるようにする(C=A+B)。その後の経時変化によるクライオクーラ 108の冷 却能力の低下に応じて、ヒータ 212による発熱量を制御して常にクライオクーラ 108 の冷却能力 Cが上下ヘリウム容器 205、 206に侵入する熱量 Aとヒータ 212の発熱量 Bとの和に等しくなるようにする。
[0064] このヒータ 212の発熱量 Bの制御は、例えば、次の様に行う。前述の図 3の構成を 有するヘリウムガス計測ユニット 111を用いて、設定圧力値の下で上下ヘリウム容器 205、 206からのヘリウムガス流量を求める。ヘリウムガス流量がゼロであれば、クライ ォクーラ 108の冷却能力 Cが上下ヘリウム容器 205、 206に侵入する熱量 Aとヒータ 2 12の発熱量 Bとの和に等しい状態であることを意味する。一方、上下ヘリウム容器 20 5、 206からのヘリウムガス流量がゼロでなければ、クライオクーラ 108の冷却能力 C が上下ヘリウム容器 205、 206に侵入する熱量 Aとヒータ 212の発熱量 Bとの和より小 さい状態であることを意味する(Cく A+B)。このヘリウムガス流量がクライオクーラ 1 08の冷却能力の低下分であり、その低下分に相当する上下ヘリウム容器 205、 206 への仮想的な熱侵入量を求めることができる。そこで、このような状態になったときに ヒータ 212の発熱量 Bを制御して、クライオクーラ 108の冷却能力 Cを上下ヘリウム容 器 205、 206に侵入する熱量 Aとヒータ 212の発熱量 Bとの和に等しくさせる。つまり 、ヒータ 212の発熱量 Bを上記仮想的な熱侵入量分減少させる。そして、ヒータ 212 の発熱量 Bをゼロにしても、クライオクーラ 108の冷却能力 Cが上下ヘリウム容器 205 、 206への熱侵入量 Aを下回る(Cく A)直前に、クライオクーラ 108の保守又は交換 を行うようにする。具体的には、ヒータ 212の発熱量 Bの所定の閾値 Bにおいて、 C
0
<A+Bとなった場合、その旨、または、クライオクーラの保守点検が必要であること
0
を作業者に通知し、保守交換を促す。
[0065] さらに、コンピュータ 118が、クライオ制御ユニット 107及びシステム信号バスライン 1 19を経由してヒータ 212の発熱量を読み取ってメモリ装置に保存したり、ディスプレイ 120に表示したりしてもよい。また、コンピュータ 118が、時系列に保存された発熱量 データを後で読み出して、その時間的変化力もクライオクーラ 108の保守又は交換 のタイミングを予測したり、ディスプレイ 120にその時間的変化を表示したりしてもよい
[0066] 以上が、ヘリウム容器への熱侵入量を正確に求めて、必要な冷却能力を有するクラ ィォクーラを選択し、選択されたクライオクーラを組み込んで冷媒の消費を実質的に 0にするよう制御しながら稼動させるための処理の説明である力 この処理を纏めると 図 8の様になる。図 8は、本処理の処理フローを示すフローチャートである。以下、図 8の処理フローを構成する各ステップを詳細に説明する。ここでは、保守点検の要否 を判断する発熱量の閾値 B力^である場合を例にあげて説明する。
0
[0067] 上下ヘリウム容器 205、 206からのヘリウムガス流量が計測される(ステップ 801)。
この計測は、ヒータ 212とクライオクーラ 108とを停止して行う。好ましくは、ヘリウム容 器への熱侵入量が最大となる状態で、例えば、拡散強調画像を取得するためのシー ケンスや、 EPIシーケンスを実行しながらヘリウムガス流量を計測する。ヘリウムガス 流量計測の詳細は前述の通りである。
[0068] ステップ 801で計測されたヘリウムガス流量に基づいて、上下ヘリウム容器 205、 2 06への熱侵入量が求められる(ステップ 802)。
[0069] ステップ 802で求めた上下ヘリウム容器 205、 206への熱侵入量に基づいて、クラ ィォクーラに必要な冷却能力が決定され、当該冷却能力を有するクライオクーラが選 択される(ステップ 803)。
[0070] ステップ 803で選択された冷却能力を有するクライオクーラ 108が超電導磁石に組 み込まれる (ステップ 804)。そして、選択されたクライオクーラ 108の過剰冷却能力に 見合う分をヒータ 212の発熱量として設定される。この様に組み合わされた状態で、ク ライォクーラ 108の冷却能力 Cがヘリウム容器に侵入する熱量 Aとヒータ 212の発熱 量 Bとの和に等しくなり、液体ヘリウムの気化が抑制される。この状態で暫く MRI装置 を運転して、実際の撮影を行いながら、以下のステップ 805〜ステップ 809が繰り返 される。
[0071] 一定時間後にヘリウムガス流量が計測される (ステップ 805)。具体的には、クライオ クーラ 108とヒータ 212とを稼動させながら、前述の図 3の構成を有するヘリウムガス 計測ュ-ット 111を用いて、設定圧力値の下でヘリウム容器からのヘリゥムガス流量 が求められる。
[0072] ヘリウムガス流量の有無が判別される(ステップ 806)。ヘリウムガス流量が有ればス テツプ 807に移行する。無ければステップ 805に戻ってヘリウムガス流量計測が繰り 返される。
[0073] ヒータ 212の発熱量が制御される (ステップ 807)。一般的には経時変化によりクライ ォクーラ 108の冷却能力が低下しているので、クライオクーラ 108の冷却能力 Cが上 下ヘリウム容器 205、 206に侵入する熱量 Aとヒータ 212の発熱量 Bとの和に等しくな るようにヒータ 212の発熱量 Bが減少される。具体的には、ステップ 805で計測された ヘリウムガス流量に基づいて、上下ヘリウム容器 205、 206への仮想的な熱侵入量が 評価される。この仮想的な熱侵入量はクライオクーラ 108の冷却能力の低下分に相 当する。この仮想的な熱侵入量分だけヒータ 212の発熱量 Bが低減される。
[0074] ヒータ 212の発熱量がゼロか否かが判別される(ステップ 808)。ゼロであればその 旨を表示するとともにステップ 809に移行し、ゼロでなければステップ 805に移行する
[0075] ヒータ 212の発熱量が 0の場合、クライオクーラ 108の冷却能力 Cが上下ヘリウム容 器 205、 206への熱侵入量 Aを下回る程に低下したことを意味するため、作業者は、 クライオクーラ 108の保守 ·交換を行う。保守 ·交換後は、必要に応じて再度ステップ 801から始める(ステップ 809)。
[0076] このような処理フローにより、適切な冷却能力を有するクライオクーラ 108を選択出 来ると共に、常にクライオクーラ 108の冷却能力 Cが上下ヘリウム容器 205、 206への 熱侵入量 Aを上回るように制御できる。さらに、クライオクーラ 108の冷却能力 Cが上 下ヘリウム容器 205、 206への熱侵入量 Aを下回った場合にも、適切なタイミングでク ライォクーラ 108の保守と交換とを行うことが出来る。
[0077] 以上が本実施形態の説明である。本実施形態によれば、ヘリウム容器への熱侵入 量を正確に求めることが可能になるので、ヘリウム容器への熱侵入量に応じて最適な 冷却能力を有するクライオクーラを選択することができる。この基本的効果により、へ リウム容器への熱侵入量とクライオクーラの冷却能力とを適正にバランスさせ、冷媒で ある液体ヘリウムの消費を長期に亘つて実質ゼロにすることが可能になる。また、ヘリ ゥム容器への熱侵入量が変化した場合でも、その変化を定量的に把握して、適正な 冷却能力を有するクライオクーラを組み合わせ、冷媒の消費を実質ゼロにすることが できる。また、医療施設で用いられる種々の撮像法によるへリウム容器の熱侵入量を 定量的に把握して、適正な冷却能力のクライオクーラを組み合わせ、冷媒の消費を 実質ゼロにすることができる。
[0078] 尚、本実施形態は超電導磁石単体においても同様に実施することができ、同様の 効果を得ることができる。
[0079] (第二の実施形態)
次に、本発明の第二の実施形態を説明する。本実施形態は、ヘリウムガス流量の 計測及びヒータの発熱量の制御を一定周期で行うと共に、クライオクーラの保守 '交 換を報知する形態である。本実施形態における MRI装置、ヘリウムガス流量の計測 及びヒータの発熱量の制御は、前述の第一の実施形態と同様であるので、これらの 詳細な説明は省略し、異なる点のみ以下に詳細に説明する。以下、図 1,図 3に基づ いて本実施形態を詳細に説明する。
[0080] 本実施形態では、図 1および図 3に示すように、超伝導磁石 101のサービスポート 1 10にヘリウム計測ユニット 111が常時接続される。バルブ 213及び一方向性バルブ 2 14は、それぞれ図示せぬ駆動部 (バルブ駆動部)及びこのバルブ駆動部を制御する 制御部 (バルブ制御部)を備える。そして、バルブ制御部は、コンピュータ 118に接続 されてコンピュータ 118の制御の下にバルブ駆動部を制御する。また、図 1に示すよ うにヘリウムガス計測ユニット 111は、コンピュータ 118に接続され、コンピュータ 118 力もの制御信号により動作すると共に、計測結果をコンピュータ 118に通知する。より 詳細には、図 3に示す様に、ヘリウムガス計測ユニット 111内のコントロール回路 305 と流量表示計 309とが、それぞれコンピュータ 118に接続され、コンピュータ 118から の制御信号により動作し、計測結果をコンピュータに通知する。例えば、コンピュータ 118からコントロール回路 305に圧力の設定値が入力され、流量表示計 309からコン ピュータ 118にガス流量値が通知される。また、ヒータ 212は、クライオ制御ユニット 1 07を介してコンピュータ 118に接続され、コンピュータ 118の制御の下にクライオ制 御ユニット 107を介してその発熱量が制御される。
[0081] このような構成において、コンピュータ 118は、バルブ 213をオープンするとともに、 方向性バルブ 214の出力を完全に閉じた後に、図 8に示す処理フローのステップ 80 5〜ステップ 808の処理を一定間隔で繰り返し行う様に、コントロール回路 305、流量 表示計 309、及びヒータ 212を制御する。その際、コントロール回路 305に設定した ガス庄、流量表示計 309から得られるガス流量、及びヒータ 212の発熱量を逐次ディ スプレイ 120に表示しても良い。そして、クライオクーラ 108の冷却能力 Cがヘリウム 容器への熱侵入量 Aを下回った場合に、ステップ 809でその旨を報知して操作者に 警告するともに、クライオクーラ 108の保守'交換を促す。例えば、ディスプレイ 120に 警告メッセージを表示したり、警報を鳴らしたりしても良い。一方、ステップ 805〜ステ ップ 808の処理を終えた際、クライオクーラ 108の冷却能力 Cがヘリウム容器への熱 侵入量 Aを上回っている場合は、上記ガス流量計測を終了すると共に、バルブ 213 を完全に閉じ、一方向性バルブ 214の出力をオープンにして計測前の状態に戻す。 [0082] 以上が本実施形態の説明である。本実施形態によれば、ヘリウム容器の熱侵入量 とクライオクーラの冷却能力とを定期的に計測し、装置全体が適正な冷却能力で運 転されて!ヽるカゝ否かを判定し、否の場合の是正処置の実施を操作者に促すことで、 超電導磁石の冷媒量を安定なレベルに維持し運転することが可能になる。
[0083] 尚、本実施形態は超電導磁石単体においても同様に実施することができ、同様の 効果を得ることができる。
[0084] (第三の実施形態)
次に、本発明の第三の実施形態を説明する。本実施形態は、遠隔監視により、ヘリ ゥムガス流量の計測及びヒータの発熱量の制御を一定周期で行うと共に、クライオク ーラの保守 ·交換の必要の有無を把握する形態である。本実施形態における MRI装 置、ヘリウムガス流量の計測及びヒータの発熱量の制御は、前述の第一の実施形態 と同様であるので、これらの詳細な説明は省略し、異なる点のみ以下に詳細に説明 する。以下、図 1に基づいて本実施形態を詳細に説明する。
[0085] 図 1に示すように、本実施形態のコンピュータ 118は、モデムや LANなどの通信制 御装置 121を経由して遠隔監視センタ 123に接続される。コンピュータ 118が通信制 御装置 121を介して MRI装置の動作管理情報を遠隔監視センタ 123に通知すること により、遠隔監視センタ 123において MRI装置の遠隔監視を行う。そして、遠隔監視 センタ 123からの制御情報がコンピュータ 118に送信される。前述の第二の実施形 態と同様に、ヘリウムガス計測ユニット 111は、コンピュータ 118を介して遠隔監視セ ンタ 123からの制御情報に従って制御されると共に、計測結果を遠隔監視センタ 12 3に通知する。より詳細には、遠隔監視センタ 123からコンピュータ 118を介してコント ロール回路 305に圧力の設定値が入力され、流量表示計 309からコンピュータ 118 を介してガス流量値が遠隔監視センタ 123に通知される。また、ヒータ 212の発熱量 はコンピュータ 118を介して遠隔監視センタ 123から制御される。
[0086] このような構成において、遠隔監視センタ 123は、コンピュータ 118を介して、図 8に 示す処理フローのステップ 805〜ステップ 808の処理 (遠隔監視処理)を定期的に繰 り返し行って、コントロール回路 305、流量表示計 309、及びヒータ 212を制御する。 その際、コントロール回路 305に設定したガス圧、流量表示計 309から得られるガス 流量、及びヒータ 212の発熱量を逐次遠隔監視センタ 123のディスプレイに表示して も良い。そして、ステップ 805〜ステップ 808の処理を終えた際、クライオクーラ 108 の冷却能力 Cがヘリウム容器への熱侵入量 Aを下回った場合に、その旨を報知して 遠隔監視センタ 123の管理者に警告する。例えば、ディスプレイに警告メッセージを 表示したり、警報を鳴らしたりしても良い。警告を受けた遠隔監視センタ 123の管理 者は直ちに MRI装置の所在地に向力つてクライオクーラ 108の保守'交換を行う。一 方、クライオクーラ 108の冷却能力 Cがヘリウム容器への熱侵入量 Aを上回っている 場合は、何もせず次回の遠隔監視処理を待つ。
[0087] 以上が本実施形態の説明である。本実施形態によれば、遠隔監視センタからの遠 隔監視により、 MRI装置の操作者を煩わせることなぐ 365日 24時間いつでもへリウ ム容器の熱侵入量とクライオクーラの冷却能力とを監視して、装置全体が適正な冷却 能力で運転されて ヽるカゝ否かを判定でき、否の場合の是正処置を早急に実施するこ とができるので、超電導磁石の冷媒量を安定なレベルに維持し運転することが可能 になる。
[0088] 尚、本実施形態は超電導磁石単体においても同様に実施することができ、同様の 効果を得ることができる。
[0089] (第四の実施形態)
次に本発明の第四の実施形態を説明する。本実施形態における MRI装置、へリウ ムガス流量の計測およびヒータの発熱量の制御は、基本的に上記各実施形態の 、 ずれ力と同様である。ただし、本実施形態のコンピュータ 118は、クライオクーラ 108 の冷却能力とクライオスタツト 101、 104のヘリウム容器 205、 206への熱侵入量とを 算出し、予め定められた適正範囲内力否かを判別し、判別結果を作業者に提示する 機能を有する。また、本実施形態では、ヒータ 212の発熱量ではなぐクライオクーラ 108の冷却能力とヘリウム容器 205、 206への熱侵入量との差を監視し、保守点検 のタイミングを抽出する。
[0090] 上述したように、クライオスタツト 103、 104は、熱遮蔽板ゃスパーインシユレータの 寸法や取り付け精度により個々の装置のヘリウム容器 205、 206への熱侵入量が異 なる。また、組み込むクライオクーラ 108にも個体差がある。このため、製造完了段階 で、そのヘリウム容器 205、 206への熱侵入量およびクライオクーラ 108の冷却能力 が許容範囲である力判別する必要がある。また、上述したように、クライオスタツト 101 、 104は、製造場所から設置する医療サイトへの輸送中の熱遮蔽板ゃスパーインシ ユレータの変位により、製造段階と医療サイトへの設置後との、ヘリウム容器への熱侵 入量およびクライオクーラ 108の冷却能力に差異が生じる。
[0091] このため、本実施形態では、上記各実施形態のクライオスタツト 101、 104が有する 、ヘリウム容器 205、 206から気化するヘリウムガス流量を正確に計測する機能を用 い、製造段階および医療サイト設置時のヘリウム容器 205、 206への熱侵入量およ びクライオクーラ 108の冷却能力を算出し、算出結果が許容範囲内であるか判別す る。判別結果は表示等の手段で作業者に通知する。作業者は、通知結果に基づき、 必要に応じて、対策を講じる。
[0092] 本実施形態のコンピュータ 118は、熱侵入量算出部と、冷却能力算出部と、装置状 態記録部と、グラフ作成部と、装置状態判別部と、状態監視制御部と、機器許容度判 定部と、を備える。
[0093] 熱侵入量算出部は、上記各実施形態と同様の手法で、ヘリウムガス計測ユニット 1 11が計測したヘリウムガス流量力 ヘリウム容器 205、 206の熱侵入量を算出する。 作業者から熱侵入量を算出する指示を受け付け、または、状態監視制御部からの指 示を受け付けると、ヒータ 212とクライオクーラ 108とを停止させ、第一の実施形態の ステップ 801の手法で計測を行い算出する。クライオクーラ 108が取り付けられてい ない場合は、ヒータ 212のみ停止させて計測する。
[0094] 冷却能力算出部は、クライオクーラ 108の冷却能力を算出する。クライオクーラ 108 の冷却能力は、上述のように、ヘリウムガス流量力^になるようヒータ 212の発熱量を 調整した際の、ヘリウム容器 205、 206への熱侵入量とヒータ 212の発熱量との合計 である。冷却能力算出部も、作業者からの指示、または、状態監視制御部からの指 示を受け付けると、熱侵入量の計測を行い、ヒータ 212の発熱量と合計し、算出する
[0095] 装置状態記録部は、熱侵入量算出部および冷却能力算出部がそれぞれ各時点で 算出したヘリウム容器 205、 206への熱侵入量およびクライオクーラ 108の冷却能力 を受け取り、受け取ったタイミングに対応づけてメモリ等の記録手段に保持する。本 実施形態では、記録単位を日単位とする。なお、製造完了時および医療サイトへの 据え付け時は、日付ではなぐ製造完了時および据付時を特定する情報に対応づけ て記録するよう構成してもよ 、。
[0096] グラフ作成部は、装置状態記録部が保持して!/、るデータを用い、冷却能力および 熱侵入量の少なくとも一方を時系列にプロットしたグラフを表示させるグラフ画面デー タを作成する。グラフの作成は、装置状態記録部にこれらのデータが格納されたタイ ミング、または、作業者力もの指示を受け付けたタイミングで行う。また、グラフ画面デ ータには、グラフとともに、グラフ表示された熱侵入量、冷却能力をの最新の値を数 値で表示させる。
[0097] 装置状態判別部は、クライオクーラ 108の冷却能力の余裕の度合いを示す裕度 (A llowance)を算出し、クライオクーラの冷却能力の余裕の有無を判別する。裕度は、 クライオクーラ 108の冷却能力から熱侵入量を引いて算出する。装置状態判別部は 、裕度として算出した値が正の場合、冷却能力に余裕があり正常な運用が行われて いるものと判別し、負の場合、冷却能力に不足が生じていると判別する。裕度の算出 結果および判別結果は、グラフ作成部に渡され、表示情報としてグラフ画面データに 組み込まれる。なお、装置状態判別部は、装置状態記録部にデータが格納されたタ イミングで裕度を算出する。
[0098] 図 9は、グラフ作成部が作成したグラフ画面データに基づいてディスプレイ 120等 の表示装置に表示されるグラフ画面 900の一例である。グラフ画面 900は、グラフ部 910と、数値表示部 920とを備える。本図に示すように、グラフ部 910に表示されるグ ラフの、縦軸はミリワット (mW)単位で示した熱量、横軸は時間(ここでは、単位は日) である。本図において、(Cryo— Cooler)はクライオクーラ 108の冷却能力を示し、 ( Magnet)は超電導磁石のへリウム容器 205、 206への熱侵入量を示している。なお 、数値表示部 920には、クライオクーラ 108の冷却能力と熱侵入量との最新のデータ および裕度が数値で表示される。また、状態表示として裕度が正の値の場合「Norm alj力 負の値の場合「Warning」が表示される。
[0099] なお、図 10に示すように、グラフ画面 900は、さらに、設置時の冷却能力および熱 侵入量を表示させる指示を受け付ける設置時データ表示ボタン 930を備えてもよい。 グラフ作成部は、グラフ画面 900の設置時データ表示ボタン 930を介して作業者から の指示を受け付けると、設置時の冷却能力および熱侵入量をグラフ部 910のグラフ 上に表示させる。
[0100] 状態監視制御部は、予め定められた時間間隔で、熱侵入量算出部と冷却能力算 出部とにそれぞれ、ヘリウム容器 205、 206への熱侵入量とクライオクーラ 108の冷 却能力とを計測させる。状態監視制御部は、作業者力 MRI装置が運用に入ったこ との指示を受け、稼動する。
[0101] 機器許容度判定部は、各時点で算出したヘリウム容器 205、 206への熱侵入量お よびクライオクーラの冷却能力が、予め保持する標準の値を基準とする所定の許容 範囲内であるか否力判別し、判別結果を表示等の手段により作業者に提示する。熱 侵入量に対しては、所定の値以下であれば、許容範囲内と判断し、冷却能力につい ては、所定の値以上であれば許容範囲内と判断する。判別結果は、両者とも許容範 囲 (正常)、熱侵入量が許容範囲外 (熱侵入量不良)、冷却能力が許容範囲外 (冷却 能力不良)、熱侵入量および冷却能力がともに許容範囲外 (熱侵入量不良および冷 却能力不良)、の 4種がある。なお、機器許容度判定部は、有さなくてもよい。例えば 、上記グラフ画面 900を用い、算出したヘリウム容器 205、 206への熱侵入量および クライオクーラの冷却能力を表示装置等に表示し、ユーザが適否を判別し、判別結 果を入力するよう構成してもよ ヽ。
[0102] なお、グラフ作成部が作成したグラフ画面データの表示は、コンピュータ 118に直 接接続されて ヽるディスプレイ 120に限らず、通信制御装置 121を介して接続される 遠隔監視センタ 123の表示装置に表示されるよう構成してもよい。
[0103] 上記コンピュータ 118が備える各機能は、コンピュータ 118が有するメモリに格納さ れたプログラムを、コンピュータ 118の CPUが実行することにより実現される。
[0104] 次に、本実施形態の MRI装置を製造後、医療サイトへ運搬し、据え付け、運用を開 始し、保守点検が必要になるまでの作業の流れを説明する。図 11は、本実施形態の MRI装置の作業の流れを説明するための図である。
[0105] 作業者力クライオクーラ以外の組み立ての完了した超電導磁石を MRI装置に組込 んだ時点から説明する。まず、作業者は、本実施形態の MRI装置に必要冷却能力 算出処理を行わせ、組み込むクライオクーラに必要な冷却能力を算出させる (ステツ プ 1101)。作業者は、その算出結果力も組み込むクライオクーラを選択し、組み込む (ステップ 1102)。
[0106] クライオクーラが組み込まれると、作業者は、本実施形態の MRI装置に、製造時の 性能チェック処理を行わせる (ステップ 1131)。ここでは、製造場所で、冷却能力の 算出を行う(ステップ 1103)。ここで、ステップ 1101の冷却能力算出処理時に算出し た熱侵入量と、ステップ 1103で算出した冷却能力とが予め定めた許容範囲であるか 否かを判別する (ステップ 1104)。そして、両者とも許容範囲であれば、算出結果を 記録する (ステップ 1105)とともに、判別結果を通知する。一方、熱侵入量および冷 却能力の少なくとも一方が許容範囲外である場合は、判別結果を通知する。通知は 、上述の 4種のいずれかである。
[0107] 熱侵入量および冷却能力の少なくとも一方が許容範囲外である通知を受けると、作 業者は、対策を講じ (ステップ 1121)、再度製造時の性能チェック処理を行うよう指示 をする。なお、ステップ 1121では、熱侵入量不良と判定された場合、作業者は、クラ ィォスタツトへの断熱対策を施す。ここでは、例えば、真空度低下や輸送による変位 を修復する。また、冷却能力不良と判定された場合、作業者は、クライオクーラを糸且み 込み直す等の対策を施す。ここでは、例えば、クライオクーラの低温部分とクライオス タツト内の熱遮蔽板との熱接触を確保する作業の品質を高める。両者ともに不良の場 合は、両方の対策を行う。
[0108] また、熱侵入量および冷却能力の!/、ずれか一方が許容範囲外である場合、許容範 囲内であった算出結果は保持し、対策後は、許容範囲外であった性能のみ算出する よう構成してちょい。
[0109] 製造時の性能チェック処理で、熱侵入量および冷却能力がともに許容範囲内であ り、合格した場合、作業者は MRI装置を医療サイトに運搬し、据え付ける (ステップ 1 106)。据え付け後、作業者は、本実施形態の MRI装置に、据付時の性能チェック 処理を行わせる (ステップ 1132)。ここでは、据え付け場所で熱侵入量および冷却能 力の算出を行い (ステップ 1107)、これらの性能が予め定めた許容範囲であるか否 かを判別する (ステップ 1108)。そして、両者とも許容範囲であれば、算出結果を記 録する (ステップ 1109)とともに、その旨通知する。一方、熱侵入量および冷却能力 の少なくとも一方が許容範囲外である場合は、その旨通知する。
[0110] 熱侵入量および冷却能力の少なくとも一方が許容範囲外であるとの通知を受けると 、作業者は、対策を講じ (ステップ 1122)、再度製造時の性能チェック処理を行うよう 指示をする。なお、ここで講じる対策は、製造時の性能チェック処理時のものと同じで ある。
[0111] 据付時の性能チェック処理で、熱侵入量および冷却能力がともに許容範囲内の場 合、作業者は MRI装置の運用を開始する (ステップ 1110)とともに、 MRI装置に状 態監視処理を開始するよう指示を行う (ステップ 1133)。ここでは、所定の時間が経 過する毎に (ステップ 1111)、熱侵入量と冷却能力とを算出し (ステップ 1112)、両者 力も求められる裕度が 0未満である力否かを判別する (ステップ 1113)。裕度が 0未 満でなければ、グラフ表示を行い (ステップ 1114)、ステップ 1111に戻り、次の算出 時間を待つ。一方、裕度が 0未満となった場合、作業者にその旨通知する。作業者 は通知を受け、状態監視処理を終了させ、保守点検を行う。なお、 MRI装置運用中 は、本実施形態においても、第一の実施形態と同様にヒータの発熱量の制御が行わ れる。
[0112] 次に、上記の手順において、本実施形態の MRI装置のコンピュータ 118が行う各 処理について以下に説明する。
[0113] まず、上記ステップ 1101の必要冷却能力算出処理について説明する。図 12は、 本実施形態の必要冷却能力算出処理の処理フローである。
[0114] 作業者力 必要冷却能力算出処理開始の指示を受け付けると、コンピュータ 118 は、熱侵入量算出部にヘリウム容器 205、 206への熱侵入量を算出させる (ステップ 1201)。そして、コンピュータ 118は、算出した熱侵入量をメモリに格納するとともに、 第 1の実施形態の手法でクライオクーラに必要な冷却能力を算出する (ステップ 120 2)。コンピュータ 118は、結果を作業者に提示し (ステップ 1203)、処理を終了する。 なお、本実施形態では、組み込むクライオクーラに必要な冷却能力の算出を、コンビ ユータ 118が行うよう構成している力 これに限られない。例えば、熱侵入量算出部が 算出した熱侵入量を作業者に提示し、作業者が、糸且み込むクライオクーラに必要な 冷却能力の算出を行うよう構成してもよい。
[0115] 次に、ステップ 1131の製造時の性能チェック処理、および、ステップ 1132の据付 時の性能チ ック処理について説明する。これらはほぼ同じであるため、運用開始前 の性能チ ック処理として、以下に説明する。図 13は、本実施形態の運用開始前の 性能チェック処理の処理フローである。
[0116] 作業者力 運用開始前の性能チ ック処理を開始するよう指示を受け付けると、コ ンピュータ 118は、熱侵入量算出部および冷却能力算出部にそれぞれ熱侵入量お よび冷却能力を算出させる (ステップ 1301、 1302)。算出を終えると、コンピュータ 1 18は、機器許容度判定部に、熱侵入量および冷却能力が許容範囲であるか否力判 別させる(ステップ 1303)。なお、製造時の性能チェック処理では、ステップ 1301の 熱侵入量算出部による熱侵入量の算出を行わず、冷却能力算出処理時にメモリに 保持された熱侵入量を用い、ステップ 1303の判別を行う。
[0117] ステップ 1303の判別結果力 熱侵入量および冷却能力のいずれも許容範囲内で ある場合、コンピュータ 118は、装置状態記録部に算出結果を記録させる (ステップ 1 304)とともに、グラフ作成部にグラフ画面データを生成させ、表示させる (ステップ 13 05)。ステップ 1304において、製造時は、製造時の記録であることを示す情報に対 応づけて記録し、据付時は、据え付け時の記録であることを示す情報に対応づけて 記録する。なお、グラフ画面データに機器許容度判定部の判別結果を表示させるよ う構成してちょい。
[0118] 一方、ステップ 1303の判別結果が、熱侵入量および冷却能力の少なくとも一方が 許容範囲外であることを示すものである場合、コンピュータ 118は、機器許容度判定 部にその判別結果を表示させる (ステップ 1306)。作業者は、この表示を見ることによ り、対策の必要性を判断できる。
[0119] なお、機器許容度判定部を有しない構成の場合、ステップ 1303およびステップ 13 06の処理を行わない。また、製造時の性能チェック処理においても、ステップ 1301 の処理を行うよう構成してもよ 、。
[0120] 次に、ステップ 1133の状態監視処理について説明する。図 14は、本実施形態の 運用開始後の性能チ ック処理の処理フローである。
[0121] 作業者力 状態監視処理の開始の指示を受け付けると、コンピュータ 118は、状態 監視制御部を稼動させる (ステップ 1401)。状態監視制御部は、指示を受けたときか ら所定時間が経過すると、熱侵入量算出部および冷却能力算出部にそれぞれ熱侵 入量および冷却能力を算出させる (ステップ 1402、 1403)。なお、熱侵入量および 冷却能力の算出は、予め定められた時刻になったら、行うよう構成してもよい。
[0122] 算出を終えると、状態監視制御部は、装置状態判別部に裕度を算出させ (ステップ 1404)、装置状態記録部に、算出時刻を特定する情報とともに、熱侵入量、冷却能 力、および裕度を記録させる (ステップ 1405)。また、算出結果において、裕度が 0以 上の場合 (ステップ 1406)、グラフ作成部にグラフ画面データを生成させ、表示させ る (ステップ 1408)。一方、裕度が 0未満の場合、保守点検が必要であることを示す 表示データをグラフ作成部に作成させ、表示させる (ステップ 1407)。ここでは、ダラ フ画面データにおいて、状態を「warning」にしたものを表示させる。そして、状態監 視制御部は、作業者力も終了の指示を受け付けなければ (ステップ 1409)、所定時 間のカウントをリセットして、ステップ 1401〖こ戻る。
[0123] 以上説明したように、本実施形態によれば、上下ヘリウム容器力 気化するヘリウム ガス流量を正確に計測することができるため、それを用いて、クライオスタツトへの熱 侵入量を即座かつ正確に算出することができる。従って、ヒータを停止させてクライオ スタツトへの熱侵入量を算出することにより、伝導や輻射によるクライオスタットへの熱 侵入量 (基礎熱侵入量)を即座かつ正確に算出し、製造者に提示することができる。 製造者は、得られた基礎熱侵入量に基づいて、設置時に、個々の MRI装置に必要 十分な冷却能力を有するクライオクーラを容易に選択することができる。
[0124] また、本実施形態によれば、上下ヘリウム容器力 気化するヘリウムガス流量を正 確に計測することができるため、それを用いてヒータの発熱量を制御することができる 。このヒータの発熱量の制御により、 MRI装置稼動時の熱侵入量とクライオクーラの 冷却能力とを均衡させることができ、冷媒の消費を抑えることができる。
[0125] また、本実施形態によれば、上記ヘリウムガス流量力も算出したクライオスタツトへの 熱侵入量と、ヒータ発熱量とから、クライオスタツトに組み込んだ状態のクライオクーラ の冷却能力、すなわち、クライオスタツトを含めた装置全体の冷却能力を算出すること ができる。従って、 1つのヘリウムガス流量計測ユニットを備えるという簡易な構成で、 熱侵入量と冷却能力とを即座に得ることができる。
[0126] また、本実施形態によれば、上述のように熱侵入量と冷却能力とを即座に得ること ができるため、それを用いて、クライオクーラ糸且込直後の冷却能力を算出することがで き、作業者に提示することができる。作業者は、この結果により、クライオクーラ取り付 け作業の質をその場で判定することができる。
[0127] また、本実施形態によれば、上述のように熱侵入量と冷却能力とを即座に得ること ができるため、それを用いて、据付時の熱侵入量と冷却能力とを算出し、作業者に提 示することができる。これにより、作業者は、輸送時のトラブルゃ据付作業の質を判定 することができる。なお、医療サイト据付後の機器許容度判定部による判定の基準値 を、製造時の熱侵入量および冷却能力とするよう構成してもよい。この場合、製造時 との差が明確になり、輸送中のトラブルや据え付け作業の質をより明確に判定するこ とがでさる。
[0128] また、本実施形態によれば、上述のように熱侵入量と冷却能力とを即座に得ること 力 Sできる。従って、運用開始後、所定の時間間隔で容易に熱侵入量と冷却能力とを 算出することができる。また、本実施形態によれば、算出結果を稼動時間の経過に伴 う熱侵入量および冷却能力の変化を示すグラフとして表示するため、作業者はメンテ ナンスを必要とする時期の目安を得ることができる。
[0129] このグラフ表示から、作業者は、検査 (スキャン)により超電導磁石内に発生する渦 電流や振動による熱侵入量の変化、天候による変化を容易に把握することができる。 通常、熱侵入量の変化は、検査 (スキャン)と天候による影響以外要因はない。このた め、通常把握されているこれらの影響を超える変化を示す場合は、作業者はそのグ ラフ力ゝら、超電導磁石の真空レベルの劣化など断熱特性に劣化があると判断でき、 装置の不具合を早めに把握することができる。
[0130] また、本実施形態では、据付時の熱侵入量および冷却能力もグラフに表示可能な ように構成している。このため、作業者に設置時との差異を明確に示すことができる。 作業者は装置の運転状態、環境をさらに把握しやすぐ必要な対策を早めに講ずる ことができる。
[0131] なお、上記表示は、据付時の熱侵入量および冷却能力の代わりに、製造完了時の これらの値であってもよ 、。製造完了時の熱侵入量および冷却能力を表示させること で、据付作業者は装置の輸送中の変化や据え付け後の装置の状態を容易に把握で きる。据え付け前は、製造完了時の値を保持し、据付完了後に製造完了時の値を据 付時の値に書き込むよう構成してもよい。なお、本領域には、製造完了時、据付時以 外の特定の時点のデータを保持するよう構成してもよい。また、 1時点の値だけでなく
、複数時点 (例えば、製造完了時と据付完了時)を保持し、表示させるよう構成しても よい。
[0132] また、本実施形態では、算出した熱侵入量および冷却能力から、冷却能力の余裕 の度合いを算出し、上記のグラフおよびクライオスタツトの状態を示す情報とともに提 示している。従って、作業者は、直感的にクライオクーラの保守点検の必要性を知る ことができる。
[0133] さらに、本実施形態によれば、運用開始後の熱侵入量と冷却能力との算出および 結果の提示を、コンピュータにより自動的に行うよう構成できる。従って、操作者の関 与無しに、熱侵入量とクライオクーラの冷却能力とを均衡させ、冷媒の消費を最適に して運用でき、一方、操作者は、保守、点検のタイミングを知ることができる。
[0134] さらに、本実施形態によれば、コンピュータにより自動的に行う運用開始後の熱侵 入量と冷却能力との算出結果等を、遠隔地に通知することができる。従って、操作者 および遠隔地の監視者の関与無しに熱侵入量とクライオクーラの冷却能力とを均衡 させて冷媒の消費を最適にして運用でき、一方、操作者のみならず遠隔地の監視者 も、保守、点検のタイミングを知ることができる。
[0135] なお、本実施形態では、クライオクーラ 108の冷却能力とヘリウム容器 205、 206へ の熱侵入量との差を監視し、保守点検のタイミングを作業者に提示している。しかし、 第一〜第三の各実施形態同様、ヒータ 212の発熱量を監視し、これによりタイミング を判別し、作業者に提示するよう構成してもよい。
図面の簡単な説明
[0136] [図 1]本実施の形態のオープン MRI装置の全体構成を示すブロック図。 [図 2]図 1の MRI装置を構成する超電導磁石の断面の概略構成を示す説明図。
[図 3]図 1の MRI装置のヘリウムガス計測ユニットの詳細構成図。
[図 4]図 3のレギユレータの内部構造の概略を示す図。
[図 5]図 3のヘリウムガス計測ユニットの動作を示す説明図。
[図 6]ヘリウムガス圧を一定に制御してヘリウムガス流量を計測するための制御フロー を表すフローチャート。
[図 7]図 1の MRI装置のヘリウム計測の機能を示す説明図。
[図 8]クライオクーラに必要な冷却能力を見積もるための処理フローを表すフローチヤ ート。
[図 9]第四の実施形態のグラフ画面の一例を示す図。
[図 10]第四の実施形態のグラフ画面の他の例を示す図。
[図 11]第四の実施形態の作業の流れを説明するための図。
[図 12]第四の実施形態の必要冷却能力算出処理の処理フローチャート。
[図 13]第四の実施形態の運用開始前の性能チェック処理の処理フローチャート。
[図 14]第四の実施形態の運用開始後の性能チェック処理の処理フローチャート。 符号の説明
101 :超電導磁石、 108 :4Kクライオクーラ、 111:ヘリウムガス計測ユニット、 118 :コ ンピュータ、 212 :ヒータ、 303 :レギユレータ、 304 :圧力センサ、 308 :流量計

Claims

請求の範囲
[1] 静磁場を発生するための超電導コイルおよび該超電導コイルを冷却するための冷 媒を内包するクライオスタツトと、前記クライオスタツトに組み込まれて気化した前記冷 媒を再凝縮させるクライオクーラと、前記クライオスタツトに熱量を与えるヒータと、 前記冷媒が気化したガスを外部に排出するパイプと、を有する超電導磁石を備える 磁気共鳴イメージング装置にぉ 、て、
前記ノイブに接続されて該パイプ内を流れるガスを一定圧力に制御してガス流量 を計測するガス流量計測装置により計測されたガス流量に基づ 、て、前記ガスの排 出を低減するように前記ヒータの発熱量を制御する発熱量制御部を備えること を特徴とする磁気共鳴イメージング装置。
[2] 請求項 1記載の磁気共鳴イメージング装置にぉ 、て、
前記ガス流量計測装置により計測されたガス流量に基づ 、て、前記クライオスタツト への熱侵入量を算出する熱侵入量算出部をさらに備え、
前記発熱量制御部は、前記クライオスタツトへの熱侵入量と前記ヒータの発熱量と の和と、前記クライオクーラの冷却能力と、をバランスさせるよう前記ヒータの発熱量を 制御すること
を特徴とする磁気共鳴イメージング装置。
[3] 請求項 2記載の磁気共鳴イメージング装置にぉ 、て、
前記ガス流量計測装置は、所定の時間間隔で前記ガス流量を計測し、 前記発熱量制御部は、前記ガス流量の変化に対応して、前記ヒータの発熱量を制 御すること
を特徴とする磁気共鳴イメージング装置。
[4] 請求項 3記載の磁気共鳴イメージング装置にぉ 、て、
通知部をさらに備え、
前記発熱量制御部は前記ヒータの発熱量を監視し、
前記通知部は、当該発熱量が所定の閾値以下になった場合、当該発熱量が所定 の閾値以下になったことを通知すること
を特徴とする磁気共鳴イメージング装置。
[5] 請求項 3に記載の磁気共鳴イメージング装置にぉ 、て、
通知部と、
前記熱侵入量算出部が算出した前記クライオスタツトへの熱侵入量を用いて、前記 クライオクーラに必要な冷却能力を算出する冷却能力算出部と、
前記熱侵入量算出部が算出した熱侵入量および前記冷却能力算出部が算出した 冷却能力が、それぞれ所定の許容範囲内である力否か判別する判別部と、をさらに 備え、
前記通知部は、前記判別部の判別結果を通知すること
を特徴とする磁気共鳴イメージング装置。
[6] 請求項 5に記載の磁気共鳴イメージング装置であって、
前記熱侵入量算出部と前記冷却能力算出部とが算出した前記熱侵入量と前記冷 却能力とを、それぞれ算出した時刻に対応づけて保持する算出結果保持部をさらに 備え、
前記通知部は、前記算出結果保持部に保持された前記熱侵入量と前記冷却能力 との少なくとも一方を時系列に表示することにより通知すること
を特徴とする磁気共鳴イメージング装置。
[7] 請求項 5記載の磁気共鳴イメージング装置であって、
前記冷却能力算出部が算出した冷却能力から前記熱侵入量算出部が算出した熱 侵入量を減算し、前記クライオクーラの余裕の度合いを算出する裕度算出部をさらに 備え、
前記通知部は、前記裕度算出部が算出した裕度を通知すること
を特徴とする磁気共鳴イメージング装置。
[8] 請求項 1記載の磁気共鳴イメージング装置にぉ 、て、
前記ガス流量計測装置は、
前記パイプ内ガスの圧力を計測する圧力計測部と、
前記圧力計測部が計測した前記圧力が一定になるよう前記パイプ内ガスの流 量を制御する流量制御部と、
前記流量制御部による制御後の前記パイプ内のガスの流量を計測する流量計 測部と、
前記流量計測部による計測結果を出力するガス流量出力部と、を備えること を特徴とする磁気共鳴イメージング装置。
[9] 請求項 2に記載の磁気共鳴イメージング装置にぉ 、て、
前記熱侵入量算出部が算出した前記クライオスタツトへの熱侵入量を用いて、前記 クライオクーラに必要な冷却能力を算出する冷却能力算出部を、さらに備えること を特徴とする磁気共鳴イメージング装置。
[10] 請求項 9記載の磁気共鳴イメージング装置であって、
前記熱侵入量算出部は、前記クライオスタツトによる冷却および前記ヒータによる熱 量の付与を停止させて前記流量計測装置により計測されたガス流量に基づいて、前 記熱侵入量を算出し、
前記冷却能力算出部は、前記熱侵入量算出部により算出された熱侵入量を上回る ように前記クライオクーラに必要な冷却能力を算出すること
を特徴とする磁気共鳴イメージング装置。
[11] 静磁場を発生するための超電導コイルおよび該超電導コイルを冷却するための冷 媒を内包するクライオスタツトと、前記クライオスタツトに組み込まれて気化した前記冷 媒を再凝縮させるクライオクーラと、前記クライオスタツトに熱量を与えるヒータと、 前記冷媒が気化したガスを外部に排出するパイプと、を備える超電導磁石におい て、
前記ノイブに接続されて該パイプ内を流れるガスを一定圧力に制御してガス流量 を計測するガス流量計測装置により計測されたガス流量に基づ 、て、前記ガスの排 出を低減するように前記ヒータの発熱量を制御する発熱量制御部を備えること を特徴とする超電導磁石。
[12] 請求項 11記載の超電導磁石において、
前記ガス流量計測装置により計測されたガス流量に基づ 、て、前記クライオスタツト への熱侵入力を算出する熱侵入量算出部をさらに備え、
前記発熱量制御部は、前記クライオスタツトへの熱侵入量と前記ヒータの発熱量と の和と、前記クライオクーラの冷却能力と、をバランスさせるよう前記ヒータの発熱量を 制御すること
を特徴とする超電導磁石。
[13] 静磁場を発生するための超電導コイルおよび該超電導コイルを冷却するための冷 媒を内包するクライオスタツトと、前記クライオスタツトに組み込まれて気化した前記冷 媒を再凝縮させるクライオクーラと、前記クライオスタツトに熱量を与えるヒータと、 前記冷媒が気化したガスを外部に排出するパイプと、を有する超電導磁石を備える 磁気共鳴イメージング装置にお!ヽて、冷媒の蒸発を低減する冷媒蒸発低減方法で あって、
前記パイプ内を流れる前記冷媒ガスのガス圧力を計測するステップと、 前記計測されたガス圧が所定のガス圧となるように前記冷媒ガスのパイプ内流量を 制御するステップと、
前記パイプ内を流れるガス流量を計測するステップと、
前記計測されたガス流量に基づ 、て、前記ヒータの発熱量を制御するステップと、 を備免ること
を特徴とする冷媒蒸発低減方法。
[14] 静磁場を発生するための超電導コイルおよび該超電導コイルを冷却するための冷 媒を内包するクライオスタツトと、前記冷媒が気化したガスを再凝縮させるためのクラ ィォクーラと、前記冷媒が気化したガスを前記クライオスタツトから排出するパイプと、 を有する超電導磁石を備える磁気共鳴イメージング装置にぉ ヽて、前記クライオクー ラに必要な冷却能力を算出する冷却能力算出方法であって、
前記パイプ内を流れる前記冷媒ガスのガス圧力を計測するステップと、 前記計測されたガス圧が所定のガス圧となるように前記冷媒ガスのパイプ内流量を 制御するステップと、
前記パイプ内を流れるガス流量を計測するステップと、
前記計測されたガス流量に基づいて前記クライオスタツトへの熱侵入量を求めるス テツプと、
前記熱侵入量に基づいて前記クライオクーラの冷却能力を算出するステップと、を 備免ること を特徴とする冷却能力算出方法。
[15] 静磁場を発生するための超電導コイルと該超電導コイルを冷却するための冷媒とを 内包するクライオスタツトと、前記冷媒が気化したガスを再凝縮させるためのクライオク ーラと、前記クライオスタツトに所望の熱量を印加するヒータと、前記クライオスタツトか ら前記冷媒ガスを排出するためのパイプと、を有する超電導磁石を備える磁気共鳴 イメージング装置における前記クライオクーラの冷却能力適否判定方法であって、
(a)前記パイプ内を流れる前記冷媒ガスのガス圧力を計測するステップと、
(b)前記計測されたガス圧が所定のガス圧となるように前記冷媒ガスのパイプ内流量 を制御するステップと、
(c)前記パイプ内を流れるガス流量を計測するステップと、
(d)前記計測されたガス流量に基づ 、て、前記クライオクーラへの冷却能力低下分を 求めるステップと、
(e)前記クライオクーラへの冷却能力低下分に対応して前記ヒータの発熱量を制御す るステップと、
(f)前記発熱量に基づいて前記クライオクーラの冷却能力が適正力否かを決定するス テツプと、を備えること
を特徴とする冷却能力適否判定方法。
[16] 請求項 15に記載の冷却能力適否判定方法において、
前記ステップ (f)の後に、前記ステップ (a)〜 (f)を一定間隔で複数回繰り返すステ ップを備えること
を特徴とする冷却能力適否判定方法。
[17] 請求項 15または 16に記載の冷却能力適否判定方法において、
勾配磁場および高周波磁場の少なくとも一方を印加して被検体を撮影中に前記各 ステップが実行されること
を特徴とする冷却能力適否判定方法。
[18] 請求項 4から 10いずれか 1項記載の磁気共鳴イメージング装置と、当該磁気共鳴ィ メージング装置に通信制御装置を介して接続される遠隔監視装置とを備える磁気共 鳴イメージング装置の遠隔監視支援システムであって、 前記遠隔監視装置は、前記磁気共鳴イメージング装置から送信された情報を提示 する提示部を備え、
前記通知部が通知する情報または前記ガス流量出力部から出力される情報は、前 記遠隔監視装置に送信されること
を特徴とする遠隔監視支援システム。
[19] 静磁場を発生するための超電導コイルおよび該超電導コイルを冷却するための冷 媒を内包するクライオスタツトと、前記クライオスタツトに組み込まれ気化した前記冷媒 を再凝縮させるクライオクーラと、冷媒ガスを外部に排出するパイプに接続され、前記 パイプ内を流れるガスの流量を一定圧力に制御して計測するガス流量計測装置と、 を有する超電導磁石を備える磁気共鳴イメージング装置の据付支援方法であって、 前記ガス流量計測装置により計測されたガス流量に基づ 、て、前記クライオスタツト への熱侵入量を算出する熱侵入量算出ステップと、
前記熱侵入量を用いて前記クライオクーラの冷却能力を算出する冷却能力算出ス テツプと、
前記熱侵入量算出ステップと前記冷却能力算出ステップとが算出した前記熱侵入 量および前記冷却能力が、それぞれ予め定めた許容範囲内であるか否力判別する 判別ステップと、
前記判別結果を作業者に提示する提示ステップと、を備えること
を特徴とする据付支援方法。
[20] 静磁場を発生するための超電導コイルおよび該超電導コイルを冷却するための冷 媒を内包するクライオスタツトと、前記クライオスタツトに組み込まれ気化した前記冷媒 を再凝縮させるクライオクーラと、冷媒ガスを外部に排出するパイプに接続され、前記 パイプ内を流れるガスの流量を一定圧力に制御して計測するガス流量計測装置と、 を有する超電導磁石を備える磁気共鳴イメージング装置の運用監視支援方法であつ て、
1)前記ガス流量計測装置により計測されたガス流量に基づ 、て、前記クライオスタツ トへの熱侵入量を算出する熱侵入量算出ステップと、
2)前記熱侵入量を用いて前記クライオクーラの冷却能力を算出する冷却能力算出 ステップと、
3)前記冷却能力算出ステップで算出した前記冷却能力から前記熱侵入量算出ステ ップで算出した前記熱侵入量を減算した裕度を算出し、前記裕度に基づいて前記ク ライォクーラの冷却能力の余裕の有無の判別を行う前記状態判別ステップと、
4)前記状態判別ステップでの判別結果および裕度を作業者に提示する提示ステツ プと、を備えること
を特徴とする運用監視支援方法。
[21] 請求項 20記載の運用監視支援方法であって、
5)前記熱侵入量算出ステップにおいて算出した前記熱侵入量および前記冷却能力 算出ステップで算出した前記冷却能力を、前記算出時刻に対応づけて保持する記 録保持ステップをさらに備え、
前記 1)から 5)の一連のステップを、所定の時間間隔で行い、前記提示ステップで は、前記記録保持ステップで保持した情報もさらに提示すること
を特徴とする運用監視支援方法。
[22] 静磁場を発生するための超電導コイルおよび該超電導コイルを冷却するための冷 媒を内包するクライオスタツトと、前記クライオスタツトに組み込まれ気化した前記冷媒 を再凝縮させるクライオクーラと、冷媒ガスを外部に排出するパイプに接続され、前記 パイプ内を流れるガスの流量を一定圧力に制御して計測するガス流量計測装置と、 を有する超電導磁石を備える磁気共鳴イメージング装置と、当該磁気共鳴イメージン グ装置に通信制御装置を介して接続される遠隔監視装置と、を備える磁気共鳴ィメ 一ジング装置監視システムにおける遠隔監視支援方法であって、
前記ガス流量計測装置により計測されたガス流量に基づ 、て、前記クライオスタツト への熱侵入量を算出する熱侵入量算出ステップと、
前記熱侵入量を用いて前記クライオクーラの冷却能力を算出する冷却能力算出ス テツプと、
前記冷却能力算出ステップで算出した前記冷却能力から前記熱侵入量算出ステツ プで算出した前記熱侵入量を減算した裕度を算出する裕度算出ステップと、 前記裕度を前記遠隔監視装置に送信する送信ステップと、 前記遠隔監視装置において受信した前記裕度を作業者に提示する提示ステップと 、を備免ること
を特徴とする遠隔監視支援方法。
PCT/JP2007/063225 2006-07-12 2007-07-02 Aimant supraconducteur, unité d'imagerie par résonance magnétique, et procédé de détermination de la capacité de refroidissement d'un refroidisseur cryogénique WO2008007574A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/304,950 US7994787B2 (en) 2006-07-12 2007-07-02 Superconducting magnet, magnetic resonance imaging apparatus, and method of calculating coolability of cryo-cooler
JP2008524760A JP5016600B2 (ja) 2006-07-12 2007-07-02 超電導磁石、磁気共鳴イメージング装置、及びクライオクーラの冷却能力算出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006191705 2006-07-12
JP2006-191705 2006-07-12

Publications (1)

Publication Number Publication Date
WO2008007574A1 true WO2008007574A1 (fr) 2008-01-17

Family

ID=38923136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063225 WO2008007574A1 (fr) 2006-07-12 2007-07-02 Aimant supraconducteur, unité d'imagerie par résonance magnétique, et procédé de détermination de la capacité de refroidissement d'un refroidisseur cryogénique

Country Status (3)

Country Link
US (1) US7994787B2 (ja)
JP (1) JP5016600B2 (ja)
WO (1) WO2008007574A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050553A (ja) * 2010-08-31 2012-03-15 Toshiba Corp 磁気共鳴イメージング装置の据付冶具、および、磁気共鳴イメージング装置の据付方法
JP2016516297A (ja) * 2013-03-14 2016-06-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 超電導マグネットシステムのための削減ガスフロー導電性リード
JP2020515038A (ja) * 2016-12-20 2020-05-21 スミトモ (エスエイチアイ) クライオジェニックス オブ アメリカ インコーポレイテッドSumitomo(SHI)Cryogenics of America,Inc. 超電導磁石を加熱及び冷却するシステム
CN115064335A (zh) * 2022-08-16 2022-09-16 西门子数字医疗科技(上海)有限公司 超导磁体的再冷却方法、装置以及磁共振成像系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865982B (zh) * 2014-02-26 2018-04-24 西门子(深圳)磁共振有限公司 一种磁共振成像系统及其压力控制装置
CN104224401B (zh) * 2014-09-30 2016-03-23 中国科学院武汉物理与数学研究所 一种用于超极化气体mri的动物自主呼吸装置
JP6123041B1 (ja) * 2017-01-04 2017-04-26 株式会社日立製作所 磁気共鳴イメージング装置、クライオシステムの制御装置、および、クライオシステムの制御方法
FR3064753B1 (fr) * 2017-04-03 2019-08-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme de generation d’un champ magnetique vectoriel
DE102017217930A1 (de) * 2017-10-09 2019-04-11 Bruker Biospin Ag Magnetanordnung mit Kryostat und Magnetspulensystem, mit Kältespeichern an den Stromzuführungen
CN109886512B (zh) * 2017-12-05 2021-07-09 北京绪水互联科技有限公司 剩余应急维修时间估算方法及预警方法、以及其估算系统和预警系统
US11703393B2 (en) * 2018-06-01 2023-07-18 Southwest Medical Resources, Inc. System and method for monitoring cooling system
CN109799047B (zh) * 2019-03-12 2023-11-21 中国电建集团成都勘测设计研究院有限公司 基于光纤的面板堆石坝混凝土面板缝间渗流监测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232305A (ja) * 1987-03-20 1988-09-28 Hitachi Ltd クライオスタツト
JPH05172924A (ja) * 1991-12-25 1993-07-13 Hitachi Ltd クライオスタット用侵入熱測定装置
JPH0669030A (ja) * 1992-08-21 1994-03-11 Mitsubishi Electric Corp 超電導マグネット
JPH0652160U (ja) * 1991-02-18 1994-07-15 株式会社島津製作所 超伝導マグネット冷却装置
JPH08306971A (ja) * 1995-04-27 1996-11-22 Furukawa Electric Co Ltd:The 超電導装置
JP2002209872A (ja) * 2000-08-16 2002-07-30 Ge Medical Systems Global Technology Co Llc 移動磁石の無線監視

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6742593B2 (en) * 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
EP1767148B1 (en) * 2004-07-02 2015-08-05 Hitachi Medical Corporation Maintenance method for a magnetic resonance imaging device
WO2008153036A1 (ja) * 2007-06-14 2008-12-18 Hitachi Medical Corporation オープン型磁気共鳴イメージング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232305A (ja) * 1987-03-20 1988-09-28 Hitachi Ltd クライオスタツト
JPH0652160U (ja) * 1991-02-18 1994-07-15 株式会社島津製作所 超伝導マグネット冷却装置
JPH05172924A (ja) * 1991-12-25 1993-07-13 Hitachi Ltd クライオスタット用侵入熱測定装置
JPH0669030A (ja) * 1992-08-21 1994-03-11 Mitsubishi Electric Corp 超電導マグネット
JPH08306971A (ja) * 1995-04-27 1996-11-22 Furukawa Electric Co Ltd:The 超電導装置
JP2002209872A (ja) * 2000-08-16 2002-07-30 Ge Medical Systems Global Technology Co Llc 移動磁石の無線監視

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050553A (ja) * 2010-08-31 2012-03-15 Toshiba Corp 磁気共鳴イメージング装置の据付冶具、および、磁気共鳴イメージング装置の据付方法
JP2016516297A (ja) * 2013-03-14 2016-06-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 超電導マグネットシステムのための削減ガスフロー導電性リード
JP2020515038A (ja) * 2016-12-20 2020-05-21 スミトモ (エスエイチアイ) クライオジェニックス オブ アメリカ インコーポレイテッドSumitomo(SHI)Cryogenics of America,Inc. 超電導磁石を加熱及び冷却するシステム
CN115064335A (zh) * 2022-08-16 2022-09-16 西门子数字医疗科技(上海)有限公司 超导磁体的再冷却方法、装置以及磁共振成像系统
CN115064335B (zh) * 2022-08-16 2022-10-25 西门子数字医疗科技(上海)有限公司 超导磁体的再冷却方法、装置以及磁共振成像系统

Also Published As

Publication number Publication date
JP5016600B2 (ja) 2012-09-05
JPWO2008007574A1 (ja) 2009-12-10
US7994787B2 (en) 2011-08-09
US20090210199A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5016600B2 (ja) 超電導磁石、磁気共鳴イメージング装置、及びクライオクーラの冷却能力算出方法
JP5004805B2 (ja) 超電導磁石を用いたmri装置とその保守方法
US10151809B2 (en) Magnetic resonance imaging apparatus and operating method
US10073155B2 (en) Adjustment method of a magnetic resonance imaging apparatus
US8643367B2 (en) Cryogenic system and method for superconducting magnets and MRI with a fully closed-loop cooling path
JP4925826B2 (ja) 磁気共鳴イメージング装置及びその保守方法
US20160291104A1 (en) Magnetic resonance imaging apparatus
WO2013172148A1 (ja) 磁気共鳴イメージング装置、磁気共鳴イメージング装置用ガス回収装置、および、磁気共鳴イメージング装置の運転方法
JP4369774B2 (ja) 超電導磁石装置を用いた磁気共鳴イメージング装置
JP3977105B2 (ja) 開放型磁気共鳴イメージング装置
US8694065B2 (en) Cryogenic cooling system with wicking structure
Sarwinski Cryogenic requirements for medical instrumentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008524760

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12304950

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07768000

Country of ref document: EP

Kind code of ref document: A1