WO2008004501A1 - Gas supply unit - Google Patents

Gas supply unit Download PDF

Info

Publication number
WO2008004501A1
WO2008004501A1 PCT/JP2007/063104 JP2007063104W WO2008004501A1 WO 2008004501 A1 WO2008004501 A1 WO 2008004501A1 JP 2007063104 W JP2007063104 W JP 2007063104W WO 2008004501 A1 WO2008004501 A1 WO 2008004501A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas supply
speed control
supply unit
connection block
unit according
Prior art date
Application number
PCT/JP2007/063104
Other languages
French (fr)
Japanese (ja)
Inventor
Tsunenaga Nakashima
Hiroaki Inadomi
Yoshio Kimura
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020087032212A priority Critical patent/KR101226830B1/en
Publication of WO2008004501A1 publication Critical patent/WO2008004501A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/003Housing formed from a plurality of the same valve elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement

Definitions

  • the present invention relates to a gas supply unit that supplies gas to a plurality of pneumatic drive units used in a substrate processing apparatus.
  • a photolithography process in a semiconductor device manufacturing process is applied to a coating and developing processing system equipped with a large number of processing apparatuses! / Hurry up! /
  • the coating and developing system includes, for example, a resist coating device that coats a resist solution on a wafer to form a resist film, a pre-baking device that heats the wafer coated with the resist solution, and a post that heats the exposed wafer.
  • An exposure baking apparatus, a development processing apparatus for developing a resist film, and a post baking apparatus for heating the developed wafer are provided.
  • the various processing devices described above include, for example, an air cylinder for driving a wafer lift pin, a casing shirt processing container lid, an air-driven opening / closing valve for controlling the supply of processing liquid, and the like.
  • a number of pneumatic drive units are provided.
  • An air supply pipe is connected to each of these pneumatic drive units.
  • Each supply pipe has an electromagnetic valve for controlling the supply of gas to the pneumatic drive unit and a speed for controlling the gas supply rate.
  • a controller is provided (see Patent Documents 1 and 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 285662
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11 125212
  • each processing apparatus of the coating and developing treatment system is provided with a multi-system air supply pipe, and a speed controller and an electromagnetic valve are connected to each of the air supply pipes.
  • a speed controller and an electromagnetic valve are connected to each of the air supply pipes.
  • the present invention has been made in view of the strong point, and stabilizes the quality of gas supply equipment for supplying gas to a plurality of pneumatic drive units used in a processing apparatus for a substrate such as a wafer. Is the purpose.
  • the present invention provides a gas supply unit for supplying gas to a plurality of pneumatic drive units used in a substrate processing apparatus, and a plurality of valves for switching between supply and stop of gas. And a plurality of speed control devices for controlling the supply speed of gas supplied from the valve to the pneumatic drive unit, the plurality of valves and the plurality of speed control devices, and a corresponding valve and speed control device, And a connecting block for communicating with each other.
  • connection block has a rectangular parallelepiped shape, and the valve is attached to one surface of the connection block, and the velocity control corresponding to the gas input from the valve is provided in the connection block.
  • the plurality of speed control devices may be attached to the one surface of the connection block.
  • the plurality of speed control devices may be attached to an orthogonal surface orthogonal to the one surface of the connection block.
  • An inclined surface that is inclined toward the one surface side may be formed on an orthogonal surface of the connection block, and the plurality of speed control devices may be attached to the inclined surface.
  • the plurality of speed control devices and the plurality of valves are respectively attached in parallel to the connection block, and the row of the speed control devices and the row of the valves are parallel to each other. May be.
  • the valve may have two output ports, and the speed control device may have two gas flow paths communicating with the two output ports of the valve.
  • the speed control device may have two output ports formed between two input ports of two gas flow paths.
  • the connecting block may be flexible. Further, the connecting block may be divided for each of the corresponding valve and the speed control device!
  • a gas supply speed adjustment member is provided on the surface of the speed control device on the opposite side of the connecting block, and the positions of the adjustment members of the plurality of speed control devices are arranged in a staggered manner. As described above, the plurality of speed control devices may be arranged in the connection block.
  • the output port of the speed control device may be formed in a protruding shape, and the connection block may be formed with a recess into which the protruding portion of the output port of the speed control device is fitted. .
  • the concave portion may be formed in a tapered shape with a diameter on the bottom side, and the tapered portion of the concave portion may be formed by a resilient member.
  • the gas supply unit may include a connector that connects a plurality of pipes that communicate with each of the pneumatic drive units and a plurality of output units of the connection block that communicate with the output side of the speed control device. Good.
  • the quality of the gas supply equipment for supplying gas to the plurality of pneumatic drive units of the substrate processing apparatus is stabilized, and the operation of the pneumatic drive unit is stabilized.
  • the substrate is processed properly.
  • FIG. 1 is a plan view showing an outline of a configuration of a coating and developing treatment system.
  • FIG. 2 is a front view of the coating and developing treatment system of FIG. 1.
  • FIG. 3 is a rear view of the coating and developing treatment system of FIG. 1.
  • FIG. 4 is an explanatory view of a longitudinal section showing an outline of the configuration of a resist coating apparatus.
  • FIG. 5 is a perspective view schematically showing the configuration of a gas supply unit.
  • FIG. 6 is a partial sectional view of the gas supply unit.
  • FIG. 7 is an explanatory diagram showing an internal configuration of a connection block.
  • FIG. 8 is a schematic diagram of a gas supply unit when a speed controller block is provided on the upper surface of a connection block.
  • FIG. 9 is a schematic diagram of a gas supply unit when a speed controller block is provided on the inclined surface of the upper surface of the connection block.
  • FIG. 10 is a schematic view of a gas supply unit when the connecting block has flexibility.
  • FIG. 11 is a perspective view of a divided connection block.
  • FIG. 12 is a front view of the gas supply unit when the speed controllers are arranged in a staggered pattern.
  • FIG. 13 is an enlarged cross-sectional view of a connecting portion between a speed controller and a connecting block.
  • FIG. 14 is a partial cross-sectional view of the gas supply unit when the first flow path is formed in a U shape.
  • FIG. 15 is a partial cross-sectional view of the gas supply unit in the case where two upper and lower speed controllers are arranged.
  • FIG. 1 is a plan view schematically showing the configuration of the coating and developing treatment system 1.
  • FIG. 2 is a front view of the coating and developing treatment system 1.
  • FIG. 3 is a rear view of the coating and developing treatment system 1. .
  • the coating and developing treatment system 1 carries out, for example, 25 wafers W in the cassette unit to the external force coating and developing treatment system 1, and carries the wafers W into and out of the cassette C.
  • Cassette station 2 a processing station 3 in which a plurality of various processing apparatuses for performing predetermined processing in a single wafer process in a photolithography process are arranged in multiple stages, and a processing station 3 adjacent to the processing station 3.
  • the interface station 4 for transferring wafer W to and from an exposure apparatus (not shown) is integrally connected.
  • the cassette station 2 is provided with a cassette mounting table 5, and the cassette mounting table 5 is capable of mounting a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1).
  • the cassette station 2 is provided with a wafer transfer body 7 that can move on the transfer path 6 in the X direction.
  • the wafer carrier 7 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafer W accommodated in the cassette C, and with respect to the wafer W in each cassette C arranged in the X direction. Selective access.
  • the wafer carrier 7 is rotatable in the ⁇ direction around the Z-axis, and also with respect to a temperature control device 50 and a transition device 51 belonging to a third processing device group G3 on the processing station 3 side described later. Accessible.
  • the processing station 3 adjacent to the cassette station 2 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages.
  • the cassette station 2 side force first processing device group Gl and second processing device group G2 are arranged in this order.
  • X direction of processing station 3 On the positive direction (upward in FIG. 1) side, the cassette station 2 side force third processing device group G3, fourth processing device group G4, and fifth processing device group G5 are arranged in this order.
  • a first transfer device 10 is provided between the third processing device group G3 and the fourth processing device group G4.
  • the first transport device 10 can selectively access the processing devices in the first processing device group Gl, the third processing device group G3, and the fourth processing device group G4 to transport the wafers and W. .
  • a second transfer device 11 is provided between the fourth processing device group G4 and the fifth processing device group G5. The second transfer device 11 can selectively access each processing device in the second processing device group G2, the fourth processing device group G4, and the fifth processing device group G5 to transfer the wafer W.
  • a liquid processing apparatus that supplies a predetermined liquid to the wafer W and performs processing for example, a resist coating apparatus 20 that applies a resist liquid to the wafer W. 21, 22 and bottom coating devices 23 and 24 for forming an antireflection film for preventing reflection of light during the exposure process are also stacked in five steps in order.
  • liquid processing units for example, developing processing units 30 to 34 for supplying a developing solution to the wafer W and performing development processing are stacked in five stages in descending order.
  • chemical chambers 40 and 41 for supplying various processing liquids to the liquid processing apparatuses in the processing apparatus groups Gl and G2 are provided at the bottom of the first processing apparatus group G1 and the second processing apparatus group G2. Each is provided.
  • the third processing unit group G3 includes a temperature control unit 50, a transition unit 51 for transferring the wafer W, and the temperature of the wafer W under high-precision temperature control.
  • the high-precision temperature control devices 52 to 54 to adjust and the high-temperature heat treatment devices 55 to 58 to heat the woofer W at high temperature are also stacked in 9 steps in order.
  • a high-precision temperature control unit 60 pre-baking units 61 to 64 for heating the wafer W after the resist coating process, and the wafer W after the development process are heated.
  • the post-baking devices 65 to 69 to be processed are stacked in 10 steps in order of the lower force.
  • a plurality of heat processing apparatuses for heat-treating the wafer W for example, high-accuracy temperature control apparatuses 70 to 73, post-exposure before development and post-exposure chambers for performing W heat processing.
  • One king device 74-79 is stacked in 10 steps from the bottom.
  • a plurality of processing devices are arranged on the positive side in the X direction of the first transfer device 10, for example, to hydrophobize the wafer W as shown in FIG. Adhijo
  • the heat treatment devices 82 and 83 for heating the wafer devices 80 and 81 and the wafer W are stacked in four steps in order of the lower force.
  • a peripheral exposure device 84 that selectively exposes only the edge portion of the wafer W, for example, is arranged.
  • the interface station 4 is provided with a wafer transfer body 101 that moves on a transfer path 100 extending in the X direction, and a noffer cassette 102.
  • the wafer carrier 101 can move up and down and can also rotate in the ⁇ direction, and accesses an exposure apparatus (not shown) adjacent to the interface station 4, a nother cassette 102 and a fifth processing unit group G5. Wafer W can be transferred.
  • FIG. 4 is a longitudinal section showing a schematic configuration of the resist coating apparatus 20.
  • the resist coating apparatus 20 has a casing 20a as shown in FIG. 4, and a spin chuck 120 that holds the wafer W horizontally is provided at the center of the casing 20a.
  • the spin chuck 120 can be rotated by a rotation drive unit (not shown) such as a motor.
  • the spin chuck 120 is provided with an air cylinder 121 for moving the spin chuck 120 up and down!
  • the wafer W can be transferred between the spin chuck 120 and the first transfer device 10 by moving the spin chuck 120 up and down by the air cylinder 121.
  • a cup 122 for receiving and collecting a liquid such as a resist solution scattered from the wafer W is provided.
  • a resist solution discharge nozzle 130 is provided in the casing 20a to discharge the resist solution to the wafer W held on the spin chuck 120.
  • the resist solution discharge nozzle 130 is connected to a resist solution supply source 132 by a supply pipe 131.
  • the supply pipe 131 is provided with an air pressure type on-off valve 133 for controlling the discharge and stop of the resist liquid.
  • the resist coating apparatus 20 includes a plurality of resist solution discharge nozzles 130, a supply pipe 131, and an on-off valve 133 in order to change the type of resist solution according to the wafer processing recipe.
  • a loading / unloading port 140 for the wafer W is provided in the casing 20a.
  • the loading / unloading port 140 is provided with a shirter 141.
  • the shirter 141 can be driven by an air cylinder 142, for example, to open and close the loading / unloading port 140.
  • the resist coating apparatus 20 includes a plurality of pneumatic drive units such as the air cylinder 121, the on-off valve 133, and the air cylinder 142, for example.
  • Each pneumatic drive is connected to a gas supply unit 170 by a respective supply pipe 160 !.
  • the gas supply unit 170 is mainly composed of an electromagnetic valve block 180, a speed controller block 181 and a connection block 182 as shown in FIG.
  • connection block 182 has, for example, a rectangular parallelepiped shape, and is formed of, for example, grease.
  • An electromagnetic valve block 180 and a speed controller block 181 are attached to one side surface 182a of the front side of the connecting block 182 (the Y direction negative direction side in FIG. 5).
  • the electromagnetic valve block 180 includes a plurality of electromagnetic valves 190 arranged in the horizontal direction (X direction in FIG. 5).
  • An external port 191 is formed at the end of the electromagnetic valve block 180.
  • the external port 191 is connected to a factory-side gas supply source 192 shown in FIG. 4, and can supply air to each electromagnetic valve 190, for example.
  • the operation of each of these electromagnetic valves 190 is controlled by a control unit 193, for example.
  • the speed controller block 181 is arranged on the electromagnetic valve block 180 and includes a plurality of speed controllers 200 corresponding to the electromagnetic valves 190 arranged in the X direction.
  • an adjustment knob 201 as an adjustment member of each speed controller 200 is arranged side by side.
  • a first flow path 210 that penetrates from the lower input opening 210a of one side 182a to the output opening 210b of the upper side 182a is formed inside the connection block 182. Is formed.
  • the first flow path 210 is bent in a V shape on the way.
  • a second flow path 211 that penetrates from the input opening 211a at the top of one side 182a to the output opening 211b at the top of the other side 182b on the opposite side is formed inside the connection block 182.
  • the second channel 211 is formed, for example, linearly in the horizontal direction.
  • the output opening 210b of the first channel 210 is formed at a position higher than the input opening 21 la of the second channel 211. It is.
  • the first flow path 210 and the second flow path 211 form a pair, and the pair of the first flow path 210 and the second flow path 211. As shown in FIG. Formed side by side!
  • the output port 190a of the electromagnetic valve 190 is connected to the input opening 210a of each first flow path 210.
  • the output port 190a and the input opening 210a are connected by, for example, a push lock mechanism. Note that an O-ring packing seal may be used at the connection between the output port 190a and the input opening 210a.
  • An input port 220 a of the gas flow path 220 in the speed controller 200 is connected to the output opening 210 b of each first flow path 210.
  • the output port 220b of the gas flow path 220 is connected to the input opening 21 lb of each second flow path 211.
  • the input port 220a of the gas flow path 220 is formed above the output port 220b.
  • An O-ring packing seal is used at the connection between the first flow path 210 and the gas flow path 220 and at the connection between the second flow path 211 and the gas flow path 220. Moyo.
  • Each speed controller 200 is fixed to the connection block 182 with, for example, a screw 221 arranged vertically.
  • connection port 222 as a cylindrical output portion is provided at the outlet portion of each second flow path 211 on the other side surface 182b side of the connection block 182.
  • the connection port 222 protrudes from the other side surface 182b.
  • a plurality of air supply pipes 160 communicating with each pneumatic drive unit are collectively connected to the multi-connector 230.
  • the multi-connector 230 is formed with a connection hole 230a.
  • the connection hole 230a of the multi-connector 230 is fitted to the connection port 222 of the connecting block 182, the plurality of supply pipes 160 are connected to the gas supply boot 170. Can be connected.
  • the air that has flowed into the connecting block 182 from the speed controller 200 flows into the air supply pipe 160 from the connection port 222 through the second flow path 211.
  • the air that has flowed into the supply pipe 160 is supplied to a predetermined atmospheric pressure driving unit, and the atmospheric pressure driving unit is driven. Thereafter, when the air supplied to the pneumatic drive unit is exhausted, for example, it is exhausted from the external port 191 through the original air supply route.
  • the plurality of electromagnetic valves 190 and the speed controller 200 are assembled and attached to the connecting block 182. Therefore, piping that leads to a number of pneumatic drive units Can be easily connected and assembled. For this reason, for example, mistakes and problems during pipe construction and assembly are reduced, and the quality of the gas supply equipment that leads to the pneumatic drive unit can be stabilized.
  • the gas supply unit 170 can be made compact.
  • the rows of the solenoid valves 190 and the rows of the speed controller 200 are parallel, the corresponding solenoid valve 190 and the speed controller 200 can be easily grasped and assembled and maintained easily.
  • the plurality of supply pipes 160 and the plurality of connection ports 222 of the connecting block 182 are connected by the multi-connector 230, the plurality of supply pipes 160 are properly connected without interfering with each other. Can be connected to 170.
  • the speed controller block 181 is attached to the one side 182a side of the connecting block 182.
  • the speed controller block 181 is attached to the upper surface 182c as an orthogonal plane orthogonal to one side. It may be attached.
  • the upper surface 182c may be inclined so that the side surface 182a side thereof is lowered, and the speed controller block 181 may be attached to the inclined upper surface 182c.
  • the adjustment knob 201 of the speed controller 200 faces upward, the operation of the adjustment knob 201 is simplified, and maintenance such as setting and replacement of the air speed can be easily performed.
  • the connecting block 182 in the above embodiment may have flexibility as shown in FIG.
  • the connecting block 182 is made of, for example, rubber material, silicon rubber, or urethane. It is formed by tanned oil.
  • the connecting block 182 when maintenance is performed by operating the adjustment knob 201 of the speed controller 200, the connecting block 182 can be held and the adjustment knob 201 of the speed controller 200 can be directed upward. By doing so, the adjustment knob 201 can be easily operated even when a large number of speed controllers 200 are arranged in an integrated manner. Further, in normal times, the connecting block 182 does not move and the adjustment knob 201 of the speed controller 200 is in the horizontal direction, so that the gas supply unit 170 can be compactly installed.
  • the connecting block 182 may be divided into each set of electromagnetic valves 190 and speed controllers 200 that communicate with each other and correspond to the upper and lower sides.
  • the connecting block 182 is divided so that a plurality of rectangular parallelepiped pieces vertically aligned are arranged in the horizontal direction.
  • the connecting block 182 of the speed controller 200 to be maintained can be bent and the adjustment knob 201 of the speed controller 200 can be operated, so that maintenance can be performed more easily.
  • the speed controllers 200 may be arranged in a staggered pattern in the vertical direction. Good. By doing so, the position of the adjustment knob 201 of the adjacent speed controller 200 is shifted, so that the adjustment knob 201 becomes easy to operate and maintenance is facilitated.
  • the input port 220a and the output port 220b are formed with protrusions 220c and 220d protruding to the connection block 182 side, and connected.
  • the output opening 210b of the first flow path 210 of the block 182 and the input opening 211a of the second flow path 211 are formed with recesses 182c and 182d that fit into the protruding portions 220c and 220d.
  • the protruding portions 220c and 220d may be formed in a tapered cylindrical shape, and the concave portions 182c and 182d may be formed in a tapered shape with a smaller diameter on the bottom surface side.
  • each of the recesses 182c and 182d may be formed of a resilient member 182e such as a soft resin that can ensure airtightness, for example, a rubber material.
  • the speed controller 200 and the connecting block 182 are fitted with protruding rods 220c, 220d and four rods 182c, 182d. In the combined state, it is fixed with screws 211. According to this example, the airtightness of the connecting portion between the speed controller 200 and the connecting block 182 can be improved. Further, the positioning of the speed controller 200 and the connecting block 182 can be performed accurately and easily.
  • the first flow path 210 of the connection block 182 is formed in a V shape, it may be formed in a U shape as shown in FIG.
  • a vertical flow path 210e that vertically penetrates the connection block 182 and a horizontal flow path 210f that leads from one side surface 182a to the vertical flow path 210e are formed in each of the upper and lower portions of the connection block 182.
  • a seal 210g may be provided at the upper and lower ends of the path 210e. In such a case, the first channel 210 can be easily processed.
  • one system of gas flow paths 220 is formed in the speed controller 200.
  • two systems of gas flow paths 240, 241 may be formed.
  • a corresponding electromagnetic block 190 having two output ports 190a is used.
  • two lines of the first flow path 210 and the second flow path 211 are formed in the connection block 182 each.
  • the two gas flow paths 240 and 24 1 of the speed controller 200 are arranged one above the other, between the input port 240a of the upper gas flow path 240 and the input port 241a of the lower gas flow path 241.
  • the output port 240b of the gas flow path 240 and the output port 241b of the lower gas flow path 241 are formed.
  • connection ports 222 are formed vertically corresponding to the second flow paths 211 of the two systems, and connection holes 230a are formed vertically on the multiconnector 230. .
  • the gas supply unit 170 can supply air to a larger number of the pneumatic drive units, more air supply pipes 160 can be aggregated to simplify the air supply piping.
  • the positions of the corresponding upper and lower connection ports 222 are closer, and furthermore, the positions of the corresponding upper and lower connection holes 230a of the multiconnector 230 are closer.
  • the multi-connector 230 can be reduced in size.
  • the number of electromagnetic valves 190 and speed controllers 200 can be arbitrarily selected.
  • the connection block 182 described in the above embodiment has a rectangular parallelepiped shape, but may have another shape that is not necessarily a strict rectangular parallelepiped shape.
  • the valve for operating and stopping the supply of air is not limited to the electromagnetic valve, and may be another type of valve.
  • the present invention can also be applied to the case of supplying a gas other than air for driving the pneumatic drive unit.
  • the gas supply unit of the present invention may be provided for each processing apparatus of the coating and developing treatment system 1, or may be provided for each of a plurality of processing apparatuses, for example, for each processing apparatus of the same type.
  • the present invention can be applied to a substrate other than a wafer, for example, an FPD (Flat Panel Display), a mask reticle for a photomask, and the like after supplying gas to a substrate processing apparatus.
  • the present invention is useful for stabilizing the quality of a supply facility that supplies gas to a plurality of pneumatic drive units used in a substrate processing apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve Housings (AREA)
  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A gas supply unit has a connection block with a rectangular solid shape, and a solenoid valve block made up of solenoid valves and a speed controller block made up of speed controllers are connected to one side face of the connection block. In the connection block, there are formed first flow paths and second flow paths. The first flow paths are for connection between each solenoid valve and each speed controller that correspond to each other, and the second flow paths are communicated to the other side face from the speed controllers. In the output side of the second flow paths that is on the other side face are provided connection ports. Gas supply tubes communicated with gas pressure-type drive sections are connected to the connection ports via a multi-connector. The gas supply unit can stabilize quality of a gas supply facility for supplying gas to gas pressure-type drive sections used for substrate processing device.

Description

明 細 書  Specification
気体供給ユニット  Gas supply unit
技術分野  Technical field
[0001] 本発明は、基板の処理装置で用いられる複数の気圧式駆動部に気体を供給する 気体供給ユニットに関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a gas supply unit that supplies gas to a plurality of pneumatic drive units used in a substrate processing apparatus. Background art
[0002] 例えば半導体デバイスの製造プロセスにおけるフォトリソグラフィー工程は、多数の 処理装置を搭載した塗布現像処理システムにお!/ヽて行われて!/、る。塗布現像処理 システムは、例えばウェハ上にレジスト液を塗布しレジスト膜を形成するレジスト塗布 装置、レジスト液が塗布されたウェハを加熱するプリべ一キング装置、露光されたゥェ ハを加熱するポストェクスポージャーべ一キング装置、レジスト膜を現像する現像処 理装置、現像されたウェハを加熱するポストべ一キング装置などを備えて 、る。  [0002] For example, a photolithography process in a semiconductor device manufacturing process is applied to a coating and developing processing system equipped with a large number of processing apparatuses! / Hurry up! / The coating and developing system includes, for example, a resist coating device that coats a resist solution on a wafer to form a resist film, a pre-baking device that heats the wafer coated with the resist solution, and a post that heats the exposed wafer. An exposure baking apparatus, a development processing apparatus for developing a resist film, and a post baking apparatus for heating the developed wafer are provided.
[0003] 上述の各種処理装置には、例えばウェハの昇降ピン、ケーシングのシャツタゃ処理 容器の蓋などを駆動するためのエアシリンダや、処理液の供給を制御するエア駆動 式の開閉バルブなどの多数の気圧式駆動部が設けられている。これらの気圧式駆動 部には、それぞれに給気管が接続されており、各給気管には、気圧式駆動部への気 体の供給を制御する電磁バルブや、気体の供給速度を制御するスピードコントローラ などが設けられている (特許文献 1、 2参照)。  [0003] The various processing devices described above include, for example, an air cylinder for driving a wafer lift pin, a casing shirt processing container lid, an air-driven opening / closing valve for controlling the supply of processing liquid, and the like. A number of pneumatic drive units are provided. An air supply pipe is connected to each of these pneumatic drive units. Each supply pipe has an electromagnetic valve for controlling the supply of gas to the pneumatic drive unit and a speed for controlling the gas supply rate. A controller is provided (see Patent Documents 1 and 2).
特許文献 1 :日本国特開平 11 285662号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 11 285662
特許文献 2 :日本国特開平 11 125212号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 11 125212
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、上述のように塗布現像処理システムの各処理装置には、多系統の給 気管が設けられ、その給気管のそれぞれにスピードコントローラや電磁バルブが接続 されている。このため、例えばこれらの配管の施工や組み立ては、極めて複雑な作業 になり、組立作業者が配管の接続や取り付けを誤ることがあった。また、塗布現像処 理システムでは狭い空間に多系統の配管を設置する必要があり、この際に配管折れ が生じたり、また各種接続部に気体漏れが生じることがあった。このように、従来の技 術では配管の施工や組み立て時にミスや不具合が生じやすぐ気体の供給設備の 品質が安定しなかった。 [0004] However, as described above, each processing apparatus of the coating and developing treatment system is provided with a multi-system air supply pipe, and a speed controller and an electromagnetic valve are connected to each of the air supply pipes. For this reason, for example, the construction and assembly of these pipes has become extremely complicated work, and the assembly operator has sometimes mistakenly connected and installed the pipes. In the coating and developing system, it is necessary to install multiple lines of piping in a narrow space. Or gas leaks may occur at various connections. In this way, with conventional technology, mistakes and malfunctions occurred during pipe construction and assembly, and the quality of the gas supply equipment was not stable immediately.
[0005] 本発明は、力かる点に鑑みてなされたものであり、ウェハなどの基板の処理装置に 用いられる複数の気圧式駆動部に気体を供給する気体供給設備の品質を安定させ ることをその目的とする。  [0005] The present invention has been made in view of the strong point, and stabilizes the quality of gas supply equipment for supplying gas to a plurality of pneumatic drive units used in a processing apparatus for a substrate such as a wafer. Is the purpose.
課題を解決するための手段  Means for solving the problem
[0006] 上記目的を達成するための本発明は、基板の処理装置で用いられる複数の気圧 式駆動部に気体を供給する気体供給ユニットであって、気体の供給と停止を切り替 える複数の弁と、前記弁から気圧式駆動部に供給される気体の供給速度を制御する 複数の速度制御装置と、前記複数の弁と前記複数の速度制御装置が取り付けられ、 対応する弁と速度制御装置とを連通させる連結ブロックと、を有して ヽる。  [0006] To achieve the above object, the present invention provides a gas supply unit for supplying gas to a plurality of pneumatic drive units used in a substrate processing apparatus, and a plurality of valves for switching between supply and stop of gas. And a plurality of speed control devices for controlling the supply speed of gas supplied from the valve to the pneumatic drive unit, the plurality of valves and the plurality of speed control devices, and a corresponding valve and speed control device, And a connecting block for communicating with each other.
[0007] 本発明によれば、多系統の複数の弁と速度制御装置が一箇所の連結ブロックに集 約されて取り付けられるので、複数の気圧式駆動部への配管の施工や組み立てが 簡単になり、気圧式駆動部への気体の供給設備の品質を安定させることができる。  [0007] According to the present invention, since a plurality of valves and speed control devices of multiple systems are assembled and attached to one connecting block, it is easy to install and assemble piping to a plurality of pneumatic drive units. Thus, it is possible to stabilize the quality of the gas supply equipment to the pneumatic drive unit.
[0008] 前記連結ブロックは、直方体形状を有し、前記連結ブロックの一の面に前記弁が取 り付けられ、前記連結ブロック内には、前記弁からの入力された気体を対応する速度 制御装置に出力する第 1の流路と、前記弁から入力された気体が流れる第 2の流路 が設けられ、前記第 2の流路は、前記連結ブロックの前記一の面の反対側の他の面 に連通していてもよい。  [0008] The connection block has a rectangular parallelepiped shape, and the valve is attached to one surface of the connection block, and the velocity control corresponding to the gas input from the valve is provided in the connection block. There is provided a first flow path that outputs to the device and a second flow path through which the gas input from the valve flows, and the second flow path is the other side opposite to the one surface of the connection block. You may communicate with the other side.
[0009] 前記複数の速度制御装置は、前記連結ブロックの前記一の面に取り付けられてい てもよい。  [0009] The plurality of speed control devices may be attached to the one surface of the connection block.
[0010] 前記複数の速度制御装置は、前記連結ブロックの前記一の面に直交する直交面 に取り付けられて 、てもよ 、。  [0010] The plurality of speed control devices may be attached to an orthogonal surface orthogonal to the one surface of the connection block.
[0011] 前記連結ブロックの直交面には、前記一の面側に向けて傾斜する傾斜面が形成さ れ、その傾斜面に前記複数の速度制御装置が取り付けられていてもよい。  [0011] An inclined surface that is inclined toward the one surface side may be formed on an orthogonal surface of the connection block, and the plurality of speed control devices may be attached to the inclined surface.
[0012] 前記連結ブロックには、前記複数の速度制御装置と前記複数の弁がそれぞれ並列 されて取り付けられており、前記速度制御装置の列と前記弁の列が平行になってい てもよい。 [0012] The plurality of speed control devices and the plurality of valves are respectively attached in parallel to the connection block, and the row of the speed control devices and the row of the valves are parallel to each other. May be.
[0013] 前記弁は、 2系統の出力ポートを有し、前記速度制御装置は、前記弁の 2系統の出 力ポートに連通する 2系統の気体流路を有して 、てもよ 、。  [0013] The valve may have two output ports, and the speed control device may have two gas flow paths communicating with the two output ports of the valve.
[0014] 前記速度制御装置には、 2系統の気体流路の 2つの入力ポートの間に 2つの出力 ポートが形成されて ヽてもよ ヽ。 [0014] The speed control device may have two output ports formed between two input ports of two gas flow paths.
[0015] 前記連結ブロックは、可撓性を有して ヽてもよ ヽ。また、前記連結ブロックは、対応 する前記弁と前記速度制御装置毎に分割されて!、てもよ 、。 [0015] The connecting block may be flexible. Further, the connecting block may be divided for each of the corresponding valve and the speed control device!
[0016] 前記各速度制御装置における連結ブロックの反対側の面には、気体の供給速度の 調整部材が設けられており、前記複数の速度制御装置の前記調整部材の位置が千 鳥状に配置されるように、前記複数の速度制御装置が前記連結ブロックに並べられ ていてもよい。 [0016] A gas supply speed adjustment member is provided on the surface of the speed control device on the opposite side of the connecting block, and the positions of the adjustment members of the plurality of speed control devices are arranged in a staggered manner. As described above, the plurality of speed control devices may be arranged in the connection block.
[0017] 前記速度制御装置の出力ポートは、突状に形成されており、前記連結ブロックには 、前記速度制御装置の出力ポートの前記突状部分が嵌合する凹部が形成されてい てもよい。  [0017] The output port of the speed control device may be formed in a protruding shape, and the connection block may be formed with a recess into which the protruding portion of the output port of the speed control device is fitted. .
[0018] 前記凹部は、底側の径が小さくなるテーパ状に形成されており、前記凹部のテーパ 部分は、弾力性のある部材により形成されて 、てもよ 、。  [0018] The concave portion may be formed in a tapered shape with a diameter on the bottom side, and the tapered portion of the concave portion may be formed by a resilient member.
[0019] 前記気体供給ユニットは、前記各気圧式駆動部に通じる複数の配管と、前記速度 制御装置の出力側に通じる前記連結ブロックの複数の出力部とを連結するコネクタ を有していてもよい。 [0019] The gas supply unit may include a connector that connects a plurality of pipes that communicate with each of the pneumatic drive units and a plurality of output units of the connection block that communicate with the output side of the speed control device. Good.
発明の効果  The invention's effect
[0020] 本発明によれば、基板の処理装置の複数の気圧式駆動部に気体を供給する気体 供給設備の品質が安定し、気圧式駆動部の動作が安定して、基板の処理装置にお ける基板処理が適正に行われる。  [0020] According to the present invention, the quality of the gas supply equipment for supplying gas to the plurality of pneumatic drive units of the substrate processing apparatus is stabilized, and the operation of the pneumatic drive unit is stabilized. The substrate is processed properly.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]塗布現像処理システムの構成の概略を示す平面図である。 FIG. 1 is a plan view showing an outline of a configuration of a coating and developing treatment system.
[図 2]図 1の塗布現像処理システムの正面図である。  FIG. 2 is a front view of the coating and developing treatment system of FIG. 1.
[図 3]図 1の塗布現像処理システムの背面図である。  FIG. 3 is a rear view of the coating and developing treatment system of FIG. 1.
[図 4]レジスト塗布装置の構成の概略を示す縦断面の説明図である。 [図 5]気体供給ユニットの構成の概略を示す斜視図である。 FIG. 4 is an explanatory view of a longitudinal section showing an outline of the configuration of a resist coating apparatus. FIG. 5 is a perspective view schematically showing the configuration of a gas supply unit.
[図 6]気体供給ユニットの部分断面図である。  FIG. 6 is a partial sectional view of the gas supply unit.
[図 7]連結ブロックの内部構成を示す説明図である。  FIG. 7 is an explanatory diagram showing an internal configuration of a connection block.
[図 8]連結ブロックの上面にスピードコントローラブロックを設けた場合の気体供給ュ ニットの模式図である。  FIG. 8 is a schematic diagram of a gas supply unit when a speed controller block is provided on the upper surface of a connection block.
[図 9]連結ブロックの上面の傾斜面にスピードコントローラブロックを設けた場合の気 体供給ュ-ットの模式図である。  FIG. 9 is a schematic diagram of a gas supply unit when a speed controller block is provided on the inclined surface of the upper surface of the connection block.
[図 10]連結ブロックが可撓性を有する場合の気体供給ユニットの模式図である。  FIG. 10 is a schematic view of a gas supply unit when the connecting block has flexibility.
[図 11]分割された連結ブロックの斜視図である。 FIG. 11 is a perspective view of a divided connection block.
[図 12]スピードコントローラが千鳥状に配置された場合の気体供給ユニットの正面図 である。  FIG. 12 is a front view of the gas supply unit when the speed controllers are arranged in a staggered pattern.
[図 13]スピードコントローラと連結ブロックの接続部の拡大断面図である。  FIG. 13 is an enlarged cross-sectional view of a connecting portion between a speed controller and a connecting block.
[図 14]第 1の流路を U字状に形成した場合の気体供給ユニットの部分断面図である。 FIG. 14 is a partial cross-sectional view of the gas supply unit when the first flow path is formed in a U shape.
[図 15]上下 2系統のスピードコントローラを配置した場合の気体供給ユニットの部分 断面図である。 FIG. 15 is a partial cross-sectional view of the gas supply unit in the case where two upper and lower speed controllers are arranged.
符号の説明 Explanation of symbols
1 塗布現像処理システム  1 Coating and developing system
20 レジスト塗布装置  20 Resist coater
170 気体供給ユニット  170 Gas supply unit
180 電磁バルブブロック  180 Solenoid valve block
181 スピードコントローラブロック  181 Speed controller block
182 連結ブロック  182 connecting blocks
182a 一の側面  182a One side
182b 他の側面  182b Other side
190 電磁バルブ  190 Solenoid valve
200 スピードコントローラ  200 speed controller
210 第 1の流路  210 First channel
211 第 2の流路 222 接続ポート 211 Second channel 222 Connection port
W ウェハ  W wafer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明の好ましい実施の形態について説明する。先ず、本発明にかかる気 体供給ユニットを有する複数の基板の処理装置が搭載された塗布現像処理システム[0023] Hereinafter, preferred embodiments of the present invention will be described. First, a coating and developing processing system equipped with a plurality of substrate processing apparatuses having a gas supply unit according to the present invention.
1について説明する。図 1は、塗布現像処理システム 1の構成の概略を示す平面図で あり、図 2は、塗布現像処理システム 1の正面図であり、図 3は、塗布現像処理システ ム 1の背面図である。 1 will be described. FIG. 1 is a plan view schematically showing the configuration of the coating and developing treatment system 1. FIG. 2 is a front view of the coating and developing treatment system 1. FIG. 3 is a rear view of the coating and developing treatment system 1. .
[0024] 塗布現像処理システム 1は、図 1に示すように例えば 25枚のウェハ Wをカセット単位 で外部力 塗布現像処理システム 1に対して搬入出したり、カセット Cに対してウェハ Wを搬入出したりするカセットステーション 2と、フォトリソグラフィー工程の中で枚葉式 に所定の処理を施す複数の各種処理装置を多段に配置している処理ステーション 3 と、この処理ステーション 3に隣接して設けられている図示しない露光装置との間でゥ ェハ Wの受け渡しをするインターフェイスステーション 4とを一体に接続した構成を有 している。  [0024] As shown in FIG. 1, the coating and developing treatment system 1 carries out, for example, 25 wafers W in the cassette unit to the external force coating and developing treatment system 1, and carries the wafers W into and out of the cassette C. Cassette station 2, a processing station 3 in which a plurality of various processing apparatuses for performing predetermined processing in a single wafer process in a photolithography process are arranged in multiple stages, and a processing station 3 adjacent to the processing station 3. The interface station 4 for transferring wafer W to and from an exposure apparatus (not shown) is integrally connected.
[0025] カセットステーション 2には、カセット載置台 5が設けられ、当該カセット載置台 5は、 複数のカセット Cを X方向(図 1中の上下方向)に一列に載置自在になっている。カセ ットステーション 2には、搬送路 6上を X方向に向力つて移動可能なウェハ搬送体 7が 設けられている。ウェハ搬送体 7は、カセット Cに収容されたウェハ Wのウェハ配列方 向(Z方向;鉛直方向)にも移動自在であり、 X方向に配列された各カセット C内のゥ ハ Wに対して選択的にアクセスできる。  [0025] The cassette station 2 is provided with a cassette mounting table 5, and the cassette mounting table 5 is capable of mounting a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1). The cassette station 2 is provided with a wafer transfer body 7 that can move on the transfer path 6 in the X direction. The wafer carrier 7 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafer W accommodated in the cassette C, and with respect to the wafer W in each cassette C arranged in the X direction. Selective access.
[0026] ウェハ搬送体 7は、 Z軸周りの Θ方向に回転可能であり、後述する処理ステーション 3側の第 3の処理装置群 G3に属する温調装置 50やトランジシヨン装置 51に対しても アクセスできる。  [0026] The wafer carrier 7 is rotatable in the Θ direction around the Z-axis, and also with respect to a temperature control device 50 and a transition device 51 belonging to a third processing device group G3 on the processing station 3 side described later. Accessible.
[0027] カセットステーション 2に隣接する処理ステーション 3は、複数の処理装置が多段に 配置された、例えば 5つの処理装置群 G1〜G5を備えている。処理ステーション 3の X方向負方向(図 1中の下方向)側には、カセットステーション 2側力 第 1の処理装 置群 Gl、第 2の処理装置群 G2が順に配置されている。処理ステーション 3の X方向 正方向(図 1中の上方向)側には、カセットステーション 2側力 第 3の処理装置群 G3 、第 4の処理装置群 G4及び第 5の処理装置群 G5が順に配置されている。第 3の処 理装置群 G3と第 4の処理装置群 G4の間には、第 1の搬送装置 10が設けられて 、る 。第 1の搬送装置 10は、第 1の処理装置群 Gl、第 3の処理装置群 G3及び第 4の処 理装置群 G4内の各処理装置に選択的にアクセスしてウエノ、 Wを搬送できる。第 4の 処理装置群 G4と第 5の処理装置群 G5の間には、第 2の搬送装置 11が設けられてい る。第 2の搬送装置 11は、第 2の処理装置群 G2、第 4の処理装置群 G4及び第 5の 処理装置群 G5内の各処理装置に選択的にアクセスしてウェハ Wを搬送できる。 [0027] The processing station 3 adjacent to the cassette station 2 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages. On the negative side of the processing station 3 in the X direction (downward in FIG. 1), the cassette station 2 side force first processing device group Gl and second processing device group G2 are arranged in this order. X direction of processing station 3 On the positive direction (upward in FIG. 1) side, the cassette station 2 side force third processing device group G3, fourth processing device group G4, and fifth processing device group G5 are arranged in this order. A first transfer device 10 is provided between the third processing device group G3 and the fourth processing device group G4. The first transport device 10 can selectively access the processing devices in the first processing device group Gl, the third processing device group G3, and the fourth processing device group G4 to transport the wafers and W. . A second transfer device 11 is provided between the fourth processing device group G4 and the fifth processing device group G5. The second transfer device 11 can selectively access each processing device in the second processing device group G2, the fourth processing device group G4, and the fifth processing device group G5 to transfer the wafer W.
[0028] 図 2に示すように第 1の処理装置群 G1には、ウェハ Wに所定の液体を供給して処 理を行う液処理装置、例えばウェハ Wにレジスト液を塗布するレジスト塗布装置 20、 21、 22、露光処理時の光の反射を防止する反射防止膜を形成するボトムコーティン グ装置 23、 24が下力も順に 5段に重ねられている。第 2の処理装置群 G2には、液処 理装置、例えばウェハ Wに現像液を供給して現像処理する現像処理装置 30〜34が 下力 順に 5段に重ねられている。また、第 1の処理装置群 G1及び第 2の処理装置 群 G2の最下段には、各処理装置群 Gl、 G2内の液処理装置に各種処理液を供給 するためのケミカル室 40、 41がそれぞれ設けられている。  As shown in FIG. 2, in the first processing unit group G 1, a liquid processing apparatus that supplies a predetermined liquid to the wafer W and performs processing, for example, a resist coating apparatus 20 that applies a resist liquid to the wafer W. 21, 22 and bottom coating devices 23 and 24 for forming an antireflection film for preventing reflection of light during the exposure process are also stacked in five steps in order. In the second processing unit group G2, liquid processing units, for example, developing processing units 30 to 34 for supplying a developing solution to the wafer W and performing development processing are stacked in five stages in descending order. In addition, chemical chambers 40 and 41 for supplying various processing liquids to the liquid processing apparatuses in the processing apparatus groups Gl and G2 are provided at the bottom of the first processing apparatus group G1 and the second processing apparatus group G2. Each is provided.
[0029] 例えば図 3に示すように第 3の処理装置群 G3には、温調装置 50、ゥヱハ Wの受け 渡しを行うためのトランジシヨン装置 51、精度の高い温度管理下でウェハ Wを温度調 節する高精度温調装置 52〜54及びゥ ハ Wを高温で加熱処理する高温度熱処理 装置 55〜58が下力も順に 9段に重ねられている。  For example, as shown in FIG. 3, the third processing unit group G3 includes a temperature control unit 50, a transition unit 51 for transferring the wafer W, and the temperature of the wafer W under high-precision temperature control. The high-precision temperature control devices 52 to 54 to adjust and the high-temperature heat treatment devices 55 to 58 to heat the woofer W at high temperature are also stacked in 9 steps in order.
[0030] 第 4の処理装置群 G4では、例えば高精度温調装置 60、レジスド塗布処理後のゥヱ ハ Wを加熱処理するプリべ一キング装置 61〜64及び現像処理後のウェハ Wを加熱 処理するポストべ一キング装置 65〜69が下力も順に 10段に重ねられている。  [0030] In the fourth processing unit group G4, for example, a high-precision temperature control unit 60, pre-baking units 61 to 64 for heating the wafer W after the resist coating process, and the wafer W after the development process are heated. The post-baking devices 65 to 69 to be processed are stacked in 10 steps in order of the lower force.
[0031] 第 5の処理装置群 G5では、ウェハ Wを熱処理する複数の熱処理装置、例えば高精 度温調装置 70〜73、露光後で現像前のウエノ、 Wの加熱処理を行うポストェクスポー ジャーべ一キング装置 74〜79が下から順に 10段に重ねられている。  [0031] In the fifth processing apparatus group G5, a plurality of heat processing apparatuses for heat-treating the wafer W, for example, high-accuracy temperature control apparatuses 70 to 73, post-exposure before development and post-exposure chambers for performing W heat processing. One king device 74-79 is stacked in 10 steps from the bottom.
[0032] 図 1に示すように第 1の搬送装置 10の X方向正方向側には、複数の処理装置が配 置されており、例えば図 3に示すようにウェハ Wを疎水化処理するためのアドヒージョ ン装置 80、 81、ウェハ Wを加熱する加熱処理装置 82、 83が下力 順に 4段に重ね られている。図 1に示すように第 2の搬送装置 11の X方向正方向側には、例えばゥェ ハ Wのエッジ部のみを選択的に露光する周辺露光装置 84が配置されている。 As shown in FIG. 1, a plurality of processing devices are arranged on the positive side in the X direction of the first transfer device 10, for example, to hydrophobize the wafer W as shown in FIG. Adhijo The heat treatment devices 82 and 83 for heating the wafer devices 80 and 81 and the wafer W are stacked in four steps in order of the lower force. As shown in FIG. 1, on the positive side in the X direction of the second transport device 11, a peripheral exposure device 84 that selectively exposes only the edge portion of the wafer W, for example, is arranged.
[0033] インターフェイスステーション 4には、例えば図 1に示すように X方向に向けて延びる 搬送路 100上を移動するウェハ搬送体 101と、ノッファカセット 102が設けられている 。ウェハ搬送体 101は、上下移動可能でかつ Θ方向にも回転可能であり、インターフ ェイスステーション 4に隣接した図示しない露光装置と、ノッファカセット 102及び第 5 の処理装置群 G5に対してアクセスしてウェハ Wを搬送できる。  For example, as shown in FIG. 1, the interface station 4 is provided with a wafer transfer body 101 that moves on a transfer path 100 extending in the X direction, and a noffer cassette 102. The wafer carrier 101 can move up and down and can also rotate in the Θ direction, and accesses an exposure apparatus (not shown) adjacent to the interface station 4, a nother cassette 102 and a fifth processing unit group G5. Wafer W can be transferred.
[0034] 次に、本発明にかかる気体供給ユニットを備えた基板の処理装置の一例としてレジ スト塗布装置 20の構成について説明する。図 4は、レジスト塗布装置 20の構成の概 略を示す縦断面である。  Next, the configuration of a resist coating apparatus 20 will be described as an example of a substrate processing apparatus provided with a gas supply unit according to the present invention. FIG. 4 is a longitudinal section showing a schematic configuration of the resist coating apparatus 20.
[0035] 例えばレジスト塗布装置 20は、図 4に示すようにケーシング 20aを有し、当該ケーシ ング 20a内の中央部には、ウェハ Wを水平に保持するスピンチャック 120が設けられ ている。スピンチャック 120は、例えばモータなどの回転駆動部(図示せず)により回 転できる。スピンチャック 120には、スピンチャック 120を上下動させるためのエアシリ ンダ 121が設けられて!/、る。エアシリンダ 121によりスピンチャック 120を上下動させ て、スピンチャック 120と第 1の搬送装置 10との間のウェハ Wの受け渡しを行うことが できる。  For example, the resist coating apparatus 20 has a casing 20a as shown in FIG. 4, and a spin chuck 120 that holds the wafer W horizontally is provided at the center of the casing 20a. The spin chuck 120 can be rotated by a rotation drive unit (not shown) such as a motor. The spin chuck 120 is provided with an air cylinder 121 for moving the spin chuck 120 up and down! The wafer W can be transferred between the spin chuck 120 and the first transfer device 10 by moving the spin chuck 120 up and down by the air cylinder 121.
[0036] スピンチャック 120の周囲には、ウェハ Wから飛散したレジスト液などの液体を受け 止め、回収するためのカップ 122が設けられている。カップ 122の下面 122aには、回 収したレジスト液等を排液する排液管 123とカップ 4内を排気する排気管 124が設け られている。  [0036] Around the spin chuck 120, a cup 122 for receiving and collecting a liquid such as a resist solution scattered from the wafer W is provided. On the lower surface 122a of the cup 122, there are provided a drain pipe 123 for draining the collected resist solution and the exhaust pipe 124 for exhausting the inside of the cup 4.
[0037] ケーシング 20a内には、スピンチャック 120に保持されたウェハ Wに対しレジスト液 を吐出するレジスト液吐出ノズル 130が設けられている。レジスト液吐出ノズル 130は 、供給管 131によってレジスト液供給源 132に接続されている。供給管 131には、レ ジスト液の吐出と停止を制御するエア圧式の開閉弁 133が設けられている。なお、レ ジスト塗布装置 20は、ウェハ処理のレシピに応じてレジスト液の種類を変更するため に複数のレジスト液吐出ノズル 130、供給管 131及び開閉弁 133を備えている。 [0038] ケーシング 20aには、ウェハ Wの搬入出口 140が設けられて!/、る。搬入出口 140に は、シャツタ 141が設けられ、シャツタ 141は、例えばエアシリンダ 142により駆動して 搬入出口 140を開閉できる。 [0037] A resist solution discharge nozzle 130 is provided in the casing 20a to discharge the resist solution to the wafer W held on the spin chuck 120. The resist solution discharge nozzle 130 is connected to a resist solution supply source 132 by a supply pipe 131. The supply pipe 131 is provided with an air pressure type on-off valve 133 for controlling the discharge and stop of the resist liquid. The resist coating apparatus 20 includes a plurality of resist solution discharge nozzles 130, a supply pipe 131, and an on-off valve 133 in order to change the type of resist solution according to the wafer processing recipe. [0038] A loading / unloading port 140 for the wafer W is provided in the casing 20a. The loading / unloading port 140 is provided with a shirter 141. The shirter 141 can be driven by an air cylinder 142, for example, to open and close the loading / unloading port 140.
[0039] 以上のようにレジスト塗布装置 20は、例えばエアシリンダ 121、開閉弁 133及びェ ァシリンダ 142などの複数の気圧式駆動部を備えている。各気圧式駆動部は、それ ぞれの給気管 160によって気体供給ユニット 170に接続されて!、る。  As described above, the resist coating apparatus 20 includes a plurality of pneumatic drive units such as the air cylinder 121, the on-off valve 133, and the air cylinder 142, for example. Each pneumatic drive is connected to a gas supply unit 170 by a respective supply pipe 160 !.
[0040] ここで、気体供給ユニット 170の構成について説明する。気体供給ユニット 170は、 例えば図 5に示すように電磁バルブブロック 180、スピードコントローラブロック 181及 び連結ブロック 182により主に構成されている。  Here, the configuration of the gas supply unit 170 will be described. The gas supply unit 170 is mainly composed of an electromagnetic valve block 180, a speed controller block 181 and a connection block 182 as shown in FIG.
[0041] 連結ブロック 182は、例えば直方体形状を有し、例えば榭脂により形成されている。  [0041] The connection block 182 has, for example, a rectangular parallelepiped shape, and is formed of, for example, grease.
連結ブロック 182の正面側(図 5の Y方向負方向側)の一の側面 182aに、電磁バル ブブロック 180とスピードコントローラブロック 181が取り付けられている。  An electromagnetic valve block 180 and a speed controller block 181 are attached to one side surface 182a of the front side of the connecting block 182 (the Y direction negative direction side in FIG. 5).
[0042] 電磁バルブブロック 180は、水平方向(図 5の X方向)に並べられた複数の電磁バ ルブ 190を備えている。電磁バルブブロック 180の端部には、外部ポート 191が形成 されている。外部ポート 191は、図 4に示す工場側の気体供給源 192に接続されて おり、各電磁バルブ 190に対して例えばエアを給気できる。これらの各電磁バルブ 1 90の動作は、例えば制御部 193により制御されている。  The electromagnetic valve block 180 includes a plurality of electromagnetic valves 190 arranged in the horizontal direction (X direction in FIG. 5). An external port 191 is formed at the end of the electromagnetic valve block 180. The external port 191 is connected to a factory-side gas supply source 192 shown in FIG. 4, and can supply air to each electromagnetic valve 190, for example. The operation of each of these electromagnetic valves 190 is controlled by a control unit 193, for example.
[0043] 図 5に示すようにスピードコントローラブロック 181は、電磁バルブブロック 180上に 配置され、各電磁バルブ 190に対応する複数のスピードコントローラ 200を X方向に 並べて備えている。スピードコントローラブロック 181の Y方向負方向側には、各スピ ードコントローラ 200の調整部材としての調整つまみ 201が並べて配置されている。  As shown in FIG. 5, the speed controller block 181 is arranged on the electromagnetic valve block 180 and includes a plurality of speed controllers 200 corresponding to the electromagnetic valves 190 arranged in the X direction. On the Y direction negative direction side of the speed controller block 181, an adjustment knob 201 as an adjustment member of each speed controller 200 is arranged side by side.
[0044] 図 6に示すように連結ブロック 182の内部には、一の側面 182aの下部の入力開口 部 210aから一の側面 182aの上部の出力開口部 210bまで貫通する第 1の流路 210 が形成されている。第 1の流路 210は、途中で V字型に屈曲している。また、連結プロ ック 182の内部には、一の側面 182aの上部の入力開口部 211aから反対側の他の 側面 182bの上部の出力開口部 211bまで貫通する第 2の流路 211が形成されてい る。第 2の流路 211は、例えば水平方向に直線状に形成されている。第 1の流路 210 の出力開口部 210bは、第 2の流路 211の入力開口部 21 laよりも高い位置に形成さ れている。 [0044] As shown in FIG. 6, a first flow path 210 that penetrates from the lower input opening 210a of one side 182a to the output opening 210b of the upper side 182a is formed inside the connection block 182. Is formed. The first flow path 210 is bent in a V shape on the way. In addition, a second flow path 211 that penetrates from the input opening 211a at the top of one side 182a to the output opening 211b at the top of the other side 182b on the opposite side is formed inside the connection block 182. ing. The second channel 211 is formed, for example, linearly in the horizontal direction. The output opening 210b of the first channel 210 is formed at a position higher than the input opening 21 la of the second channel 211. It is.
[0045] 第 1の流路 210と第 2の流路 211は、対をなし、一対の第 1の流路 210と第 2の流路 211力図 7〖こ示すように水平方向の X方向に並べて形成されて!、る。  [0045] The first flow path 210 and the second flow path 211 form a pair, and the pair of the first flow path 210 and the second flow path 211. As shown in FIG. Formed side by side!
[0046] 各第 1の流路 210の入力開口部 210aには、図 6に示すように電磁バルブ 190の出 力ポート 190aが接続されている。この出力ポート 190aと入力開口部 210aの接続は 、例えばプッシュロック機構により行われている。なお、この出力ポート 190aと入力開 口部 210aの接続部には、 Oリング状のパッキンシールが用いられて 、てもよ 、。  As shown in FIG. 6, the output port 190a of the electromagnetic valve 190 is connected to the input opening 210a of each first flow path 210. The output port 190a and the input opening 210a are connected by, for example, a push lock mechanism. Note that an O-ring packing seal may be used at the connection between the output port 190a and the input opening 210a.
[0047] 各第 1の流路 210の出力開口部 210bには、スピードコントローラ 200内の気体流 路 220の入力ポート 220aが接続されている。各第 2の流路 211の入力開口部 21 lb には、気体流路 220の出力ポート 220bが接続されている。この気体流路 220の入力 ポート 220aは、出力ポート 220bよりも上部に形成されている。なお、第 1の流路 210 と気体流路 220との接続部や、第 2の流路 211と気体流路 220との接続部には、 Oリ ング状のパッキンシールが用いられて 、てもよ 、。  An input port 220 a of the gas flow path 220 in the speed controller 200 is connected to the output opening 210 b of each first flow path 210. The output port 220b of the gas flow path 220 is connected to the input opening 21 lb of each second flow path 211. The input port 220a of the gas flow path 220 is formed above the output port 220b. An O-ring packing seal is used at the connection between the first flow path 210 and the gas flow path 220 and at the connection between the second flow path 211 and the gas flow path 220. Moyo.
[0048] 各スピードコントローラ 200は、例えば上下に配置されたネジ 221によって連結ブロ ック 182に固定されている。  [0048] Each speed controller 200 is fixed to the connection block 182 with, for example, a screw 221 arranged vertically.
[0049] 連結ブロック 182の他の側面 182b側の各第 2の流路 211の出口部分には、円筒 状の出力部としての接続ポート 222が設けられている。接続ポート 222は、他の側面 182bから突出している。  [0049] A connection port 222 as a cylindrical output portion is provided at the outlet portion of each second flow path 211 on the other side surface 182b side of the connection block 182. The connection port 222 protrudes from the other side surface 182b.
[0050] 各気圧式駆動部に通じる複数の給気管 160は、マルチコネクタ 230に一括して接 続されている。マルチコネクタ 230には、接続孔 230aが形成されており、例えばマル チコネクタ 230の接続孔 230aを連結ブロック 182の接続ポート 222に嵌め合わせる ことにより、複数の給気管 160を気体供給ュ-ット 170に接続できる。  [0050] A plurality of air supply pipes 160 communicating with each pneumatic drive unit are collectively connected to the multi-connector 230. The multi-connector 230 is formed with a connection hole 230a. For example, by fitting the connection hole 230a of the multi-connector 230 to the connection port 222 of the connecting block 182, the plurality of supply pipes 160 are connected to the gas supply boot 170. Can be connected.
[0051] 次に、以上のように構成された気体供給ユニット 170の作用について説明する。制 御部 193により動作命令信号が出力されると所定の電磁バルブ 190が作動し、流路 が開放されて、外部ポート 191から供給されたエアがその電磁バルブ 190を通って 連結ブロック 182内に流入する。連結ブロック 182に流入したエアは、第 1の流路 21 0を通ってスピードコントローラ 200に流れる。エアは、スピードコントローラ 200の気 体流路 220を通って連結ブロック 182の第 2の流路 211に流入する。この気体流路 2 20の通過時に図示しな!、絞り弁によりエアの速度が調整される。このエアの速度の 設定は、調整つまみ 201により行われる。スピードコントローラ 200から連結ブロック 1 82に流入したエアは、第 2の流路 211を通って接続ポート 222から給気管 160に流 入する。給気管 160に流入したエアは、所定の気圧式駆動部に供給され、気圧式駆 動部が駆動する。その後、気圧式駆動部に供給されたエアを排気する際には、例え ば元のエアの供給ルートを通って外部ポート 191から排気される。 [0051] Next, the operation of the gas supply unit 170 configured as described above will be described. When an operation command signal is output by the control unit 193, a predetermined electromagnetic valve 190 is activated, the flow path is opened, and the air supplied from the external port 191 passes through the electromagnetic valve 190 into the connection block 182. Inflow. The air that has flowed into the connection block 182 flows to the speed controller 200 through the first flow path 210. The air flows into the second flow path 211 of the connection block 182 through the gas flow path 220 of the speed controller 200. This gas flow path 2 Not shown when 20 passes! Air speed is adjusted by throttle valve. The air speed is set by the adjustment knob 201. The air that has flowed into the connecting block 182 from the speed controller 200 flows into the air supply pipe 160 from the connection port 222 through the second flow path 211. The air that has flowed into the supply pipe 160 is supplied to a predetermined atmospheric pressure driving unit, and the atmospheric pressure driving unit is driven. Thereafter, when the air supplied to the pneumatic drive unit is exhausted, for example, it is exhausted from the external port 191 through the original air supply route.
[0052] 以上の実施の形態によれば、気体供給ユニット 170において、複数の電磁バルブ 1 90とスピードコントローラ 200が連結ブロック 182に集約して取り付けられるので、多 数ある気圧式駆動部に通じる配管の接続や組み立てが容易になる。このため、例え ば配管の施工時や組み立て時のミスや不具合が減少し、気圧式駆動部に通じる気 体の供給設備の品質を安定させることができる。  [0052] According to the above embodiment, in the gas supply unit 170, the plurality of electromagnetic valves 190 and the speed controller 200 are assembled and attached to the connecting block 182. Therefore, piping that leads to a number of pneumatic drive units Can be easily connected and assembled. For this reason, for example, mistakes and problems during pipe construction and assembly are reduced, and the quality of the gas supply equipment that leads to the pneumatic drive unit can be stabilized.
[0053] 連結ブロック 182の一の側面 182a側に複数の電磁バルブ 190とスピードコントロー ラ 200を並べて取り付けるようにしたので、気体供給ユニット 170をコンパクトィ匕するこ とができる。また、電磁バルブ 190の列とスピードコントローラ 200の列が平行になつ ているので、対応する電磁バルブ 190とスピードコントローラ 200が把握しやすぐ組 み立てやメンテナンスが容易になる。  [0053] Since the plurality of electromagnetic valves 190 and the speed controller 200 are mounted side by side on the one side 182a side of the connecting block 182, the gas supply unit 170 can be made compact. In addition, since the rows of the solenoid valves 190 and the rows of the speed controller 200 are parallel, the corresponding solenoid valve 190 and the speed controller 200 can be easily grasped and assembled and maintained easily.
[0054] マルチコネクタ 230により、複数の給気管 160と連結ブロック 182の複数の接続ポ ート 222を接続したので、多数の給気管 160を互いに干渉することなく適正に気体供 給ュ-ット 170に接続できる。  [0054] Since the plurality of supply pipes 160 and the plurality of connection ports 222 of the connecting block 182 are connected by the multi-connector 230, the plurality of supply pipes 160 are properly connected without interfering with each other. Can be connected to 170.
[0055] 以上の実施の形態では、スピードコントローラブロック 181が連結ブロック 182の一 の側面 182a側に取り付けられていたが、図 8に示すように一の側面に直交する直交 面としての上面 182cに取り付けられていてもよい。また、図 9に示すように上面 182c がーの側面 182a側が低くなるように傾斜し、その傾斜した上面 182cにスピードコント ローラブロック 181が取り付けられてもよい。これらの場合、スピードコントローラ 200 の調整つまみ 201が上側に向くので、調整つまみ 201の操作が簡単になり、エア速 度の設定調整や取替えなどのメンテナンスを簡単に行うことができる。  In the above embodiment, the speed controller block 181 is attached to the one side 182a side of the connecting block 182. However, as shown in FIG. 8, the speed controller block 181 is attached to the upper surface 182c as an orthogonal plane orthogonal to one side. It may be attached. Further, as shown in FIG. 9, the upper surface 182c may be inclined so that the side surface 182a side thereof is lowered, and the speed controller block 181 may be attached to the inclined upper surface 182c. In these cases, since the adjustment knob 201 of the speed controller 200 faces upward, the operation of the adjustment knob 201 is simplified, and maintenance such as setting and replacement of the air speed can be easily performed.
[0056] 以上の実施の形態における連結ブロック 182は、図 10に示すように可撓性を有し ていてもよい。かかる場合、連結ブロック 182は、例えばゴム材、シリコンゴム又はウレ タン榭脂などによって形成される。この例によれば、例えばスピードコントローラ 200 の調整つまみ 201を操作してメンテナンスを行う際に、連結ブロック 182を橈ませ、ス ピードコントローラ 200の調整つまみ 201を上方側に向けることができる。こうすること により、多数のスピードコントローラ 200が集約的に配列された場合にも、調整つまみ 201の操作を簡単に行うことができる。また、平常時には、連結ブロック 182が橈まず にスピードコントローラ 200の調整つまみ 201が水平方向に向いた状態になるので、 気体供給ュニット 170をコンパクトイ匕できる。 [0056] The connecting block 182 in the above embodiment may have flexibility as shown in FIG. In such a case, the connecting block 182 is made of, for example, rubber material, silicon rubber, or urethane. It is formed by tanned oil. According to this example, for example, when maintenance is performed by operating the adjustment knob 201 of the speed controller 200, the connecting block 182 can be held and the adjustment knob 201 of the speed controller 200 can be directed upward. By doing so, the adjustment knob 201 can be easily operated even when a large number of speed controllers 200 are arranged in an integrated manner. Further, in normal times, the connecting block 182 does not move and the adjustment knob 201 of the speed controller 200 is in the horizontal direction, so that the gas supply unit 170 can be compactly installed.
[0057] 連結ブロック 182が可撓性を有する場合、連結ブロック 182は、互いに連通し上下 に対応した各組の電磁バルブ 190とスピードコントローラ 200毎に分割されていても よい。例えば連結ブロック 182は、図 11に示すように上下に長細い直方体状の複数 の片が水平方向に並ぶように分割される。この例によれば、例えばメンテナンスされ るスピードコントローラ 200の連結ブロック 182のみを撓ませて、そのスピードコント口 ーラ 200の調整つまみ 201を操作することができるので、メンテナンスをより行い易く なる。 [0057] When the connecting block 182 has flexibility, the connecting block 182 may be divided into each set of electromagnetic valves 190 and speed controllers 200 that communicate with each other and correspond to the upper and lower sides. For example, as shown in FIG. 11, the connecting block 182 is divided so that a plurality of rectangular parallelepiped pieces vertically aligned are arranged in the horizontal direction. According to this example, for example, only the connecting block 182 of the speed controller 200 to be maintained can be bent and the adjustment knob 201 of the speed controller 200 can be operated, so that maintenance can be performed more easily.
[0058] 前記実施の形態では、複数のスピードコントローラ 200が連結ブロック 182に直線 状に並べて配置されていた力 図 12に示すようにスピードコントローラ 200は上下交 互の千鳥状に並べて配置されてもよい。こうすることにより、隣り合うスピードコントロー ラ 200の調整つまみ 201の位置がずれるので、調整つまみ 201が操作しやすくなり、 メンテナンスを行い易くなる。  [0058] In the above embodiment, the force in which the plurality of speed controllers 200 are arranged in a straight line on the connecting block 182 As shown in Fig. 12, the speed controllers 200 may be arranged in a staggered pattern in the vertical direction. Good. By doing so, the position of the adjustment knob 201 of the adjacent speed controller 200 is shifted, so that the adjustment knob 201 becomes easy to operate and maintenance is facilitated.
[0059] 以上の実施の形態で記載したスピードコントローラ 200については、図 13に示すよ うに入力ポート 220aと出力ポート 220bに連結ブロック 182側に突出する突状部 220 c、 220dが形成され、連結ブロック 182の第 1の流路 210の出力開口部 210bと第 2 の流路 211の入力開口部 211aには、その突状部 220c、 220dと嵌合する凹部 182 c、 182dが形成されていてもよい。例えば突状部 220c、 220dは、先細の円筒状に 形成され、凹部 182c、 182dは、底面側の径が小さくなるテーパ形状に形成されても よい。また、凹部 182c、 182dのテーパ部分の表面は、例えばゴム材ゃ気密性が確 保できる軟榭脂などの弾力性のある部材 182eにより形成されていてもよい。スピード コントローラ 200と連結ブロック 182は、突状咅 220c、 220dと四咅 182c、 182dを嵌 合した状態でネジ 211によって固定される。力かる例によれば、スピードコントローラ 2 00と連結ブロック 182の連結部の気密性を向上できる。また、スピードコントローラ 20 0と連結ブロック 182の位置合わせも正確かつ容易に行うことができる。 In the speed controller 200 described in the above embodiment, as shown in FIG. 13, the input port 220a and the output port 220b are formed with protrusions 220c and 220d protruding to the connection block 182 side, and connected. The output opening 210b of the first flow path 210 of the block 182 and the input opening 211a of the second flow path 211 are formed with recesses 182c and 182d that fit into the protruding portions 220c and 220d. Also good. For example, the protruding portions 220c and 220d may be formed in a tapered cylindrical shape, and the concave portions 182c and 182d may be formed in a tapered shape with a smaller diameter on the bottom surface side. Further, the surface of the tapered portion of each of the recesses 182c and 182d may be formed of a resilient member 182e such as a soft resin that can ensure airtightness, for example, a rubber material. The speed controller 200 and the connecting block 182 are fitted with protruding rods 220c, 220d and four rods 182c, 182d. In the combined state, it is fixed with screws 211. According to this example, the airtightness of the connecting portion between the speed controller 200 and the connecting block 182 can be improved. Further, the positioning of the speed controller 200 and the connecting block 182 can be performed accurately and easily.
[0060] 連結ブロック 182の第 1の流路 210は、 V字状に形成されていたが、図 14に示すよ うに U字状に形成されていてもよい。この場合、連結ブロック 182を上下に貫通する 垂直流路 210eと、連結ブロック 182の上部と下部のそれぞれに、一の側面 182aか ら垂直流路 210eに通じる水平流路 210fを形成し、垂直流路 210eの上下の端部に シール 210gを設けるようにしてもよい。かかる場合、第 1の流路 210の加工を容易に 行うことができる。 [0060] Although the first flow path 210 of the connection block 182 is formed in a V shape, it may be formed in a U shape as shown in FIG. In this case, a vertical flow path 210e that vertically penetrates the connection block 182 and a horizontal flow path 210f that leads from one side surface 182a to the vertical flow path 210e are formed in each of the upper and lower portions of the connection block 182. A seal 210g may be provided at the upper and lower ends of the path 210e. In such a case, the first channel 210 can be easily processed.
[0061] 以上の実施の形態では、スピードコントローラ 200に 1系統の気体流路 220が形成 されていたが、図 15に示すように 2系統の気体流路 240、 241が形成されてもよい。 かかる場合、例えば対応する電磁ブロック 190には、 2系統の出力ポート 190aを有 するものが用いられる。また、連結ブロック 182には、各々 2系統の第 1の流路 210と 第 2の流路 211が形成される。スピードコントローラ 200の 2系統の気体流路 240、 24 1は、上下に配置され、上方側の気体流路 240の入力ポート 240aと下方側の気体流 路 241の入力ポート 241aの間に、上方側の気体流路 240の出力ポート 240bと下方 側の気体流路 241の出力ポート 241bが形成される。つまり下から入力ポート 241a、 出力ポート 241b、出力ポート 240b、入力ポート 240aの順に形成される。また、連結 ブロック 182の他の側面 182bには、 2系統の第 2の流路 211に対応して上下に接続 ポート 222が形成され、マルチコネクタ 230には、上下に接続孔 230aが形成される。  In the above embodiment, one system of gas flow paths 220 is formed in the speed controller 200. However, as shown in FIG. 15, two systems of gas flow paths 240, 241 may be formed. In such a case, for example, a corresponding electromagnetic block 190 having two output ports 190a is used. In addition, two lines of the first flow path 210 and the second flow path 211 are formed in the connection block 182 each. The two gas flow paths 240 and 24 1 of the speed controller 200 are arranged one above the other, between the input port 240a of the upper gas flow path 240 and the input port 241a of the lower gas flow path 241. The output port 240b of the gas flow path 240 and the output port 241b of the lower gas flow path 241 are formed. That is, the input port 241a, output port 241b, output port 240b, and input port 240a are formed in this order from the bottom. Further, on the other side surface 182b of the connecting block 182, connection ports 222 are formed vertically corresponding to the second flow paths 211 of the two systems, and connection holes 230a are formed vertically on the multiconnector 230. .
[0062] この例によれば、気体供給ユニット 170がより多くの気圧式駆動部にエアを供給で きるので、より多くの給気管 160を集約して、給気配管を単純化できる。また、 2つの 出力ポート 240b、 241b同士を近づけることにより、それに対応する上下の接続ポー ト 222同士の位置が近づき、さらにそれに対応するマルチコネクタ 230の上下の接続 孔 230a同士の位置が近づくので、例えばマルチコネクタ 230を小型化できる。  [0062] According to this example, since the gas supply unit 170 can supply air to a larger number of the pneumatic drive units, more air supply pipes 160 can be aggregated to simplify the air supply piping. In addition, by bringing the two output ports 240b and 241b closer to each other, the positions of the corresponding upper and lower connection ports 222 are closer, and furthermore, the positions of the corresponding upper and lower connection holes 230a of the multiconnector 230 are closer. For example, the multi-connector 230 can be reduced in size.
[0063] 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、 本発明はカゝかる例に限定されない。当業者であれば、特許請求の範囲に記載された 思想の範疇内において、各種の変更例または修正例に相到し得ることは明らかであ り、それらについても当然に本発明の技術的範囲に属するものと了解される。例えば 上記実施の形態において、電磁バルブ 190やスピードコントローラ 200の数は、任意 に選択できる。上記実施の形態に記載した連結ブロック 182は、直方体形状であつ たが、厳密な直方体形状である必要はなぐ他の形状であってもよい。また、エアの 供給を作動、停止させるための弁は、電磁バルブに限られず、他の形式の弁であつ てもよい。気圧式駆動部の駆動用としてエア以外の気体を供給する場合にも本発明 は適用できる。また、本発明の気体供給ユニットは、塗布現像処理システム 1の処理 装置毎に設けられていてもよいし、複数の処理装置毎、例えば同じ種類の処理装置 毎に設けられていてもよい。本発明は、ウェハ以外の例えば FPD (フラットパネルディ スプレイ)、フォトマスク用のマスクレチクルなどの他の基板の処理装置に気体を供給 するちのにち適用でさる。 As described above, the preferred embodiments of the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that those skilled in the art can arrive at various changes or modifications within the scope of the idea described in the claims. Of course, it is understood that they belong to the technical scope of the present invention. For example, in the above embodiment, the number of electromagnetic valves 190 and speed controllers 200 can be arbitrarily selected. The connection block 182 described in the above embodiment has a rectangular parallelepiped shape, but may have another shape that is not necessarily a strict rectangular parallelepiped shape. Further, the valve for operating and stopping the supply of air is not limited to the electromagnetic valve, and may be another type of valve. The present invention can also be applied to the case of supplying a gas other than air for driving the pneumatic drive unit. In addition, the gas supply unit of the present invention may be provided for each processing apparatus of the coating and developing treatment system 1, or may be provided for each of a plurality of processing apparatuses, for example, for each processing apparatus of the same type. The present invention can be applied to a substrate other than a wafer, for example, an FPD (Flat Panel Display), a mask reticle for a photomask, and the like after supplying gas to a substrate processing apparatus.
産業上の利用可能性 Industrial applicability
本発明は、基板の処理装置に用いられる複数の気圧式駆動部に気体を供給する 供給設備の品質を安定させる際に有用である。  INDUSTRIAL APPLICABILITY The present invention is useful for stabilizing the quality of a supply facility that supplies gas to a plurality of pneumatic drive units used in a substrate processing apparatus.

Claims

請求の範囲 The scope of the claims
[1] 基板の処理装置で用いられる複数の気圧式駆動部に気体を供給する気体供給ュニ ットであって、  [1] A gas supply unit for supplying a gas to a plurality of pneumatic drive units used in a substrate processing apparatus,
気体の供給と停止を切り替える複数の弁と、  A plurality of valves for switching between gas supply and stop;
前記弁から気圧式駆動部に供給される気体の供給速度を制御する複数の速度制御 装置と、  A plurality of speed control devices for controlling the supply speed of the gas supplied from the valve to the pneumatic drive unit;
前記複数の弁と前記複数の速度制御装置が取り付けられ、対応する弁と速度制御 装置を連通させる連結ブロックと、を有する。  The plurality of valves and the plurality of speed control devices are attached, and the corresponding valves are connected to the speed control device.
[2] 請求項 1に記載の気体供給ユニットにお 、て、  [2] In the gas supply unit according to claim 1,
前記連結ブロックは、直方体形状を有し、  The connection block has a rectangular parallelepiped shape,
前記連結ブロックの一の面に前記弁が取り付けられ、  The valve is attached to one side of the connecting block;
前記連結ブロック内には、前記弁からの入力された気体を対応する速度制御装置に 出力する第 1の流路と、前記弁力 入力された気体が流れる第 2の流路が設けられ、 前記第 2の流路は、前記連結ブロックの前記一の面の反対側の他の面に連通してい る。  In the connection block, there are provided a first flow path for outputting the gas input from the valve to a corresponding speed control device, and a second flow path for the gas input by the valve force to flow, The second flow path communicates with the other surface on the opposite side of the one surface of the connection block.
[3] 請求項 2に記載の気体供給ユニットにお 、て、  [3] In the gas supply unit according to claim 2,
前記複数の速度制御装置は、前記連結ブロックの前記一の面に取り付けられている  The plurality of speed control devices are attached to the one surface of the connection block.
[4] 請求項 2に記載の気体供給ユニットにお 、て、 [4] In the gas supply unit according to claim 2,
前記複数の速度制御装置は、前記連結ブロックの前記一の面に直交する直交面に 取り付けられている。  The plurality of speed control devices are attached to orthogonal surfaces orthogonal to the one surface of the connection block.
[5] 請求項 4に記載の気体供給ユニットにお 、て、 [5] In the gas supply unit according to claim 4,
前記連結ブロックの直交面には、前記一の面側に向けて傾斜する傾斜面が形成され An inclined surface that is inclined toward the one surface side is formed on the orthogonal surface of the connection block.
、その傾斜面に前記複数の速度制御装置が取り付けられて 、る。 The plurality of speed control devices are attached to the inclined surface.
[6] 請求項 1に記載の気体供給ユニットにお 、て、 [6] In the gas supply unit according to claim 1,
前記連結ブロックには、前記複数の速度制御装置と前記複数の弁がそれぞれ並列 して取り付けられており、  The plurality of speed control devices and the plurality of valves are attached in parallel to the connection block,
前記速度制御装置の列と前記弁の列とが平行である。 The row of speed control devices and the row of valves are parallel.
[7] 請求項 1に記載の気体供給ユニットにお 、て、 [7] In the gas supply unit according to claim 1,
前記弁は、 2系統の出力ポートを有し、  The valve has two output ports,
前記速度制御装置は、前記弁の 2系統の出力ポートに連通する 2系統の気体流路を 有している。  The speed control device has two gas flow paths communicating with the two output ports of the valve.
[8] 請求項 7に記載の気体供給ユニットにお 、て、  [8] In the gas supply unit according to claim 7,
前記速度制御装置には、 2系統の気体流路の 2つの入力ポートの間に 2つの出力ポ ートが形成されている。  In the speed control device, two output ports are formed between two input ports of two gas flow paths.
[9] 請求項 1に記載の気体供給ユニットにお 、て、 [9] In the gas supply unit according to claim 1,
前記連結ブロックは、可撓性を有する。  The connection block has flexibility.
[10] 請求項 9に記載の気体供給ユニットにおいて、 [10] The gas supply unit according to claim 9,
前記連結ブロックは、対応する前記弁と前記速度制御装置毎に分割されている。  The connection block is divided for each of the corresponding valve and the speed control device.
[11] 請求項 1に記載の気体供給ユニットにお 、て、 [11] In the gas supply unit according to claim 1,
前記各速度制御装置における連結ブロックの反対側の面には、気体の供給速度の 調整部材が設けられており、  A gas supply speed adjusting member is provided on the opposite surface of the connecting block in each speed control device,
前記複数の速度制御装置の前記調整部材の位置が千鳥状に配置されるように、前 記複数の速度制御装置が前記連結ブロックに並べられている。  The plurality of speed control devices are arranged in the connection block so that the positions of the adjusting members of the plurality of speed control devices are arranged in a staggered manner.
[12] 請求項 1に記載の気体供給ユニットにお 、て、 [12] In the gas supply unit according to claim 1,
前記速度制御装置の出力ポートは、突状に形成されており、  The output port of the speed control device is formed in a protruding shape,
前記連結ブロックには、前記速度制御装置の出力ポートの前記突状部分が嵌合する 凹部が形成されている。  The connection block is formed with a recess into which the protruding portion of the output port of the speed control device is fitted.
[13] 請求項 12に記載の気体供給ユニットにおいて、  [13] The gas supply unit according to claim 12,
前記凹部は、底側の径が小さくなるテーパ状に形成されており、  The concave portion is formed in a tapered shape with a smaller diameter on the bottom side,
前記凹部のテーパ部分は、弾力性のある部材で形成されて 、る。  The tapered portion of the recess is formed of an elastic member.
[14] 請求項 1に記載の気体供給ユニットにお 、て、  [14] In the gas supply unit according to claim 1,
前記各気圧式駆動部に通じる複数の配管と、前記速度制御装置の出力側に通じる 前記連結ブロックの複数の出力部とを連結するコネクタを有する。  It has a connector which connects a plurality of piping which leads to the above-mentioned each pressure type drive part, and a plurality of output parts of the above-mentioned connection block which leads to the output side of the speed control device.
PCT/JP2007/063104 2006-07-04 2007-06-29 Gas supply unit WO2008004501A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020087032212A KR101226830B1 (en) 2006-07-04 2007-06-29 Gas supply unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006184450A JP4818835B2 (en) 2006-07-04 2006-07-04 Gas supply unit
JP2006-184450 2006-07-04

Publications (1)

Publication Number Publication Date
WO2008004501A1 true WO2008004501A1 (en) 2008-01-10

Family

ID=38894471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063104 WO2008004501A1 (en) 2006-07-04 2007-06-29 Gas supply unit

Country Status (3)

Country Link
JP (1) JP4818835B2 (en)
KR (1) KR101226830B1 (en)
WO (1) WO2008004501A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234924A (en) * 2017-03-15 2019-09-13 株式会社富士金 Connector and fluid control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220013736A (en) * 2020-07-27 2022-02-04 주성엔지니어링(주) Block Valve of Apparatus for Processing Substrate and Apparatus for Processing Substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078154A (en) * 1996-07-10 1998-03-24 Toyota Motor Corp Solenoid valve device
JPH1089517A (en) * 1996-09-16 1998-04-10 Ckd Corp Manifold
JPH10213045A (en) * 1996-11-30 1998-08-11 Usui Internatl Ind Co Ltd Connecting structure for branch connecting body in common rail
JP2000009240A (en) * 1998-06-25 2000-01-11 Kuroda Precision Ind Ltd Speed regulator for fluid operation device
JP2000028470A (en) * 1998-07-09 2000-01-28 Ckd Corp Device and method for inspecting gas leakage in process gas supplying unit
JP2002349797A (en) * 2001-05-23 2002-12-04 Fujikin Inc Fluid control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078154A (en) * 1996-07-10 1998-03-24 Toyota Motor Corp Solenoid valve device
JPH1089517A (en) * 1996-09-16 1998-04-10 Ckd Corp Manifold
JPH10213045A (en) * 1996-11-30 1998-08-11 Usui Internatl Ind Co Ltd Connecting structure for branch connecting body in common rail
JP2000009240A (en) * 1998-06-25 2000-01-11 Kuroda Precision Ind Ltd Speed regulator for fluid operation device
JP2000028470A (en) * 1998-07-09 2000-01-28 Ckd Corp Device and method for inspecting gas leakage in process gas supplying unit
JP2002349797A (en) * 2001-05-23 2002-12-04 Fujikin Inc Fluid control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234924A (en) * 2017-03-15 2019-09-13 株式会社富士金 Connector and fluid control device
CN110234924B (en) * 2017-03-15 2021-06-25 株式会社富士金 Joint and fluid control device
US11493162B2 (en) 2017-03-15 2022-11-08 Fujikin Incorporated Joint and fluid control device

Also Published As

Publication number Publication date
KR20090027697A (en) 2009-03-17
JP4818835B2 (en) 2011-11-16
KR101226830B1 (en) 2013-01-25
JP2008012405A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
KR101487364B1 (en) Processing liquid supplying device
US8985152B2 (en) Point of use valve manifold for semiconductor fabrication equipment
TWI487049B (en) Flow path switching apparatus, processing apparatus, flow path switching method and memory medium
JP4519035B2 (en) Coating film forming device
KR101386377B1 (en) Substrate processing apparatus
JP2008091376A (en) Apparatus and method of substrate processing as well as apparatus and method of supplying power to the substrate processing apparatus
KR101825503B1 (en) Process chamber apparatus, systems, and methods for controlling a gas flow pattern
JP5280141B2 (en) Substrate processing equipment
JP4818835B2 (en) Gas supply unit
JP2010087116A (en) Substrate processing apparatus
KR20180122519A (en) Apparatus and Method for treating substrate
KR102081707B1 (en) Valve unit and liquid supplying unit
KR20210011547A (en) Apparatus and Method for treating substrate
KR102277545B1 (en) Apparatus and Method for treating a substrate
WO2020241848A1 (en) Damper control system and damper control method
JP4771430B2 (en) Collection device
TWI830642B (en) Substrate container
KR102204883B1 (en) Apparatus for treating substrate
KR20180119788A (en) Air conditioner and apparatus for treating substrate the same
US20240162055A1 (en) Apparatus for treating substrate and related manufacturing method
KR20220093779A (en) Bake apparatus and substrate treating apparatus
JP2009004404A (en) Heat treatment apparatus
KR20220154449A (en) Substrate processing apparatus
KR20200142141A (en) Unit for supplying liquid, Apparatus and Method for treating substrate
CN117389118A (en) Cooling plate and glue spreading developing machine based on same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087032212

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767891

Country of ref document: EP

Kind code of ref document: A1