WO2008004277A1 - Panel-shaped semiconductor module - Google Patents

Panel-shaped semiconductor module Download PDF

Info

Publication number
WO2008004277A1
WO2008004277A1 PCT/JP2006/313306 JP2006313306W WO2008004277A1 WO 2008004277 A1 WO2008004277 A1 WO 2008004277A1 JP 2006313306 W JP2006313306 W JP 2006313306W WO 2008004277 A1 WO2008004277 A1 WO 2008004277A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal case
semiconductor elements
panel
type semiconductor
semiconductor element
Prior art date
Application number
PCT/JP2006/313306
Other languages
English (en)
French (fr)
Inventor
Josuke Nakata
Original Assignee
Kyosemi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosemi Corporation filed Critical Kyosemi Corporation
Priority to US12/308,146 priority Critical patent/US7910947B2/en
Priority to EP06780760A priority patent/EP2040313A4/en
Priority to PCT/JP2006/313306 priority patent/WO2008004277A1/ja
Priority to CN2006800551169A priority patent/CN101473452B/zh
Priority to JP2008523559A priority patent/JP4948535B2/ja
Priority to AU2006345821A priority patent/AU2006345821B2/en
Priority to KR1020087030545A priority patent/KR100996048B1/ko
Priority to CA2654941A priority patent/CA2654941C/en
Priority to TW095124796A priority patent/TWI303490B/zh
Publication of WO2008004277A1 publication Critical patent/WO2008004277A1/ja
Priority to HK09108696.1A priority patent/HK1128993A1/xx

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a panel type semiconductor module having a light receiving or light emitting function, and more particularly to a semiconductor module configured using a plurality of rod-shaped semiconductor elements (semiconductor devices).
  • GaAs gallium arsenide
  • a plurality of cone-shaped reflecting mirrors are provided in a case, a planar light receiving solar cell is disposed at the bottom of the cone, and the solar light collected by the cone is collected.
  • a micromirror single solar cell is disclosed in which light is applied to the upper surface of a solar cell and the lower surface side force of the cone is also dissipated. Since planar solar cells are used, light can be received only on the top surface of the solar cells, and reflection loss is reduced, so the efficiency of incident light utilization It is difficult to raise enough.
  • this micromirror solar battery in order to prevent the temperature of the solar battery cells from being increased due to condensing, the idea of attaching a solar battery cell to the bottom of the case to reduce the temperature increase is employed.
  • US Pat. No. 5,355,873 discloses a concentrating solar cell module using spherical solar cells.
  • a thin metal sheet (common electrode) is formed with a plurality of substantially hemispherical recesses whose inner surfaces are reflective surfaces, and leg portions that support solar cell cells are formed at the center of the recesses.
  • the middle part of the plurality of solar cells is supported on the conductive mesh, the plurality of solar cells are set in the plurality of recesses and electrically connected to the legs, and the plurality of solar cells are electrically conductive.
  • the mesh and sheet are connected in parallel. Since the solar cell does not have electrodes formed at both upper and lower ends, the current distribution inside the solar cell becomes non-uniform and it is difficult to increase the power generation efficiency. However, since all the solar cells mounted on the seat are connected in parallel, it is inconvenient to increase the output voltage of the solar cell module.
  • spherical solar cells are respectively attached to the center of a plurality of partial spherical recesses, the inner surface of the recess is used as a reflection surface, and the plurality of recesses are two thin sheets. It consists of a metal plate and an insulating layer attached between the thin metal plates, and by connecting two thin metal plates to the positive and negative electrodes of the solar cell at the lower end of the spherical solar cell, A solar cell module in which battery cells are connected in parallel is disclosed.
  • WO02Z35612 a rod-shaped light-receiving or light-emitting semiconductor element, a semiconductor element having a pair of electrodes formed on both end faces thereof, and a solar element employing the semiconductor element.
  • a battery module has been disclosed.
  • increasing the ratio of the length to the element diameter increases the interelectrode resistance. Therefore, the ratio should be set to about 1.5 or less.
  • Patent Document 1 U.S. Pat.No. 4,136,436
  • Patent Document 2 U.S. Pat.No. 6,204,545
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-168369
  • Patent Document 4 International Publication WO03Z056633
  • Patent Document 5 U.S. Pat.No. 5,482,568
  • Patent Document 6 U.S. Pat.No. 5,355,873
  • Patent Document 7 US Application Publication No. 2002Z0096206
  • the solar cell module is configured using spherical or partially spherical solar cells, as in the solar cell module described in the above publication, the electrodes of the solar cells are connected to the positive side and the negative side of the module. This increases the number of connection points and connection points that are electrically connected to this conductor, which is disadvantageous for mass production.
  • An object of the present invention is to provide a panel-type semiconductor module that employs a semiconductor element that can increase the light receiving area without increasing interelectrode resistance, and the number of connection points and connection points for electrically connecting the semiconductor elements.
  • a panel-type semiconductor module that can reduce the amount of light a panel-type semiconductor module that can increase the light collecting magnification, and a panel-type semiconductor module that is advantageous for forming a lens portion. And providing a panel-type semiconductor module that is advantageous for improving the cooling performance.
  • a panel-type semiconductor module is a panel-type semiconductor module having a light-receiving or light-emitting function, and is a plurality of rod-shaped semiconductor elements having a light-receiving or light-emitting function and an axis,
  • a plurality of semiconductor elements arranged in a plurality of rows and a plurality of columns with the direction aligned and the axis oriented in the row direction are electrically connected in parallel to the plurality of semiconductor elements in each row, and the plurality of semiconductor elements in each column are connected to each other.
  • a conductive connection mechanism electrically connected in series; and a conductive interior metal case on which the plurality of semiconductor elements are mounted and which constitutes the conductive connection mechanism.
  • Each of the plurality of semiconductor elements is formed in a portion other than a band-shaped base material made of a p-type or n-type semiconductor crystal and a belt-like portion of a surface layer portion of the base material.
  • a separate conductive layer having a conductivity type different from that of the base material, a substantially cylindrical pn junction formed by the base material and the separate conductive layer, and axial centers on both surface portions sandwiching the base axis of the base material.
  • a first electrode and a second electrode formed in parallel in a strip shape and ohmically connected to the strip portion of the base material and the other conductive layer, respectively.
  • the interior metal case is a plurality of reflecting surface forming grooves that respectively accommodate a plurality of semiconductor elements in each row, and the plurality of reflecting surface forming grooves in which the groove width is reduced by facing the bottom of the opening force.
  • Each of the reflecting surface forming grooves includes a bottom plate portion that can reflect light and a pair of inclined plate portions that can integrally reflect light and extend upward from an end portion of the bottom plate portion.
  • a mounting base portion is formed in a protruding shape at the center in the width direction of each of the bottom plate portions, and a plurality of semiconductor elements in a corresponding row are placed on the mounting base portion, and the first of the semiconductor elements is arranged.
  • One of the second electrodes is electrically connected, is electrically connected to one inclined plate portion of each reflecting surface forming groove, and is electrically connected to the other of the first and second electrodes of the plurality of semiconductor elements in the corresponding row.
  • a plurality of finger leads connected to the base plate are formed, and a conductive portion that short-circuits the first and second electrodes of the plurality of semiconductor elements in the corresponding row is divided into one side portion of the mounting base portion of each of the bottom plate portions. The dividing slit is formed over the entire length in the row direction.
  • the semiconductor element has a base material and another conductive layer having a conductivity type different from that of the base material, a pn junction, and first and second electrodes, and the first and second electrodes are shafts of the base material. Since it is formed in a strip shape parallel to the shaft center on both surface parts of the core and is ohmically connected to the base material and another conductive layer, even if the ratio of the axial length to the base material diameter is increased, Since the electrical resistance between the first and second electrodes does not increase as the distance between the first and second electrodes does not exceed the diameter of the substrate, the above ratio can be increased to a desired value. Therefore, the length of the semiconductor element can be increased, the number of connection points for electrically connecting a plurality of semiconductor elements can be reduced, and the configuration of the conductive connection mechanism can be simplified.
  • the conductive connection mechanism connects a plurality of semiconductor elements in each row in parallel and connects a plurality of semiconductor elements in each column in series, even if some of the semiconductor elements stop functioning for some reason, Since the current flows through a circuit that bypasses the semiconductor element that has stopped functioning, the normal semiconductor element will not stop functioning.
  • the interior metal case includes a plurality of reflecting surface forming grooves whose groove width decreases from the opening toward the bottom, and each reflecting surface forming groove is capable of reflecting light with a pair of light reflecting bottom plates.
  • a plurality of semiconductor elements in a corresponding row are mounted on the mounting base part at the center of the bottom plate part of the reflecting surface forming groove, and one of the first and second electrodes of the plurality of semiconductor elements is formed. Are electrically connected.
  • the light collected by the reflecting surface of the reflecting surface forming groove can be incident on the semiconductor element.
  • the width of the opening of the reflection surface forming groove can be 3 to 4 times the diameter of the semiconductor element, or more than that.
  • the ratio of the area of the reflection surface forming groove (condenser) to the light receiving surface of the child can be increased, and the condensing magnification can be increased. In other words, high output can be obtained by effectively utilizing a small number of semiconductor elements.
  • the semiconductor element is mounted on the mounting base part protruding from the center part of the bottom plate part of the reflecting surface forming groove, the light reflected by the bottom plate part can be incident on the lower half of the semiconductor element. .
  • each of the plurality of reflection surface forming grooves formed by the interior metal case is formed by a bottom plate portion and a pair of inclined plate portions, so that the interior metal case can be configured by a single metal plate. The number of members can be reduced and the structure can be simplified.
  • the finger lead is formed by bending the lower end portion of the cut and raised piece formed in the upper half of the inclined plate portion substantially at a right angle.
  • Each dividing slit of the interior metal case connects one of the first and second electrodes of the plurality of semiconductor elements in each row to the mounting base and the other of the first and second electrodes to the finger lead. Later, a plurality of tie bar portions are punched out and formed into continuous slits.
  • a plurality of cylindrical lens portions respectively corresponding to a plurality of rows of semiconductor elements are formed on the cover member.
  • a duct member for forming a passage for flowing a cooling fluid is provided on the outer surface side of the outer metal case.
  • the semiconductor element is made of a base substrate-shaped Si single crystal or Si polycrystal, and the separate conductive layer is formed by diffusing P, Sb, or As as an n-type impurity,
  • the semiconductor element is configured as a solar battery cell.
  • the base material of the semiconductor element is composed of n-type Si single crystal or Si polycrystal, the separate conductive layer is configured by diffusing B, Ga or A1 as a P-type impurity, and the semiconductor element is Configured with solar cells
  • the semiconductor element is configured as a light emitting diode element having a light emitting function.
  • FIG. 1 is a perspective view of a solar cell module according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a plan view of the solar cell module with a cover member removed.
  • FIG. 5 is an enlarged view of the main part of FIG.
  • FIG. 6 is a perspective view of a side plug block.
  • FIG. 7 is a perspective view of a main part of a reflection surface forming groove of an interior metal case.
  • FIG. 8 is an enlarged sectional view of a semiconductor element.
  • FIG. 9 is a cross-sectional view taken along line IX—IX in FIG.
  • FIG. 10 is an enlarged perspective view of a semiconductor element.
  • FIG. 11 is a circuit diagram of an equivalent circuit of a conductive connection mechanism.
  • FIG. 12 is a diagram corresponding to FIG. 7 according to the modified example.
  • FIG. 13 is a view corresponding to FIG. 2 of a solar cell module according to Example 2.
  • FIG. 14 is an enlarged cross-sectional view of a light-emitting semiconductor device according to Example 3.
  • FIG. 15 is a sectional view taken along line XIV-XIV in FIG.
  • the panel-type semiconductor module of the present invention is basically a mouth-shaped semiconductor element having a light receiving or light emitting function, and includes a plurality of semiconductor elements arranged in a plurality of rows and a plurality of columns, and each row.
  • a plurality of reflecting surface forming grooves each accommodating a plurality of rows of semiconductor elements in an interior metal case, wherein a plurality of reflecting surface forming grooves whose groove width decreases from the opening toward the bottom are formed.
  • the semiconductor module according to Example 1 is a solar cell module (solar cell panel) that receives sunlight to generate electric power, and the solar cell module M will be described with reference to the drawings.
  • the solar cell module M includes a plurality of semiconductor elements 1 having a light receiving function, a conductive connection mechanism 2 (see FIG. 11) for electrically connecting these semiconductor elements 1 and a plurality of semiconductor elements.
  • interior metal case 3 for housing, exterior metal case 4 fitted on the lower side of this interior metal case 3, transparent cover member 5 covering the upper surface of interior metal case 3, and filling inside interior metal case 3
  • a synthetic resin material 6 which is made of silicone rubber
  • a synthetic resin layer 7 that bonds the interior metal case 3 and the exterior metal case 4, multiple side plug blocks 8, two reinforcing plates 9, etc.
  • the semiconductor element 1 is a rod-shaped solar battery cell having a substantially circular (partially circular) cross section having an axis la.
  • the semiconductor element 1 includes a rod-shaped base material 11 made of p-type silicon single crystal and an n-type diffusion layer 12 (this is the conductivity of the base material 11). Equivalent to another conductive layer of a conductivity type different from the electric type), pn junction 13, positive and negative electrodes 14, 15 and antireflection film 16, and receives sunlight and emits about 0.5 to 0 It generates 6V photovoltaic power.
  • the above-mentioned base material 11 has a flat strip-like shape parallel to the cylindrical axis la (see Fig. 9) at the bottom of a cylindrical p-type silicon single crystal having a diameter of about 1.8 mm and a length of about 5 mm.
  • the surface 11a (for example, a width of about 0.6 mm) is formed, and the diffusion layer 12 is a surface layer portion of the base material 11 other than the belt-like portion including the flat surface 11a and adjacent portions on both sides thereof.
  • This is an n-type conductive layer formed by thermally diffusing P (phosphorus) to a depth of 0.5 to 1.0 m.
  • the p-type substrate 11 and the n-type diffusion layer 12 form a substantially cylindrical (partially cylindrical) pn junction 13, which is the axis la of the semiconductor element 1. It surrounds most of the outer periphery side.
  • the flat surface 11a of the base material 11 is provided with a strip-like positive electrode 14 having a width of about 0.4 mm, and the surface portion of the base material 11 has a width of about 0.
  • a 4 mm strip-like negative electrode 15 is provided.
  • the positive electrode 14 is formed by baking a paste containing silver and aluminum
  • the negative electrode 15 is formed by baking a paste containing silver and a small amount of antimony.
  • the positive and negative electrodes 14 and 15 are formed in a strip shape in parallel with the axial center la on the surface portions on both sides of the axial center la of the base material 11, the positive electrode 14 is ohmically connected to the base material 11, and the negative electrode 15 is It is ohmically connected to the diffusion layer 12.
  • An antireflection film 16 made of a silicon oxide film or a silicon nitride film is formed on the surface of the semiconductor element 1 except for the positive and negative electrodes 14 and 15 for the antireflection and the silicon surface.
  • This semiconductor element 1 is irradiated with sunlight bm and absorbed by the silicon single crystal of the base material 11, carriers (electrons and holes) are generated, and the pn junction 13 separates the electrons and holes.
  • a photovoltaic force is generated between the electrode 14 and the negative electrode 15.
  • This semiconductor element 1 has uniform light receiving sensitivity even if the incident direction of sunlight incident from a direction orthogonal to the axis la changes, and efficiently receives sunlight bm from a wide variety of directions. To generate electricity
  • any plane orthogonal to the axis la of the base material 11 is used.
  • the plurality of semiconductor elements 1 are aligned in the plurality of reflective surface forming grooves 20 of the interior metal case 3 and have the axial center la. It is arranged in multiple rows and multiple columns in the row direction.
  • the plurality of semiconductor elements 1 have their conductive directions aligned vertically downward so that the positive electrode 14 is located at the lower end and the negative electrode 15 is located at the upper end.
  • the interior metal case 3 is formed by stamping a thin plate (for example, thickness 0.4 mm) of an iron / nickel alloy (Ni 42%, Fe 58%) using a die having a predetermined shape by a press machine,
  • the inner surface of the interior metal case 3 on the light receiving side is either mirror-finished or formed with either a gold plating film or a silver plating film in order to improve the light reflection performance.
  • the interior metal case 3 includes the same number of bowl-shaped reflecting surface forming grooves 20 as the number of rows of the semiconductor elements 1 in the plurality of rows, and both left and right end portions.
  • the flange portion 3f and the connecting terminal plate 3a are provided.
  • the reflecting surface forming groove 20 is formed in an inverted trapezoidal cross section in which the groove width linearly decreases as the opening force is directed toward the bottom.
  • Each reflecting surface forming groove 20 is formed by a bottom plate portion 21 and a pair of inclined plate portions 22 and 23 extending upward from both ends of the bottom plate portion 21, and the inclined plate portion of the adjacent reflecting surface forming groove 20.
  • the upper ends of 22 and 23 are connected by a narrow connecting plate 24.
  • a mounting section 21a having a trapezoidal cross section is formed so as to protrude upward in the center in the width direction of each bottom plate section 21, and a plurality of semiconductor elements 1 in a corresponding row are placed on the mounting base section 21a.
  • the positive electrodes 14 of these semiconductor elements 1 are bonded and electrically connected to the mounting base 21a with conductive epoxy resin.
  • a plurality of finger leads 25 extending integrally from the middle step portion of the right inclined plate portion 23 of each reflecting surface forming groove 20 and electrically connecting the negative electrodes 15 of the plurality of semiconductor elements 1 in the corresponding row are formed.
  • the negative electrode 15 of the semiconductor element 1 is electrically connected to the finger lead 25 by bonding with a conductive epoxy resin.
  • Each finger lead 25 is formed by bending the lower end portion of the cut and raised piece formed in the upper half portion of the right inclined plate portion 23 at a substantially right angle (see FIG. 7).
  • a plurality of positive electrodes 14 of a plurality of semiconductor elements 1 in a corresponding row are also connected to a plurality of finger leads 25 on the right side portion of the mounting base portion 21 a of each bottom plate portion 21.
  • the dividing slit 26 that divides the conductive portion that short-circuits the positive electrode 14 and the negative electrode 15 of the plurality of semiconductor elements 1 in the corresponding row has a total length in the row direction (inner metal case). (Overall length of 3).
  • Each dividing slit 26 has a tie bar portion (a plurality of tie bar punched portions 26a) after the positive electrodes 14 of the plurality of semiconductor elements 1 in each row are attached to the mounting base portion 21a and the negative electrode 15 is bonded to the finger leads 25. This is formed in a continuous slit 26 by punching out (not shown).
  • a plurality of semiconductor elements 1 are mounted on the interior metal case 3 in a plurality of rows and columns, and the positive electrode 14 of each semiconductor element 1 is connected to the mounting base 21a and the negative electrode 15 is connected to the finger.
  • the semiconductor elements 1 in each row are connected in parallel by the interior metal case 3 and the plurality of finger leads 25, and each column
  • the plurality of semiconductor elements 1 are connected in series by the interior metal case 3 and the plurality of finger leads 25.
  • the interior metal case 3 including the plurality of finger leads 25 electrically connects the plurality of semiconductor elements 1 in each column electrically in series and electrically connects the plurality of semiconductor elements 1 in each row in parallel.
  • Mechanism 2 (see Figure 11) is configured.
  • an exterior metal case 4 having a cross-sectional shape substantially similar to that of the interior metal case 3 is attached to the lower surface side of the interior metal case 3 in an outer fitting manner.
  • This outer metal case 4 is formed by molding the same iron-nickel alloy plate (for example, thickness 0.4 mm) as the inner metal case 3, and flanges are provided at both ends of the outer metal case 4 in the row direction. A portion 4f is formed, and at both ends in the row direction of the exterior metal case 4, extension portions 4A extending from the end of the interior metal case 3 to the outside in the row direction by a predetermined length are formed.
  • the inner metal case 3 and the outer metal case 4 are electrically insulating synthetic resin layers 7 (thickness 0.1 to 0.5 mm) made of a heat-resistant insulating adhesive such as polyimide resin filled between them. It is fixed integrally through
  • the case receiving groove 27 formed in the extension 4A of the outer metal case 4 Insulating material e.g., a side plug block 8 made of a ceramic or glass material is fitted inside and bonded and fixed with a heat-resistant insulating synthetic resin adhesive such as polyimide resin.
  • a side plug block 8 made of a ceramic or glass material is fitted inside and bonded and fixed with a heat-resistant insulating synthetic resin adhesive such as polyimide resin.
  • an inclined surface 8a is formed on the inner surface of the side plug block 8 in the same manner as the inclined plate portions 22 and 23.
  • each reflective surface forming groove 20 of the interior metal case 3 is filled with an insulating synthetic resin material 6 having a flexible transparent silicone rubber force so as to embed the semiconductor element 1 and the finger leads 25. Thereafter, defoaming is performed under reduced pressure, and the synthetic resin material 6 is cured.
  • the cover member 5 is made of transparent glass or synthetic resin and covers the upper surface side of the interior metal case 3, and includes the interior metal case 3 and the side plug block 8 A cover member 5 fixed to is provided.
  • the cover member 5 is preferably made of white plate tempered glass or borosilicate glass.
  • a plurality of cylindrical lens portions 5a respectively corresponding to the plurality of rows of semiconductor elements 1 are formed on the upper surface side portion of the cover member 5, and the lower portion of the cover member 5 is formed above the plurality of reflection surface forming grooves 20.
  • An engaging portion 5b to be fitted is formed, and a flat plate portion 5c is formed at the left end portion and the right end portion of the cover member 5 in FIGS.
  • cover member 5 When fixing the cover member 5 to the interior metal case 3, the cover member 5 is attached to the interior metal case 3 in a state where a thick silicone resin is applied to the entire lower surface of the cover member 5.
  • Adhesive sealing material 29 made of silicone resin is cured by bonding to the inner side surface of 28 and heating in a state where the entire pressure is reduced. Note that all the spaces in the reflecting surface forming grooves 20 are filled with the silicone rubber 28 and the adhesive sealing material 29.
  • the flat plate portion 5c and the flange portions 3f and 4f are fastened by a plurality of bolts 30 made of metal or synthetic resin.
  • the bolt 30 is insulated from the flange portion 3f.
  • a reinforcing plate 9 made of polyimido resin that closes the top surfaces of the plurality of side plug blocks 8 is used. And is fixed with the same adhesive sealant as the adhesive sealant 29 described above.
  • FIGS. 1 to 5 there are a plurality of solar cells at the left and right ends of the interior metal case 3.
  • a connecting terminal plate 3a that is exposed to the outside as a terminal for electrically connecting the module M or connecting a connection for output extraction is formed so as to extend the entire length in the row direction, and each connecting terminal plate 3a
  • a plurality of bolt holes 31 are formed in the.
  • FIG. 11 is a diagram showing an equivalent circuit of the plurality of semiconductor elements 1 and the conductive connection mechanism 2 of the solar cell module M.
  • the semiconductor element 1 is illustrated by a diode 1A, and in this equivalent circuit, each row Multiple diodes 1A are connected in parallel, multiple diodes 1A in each column are connected in series, all diodes 1A are connected in series and parallel in a mesh circuit, and photovoltaic power is generated between positive terminal 18 and negative terminal 19 Occurs.
  • the rod-shaped semiconductor element 1 employed in this solar cell module M is almost symmetrical with respect to the axial center and can receive sunlight from various directions (direction of about 270 degrees), so it is wide. It has light sensitivity at an angle.
  • the interior metal case 3 includes a plurality of reflecting surface forming grooves 20 whose opening force is also directed toward the bottom to reduce the groove width, and a plurality of semiconductor elements 1 in each row are provided at the bottom of each reflecting surface forming groove 20. Incorporated, the inner surface of the reflecting surface forming groove 20 is formed as a light reflecting surface. Therefore, sunlight is repeatedly reflected on the inner surface of the reflecting surface forming groove 20 and concentrated on the semiconductor element 1.
  • the width of the opening of the reflecting surface forming groove 20 can be formed to be 3 to 15 times the diameter of the semiconductor element 1, and the reflecting surface forming groove 20 ( Since the ratio of the horizontal area of the light collecting section is increased and the light collection magnification is increased, the required number of semiconductor elements 1 or the light receiving area can be reduced, which is advantageous in terms of silicon cost and manufacturing cost. . Also, since the semiconductor element 1 is fixed on the mounting part 21a of the bottom plate part 21 of the reflecting surface forming groove 20, the reflected light or scattered light reflected by the bottom plate part 21 is incident on the semiconductor element 1. As a result, the light receiving range of the semiconductor element 1 is expanded, and the positioning of the semiconductor element 1 and the fixing with the conductive epoxy resin are facilitated.
  • the transparent and flexible silicone rubber 6 is provided so as to fill the semiconductor element 1 in the reflecting surface forming groove 20, the semiconductor element 1 is completely protected from external impact, moisture and air, and the Expansion and contraction of battery module M due to temperature changes are absorbed by silicone rubber 6.
  • the refractive index of the silicone rubber 6 is the same as that of the cover member 5 and the antireflection film 16. Since it approximates the rate, the reflection loss at the interface becomes small. Furthermore, since the semiconductor elements 1 are optically coupled to each other by the silicone rubber 6, not only the collected direct light but also scattered light that has undergone multiple reflection on the inside easily enters the semiconductor element 1.
  • the cover member 5 is formed with the cylindrical lens portions 5a corresponding to the respective reflecting surface forming grooves 20, the energy density of sunlight through the light collected by the cylindrical lens portions 5a.
  • the output of the semiconductor element 1 by the light collection by the cylindrical lens portion 5a and the light collection by the reflection surface forming groove 20 is about 5 to 15 times that of the case without the light collection. It can be increased by 7 to 15 times.
  • the conductive connection mechanism 2 connects the plurality of semiconductor elements 1 in each row in parallel and connects the plurality of semiconductor elements 1 in each column in series, some of the semiconductor elements 1 may have some cause (disconnection, Even if the function is stopped due to poor connection, shade, etc., the current flows through a circuit that bypasses the semiconductor element 1 that has stopped functioning, so that the normal semiconductor element 1 does not stop functioning.
  • the semiconductor element 1 is formed in a substantially cylindrical rod shape, and the positive and negative electrodes 14, 15 are formed in a strip shape in parallel with the axis on the surface portions on both sides of the axis, and the base 11 and the diffusion layer 12 Therefore, even if the ratio of the axial length Z diameter of the base material 11 is increased, the distance between the positive and negative electrodes 14 and 15 is less than the diameter of the base material 11 and the positive and negative electrodes Since the electrical resistance between 14 and 15 can be kept small, the length of semiconductor element 1 is increased, the number of connection points for electrically connecting multiple semiconductor elements 1 is reduced, and the structure of conductive connection mechanism 2 is simplified. You can do it.
  • the solar cell module M has a power generation efficiency that decreases when the temperature rises or when the temperature rises quickly.
  • the inner metal case 3 and the outer metal case 4 made of thin metal plates are integrally bonded.
  • a plurality of bowl-shaped reflection surface forming grooves 20 are formed, the inner surface side is used as a reflection collector, and the back surface side is used as a radiator.
  • the mounting base portion 21a bulging upward is formed on the bottom plate portion 21 of the reflecting surface forming groove 20 and formed into a W-shaped cross section, the rigidity and strength are improved and the heat radiation area is increased.
  • the heat energy absorbed by the solar cell module M is transferred to the inner metal case 3, the thin-film polyimide synthetic resin layer 7, and the outer metal case 4, and is radiated to the outside.
  • the reflective surface forming groove 20 of the interior metal case 3 is a container for storing the silicone rubber 6, and a cover portion. It also serves as a receiving part for engaging and fixing the engaging part 5b of the material 5.
  • a finger lead 25 corresponding to each semiconductor element 1 is integrally formed on one inclined plate portion 23 of the reflecting surface forming groove 20, and this finger lead 25 is connected to the negative electrode 15 of the semiconductor element 1 with a conductive epoxy layer. Since it adheres with grease, a separate connection lead can be omitted.
  • the finger lead 25 can be manufactured as a cut-and-raised piece formed on the inclined plate portion 23 when the interior metal case 3 is manufactured.
  • the positive electrodes 14 of a plurality of semiconductor elements 1 in each row are bonded to the mounting base 21a with conductive epoxy resin, and then the cut and raised pieces are bent into finger leads 25, which are connected to the negative electrodes 15 of the semiconductor elements 1.
  • Glue with conductive epoxy resin After all the finger leads 25 in the solar cell module M are bonded to the negative electrode 15 of the semiconductor element 1, tie bar portions (not shown) connecting the portions of the plurality of tie bar punched portions 26a are punched.
  • the finger lead 25 is also used as a marker for the position where the semiconductor element 1 is attached.
  • the above-mentioned plurality of tie bars can maintain the integrity of the interior metal case 3 when the interior metal case 3 is formed, and the interior metal case 3 can be formed of a single metal plate, reducing the number of members.
  • the structure can be simplified.
  • connection piece 50 separate from the interior metal case 3, which is formed by punching a conductive thin metal plate such as an iron / nickel alloy.
  • the connection piece 50 is provided at a position corresponding to the semiconductor element 1, and a finger lead 25A extending horizontally to the left is formed below the connection piece 50.
  • the connecting piece 50 includes a connecting piece portion 50a bonded to the connecting plate portion 24 of the interior metal case 3, inclined piece portions 50b and 50c bonded to the inclined plate portions 22 and 23 on both sides thereof, and finger leads.
  • the negative electrode of the semiconductor element 1 corresponding to the tip of the finger lead 25A is bonded to the connecting plate 24 and the inclined plate portions 22 and 23 on both sides thereof with conductive epoxy resin, for example. 15 is bonded with a conductive epoxy resin and electrically connected.
  • the width of the connecting piece portion 50a and the inclined piece portions 50b and 50c is, for example, 2 to 3 mm, and the width of the finger lead 25A is, for example, 0.5 to Lmm.
  • the number of power runnings which is an example in which nine reflecting surface forming grooves 20 are provided, may be several tens of rows, and the number of columns may be several tens of rows.
  • the materials of the negative electrodes 14 and 15, the material of the exterior metal case 4, various synthetic resin materials, and the like are not limited to the above-described examples, and can be appropriately changed by those skilled in the art.
  • the diameter of the base 11 of the semiconductor element 1 is not limited to the above example, and may be about 1.0 to 2.5 mm.
  • the length of the semiconductor element 1 in the axial direction is not limited to the above example. 5. It can be set to an arbitrary length of Omm or more, and may be formed in the semiconductor element 1 over the entire length of each row. In this case, however, it is desirable to provide a plurality of finger leads 25 at appropriate intervals in the row direction.
  • the flat surface 11a formed on the base material 11 of the semiconductor element 1 may be omitted, the base material 11 may be formed into a rod shape having a circular cross section, and a positive electrode having the same shape as the negative electrode 15 may be used.
  • the positive and negative electrodes may be made of metal materials having different colors.
  • the cross-sectional shape of the reflecting surface forming groove 20 formed in the interior metal case 3 is not limited to the above example, and the opening force is also directed toward the bottom, and the groove width decreases linearly or non-linearly. If it is a groove that can exhibit the light collecting function!
  • the inner metal case 3 in one solar cell module M may be formed of a plurality of metal plates formed and processed. Example 2
  • this solar cell module Ma (panel type semiconductor module) is provided with a duct member 35 on the lower outer surface side of the solar cell module M, and this duct member 35 Since it is the same as that of the said solar cell module M about other than that, the same code
  • the duct member 35 includes an inverted trapezoidal main body portion 35a that forms a refrigerant passage 36 for allowing a cooling fluid such as air or cooling water to flow through the outer metal case 4 by force or natural convection.
  • the body portion 35a has a flange portion 35f that extends on both the left and right ends, and the flange portion 35f is a flat surface of the cover member 5.
  • the plate part 5 and the flange part 3f of the inner metal case 3 and the flange part 4f of the outer metal case 4 are overlapped with the lower surface side and fastened by a plurality of bolts 30.
  • This embodiment relates to a light emitting semiconductor element (light emitting diode) applied to a high output light emitting diode module with a reflection mechanism, which is a panel type semiconductor module.
  • the high output light emitting diode module with a reflection mechanism is Instead of the semiconductor element 1 of the solar cell module M, it has a structure in which a semiconductor element for light emission is incorporated.
  • the light emitting semiconductor element 40 includes a rod-shaped base material 41 made of an n-type semiconductor crystal, and a p-type diffusion layer 42 (base) formed on the surface layer portion of the base material 41.
  • a substantially cylindrical pn junction 43 formed of a base material 41 and a diffusion layer 42, positive and negative electrodes 44, 45, an antireflection film 46, Have
  • the base material 41 is composed of n-type GaAs crystal with a diameter of 1. Omm and a length of 5 mm, and a flat surface 41b parallel to the axis 41a (width approximately 0.2 to 0.3 mm) at the lower end. ) Is formed in a band shape.
  • Zn (zinc) which is a P-type impurity, is added to the surface layer portion of the base material 41 except for the flat surface 41b and the belt-like portion that also has a force in the vicinity of both ends in the circumferential direction. It is formed by heat diffusion to a depth of / zm.
  • the positive and negative electrodes 44 and 45 are mainly composed of silver, and the negative electrode 44 is formed in a strip shape covering the entire length at the center of the width of the flat surface 41b and is ohmically connected to the base material 41. It is formed on the surface portion of the diffusion layer 42 on the opposite side of the negative electrode 45 with respect to the axis 41a of the material 41, and is ohmically connected to the diffusion layer 42.
  • a portion of the surface of the base material 41 and the diffusion layer 42 excluding the positive and negative electrodes 44, 45 is an antireflection film 46 made of a thin silicon oxide film or a silicon nitride film, and is passivated. An antireflection film 46 having a function is formed.
  • this light emitting semiconductor element 40 when a forward current flows from the positive electrode 44 to the negative electrode 45, infrared light is emitted from the vicinity of the pn junction 43. To be born. Since the pn junction 43 has a partial cylindrical shape close to a cylindrical shape, the generated infrared light passes through the surface of the semiconductor element 40 vertically and radiates outside. As a result, the internal reflection loss of light is reduced and the light emission efficiency is improved as compared with a conventional light emitting diode having a planar pn junction.
  • the light output increases as the forward current increases, but heat is generated due to the conversion loss, resulting in a temperature rise and a decrease in light emission efficiency. Since this light emitting diode module is excellent in heat dissipation like the solar cell module M, the temperature rise of the module can be suppressed. Therefore, since a large current can be obtained by supplying a large current to a small number of light emitting semiconductor elements 40, the manufacturing cost of the light emitting diode module can be reduced.
  • This light emitting diode module can be used as an infrared generator in industrial fields such as medical equipment, various infrared sensors, and light sources for infrared illumination.
  • Light-emitting diodes that are made of various semiconductor materials and generate light of various emission wavelengths depending on the characteristics of the semiconductor material are known, and are manufactured with such various semiconductor materials.
  • a light emitting diode may be used.
  • light emitting diodes that generate visible light and ultraviolet rays may be used.
  • the substrate may be composed of a semiconductor crystal selected from the group consisting of GaAlAs, GaP, InGaP, GaN, GaInN, and SiC.
  • SiC is a hexagonal crystal, and a hexagonal prism single-ended crystal Since it is obtained, the base material may be composed of such a hexagonal single-ended crystal.
  • the pn junction of a light emitting semiconductor element is not necessarily formed by a diffusion layer, but by forming a film on the surface layer of the base material or by ion implantation, another conductive layer having a conductivity type different from that of the base material is formed. It can be formed even if you do it.
  • Solar cell modules can be used in various fields as photovoltaic power generation devices, and light-emitting diode modules can be used in various fields depending on the type of light generated.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Document Processing Apparatus (AREA)

Description

明 細 書
パネル形半導体モジュール
技術分野
[0001] 本発明は、受光又は発光機能のあるパネル形半導体モジュールに関し、特に複数 のロッド状の半導体素子(半導体デバイス)を用いて構成した半導体モジュールに関 する。
背景技術
[0002] これまで、外部レンズを装備し少な!/、受光面積で大きな出力を得る太陽電池 (太陽 電池モジュール、太陽電池パネル)が種々提案されている。し力し、シリコン太陽電 池のように大面積化が進み、太陽電池セルや太陽電池モジュールの製造コストが低 下したため、外部レンズ等で集光して使用する例は少なくなつた。
一方、砒ィ匕ガリウム (GaAs)のように高価な化合物半導体を用いた太陽電池では、 外部レンズ等で集光する方が経済的であるとされ多くの文献に提案されている。
[0003] 米国特許第 4, 136, 436号、本願の発明者による米国特許第 6, 204, 545号に 示すにょうに、粒状のシリコン結晶から球形又は部分球形の太陽電池セルを製作す ることにより、高価なシリコン原材料の有効利用を図る技術も提案されている。
[0004] 本願の発明者は、特開 2001— 168369号公報に、球状の太陽電池セルを採用し た太陽電池モジュールにおいて裏面側に反射板を密着状に設けた例を提案した。ま た、国際公開 WO03Z056633号公報に、球状の太陽電池セルをそれよりも大きな 直径の合成樹脂製のカプセル内に収容し、内部に合成樹脂を充填して集光するよう にしたものを提案した。これらは、外部レンズの場合よりも集光倍率が小さくなるが、 比較的簡単な構造で実現可能である。
[0005] 米国特許第 5, 482, 568号公報には、ケースにコーン状の複数の反射ミラーを設 け、コーンの底部に平面受光形の太陽電池セルを配置し、コーンで集光した太陽光 を太陽電池セルの上面に照射し、コーンの下面側力も放熱するようにしたマイクロミラ 一太陽電池が開示されている。平面形状の太陽電池セルが採用されているため、太 陽電池セルの上面でしか受光できず、反射損失も少なくな 、ため入射光の利用効率 を十分に高めるのが難しい。このマイクロミラー太陽電池では、太陽電池セルが集光 により温度上昇するのを防止するため、ケースの底部に太陽電池セルを取り付けて 温度上昇を小さくする思想が採用されている。
[0006] 米国特許第 5, 355, 873号公報には、球状の太陽電池セルを用いた集光形太陽 電池モジュールが開示されている。薄い金属板製のシート(共通電極)には内面を反 射面にした複数のほぼ半球面状の凹部が形成され、凹部の中心部には太陽電池セ ルを支持する脚部が形成され、導電性メッシュに複数の太陽電池セルの中段部が支 持されて、複数の太陽電池セルが複数の凹部にセットされて脚部に電気的に接続さ れ、複数の太陽電池セルは、導電性メッシュとシートにより並列接続されている。太陽 電池セルには、上下両端部に電極が形成されていないので、太陽電池セル内部の 電流分布が不均一となり、発電効率を高めにくい。し力も、シートに装着される全部の 太陽電池セルが並列接続となるため、太陽電池モジュールの出力電圧を高める上で 不便である。
[0007] 米国出願公開第 2002Z0096206号公報には、部分球面状の複数の凹部の中心 部に球状の太陽電池セルを夫々装着し、凹部の内面を反射面にし、複数の凹部を 2 枚の薄金属板と、その薄金属板の間に装着した絶縁層とで構成し、球状の太陽電池 セルの下端部分において 2枚の薄金属板を太陽電池セルの正負の電極に接続する ことにより、複数の太陽電池セルを並列接続した太陽電池モジュールが開示されて いる。
[0008] この太陽電池モジュールにおいては、球状太陽電池セルの下端部分を 2枚の薄金 属板に電気的に接続しているため、球状太陽電池セルの上半の受光面力 正負の 電極までの距離が大きくなり、出力電流取り出しの抵抗損が大きくなるという欠点があ る。しかも、この太陽電池モジュールでは、全ての太陽電池セルが並列接続されるた め、太陽電池モジュールの出力電圧を高める上で不便である。
[0009] 本願の発明者は、国際公開 WO02Z35612号公報において、ロッド形の受光用 又は発光用半導体素子であって、その両端面に 1対の電極を形成した半導体素子と 、それを採用した太陽電池モジュールを開示した。しかし、このロッド形半導体デ素 子においては、素子の直径に対する長さの比率を大きくすると、電極間抵抗が増大 するため、その比率は約 1. 5以下に設定することが望ましい。
特許文献 1 :米国特許第 4, 136, 436号公報
特許文献 2 :米国特許第 6, 204, 545号公報
特許文献 3:特開 2001— 168369号公報
特許文献 4:国際公開 WO03Z056633号公報
特許文献 5 :米国特許第 5, 482, 568号公報
特許文献 6:米国特許第 5, 355, 873号公報
特許文献 7:米国出願公開第 2002Z0096206号公報
発明の開示
発明が解決しょうとする課題
[0010] 前記公報に記載の太陽電池モジュールのように、球状又は部分球状の粒状の太 陽電池セルを用いて太陽電池モジュールを構成する場合、太陽電池セルの電極を モジュールの正極側と負極側の導体に電気的に接続する接続個所や結線個所の数 が多くなり、量産する上で不利である。
[0011] 球状太陽電池セルを部分球面状の凹部の中心部に装着し、凹部の表面の反射面 で集光して太陽電池セルに太陽光を照射する構成では、凹部と凹部の間に隙間が 発生するため、入射太陽光の利用率を高める上で不利である。し力も、平面視にお V、て太陽電池セルの受光面に対する集光用凹部の受光面の比率をあまり大きくする ことができないため、太陽電池モジュールの表面における光入力に対する出力を高 めることが難しい。
[0012] 粒状の太陽電池セルを採用した太陽電池モジュールにおいて、レンズにより集光 するためには、平面視円形のレンズが太陽電池セルの数だけ必要となり、レンズの数 が多くなり、構造が複雑化する。
光反射式の集光機構を採用する場合には、太陽電池セルの温度上昇が大きくなる ので、太陽電池セルを効果的に冷却する冷却機構が必要になるが、部分球面的な 反射面を採用する場合には、冷却用流体を流す流路形状を滑らかに構成することが 難しぐ冷却性能を高めることが容易ではない。
[0013] 太陽電池モジュールに組み込む複数の太陽電池セルを全て並列接続する場合に は、太陽電池モジュールの出力電圧が太陽電池セルの出力電圧と等しくなる力 太 陽電池モジュールの出力電圧、複数の発光ダイオードを組み込んだ発光パネルで はそのパネルへの入力電圧を変更可能であることが望ましい。
[0014] 本願発明の目的は、電極間抵抗を増すことなく受光面積を大きくできる半導体素子 を採用したパネル形半導体モジュールを提供すること、半導体素子を電気的に接続 する接続個所や結線個所の数を少なくすることができるパネル形半導体モジュール を提供すること、集光倍率を大きくすることができるパネル形半導体モジュールを提 供すること、レンズ部を形成するのに有利なパネル形半導体モジュールを提供するこ と、冷却性能を高めるのに有利なパネル形半導体モジュールを提供すること、などで ある。
課題を解決するための手段
[0015] 本発明に係るパネル形半導体モジュールは、受光又は発光機能のあるパネル形 半導体モジュールにお 、て、受光又は発光機能と軸心を有する複数のロッド形の半 導体素子であって、導電方向を揃え且つ軸心を行方向に向けて複数行複数列に配 置された複数の半導体素子と、各行の複数の半導体素子を電気的に並列接続し且 つ各列の複数の半導体素子を電気的に直列接続する導電接続機構と、前記複数の 半導体素子が装着され且つ前記導電接続機構を構成する導電性の内装金属ケー スとを備えている。
[0016] そして、前記の複数の半導体素子の各々は、 p形又は n形の半導体結晶からなる口 ッド形の基材と、この基材の表層部の帯状部分以外の部分に形成された基材と異な る導電形の別導電層と、前記基材と別導電層とで形成されたほぼ円筒形の pn接合と 、前記基材の軸心を挟んだ両側の表面部分に軸心と平行に帯状に形成され且つ前 記基材の前記帯状部分および別導電層に夫々ォーミック接続された第 1,第 2電極 とを備えている。
[0017] そして、前記内装金属ケースは、各行の複数の半導体素子を夫々収容する複数の 反射面形成溝であって、開口部力 底部に向力つて溝幅が減少する複数の反射面 形成溝を備え、各反射面形成溝は、光反射可能な底板部とこの底板部の端部から 上方へ一体的に延びる光反射可能な 1対の傾斜板部とで構成されている。 [0018] そして、前記各底板部の幅方向中央部に取付台部が突出状に形成されると共に、 その取付台部に対応行の複数の半導体素子が載置され且つそれら半導体素子の 第 1,第 2電極の一方が電気的に接続され、各反射面形成溝の一方の傾斜板部に 電気的に接続され且つ対応行の複数の半導体素子の第 1 ,第 2電極の他方に電気 的に接続された複数のフィンガーリードが形成され、前記各底板部のうちの取付台部 の片側部位に、対応行の複数の半導体素子の第 1,第 2電極を短絡する導電部分を 分断する為の分断スリットが、行方向の全長に亙って形成されている。
発明の効果
[0019] 半導体素子は、基材と基材の導電形とは異なる導電形の別導電層と pn接合と第 1 ,第 2電極とを有し、第 1,第 2電極は基材の軸心の両側の表面部分に軸心と平行に 帯状に形成されて基材と別導電層にォーミック接続されているため、基材の直径に 対する軸心方向長さの比率を大きしても、第 1,第 2電極間の距離が基材の直径以 上になることはなぐ第 1,第 2電極間の電気抵抗が大きくならないから、上記の比率 を所望の値まで大きくすることができる。それ故、半導体素子の長さを大きくし、複数 の半導体素子を電気的に接続する接続個所の数を少なくし、導電接続機構の構成 を簡単ィ匕することができる。
[0020] 導電接続機構は、各行の複数の半導体素子を並列接続すると共に各列の複数の 半導体素子を直列接続しているため、一部の半導体素子がなんらかの原因で機能 停止しても、その機能停止した半導体素子を迂回する回路により電流が流れるため、 正常な半導体素子が機能停止することがな 、。
[0021] 内装金属ケースは、開口部から底部に向かって溝幅が減少する複数の反射面形 成溝を備え、各反射面形成溝は光反射可能な底板部と 1対の光反射可能な傾斜板 部とで構成され、この反射面形成溝の底板部の中央部の取付台部に対応行の複数 の半導体素子が載置され、それら複数の半導体素子の第 1,第 2電極の一方が電気 的に接続されている。
[0022] そのため、受光用半導体モジュールである場合には、反射面形成溝の反射面で集 光した光を半導体素子に入射させることができる。反射面形成溝の開口部の幅は半 導体素子の直径の 3〜4倍又はそれ以上の大きさに形成することができ、半導体素 子の受光面に対する反射面形成溝 (集光部)の面積の比率を大きくし、集光倍率を 大きくすることができる。つまり、少数の半導体素子を有効活用して高い出力を得るこ とがでさる。
しかも、半導体素子は、反射面形成溝の底板部の中央部に突出した取付台部に載 置してあるため、底板部で反射した光を半導体素子の下半部へ入射させることがで きる。
[0023] 複数の反射面形成溝の各々に各行の複数の半導体素子を収容しているため、複 数の反射面形成溝に対応する複数の円筒レンズを採用する上で有利である。内装 金属ケースにより形成される複数の反射面形成溝の各々は、底板部と 1対の傾斜板 部とで形成されているため、 1枚の金属板で内装金属ケースを構成することが可能で 、部材数を少なくし、構造を簡単ィ匕することができる。
[0024] 本発明の従属請求項の構成として,次のような種々を構成を採用してもよい。
(1)前記フィンガーリードは、傾斜板部の上半部に形成された切り起し片の下端部を ほぼ直角に折り曲げることにより形成された。
(2)前記内装金属ケースの各分断スリットは、各行の複数の半導体素子の第 1,第 2 電極の一方を前記取付台に接続し且つ第 1,第 2電極の他方をフィンガーリードに接 続後に、複数のタイバー部を打ち抜いて連続する分断スリットに形成される。
[0025] (3)前記内装金属ケースの下面側に外嵌状に装着される外装金属ケースであって、 内装金属ケースとほぼ相似の断面形状を有する外装金属ケースと、前記内装金属ケ ースと外装金属ケースの間に電気絶縁性合成樹脂層とを設け、この電気絶縁性合 成榭脂層を介して内装金属ケースと外装金属ケースとを一体的に固着した。
(4)前記(3)において、外装金属ケースの行方向の両端部には、内装金属ケースの 端部よりも所定長さ行方向外側まで延びる延長部が形成され、この延長部に形成さ れるケース収容溝に絶縁材料製の側栓ブロックが内嵌装着して固定された。
[0026] (5)前記 (4)にお 、て、内装金属ケースの反射面形成溝に柔軟性のある透明な絶縁 性合成樹脂材が、前記半導体素子と前記フィンガーリードを埋め込む状態に充填さ れた。
(6)前記 (4)において、内装金属ケースの上面側を覆う透明なガラス製又は合成榭 脂製のカバー部材であって、内装金属ケースと前記側栓ブロックに固着されたカバ 一部材を設けた。
[0027] (7)前記(6)において、カバー部材には、複数行の半導体素子に夫々対応する複数 の円筒レンズ部を形成した。
(8)前記外装金属ケースの外面側に冷却用流体を流す為の通路を形成するダクト部 材を設けた。
(9)この半導体素子の表面のうち、第 第 2電極を除く表面部分に、反射防止膜が 形成された。
[0028] (10)前記半導体素子の基材カ ¾形の Si単結晶又は Si多結晶で構成され、前記別導 電層が n形不純物としての P又は Sb又は Asを拡散して構成され、前記半導体素子が 太陽電池セルに構成された。
(11)前記半導体素子の基材が n形の Si単結晶又は Si多結晶で構成され、前記別 導電層が P形不純物としての B又は Ga又は A1を拡散して構成され、前記半導体素子 が太陽電池セルに構成された
(12)前記半導体素子が発光機能のある発光ダイオード素子に構成された。
図面の簡単な説明
[0029] [図 1]本発明の実施例 1に係る太陽電池モジュールの斜視図である。
[図 2]図 1の II II線断面図である。
[図 3]図 1の III III線断面図である。
[図 4]太陽電池モジュールのカバー部材を外した状態の平面図である。
[図 5]図 4の要部拡大図である。
[図 6]側栓ブロックの斜視図である。
[図 7]内装金属ケースの反射面形成溝の要部斜視図である。
[図 8]半導体素子の拡大断面図である。
[図 9]図 8の IX— IX線断面図である。
[図 10]半導体素子の拡大斜視図である。
[図 11]導電接続機構の等価回路の回路図である。
[図 12]変更例に係る図 7相当図である。 [図 13]実施例 2に係る太陽電池モジュールの図 2相当図である。
[図 14]実施例 3に係る発光用半導体素子の拡大断面図である。
[図 15]図 13の XIV -XIV線断面図である。
符号の説明
M, Ma 太陽電池モジュール (パネル形半導体モジュール)
1 半導体素子
2 導電接続機構
3 内装金属ケース
4 外装金属ケース
4A 延長部
5 カバー部材
5a 円筒レンズ部
6 絶縁性合成樹脂材
7 合成樹脂層
8 側栓ブロック
11 基材
12 拡散層
13 pn接合
14 正電極
15 負電極
16 反射防止膜
20 反射面形成溝
21 底板部
21a 取付台部
22, 23 傾斜板部
25, 25A フィンガーリード
26 分断スリット
35 ダクト部材 40 発光用半導体素子 (発光ダイオード素子)
41 基材
42 拡散層
43 pn接合
44 正電極
45 負電極
46 反射防止膜
発明を実施するための最良の形態
[0031] 本発明のパネル形半導体モジュールは、基本的には、受光又は発光機能のある口 ッド形の半導体素子であって、複数行複数列に整列された複数の半導体素子と、各 行の複数の半導体素子を並列接続し且つ各列の複数の半導体素子を直列接続す る導電接続機構と、複数の半導体素子が装着され且つ導電接続機構を構成する内 装金属ケースとを備え、この内装金属ケースに複数行の半導体素子を夫々収容する 複数の反射面形成溝であって、開口から底部へ向かって溝幅が減少する複数の反 射面形成溝を形成したものである。
実施例 1
[0032] この実施例 1に係る半導体モジュールは、太陽光を受光して発電する太陽電池モ ジュール(太陽電池パネル)であり、この太陽電池モジュール Mについて図面を参照 しながら説明する。図 1〜図 5に示すように、太陽電池モジュール Mは、受光機能の ある複数の半導体素子 1、これら半導体素子 1を電気的に接続する導電接続機構 2 ( 図 11参照)、複数の半導体素子 1を収容する内装金属ケース 3、この内装金属ケー ス 3の下面側に外嵌された外装金属ケース 4、内装金属ケース 3の上面を覆う透明な カバー部材 5、内装金属ケース 3の内部に充填されたシリコーンゴム力 なる絶縁性 合成樹脂材 6、内装金属ケース 3と外装金属ケース 4とを接着する合成樹脂層 7、複 数の側栓ブロック 8、 2枚の補強板 9などを備えて 、る。
[0033] 図 8〜図 10に示すように、半導体素子 1は、軸心 laを有するほぼ円形(円形に近い 部分円形)の断面を有するロッド形の太陽電池セルである。この半導体素子 1は、 p 形シリコン単結晶からなるロッド形の基材 11と、 n形拡散層 12 (これが、基材 11の導 電形と異なる導電形の別導電層に相当する)と、 pn接合 13と、正負の電極 14, 15と 、反射防止膜 16とを有し、太陽光を受光して約 0. 5〜0. 6Vの光起電力を発生する ものである。
[0034] 上記の基材 11は、直径約 1. 8mm、長さ約 5mmの円柱状の p形シリコン単結晶の 底部に、その円柱の軸心 la (図 9参照)と平行な帯状の平坦面 11a (例えば、幅約 0. 6mm)を形成したものであり、上記の拡散層 12は、この基材 11の表層部のうちの、 平坦面 11aとその両側近傍部を含む帯状部分以外の部分に、 P (リン)を 0. 5〜1. 0 mの深さまで熱拡散させることにより形成された n形導電層である。
[0035] p形の基材 11と n形の拡散層 12とでほぼ円筒形(円筒形に近い部分円筒形)の pn 接合 13が形成され、この pn接合 12は半導体素子 1の軸心 laの外周側の大部分を 取り囲んでいる。基材 11の平坦面 11aに幅約 0. 4mmの帯状の正電極 14が設けら れ、基材 11の表面部のうち、軸心 laを挟んで正電極 14と反対側に幅約 0. 4mmの 帯状の負電極 15が設けられている。正電極 14は銀にアルミニウムをカ卩えたペースト を焼成して形成され、負電極 15は銀に少量のアンチモンをカ卩えたペーストを焼成し て形成される。こうして、正負の電極 14, 15は、基材 11の軸心 laの両側の表面部分 に軸心 laと平行に帯状に形成され、正電極 14は基材 11にォーミック接続され、負電 極 15は拡散層 12にォーミック接続されて 、る。
[0036] 半導体素子 1の表面のうち、正負の電極 14, 15を除く表面部分に、反射防止とシリ コン表面のノッシベーシヨン用のシリコン酸ィ匕皮膜又はシリコン窒化膜からなる反射 防止膜 16が形成されている。この半導体素子 1に太陽光 bmが照射され、基材 11の シリコン単結晶に吸収されると、キャリア(電子と正孔)が発生し、 pn接合 13により電 子と正孔が分離され、正電極 14と負電極 15間に光起電力が発生する。この半導体 素子 1は、軸心 laと直交する方向から入射する太陽光の入射方向が変化しても一様 な受光感度を有し、広い種々の方向からの太陽光 bmを効率的に受光して発電する
[0037] 図 10に示すように、正電極 14と負電極 15とが基材 11の軸心 laに対してほぼ対称 の位置にあるため、基材 11の軸心 laと直交する任意の平面上において、受光され た太陽光 bmにより基材 11で発生したキャリアは、例えば、周方向に異なる位置 A, B , Cについて、正負の電極 14, 15に至る距離の和はほぼ等しぐ (a + b) = (a' +b ' ) ^ (a" + b")のようになるので、光電流の分布は、基材 11の軸心 laに対して均一に なり、偏りによる抵抗損を低減することができる。
[0038] 図 2、図 4、図 5、図 7に示すように、複数の半導体素子 1は、内装金属ケース 3の複 数の反射面形成溝 20内に導電方向を揃え且つ軸心 laを行方向に向けて複数行複 数列に配置されている。複数の半導体素子 1は、正電極 14が下端に位置し、負電極 15が上端に位置するように導電方向を鉛直下方向きに揃えられている。
[0039] 内装金属ケース 3は、鉄 ·ニッケル合金 (Ni42%、 Fe58%)の薄板 (例えば、厚さ 0 . 4mm)をプレス機械により所定形状の金型を用いて打ち抜き成形加工することで、 一体品に構成され、この内装金属ケース 3の受光側の内面は、光反射性能を高める 為、鏡面仕上げされるか、又は金メッキ皮膜と銀メツキ皮膜の何れかが形成されてい る。
[0040] 図 2、図 4、図 5、図 7に示すように、内装金属ケース 3は、複数行の半導体素子 1の 行数と同数の樋状の反射面形成溝 20と、左右両端部のフランジ部 3f及び連結端子 板 3aを備えている。反射面形成溝 20は、開口力 底部に向力つて溝幅がリニアに減 少する逆台形断面に形成されている。各反射面形成溝 20は、底板部 21と、この底 板部 21の両端から上方へ延びる 1対の傾斜板部 22, 23とで形成され、隣接する反 射面形成溝 20の傾斜板部 22, 23の上端部は小幅の連結板部 24で連らなって 、る
[0041] 各底板部 21の幅方向中央部には断面台形状の取付台部 21aが上側へ突出状に 形成され、この取付台部 21aに対応行の複数の半導体素子 1が載置され、それら半 導体素子 1の正電極 14が取付台部 21aに導電性エポキシ榭脂で接着され電気的に 接続されている。各反射面形成溝 20の右側の傾斜板部 23の中段部から一体的に 延びて対応行の複数の半導体素子 1の負電極 15が夫々電気的に接続される複数 のフィンガーリード 25が形成され、半導体素子 1の負電極 15は、フィンガーリード 25 に導電性エポキシ榭脂で接着されて電気的に接続されて 、る。各フィンガーリード 2 5は、右側の傾斜板部 23の上半部に形成された切り起し片の下端部をほぼ直角に 折り曲げたものである(図 7参照)。 [0042] 図 2に示すように、各底板部 21のうちの取付台部 21aの右側部位に、対応行の複 数の半導体素子 1の複数の正電極 14力も複数のフィンガーリード 25への導通を分 断する為の分断スリット 26であって、対応行の複数の半導体素子 1の正電極 14と負 電極 15を短絡する導電部分を分断する分断スリット 26が、行方向の全長(内装金属 ケース 3の全長)に亙って形成されている。
各分断スリット 26は、各行の複数の半導体素子 1の正電極 14を取付台部 21aに接 着し且つ負電極 15をフィンガーリード 25に接着後に、複数のタイバー打抜き部 26a の所のタイバー部(図示略)を打ち抜いて連続する分断スリット 26に形成される。
[0043] 上記のように、内装金属ケース 3に複数の半導体素子 1を複数行複数列に装着し、 各半導体素子 1の正電極 14を取付台部 21aに接続すると共に負電極 15をフィンガ 一リード 25に接続し、各反射面形成溝 20の底板部 21に分断スリット 26を形成した状 態では、各行の半導体素子 1は内装金属ケース 3と複数のフィンガーリード 25により 並列接続され、各列の複数の半導体素子 1は、内装金属ケース 3と複数のフィンガー リード 25により直列接続された状態になる。このように、複数のフィンガーリード 25を 含む内装金属ケース 3により、各列の複数の半導体素子 1を電気的に直列接続し且 つ各行の複数の半導体素子 1を電気的に並列接続する導電接続機構 2 (図 11参照 )が構成されている。
[0044] 図 2〜図 5、図 7に示すように、内装金属ケース 3の下面側に、内装金属ケース 3と ほぼ相似の断面形状を有する外装金属ケース 4が外嵌状に装着される。この外装金 属ケース 4は、内装金属ケース 3と同様の鉄 ·ニッケル合金板 (例えば厚さ 0. 4mm) を成形加工したものであり、この外装金属ケース 4の列方向の両端部分にはフランジ 部 4fが形成され、外装金属ケース 4の行方向の両端部には、内装金属ケース 3の端 部よりも所定長さ行方向外側まで延びる延長部 4Aが形成されている。内装金属ケー ス 3と外装金属ケース 4は、それらの間に充填されたポリイミド榭脂のような耐熱絶縁 性接着剤からなる電気絶縁性合成樹脂層 7 (厚さ 0. 1〜0. 5mm)を介して一体的に 固着されている。
[0045] 図 3、図 5〜図 7に示すように、内装金属ケース 3の行方向端部を完全に封止する 為、外装金属ケース 4の延長部 4Aに形成されるケース収容溝 27に絶縁材料 (例え ば、セラミック又はガラス材料)の側栓ブロック 8が内嵌され、ポリイミド榭脂のような耐 熱絶縁性合成樹脂接着剤で接着固定されている。尚、受光性を高めるため側栓ブロ ック 8の内面には傾斜板部 22, 23と同様に傾斜した傾斜面 8aが形成されている。 図 2に示すように、内装金属ケース 3の各反射面形成溝 20に柔軟性のある透明な シリコーンゴム力もなる絶縁性合成樹脂材 6が、半導体素子 1とフィンガーリード 25を 埋め込む状態に充填され、その後減圧下で脱泡して力も合成樹脂材 6がキュアされ る。
[0046] 図 1、図 2、図 3に示すように、内装金属ケース 3の上面側を覆う透明なガラス製又は 合成樹脂製のカバー部材 5であって、内装金属ケース 3と側栓ブロック 8に固着され たカバー部材 5が設けられている。このカバー部材 5は白板強化ガラス製のもの又は 硼珪酸ガラス製のものが望ましい。カバー部材 5の上面側部分には、複数行の半導 体素子 1に夫々対応する複数の円筒レンズ部 5aが形成され、カバー部材 5の下部に は、複数の反射面形成溝 20の上部に内嵌される係合部 5bが形成され、図 1、図 2〖こ おけるカバー部材 5の左端部分と右端部分には平板部 5cが形成されている。
[0047] このカバー部材 5を内装金属ケース 3に固定する際には、カバー部材 5の下面側表 面の全面にシリコーン榭脂を厚く塗布した状態で、カバー部材 5を内装金属ケース 3 に装着し、カバー部材 5を複数の反射面形成溝 20のシリコーンゴム 6 (絶縁性合成榭 脂材)及び傾斜板部 22, 23と、内装金属ケース 3のその他の上面部分と、複数の側 栓ブロック 28の内側側面に接着し、全体を減圧した状態で加熱することで、シリコー ン榭脂からなる接着封止材 29を硬化させる。尚、各反射面形成溝 20内の空間は全 てシリコーンゴム 28と接着封止材 29とで埋めた状態となる。上記のカバー部材 5の左 右の平板部 5cの位置において、この平板部 5cとフランジ部 3f, 4fとは金属製または 合成樹脂製の複数のボルト 30により締結される。但し、ボルト 30はフランジ部 3fに対 して絶縁状態になっている。
[0048] 図 1、図 3に示すように、複数の側栓ブロック 8と内装金属ケース 3の一体性を強化 するため、複数の側栓ブロック 8の上面を塞ぐボリイミド榭脂製の補強板 9が設けられ 、前記の接着封止材 29と同じ接着封止材で固着されている。
図 1〜図 5に示すように、内装金属ケース 3の左右の両端部には、複数の太陽電池 モジュール Mを電気的に接続したり、出力取出し用結線を連結する為の端子として の外部へ露出状の連結端子板 3aが、行方向の全長に延びるように形成され、各連 結端子板 3aには複数のボルト穴 31が形成されている。
[0049] 図 11は、上記の太陽電池モジュール Mの複数の半導体素子 1と導電接続機構 2の 等価回路を示す図であり、半導体素子 1はダイオード 1Aで図示され、この等価回路 において、各行の複数のダイオード 1 Aは並列接続され、各列の複数のダイオード 1 Aは直列接続され、全部のダイオード 1Aがメッシュ状回路で直並列接続され、正極 端子 18と負極端子 19の間に光起電力が発生する。
[0050] 次に、以上説明した太陽電池モジュール Mの作用、効果について説明する。
この太陽電池モジュール Mに採用したロッド形の半導体素子 1は、軸心に対してほ ぼ対称性を有し、種々の方向(約 270度の方向)からの太陽光を受光できるから、広 い角度で受光感度を有する。内装金属ケース 3は、開口部力も底部に向力つて溝幅 カ^ニアに減少する複数の反射面形成溝 20を備え、各反射面形成溝 20の底部に各 行の複数の半導体素子 1が組み込まれ、反射面形成溝 20の内面は光反射面に形 成されている。それ故、太陽光は、反射面形成溝 20の内面で多重反射を繰り返して 半導体素子 1に集中する。
[0051] 反射面形成溝 20の開口部の幅は半導体素子 1の直径の 3〜15倍の大きさに形成 可能であり、各行の半導体素子 1の受光投影断面積に対する反射面形成溝 20 (集 光部)の水平面積の比率を大きくし、集光倍率を大きくしたので、半導体素子 1の必 要数又は受光面積を少なくすることができ、シリコンのコストや製作コストの面で有利 になる。し力も、半導体素子 1は、反射面形成溝 20の底板部 21の取付台部 21aの上 に固定してあるため、底板部 21で反射した反射光や散乱光を半導体素子 1へ入射さ せやすくなり、半導体素子 1の受光範囲が拡大し、また、半導体素子 1の位置決めや 導電性エポキシ榭脂による固着が容易になる。
[0052] 反射面形成溝 20の半導体素子 1を埋めるように透明で柔軟性のあるシリコーンゴム 6を設けたため、外部からの衝撃や水分や空気に対して半導体素子 1が完全に保護 され、太陽電池モジュール Mの温度変化による膨張、収縮がシリコーンゴム 6で吸収 される。また、シリコーンゴム 6の屈折率は、カバー部材 5及び反射防止膜 16の屈折 率と近似しているため、界面における反射損が小さくなる。さらに、シリコーンゴム 6に より半導体素子 1同士が光学的に結合されるため、集光された直接光だけでなく内 部で多重反射した散乱光が半導体素子 1に入射しやすくなる。
[0053] しカゝも、カバー部材 5には、各反射面形成溝 20に対応する円筒レンズ部 5aが形成 されているため、この円筒レンズ部 5aによる集光を介して太陽光のエネルギー密度 を約 5〜15倍程度に高めることができ、円筒レンズ部 5aによる集光と反射面形成溝 2 0による集光により半導体素子 1の出力を、それらの集光がない場合と比べて、約 7〜 15倍程度に高めることができる。
[0054] 導電接続機構 2は、各行の複数の半導体素子 1を並列接続すると共に各列の複数 の半導体素子 1を直列接続しているため、一部の半導体素子 1が何らかの原因(断 線、接続不良、日陰など)で機能停止しても、その機能停止した半導体素子 1を迂回 する回路により電流が流れるため、正常な半導体素子 1が機能停止することがない。
[0055] 半導体素子 1はほぼ円柱状のロッド形に形成され、正負の電極 14, 15は軸心の両 側の表面部分に軸心と平行に帯状に形成されて基材 11と拡散層 12にォーミック接 続されているため、基材 11の軸心方向長さ Z直径の比率を大きしても、正負の電極 14, 15間の距離が基材 11の直径以下であり、正負の電極 14, 15間の電気抵抗を 小さく維持できるから、半導体素子 1の長さを大きくし、複数の半導体素子 1を電気的 に接続する接続個所の数を少なくし、導電接続機構 2の構成を簡単ィ匕することができ る。
[0056] 太陽電池モジュール Mは温度上昇しやすぐ温度上昇すると発電効率が低下する 力 薄金属板製の一体的に接着した内装金属ケース 3と外装金属ケース 4を採用し、 内装金属ケース 3に複数の樋状の反射面形成溝 20を形成し、その内面側を反射集 光器として活用し、裏面側を放熱器として活用している。特に、反射面形成溝 20の底 板部 21に上方へ膨出した取付台部 21aを形成して W形断面に形成したので、剛性' 強度が向上し、放熱面積が大きくなる。太陽電池モジュール Mが吸収した熱ェネル ギ一は、内装金属ケース 3、薄膜状のポリイミドの合成樹脂層 7、外装金属ケース 4に 伝わり外部へ放熱される。
[0057] 内装金属ケース 3の反射面形成溝 20はシリコーンゴム 6を入れる容器と、カバー部 材 5の係合部 5bを係合させて位置決め固定する受容部とを兼用して ヽる。
反射面形成溝 20の片方の傾斜板部 23に各半導体素子 1に対応するフィンガーリ ード 25を一体的に形成し、このフィンガーリード 25を半導体素子 1の負電極 15に導 電性エポキシ榭脂で接着するため、別個の接続リードを省略できる。
[0058] フィンガーリード 25は傾斜板部 23に形成する切り起こし片として、内装金属ケース 3の製作時に製作できる。組み立て時に、各行の複数の半導体素子 1の正電極 14を 取付台部 21aに導電性エポキシ榭脂で接着してから、切り起こし片を折り曲げてフィ ンガーリード 25とし、半導体素子 1の負電極 15に導電性エポキシ榭脂で接着する。 太陽電池モジュール Mにおける全部のフィンガーリード 25を半導体素子 1の負電極 15に接着してから、複数のタイバー打ち抜き部 26aの部位を連結していたタイバー 部(図示略)を打ち抜き加工する。尚、フィンガーリード 25は半導体素子 1を取り付け る位置のマーカーとしても活用する。上記の複数のタイバー部により、内装金属ケー ス 3を成形加工した際の内装金属ケース 3の一体性を維持でき、内装金属ケース 3を 1枚の金属板で構成可能となり、部材数を少なくし、構造を簡単ィ匕することができる。
[0059] 次に、前記実施例を部分的に変更する例について説明する。
1)図 12に示すように、前記フィンガーリード 25に代えて、内装金属ケース 3とは別 体の接続片 50であって鉄 ·ニッケル合金などの導電性薄金属板を打ち抜き加工して 形成した接続片 50を、半導体素子 1に対応する位置に設け、接続片 50の下部に左 方へ水平に延びるフィンガーリード 25Aを形成する。
[0060] 接続片 50は、内装金属ケース 3の連結板部 24に接着される連結片部 50aと、その 両側の傾斜板部 22, 23に接着される傾斜片部 50b, 50cと、フィンガーリード 25Aと を一体形成したもので、例えば導電性エポキシ榭脂にて連結板部 24とその両側の 傾斜板部 22, 23に接着され、フィンガーリード 25Aの先端部が対応する半導体素子 1の負電極 15に導電性エポキシ榭脂にて接着され電気的に接続される。尚、連結片 部 50aと傾斜片部 50b, 50cの幅は例えば 2〜3mmであり、フィンガーリード 25Aの 幅は例えば 0. 5〜: Lmmである。
[0061] 2)前記の太陽電池モジュール Mは、 9つの反射面形成溝 20を設けた例である力 行の数は数 10行にし、列の数も数 10列にしてもよい。内装金属ケース 3の材質、正 負電極 14, 15の材質、外装金属ケース 4の材質、種々の合成樹脂材料などは、前 記の例に限定されず、当業者ならば適宜変更可能である。
[0062] 半導体素子 1の基材 11の直径も前記の例に限定されるものでなぐ約 1. 0〜2. 5 mmの大きさでもよい。半導体素子 1の軸心方向の長さも前記の例に限定されるもの でなぐ 5. Omm以上の任意の長さに設定可能であり、各行の全長に亘る半導体素 子 1に形成してもよいが、この場合、行方向に適当間隔おきに複数のフィンガーリー ド 25を設けることが望ましい。
[0063] 3)半導体素子 1の基材 11を p形シリコン多結晶で構成してもよぐ拡散層 12を形成 する n形不純物として Sb又は Asを採用してもよい。また、半導体素子 1の基材 11を n 形シリコンの単結晶又は多結晶で構成し、拡散層を形成する p形不純物として B又は Ga又は A1を採用してもよい。また、 pn接合 13は、拡散層 12により形成するとは限ら ず、基材 11の表層部への成膜やイオン注入により、基材 11の導電形と異なる導電 形の別導電層を形成することによつても形成することができる。
[0064] 4)半導体素子 1の基材 11に形成した平坦面 11aを省略し、基材 11を円形断面の ロッド形状にし、負電極 15と同様の形状の正電極としてもよい。尚、この場合、正負 の電極を識別するために、正負の電極を色の異なる金属材料で構成してもよい。
[0065] 5)内装金属ケース 3に形成する反射面形成溝 20の断面形状も、前記の例に限定 される訳ではなぐ開口部力も底部に向力つて溝幅がリニア又は非リニアに減少する ような溝であって集光機能を発揮可能な溝であればよ!、。 1つの太陽電池モジユー ル Mにおける内装金属ケース 3を成形加工した複数枚の金属板で構成してもよい。 実施例 2
[0066] 図 13に示すように、この太陽電池モジュール Ma (パネル形半導体モジュール)は、 前記太陽電池モジュール Mの下側の外面側にダクト部材 35を設けたものであり、こ のダクト部材 35以外の構成については前記太陽電池モジュール Mと同様であるの で、同一の部材に同一の符号を付して説明を省略する。ダクト部材 35は、外装金属 ケース 4との間に空気又は冷却水などの冷却用流体を強制的に又は自然対流により 流通させるための冷媒通路 36を形成する逆台形状の本体部 35aと、この本体部 35a の左右両端力も延びるフランジ部 35fとを有し、フランジ部 35fは、カバー部材 5の平 板部 5と内装金属ケース 3のフランジ部 3fと外装金属ケース 4のフランジ部 4fの下面 側に重ね合せて複数のボルト 30により締結されている。
[0067] 上記の冷媒通路 36に空気又は冷却水などの冷媒を流すことで、内装金属ケース 3 及び外装置金属ケース 4、半導体素子 1を効果的に冷却することができる。特に、内 装金属ケース 3及び外装置金属ケース 4の外表面に凹凸が多いため伝熱面積も大き ぐ半導体素子 1から冷媒までの距離も小さいため、高い冷却性能を発揮できる。 実施例 3
[0068] この実施例は、パネル形半導体モジュールである反射機構付き高出力発光ダイォ ードモジュールに適用する発光用半導体素子 (発光ダイオード)に関するものであり 、この反射機構付き高出力発光ダイオードモジュールは、前記太陽電池モジュール Mの半導体素子 1の代わりに、発光用半導体素子を組み込んだ構造のものである。
[0069] 以下、発光用半導体素子について説明する。
図 14、図 15に示すように、発光用半導体素子 40は、 n形半導体結晶からなるロッド 形の基材 41と、この基材 41の表層部に形成された p形の拡散層 42 (基材と異なる導 電形の別導電層に相当する)と、基材 41と拡散層 42とで形成されたほぼ円筒形の p n接合 43と、正負の電極 44, 45と、反射防止膜 46とを有する。
[0070] 基材 41は直径 1. Ommで長さが 5mmの n形の GaAsの結晶で構成され、下端部に は軸心 41aと平行な平坦面 41b (幅約 0. 2〜0. 3mm)が帯状に形成されている。拡 散層 42は、基材 41の表層部のうち、平坦面 41bとその周方向両端近傍部力もなる 帯状部分を除く部分に P形不純物である Zn (亜鉛)を 0. 5〜1. O /z mの深さまで熱拡 散させることで形成される。正負の電極 44, 45は銀を主成分とするものであり、負電 極 44は平坦面 41bの幅中央部に全長に亘る帯状に形成されて基材 41にォーミック 接続され、正電極 44は基材 41の軸心 41aに対して負電極 45と反対側において拡散 層 42の表面部に形成され、拡散層 42にォーミック接続されている。
[0071] 基材 41と拡散層 42の表面のうちの、正負の電極 44, 45を除く部分には、薄いシリ コン酸ィ匕皮膜又はシリコン窒化皮膜からなる反射防止膜 46であってパッシベーショ ン機能を有する反射防止膜 46が形成されている。この発光用半導体素子 40は、正 電極 44から負電極 45に順方向の電流を流すと、 pn接合 43の近傍カゝら赤外線が発 生する。 pn接合 43が円筒形に近い部分円筒形であるため、発生した赤外線は、半 導体素子 40の表面を垂直に通過して外部に放射する。そのため、平面形 pn接合を 有する従来の発光ダイオードに比べて、光の内部反射損失が少なくなり、発光効率 が向上する。
[0072] この発光用半導体素子 40を前記実施例の半導体素子 1の代わりに^ aみ込んだ反 射機構付き高出力発光ダイオードモジュールにおいては、正極端子から負極端子に 順方向の電流を供給すると、全部の発光用半導体素子 40に順方向の電流が流れて 赤外線が放射される。発光用半導体素子 40から出力された赤外線は、反射面形成 溝 20から直接又は反射面での反射を経てカバー部材 5の円筒レンズ部 5aから外部 へ放射される 0
[0073] 発光用半導体素子 40では、順電流を増せば光出力が増大するが、変換損失によ り発熱して温度上昇が生じ発光効率が低下する。この発光ダイオードモジュールは、 前記太陽電池モジュール Mと同様に放熱性に優れるためモジュールの温度上昇を 抑制することができる。それ故、少ない発光用半導体素子 40に大きな電流を供給し て大きな光出力を得ることができるため、発光ダイオードモジュールの製作コストを低 減することができる。
この発光ダイオードモジュールは、医療機器や種々の赤外線センサや赤外線照明 の光源などの産業分野の赤外線発生装置として活用することができる。
[0074] 次に、前記発光ダイオードモジュール、発光用半導体素子 40を部分的に変更する 例について説明する。
1)この発光ダイオードモジュールにお 、ても、前記太陽電池モジュール Maと同様 のダクト部材を設けてもょ 、。
[0075] 2)発光ダイオードとしては、種々の半導体材料で製作され半導体材料の特性に依 存する種々の発光波長の光を発生させるものは公知であり、そのような種々の半導 体材料で製作した発光ダイオードを採用してもよい。赤外線以外に、可視光線や紫 外線を発生させる発光ダイオードを採用することもある。
[0076] 例えば、 GaAlAs、 GaP、 InGaP、 GaN、 GaInN、 SiCのうらから選択した半導体 結晶で基材を構成してもよい。 SiCは、 6方晶系の結晶であり、 6角柱の単端結晶が 得られるので、そのような 6角柱の単端結晶で基材を構成してもよい。
また、発光用半導体素子の pn接合は、拡散層により形成するとは限らず、基材の 表層部への成膜やイオン注入により、基材の導電形と異なる導電形の別導電層を形 成すること〖こよっても形成することができる。
産業上の利用分野
太陽電池モジュールは太陽光発電装置として種々の分野で利用することができ、 発光ダイオードモジュールは発生する光の種類に応じて種々の分野で利用すること ができる。

Claims

請求の範囲
受光又は発光機能のあるパネル形半導体モジュールにおいて、
受光又は発光機能と軸心を有する複数のロッド形の半導体素子であって、導電方 向を揃え且つ軸心を行方向に向けて複数行複数列に配置された複数の半導体素子 と、
各行の複数の半導体素子を電気的に並列接続し且つ各列の複数の半導体素子を 電気的に直列接続する導電接続機構と、
前記複数の半導体素子が装着され且つ前記導電接続機構を構成する導電性の内 装金属ケースとを備え、
複数の半導体素子の各々は、
p形又は n形の半導体結晶からなるロッド形の基材と、
この基材の表層部の帯状部分以外の部分に形成された基材と異なる導電形の別 導電層と、前記基材と別導電層とで形成されたほぼ円筒形の pn接合と、
前記基材の軸心を挟んだ両側の表面部分に軸心と平行に帯状に形成され且つ前 記基材の前記帯状部分および別導電層に夫々ォーミック接続された第 1,第 2電極 とを備え、
前記内装金属ケースは、各行の複数の半導体素子を夫々収容する複数の反射面 形成溝であって、開口部力も底部に向力つて溝幅が減少する複数の反射面形成溝 を備え、
各反射面形成溝は、光反射可能な底板部とこの底板部の端部から上方へ一体的 に延びる光反射可能な 1対の傾斜板部とで構成され、
前記各底板部の幅方向中央部に取付台部が突出状に形成されると共に、その取 付台部に対応行の複数の半導体素子が載置され且つそれら半導体素子の第 1,第 2電極の一方が電気的に接続され、
各反射面形成溝の一方の傾斜板部に電気的に接続され且つ対応行の複数の半 導体素子の第 1,第 2電極の他方に電気的に夫々接続された金属製の複数のフィン ガーリードが形成され、前記各底板部のうちの取付台部の片側部位に、対応行の複 数の半導体素子の第 1,第 2電極を短絡する導電部分を分断する為の分断スリットが 、行方向の全長に亙って形成された、ことを特徴とするパネル形半導体モジュール。
[2] 前記フィンガーリードは、傾斜板部の上半部に形成された切り起し片の下端部をほ ぼ直角に折り曲げることにより形成されたことを特徴とする請求項 1に記載のパネル 形半導体モジュール。
[3] 前記内装金属ケースの各分断スリットは、各行の複数の半導体素子の第 1,第 2電 極の一方を前記取付台部に接続し且つ第 1,第 2電極の他方をフィンガーリードに接 続後に、複数のタイバー部を打ち抜いて連続する分断スリットに形成されることを特 徴とする請求項 2に記載のパネル形半導体モジュール。
[4] 前記内装金属ケースの下面側に外嵌状に装着される外装金属ケースであって、内 装金属ケースとほぼ相似の断面形状を有する外装金属ケースと、前記内装金属ケー スと外装金属ケースの間に電気絶縁性合成樹脂層とを設け、この電気絶縁性合成 榭脂層を介して内装金属ケースと外装金属ケースとを一体的に固着したことを特徴と する請求項 1〜3の何れかに記載のパネル形半導体モジュール。
[5] 前記外装金属ケースの行方向の両端部には、内装金属ケースの端部よりも所定長 さ行方向外側まで延びる延長部が形成され、この延長部に形成されるケース収容溝 に絶縁材料製の側栓ブロックが内嵌装着して固定されたことを特徴とする請求項 4に 記載のパネル形半導体モジュール。
[6] 前記内装金属ケースの反射面形成溝に柔軟性のある透明な絶縁性合成樹脂材が 、前記半導体素子と前記フィンガーリードを埋め込む状態に充填されたことを特徴と する請求項 5に記載のパネル形半導体モジュール。
[7] 前記内装金属ケースの上面側を覆う透明なガラス製又は合成樹脂製のカバー部 材であって、内装金属ケースと前記側栓ブロックに固着されたカバー部材を設けたこ とを特徴とする請求項 5に記載のパネル形半導体モジュール。
[8] 前記カバー部材には、複数行の半導体素子に夫々対応する複数の円筒レンズ部 を形成したことを特徴とする請求項 7に記載のパネル形半導体モジュール。
[9] 前記外装金属ケースの外面側に冷却用流体を流す為の通路を形成するダクト部材 を設けたことを特徴とする請求項 1〜3の何れかに記載のパネル形半導体モジユー ル。
[10] 前記半導体素子の表面のうち、第 1,第 2電極を除く表面部分に、反射防止膜が形 成されたことを特徴とする請求項 1〜3の何れかに記載のパネル形半導体モジュール
[11] 前記半導体素子の基材が P形の Si単結晶又は Si多結晶で構成され、前記別導電 層が n形不純物としての P又は Sb又は Asを拡散して構成され、前記半導体素子が太 陽電池セルに構成されたことを特徴とする請求項 1〜3の何れかに記載のパネル形 半導体モジュール。
[12] 前記半導体素子の基材が n形の Si単結晶又は Si多結晶で構成され、前記別導電 層が P形不純物としての B又は Ga又は A1を拡散して構成され、前記半導体素子が太 陽電池セルに構成されたことを特徴とする請求項 1〜3の何れかに記載のパネル形 半導体モジュール。
[13] 前記半導体素子が発光機能のある発光ダイオード素子に構成されたことを特徴と する請求項 1〜3の何れかに記載のパネル形半導体モジュール。
PCT/JP2006/313306 2006-07-04 2006-07-04 Panel-shaped semiconductor module WO2008004277A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US12/308,146 US7910947B2 (en) 2006-07-04 2006-07-04 Panel-shaped semiconductor module
EP06780760A EP2040313A4 (en) 2006-07-04 2006-07-04 PANEL-SHAPED SEMICONDUCTOR MODULE
PCT/JP2006/313306 WO2008004277A1 (en) 2006-07-04 2006-07-04 Panel-shaped semiconductor module
CN2006800551169A CN101473452B (zh) 2006-07-04 2006-07-04 面板形半导体模块
JP2008523559A JP4948535B2 (ja) 2006-07-04 2006-07-04 パネル形半導体モジュール
AU2006345821A AU2006345821B2 (en) 2006-07-04 2006-07-04 Panel-shaped semiconductor module
KR1020087030545A KR100996048B1 (ko) 2006-07-04 2006-07-04 패널형 반도체모듈
CA2654941A CA2654941C (en) 2006-07-04 2006-07-04 Panel-shaped semiconductor module
TW095124796A TWI303490B (en) 2006-07-04 2006-07-07 Panel type semiconductor module
HK09108696.1A HK1128993A1 (en) 2006-07-04 2009-09-23 Panel-shaped semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313306 WO2008004277A1 (en) 2006-07-04 2006-07-04 Panel-shaped semiconductor module

Publications (1)

Publication Number Publication Date
WO2008004277A1 true WO2008004277A1 (en) 2008-01-10

Family

ID=38894256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313306 WO2008004277A1 (en) 2006-07-04 2006-07-04 Panel-shaped semiconductor module

Country Status (10)

Country Link
US (1) US7910947B2 (ja)
EP (1) EP2040313A4 (ja)
JP (1) JP4948535B2 (ja)
KR (1) KR100996048B1 (ja)
CN (1) CN101473452B (ja)
AU (1) AU2006345821B2 (ja)
CA (1) CA2654941C (ja)
HK (1) HK1128993A1 (ja)
TW (1) TWI303490B (ja)
WO (1) WO2008004277A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338939B2 (en) 2003-09-30 2008-03-04 New River Pharmaceuticals Inc. Abuse-resistant hydrocodone compounds
US7375083B2 (en) 2003-09-30 2008-05-20 Shire Llc Pharmaceutical compositions for prevention of overdose or abuse
US7375082B2 (en) 2002-02-22 2008-05-20 Shire Llc Abuse-resistant hydrocodone compounds
JP2009206160A (ja) * 2008-02-26 2009-09-10 Asahi Rubber Inc 太陽電池アセンブリ
WO2012160994A1 (ja) * 2011-05-20 2012-11-29 シャープ株式会社 集光型太陽電池及びその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004304A1 (en) * 2006-07-07 2008-01-10 Kyosemi Corporation Panel-shaped semiconductor module
KR101072073B1 (ko) * 2009-06-30 2011-10-10 엘지이노텍 주식회사 태양광 발전장치
CN102456767B (zh) * 2010-10-20 2013-12-04 财团法人工业技术研究院 金属贯穿式太阳电池的制造方法
NL2005944C2 (en) * 2010-12-31 2012-07-03 M H Mensink Beheer B V Solar panel, solar cell converter and method of manufacturing a solar panel.
TWI590433B (zh) * 2015-10-12 2017-07-01 財團法人工業技術研究院 發光元件以及顯示器的製作方法
USD923822S1 (en) 2018-09-12 2021-06-29 Megawall Pty Ltd Connector for a building panel
KR20230029054A (ko) 2021-08-23 2023-03-03 주식회사 메카로에너지 태양광 발전모듈 및 그 제조 방법

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136436A (en) 1975-07-28 1979-01-30 Texas Instruments Incorporated Light energy conversion
US5355873A (en) 1990-07-27 1994-10-18 Bon F Del An inhalation device and method having a variably restrictable air inlet that allows the inhalation force required to overcome a locking element to be changed
JPH07335925A (ja) * 1994-06-03 1995-12-22 Hitachi Ltd 太陽電池
US5482568A (en) 1994-06-28 1996-01-09 Hockaday; Robert G. Micro mirror photovoltaic cells
US6204545B1 (en) 1996-10-09 2001-03-20 Josuke Nakata Semiconductor device
JP2001168369A (ja) 1999-12-09 2001-06-22 Joyu Nakada 球状半導体素子を用いた発電装置および球状半導体素子を用いた発光装置
WO2002035613A1 (en) * 2000-10-20 2002-05-02 Josuke Nakata Light-emitting or light-detecting semiconductor module and method of manufacture thereof
WO2002035612A1 (en) 2000-10-20 2002-05-02 Josuke Nakata Light-emitting or light-receiving semiconductor device and method for fabricating the same
US20020096206A1 (en) 2000-11-24 2002-07-25 Clean Venture 21 Corporation Photovoltaic apparatus and mass-producing apparatus for mass-producing spherical semiconductor particles
WO2003017383A1 (en) * 2001-08-13 2003-02-27 Josuke Nakata Semiconductor device and method of its manufacture
WO2003017382A1 (fr) * 2001-08-13 2003-02-27 Josuke Nakata Module a semi-conducteur emetteur de lumiere ou recepteur de lumiere et procede de fabrication correspondant
WO2003036731A1 (en) * 2001-10-19 2003-05-01 Josuke Nakata Light emitting or light receiving semiconductor module and method for manufacturing the same
WO2003056633A1 (fr) 2001-12-25 2003-07-10 Josuke Nakata Appareil semi-conducteur d'emission et de reception de lumiere
WO2003094248A1 (en) * 2002-05-02 2003-11-13 Josuke Nakata Light-receiving panel or light-emitting panel, and manufacturing method thereof
WO2004001858A1 (ja) * 2002-06-21 2003-12-31 Josuke Nakata 受光又は発光用デバイスおよびその製造方法
JP2004093602A (ja) * 2002-08-29 2004-03-25 Casio Comput Co Ltd 太陽電池付き表示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976508A (en) * 1974-11-01 1976-08-24 Mobil Tyco Solar Energy Corporation Tubular solar cell devices
US3984256A (en) * 1975-04-25 1976-10-05 Nasa Photovoltaic cell array
FR2327643A1 (fr) * 1975-10-09 1977-05-06 Commissariat Energie Atomique Convertisseur d'energie lumineuse en energie electrique
US5431741A (en) * 1992-12-11 1995-07-11 Shin-Etsu Chemical Co., Ltd. Silicon solar cell
US5355783A (en) * 1993-10-27 1994-10-18 Cochran David M Apparatus for separating chaff and roasting coffee and cocoa beans
JPH07202244A (ja) * 1994-01-07 1995-08-04 Honda Motor Co Ltd 太陽電池
US5468304A (en) * 1994-03-14 1995-11-21 Texas Instruments Incorporated Output-increasing, protective cover for a solar cell
AUPM982294A0 (en) 1994-12-02 1995-01-05 Pacific Solar Pty Limited Method of manufacturing a multilayer solar cell
US6109528A (en) * 1995-12-22 2000-08-29 Intermec Ip Corp. Ergonomic hand-held data terminal and data collection system
US6057505A (en) 1997-11-21 2000-05-02 Ortabasi; Ugur Space concentrator for advanced solar cells
US6440769B2 (en) 1999-11-26 2002-08-27 The Trustees Of Princeton University Photovoltaic device with optical concentrator and method of making the same
US6355873B1 (en) * 2000-06-21 2002-03-12 Ball Semiconductor, Inc. Spherical shaped solar cell fabrication and panel assembly
US6717045B2 (en) 2001-10-23 2004-04-06 Leon L. C. Chen Photovoltaic array module design for solar electric power generation systems
US7592276B2 (en) * 2002-05-10 2009-09-22 Sarnoff Corporation Woven electronic textile, yarn and article
US20040016456A1 (en) * 2002-07-25 2004-01-29 Clean Venture 21 Corporation Photovoltaic device and method for producing the same
US7128438B2 (en) * 2004-02-05 2006-10-31 Agilight, Inc. Light display structures

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136436A (en) 1975-07-28 1979-01-30 Texas Instruments Incorporated Light energy conversion
US5355873A (en) 1990-07-27 1994-10-18 Bon F Del An inhalation device and method having a variably restrictable air inlet that allows the inhalation force required to overcome a locking element to be changed
JPH07335925A (ja) * 1994-06-03 1995-12-22 Hitachi Ltd 太陽電池
US5482568A (en) 1994-06-28 1996-01-09 Hockaday; Robert G. Micro mirror photovoltaic cells
US6204545B1 (en) 1996-10-09 2001-03-20 Josuke Nakata Semiconductor device
JP2001168369A (ja) 1999-12-09 2001-06-22 Joyu Nakada 球状半導体素子を用いた発電装置および球状半導体素子を用いた発光装置
WO2002035613A1 (en) * 2000-10-20 2002-05-02 Josuke Nakata Light-emitting or light-detecting semiconductor module and method of manufacture thereof
WO2002035612A1 (en) 2000-10-20 2002-05-02 Josuke Nakata Light-emitting or light-receiving semiconductor device and method for fabricating the same
US20020096206A1 (en) 2000-11-24 2002-07-25 Clean Venture 21 Corporation Photovoltaic apparatus and mass-producing apparatus for mass-producing spherical semiconductor particles
WO2003017383A1 (en) * 2001-08-13 2003-02-27 Josuke Nakata Semiconductor device and method of its manufacture
WO2003017382A1 (fr) * 2001-08-13 2003-02-27 Josuke Nakata Module a semi-conducteur emetteur de lumiere ou recepteur de lumiere et procede de fabrication correspondant
WO2003036731A1 (en) * 2001-10-19 2003-05-01 Josuke Nakata Light emitting or light receiving semiconductor module and method for manufacturing the same
WO2003056633A1 (fr) 2001-12-25 2003-07-10 Josuke Nakata Appareil semi-conducteur d'emission et de reception de lumiere
WO2003094248A1 (en) * 2002-05-02 2003-11-13 Josuke Nakata Light-receiving panel or light-emitting panel, and manufacturing method thereof
WO2004001858A1 (ja) * 2002-06-21 2003-12-31 Josuke Nakata 受光又は発光用デバイスおよびその製造方法
JP2004093602A (ja) * 2002-08-29 2004-03-25 Casio Comput Co Ltd 太陽電池付き表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2040313A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375082B2 (en) 2002-02-22 2008-05-20 Shire Llc Abuse-resistant hydrocodone compounds
US7338939B2 (en) 2003-09-30 2008-03-04 New River Pharmaceuticals Inc. Abuse-resistant hydrocodone compounds
US7375083B2 (en) 2003-09-30 2008-05-20 Shire Llc Pharmaceutical compositions for prevention of overdose or abuse
JP2009206160A (ja) * 2008-02-26 2009-09-10 Asahi Rubber Inc 太陽電池アセンブリ
WO2012160994A1 (ja) * 2011-05-20 2012-11-29 シャープ株式会社 集光型太陽電池及びその製造方法
JPWO2012160994A1 (ja) * 2011-05-20 2014-07-31 シャープ株式会社 集光型太陽電池及びその製造方法

Also Published As

Publication number Publication date
US7910947B2 (en) 2011-03-22
CA2654941A1 (en) 2008-01-10
EP2040313A4 (en) 2010-08-25
US20090173959A1 (en) 2009-07-09
AU2006345821A1 (en) 2008-01-10
KR20090009326A (ko) 2009-01-22
AU2006345821B2 (en) 2010-09-16
CN101473452A (zh) 2009-07-01
EP2040313A1 (en) 2009-03-25
TWI303490B (en) 2008-11-21
TW200805686A (en) 2008-01-16
HK1128993A1 (en) 2009-11-13
JP4948535B2 (ja) 2012-06-06
CA2654941C (en) 2013-01-08
KR100996048B1 (ko) 2010-11-22
CN101473452B (zh) 2013-05-08
JPWO2008004277A1 (ja) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4948535B2 (ja) パネル形半導体モジュール
JP5032496B2 (ja) スタック型太陽電池装置
AU2002313256B8 (en) Light-receiving or light-emitting device and its production method
JP2011003896A (ja) Iii−v族化合物半導体太陽電池用の集光型光起電力システム受け構造
US20080121269A1 (en) Photovoltaic micro-concentrator modules
KR20080097392A (ko) 수광 또는 발광용 반도체 모듈
KR20110056306A (ko) 발광다이오드 및 이의 형성 방법, 및 발광다이오드를 이용한 장치
TW200810139A (en) Semiconductor module for generating electricity or emitting light
JP4948536B2 (ja) パネル形半導体モジュール
KR20150049259A (ko) 정션 박스 및 이를 구비한 태양광 모듈
JP2004342986A (ja) 太陽電池モジュール及び太陽電池モジュール設置構造体
MX2008016392A (es) Modulo semiconductor con forma de panel.
KR101101159B1 (ko) 반사체의 집광과 열전도판의 방열을 이용한 구형 실리콘 태양광 발전 모듈
MX2008016391A (es) Modulo semiconductor con forma de panel.
KR101352129B1 (ko) 고방열 집광형 태양전지 모듈
KR20150049844A (ko) 주집광기의 어레이가 용이한 박형 집광형 태양전지모듈
KR20160051190A (ko) 상호 연결이 용이한 태양전지 어셈블리 및 이를 구비하는 고집광형 태양전지모듈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680055116.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06780760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008523559

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12308146

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2654941

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006345821

Country of ref document: AU

Ref document number: 1020087030545

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2008/016392

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2006780760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006780760

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006345821

Country of ref document: AU

Date of ref document: 20060704

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: RU