WO2008002001A1 - Procédé de fabrication de pièces en alliage par moulage par injection de métal, et pièces en alliage ainsi obtenues - Google Patents

Procédé de fabrication de pièces en alliage par moulage par injection de métal, et pièces en alliage ainsi obtenues Download PDF

Info

Publication number
WO2008002001A1
WO2008002001A1 PCT/KR2007/000514 KR2007000514W WO2008002001A1 WO 2008002001 A1 WO2008002001 A1 WO 2008002001A1 KR 2007000514 W KR2007000514 W KR 2007000514W WO 2008002001 A1 WO2008002001 A1 WO 2008002001A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
alloy
sintering
injection molding
powder
Prior art date
Application number
PCT/KR2007/000514
Other languages
English (en)
Inventor
Sunghak Lee
Nackjoon Kim
Taeshik Yoon
Changkyu Kim
Changyoung Son
Daejin Ha
Original Assignee
Pohang University Of Science And Technology
Postech Academy-Industry Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pohang University Of Science And Technology, Postech Academy-Industry Foundation filed Critical Pohang University Of Science And Technology
Priority to JP2009517946A priority Critical patent/JP2009542905A/ja
Priority to CN200780024689XA priority patent/CN101479063B/zh
Priority to EP07708670A priority patent/EP2043801A4/fr
Priority to US12/306,778 priority patent/US20090297396A1/en
Publication of WO2008002001A1 publication Critical patent/WO2008002001A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a metal injection molding and a part manufactured by the metal injection molding, and more particularly, to a method of manufacturing a part by using Fe-Cr-based alloy powder in a metal injection molding and the part, that is, the metal injection molding and the part capable of reducing a limitation on a size of the part, increasing a productivity, and providing the part having excellent properties at a low cost as compared with a conventional manufacturing method.
  • a metal injection molding that is, a method including a process of mixing power with a binder, a process of injection molding the mixture, a process of removing the binder from the injection moldings, and a process of sintering and forming the debinded injection moldings, thereby manufacturing a product having a net shape that hardly needs finishing processing, is known.
  • Parts manufactured by the metal injection molding are mainly used for high value-added precision parts such as a cellular phone hinge requiring abrasion resistance, durability, and mechanical chemical properties including corrosion resistance, high strength, high hardness, and high quality. These parts are manufactured by using iron, nickel, or stainless-based powder.
  • the iron, nickel, or stainless-based powder has problems in that the sintering process that is the last forming process is performed at a very high sintering temperature of about 1350°C and costs of electric power consumed for the sintering process and the sintering equipment are very high.
  • a conventional powder material is used, adequate properties may not be obtained according to applications.
  • a micro-powder injection molding of significantly decreasing a size of the powder is attempted.
  • the sintering temperature may decreases by about 100"C as compared with a conventional method.
  • a powder price markedly increases as compared with the conventional method, so that there is a problem in that reducing the manufacturing cost cannot be expected.
  • Powder injection molding uses various materials such as metal, ceramic, and cemented carbide, and the iron-based material such as stainless that occupies more than 40% of the total materials.
  • the iron-based material such as stainless that occupies more than 40% of the total materials.
  • STS316L has been widely applied.
  • STS630(17-4PH) having a high strength has been increasingly used.
  • the STS630 is martensite-based precipitation-hardened alloy and is one of high strength alloys having a high corrosion resistance.
  • the stainless has a high sintering temperature, there is a problem in that cost of production significantly increases.
  • the present invention provides a method of manufacturing parts which have a low sintering temperature, have an excellent hardness, and can be produced at a low cost to be applied to high value-added precision parts.
  • a method of manufacturing an alloy part including steps of: mixing a material of from 40 to 75wt% selected from the group consisting of Fe and a combination of Fe and Co, a material of 20wt% or more selected from the group consisting of W, Mo, Cr, Nb, V, and Ni, a material of from 2 to 14wt% selected from the group consisting of B, C, Cu, and Si, alloy powder having a composition including unavoidable impurities, and a binder; performing an injection molding on the mixture to form the injection moldings to have a shape of the part; removing the binder from the injection moldings; and sintering the injection moldings from which the binder is removed, and the alloy part manufactured by the method.
  • the alloy powder used for a low-hardness alloy part may have a composition of 20 to 35wt% Cr, 1 to 2.5wt% Si, 0.5wt% or less C, 0.1 to 3wt% Cu, 2 to 5wt% B, 0.1 to 8wt% Mo, 14 to 22wt% Ni, and 4 tol5 wt% Co.
  • the alloy powder used for a high-hardness alloy part may have a composition of 40 to 50wt% Cr, 1 to 2.5wt% Si, 0.5 wt% or less C, and 5.6 to 6.2wt% B.
  • the step of sintering may be performed in a vacuum in a reducing gas or an inert gas atmosphere at a temperature of from 1100 ° C to less than a melting point of the alloy or at a temperature of 1150 ° C or more or a temperature of 1200°C or more according to a manufacturing cost and required properties.
  • the sintering atmosphere is an atmosphere in which oxide existing at surfaces of the alloy powder is removed during the sintering process.
  • the sintering atmosphere is a high-purity hydrogen atmosphere.
  • the sintering process is performed at a sintering temperature of from 1100 ° C to about 1250°C that is a melting point of the alloy powder. Accordingly, the sintering temperature can be decreased by 100 to 250 ° C as compared with a sintering temperature of 1350°C of stainless- based powder, so that costs of electric power and energy consumed for the sintering process can be significantly reduced.
  • an average particle size of the ally powder may range from 0.01 to lOO ⁇ m. Powder having an average particle size of less than O.Ol ⁇ m may cause an significant increase in a manufacturing cost of the powder and in a price of a product. Powder having an average particle size of more than lOO ⁇ m cannot obtain an enough precision and desired properties. Therefore, the powder having the aforementioned particle size may be used.
  • the step of removing the binder may be performed by heating the injection moldings at a temperature of from 300 to 700°C in a reducing gas atmosphere and maintaining the temperature for 0.5 to 5 hours.
  • a porosity of the part manufactured by the manufacturing method may be a volume fraction of 7% or less, and more preferably, 5% or less.
  • the porosity exceeds 7%, hardness and properties are decreased, so that the part having the porosity of more than 7% cannot be applied.
  • the metal parts manufactured by the metal injection molding according to the present invention have advantages in that a limitation on sizes of the parts is reduced due to characteristics of the manufacturing method, and a continuous production is possible.
  • the metal parts have the same or more hardness as compared with metal injection moldings using conventional stainless-based alloy powder but have a lower sintering temperature. Accordingly, high quality and high value-added parts with a competitive price can be manufactured, so that the parts can be used in all fields including cars, computers, electronic components, industrial components, medical instruments, abrasion-resistant components, and so on.
  • FIG. 1 is a flowchart schematically showing a manufacturing process according to the present invention.
  • FIG. 2 is a picture taken by a scanning electron microscope (SEM) showing a degree of denseness of a metal part manufactured according to an embodiment of the present invention.
  • FIG. 3 is a picture taken by a SEM showing a degree of denseness of a metal part manufactured according to another embodiment of the present invention.
  • a metal injection molding according to the present invention uses powder having an alloy composition represented as "C” mainly including Fe, Cr, Ni, Co, or the like and an alloy composition represented as "M” mainly including Fe, Cr, B, or the like.
  • C alloy composition
  • M alloy composition
  • the Cr of from 20 to 50wt% or more is mixed with the Fe, so that a sintering temperature can be significantly decreased.
  • parts having the same or better mechanical properties as compared with conventional stainless powder injection molded parts can be manufactured.
  • FIG. 1 shows a manufacturing process of the metal injection molding according to an embodiment of the present invention.
  • the metal injection molding includes a mixing process of powder and a binder, an injection molding process of the mixture, a debinding process of removing the binder from the injection moldings by a thermal decomposition, and a process of sintering the debinded moldings, thereby manufacturing near net shape parts.
  • a shape of the alloy powder may be close to a spherical shape, and an average particle size of the powder may be 100 / zm or less for a high sintering density and a high numerical precision.
  • particles of 40 ⁇ ni or less are used.
  • the most important work in the mixing process is to select a suitable binder.
  • the suitable binder is selected so that mixing and injection molding processes are easy and materials having desired properties should be obtained when the used binder is removed after the injection molding process.
  • the binder is a material composed of two to five selected from a bonding(bodying) agent, a lubricant, a plasticizer, and a surfactant.
  • the total amount of the binder is smaller so as to prevent deformation during the debinding and the sintering processes, and a volume fraction of the binder may range from 30% to 50%.
  • the binder used in the embodiment of the present invention is a mixture of ethylene vinyl acetate (EVA) of 20wt% and paraffin wax of 80wt%.
  • the mixing process of the alloy powder and the binder includes weighing the alloy powder and the binder in a predetermined ratio and mixing the alloy powder with the binder in a sigma blade mixer at a temperature ranging from 130 to 160°C for two hours.
  • the injection molding process of the mixture includes feeding the alloy mixture into a metal injection molding machine of about 27 ton and injecting the alloy mixture into a metal mold having a predetermined shape at a pressure of 450 bar and a temperature of 120°C.
  • the debinding process of removing the binder from the injection moldings includes feeding the moldings into a tube furnace, increasing the temperature up to 300 0 C in a high-purity hydrogen atmosphere at a speed of 2 "C/min and maintaining the temperature for an hour, increasing the temperature up to 500 ° C at a speed of 3°C/min and maintaining the temperature for an hour, and increasing the temperature up to 700°C at a speed of 3°C/min and maintaining the temperature for an hour, thereby completely removing the binder.
  • a liquid phase transition temperature of each alloy powder having a composition shown in Table. 1 above is measured by a differential thermal analysis (DTA).
  • the sintering process is performed in a condition described in Table 2 below at a temperature ranging from 1150 ° C to less than the liquid phase transition temperature.
  • Specimens Cl, C2, and C3 shown in Table 2 have the same composition but have different sintering temperatures, and so do specimens Ml, M2, and M3.
  • the sintering process is performed by increasing the temperatures up to target temperatures of 1100° C, 1150° C, 1200° C, and 1250° C shown in Table 2 at a speed of 5° C/min and maintaining the temperatures in the high-purity hydrogen atmosphere for 30 minutes.
  • the sintering process is performed in a reducing gas atmosphere, so that oxide layers formed at surfaces of the alloy powder are removed, and particle bonding proceeds by diffusion.
  • FIGS. 2 and 3 are pictures taken by a scanning electron microscope (SEM) showing microstructures of metal parts manufactured at the above sintering temperatures. As shown in FIGS. 2 and 3, as the sintering temperature increases, the volume fraction of pores formed at a grain boundary significantly decreases, and sizes of the pores tend downward. In addition, a result of measuring a porosity and a relative density, that is, a degree of denseness, is shown in following Table 3.
  • the Cl sintered at the temperature of 1100°C has a relative density of 95.68% that is a relatively high degree. As the sintering temperatures increases, most specimens have high relative densities of more than 99%.
  • the Cl according to the embodiment of the present invention is sintered at a very low sintering temperature but has a similar hardness as compared with STS316L, the C2 has a better hardness, and the C3 and the M2 have about three times the hardness of the STS316L and have the same or more hardness as compared with STS630.
  • the parts having high physical properties at a low cost as compared with the stainless powder injection moldings can be manufactured, so that the parts can replace the STS316L and the STS630.
  • the M3 and the M4 according to the present invention have lower sintering temperatures as those of the stainless powder injection moldings but have the excellent hardnesses of 747 and 1059, respectively, as compared with the stainless powder injection moldings. [Industrial Applicability]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une pièce, laquelle permet de produire une pièce de précision à grande valeur ajoutée présentant une faible température de frittage, une bonne dureté et un bon rendement à bas coût. Le procédé consiste à mélanger un matériau de 40 à 75 % en poids sélectionné dans le groupe constitué par Fe et une combinaison de Fe et de Co; un matériau d'au moins 20 % en poids sélectionné dans le groupe constitué par W, Mo, Cr, Nb, V et Ni; un matériau de 2 à 14 % en poids sélectionné dans le groupe constitué par B, C, Cu et Si; un alliage pulvérulent dont la composition comprend des impuretés inévitables; et un liant. Le procédé consiste ensuite à: mouler le matériau par injection afin de réaliser des moulages par injection présentant la forme de la pièce; éliminer le liant des moulages par injection; et fritter les moulages par injection débarrassés du liant.
PCT/KR2007/000514 2006-06-28 2007-01-30 Procédé de fabrication de pièces en alliage par moulage par injection de métal, et pièces en alliage ainsi obtenues WO2008002001A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009517946A JP2009542905A (ja) 2006-06-28 2007-01-30 金属射出成形による合金部品の製造方法及びその合金部品
CN200780024689XA CN101479063B (zh) 2006-06-28 2007-01-30 通过金属注射成型制造合金部件的方法及该合金部件
EP07708670A EP2043801A4 (fr) 2006-06-28 2007-01-30 Procédé de fabrication de pièces en alliage par moulage par injection de métal, et pièces en alliage ainsi obtenues
US12/306,778 US20090297396A1 (en) 2006-06-28 2007-01-30 Fabrication method of alloy parts by metal injection molding and the alloy parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2006-0058373 2006-06-28
KR1020060058373A KR100768700B1 (ko) 2006-06-28 2006-06-28 금속사출성형법을 이용한 합금 부품의 제조방법 및합금부품

Publications (1)

Publication Number Publication Date
WO2008002001A1 true WO2008002001A1 (fr) 2008-01-03

Family

ID=38815316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2007/000514 WO2008002001A1 (fr) 2006-06-28 2007-01-30 Procédé de fabrication de pièces en alliage par moulage par injection de métal, et pièces en alliage ainsi obtenues

Country Status (6)

Country Link
US (1) US20090297396A1 (fr)
EP (2) EP2564956A1 (fr)
JP (1) JP2009542905A (fr)
KR (1) KR100768700B1 (fr)
CN (1) CN101479063B (fr)
WO (1) WO2008002001A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579160A (zh) * 2009-06-05 2009-11-18 刘世华 一种金属注射成型制造不锈钢拉链及其制造方法
CN103890210A (zh) * 2011-10-21 2014-06-25 浦项工科大学校产学协力团 一种用于粉末注塑成型的铁基合金

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867843B1 (ko) * 2010-12-30 2018-06-18 회가내스 아베 (피유비엘) 분말 사출 성형용 철계 분말
TWI626092B (zh) * 2012-09-21 2018-06-11 好根那公司 新穎粉末、粉末組合物,及彼等之使用方法及該粉末及粉末組合物之用途
KR20140048428A (ko) * 2012-10-15 2014-04-24 현대자동차주식회사 금속분말 사출 성형을 이용한 컨트롤 핑거의 제조방법
KR20160106554A (ko) * 2013-10-25 2016-09-12 골든 인텔렉추얼 프로퍼티, 엘엘씨 분말사출성형용 공급원료를 포함하는 비정질 합금
CN103990803B (zh) * 2014-05-28 2017-01-11 厦门市超日精密模具有限公司 钨钼合金粉末注射模具及其工艺
KR20160023365A (ko) 2014-08-22 2016-03-03 박상준 합금의 사출 성형 방법
CN106119662B (zh) * 2016-07-28 2018-01-02 洛阳轴研科技股份有限公司 一种钴铬钨合金材料、用于滚珠丝杠轴承的钴铬钨合金球及其制备方法、滚珠丝杠轴承
CN106498261A (zh) * 2016-11-21 2017-03-15 常熟市张桥华丰铸造五金厂 一种多用途的高性能铸件
CN108746630A (zh) * 2018-06-25 2018-11-06 长春中科昊融新材料研究有限公司 降低烧结温度制备金属注射成形喂料的方法
CN114086078A (zh) * 2020-08-25 2022-02-25 华为技术有限公司 Fe-Mn-Al-C系轻质钢及其制备方法、终端、钢结构件和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155650A (ja) * 1984-04-03 1985-08-15 Nippon Piston Ring Co Ltd 動力機械用摺動部材
KR20010104662A (ko) * 1998-11-10 2001-11-26 메탈스 프로세스 시스템즈 분말 야금법을 이용한 셀프-브레이징 성형품의 제조방법
JP2004263294A (ja) * 2003-02-13 2004-09-24 Mitsubishi Steel Mfg Co Ltd 焼結性を改善した金属射出成形用合金鋼粉末及び焼結体
KR20060068807A (ko) * 2004-12-17 2006-06-21 박영석 분말사출성형을 이용한 복잡 형상 재료의 제조방법 및그에 따라 제조된 재료

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052802A (en) * 1976-02-23 1977-10-11 Caterpillar Tractor Co. Ground-engaging tool with wear-resistant insert
US4194900A (en) * 1978-10-05 1980-03-25 Toyo Kohan Co., Ltd. Hard alloyed powder and method of making the same
JPS5976860A (ja) 1982-10-25 1984-05-02 Hitachi Metals Ltd 永久磁石材料
US4721599A (en) * 1985-04-26 1988-01-26 Hitachi Metals, Ltd. Method for producing metal or alloy articles
US5338508A (en) * 1988-07-13 1994-08-16 Kawasaki Steel Corporation Alloy steel powders for injection molding use, their compounds and a method for making sintered parts from the same
US5030519A (en) * 1990-04-24 1991-07-09 Amorphous Metals Technologies, Inc. Tungsten carbide-containing hard alloy that may be processed by melting
JP3049294B2 (ja) * 1993-06-11 2000-06-05 大同特殊鋼株式会社 装飾部品
US6171657B1 (en) * 1995-12-18 2001-01-09 Bender Machine, Inc. Method of coating yankee dryers against wear
JPH1161360A (ja) * 1997-08-13 1999-03-05 Hatsuto:Kk ステンレス鋼焼結体およびその製造方法
JPH11100633A (ja) * 1997-09-29 1999-04-13 Toshiba Mach Co Ltd 断熱部材及びその製造方法
JPH11222605A (ja) * 1998-02-04 1999-08-17 Mitsubishi Electric Corp 摺動部品の製造方法およびその製造方法により製造された噴射弁の旋回流発生体
JP3931447B2 (ja) * 1998-09-18 2007-06-13 セイコーエプソン株式会社 金属焼結体およびその製造方法
US6309592B1 (en) * 2000-04-05 2001-10-30 Lite-On It Corporation Method for manufacturing roller carrier of vibration balance device
JP3856294B2 (ja) * 2001-11-30 2006-12-13 セイコーエプソン株式会社 焼結用ステンレス鋼粉末、焼結ステンレス鋼製造用造粒粉末および焼結ステンレス鋼
CN1180908C (zh) * 2003-09-30 2004-12-22 北京科技大学 一种制备Kovar合金电子封装盒体的方法
US20050163645A1 (en) * 2004-01-28 2005-07-28 Borgwarner Inc. Method to make sinter-hardened powder metal parts with complex shapes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155650A (ja) * 1984-04-03 1985-08-15 Nippon Piston Ring Co Ltd 動力機械用摺動部材
KR20010104662A (ko) * 1998-11-10 2001-11-26 메탈스 프로세스 시스템즈 분말 야금법을 이용한 셀프-브레이징 성형품의 제조방법
JP2004263294A (ja) * 2003-02-13 2004-09-24 Mitsubishi Steel Mfg Co Ltd 焼結性を改善した金属射出成形用合金鋼粉末及び焼結体
KR20060068807A (ko) * 2004-12-17 2006-06-21 박영석 분말사출성형을 이용한 복잡 형상 재료의 제조방법 및그에 따라 제조된 재료

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2043801A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579160A (zh) * 2009-06-05 2009-11-18 刘世华 一种金属注射成型制造不锈钢拉链及其制造方法
CN101579160B (zh) * 2009-06-05 2014-08-06 刘世华 一种金属注射成型制造不锈钢拉链头及其制造方法
CN103890210A (zh) * 2011-10-21 2014-06-25 浦项工科大学校产学协力团 一种用于粉末注塑成型的铁基合金
EP2770074A4 (fr) * 2011-10-21 2016-04-20 Postech Acad Ind Found Alliage à base de fer pour un moulage par injection de poudre

Also Published As

Publication number Publication date
CN101479063A (zh) 2009-07-08
EP2043801A1 (fr) 2009-04-08
EP2043801A4 (fr) 2011-04-13
CN101479063B (zh) 2011-12-07
KR100768700B1 (ko) 2007-10-19
JP2009542905A (ja) 2009-12-03
US20090297396A1 (en) 2009-12-03
EP2564956A1 (fr) 2013-03-06

Similar Documents

Publication Publication Date Title
WO2008002001A1 (fr) Procédé de fabrication de pièces en alliage par moulage par injection de métal, et pièces en alliage ainsi obtenues
JP5427380B2 (ja) 超硬複合材料およびその製造方法
US20110123384A1 (en) Method of manufacturing powder injection-molded body
CN104404337B (zh) 一种硬质合金及其制备方法
CN104946914B (zh) 一种金属基功能梯度复合材料的成型方法
CN1312078C (zh) 亚微米晶粒Ti(C,N)基金属陶瓷及其制备方法
CN108642361B (zh) 一种高强度高硬度陶瓷材料及其生产工艺
CN105063394B (zh) 一种钛或钛合金材料的制备方法
CN104874797A (zh) 一种硬质合金功能梯度材料的成型方法
WO2022041993A1 (fr) Acier, élément structurel en acier, dispositif électronique, procédé de préparation d'élément structurel en acier
Basir et al. Process parameters used in macro/micro powder injection molding: an overview
JP5305206B2 (ja) 超硬合金及び超硬工具
US20210017086A1 (en) High Temperature Resistant Cemented Carbide and Manufacturing Method Thereof
Zhou et al. Effect of Mo and Mo2C on the microstructure and properties of the cermets based on Ti (C, N)
KR20150025196A (ko) 분말사출성형에 의한 복합소재 제조방법
KR101658381B1 (ko) 분말 성형체 제조방법 및 분말 성형체 제조용 혼합분말
JP5300882B2 (ja) 鋼粉末組成物及びその焼結体
JP2016102262A (ja) 高剛性鉄基焼結合金およびその製造方法
JP5470955B2 (ja) 金属粉末および焼結体
KR101410490B1 (ko) 분말사출 성형체 제조방법
JP2005350710A (ja) 金属粉末射出成形用耐熱合金
KR101076784B1 (ko) 분말사출 성형체 제조방법
Mulser et al. Nb-Si intermetallic composites for high-temperature applications produced by MIM
Chol et al. Microstructure and Property of Sintered M4 High Speed Steels with regard to Evolution of Carbides and Carbonitrides
JP2016084534A (ja) 高密度鉄基焼結材およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780024689.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07708670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009517946

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12306778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007708670

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU