WO2008001384A1 - Multi-antenna system for differential wireless communication devices - Google Patents

Multi-antenna system for differential wireless communication devices Download PDF

Info

Publication number
WO2008001384A1
WO2008001384A1 PCT/IL2007/000807 IL2007000807W WO2008001384A1 WO 2008001384 A1 WO2008001384 A1 WO 2008001384A1 IL 2007000807 W IL2007000807 W IL 2007000807W WO 2008001384 A1 WO2008001384 A1 WO 2008001384A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
antenna
wireless communication
common ground
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IL2007/000807
Other languages
English (en)
French (fr)
Inventor
Joseph Maoz
Michael Kadichevitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
In4Tel Ltd
Original Assignee
In4Tel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by In4Tel Ltd filed Critical In4Tel Ltd
Priority to JP2009517604A priority Critical patent/JP2009543419A/ja
Priority to US12/306,937 priority patent/US20090318092A1/en
Priority to EP07766837A priority patent/EP2038964A1/en
Publication of WO2008001384A1 publication Critical patent/WO2008001384A1/en
Priority to IL196261A priority patent/IL196261A0/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the present invention relates to multi-antenna systems for differential wireless communication devices.
  • the invention is particularly useful in a dual antenna system with transceivers, and is therefore described below with respect to such an application, but it will be appreciated that the invention could advantageously be used for transmitters and/or receivers alone.
  • the transceiver In traditional transceiver (transmitter and receiver) communication systems, the transceiver has a single-ended RF signal (either input or output) connected to the IF circuit, and a differential IF signal (either output or input) at the other end. This is done to implement the transceiver circuit and to enhance its noise immunity.
  • a single ended (unbalanced) signal is one in which a single line transmits the signal with reference to the ground of the circuit.
  • a differential (balanced) signal is one in which two anti-phase (180°) lines transmit the signal with reference to a mutual ground.
  • the antenna is single ended: that is, the antenna has one signal connection and one ground connection. Accordingly, a Balun (balance-to- unbalance) is frequently used.
  • the Balun is a passive device that transforms the differential signal into a single-ended signal.
  • the Balun has considerable RF loss, and additional cost to the Bill of Material (BOM) of the circuit, and requires more space on the PCB.
  • BOM Bill of Material
  • Diversity architecture for enhancing links of a wireless communication system is a well known technology and has become very popular in recent years.
  • Known diversity antenna configurations include: spatial diversity, where each of the antennas covers different parts of the space; polarization diversity, where the polarization of each of the antennas is orthogonal to the other; and time diversity, where the two antennas are delayed relative to each other.
  • the diversity architecture is driven by a switch which chooses the best performing antenna, and disconnects the other antenna, or by using comparators and phase shifters then combining the signals.
  • the switching control is usually sampled at a low rate such that it will not interfere with the system performance and order.
  • An object of the present invention is to provide a multi-antenna system for differential wireless communication devices having advantages in one or more of the above respects.
  • a multi-antenna system comprising: a wireless communication device having a differential port including first and second nodes and a common ground for an antenna connection; a first antenna connected between the first node and the common ground; and a second antenna connected between the second node and the common ground.
  • the present invention thus provides a new multi-antenna configuration which is suitable for use with any differential port of a radio transceiver. It enables the benefit of a dual antenna operation with any of the above-mentioned configurations, without the need for a switching circuit, two separate transceivers (transmitters, receivers or transceivers) and mechanism for processing two separate signals.
  • the two signals of a differential port transmitted or received by the two antennas are considered as the most regular case of multi-path, as they are transmitted or received by a single differential port of the transceiver.
  • the two antennas are in fact connected serially, rather than in parallel, yet are capable of being effectively operated over a very wide band of frequencies. The limit is only the question of the antenna type used.
  • the first antenna is connected between the positive node and the common ground node, while the second antenna is connected between the negative node and the common ground node.
  • Such connections would be considered as going against the conventional wisdom in this field since the two antennas inherently have opposite phases (180 degrees) relative to each other. However, and as will be shown, the latter can be ignored in some of the embodiments or overcome in other embodiments of the present invention.
  • the invention is described below, for purposes of example, as embedded in systems wherein the antennas are located in different planes at an angle to each other, and in perpendicular planes relative to each other, in the same plane but at a distance from each other.
  • the invention is also described below in other embodiments wherein the two antennas are orthogoHally polarized with respect to each other, or include feed lines of different lengths, or of different characteristic impedance, or of different phases.
  • the invention is also described below with respect to systems wherein the two antennas have different input impedances, or different radiation patterns.
  • the invention is particularly useful with respect to transceivers, but may also be used with respect to transmitters or receivers alone. Further features and advantages of the invention will be apparent from the description below.
  • Fig. 1 illustrates a typical prior art wireless communication system relevant to the present invention
  • Fig. 2 also illustrates a typical prior art wireless communication system in which the system of Fig. 1 is duplicated for each antenna;
  • Fig. 3 illustrates one form of multi-antenna system constructed in accordance with the present invention
  • Fig. 4 illustrates a system similar to that of Fig. 3, in which the antennas are directed in the same direction but have different polarizations;
  • Fig. 5 illustrates a system in accordance with the present invention wherein the antennas are located in different planes at an angle relative to each other, particularly in perpendicular planes relative to each other;
  • Fig. 6 illustrates a system similar to that of Fig. 5, but including a phase shifter
  • Fig. 7 illustrates a system similar to that of Fig. 4, but wherein the antennas are located in perpendicular planes to each other;
  • Fig. 8 illustrates a system constructed in accordance with the present invention including antennas of different types and/or shapes; and
  • Fig. 9 illustrates a system similar to that of Fig. 3, but including a pair of transceivers each connected to a dual antenna.
  • Fig. 1 illustrates a typical communication system in accordance with the prior art, wherein the transceiver 2 has a single ended IF signal (either input or output) connected to the IF circuit, and a differential RF signal (either output or input) at the other end. This is done to implement the transceiver circuit and to enhance its noise immunity.
  • the differential RF signal is the input to the transceiver, as shown by lines 3, 4, whereas the single-ended IF signal is the output signal outputted via line 5 with respect to ground 6.
  • the differential RF signal inputted via lines 3 and 4 divides the signal into two anti-phase (180°) transmitted by the two lines 3, 4 with reference to the neutral ground 6.
  • the antenna, designated 7 in Fig. 1 is single ended; that is, the antenna has one signal connection 8a and one ground connection 8b.
  • the system includes a Balun 9, which is a passive device that transforms the single-ended RF signal from the antenna into a differential signal to be applied at the input terminals, 3, 4 of the transceiver 2.
  • the Balun has considerable RF loss and involves significant additional costs.
  • Fig. 2 illustrates a typical prior art system using two transceivers 12, 22, having two antennas 17, 27, and two Baluns 19, 29.
  • the system illustrated in Fig. 2 further includes a processor generally designated 10 which processes the IF signals outputted from the two transceivers 12, 22.
  • the two antennas 17, 27 are placed to achieve maximum spatial coverage and have either the same polarization or orthogonal polarizations. Such a system, therefore, would have the same drawbacks as the system described in Fig. 1.
  • transceiver 30 includes a differential input port including a first node 31 and a second node 32.
  • One antenna 33 is connected, via transmission line 34, between the first node 31 and the common ground 35; whereas the second antenna 36 is connected, via transmission line 37, between the second node 32 and the common ground 35.
  • the differential port, nodes 31 and 32 could be of 100 ohms, whereas each of the antennas 33, 36 could be of 50 ohms.
  • the other side of transceiver 30 includes a single-ended signal port 38 for the signal with reference to the ground of the circuit.
  • the two antennas 33, 36 may be configured for orthogonal polarization, in orthogonal planes, in the same plane but at a distance from each other, with different time delays, with feed lines differing in length, with a different characteristic impedances, etc. Circular polarization or any other delay/phase difference between the two antennas can be made in a simple manner. It will be thus be seen that the two antennas 33, 36 in the system of Fig. 3 are connected to a differential signal port, and achieve the benefit of better coverage and better signal-to-noise ratio at the receiver.
  • Fig. 4 illustrates a system similar to that of Fig.
  • transceiver 40 having a differential port including a first node 41 and a second node 42, connected to the two antennas 43, 46.
  • Antenna 43 is connected, via transmission line 44, between the first node 41 and the common ground 54; whereas the second antenna 46 is connected, via transmission line 47, between the second node 42 and common ground 45.
  • transceiver 40 receives or output a single ended signal applied between port 48 and the common ground 49.
  • Fig. 5 illustrates a system similar to that of Fig. 3, except the second antenna 56 has a polarization orthogonal to the polarization of the first antenna 53.
  • antenna 53 is connected, via transmission line 54, between the first node 51 of transceiver 50 and the common ground 55; whereas the second antenna 56 is connected, via transmission line 57, between the second node 52 of the transceiver and the common ground 55.
  • the opposite side of transceiver 50 receives (or outputs) a single-ended signal between port 58 and ground 59.
  • the power limitation is measured on each polarization separately, and therefore the division of the power into two orthogonal polarizations enables the power to be increased by close to 3 dB relative to a single polarization structure.
  • Another benefit of such a configuration is achieved when using the wireless system inside buildings, where multi-path signals are generated, the polarization diversity advantages are achieved without the need for a second transmitter, receiver or transceiver, nor the need for signal processing of the two antennas, as described above with respect to the prior art system of Fig. 2.
  • Fig. 6 illustrates a system similar to that of Fig. 5, except that the second antenna excitation 66 has a phase difference relative to that of the first antenna 63.
  • Fig. 6 shows this by the addition of a phase shifter 68 between the second node 62 of transceiver 60 and the transmission line 67 to the second antenna 66.
  • a phase shifter 68 between the second node 62 of transceiver 60 and the transmission line 67 to the second antenna 66.
  • Such a configuration improves the system link by reducing the effect of blind points.
  • the same delay may be achieved by making the two transmission lines 64, 67 of the two antennas 63, 66 of different lengths, as in Fig. 4.
  • Fig. 7 illustrates such a system wherein a phase shift is effected between the two antennas 73, 76, by making the transmission line 77 of one antenna 76 substantially longer than the transmission line 74 of the other antenna 73.
  • the signal from antenna 73 is fed, via the shorter transmission line 74, between the first node 71 of transceiver 70 and the common ground 75; whereas the signal from the second antenna 76 is fed, via the longer transmission line 77, between the second node 72 of transceiver 70 and the common ground 75
  • Fig. 8 illustrates a system including two different types of antennas, as shown at 83 and 86, respectively.
  • both antennas may have the same polarization, but with complementary patterns.
  • both antennas are located in the same plane in a way that the main lobe of the second antenna is in the direction of the null of the first antenna, full spatial coverage can be achieved.
  • the system illustrated in Fig. 8 is otherwise constructed and operated in a similar manner as described above, with the signal antenna 83 being connected, via transmission line 84, between the first node 81 of transceiver 80 and the common ground 85; and the signal from the second antenna 86 being applied, via transmission line 87, between the second node 82 of the transceiver and common ground 85.
  • Fig. 9 illustrates a further embodiment of the invention, wherein a pair of transceivers 90a, 90b are used, each connected to a pair of dual antennas 93 a, 93 b and 96a, 96b, respectively.
  • the two pairs of dual antennas are structured for orthogonal polarization to each other.
  • one pair of the dual antennas may be connected to its respective transceiver and may be structured to perform a left-hand circular polarization
  • the other pair of dual antennas may be connected to its respective transceiver and may be structured to perform a right-hand circular polarization.
  • a device 98 such as a comparator, phase shifter or switch is then used to choose the best received signal, or to modify one signal with respect to the other and combine the two signals for inputting (or outputting) the single ended signal between port 98 and the common ground 99.
  • the blind points of one transceiver caused by cancellation of the signal due to opposite phases in each of the relevant pair of antennas will be covered by the second transceiver which will present in phase signals in each of the other pair of antennas.
  • the overall system performance will be dramatically improved.
  • the present invention improves the overall system performance, especially in the blind points of a single antenna.
  • the designer may then fully optimize the spatial distance and orientation of the two antennas relative to each other to maximize the system performance.
  • combinations of the above-described embodiments are possible depending on the application and the requirements.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
PCT/IL2007/000807 2006-06-30 2007-06-28 Multi-antenna system for differential wireless communication devices Ceased WO2008001384A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009517604A JP2009543419A (ja) 2006-06-30 2007-06-28 差動無線通信装置用のマルチアンテナシステム
US12/306,937 US20090318092A1 (en) 2006-06-30 2007-06-28 Multi-antenna system for differential wireless communication devices
EP07766837A EP2038964A1 (en) 2006-06-30 2007-06-28 Multi-antenna system for differential wireless communication devices
IL196261A IL196261A0 (en) 2006-06-30 2008-12-29 Multi-antenna system for differential wireless communication devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81738006P 2006-06-30 2006-06-30
US60/817,380 2006-06-30

Publications (1)

Publication Number Publication Date
WO2008001384A1 true WO2008001384A1 (en) 2008-01-03

Family

ID=38608828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2007/000807 Ceased WO2008001384A1 (en) 2006-06-30 2007-06-28 Multi-antenna system for differential wireless communication devices

Country Status (4)

Country Link
US (1) US20090318092A1 (enExample)
EP (1) EP2038964A1 (enExample)
JP (1) JP2009543419A (enExample)
WO (1) WO2008001384A1 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2117079A1 (en) * 2008-05-08 2009-11-11 Research In Motion Limited Mobile wireless communications device with selective antenna load switching and related methods
EP2487754A3 (en) * 2010-09-01 2012-11-07 Sony Corporation Antenna, communication module, communication system, position estimating device, position estimating method, position adjusting device, and position adjusting method
JP2013038532A (ja) * 2011-08-05 2013-02-21 Hitachi Chem Co Ltd アレイアンテナ装置
WO2023016371A1 (zh) * 2021-08-11 2023-02-16 维沃移动通信有限公司 天线极性切换方法、天线模组和电子设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090197557A1 (en) * 2008-02-04 2009-08-06 Lee Thomas H Differential diversity antenna
CA2765063C (en) * 2009-06-10 2016-08-23 The Regents Of University Of California Milli-meter-wave-wireless-interconnect (m2w2 - interconnect) method for short-range communications with ultra-high data rate capability
US20110025464A1 (en) * 2009-07-30 2011-02-03 Awarepoint Corporation Antenna Diversity For Wireless Tracking System And Method
JP5657547B2 (ja) * 2009-09-18 2015-01-21 株式会社東芝 無線機
GB2496390B (en) * 2011-11-08 2017-06-28 Filtronic Wireless Ltd A filter block and a signal transceiver comprising such a filter block
DE112017005227T5 (de) 2016-10-14 2019-07-11 Olympus Corporation Empfangsantenne, Empfangsantenneneinheit, Empfangssystem und Empfangseinrichtung
US20190326673A1 (en) * 2018-04-19 2019-10-24 United States Of America As Represented By Secretary Of The Navy Dual Small Antennas with Feed Points Fed Out of Phase
US12170538B2 (en) * 2020-06-30 2024-12-17 Motorola Solutions, Inc. Radio frequency architecture for reducing mutual interference between multiple wireless communication modalities
CN112164893B (zh) * 2020-09-30 2023-12-01 维沃移动通信有限公司 天线结构及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286271A (en) * 1979-02-26 1981-08-25 Gte Products Corporation Log-periodic monopole antenna
US5812942A (en) * 1996-09-24 1998-09-22 Motorola, Inc. Balanced differential radio receiver and method of operation
WO2002101876A1 (en) * 2001-06-08 2002-12-19 Amc Centurion Ab Antenna device and portable radio communication apparatus
US6697019B1 (en) * 2002-09-13 2004-02-24 Kiryung Electronics Co., Ltd. Low-profile dual-antenna system
JP2004274452A (ja) * 2003-03-10 2004-09-30 Nippon Telegr & Teleph Corp <Ntt> トランシーバ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582952A (en) * 1968-12-11 1971-06-01 Aero Systems Inc Short high-frequency antenna and feed system therefor
JP2001156533A (ja) * 1999-11-29 2001-06-08 Aisin Seiki Co Ltd 車両用アンテナ装置
JP2004147351A (ja) * 2000-03-01 2004-05-20 Matsushita Electric Ind Co Ltd 無線通信端末用内蔵アンテナ
GB0006955D0 (en) * 2000-03-23 2000-05-10 Koninkl Philips Electronics Nv Antenna diversity arrangement
US20040192233A1 (en) * 2002-04-18 2004-09-30 Motorola, Inc. Redundant linear power amplifier system
US7383063B2 (en) * 2003-09-18 2008-06-03 Kyocera Wireless Corp. Communication device with diversity antenna
US7155178B2 (en) * 2004-01-29 2006-12-26 Mediatek Inc. Circuit system for wireless communications
US7432855B2 (en) * 2004-06-03 2008-10-07 Farrokh Mohamadi RFID reader and active tag
US20060093049A1 (en) * 2004-10-19 2006-05-04 Jensen Michael A Dual antenna communication methods and systems
JP4589711B2 (ja) * 2004-12-14 2010-12-01 富士通株式会社 無線通信システム及び無線通信装置
US7912499B2 (en) * 2005-03-31 2011-03-22 Black Sand Technologies, Inc. Techniques for partitioning radios in wireless communication systems
KR100891789B1 (ko) * 2006-01-04 2009-04-07 삼성전자주식회사 무선 통신 시스템에서 신호 송수신 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286271A (en) * 1979-02-26 1981-08-25 Gte Products Corporation Log-periodic monopole antenna
US5812942A (en) * 1996-09-24 1998-09-22 Motorola, Inc. Balanced differential radio receiver and method of operation
WO2002101876A1 (en) * 2001-06-08 2002-12-19 Amc Centurion Ab Antenna device and portable radio communication apparatus
US6697019B1 (en) * 2002-09-13 2004-02-24 Kiryung Electronics Co., Ltd. Low-profile dual-antenna system
JP2004274452A (ja) * 2003-03-10 2004-09-30 Nippon Telegr & Teleph Corp <Ntt> トランシーバ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2117079A1 (en) * 2008-05-08 2009-11-11 Research In Motion Limited Mobile wireless communications device with selective antenna load switching and related methods
KR101067806B1 (ko) 2008-05-08 2011-09-27 리서치 인 모션 리미티드 선택적 안테나 부하 스위칭을 구비한 모바일 무선 통신 장치 및 관련 방법
US8378898B2 (en) 2008-05-08 2013-02-19 Research In Motion Limited Mobile wireless communications device with selective antenna load switching and related methods
US8604984B2 (en) 2008-05-08 2013-12-10 Blackberry Limited Mobile wireless communications device with selective antenna load switching and related methods
EP2487754A3 (en) * 2010-09-01 2012-11-07 Sony Corporation Antenna, communication module, communication system, position estimating device, position estimating method, position adjusting device, and position adjusting method
US8761705B2 (en) 2010-09-01 2014-06-24 Sony Corporation Antenna, communication module, communication system, position estimating device, position estimating method, position adjusting device, and position adjusting method
JP2013038532A (ja) * 2011-08-05 2013-02-21 Hitachi Chem Co Ltd アレイアンテナ装置
WO2023016371A1 (zh) * 2021-08-11 2023-02-16 维沃移动通信有限公司 天线极性切换方法、天线模组和电子设备

Also Published As

Publication number Publication date
JP2009543419A (ja) 2009-12-03
US20090318092A1 (en) 2009-12-24
EP2038964A1 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
US20090318092A1 (en) Multi-antenna system for differential wireless communication devices
US8362955B2 (en) Antenna system
CN101051860B (zh) 一种馈电网络装置、天馈子系统和基站系统
JP5889425B2 (ja) 減結合回路
KR101541204B1 (ko) 다중-안테나 시스템 피드 디바이스 및 그러한 디바이스를 장착한 무선 링크 단자
US10985462B2 (en) Distributed control system for beam steering applications
US8816794B2 (en) Signal branching filter, electronic device using the same, antenna apparatus, and signal transmission system used in all of the above
US20120257653A1 (en) Antenna beam scan unit and wireless communication system using antenna beam scan unit
EP3419104B1 (en) Cellular communication systems having antenna arrays therein with enhanced half power beam width (hpbw) control
WO2010108772A1 (en) Crosstalk cancellation for mimo tranceiver
CN101849369A (zh) 使用极化和/或波束形成分离的天线布置的自适应调整
US20110193652A1 (en) Feeding Device for Smart Antenna
US6657600B2 (en) Device for the reception and/or the transmission of electromagnetic signals with radiation diversity
TW202143664A (zh) 具有嵌入式測試校準電路的5g毫米波相位陣列天線模組架構
CN111525933A (zh) 一种射频电路及电子设备
US20180090814A1 (en) Phased Array Antenna Panel Having Cavities with RF Shields for Antenna Probes
US20150380817A1 (en) 3x3 butler matrix and 5x6 butler matrix
US7167136B2 (en) Wideband omnidirectional radiating device
WO2005020468A1 (ja) アンテナおよびそれを用いた受信装置
JP6698970B2 (ja) アンテナ装置及び無線通信装置
JP2010199661A (ja) ダイバーシティアンテナ装置と、これを用いた電子機器
TW202143663A (zh) 超小型毫米波5g波束形成器架構
CN104836551B (zh) 微波毫米波和太赫兹电路及相控阵的低功率波束形成方法
CN103563167A (zh) 无线通信系统中的节点,该节点具有不同的功能模式
US5894287A (en) Polarization diversity device for reducing fading effect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07766837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009517604

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 196261

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 12306937

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007766837

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU