WO2007145004A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2007145004A1
WO2007145004A1 PCT/JP2007/054712 JP2007054712W WO2007145004A1 WO 2007145004 A1 WO2007145004 A1 WO 2007145004A1 JP 2007054712 W JP2007054712 W JP 2007054712W WO 2007145004 A1 WO2007145004 A1 WO 2007145004A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
encoding
images
imaging
Prior art date
Application number
PCT/JP2007/054712
Other languages
English (en)
French (fr)
Inventor
Manabu Higuchi
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/304,373 priority Critical patent/US8264586B2/en
Priority to EP07738197A priority patent/EP2026565A4/en
Priority to CN2007800219604A priority patent/CN101467439B/zh
Priority to JP2008521108A priority patent/JP5011289B2/ja
Publication of WO2007145004A1 publication Critical patent/WO2007145004A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0007Image acquisition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/0402Scanning different formats; Scanning with different densities of dots per unit length, e.g. different numbers of dots per inch (dpi); Conversion of scanning standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/0402Scanning different formats; Scanning with different densities of dots per unit length, e.g. different numbers of dots per inch (dpi); Conversion of scanning standards
    • H04N1/0405Different formats, e.g. A3 and A4
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/0402Scanning different formats; Scanning with different densities of dots per unit length, e.g. different numbers of dots per inch (dpi); Conversion of scanning standards
    • H04N1/0417Conversion of standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/21Intermediate information storage
    • H04N1/2104Intermediate information storage for one or a few pictures
    • H04N1/2112Intermediate information storage for one or a few pictures using still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0084Digital still camera

Definitions

  • the present invention relates to an imaging device that outputs images with a plurality of resolutions.
  • An imaging device equipped with a resolution conversion circuit is also disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-112579.
  • FIG. 15 shows a configuration diagram of a conventional imaging apparatus.
  • the imaging apparatus includes an imaging circuit 1501, a storage circuit 1502, a YC processing circuit 1503, a resolution conversion circuit 1504, a compression conversion circuit 1505, a recording circuit 1506, and a display circuit 1507.
  • the YC processing circuit 1503 reads out the RAW data stored in the storage circuit 1502, converts it to YC data, and outputs it to the resolution conversion circuit 1504.
  • the resolution conversion circuit 1504 generates two image data of a display image and a recording image by performing resolution conversion processing on the input image generated by the YC processing circuit 1503.
  • the resolution conversion circuit 1504 writes the two image data in two areas of the storage circuit 1502, respectively.
  • the user sets the number of pixels and the number of lines of the input image, the display image, and the recording image in the resolution conversion circuit 1504 in advance.
  • the resolution conversion circuit 1504 is configured to process an input image for each line.
  • the resolution conversion circuit 1504 determines whether to generate a display image or a recording image and performs image generation processing. For example, after the line L of the display image is generated, the resolution conversion circuit 1504 determines whether to generate the display image or the recording image, and as a result, the line M of the recording image is temporarily generated. The Thereafter, the resolution conversion circuit 1504 further determines whether to generate a display image line (L + 1) or a recording image line (M + 1).
  • images of a plurality of resolutions can be obtained by changing the driving of the sensor. In this case, multiple images with different resolutions cannot be output at the same time.
  • a resolution conversion circuit stores a plurality of images with different resolutions in a storage circuit, and a compression conversion circuit reads a plurality of images from a memory and performs compression.
  • the compression conversion circuit accesses the storage circuit to which the resolution conversion circuit has output the image data. It is desirable to avoid such a configuration because multiple circuits will access one memory circuit and arbitration of memory access is required.
  • An object of the present invention is to provide a suitable imaging device capable of simultaneously outputting a plurality of images having different resolutions.
  • the imaging apparatus of the present invention captures a subject with an imaging device and generates an image signal, and converts the resolution of the image signal captured by the imaging unit and outputs the converted image signal A conversion unit, and the resolution conversion unit reduces the image input from the imaging unit to a plurality of images of different sizes, and fills the input image size from the imaging unit with a plurality of reduced images of different sizes. Output the embedded image.
  • Another aspect of the present invention is an image processing method for converting the resolution of an input image signal and generating the converted image signal, wherein the input image is reduced to a plurality of images of different sizes. Then, an embedded image in which a plurality of reduced images having different sizes are embedded in the input image size is generated.
  • FIG. 1 is a configuration diagram of an imaging device according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a horizontal LPF section of the imaging device in the first embodiment of the present invention.
  • FIG. 3 is a configuration diagram of a vertical LPF section of the imaging device in the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing an operation in horizontal processing of the resolution conversion unit of the imaging apparatus according to the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram showing the operation in the vertical processing of the resolution conversion unit of the imaging apparatus according to the first embodiment of the present invention.
  • FIG. 6A is an explanatory diagram showing an input image of the resolution conversion unit of the imaging apparatus according to the first embodiment of the present invention.
  • FIG. 6B is an explanatory diagram showing an output image of the resolution conversion unit of the imaging apparatus according to the first embodiment of the present invention.
  • FIG. 7 is a configuration diagram of the resolution conversion unit of the imaging apparatus according to the second embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing the operation of the resolution conversion unit according to the second embodiment of the present invention.
  • FIG. 9A is an explanatory diagram of an output image when an original image is selected in the second embodiment of the present invention.
  • FIG. 9B is an explanatory diagram of an output image when the embedded image is selected in the second embodiment of the present invention.
  • FIG. 10 is a block diagram of an imaging apparatus according to the third embodiment of the present invention.
  • FIG. 11 is a flowchart showing the operation of the sign key unit in the third embodiment of the present invention.
  • Fig. 12 is a flowchart showing the operation of the sign key unit in the fourth embodiment of the present invention.
  • FIG. 13 is a block diagram of an imaging apparatus according to the fifth embodiment of the present invention.
  • FIG. 14 is a flowchart showing the operation of the sign key unit in the fifth embodiment of the present invention.
  • FIG. 15 is a block diagram of a conventional imaging device
  • the imaging apparatus of the present invention captures a subject with an imaging device and generates an image signal, and converts the resolution of the image signal captured by the imaging unit, and outputs the converted image signal A conversion unit, and the resolution conversion unit reduces the image input from the imaging unit to a plurality of different size images, and inserts a plurality of reduced images of different sizes into the input image size from the imaging unit. Output a padded image.
  • a plurality of embedding areas for embedding a plurality of reduced images of different sizes may be set side by side.
  • the resolution conversion unit performs multiple stages of reduction processing on the input image to generate a plurality of different size reduced images, and sequentially outputs a plurality of different size reduced image signals, thereby providing a plurality of padding.
  • An embedded image in which a plurality of reduced images of different sizes are inserted in the embedded area may be output.
  • the resolution conversion unit switches between the output of the embedded image and the original image output of the size input from the imaging unit, and the image of either the embedded image or the original image is switched. Output additional information indicating whether or not to the image information.
  • This configuration is suitable when the resolution conversion unit outputs both the embedded image and the original image alternately or randomly. Even in such a case, it is possible to determine whether the output signal is an embedded image or an original image on the side receiving the image signal. As a result, it is possible to determine whether or not it is necessary to take out the reduced image of the embedded image power on the side receiving the image signal.
  • the imaging apparatus receives an image of the resolution conversion unit power, performs compression encoding, and outputs compression image information, and compressed image information from the compression encoding unit And a communication network unit that outputs to the communication network.
  • the compression encoding unit Extract multiple reduced images from the padding image from the replacement section and sign them!
  • the compression encoding unit may determine the input image based on the additional information added to the image from the resolution conversion unit.
  • the compression encoding unit may determine the presence or absence of a reduced image extraction process based on the determination result. Then, when performing the extraction process, the compression encoding unit performs the extraction process, and then performs the encoding and does not perform the extraction process. In this case, perform the encoding of the input image.
  • the compression encoding unit is a process of extracting images of a plurality of sizes with embedded image strength and performing encoding, and based on the encoding result of an image of a certain size, Adjust the encoding parameters for encoding.
  • This configuration is suitable when it is necessary to keep the data size after encoding within the range determined for each image size.
  • it is possible to adjust the quantization parameter for another image size based on the relationship between the quantization parameter for a certain image size and the data size after the sign. This can increase the probability that the data size will fall within the specified range.
  • the compression encoding unit may sequentially encode the image power of a small size.
  • This configuration is suitable when it is necessary to keep the data size after sign encoding within a range determined for each image size.
  • By performing coding from a small size it is possible to reduce recoding processing for keeping the data size within a predetermined range in a large image size where processing time is significant. As a result, the processing time in encoding can be shortened.
  • the compression encoding unit may change the frame rate for encoding for each image size.
  • images tailored to display terminals connected to the imaging device via a network It is possible to sign by size.
  • by encoding a small image size at a high frame rate and encoding a large image size at a low frame rate it is possible to reduce the encoding processing load and the amount of data to be output.
  • the compression encoding unit supports a plurality of encoding methods, and may select an encoding method for each image size. With this configuration, it is possible to perform encoding using an encoding method suitable for a display terminal connected to the imaging apparatus via a network.
  • the present invention is not limited to the above-described aspect of the imaging device.
  • Another aspect of the present invention is, for example, an image processing method for performing resolution conversion that is executed by the imaging apparatus.
  • Various elements described regarding the imaging apparatus may be applied to the image processing method.
  • FIG. 1 shows the configuration of the imaging apparatus of the present embodiment.
  • FIG. 2 shows the configuration of the horizontal LPF section, and
  • FIG. 3 shows the configuration of the vertical LPF section.
  • 4 shows the operation in the horizontal processing of the resolution converter, and
  • FIG. 5 shows the operation in the vertical processing of the resolution converter.
  • 6A and 6B show the input and output images of the resolution converter!
  • the imaging device includes an imaging unit 101 and a resolution conversion unit 110.
  • the imaging unit 101 captures an object with an imaging device and generates an image signal. Then, the resolution conversion unit 110 converts the resolution of the image signal photographed by the imaging unit 101 and outputs the converted image signal.
  • the imaging unit 101 includes a lens 102, a CCD 103, a CDS / AGC unit 104, an AZD unit 105, a digital signal processing unit 106, and a drive control unit 107.
  • the resolution conversion unit 110 includes a control unit 111, a first horizontal LFP unit 112, a first FIFO unit 113, a second horizontal LPF unit 114, a second FIFO unit 115, a MUX unit 116, and a vertical LPF unit 117. ing.
  • the imaging unit 101 performs photoelectric conversion by the light power CCD 103 that has passed through the lens 102 to generate an analog video signal.
  • CDSZAGC unit 104 CDS (correlation trouble sampling) and gain control are performed on the image signal.
  • the AZD unit 105 converts the image signal from an analog signal to a digital signal to generate a digital image signal. It is.
  • the digital signal processing unit 106 performs known camera signal processing such as white balance control and gamma conversion, and converts the input signal into an image signal 109 of a luminance signal (Y) and color difference signals (Cb, Cr).
  • the image signal 109 is output together with the synchronization signal 108.
  • a drive control unit 107 controls the drive of the CCD 103.
  • the image signal 109 generated by the imaging unit 101 is input to the horizontal LPF unit 112 in the resolution conversion unit 110.
  • the horizontal LFP unit 112 performs horizontal low-pass filter processing on the image signal and writes the processed signal force into the processed signal force FIFO unit 113.
  • the signal from which the FIFO section 113 is also read is input to the horizontal LPF section 114.
  • the horizontal LPF unit 114 performs horizontal low-pass filter processing and writes the processed signal strength into the SFIFO unit 115.
  • the signal read from the FIFO unit 115 and the signal read from the FIFO unit 113 are input to the MUX unit 116. Either signal is selected by the MUX unit 116, and the selected signal is input to the vertical LPF unit 117.
  • the vertical LPF unit 117 performs vertical low-pass filtering and outputs an output image signal.
  • the control unit 111 includes a write enable signal 118 for writing to the FIFO unit 113, a read enable signal 1 19 for reading from the FIFO unit 113, and a FIFO unit.
  • Write enable signal 120 for writing to 115
  • Read enable signal 121 for reading from FIFO 115
  • MUX selection signal 122 select signal
  • Vertical LPF 117 All filter coefficient selection signals 123 are generated.
  • the control unit 111 generates an output synchronization signal 124. These control signals are output to the corresponding components.
  • the input image signal is subjected to delay processing by the four flip-flops 201, so that one clock delay, two clocks are performed. Clock delay, 3 clock delay and 4 clock delay signals.
  • the adder 202 adds the input image signal and the 4-clock delay signal.
  • the 1-clock delay signal and the 3-clock delay signal are added by another adder 202.
  • Output power from each adder 202 The filter coefficient output from the filter coefficient unit 203 is multiplied by the multiplier 204, and the multiplied signal is output to the adder 205.
  • the 2-clock delayed signal is also multiplied by the filter coefficient output from the filter coefficient unit 303 by the multiplier 204 and output to the adder 205.
  • Addition The calculator 205 adds the three input signals and outputs an output image signal. In this way, horizontal low-pass filter processing is performed.
  • the vertical LPF unit 117 delay processing is performed on the input image signal by the four line memories 301, so that 1 line delay, 2 line delay, 3 line delay, 4 A line delay signal is generated.
  • the adder 302 adds the input image signal and the 4-line delayed signal.
  • the 1-line delay signal and 3-line delay signal are added by another adder 302.
  • the output power from each adder 302 is multiplied by the filter coefficient output from the filter coefficient unit 303 by the multiplier 304, and the multiplied signal is output to the adder 305.
  • the 2-line delay signal is also multiplied by the filter coefficient output from the filter coefficient unit 303 by the multiplier 304 and output to the adder 305.
  • the adder 305 adds the three input signals and outputs an output image signal. In this way, the vertical low-pass filter process is performed.
  • the filter coefficient unit 303 can change the output filter coefficient in accordance with the input coefficient control signal.
  • the output image of FIG. 6B is generated from the input image of FIG. 6A.
  • the control unit 111 enables the write enable signal 118 for the FIFO unit 113 every clock from the point of time considering the delay. As a result, 640 signals in the horizontal direction are written into the FIFO unit 113. At the same time, the control unit 111 enables the read enable signal 119 for the FIFO unit 113 at the same time as the input horizontal synchronization signal, and enables it for 640 clocks. As a result, 640 data written in the previous line are read out.
  • the signal read from the FIFO unit 113 is input to the horizontal LPF unit 114.
  • the horizontal LPF unit 114 outputs a signal with a delay of two clocks.
  • the control unit 111 validates the write enable signal 121 for the FIFO unit 115 every clock from the point of time considering the delay. As a result, 320 signals in the horizontal direction are written into the FIFO unit 115.
  • the control unit 111 enables the read enable signal 121 of the FIFO unit 115 for 320 clocks when the read enable signal of the FIFO unit 113 becomes invalid. As a result, the control unit 111 Reads 320 signals written in this line from the FIFO unit 115.
  • control unit 111 controls the MUX unit 116 by outputting a MUX selection signal 122 to the MUX unit 116.
  • the MUX selection signal 122 selects the signal from the FIFO unit 113 while the read enable signal of the FIFO unit 113 is valid, and while the read enable signal of the FIFO unit 115 is valid. This signal controls the MUX unit 116 so that the signal from the FIFO unit 115 is selected.
  • the MUX unit 116 selects and outputs a signal according to the MUX selection signal 122.
  • the control unit 111 outputs the same signal as the MUX selection signal 122 as the coefficient selection signal 123 for the vertical LPF unit 117.
  • the vertical LPF unit 117 applies a 1Z2 decimation filter to the image signal while the signal from the FIFO unit 113 is input, and while the signal from the FIFO unit 115 is input, 1Z4 Interleaving bow I Apply a filter to the image signal.
  • the 640-pixel image signal that has been thinned and the 320-pixel image signal that has been further thinned are continuously arranged in the horizontal direction.
  • the signal is delayed by one line in writing to and reading from the FIFO unit 113.
  • the signal is delayed by two lines in the process of the vertical LPF unit 117.
  • a signal is output with a total delay of 3 lines. Therefore, the control unit 111 generates a vertical synchronization signal delayed by three lines with respect to the input vertical synchronization signal. This signal is generated as an output vertical synchronization signal 124 and output from the resolution converter 110.
  • the output image of Fig. 6 is generated from the input image of Fig. 6A.
  • the input image is an image of 1280 pixels horizontally and 960 lines vertically, that is, a 4VGA image.
  • the output image is an image in which an image of 640 pixels horizontally and 480 lines vertically (VGA image) and an image of 320 pixels horizontally and 240 lines vertically (QVGA image) are embedded.
  • VGA image image of 640 pixels horizontally and 480 lines vertically
  • QVGA image image of 320 pixels horizontally and 240 lines vertically
  • the two reduced images are embedded in the size of the input image.
  • Such a characteristic image of the present invention is called a “filled image”.
  • the effective image area (input image size) of the input image is an area of 1280 pixels in the horizontal direction and 960 lines in the vertical direction.
  • a VGA image insertion area and a QVGA image insertion area are set side by side.
  • the width of the VGA image embedding area is 640 pixels, QV
  • the width of the GA image filling area is 320 pixels.
  • the remaining area is a dummy area, and its width is 320 pixels.
  • the vertical width of each area is 960 lines.
  • VGA images should be incorporated into the VGA image insertion area of the output image every 2 lines.
  • QVGA images should be incorporated into the QVGA image insertion area of the output image every 4 lines. In this way, the output image signal becomes an image in which the VGA image signal and the QVGA image are embedded in the respective embedded regions.
  • the resolution conversion unit outputs an image in the form of the embedded image as described above.
  • a plurality of images of different sizes can be output at a time, and therefore a plurality of images of different resolutions can be output at a time.
  • Multiple resolution images can be output at the input frame rate.
  • a plurality of embedding areas for inserting a plurality of reduced images of different sizes are set side by side in the input image size.
  • the resolution conversion unit 110 generates a plurality of reduced images of different sizes by performing a plurality of stages of reduction processing, more specifically thinning processing, on the input image, and generates a plurality of reduced images of different sizes. Output signals sequentially.
  • the resolution conversion unit 110 outputs an embedded image in which a plurality of reduced images having different sizes are embedded in a plurality of embedded regions.
  • FIG. 7 shows the configuration of the resolution conversion unit in the imaging apparatus of the present embodiment.
  • Figure 8 shows the operation of the resolution converter.
  • FIG. 9A and FIG. 9B show output images in the present embodiment. In the following description, description of matters common to the above-described embodiment is omitted.
  • a delay unit 702, a MUX unit 703, and an information addition unit 704 are added.
  • An input image signal is input to the delay unit 702, and the delay unit 702 delays the input image signal and outputs it to the MUX unit 706.
  • the MUX unit 703 receives the output of the vertical LPF unit 117 and the output of the delay unit 702.
  • the former is the embedded image of the first embodiment, and the latter is the original image before resolution conversion.
  • the MUX unit 703 selects and outputs either signal according to the MUX selection signal 706 from the control unit 705.
  • the control unit 705 may cause the MUX unit 703 to alternately output the embedded image and the original image.
  • the control unit 705 may cause the MUX unit 703 to randomly output the embedded image and the original image.
  • the information adding unit 704 receives the output of the MUX unit 703.
  • the information addition unit 704 adds the additional information to the image signal and outputs the image signal in response to the information addition instruction signal 707 from the control unit 705.
  • the additional information is information for determining the image selected by the MUX unit 703, that is, information for determining the embedded image and the original image.
  • the control unit 705 adds control functions for the MUX unit 703 and the information addition unit 704 described above to the control unit 111 of the first embodiment.
  • Input image signal force The operation from the input to the horizontal LPF unit 112 to the output from the vertical LPF unit 117 is as described in the first embodiment.
  • the output signal of the vertical LPF117 is also delayed by 3 lines.
  • the input image signal is delayed by 3 lines by the delay unit 702, and the MUX unit 703 is subjected to human power.
  • the control unit 705 switches to the image to which the MUX selection signal 706 is to be output at the frame switching timing.
  • the MUX unit 703 selects whether the input image is the original image power as it is, or the embedded image in which the reduced image is embedded.
  • FIG. 8 shows an operation when the original image output of the delay unit 702 is selected at the beginning of the frame.
  • information addition section 704 places additional information on the output signal of MUX section 703 in accordance with information addition instruction signal 707 from control section 705.
  • the additional information is information indicating whether the embedded image from the vertical LPF 117 or the original image from the delay unit 702 is output. Additional information is added to the 1100th line. For example, when outputting an output signal with a delay of 702, all the pixel values of 1100 lines are set to 0 (zero). When the output signal from the vertical LPF unit 117 is output, all the pixel values are set to 1 (one). [0054] Note that the additional information is arbitrary information that can distinguish two images. The additional information may be other values. Further, as in the above example, the additional information may not be added to all the pixels on the line.
  • FIG. 9A and FIG. 9B show output images of the resolution conversion unit 701.
  • the image of either FIG. 9A or FIG. 9B is output.
  • Figure 9A shows the original image as it is. However, pixel value 0 is added to the information addition line as additional information.
  • Fig. 9B shows an embedded image, where pixel value 1 is added to the information addition line as additional information.
  • Such a second embodiment of the present invention is suitable when the imaging apparatus outputs the original image or the embedded image alternately or randomly. Even in such a case, it is possible to determine whether the output signal is an embedded image or an original image (input image) on the side receiving the image signal. Therefore, it is possible to determine whether it is necessary to extract a reduced image from the embedded image on the side receiving the image signal.
  • FIG. 10 shows the configuration of the imaging apparatus of the present embodiment
  • FIG. 11 shows the operation of the encoding unit in the present embodiment.
  • a sign key unit 1001 and a communication network unit 1004 are added to FIG.
  • the configurations of the imaging unit 101 and the resolution conversion unit 110 are the same as those in the first embodiment shown in FIG.
  • the encoding unit 1003 receives the image from the resolution conversion unit 110, performs compression encoding, and outputs compressed image information.
  • the communication network unit 1004 outputs the compressed image information from the encoding unit 1001 to the communication network.
  • the sign key unit 1001 includes an image processing DSP 1002 and an SDRAM 1003.
  • the SDRAM 1003 is connected to the image processing DSP 1002 bus.
  • the communication network unit 1004 includes a CPU 1005, an SDRAM 1006, a flash memory 1007, and an ether chip 1008 connected to the bus of the CPU 1005.
  • the FLASH memory 1007 stores the program.
  • Etherchip 1008 is connected to Ethernet (registered trademark) It consists of Ether MAC and PHY.
  • the image processing DSP 1002 is also connected to the CPU 1005 bus.
  • the operations of the imaging unit 101 and the resolution conversion unit 110 are the same as those in the first embodiment.
  • the image signal from the imaging device 101 is converted into an output image of FIG. 6B by the resolution conversion unit 110 and output.
  • the encoding unit 1011 as shown in FIG. 11, the image is captured (S101), and a QVGA image is extracted from the image of FIG. 6B (S102).
  • a QVGA image is a smaller reduced image of 320 pixels horizontally and 240 lines vertically.
  • the 641 pixel power from the left end of the image is also extracted every 4 lines for the signal power of 320 pixels, and thereby the QVGA image is extracted from the QVGA image filling area.
  • the extracted QVGA image is compressed (S103), and the encoding result is output to the CPU 1005 (S104).
  • a VGA image is extracted from the image of FIG. 6B (S105).
  • a VGA image is the larger reduced image of 640 pixels horizontally and 480 lines vertically.
  • signal strength of 640 pixels is extracted every two lines from the left edge of the image.
  • the VGA image is extracted from the VGA image insertion area.
  • the extracted VGA image is compressed and encoded (S106), and the encoding result is output to the CPU 1005 (S107).
  • the CPU 1005 reads the encoded image signal stored in the SDRAM 1003 based on the encoding result received from the encoding unit 1001.
  • the CPU 1005 uses the SDRAM 1006 to generate packet data in accordance with the TCP / IP or UDPZIP protocol, and outputs the packet data to the Ethernet (registered trademark) via the Ethernet chip 1008.
  • the CPU 1005 outputs a VGA image to a user who requests a VGA image, and outputs a QVGA image to a user who requests a QVGA image.
  • the encoding method in the encoding unit 1001 may be a still image code such as JPEG or a moving image code such as MPEG.
  • QVGA images and VGA images may have the same or different encoding methods.
  • the code key unit 1001 is configured to support a plurality of encoding methods.
  • the encoding unit 1001 is configured to be able to select an encoding method for each image size, and selects an encoding method according to an instruction from the CPU 1005. This configuration may be applied to any other embodiment as well.
  • the encoding unit 1001 and the communication network unit 1004 are provided.
  • the encoding unit 1001 takes out a plurality of reduced images from the resolution conversion unit 110 and encodes the plurality of reduced images. As a result, it is possible to output the compressed code and the network to a plurality of reduced images at the same frame rate as the imaging frame rate in the imaging unit.
  • the encoding unit 1001 supports a plurality of encoding methods, and can select an encoding method for each image size. With this configuration, it is possible to perform coding using a coding method that matches a display terminal connected to the imaging apparatus via a network.
  • the encoding unit 1001 may be configured to be able to change the frame rate for encoding for each image size.
  • the encoding unit 1001 may be configured to be able to change the frame rate for encoding for each image size.
  • the imaging device of the present embodiment has the same configuration as that of the third embodiment shown in FIG. However, as will be described below, an encoding parameter adjustment function suitable for the compression encoding process of the embedded image is added to the encoding unit 1001.
  • FIG. 12 shows the operation of the sign key unit in the present embodiment. In the following description, description of matters common to the above-described embodiment is omitted.
  • the image signal from the imaging device 101 is converted into an output image of FIG. 6B by the resolution conversion unit 110 and output.
  • the sign key unit 1001 as shown in FIG. 12, the image is captured (S201), and a QVGA image is extracted from the image of FIG. 6B (S202). The extraction process has already been described.
  • the compression code of the QVGA image is performed (S203), and a determination process is performed as to whether the code amount generated as a result of the code key is within the specified range (S204). If the code amount does not fall within the specified range, the quantization parameter is adjusted (S205), and the QVGA image is encoded again (S203). If the amount of code is within the specified range in step S204, the sign key results SCPU It is output for 1005 (S206).
  • the quantization parameter for the VGA image is adjusted based on the relationship between the quantization parameter and the generated code amount in the code V of the QVGA image (S207).
  • the relationship between the quantization parameter of the QVGA image and the generated code amount is obtained in the above-described process of extracting the QVGA image and encoding.
  • the quantization value used for VGA encoding is also increased before the VGA encoding.
  • the quantization parameter is lowered in the sign of the QVGA image.
  • the quantization value used for VGA encoding is also reduced.
  • Such encoding parameter adjustment processing is performed in step S207.
  • a VGA image is extracted from the image of FIG. 6B (S208). The extraction process has already been described. Then, the sign of the VGA image is performed (S209). Here, the parameters adjusted in step S207 are used. Then, it is determined whether or not the generated code amount of the VGA image is within the specified range (S210). If the code amount is out of the specified range, the quantization parameter is adjusted (S211), and the VGA image is again encoded (S209). If the code amount is within the specified range in step S210, the encoding result is output to the SCPU 1005 (S212). Then, the communication network unit 1004 outputs the image signal to the network. The operation of the communication network unit 1004 is the same as that of the third embodiment.
  • the compression encoding unit extracts a plurality of sizes of images from the embedded image cover and performs the encoding process on the basis of the encoding result of an image of a certain size. Adjust the encoding parameters for encoding other size images.
  • This configuration is suitable when it is necessary to keep the encoded data size within the range determined for each image size as in the above example. With this configuration, it is possible to adjust the quantization parameter for another image size from the relationship between the quantization parameter for a certain image size and the data size after the code. This can increase the probability that the data size will fall within the specified range.
  • the sign key unit 1001 performs sign code in order of image powers of smaller sizes when performing code signing of a plurality of images of different sizes.
  • This configuration is also suitable when it is necessary to keep the data size after encoding within the range determined for each image size as in the present embodiment.
  • By performing encoding from a small size it is possible to reduce the re-encoding processing to fit within the determined data size range for a large image size that requires processing time S. As a result, the processing time in encoding can be shortened.
  • FIG. 13 shows the configuration of the imaging apparatus in the present embodiment
  • FIG. 14 shows the operation of the encoding unit.
  • the resolution converter 101 in FIG. 10 is replaced with a resolution converter 701.
  • the configuration of the resolution conversion unit 701 is as described with reference to FIG.
  • the code key unit 1001 is configured to realize the following functions. ing. In the following description, descriptions of matters common to the above-described embodiment are omitted.
  • the image signal from the imaging apparatus 101 is processed by the resolution conversion unit 701, and the original image in FIG. 9A and the embedded image in FIG. 9B are output.
  • the resolution conversion unit 701 alternately outputs the original image and the embedded image. That is, when the original image is output in a certain frame, the embedded image is output in the next frame, and the original image is output in the next frame.
  • the image is captured (S301), and additional information is read (S302).
  • the additional information is data on the top line of the image as shown in FIGS. 9A and 9B.
  • the sign 1001 determines whether the captured image power is 4VGA image (horizontal 1280 pixels, vertical 960 line image) (Fig. 9A) or VGA and QVGA embedded image (Fig. 9B). (S303).
  • the sign key portion 1001 displays the QVGA image (320 horizontal pixels and 240 vertical lines) are extracted (S304), QVGA image compression coding is performed (S305), and the coding result is output to the CPU 1005 (S306).
  • the encoding unit 1001 extracts the VGA image (S307), performs compression encoding of the VGA image (S308), and outputs the encoding result to the CPU 1005 (S309).
  • step S303 if the captured image is a 4VGA image, the encoding unit 1001 extracts the 4VGA image (S310), encodes the 4VGA image (S311), and The sign key result is output to the CPU 1005 (S312).
  • the operation of the communication network unit 1003 is the same as that of the third embodiment. However, the communication network 1003 processes 4VGA images in addition to QVCA encoded images and VGA images.
  • the communication network unit 1003 reads the QVGA encoded image, the VGA encoded image, and the 4VGA encoded image from the encoding unit and outputs a 4VGA encoded image to a user who requests 4VGA. For users requesting images, a VGA encoded image is output, and for users requesting QVG A images, a QVGA encoded image is output.
  • the sign unit 1001 determines the input image based on the additional information added to the image from the resolution conversion unit 701.
  • the encoding unit 701 determines the presence or absence of a reduced image extraction process based on the determination result.
  • the encoding unit 701 encodes a plurality of reduced images after performing the extracting process when performing the extracting process, and encodes the input image when not performing the extracting process.
  • the configuration of the fourth embodiment may be incorporated in the fifth embodiment.
  • the quantization parameter for encoding the VGA image is adjusted based on the encoding result of the QVGA image.
  • the imaging apparatus according to the present invention is useful as a power lens that can output images of a plurality of resolutions.

Abstract

 複数の解像度の画像出力が可能な撮像装置を提供する。撮像装置は、撮像デバイス103により被写体を撮像し画像信号を生成する撮像部101と、撮像部101により撮影された画像信号の解像度を変換し出力する解像度変換部110とを備える。解像度変換部110は、撮像部101から入力された画像を複数の異なるサイズの画像に縮小し、撮像部101からの入力画像サイズの中に複数のサイズの縮小画像を填め込んだ填め込み画像を出力する。これにより、同時に複数の画像サイズの画像を出力することができる。

Description

明 細 書
撮像装置
技術分野
[0001] 本発明は、複数の解像度の画像を出力する撮像装置に関するものである。
背景技術
[0002] 従来、撮像装置にお!、ては、センサーの駆動方法を変更し、異なる解像度の画像 を出力する技術が知られている。このような技術は、例えば、特開 2003— 134386 号公報に開示されている。
また、解像度変換回路を搭載した撮像装置も、例えば、特開 2004— 112579号公 報に開示されている。
[0003] 図 15は、従来の撮像装置の構成図を示している。図示のように、撮像装置は、撮 像回路 1501、記憶回路 1502、 YC処理回路 1503、解像度変換回路 1504、圧縮 変換回路 1505、記録回路 1506および表示回路 1507を備えている。 YC処理回路 1503は、記憶回路 1502に記憶された RAWデータを読み出して YCデータに変換 し、解像度変換回路 1504に出力する。
[0004] 解像度変換回路 1504は、 YC処理回路 1503で生成された入力画像に対して解 像度変換処理を施すことにより、表示用画像と記録用画像の二つの画像データを生 成する。解像度変換回路 1504は、それら二つの画像データを記憶回路 1502の二 つの領域にそれぞれ書き込む。また、ユーザーは、入力画像、表示用画像および記 録用画像の画素数とライン数を予め解像度変換回路 1504の内部に設定する。
[0005] 解像度変換回路 1504は、入力画像を 1ライン毎に処理するように構成されている。
解像度変換回路 1504は、入力画像を 1ライン分処理する毎に、表示用画像と記録 用画像のどちらを生成するかを決定して画像生成処理を行う。例えば、表示用画像 のライン Lが生成された後、解像度変換回路 1504が、表示用画像と記録用画像のど ちらを生成するか決定し、その結果として仮に記録用画像のライン Mを生成したとす る。その後さらに、解像度変換回路 1504は、表示用画像のライン (L+ 1)と記録用画 像のライン (M+ 1)のどちらを生成するかを決定する。 [0006] し力しながら、最初に説明した従来の撮像装置においては、センサーの駆動を変 更することによって複数の解像度の画像が得られる。この場合、同時に異なる解像度 の複数の画像を出力することは出来ない。もう一つの従来の撮像装置においては、 解像度変換回路が、複数の異なる解像度の画像を記憶回路に保存し、圧縮変換回 路が複数の画像をメモリから読み出し圧縮を行う。この場合、解像度変換回路が画像 データを出力した記憶回路に圧縮変換回路がアクセスするように撮像装置を構成す る必要がある。ひとつの記憶回路に対して複数の回路がアクセスすることになり、メモ リアクセスの調停が必要となるので、このような構成を避けることが望まれる。
発明の開示
発明が解決しょうとする課題
[0007] 本発明は上記背景の下でなされたものである。本発明の目的は、異なる解像度の 複数の画像を同時に出力可能な好適な撮像装置を提供することにある。
課題を解決するための手段
[0008] 本発明の撮像装置は、撮像デバイスにより被写体を撮像し画像信号を生成する撮 像部と、撮像部により撮影された画像信号の解像度を変換し、変換された画像信号 を出力する解像度変換部と、を備え、解像度変換部は、撮像部から入力された画像 を、複数の異なるサイズの画像に縮小し、撮像部からの入力画像サイズの中に複数 の異なるサイズの縮小画像を填め込んだ填め込み画像を出力する。
[0009] 本発明の別の態様は、入力された画像信号の解像度を変換し、変換された画像信 号を生成する画像処理方法であって、入力画像を複数の異なるサイズの画像に縮小 し、入力画像サイズの中に複数の異なるサイズの縮小画像を填め込んだ填め込み画 像を生成する。
[0010] 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の 開示は、本発明の一部の態様の提供を意図しており、ここで記述され請求される発 明の範囲を制限することは意図していない。
図面の簡単な説明
[0011] [図 1]図 1は、本発明の第 1実施形態における撮像装置の構成図 [図 2]図 2は、本発明の第 1実施形態における撮像装置の水平 LPF部の構成図 [図 3]図 3は、本発明の第 1実施形態における撮像装置の垂直 LPF部の構成図 [図 4]図 4は、本発明の第 1実施形態における撮像装置の解像度変換部の水平処理 における動作を示す説明図
[図 5]図 5は、本発明の第 1実施形態における撮像装置の解像度変換部の垂直処理 における動作を示す説明図
[図 6A]図 6Aは、本発明の第 1実施形態における撮像装置の解像度変換部の入力 画像を示す説明図
[図 6B]図 6Bは、本発明の第 1実施形態における撮像装置の解像度変換部の出力画 像を示す説明図
[図 7]図 7は、本発明の第 2実施形態における撮像装置の解像度変換部の構成図 [図 8]図 8は、本発明の第 2実施形態における解像度変換部の動作を示す説明図 [図 9A]図 9Aは、本発明の第 2実施形態において、原画像が選択される時の出力画 像の説明図
[図 9B]図 9Bは、本発明の第 2実施形態において、填め込み画像が選択される時の 出力画像の説明図
[図 10]図 10は、本発明の第 3実施形態における撮像装置の構成図
[図 11]図 11は、本発明の第 3実施形態における符号ィ匕部の動作を示すフロー図
[図 12]図 12は、本発明の第 4実施形態における符号ィ匕部の動作を示すフロー図
[図 13]図 13は、本発明の第 5実施形態における撮像装置の構成図
[図 14]図 14は、本発明の第 5実施形態における符号ィ匕部の動作を示すフロー図
[図 15]図 15は、従来の撮像装置の構成図
符号の説明
101 撮像部
110 解像度変換部
1001 符号化部
1004 通信ネットワーク部
発明を実施するための最良の形態 [0013] 以下に本発明の詳細な説明を述べる。ただし、以下の詳細な説明と添付の図面は 発明を限定するものではない。代わりに、発明の範囲は添付の請求の範囲により規 定される。
[0014] 本発明の撮像装置は、撮像デバイスにより被写体を撮像し画像信号を生成する撮 像部と、撮像部により撮影された画像信号の解像度を変換し、変換された画像信号 を出力する解像度変換部とを備え、解像度変換部は、撮像部から入力された画像を 、複数の異なるサイズの画像に縮小し、撮像部からの入力画像サイズの中に複数の 異なるサイズの縮小画像を填め込んだ填め込み画像を出力する。この構成により、 同時に異なるサイズの複数の画像を出力することが可能となり、異なる解像度の複数 の画像を出力することが可能となる。
[0015] また、入力画像サイズの中には、複数の異なるサイズの縮小画像をそれぞれ嵌め 込むための複数の填め込み領域が並んで設定されてよい。解像度変換部は、入力 画像に対して複数段階の縮小処理を行うことにより複数の異なるサイズの縮小画像を 生成し、複数の異なるサイズの縮小画像の信号を順次出力することにより、複数の填 め込み領域に複数の異なるサイズの縮小画像が嵌め込まれた填め込み画像を出力 してよい。この構成により、異なる解像度の複数の画像を同時に出力可能にする本発 明の填め込み画像を好適に生成できる。
[0016] また、解像度変換部は、填め込み画像の出力と、撮像部から入力されたサイズのま まの原画像出力との切り替えを行うとともに、填め込み画像と原画像とのどちらの画 像を出力して 、るかを示す付加情報を、画像情報に付加して出力してょ ヽ。
[0017] この構成は、解像度変換部が填め込み画像と原画像との双方の画像を交互に、あ るいはランダムに出力する場合に好適である。このような場合でも、画像信号を受け 取った側で、出力信号が填め込み画像か、原画像かの判断が可能となる。これにより 、画像信号を受け取った側で、填め込み画像力ゝらの縮小画像の取出しが必要カゝ否 かの判断が可能となる。
[0018] また、撮像装置は、解像度変換部力ゝらの画像を入力し、圧縮符号化を行!ヽ圧縮画 像情報を出力する圧縮符号化部と、圧縮符号化部からの圧縮画像情報を通信ネット ワーク網に出力する通信ネットワーク部とを備えてよい。圧縮符号化部は、解像度変 換部からの填め込み画像から複数の縮小画像を取り出し、符号ィ匕を行ってよ!ヽ。
[0019] この構成により、撮像部での撮像フレームレートと同じフレームレートで、複数の縮 小画像に対して、圧縮符号ィ匕およびネットワーク網への出力を行うことが可能となる。
[0020] また、圧縮符号化部は、解像度変換部からの画像に付加された付加情報により、 入力されている画像の判別を行ってよい。圧縮符号化部は、判別結果により、縮小 画像の取り出し処理の有無を判断してよい。そして、圧縮符号化部は、取り出し処理 を行う場合は、取り出し処理を行った後、符号化を行ってよぐ取り出し処理を行わな V、場合は入力画像の符号ィ匕を行ってょ 、。
[0021] この構成により、解像度変換部が填め込み画像と原画像を交互に出力した場合に 、撮像部での撮像フレームレートの半分のフレームレートで、複数の縮小画像および 原画像に対して、圧縮符号ィ匕およびネットワーク網への出力を行うことが可能となる。
[0022] さらに、圧縮符号化部は、填め込み画像力 複数のサイズの画像を取り出し符号ィ匕 を行う過程で、或るサイズの画像の符号ィ匕結果を基に、その他のサイズの画像の符 号化における符号化パラメータを調整してょ ヽ。
[0023] この構成は、符号ィ匕後のデータサイズを各画像サイズ毎に決められた範囲内に収 めることが必要な場合に好適である。この構成により、或る画像サイズの符号ィ匕にお ける量子化パラメータと符号ィ匕後のデータサイズの関係から、別の画像サイズにおけ る量子化パラメータの調整が可能となる。これにより、決められた範囲内にデータサイ ズが収まる確率をあげることが出来る。
[0024] さらに、圧縮符号化部は、複数の異なるサイズの画像の符号ィ匕を行うときに、小さい サイズの画像力も順番に符号ィ匕を行ってよ 、。
[0025] この構成は、符号ィ匕後のデータサイズを各画像サイズ毎に決められた範囲内に収 めることが必要な場合に好適である。小さいサイズから符号ィ匕を行うことにより、処理 時間が力かる大きな画像サイズにおいて、決められたデータサイズの範囲内に収め るための再符号ィ匕処理を低減できる。これにより、符号化における処理時間を短縮す ることが出来る。
[0026] さらに、圧縮符号化部は、画像サイズ毎に符号ィ匕するフレームレートを変更してよ い。この構成により、撮像装置にネットワークで接続された表示端末に合わせた画像 サイズでの符号ィ匕が可能となる。また、小さい画像サイズは高フレームレートで符号 化し、大きい画像サイズは低フレームレートで符号ィ匕することにより、符号化処理負 荷の低減、および出力するデータ量の削減が可能となる。
[0027] さらに、圧縮符号化部は、複数の符号化方式に対応しており、画像サイズ毎に符号 化方式を選択可能であってよい。この構成により、撮像装置にネットワークで接続さ れた表示端末に合わせた符号化方式での符号化が可能となる。
[0028] 本発明は上述の撮像装置の態様に限定されない。本発明の別の態様は、例えば、 上記の撮像装置で実行される解像度変換を行う画像処理方法である。撮像装置に 関して説明された各種の要素は、画像処理方法にも適用されてよい。
[0029] 以下、本発明の実施の形態について、図面を用いて説明する。
[0030] "第 1実施形態"
本発明の第 1実施形態の撮像装置について図 1〜図 6を用いて説明する。図 1は、 本実施形態の撮像装置の構成を示している。図 2は、水平 LPF部の構成を示し、図 3は、垂直 LPF部の構成を示している。また、図 4は、解像度変換部の水平処理にお ける動作を示し、図 5は、解像度変換部の垂直処理における動作を示している。図 6 Aおよび図 6Bは、解像度変換部の入力画像および出力画像を示して!/、る。
[0031] 図 1に示すように、撮像装置は、撮像部 101と解像度変換部 110とを備えている。
撮像部 101が、撮像デバイスにより被写体を撮像し画像信号を生成する。そして、解 像度変換部 110が、撮像部 101により撮影された画像信号の解像度を変換し、変換 された画像信号を出力する。撮像部 101は、レンズ 102、 CCD103、 CDS/AGC 部 104、 AZD部 105、デジタル信号処理部 106および駆動制御部 107を備えてい る。解像度変換部 110は、制御部 111、第 1の水平 LFP部 112、第 1の FIFO部 113 、第 2の水平 LPF部 114、第 2の FIFO部 115、 MUX部 116および垂直 LPF部 117 を備えている。
[0032] 図 1において撮像部 101では、レンズ 102を通った光力 CCD103により光電変換 され、アナログ映像信号が生成される。 CDSZAGC部 104では、 CDS(correlate d ouble sampling)およびゲインコントロールが画像信号に施される。 AZD部 105で画 像信号がアナログ信号からデジタル信号に変換されて、デジタル画像信号が生成さ れる。デジタル信号処理部 106では、ホワイトバランス制御、ガンマ変換等の周知の カメラ信号処理が行われ、入力信号が輝度信号 (Y)、色差信号 (Cb、 Cr)の画像信号 109に変換される。画像信号 109は、同期信号 108と共に出力される。駆動制御部 1 07は、 CCD103の駆動の制御を行う。
[0033] 撮像部 101で生成された画像信号 109は、解像度変換部 110において、水平 LP F部 112に入力される。水平 LFP部 112で画像信号に対して水平方向のローパスフ ィルタ処理が行われ、処理された信号力FIFO部 113に書き込まれる。 FIFO部 113 力も読み出された信号は、水平 LPF部 114に入力される。水平 LPF部 114で水平方 向のローパスフィルタ処理が行われ、処理された信号力 SFIFO部 115に書込まれる。 FIFO部 115から読み出された信号および FIFO部 113から読み出された信号は、 MUX部 116に入力される。 MUX部 116でどちらかの信号が選択され、選択された 信号が垂直 LPF部 117に入力される。垂直 LPF部 117では、垂直方向のローパスフ ィルタ処理が行われ、出力画像信号が出力される。
[0034] 制御部 111は、入力された同期信号 108から、 FIFO部 113への書込みのためのラ イトイネ一ブル信号 118、 FIFO部 113からの読出しのためのリードィネーブル信号 1 19、 FIFO部 115への書込みのためのライトイネーブル信号 120、 FIFO部 115から の読出しのためのリードィネーブル信号 121、 MUX部 116に対しての MUX選択信 号 122 (セレクト信号)、垂直 LPF部 117に対してのフィルタの係数選択信号 123を 生成する。また、制御部 111は、出力同期信号 124を生成する。これら制御信号は 該当する構成要素へとそれぞれ出力される。
[0035] 図 2に示すように、水平 LPF部 112ぉょび水平0^部114では、入力画像信号に 対して、 4つのフリップフロップ 201による遅延処理が施されて、 1クロック遅延、 2クロ ック遅延、 3クロック遅延および 4クロック遅延の信号が作られる。入力画像信号と 4ク ロック遅延信号が加算器 202により加算される。また、 1クロック遅延信号と 3クロック 遅延信号が、もう一つの加算器 202により加算される。各々の加算器 202からの出力 力 フィルタ係数部 203から出力されるフィルタ係数と乗算器 204で乗算され、乗算さ れた信号が加算器 205に出力される。 2クロック遅延の信号も、フィルタ係数部 303か ら出力されるフィルタ係数と乗算器 204により乗算され、加算器 205に出力される。加 算器 205は、入力された 3つの信号を加算し、出力画像信号を出力する。このように して、水平ローパスフィルタ処理が行われる。
[0036] 図 3に示すように、垂直 LPF部 117では、入力画像信号に対して、 4つのラインメモ リ 301による遅延処理が施されて、 1ライン遅延、 2ライン遅延、 3ライン遅延、 4ライン 遅延の信号が生成される。入力画像信号と 4ライン遅延信号が、加算器 302により加 算される。また、 1ライン遅延信号と 3ライン遅延信号が、もう一つの加算器 302により 加算される。各々の加算器 302からの出力力 フィルタ係数部 303から出力されるフ ィルタ係数と乗算器 304により乗算され、乗算された信号が加算器 305に出力される 。 2ライン遅延信号も、フィルタ係数部 303から出力されるフィルタ係数と乗算器 304 により乗算され、加算器 305に出力される。加算器 305は、入力された 3つの信号を 加算し、出力画像信号を出力する。このようにして垂直ローパスフィルタ処理が行わ れる。フィルタ係数部 303では、入力される係数制御信号に従って、出力するフィル タ係数を変更することが可能である。
[0037] 次に、図 4および図 5を用いて、撮像装置の動作を説明する。この例では、図 6Aの 入力画像から、図 6Bの出力画像が生成される。
[0038] 水平方向の動作を説明すると、図 4に示すように、入力画像の水平有効画素数が 1 280であり、入力画像に対して水平 LPF部 112の出力は 2クロック遅延する。制御部 111は、その遅延を考慮した時点から、 FIFO部 113に対するライトイネーブル信号 1 18を 1クロック毎に有効にする。これにより水平方向の 640個の信号が FIFO部 113 に書き込まれる。また同時に、制御部 111は、 FIFO部 113に対するリードィネーブル 信号 119を入力水平同期信号と同時タイミングに有効にし、 640クロック間有効にす る。これにより、前ラインで書込まれた 640個のデータが読み出される。
[0039] FIFO部 113から読み出された信号は、水平 LPF部 114に入力される。水平 LPF 部 114は、 2クロック遅延で信号を出力する。制御部 111はその遅延分を考慮した時 点から、 FIFO部 115に対するライトイネ一ブル信号 121を 1クロック毎に有効にする 。これにより、水平方向の 320個の信号が FIFO部 115に書き込まれる。また、制御 部 111は、 FIFO部 113のリードィネーブル信号が無効になった時点力 FIFO部 11 5のリードィネーブル信号 121を 320クロック間有効にする。これにより、制御部 111 は、このラインで書き込まれた 320個の信号を FIFO部 115から読み出す。
[0040] また制御部 111は、 MUX部 116に対して MUX選択信号 122を出力して MUX部 116を制御する。 MUX選択信号 122は、 FIFO部 113のリードイネ一ブルが有効に なっている間は、 FIFO部 113からの信号を選択し、かつ、 FIFO部 115のリードイネ 一ブル信号が有効になっている間は、 FIFO部 115からの信号を選択するように、 M UX部 116を制御する信号である。 MUX部 116は MUX選択信号 122に従つて信号 を選択および出力する。制御部 111は、 MUX選択信号 122と同じ信号を垂直 LPF 部 117に対する係数選択信号 123として出力している。係数選択信号 123に従い、 垂直 LPF部 117は、 FIFO部 113からの信号が入力されている間は、 1Z2間引き用 のフィルタを画像信号にかけ、 FIFO部 115からの信号が入力されている間は、 1Z4 間弓 Iき用のフィルタを画像信号にかける。
[0041] 以上の処理により、間引きが行われた 640画素の画像信号と、さらに間引きが行わ れた 320画素の画像信号とが、水平方向に連続的に配置されることになる。
[0042] 垂直方向の動作としては、図 5に示すように、 FIFO部 113への書込み、読み出し で信号が 1ライン遅延する。また、垂直 LPF部 117の処理で、信号が 2ライン遅延す る。その結果、合計 3ライン遅延で信号が出力される。そこで、制御部 111は、入力垂 直同期信号に対して 3ライン遅延した垂直同期信号を生成する。この信号は、出力 垂直同期信号 124として生成され、解像度変換部 110から出力される。
[0043] このような本発明の第 1実施形態によれば、図 6Aの入力画像から図 6の出力画像 が生成される。入力画像は、水平 1280画素、垂直 960ラインの画像であり、すなわ ち 4VGA画像である。出力画像は、水平 640画素、垂直 480ラインの画像 (VGA画 像)と、水平 320画素、垂直 240ラインの画像 (QVGA画像)とを填め込んだ画像であ る。 2つの縮小画像は、入力画像のサイズの中に填め込まれている。このような本発 明の特徴的な画像を、「填め込み画像」という。
[0044] 図の例における填め込み画像についてより詳細に説明すると、入力画像の有効画 像領域 (入力画像サイズ)は、水平方向に 1280画素、垂直方向に 960ラインの領域 である。この有効画像領域内に、 VGA画像填め込み領域と、 QVGA画像填め込み 領域が並んで設定されている。 VGA画像填め込み領域の幅は 640画素であり、 QV GA画像填め込み領域の幅は 320画素である。残りの領域はダミー領域であり、その 幅は 320画素である。各領域の縦方向の幅は 960ラインである。 VGA画像は出力画 像の VGA画像填め込み領域に 2ラインおきに組み込まれてよぐ QVGA画像は出 力画像の QVGA画像填め込み領域に 4ラインおきに組み込まれてよ 、。このようにし て、出力画像信号は、 VGA画像信号と QVGA画像を各々の填め込み領域に填め 込んだ画像になる。
[0045] 以上に本発明の第 1の実施の形態について説明した。本実施の形態によれば、解 像度変換部が、上述のような填め込み画像の形で画像を出力する。これにより、異な るサイズの複数の画像を一度に出力することができ、したがって異なる解像度の複数 の画像を一度に出力することができる。そして、複数の解像度の画像を入力フレーム レートで出力することが可能になる。
[0046] また、本実施の形態では、入力画像サイズの中には、複数の異なるサイズの縮小 画像をそれぞれ嵌め込むための複数の填め込み領域が並んで設定されて 、る。解 像度変換部 110は、入力画像に対して複数段階の縮小処理、より具体的には間引き 処理、を行うことにより複数の異なるサイズの縮小画像を生成し、複数の異なるサイズ の縮小画像の信号を順次出力する。これにより、解像度変換部 110は、複数の填め 込み領域に複数の異なるサイズの縮小画像が嵌め込まれた填め込み画像を出力す る。このような構成により、異なる解像度の複数の画像を同時に出力可能にする本発 明の填め込み画像を好適に生成できる。
[0047] "第 2実施形態"
次に本発明の第 2実施形態について図 7、図 8、図 9を用いて説明する。図 7は、本 実施形態の撮像装置における解像度変換部の構成を示している。図 8は、解像度変 換部の動作を示している。図 9Aおよび図 9Bは、本実施形態における出力画像を示 している。以下の説明では、上述した実施形態と共通する事項の説明は省略する。
[0048] 図 7の解像度変換部 701においては、図 1の解像度変換部 110との違いとして、遅 延部 702、 MUX部 703および情報付加部 704が追加されている。遅延部 702には 入力画像信号が入力され、遅延部 702は入力画像信号を遅延させて、 MUX部 706 に出力する。 [0049] MUX部 703には、垂直 LPF部 117の出力と、遅延部 702の出力とが入力される。 前者が第 1の実施の形態の填め込み画像であり、後者は、解像度変換前の原画像 である。そして、 MUX部 703は、制御部 705からの MUX選択信号 706に従い、どち らかの信号を選択して出力する。制御部 705は、 MUX部 703に、填め込み画像と原 画像を交互に出力させてもよい。また、制御部 705は、 MUX部 703に、填め込み画 像と原画像をランダムに出力させてもよい。
[0050] 情報付加部 704には、 MUX部 703の出力が入力される。情報付加部 704は、制 御部 705からの情報付加指示信号 707により、画像信号に付加情報を付加して出力 する。付加情報は、 MUX部 703で選択された画像を判別する情報であり、すなわち 、填め込み画像と原画像を判別する情報である。また、制御部 705においては、第 1 の実施の形態の制御部 111に対して、上述した MUX部 703および情報付加部 704 に対する制御機能が追加されて 、る。
[0051] 次に、図 8を参照し、本実施の形態の撮像装置の動作を説明する。入力画像信号 力 水平 LPF部 112に入力され、垂直 LPF部 117から出力されるまでの動作は、第 1実施形態で説明したとおりである。垂直 LPF117の出力信号は入力信号力も 3ライ ン遅延する。同時に、入力画像信号は、遅延部 702により 3ライン遅延され、 MUX部 703〖こ人力される。
[0052] 制御部 705は、フレームの切り替わりタイミングで、 MUX選択信号 706を出力した い画像に切り替える。これにより、 MUX部 703は、入力画像そのままの原画像力、縮 小画像を填めこんだ填め込み画像かを選択する。図 8は、フレームの始まりで遅延部 702の原画像出力を選択する場合の動作を示している。
[0053] また、情報付加部 704は、制御部 705からの情報付加指示信号 707に従 、、 MU X部 703の出力信号に対して付加情報を載せる。付加情報は、上述のように、垂直 L PF117からの填め込み画像と遅延部 702からの原画像のどちらを出力しているかの 情報である。付加情報は、 1100ライン目のラインに付加される。例えば、遅延部 702 力もの出力信号を出力する場合は、 1100ラインの全部の画素値が 0 (零)とされる。 垂直 LPF部 117からの出力信号を出力する場合は、全部のの画素値が 1(一)にされ る。 [0054] なお、付加情報は、 2つの画像を区別することができる任意の情報でょ 、。付加情 報は、他の値でもよい。また、上述の例のようにライン上の全部の画素に付加情報が 付加されなくてもよい。
[0055] 図 9Aおよび図 9Bは、解像度変換部 701の出力画像を示している。本実施の形態 では、図 9Aおよび図 9Bのどちらかの画像が出力される。図 9Aは、入力画像そのま まの原画像である。ただし、情報付加ラインに付加情報として画素値 0が付加されて いる。図 9Bは填め込み画像であり、情報付加ラインに付加情報として画素値 1が付 加されている。
[0056] このような本発明の第 2実施形態は、本撮像装置が原画像または填め込み画像を 交互に、あるいはランダムに出力する場合に好適である。このような場合でも、画像信 号を受け取った側で、出力信号が填め込み画像か、原画像 (入力画像)かの判断が 可能となる。したがって画像信号を受け取った側で、填め込み画像からの縮小画像 の取出しが必要力否かの判断が可能となる。
[0057] "第 3実施形態"
次に、本発明の第 3実施形態について図 10および図 11を用いて説明する。図 10 は、本実施形態の撮像装置の構成を示しており、図 11は、本実施形態における符号 化部の動作を示している。以下の説明では、上述した実施形態と共通する事項の説 明は省略する。
[0058] 図 10では、図 1に対して、符号ィ匕部 1001および通信ネットワーク部 1004が追加さ れている。撮像部 101および解像度変換部 110の構成は、図 1に示される第 1の実 施の形態と同様である。符号ィ匕部 1003は、解像度変換部 110からの画像を入力し、 圧縮符号化を行い圧縮画像情報を出力する。通信ネットワーク部 1004は、符号ィ匕 部 1001からの圧縮画像情報を通信ネットワーク網に出力する。
[0059] 符号ィ匕部 1001は、画像処理 DSP1002および SDRAM1003で構成されている。
SDRAM1003は画像処理 DSP1002のバスに接続されている。通信ネットワーク部 1004は、 CPU1005と、 CPU1005のバスに接続された SDRAM1006、 FLASHメ モリ 1007およびイーサチップ 1008で構成されている。 FLASHメモリ 1007は、プロ グラムを保存している。イーサチップ 1008は、イーサネット (登録商標)と接続するため イーサ MACおよび PHYで構成されている。また、画像処理 DSP1002も CPU100 5のバスに接続されている。
[0060] 次に、本実施の形態の撮像装置の動作を説明する。撮像部 101および解像度変 換部 110の動作は第 1の実施の形態と同様である。撮像装置 101からの画像信号は 、解像度変換部 110により、図 6Bの出力画像に変換され、出力される。符号化部 10 01においては、図 11に示すように、画像がキヤプチヤされ(S101)、図 6Bの画像か ら QVGA画像が取り出される(S 102)。 QVGA画像は、水平 320画素、垂直 240ラ インの小さい方の縮小画像である。ステップ S102では、画像の左端から 641画素目 力も 320画素分の信号力 4ライン毎に取り出され、これにより QVGA画像填め込み 領域から、 QVGA画像が取り出される。取り出された QVGA画像の圧縮符号ィ匕が行 われ(S103)、符号化結果が CPU1005に対して出力される(S104)。
[0061] 次に図 6Bの画像から VGA画像が取り出される(S105)。 VGA画像は、水平 640 画素、垂直 480ラインの大きい方の縮小画像である。ステップ S 105では、画像の左 端から 640画素分の信号力 2ライン毎に取り出される。これにより、 VGA画像填め 込み領域から、 VGA画像が取り出される。取り出された VGA画像の圧縮符号化が 行われ(S106)、符号化結果が CPU1005に出力される(S107)。
[0062] CPU1005は、符号化部 1001から受け取った符号化結果を元に、 SDRAM1003 に蓄えられている符号化された画像信号を読み出す。 CPU1005は、 SDRAM 100 6を用いて TCP/IPまたは UDPZIPのプロトコルに合わせてパケットデータを生成 し、イーサチップ 1008を介してパケットデータをイーサネット (登録商標)に出力する 。 CPU1005は、 VGA画像を要求しているユーザーに対しては、 VGA画像を出力し 、 QVGA画像を要求しているユーザーには QVGA画像を出力する。
[0063] なお、符号ィ匕部 1001における符号ィ匕方式は、 JPEG等の静止画符号ィ匕でもよぐ MPEG等の動画像符号ィ匕でもよ 、。 QVGA画像と VGA画像で符号化方式が同じ でもよぐ異なっていてもよい。好ましくは、符号ィ匕部 1001が、複数の符号化方式に 対応するように構成される。そして、符号ィ匕部 1001は、画像サイズ毎に符号化方式 を選択可能に構成され、 CPU1005の指示で符号化方式を選択する。この構成は、 他の任意の実施の形態にも同様に適用されてよい。 [0064] このような本発明の第 3実施形態によれば、符号ィ匕部 1001および通信ネットワーク 部 1004が設けられる。符号ィ匕部 1001が、解像度変換部 110からの填め込み画像 力 複数の縮小画像を取り出し、それら複数の縮小画像の符号化を行う。これにより 、撮像部での撮像フレームレートと同じフレームレートで、複数の縮小画像に対して、 圧縮符号ィ匕およびネットワーク網への出力を行うことが可能となる。
[0065] また、符号ィ匕部 1001は、複数の符号化方式に対応しており、画像サイズ毎に符号 化方式を選択可能である。この構成により、撮像装置にネットワークで接続された表 示端末に合わせた符号ィ匕方式での符号ィ匕が可能となる。
[0066] その他、本実施の形態において、符号ィ匕部 1001は、画像サイズ毎に符号化するフ レームレートを変更可能に構成されてよい。この構成により、撮像装置にネットワーク で接続された表示端末に合わせた画像サイズでの符号ィ匕が可能となる。また、小さ V、画像サイズは高フレームレートで符号ィ匕し、大き 、画像サイズは低フレームレート で符号化することができる。これにより、符号化処理負荷の低減、および出力するデ ータ量の削減が可能となる。この構成は、他の実施の形態にも適用されてよい。
[0067] "第 4実施形態"
次に、本発明の第 4実施形態について説明する。本実施の形態の撮像装置は、図 10に示した第 3の実施形態と同様の構成を有している。ただし、以下に説明するよう に、符号化部 1001に、填め込み画像の圧縮符号化処理に適した符号化パラメータ の調整機能が追加されている。図 12は、本実施形態における符号ィ匕部の動作を示 している。以下の説明では、上述した実施形態と共通する事項の説明は省略する。
[0068] 撮像装置 101からの画像信号は、解像度変換部 110により、図 6Bの出力画像に変 換され、出力される。符号ィ匕部 1001においては、図 12に示すように、画像がキヤプ チヤされ(S201)、そして、図 6Bの画像から QVGA画像が取り出される(S202)。取 り出し処理は既に説明した通りである。そして、 QVGA画像の圧縮符号ィ匕が行われ( S203)、符号ィ匕の結果、発生した符号量が指定されている範囲内であるかの判断処 理が行われる(S204)。符号量が指定範囲内に入っていない場合は、量子化パラメ ータの調整が行われ (S205)、再度 QVGA画像の符号ィ匕が行われる(S203)。ステ ップ S204において符号量が指定範囲内に入っていた場合は、符号ィ匕結果力 SCPU 1005に対して出力される(S206)。
[0069] 次に、 QVGA画像の符号ィ匕における量子化パラメータと発生符号量の関係から、 VGA画像に対する量子化パラメータの調整が行われる(S207)。 QVGA画像の量 子化パラメータと発生符号量の関係は、上述の QVGA画像の取り出しおよび符号ィ匕 の過程で得られる。 QVGA画像の符号ィ匕において、当初の量子化パラメータより量 子化の値を上げることにより指定された範囲に符号量が収められたとする。この場合 は、 VGAの符号ィ匕の前に、 VGAの符号化に使用する量子化の値も上げる。 QVGA 画像の符号ィ匕において、量子化パラメータが下げられたとする。この場合は、 VGA の符号化に使用する量子化の値も下げられる。このような符号化パラメータの調整処 理がステップ S 207で行われる。
[0070] 次に、図 6Bの画像から VGA画像が取り出される(S208)。取り出し処理は既に説 明した通りである。そして、 VGA画像の符号ィ匕が行われる(S 209)。ここでは、ステツ プ S207で調整されたパラメータが用いられる。そして、 VGA画像の発生符号量が指 定範囲以内か否かの判断処理が行われる(S210)。符号量が指定範囲外の場合は 、量子化パラメータの調整が行われ (S211)、再度 VGA画像の符号ィ匕が行われる( S209)。ステップ S210において符号量が指定範囲内であった場合は、符号化結果 力 SCPU1005に対して出力される(S212)。そして、通信ネットワーク部 1004により、 画像信号がネットワーク網に出力される。通信ネットワーク部 1004の動作は、第 3実 施形態と同じである。
[0071] 以上に、本発明の第 4の実施形態に係る撮像装置について説明した。本実施の形 態によれば、圧縮符号化部は、填め込み画像カゝら複数のサイズの画像を取り出し符 号ィ匕を行う過程で、或るサイズの画像の符号ィ匕結果を基に、その他のサイズの画像 の符号化における符号化パラメータを調整する。この構成は、上述の例のように符号 化後のデータサイズを各画像サイズ毎に決められた範囲内に収めることが必要な場 合に好適である。この構成により、或る画像サイズの符号ィ匕における量子化パラメ一 タと符号ィ匕後のデータサイズの関係から、別の画像サイズにおける量子化パラメータ の調整が可能となる。これにより、決められた範囲内にデータサイズが収まる確率を あげることが出来る。 [0072] また、本実施の形態では、符号ィ匕部 1001は、複数の異なるサイズの画像の符号ィ匕 を行うときに、小さいサイズの画像力 順番に符号ィ匕を行う。この構成も、本実施の形 態のように符号ィ匕後のデータサイズを各画像サイズ毎に決められた範囲内に収める ことが必要な場合に好適である。小さいサイズから符号ィ匕を行うことにより、処理時間 力 Sかかる大きな画像サイズにおいて、決められたデータサイズの範囲内に収めるため の再符号化処理を低減できる。これにより、符号化における処理時間を短縮すること が出来る。
[0073] (第 5実施形態)
次に、本発明の第 5実施形態について図 13および図 14を用いて説明する。図 13 は、本実施形態における撮像装置の構成を示し、図 14は、符号化部の動作を示して いる。
[0074] 図 14に示すように、本実施形態の撮像装置では、、図 10の解像度変換部 101が 解像度変換部 701に代えられている。解像度変換部 701の構成は図 7を用いて説明 した通りである。また、本実施の形態では、解像度変換部 701から出力される填め込 み画像と原画像の 2種類の画像を処理するために、符号ィ匕部 1001が以下の機能を 実現するように構成されている。以下の説明では、上述した実施形態と共通する事項 の説明は省略する。
[0075] 撮像装置 101からの画像信号が解像度変換部 701にて処理され、図 9Aの原画像 と図 9Bの填め込み画像が出力される。本実施の形態では、解像度変換部 701が、 原画像と填め込み画像を交互に出力する。すなわち、或るフレームにおいて原画像 が出力されると、次のフレームでは填め込み画像が出力され、その次のフレームでは 原画像が出力される。
[0076] 符号ィ匕部 1001においては、図 14に示すように、画像がキヤプチヤされ (S301)、 付加情報が読み込まれる(S302)。付加情報は、図 9Aおよび図 9Bに示したように、 画像の一番上のラインのデータである。符号ィ匕部 1001は、付加情報に基づき、キヤ プチヤした画像力 4VGA画像(水平 1280画素、垂直 960ラインの画像)(図 9A)か 、 VGAと QVGAの填め込み画像 (図 9B)かの判断を行う(S303)。
[0077] キヤプチャ画像が填め込み画像であった場合は、符号ィ匕部 1001は、 QVGA画像 (水平 320画素、垂直 240ライン)を取り出し (S304)、 QVGA画像の圧縮符号ィ匕を 行い(S305)、符号ィ匕結果を CPU1005に対して出力する(S306)。次に、符号ィ匕 部 1001は、 VGA画像を取り出し(S307)、 VGA画像の圧縮符号化を行い(S308) 、符号ィ匕結果を CPU1005に出力する(S309)。
[0078] ステップ S303にお 、て、キヤプチャ画像が 4VGA画像であった場合は、符号化部 1001は、 4VGA画像を取り出し(S310)、 4VGA画像の符号化を行い(S311)、 4V GA画像の符号ィ匕結果を CPU1005に対して出力する(S312)。通信ネットワーク部 1003の動作は、第 3の実施の形態と同じである。ただし、通信ネットワーク 1003は、 QVCA符号化画像、 VGA画像に加えて、 4VGA画像も処理する。通信ネットワーク 部 1003は、 QVGA符号化画像、 VGA符号化画像、 4VGA符号化画像を符号化部 カゝら読み出し、 4VGAを要求しているユーザーに対しては 4VGA符号ィ匕画像を出力 し、 VGA画像を要求しているユーザーに対しては VGA符号ィ匕画像を出力し、 QVG A画像を要求しているユーザーには QVGA符号ィ匕画像を出力する。
[0079] このような本発明の第 5実施形態によれば、符号ィ匕部 1001は、解像度変換部 701 からの画像に付加された付加情報により、入力されている画像の判別を行う。符号化 部 701は、判別結果により、縮小画像の取り出し処理の有無を判断する。そして、符 号ィ匕部 701は、取り出し処理を行う場合は、取り出し処理を行った後、複数の縮小画 像の符号化を行い、取り出し処理を行わない場合は入力画像の符号化を行う。これ 構成により、解像度変換部が填め込み画像と原画像を交互に出力した場合に、撮像 部での撮像フレームレートの半分のフレームレートで、複数の縮小画像および原画 像に対して、圧縮符号ィ匕およびネットワーク網への出力を行うことが可能となる。
[0080] なお、第 4実施形態の構成が第 5実施形態に組み込まれてよい。この場合、填め込 み画像が符号ィ匕部 1001に入力されたときに、 QVGA画像の符号化結果に基づい て VGA画像の符号化の量子化パラメータが調整される。
[0081] 以上に現時点で考えられる本発明の好適な実施の形態を説明した力 本実施の形 態に対して多様な変形が可能なことが理解され、そして、本発明の真実の精神と範 囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されてい る。 産業上の利用可能性
以上のように、本発明にかかる撮像装置は、複数の解像度の画像を出力可能な力 メラ等として有用である。

Claims

請求の範囲
[1] 撮像デバイスにより被写体を撮像し画像信号を生成する撮像部と、
前記撮像部により撮影された前記画像信号の解像度を変換し、変換された画像信 号を出力する解像度変換部と、
を備え、
前記解像度変換部は、前記撮像部から入力された画像を、複数の異なるサイズの 画像に縮小し、前記撮像部からの入力画像サイズの中に複数の異なるサイズの縮小 画像を填め込んだ填め込み画像を出力することを特徴とする撮像装置。
[2] 前記入力画像サイズの中には、複数の異なるサイズの縮小画像をそれぞれ嵌め込 むための複数の填め込み領域が並んで設定されており、前記解像度変換部は、入 力画像に対して複数段階の縮小処理を行うことにより複数の異なるサイズの縮小画 像を生成し、前記複数の異なるサイズの縮小画像の信号を順次出力することにより、 前記複数の填め込み領域に前記複数の異なるサイズの縮小画像が嵌め込まれた前 記填め込み画像を出力することを特徴とする請求項 1に記載の撮像装置。
[3] 前記解像度変換部は、前記填め込み画像の出力と、前記撮像部から入力されたサ ィズのままの原画像出力との切り替えを行うとともに、前記填め込み画像と前記原画 像とのどちらの画像を出力しているかを示す付加情報を、画像情報に付加して出力 することを特徴とする請求項 1記載の撮像装置。
[4] 前記解像度変換部からの画像を入力し、圧縮符号化を行!ヽ圧縮画像情報を出力 する圧縮符号化部と、
前記圧縮符号化部からの前記圧縮画像情報を通信ネットワーク網に出力する通信 ネットワーク部とを備え、
前記圧縮符号化部は、前記解像度変換部からの前記填め込み画像から複数の縮 小画像を取り出し、符号化を行うことを特徴とする請求項 1記載の撮像装置。
[5] 前記解像度変換部からの画像を入力し、圧縮符号化を行!ヽ圧縮画像情報を出力 する圧縮符号化部と、
圧縮符号ィ匕部力 の前記圧縮画像情報を通信ネットワーク網に出力する通信ネット ワーク部とを備え、 前記圧縮符号化部は、前記解像度変換部からの画像に付加された前記付加情報 により、入力されている画像の判別を行い、判別結果により、縮小画像の取り出し処 理の有無を判断し、取り出し処理を行う場合は、取り出し処理を行った後、符号化を 行!、、取り出し処理を行わな 、場合は入力画像の符号ィ匕を行うことを特徴とする請求 項 3記載撮像装置。
[6] 前記圧縮符号化部は、前記填め込み画像カゝら複数のサイズの画像を取り出し符号 化を行う過程で、或るサイズの画像の符号ィ匕結果を基に、その他のサイズの画像の 符号化における符号化パラメータを調整することを特徴とする請求項 4記載の撮像装 置。
[7] 前記圧縮符号化部は、前記複数の異なるサイズの画像の符号ィ匕を行うときに、小さ いサイズの画像力も順番に符号ィ匕を行うことを特徴とする請求項 6記載の撮像装置。
[8] 前記圧縮符号化部は、前記填め込み画像カゝら複数のサイズの画像を取り出し符号 化を行う過程で、或るサイズの画像の符号ィ匕結果を基に、その他のサイズの画像の 符号化における符号化パラメータを調整することを特徴とする請求項 5記載の撮像装 置。
[9] 前記圧縮符号化部は、前記複数の異なるサイズの画像の符号ィ匕を行うときに、小さ いサイズの画像力も順番に符号ィ匕を行うことを特徴とする請求項 8記載の撮像装置。
[10] 前記圧縮符号化部は、画像サイズ毎に符号ィ匕するフレームレートを変更することを 特徴とする請求項 4記載の撮像装置。
[11] 前記圧縮符号化部は、画像サイズ毎に符号ィ匕するフレームレートを変更することを 特徴とする請求項 5記載の撮像装置。
[12] 前記圧縮符号化部は、複数の符号化方式に対応しており、画像サイズ毎に符号化 方式を選択可能であることを特徴とする請求項 4記載の撮像装置。
[13] 前記圧縮符号化部は、複数の符号化方式に対応しており、画像サイズ毎に符号化 方式を選択可能であることを特徴とする請求項 5記載の撮像装置。
[14] 入力された画像信号の解像度を変換し、変換された画像信号を生成する画像処理 方法であって、
入力画像を複数の異なるサイズの画像に縮小し、入力画像サイズの中に複数の異 なるサイズの縮小画像を填め込んだ填め込み画像を生成することを特徴とする画像 処理方法。
PCT/JP2007/054712 2006-06-13 2007-03-09 撮像装置 WO2007145004A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/304,373 US8264586B2 (en) 2006-06-13 2007-03-09 Imaging apparatus
EP07738197A EP2026565A4 (en) 2006-06-13 2007-03-09 IMAGE FORMING APPARATUS
CN2007800219604A CN101467439B (zh) 2006-06-13 2007-03-09 拍摄装置
JP2008521108A JP5011289B2 (ja) 2006-06-13 2007-03-09 撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006163147 2006-06-13
JP2006-163147 2006-06-13

Publications (1)

Publication Number Publication Date
WO2007145004A1 true WO2007145004A1 (ja) 2007-12-21

Family

ID=38831526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054712 WO2007145004A1 (ja) 2006-06-13 2007-03-09 撮像装置

Country Status (5)

Country Link
US (1) US8264586B2 (ja)
EP (1) EP2026565A4 (ja)
JP (1) JP5011289B2 (ja)
CN (1) CN101467439B (ja)
WO (1) WO2007145004A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024361A1 (ja) * 2009-08-27 2011-03-03 パナソニック株式会社 ネットワークカメラ及び映像配信システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450014B2 (ja) * 2007-05-30 2010-04-14 セイコーエプソン株式会社 プロジェクタ、画像表示装置、および、画像処理装置
KR20140111736A (ko) * 2013-03-12 2014-09-22 삼성전자주식회사 디스플레이장치 및 그 제어방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024919A (ja) * 1999-07-02 2001-01-26 Canon Inc 画像処理装置、カメラ一体型画像記録再生装置、画像処理システム、画像処理方法、及び記憶媒体
JP2002112212A (ja) * 2000-09-29 2002-04-12 Matsushita Electric Ind Co Ltd 画像表示装置及び画像表示方法
JP2003032526A (ja) * 2001-07-17 2003-01-31 Nikon Corp 電子カメラ
JP2003032522A (ja) * 2001-07-13 2003-01-31 Nikon Corp 電子カメラ
JP2003134386A (ja) 2001-10-23 2003-05-09 Fuji Photo Film Co Ltd 撮像装置および撮像方法
JP2004112579A (ja) 2002-09-20 2004-04-08 Matsushita Electric Ind Co Ltd 解像度変換回路、それを用いたデジタルスチルカメラおよびデジタルビデオカメラ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1054694A (zh) 1990-03-08 1991-09-18 秦方 多画面电视
US5164831A (en) 1990-03-15 1992-11-17 Eastman Kodak Company Electronic still camera providing multi-format storage of full and reduced resolution images
JPH10174035A (ja) * 1996-12-16 1998-06-26 Sharp Corp 画像情報処理装置
US6278447B1 (en) * 1997-06-10 2001-08-21 Flashpoint Technology, Inc. Method and system for accelerating a user interface of an image capture unit during play mode
US6243645B1 (en) * 1997-11-04 2001-06-05 Seiko Epson Corporation Audio-video output device and car navigation system
US6041143A (en) * 1998-04-14 2000-03-21 Teralogic Incorporated Multiresolution compressed image management system and method
JP2000251090A (ja) 1999-03-01 2000-09-14 Sony Computer Entertainment Inc 描画装置及び該描画装置で被写界深度を表現する方法
US6847388B2 (en) * 1999-05-13 2005-01-25 Flashpoint Technology, Inc. Method and system for accelerating a user interface of an image capture unit during play mode
EP1429553B1 (en) * 2001-07-13 2009-09-09 Nikon Corporation Electronic camera
JP4011949B2 (ja) * 2002-04-01 2007-11-21 キヤノン株式会社 マルチ画面合成装置及びデジタルテレビ受信装置
JP2005045312A (ja) * 2003-07-22 2005-02-17 Minolta Co Ltd 撮像装置、撮像装置の調整方法、および撮像装置の製造方法
CN1947412B (zh) * 2004-05-13 2011-06-15 索尼株式会社 摄像装置、画面显示方法
US20070076099A1 (en) * 2005-10-03 2007-04-05 Eyal Eshed Device and method for hybrid resolution video frames
JP4689440B2 (ja) * 2005-11-04 2011-05-25 キヤノン株式会社 撮像装置、及び処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024919A (ja) * 1999-07-02 2001-01-26 Canon Inc 画像処理装置、カメラ一体型画像記録再生装置、画像処理システム、画像処理方法、及び記憶媒体
JP2002112212A (ja) * 2000-09-29 2002-04-12 Matsushita Electric Ind Co Ltd 画像表示装置及び画像表示方法
JP2003032522A (ja) * 2001-07-13 2003-01-31 Nikon Corp 電子カメラ
JP2003032526A (ja) * 2001-07-17 2003-01-31 Nikon Corp 電子カメラ
JP2003134386A (ja) 2001-10-23 2003-05-09 Fuji Photo Film Co Ltd 撮像装置および撮像方法
JP2004112579A (ja) 2002-09-20 2004-04-08 Matsushita Electric Ind Co Ltd 解像度変換回路、それを用いたデジタルスチルカメラおよびデジタルビデオカメラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2026565A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024361A1 (ja) * 2009-08-27 2011-03-03 パナソニック株式会社 ネットワークカメラ及び映像配信システム

Also Published As

Publication number Publication date
EP2026565A4 (en) 2010-07-07
CN101467439A (zh) 2009-06-24
JP5011289B2 (ja) 2012-08-29
US20090189993A1 (en) 2009-07-30
EP2026565A1 (en) 2009-02-18
JPWO2007145004A1 (ja) 2009-10-29
US8264586B2 (en) 2012-09-11
CN101467439B (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
JP3096618B2 (ja) 撮像装置
US8538174B2 (en) Image processing device
US20060264733A1 (en) Image sensing apparatus, method thereof, storage medium and computer program
US20050117029A1 (en) Image capture apparatus and image capture method in which an image is processed by a plurality of image processing devices
JP2008294689A (ja) 撮像装置、撮像回路、および撮像方法
KR20070027605A (ko) 화상 압축 처리 장치, 화상 압축 처리 방법 및 화상 압축처리 프로그램
WO2012029208A1 (ja) 画像符号化方法、画像復号化方法、画像符号化装置及び画像復号化装置
JP2006514501A (ja) 改善されたカメラ付き移動電話機
JP2002300591A (ja) 半導体集積回路および撮像システム
WO2004004361A1 (ja) 情報端末
WO2007145004A1 (ja) 撮像装置
WO2005106790A1 (ja) 携帯電話機、画像変換装置、制御方法及びプログラム
US8482438B2 (en) Data processing device and data processing method
JP2006304203A (ja) 色差間引きの変換機能を有する電子カメラ
JP4244218B2 (ja) 撮像信号処理回路およびカメラシステム
JP2011223146A (ja) 電子カメラ
KR100827680B1 (ko) 썸네일 데이터 전송 방법 및 장치
JP2006311435A (ja) 画像処理装置、撮像装置、画像処理システム
JP4281161B2 (ja) 電子カメラ
US8031245B2 (en) Imaging apparatus and methods, and storing medium having computer program to perform the methods
CN110225261B (zh) 一种ZigZagHDR曝光控制系统及其进行曝光控制的方法
US7787690B2 (en) Image compression and expansion device
TW200904143A (en) Image auto-calibration method and system
JP2003244714A (ja) 画像処理装置及びデジタルスチルカメラ
KR19990075483A (ko) 비트 평면 압축장치 및 비트 평면 압축/복원 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021960.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738197

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008521108

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2007738197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007738197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12304373

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE