WO2007148402A1 - 高分子系廃棄物処理装置 - Google Patents

高分子系廃棄物処理装置 Download PDF

Info

Publication number
WO2007148402A1
WO2007148402A1 PCT/JP2006/312536 JP2006312536W WO2007148402A1 WO 2007148402 A1 WO2007148402 A1 WO 2007148402A1 JP 2006312536 W JP2006312536 W JP 2006312536W WO 2007148402 A1 WO2007148402 A1 WO 2007148402A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pyrolysis furnace
pyrolysis
oil recovery
polymer waste
Prior art date
Application number
PCT/JP2006/312536
Other languages
English (en)
French (fr)
Inventor
Sadao Hakata
Takashi Kinoshita
Original Assignee
Mizokawa Kensetsu Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizokawa Kensetsu Co., Ltd. filed Critical Mizokawa Kensetsu Co., Ltd.
Priority to PCT/JP2006/312536 priority Critical patent/WO2007148402A1/ja
Publication of WO2007148402A1 publication Critical patent/WO2007148402A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a polymer waste treatment apparatus for thermally decomposing and treating polymer waste.
  • a pyrolysis furnace that thermally decomposes polymer waste with a high-temperature gas
  • an oil component recovery unit that recovers gas power oil that has passed through the pyrolysis furnace
  • a gas that has passed through the oil recovery unit are heated.
  • a polymer waste treatment apparatus provided with a gas heating unit for increasing the temperature, and a gas flow path for circulating gas through the pyrolysis furnace, the oil recovery unit, and the gas heating unit.
  • a water cooling jacket is generally provided on the inner wall of the pyrolysis furnace, and the water in the water cooling jacket does not exceed 100 ° C. For this reason, there is a problem that the heat efficiency is poor because the heat in the furnace where the temperature difference between the furnace temperature (for example, 300 ° C. to 550 ° C.) and the furnace temperature is large is dissipated from the water cooling jacket.
  • the pyrolysis furnace was cooled to 60 ° C or lower, the water cooling jacket that had reached about 100 ° C reduced the cooling rate and increased the cooling time.
  • the present invention has been made in view of the above problems. First, a polymer waste is connected. The second issue is to improve the thermal efficiency during operation and the cooling time.
  • the present invention provides a pyrolysis furnace for thermally decomposing a polymer waste with a high-temperature gas, an oil recovery unit for recovering oil from the gas passed through the pyrolysis furnace, A polymer provided with a gas heating unit that heats the gas that has passed through the oil recovery unit to a high temperature, and a gas flow path for circulating gas through the pyrolysis furnace, the oil recovery unit, and the gas heating unit
  • a waste treatment apparatus comprising a plurality of pyrolysis furnaces, a first flow path switching means for switching a gas flow path between each pyrolysis furnace and an oil content recovery unit, and each pyrolysis furnace and gas
  • a second flow path switching means for switching the gas flow path is provided between the heating section, and the first flow path switching means and the second flow path switching means are selected from a plurality of pyrolysis furnaces.
  • One pyrolysis furnace is selected, and the selected pyrolysis furnace, the oil recovery unit, and the gas heating unit are It made as to switch
  • the thermal decomposition treatment of the polymer waste is performed in one pyrolysis furnace, while the other pyrolysis furnace is subjected to the cooling treatment !, the pyrolysis treatment and the cooling.
  • the gas flow path is switched by the flow path switch, and the cooling process is performed in one pyrolysis furnace while the pyrolysis process is performed in another pyrolysis furnace.
  • the thermal decomposition treatment of the polymer waste put in one pyrolysis furnace connected to the oil recovery unit and the gas heating unit the oil recovery unit and the gas heating unit are connected to another pyrolysis furnace.
  • the polymer waste in the pyrolysis furnace is pyrolyzed.
  • the pyrolysis furnace after the pyrolysis treatment of polymer waste was cooled to 60 ° C or lower for safety, and the residue remaining in the pyrolysis furnace was discarded, and a new high
  • the molecular waste is put in the pyrolysis furnace.
  • the gas heating unit is configured such that a part of the gas that has passed through the oil recovery unit is supplied as auxiliary fuel. According to this, the gas can be heated efficiently.
  • an exhaust gas treatment unit is provided on the exhaust side of the gas heating unit! According to this, surplus gas can be detoxified and discharged into the atmosphere.
  • the present invention provides a pyrolysis furnace that thermally decomposes polymer waste with a high-temperature gas, and recovers oil from the gas that has passed through the pyrolysis furnace.
  • An oil recovery unit ; a gas heating unit that heats the gas that has passed through the oil recovery unit to a high temperature; and a gas flow path for circulating gas through the pyrolysis furnace, the oil recovery unit, and the gas heating unit.
  • a polymer waste treatment apparatus provided with a water cooling jacket on the inner wall of the pyrolysis furnace, and after the pyrolysis process is completed, water is passed through the water cooling jacket while the pyrolysis process is performed. Cooling water supply / discharge means is provided to extract cooling water from the water cooling jacket before starting.
  • the furnace wall of the pyrolysis furnace can be 100 ° C or higher. Therefore, the temperature difference from the furnace temperature (for example, 300 ° C to 550 ° C) becomes smaller than before, wasteful heat radiation to the furnace wall is reduced, and thermal efficiency during operation can be improved. Also, when cooling the pyrolysis furnace to 60 ° C or below, the cooling time can be shortened because the cooling water is passed through the water cooling jacket.
  • polymer waste can be treated continuously, and high productivity can be obtained. In addition, it takes no time and effort to start up again from the standstill and return to normal operation.
  • the temperature difference from the furnace temperature is smaller than before, and wasteful heat dissipation to the furnace wall is reduced.
  • the thermal efficiency during operation can be improved.
  • FIG. 1 is a schematic configuration diagram showing a polymer waste treatment apparatus according to Embodiment 1.
  • FIG. 2 is a flowchart showing the operation of the polymer waste treatment apparatus according to Embodiment 1.
  • FIG. 3 is a schematic configuration diagram showing a polymer waste treatment apparatus according to Example 2.
  • FIG. 1 is a schematic configuration diagram of a polymer waste treatment apparatus 100 according to the first embodiment.
  • the polymer waste treatment apparatus 100 includes a first pyrolysis furnace 1 and a second pyrolysis furnace 2 provided in parallel to thermally decompose the polymer waste WP with a high-temperature gas. , 1st thermal cracking furnace 1 or 2nd thermal cracking furnace 2
  • the oil recovery unit 3 that recovers oil from the pyrolysis heat WG, and a blower for sending the gas that has passed through the oil recovery unit 3 to the heat exchanger 6 4 and heat exchange to heat the gas sent by blower 4 to a high temperature 6, burner ⁇ caro Heating part 61 and blower 1 63, and excess gas to detoxify and discharge to the atmosphere
  • the flow path switch 41 that switches the flow path to be turned on, and the gas input to either the first pyrolysis furnace 1 or the second pyrolysis furnace 2
  • the first pyrolysis furnace 1 is provided with a first basket cage 12 therein, and the polymer waste WP is accommodated in the first basket cage 12. Further, the first pyrolysis furnace 1 is provided with a first water cooling jacket 11 over the inner wall peripheral surface, and cooling water is passed through or removed from the first water cooling jacket 11.
  • the second pyrolysis furnace 2 is provided with a second basket cage 22 therein, and the polymer waste WP is accommodated in the second basket cage 22.
  • the second pyrolysis furnace 2 is provided with a second water cooling jacket 21 over the inner wall peripheral surface, and cooling water is passed through or removed from the second water cooling jacket 21.
  • Fig. 1 shows a state before the steps Fl and SI shown in Fig. 2 are executed.
  • the first basket cage 12 containing the polymer waste WP before the thermal decomposition treatment is the first basket cage 12.
  • the second basket cage 22 that has been put into the pyrolysis furnace 1 and in which the residue Q after the pyrolysis treatment remains is put into the second pyrolysis furnace 2.
  • the flow path switch 41 selects the gas outlet of the first pyrolysis furnace 1 and connects it to the oil content recovery unit 3. Further, as shown by the solid line in FIG. 1, the flow path switching unit 42 selects the gas inlet of the first pyrolysis furnace 1 and connects it to the heat exchanger 6.
  • valve 18 is in an open state.
  • Valves 25, 26, and 27 are closed, and nozzle 28 is open.
  • the first water cooling jacket 11 contains cold air
  • the second water cooling jacket 21 contains hot air
  • FIG. 2 is a flowchart showing the operation of the apparatus 100.
  • Steps Fl and F2 are processes performed in the first pyrolysis furnace 1
  • steps Sl and 2 are processes performed in the second pyrolysis furnace 2
  • steps Fl and F2 and steps Sl and S2 are performed in parallel. And executed.
  • the first thermal decomposition furnace 1 performs the thermal decomposition treatment of the polymer waste WP. That is, high temperature nitrogen gas is blown into the first pyrolysis furnace 1 to pyrolyze the polymer waste WP.
  • the generated pyrolysis gas WG exits the first pyrolysis furnace 1 and is sent to the oil content recovery unit 3 via the flow path switch 41. Oil recovery unit 3 recovers oil from the pyrolysis gas WG.
  • the gas that has passed through the oil recovery unit 3 is sent to the heat exchanger 6 by the blower 4 and heated.
  • the high-temperature gas heated by the heat exchanger 6 is blown into the first pyrolysis furnace 1 via the flow path switch 42.
  • step S1 the residue Q after the pyrolysis treatment by the second pyrolysis furnace 2 is cooled. That is, the valve 27 is opened, and air is circulated to the second water cooling jacket 21 through the valve 27 by the blower 24.
  • the blower 24 is stopped, the NOREVs 27 and 28 are closed, the NOREVs 25 and 26 are opened, and the cooling water supply / discharge device 30 Cooling water is circulated through the second water cooling jacket 21.
  • the temperature of the gas at the outlet of the first pyrolysis furnace 1 is 250 ° C to 350 ° C while the pyrolysis is in progress. After the pyrolysis is finished, the process proceeds to step G1.
  • step G1 first, nitrogen gas is replenished and circulated. Then, the flow path switch 41 is switched as shown by the broken line in FIG. 1, and the gas outlet of the second pyrolysis furnace 2 is selected and connected to the oil recovery unit 3. Further, the flow path switch 42 is switched as shown by the broken line in FIG. 1, and the gas inlet of the second heat cracking furnace 2 is selected and connected to the heat exchanger 6.
  • step G1 ends, go to steps F2 and S2.
  • step F2 the residue Q after the pyrolysis treatment in the first pyrolysis furnace 1 is cooled.
  • the valve 17 is opened and air is circulated to the first water cooling jacket 11 through the valve 17 by the blower 14.
  • the blower 14 is stopped, the valves 17 and 18 are closed, the valves 15 and 16 are opened, and the cooling water supply / discharge device 30 1 Flow cooling water through the water cooling jacket 11.
  • step S2 the thermal decomposition treatment of the polymer waste WP by the second pyrolysis furnace 2 is performed. That is, high temperature nitrogen gas is blown into the second pyrolysis furnace 2 to thermally decompose the polymer waste WP.
  • the generated pyrolysis gas WG leaves the second pyrolysis furnace 2 and is sent to the oil content recovery unit 3 via the flow path switch 41.
  • Oil recovery unit 3 recovers oil from the pyrolysis gas WG.
  • the gas that has passed through the oil recovery unit 3 is sent to the heat exchanger 6 by the blower 4 and heated.
  • the high-temperature gas heated by the heat exchanger 6 is blown into the second pyrolysis furnace 2 via the flow path switch 42.
  • the temperature of the gas at the outlet of the second pyrolysis furnace 2 is 250 ° C to 350 ° C while the pyrolysis is in progress. After the pyrolysis is finished, the process proceeds to step G2.
  • step G2 first, nitrogen gas is replenished and circulated. Then, the flow path switch 41 is switched as shown by the solid line in FIG. 1, and the gas outlet of the first pyrolysis furnace 1 is selected and connected to the oil recovery unit 3. Further, the flow path switch 42 is switched as shown by the solid line in FIG. 1, and the gas inlet of the first heat cracking furnace 1 is selected and connected to the heat exchanger 6.
  • step G2 ends, return to steps Fl and SI.
  • the cooling water is drained from the water cooling jackets 11 and 12, and the water cooling jackets 11 and 12 during the thermal decomposition treatment are emptied.
  • the furnace wall can reach a high temperature of 100 ° C or higher (eg, 250 ° C to 500 ° C). Therefore, for example, the temperature difference from the furnace temperature (for example, 450 ° C. to 550 ° C.) becomes smaller than before, wasteful heat radiation to the furnace wall is reduced, and the thermal efficiency during operation can be improved.
  • the pyrolysis furnaces 1 and 2 are cooled to 60 ° C or lower, the cooling water is passed through the water cooling jackets 11 and 21, so that high-speed cooling is possible and the cooling time can be shortened.
  • FIG. 3 is a schematic configuration diagram of a polymer waste treatment apparatus 200 according to the second embodiment.
  • the polymer waste treatment apparatus 200 uses a part of the gas passed through the oil recovery unit 3 as a burner.
  • the auxiliary heating fuel is used in the Z heating furnace 61, and the gas can be heated efficiently.
  • the exhaust gas treatment unit 7 is provided on the exhaust side of the heat exchanger 6, and excess gas can be rendered harmless and discharged into the atmosphere.
  • the other configuration of the polymer waste treatment apparatus 200 is the same as that of the polymer waste treatment apparatus 100 according to the first embodiment. Omitted.
  • the polymer waste treatment apparatus of the present invention is applicable to the treatment of polymer waste such as waste tires.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

【課題】 本発明は、上記問題に鑑みてなされたものであって、第1に、高分子系廃棄物を連続的に処理することを課題とし、第2に、運転中の熱効率を向上させ、かつ冷却時間を短縮することを課題とする。  【解決手段】高分子系廃棄物WPを高温のガスによって熱分解する熱分解炉1、2と、該熱分解炉1,2を経たガスから油分を回収する油分回収部3と、該油分回収部3を経たガスを加熱して高温とする熱交換器6と、熱分解炉1,2、油分回収部3、およびガス加熱部6をガスが循環するためのガス流路とが設けられている。各熱分解炉1,2と油分回収部3および熱交換器6との間においてガス流路を切り替える流路切替器41、42が設けられ、熱分解炉1,2の一つを選択してガス流路を切り替える。  

Description

明 細 書
高分子系廃棄物処理装置
技術分野
[0001] 本発明は、高分子系廃棄物を熱分解して処理する高分子系廃棄物処理装置に関 するものである。
背景技術
[0002] 従来、高分子系廃棄物を高温のガスによって熱分解する熱分解炉と、該熱分解炉 を経たガス力 油分を回収する油分回収部と、該油分回収部を経たガスを加熱して 高温とするガス加熱部と、前記熱分解炉、油分回収部、およびガス加熱部をガスが 循環するためのガス流路とが設けられた高分子系廃棄物処理装置が知られている。
[0003] この装置では、熱分解炉にお!/、て高分子系廃棄物の熱分解処理が終了した後、ガ スの循環、油分の回収、ガスの加熱をそれぞれ停止した上で、安全のために 60°C以 下に熱分解炉を冷却し、熱分解炉に残る高分子系廃棄物の残渣物を廃棄し、新た に高分子系廃棄物を熱分解炉に入れ、運転を再開していた。
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、熱分解処理が終了する毎に運転を長時間停止するため、高分子系 廃棄物を連続的に処理することができないという問題があった。また、停止状態から 再び立ち上げて正常な運転状態に戻すのに時間と手間が力かるという問題があった
[0005] さらに、一般に熱分解炉の内壁周面には水冷ジャケットが設けられており、水冷ジ ャケット内の水は 100°C以上にならない。このため、炉内温度(例えば 300°C〜550 °C)の炉内温度との温度差が大きぐ炉内の熱が水冷ジャケットより放熱されるため、 熱効率が悪いという問題があった。し力も、熱分解炉を 60°C以下に冷却するときには 、 100°C程度になった水冷ジャケットがかえって冷却速度を低下させ、冷却時間が長 く力かるという問題もあった。
[0006] 本発明は、上記問題に鑑みてなされたものであって、第 1に、高分子系廃棄物を連 続的に処理することを課題とし、第 2に、運転中の熱効率を向上させ、かつ冷却時間 を短縮することを課題とする。
課題を解決するための手段
[0007] 本発明は、上記課題を解決するために、高分子系廃棄物を高温のガスによって熱 分解する熱分解炉と、該熱分解炉を経たガスから油分を回収する油分回収部と、該 油分回収部を経たガスを加熱して高温とするガス加熱部と、前記熱分解炉、油分回 収部、およびガス加熱部をガスが循環するためのガス流路とが設けられた高分子系 廃棄物処理装置であって、複数の熱分解炉と、各熱分解炉と油分回収部との間にお いてガス流路を切り替える第 1の流路切替手段と、各熱分解炉とガス加熱部との間に おいてガス流路を切り替える第 2の流路切替手段とが設けられ、第 1の流路切替手段 および第 2の流路切替手段は、複数の熱分解炉のうちから一つの熱分解炉を選択し て、その選択した熱分解炉と前記油分回収部および前記ガス加熱部とが接続される ようにガス流路を切り替えるものとなされて ヽることを特徴とする。
[0008] これによれば、一の熱分解炉において高分子系廃棄物の熱分解処理を行う一方、 別の熱分解炉にお!、て冷却処理を行!、、それら熱分解処理および冷却処理が終了 したあとは、流路切替器によりガスの流路を切り替えて、一の熱分解炉において冷却 処理を行う一方、別の熱分解炉において熱分解処理を行う。より具体的には、油分 回収部およびガス加熱部に接続した一つの熱分解炉に入れた高分子系廃棄物の熱 分解処理が終わると、油分回収部およびガス加熱部を別の熱分解炉に接続して、そ の熱分解炉に入れた高分子系廃棄物の熱分解処理を行う。そして、それと並行して 、高分子系廃棄物の熱分解処理が終わった熱分解炉を安全のために 60°C以下に 冷却し、その熱分解炉に残る残渣物を廃棄し、新たに高分子系廃棄物を該熱分解 炉に入れておく。これを繰り返すことにより、高分子系廃棄物を連続的に処理すること ができ、高い生産性が得られる。また、停止状態から再び立ち上げて正常な運転状 態に戻すのに時間と手間が力かることがない。
[0009] また、前記ガス加熱部は、油分回収部を経たガスの一部が補助燃料として供給され るものとなされているのが好ましい。これによれば、ガスを効率的に加熱することがで きる。 [0010] また、前記ガス加熱部の排気側に排ガス処理部が設けられて!/、るのが好ま 、。こ れによれば、余剰のガスを無害化して大気中に排出することができる。
[0011] また、本発明は、上記課題を解決するために、高分子系廃棄物を高温のガスによつ て熱分解する熱分解炉と、該熱分解炉を経たガスから油分を回収する油分回収部と 、該油分回収部を経たガスを加熱して高温とするガス加熱部と、前記熱分解炉、油 分回収部、およびガス加熱部をガスが循環するためのガス流路とが設けられた高分 子系廃棄物処理装置であって、前記熱分解炉の内壁に水冷ジャケットが設けられる とともに、熱分解処理が終了した後に前記水冷ジャケットに通水する一方、熱分解処 理を開始する前に前記水冷ジャケットから冷却水を抜くものとなされている冷却水給 排手段が設けられて 、ることを特徴とする。
[0012] これによれば、運転中の水冷ジャケットは空となるので、熱分解炉の炉壁が 100°C 以上になることができる。よって、炉内温度 (例えば 300°C〜550°C)との温度差が従 来より小さくなり、炉壁への無駄な放熱が小さくなり、運転中の熱効率を向上できる。 また、熱分解炉を 60°C以下に冷却するときには、水冷ジャケットに冷却水を通水する ため、冷却時間を短縮することができる。
発明の効果
[0013] 本発明によれば、高分子系廃棄物を連続的に処理することができ、高い生産性が 得られる。また、停止状態から再び立ち上げて正常な運転状態に戻すのに時間と手 間がかかることがない。
[0014] また、炉内温度との温度差が従来より小さくなり、炉壁への無駄な放熱が小さくなり
、運転中の熱効率を向上できる。
[0015] さらに、熱分解炉を 60°C以下に冷却するときには、水冷ジャケットに冷却水を通水 するため、冷却時間を短縮することができる。
図面の簡単な説明
[0016] [図 1]実施例 1に係る高分子系廃棄物処理装置を示す構成概略図である。
[図 2]実施例 1に係る高分子系廃棄物処理装置の動作を示すフロー図である。
[図 3]実施例 2に係る高分子系廃棄物処理装置を示す構成概略図である。
符号の説明 [0017] 1,,,第1熱分解炉
2···第 2熱分解炉
3···油分回収部
4、 14、 24、 63…ブロワ一
6··,熱交換器
7···排ガス処理部
9···ガス補給部
11···第 1水冷ジャケット
15〜18、 25〜28···ノ レブ
21···第 2水冷ジャケット
30···冷却水給排装置
41、 42···流路切替器
50··,制御装置
100· ··高分子系廃棄物処理装置
発明を実施するための最良の形態
[0018] 次に本実施形態に力かる実施例について説明する。なお、本実施例により本発明 が限定されるものではない。
実施例 1
[0019] 図 1は、実施例 1に係る高分子系廃棄物処理装置 100の構成概略図である。
[0020] この高分子系廃棄物処理装置 100は、高分子系廃棄物 WPを高温のガスによって 熱分解するために並列的に設けられた第 1熱分解炉 1および第 2熱分解炉 2と、第 1 熱分解炉 1または第 2熱分解炉 2で発生した熱分解熱 WGから油分を回収する油分 回収部 3と、油分回収部 3を経たガスを熱交換器 6に送るためのブロワ一 4と、ブロワ 一 4により送られてきたガスを加熱して高温とするための熱交 6、バーナー Ζカロ 熱部 61およびブロワ一 63と、余剰のガスを無害化して大気中へ排出するための排ガ ス処理部 7と、窒素ガスを補給するガス補給部 9と、第 1熱分解炉 1または第 2熱分解 炉 2のいずれか一方のガス出口を選択して油分回収部 3に接続する流路を切り替え る流路切替器 41と、第 1熱分解炉 1または第 2熱分解炉 2のいずれか一方のガス入 口を選択して熱交換器 6に接続する流路を切り替える流路切替器 42と、冷却水を供 給する冷却水給排装置 30と、第 1熱分解炉 1および第 2熱分解炉 2に対して通水し たり冷却水を抜いたりするためのノ レブ 15〜18、 25〜28と、第 1熱分解炉 1および 熱分解炉 2に対して通気するためのブロワ一 14、 24と、作業者の操作に基づいて動 作を制御するための制御装置 50とを備えてなる。
[0021] 前記第 1熱分解炉 1は、内部に第 1バスケットケージ 12が設けられており、該第 1バ スケットケージ 12内に高分子系廃棄物 WPが収容されるものとなされている。また、第 1熱分解炉 1は、内壁周面にわたって第 1水冷ジャケット 11が設けられており、該第 1 水冷ジャケット 11に冷却水が通水したり抜かれたするものとなされて 、る。
[0022] また、前記第 2熱分解炉 2は、内部に第 2バスケットケージ 22が設けられており、該 第 2バスケットケージ 22内に高分子系廃棄物 WPが収容されるものとなされている。ま た、第 2熱分解炉 2は、内壁周面にわたって第 2水冷ジャケット 21が設けられており、 該第 2水冷ジャケット 21に冷却水が通水したり抜かれたするものとなされている。
[0023] なお、図 1は、図 2に示すステップ Fl、 SIが実行される前の状態であり、熱分解処 理前の高分子系廃棄物 WPを入れた第 1バスケットケージ 12が第 1熱分解炉 1に入 れられており、また熱分解処理後の残渣物 Qが残っている第 2バスケットケージ 22が 第 2熱分解炉 2に入れられている。
[0024] また、流路切替器 41は、図 1の実線に示すように、第 1熱分解炉 1のガス出口を選 択して油分回収部 3に接続している。また、流路切替器 42は、図 1の実線に示すよう に、第 1熱分解炉 1のガス入口を選択して熱交 6に接続して 、る。
[0025] また、ノ レブ 15、 16、 17は閉状態であり、バルブ 18は開状態である。また、バルブ 25、 26、 27は閉状態であり、ノ レブ 28は開状態である。
[0026] また、第 1水冷ジャケット 11には冷たい空気が入っており、第 2水冷ジャケット 21に は熱い空気が入っている。
[0027] 次に高分子系廃棄物処理装置 100の動作について図 2を参照しつつ説明する。
[0028] 図 2は、本装置 100の動作を示すフローチャートである。なお、ステップ Fl、 F2は 第 1熱分解炉 1にて行われる処理で、ステップ Sl、 2は第 2熱分解炉 2にて行われる 処理であり、ステップ Fl、 F2とステップ Sl、 S2は並行して実行される。 [0029] ステップ Flでは、第 1熱分解炉 1による高分子系廃棄物 WPの熱分解処理が行わ れる。すなわち、第 1熱分解炉 1に高温の窒素ガスを吹き込んで高分子系廃棄物 WP を熱分解する。発生した熱分解ガス WGは、第 1熱分解炉 1を出て、流路切替器 41を 介して油分回収部 3に送られる。油分回収部 3は熱分解ガス WGから油分を回収する 。油分回収部 3を経たガスは、ブロワ一 4により熱交換器 6に送られ、加熱される。熱 交換器 6で加熱された高温のガスは、流路切替器 42を介して第 1熱分解炉 1に吹き 込まれる。この循環を繰り返し、第 1熱分解炉 1の出口でのガスの酸素濃度が下がつ たら、窒素ガスの補給を止め、発生するガスのみを循環させて熱分解処理を継続す る。
[0030] 一方、ステップ S1では、第 2熱分解炉 2による熱分解処理後の残渣物 Qの冷却が 行われる。すなわち、バルブ 27を開状態にし、ブロワ一 24によりバルブ 27を介して 第 2水冷ジャケット 21に空気を流通させる。第 2水冷ジャケット 21の温度が 100°C以 下になると、ブロヮ一 24を停止し、ノ ノレブ 27、 28を閉状態にし、ノ ノレブ 25、 26を開 状態にし、冷却水給排装置 30により第 2水冷ジャケット 21に冷却水を流通させる。
[0031] 第 2熱分解炉 2の温度が 60°C以下になると、バルブ 26を閉状態とし、ノ レブ 28を 開状態とする。これにより、第 2水冷ジャケット 21の冷却水は空気に替わり、冷却水が 排水される。第 2水冷ジャケット 21の中が空気になるまで所定時間の排水を行った後 、冷却水給排装置 30を停止し、ノ レブ 25を閉状態とする。この排水と並行して、第 2 バスケットケージ 22の残渣物 Qを廃棄し、新たな高分子系廃棄物 WPを第 2バスケッ トケージ 22に入れ、その第 2バスケットケージ 22を第 2熱分解炉 2に入れる。
[0032] 第 1熱分解炉 1の出口でのガスの温度は、熱分解進行中は 250°C〜350°Cである 力 熱分解が終わると上昇してくるので、ステップ G1に進む。
[0033] ステップ G1では、まず窒素ガスを補給し、循環させる。それから流路切替器 41を図 1の破線に示すように切り替えて、第 2熱分解炉 2のガス出口を選択して油分回収部 3に接続する。また、流路切替器 42を図 1の破線に示すように切り替えて、第 2熱分 解炉 2のガス入口を選択して熱交換器 6に接続する。ステップ G1が終わると、ステツ プ F2、 S2に進む。
[0034] ステップ F2では、第 1熱分解炉 1による熱分解処理後の残渣物 Qの冷却が行われ る。すなわち、バルブ 17を開状態にし、ブロワ一 14によりバルブ 17を介して第 1水冷 ジャケット 11に空気を流通させる。第 1水冷ジャケット 11の温度が 100°C以下になる と、ブロワ一 14を停止し、ノ レブ 17、 18を閉状態にし、バルブ 15、 16を開状態にし 、冷却水給排装置 30により第 1水冷ジャケット 11に冷却水を流通させる。
[0035] 第 1熱分解炉 1の温度が 60°C以下になると、バルブ 16を閉状態とし、ノ レブ 18を 開状態とする。これにより、第 1水冷ジャケット 11の冷却水は空気に替わり、冷却水が 排水される。第 1水冷ジャケット 21の中が空気になるまで所定時間の排水を行った後 、冷却水給排装置 30を停止し、ノ レブ 15を閉状態とする。この排水と並行して、第 1 バスケットケージ 12の残渣物 Qを廃棄し、新たな高分子系廃棄物 WPを第 1バスケッ トケージ 12に入れ、その第 1バスケットケージ 12を第 1熱分解炉 1に入れる。
[0036] 一方、ステップ S2では、第 2熱分解炉 2による高分子系廃棄物 WPの熱分解処理が 行われる。すなわち、第 2熱分解炉 2に高温の窒素ガスを吹き込んで高分子系廃棄 物 WPを熱分解する。発生した熱分解ガス WGは、第 2熱分解炉 2を出て、流路切替 器 41を介して油分回収部 3に送られる。油分回収部 3は熱分解ガス WG力ゝら油分を 回収する。油分回収部 3を経たガスは、ブロワ一 4により熱交翻6に送られ、加熱さ れる。熱交換器 6で加熱された高温のガスは、流路切替器 42を介して第 2熱分解炉 2に吹き込まれる。この循環を繰り返し、第 2熱分解炉 2の出口でのガスの酸素濃度 が下がったら、窒素ガスの補給を止め、発生するガスのみを循環させて熱分解処理 を継続する。
[0037] 第 2熱分解炉 2の出口でのガスの温度は、熱分解進行中は 250°C〜350°Cである 力 熱分解が終わると上昇してくるので、ステップ G2に進む。
[0038] ステップ G2では、まず窒素ガスを補給し、循環させる。それから流路切替器 41を図 1の実線に示すように切り替えて、第 1熱分解炉 1のガス出口を選択して油分回収部 3に接続する。また、流路切替器 42を図 1の実線に示すように切り替えて、第 1熱分 解炉 1のガス入口を選択して熱交換器 6に接続する。ステップ G2が終わると、ステツ プ Fl、 SIに戻る。
[0039] このように第 1熱分解炉 1と第 2熱分解炉 2を交互に切り替えるので、高分子系廃棄 物 WPを連続的に処理することができ、高い生産性が得られる。また、油分回収部 3, 排ガス処理部 7,バーナー Z加熱部 61,熱交換器 6を停止せずに済み、再立ち上げ する時間と手間がかからなる。
[0040] また、高分子系廃棄物を冷却した後は水冷ジャケット 11、 12から冷却水を排水し、 熱分解処理中の水冷ジャケット 11、 12は空となるため、熱分解炉 1、 2の炉壁が 100 °C以上の高温 (例えば 250°C〜500°C)になることができる。よって、例えば炉内温度 (例えば 450°C〜550°Cの)との温度差が従来より小さくなり、炉壁への無駄な放熱 力 、さくなり、運転中の熱効率を向上できる。また、熱分解炉 1、 2を 60°C以下に冷却 する時には、水冷ジャケット 11、 21に冷却水を通水するので、高速冷却が可能となり 、冷却時間を短縮できる。
[0041] なお、熱交換器 6からブロワ一 63に出たガスまだ高温(例えば 250°C〜300°C)で あることから、一部をバーナー Z加熱炉 61に戻して熱を再使用しているため、パーナ 一 Z加熱炉 61での燃料消費を低減することができる。
実施例 2
[0042] 図 3は、実施例 2に係る高分子系廃棄物処理装置 200の構成概略図である。
[0043] この高分子系廃棄物処理装置 200は、油分回収部 3を経たガスの一部をバーナー
Z加熱炉 61で補助燃料としており、ガスを効率的に加熱することができる。
[0044] また、排ガス処理部 7を熱交換器 6の排気側に設けており、余剰のガスを無害化し て大気中に排出することができる。
[0045] なお、高分子系廃棄物処理装置 200のその他の構成については、実施例 1に係る 高分子系廃棄物処理装置 100と同じ構成であるので、同一の符号を付してその説明 を省略する。
産業上の利用可能性
[0046] 本発明の高分子系廃棄物処理装置は、廃タイヤなどの高分子系廃棄物の処理に 適用可能である。

Claims

請求の範囲
[1] 高分子系廃棄物を高温のガスによって熱分解する熱分解炉と、該熱分解炉を経た ガス力 油分を回収する油分回収部と、該油分回収部を経たガスを加熱して高温と するガス加熱部と、前記熱分解炉、油分回収部、およびガス加熱部をガスが循環す るためのガス流路とが設けられた高分子系廃棄物処理装置であって、
複数の熱分解炉と、各熱分解炉と油分回収部との間においてガス流路を切り替え る第 1の流路切替手段と、各熱分解炉とガス加熱部との間においてガス流路を切り替 える第 2の流路切替手段とが設けられ、
第 1の流路切替手段および第 2の流路切替手段は、複数の熱分解炉のうちから一 つの熱分解炉を選択して、その選択した熱分解炉と前記油分回収部および前記ガス 加熱部とが接続されるようにガス流路を切り替えるものとなされて ヽることを特徴とす る高分子系廃棄物処理装置。
[2] 前記ガス加熱部は、油分回収部を経たガスの一部が補助燃料として供給されるも のとなされている請求の範囲第 1項に記載の高分子系廃棄物処理装置。
[3] 前記ガス加熱部の排気側に排ガス処理部が設けられている請求の範囲第 1項また は第 2項に記載の高分子系廃棄物処理装置。
[4] 高分子系廃棄物を高温のガスによって熱分解する熱分解炉と、該熱分解炉を経た ガス力 油分を回収する油分回収部と、該油分回収部を経たガスを加熱して高温と するガス加熱部と、前記熱分解炉、油分回収部、およびガス加熱部をガスが循環す るためのガス流路とが設けられた高分子系廃棄物処理装置であって、
前記熱分解炉の内壁に水冷ジャケットが設けられるとともに、熱分解処理が終了し た後に前記水冷ジャケットに通水する一方、熱分解処理を開始する前に前記水冷ジ ャケットから冷却水を抜くものとなされて 、る冷却水給排手段が設けられて 、ることを 特徴とする高分子系廃棄物処理装置。
PCT/JP2006/312536 2006-06-22 2006-06-22 高分子系廃棄物処理装置 WO2007148402A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/312536 WO2007148402A1 (ja) 2006-06-22 2006-06-22 高分子系廃棄物処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/312536 WO2007148402A1 (ja) 2006-06-22 2006-06-22 高分子系廃棄物処理装置

Publications (1)

Publication Number Publication Date
WO2007148402A1 true WO2007148402A1 (ja) 2007-12-27

Family

ID=38833154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312536 WO2007148402A1 (ja) 2006-06-22 2006-06-22 高分子系廃棄物処理装置

Country Status (1)

Country Link
WO (1) WO2007148402A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021177112A (ja) * 2020-05-08 2021-11-11 株式会社キンセイ産業 尿素水の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195527A (ja) * 2000-12-19 2002-07-10 Shunho Kaku 有害廃棄物熱分解炉を有する焼却炉設備
JP2002523552A (ja) * 1998-08-21 2002-07-30 − スツレ エルシャグ、ベングト 熱分解反応器中での熱分解による重合体、好ましくは廃棄タイヤ形態の重合体からのカーボンおよび炭化水素混合物の回収方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523552A (ja) * 1998-08-21 2002-07-30 − スツレ エルシャグ、ベングト 熱分解反応器中での熱分解による重合体、好ましくは廃棄タイヤ形態の重合体からのカーボンおよび炭化水素混合物の回収方法
JP2002195527A (ja) * 2000-12-19 2002-07-10 Shunho Kaku 有害廃棄物熱分解炉を有する焼却炉設備

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021177112A (ja) * 2020-05-08 2021-11-11 株式会社キンセイ産業 尿素水の製造方法
JP7440066B2 (ja) 2020-05-08 2024-02-28 株式会社キンセイ産業 尿素水の製造方法

Similar Documents

Publication Publication Date Title
JP5407291B2 (ja) 熱処理方法及び熱処理装置
JP2007198682A (ja) 蓄熱脱臭システム
JP5351748B2 (ja) 蓄熱式ガス処理装置の清掃運転方法、及び、蓄熱式ガス処理装置
JP4006025B2 (ja) 再生酸化用の一体型voc貯留装置
WO2007148402A1 (ja) 高分子系廃棄物処理装置
TWI326753B (ja)
KR100709749B1 (ko) 축열식 연소산화장치의 폐열활용 열풍생산 시스템
CN111228958A (zh) 一种活性炭吸附脱附方法及装置
JP2005201606A (ja) 加熱装置
CN206810059U (zh) 一种有机废气处理设备
CN214552542U (zh) 一种复合式热量回收系统
CN106938177A (zh) 一种有机废气处理设备
JP5835662B2 (ja) 揮発性有機化合物処理装置の制御方法
JP2013139959A (ja) 熱利用方法およびこれを利用した加熱設備
JP3937232B2 (ja) 炭化装置
JP2010261600A (ja) 加熱方法及び加熱システム
JP2002303415A (ja) 蓄熱燃焼式排ガス処理装置での高沸点物質の除去方法
JP4642283B2 (ja) 木質系廃棄物の処理装置及びその運転方法
JP2007263420A (ja) 蓄熱式燃焼脱臭装置及び燃焼脱臭方法
JP2001324121A (ja) 高沸点物質の除去方法
JP2008045818A (ja) 蓄熱式燃焼脱臭装置
JP3779626B2 (ja) 排オゾン処理装置
JP6654684B2 (ja) 浴室用純水活用装置
TW200925288A (en) Continuous metal strip heat treating apparatus
US20130067763A1 (en) Method of controlling the finishing of operation of a drying furnace assembly in a food waste disposer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06767194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHT PURSUANT TO RULE 112(1) EPC AS PER OUR COMMUNICATION DATED 20.03.09

122 Ep: pct application non-entry in european phase

Ref document number: 06767194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP