WO2007142303A1 - 遺伝子産物の産生量を制御する方法及び産生量制御剤 - Google Patents

遺伝子産物の産生量を制御する方法及び産生量制御剤 Download PDF

Info

Publication number
WO2007142303A1
WO2007142303A1 PCT/JP2007/061564 JP2007061564W WO2007142303A1 WO 2007142303 A1 WO2007142303 A1 WO 2007142303A1 JP 2007061564 W JP2007061564 W JP 2007061564W WO 2007142303 A1 WO2007142303 A1 WO 2007142303A1
Authority
WO
WIPO (PCT)
Prior art keywords
inos
mrna
gene product
sequence
gene
Prior art date
Application number
PCT/JP2007/061564
Other languages
English (en)
French (fr)
Inventor
Tadayoshi Okumura
Mikio Nishizawa
Yasuo Kamiyama
Koji Wakame
Takehito Miura
Original Assignee
Amino Up Chemical Co., Ltd.
Kansai Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amino Up Chemical Co., Ltd., Kansai Medical University filed Critical Amino Up Chemical Co., Ltd.
Priority to AU2007255731A priority Critical patent/AU2007255731B2/en
Priority to JP2008520620A priority patent/JP5271706B2/ja
Priority to EP07744892.6A priority patent/EP2031056B1/en
Priority to CN2007800211123A priority patent/CN101466835B/zh
Priority to US12/303,908 priority patent/US8399424B2/en
Priority to NZ574033A priority patent/NZ574033A/xx
Publication of WO2007142303A1 publication Critical patent/WO2007142303A1/ja
Priority to US13/770,682 priority patent/US8975023B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • A61K38/4866Protein C (3.4.21.69)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6811Selection methods for production or design of target specific oligonucleotides or binding molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/113Antisense targeting other non-coding nucleic acids, e.g. antagomirs

Definitions

  • the present invention relates to a method for controlling the production amount of a gene product in a cell, and more particularly to a method for increasing the production amount and a production amount control agent.
  • RNAi RNA interference
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-13224
  • a screening method for the double-stranded oligonucleotide and its antisense RNA is disclosed.
  • RNA interference using small nucleic acid molecules such as short interfering nucleic acids (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), microRNA (miRNA), and short hairpin RNA (shRNA) molecules (RNAi) discloses compounds useful for modulating the expression and activity of interleukin genes, interleukin superfamily genes, or genes involved in gene expression and / or interleukin pathway of activity ( (Patent Document 2: JP 2005-524393 A).
  • siNA short interfering nucleic acids
  • siRNA short interfering RNA
  • dsRNA double-stranded RNA
  • miRNA microRNA
  • shRNA short hairpin RNA
  • an antisense RNA When an antisense RNA is present in a cell, it hybridizes to a complementary mRNA and inhibits translation of the mRNA into a protein, thereby inhibiting gene expression. Artificial introduction of antisense RNA into cells can inhibit the expression of the target gene, so it is currently used as a technique to elucidate the function of the gene, and its application to pharmaceuticals is also being investigated. . However, there are many unclear points about the presence of RNA in cells. There were many unclear points regarding the regulation of expression targeting the transcription process from mRNA to protein.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-13224
  • Patent Document 2 JP 2005-524393 A
  • the present invention provides a method for controlling the production amount of a gene product in a cell, particularly a method for increasing the production amount and a production amount control agent.
  • RNA having a sequence complementary to mRNA antisense transcript (antisense transcript), usually a transcript of the antisense strand of DNA. It has been found that there are cases where it does contribute to the stabilization of mRNA, unlike conventional antisense RNA, and has completed this invention.
  • the present invention relates to a method for controlling the production amount of the following gene product, a method for screening a gene product to which the method can be applied, and a production amount control agent.
  • a method for increasing the production amount of a gene product in a cell comprising a substance containing a sequence complementary to the base sequence of mRNA corresponding to the gene product, a precursor thereof, or an action equivalent thereto.
  • a method for increasing the production amount of the gene product comprising a step of introducing a substance that can be contained in the cell into the cell.
  • a substance containing a sequence complementary to the base sequence of mRNA corresponding to the gene product, or a precursor thereof, or a substance that can have an action equivalent to those in the cell can stabilize mRNA in the cell.
  • the method for increasing the production amount according to 1 above which comprises the step of determining whether or not an antisense transcript containing a sequence complementary to the base sequence of mRNA corresponding to the gene product is present in the cell.
  • the presence of the antisense transcript is determined by reverse transcription from intracellular mRNA using a primer containing a part of the sense sequence at or near the 5 ′ end and 3 ′ end of the mRNA corresponding to the gene product. By checking for the presence of reverse transcripts 6.
  • a cytoforce-in production control agent comprising the substance described in 8 above.
  • Inducible nitric oxide synthase A substance that contains a sequence complementary to all or part of the mRNA and increases the amount of inducible nitric oxide synthase (iNOS) synthesized.
  • iNOS inducible nitric oxide synthase
  • Inducible nitric oxide synthase From cDNA derived by reverse transcription from intracellular mRNA using primers containing partial sequences at or near the 5 'and 3' ends of mRNA RNA containing a nucleotide sequence corresponding to the resulting sequence and increasing the amount of inducible nitrogen monoxide synthase (iNOS) synthesis.
  • An iNOS mRNA expression control agent comprising the substance according to any one of 10 to 12 above. The invention's effect
  • the gene product using a substance containing a sequence complementary to the base sequence of mRNA corresponding to a specific gene product or a precursor thereof, or a substance capable of having an action equivalent to those in the cell. Increase the production of.
  • a substance that is the same as or similar to the antisense transcript increases the amount of gene product produced by the sense strand.
  • antisense transcripts are thought to contribute to the stabilization of sense mRNA in cells, and the mechanism of action is completely different from the conventional method for controlling the expression level of antisense RNA.
  • a substance containing a sequence complementary to the base sequence of mRNA or a precursor thereof or a substance that can have an action equivalent to those in cells is usually 30% or more with respect to the base sequence of the mRNA.
  • the base length is preferably 50% or more, more preferably 70% or more.
  • the RNA strand may be partially modified or may be bound to other substances (for example, proteins, sugars, small molecules, etc.). Any precursor may be used as long as it is converted into the substance by metabolism in the cell to be introduced or in the organism to be administered.
  • an antisense transcript containing a sequence complementary to the base sequence of mRNA corresponding to the gene product in a cell is obtained. Determine if it exists. The presence of antisense transcripts is determined by reverse transcription from total intracellular RNA using primers that contain a portion of the sense sequence at or near the 5 'and 3' ends of the mRNA corresponding to the gene product. This is done by checking for the presence of reverse transcripts (cDNA). After synthesizing cDNA, the cDNA may be amplified by PCR, and the entire structure may be determined by RACE, for example.
  • a substance containing a sequence complementary to the base sequence of mRNA, a precursor thereof, or a substance that can have an action equivalent to those in the cells (hereinafter referred to as these Are referred to as “substances of the present invention”), oligonucleotides capable of hybridizing to the nucleotide sequence contained in the antisense transcript (hereinafter referred to as “sense oligos”) or derivatives thereof. Introduce into the inside and observe the increase or decrease in the production amount of the gene product. If the expression level of the gene product (original gene product) is increased by administering the substance of the present invention, positive control is possible as opposed to conventional antisense RNA.
  • Sense oligos are thought to reduce the effective amount of antisense transcripts in the cell by reacting with the antisense transcript (nobridization). If the expression level of the gene product (original gene product) is reduced by administration of the sense oligo, the antisense transcript is considered to be involved in positive expression level control.
  • the target gene product has its antisense transcript in the cell
  • (2) the antisense transcript is expressed in the gene product (original gene product).
  • the method of the present invention is effective. Therefore, applicable gene products can be easily screened by the methods (1) and (2) above.
  • various substances can be mentioned as the substance of the present invention.
  • the gene product is cyto-in, cyclooxygenase 2 (COX_2), chemokine, CINC—l (cytok me-induced neutrophil chemoattractant 1), NF— ⁇ B p50 , I ⁇ B—, etc., especially 3 ⁇ 4l-conducting nitric oxide synthase (iNOS) or its precursor.
  • COX_2 cyclooxygenase 2
  • CINC—l cytok me-induced neutrophil chemoattractant 1
  • NF— ⁇ B p50 cytok me-induced neutrophil chemoattractant 1
  • INOS 3 ⁇ 4l-conducting nitric oxide synthase
  • the species from which the gene product is derived does not matter.
  • an antisense transcript comprising a base sequence complementary to inducible nitric oxide synthase (iNOS inducible nitric oxide synthase) mRNA is hybridized only to an iNOS mRNA sense strand primer (strand (strand). It contains a nucleotide sequence that corresponds to the sequence obtained from complementary DNA (cDNA) by reverse transcription using a (strand) -specific primer).
  • iNOS inducible nitric oxide synthase inducible nitric oxide synthase
  • the substance of the present invention consisting of a base sequence complementary to the mRNA of iNOS is a nucleotide comprising the base sequence 1J identical or substantially identical to the base sequence represented by SEQ ID NO: 1.
  • the substantially identical nucleotide includes SEQ ID NO: 1 or a base sequence having a homology of 75% or more, preferably 90% or more, more preferably 95% or more, and an inducible nitric oxide synthase (iNOS). ) Is a substance that increases the amount of synthesis.
  • a substance containing a sequence complementary to the base sequence of mRNA, a precursor thereof, or a substance of the present invention that can have an action equivalent to those in cells is synthesized by chemical synthesis, known expression methods and And a purification method or a method described in Examples.
  • the present invention also extends to a cytoforce-in production control agent, particularly an iNOS production control agent containing these antisense transcripts and the like.
  • the sense oligonucleotide having a sequence complementary to the antisense transcript of iNOS mRNA is an oligonucleotide or a derivative thereof capable of hybridizing with the antisense transcript and degrading the nucleic acid in the nucleus. If it has been modified, it should not be broken down by enzymes.
  • Sense oligo design is based on the program “mfold” (http: ⁇ www.) Disclosed in Nucleic Acids Res. 31, 3406-3415 (2003) and J. Mol. Biol. 28 8, 911-940 (1999). bioinfo. ⁇ i.edu zu kerm / rna /)) to predict RNA secondary structure.
  • Sense oligo candidate sequences include thermodynamically stable segments (eg, regions other than the stem portion of a stem-norpe structure), preferably a stem-norpe loop structure. Design sense oligonucleotides for the moiety.
  • sequences containing sequences such as CG-3 ', 5'-GGGG3', and 5'-GGGGGG3 ' are selected (see J. Neurochem. 86, 374382 (2003)).
  • Examples of the sense oligo include the oligonucleotides shown below (the following sequences are shown without modification).
  • Sense oligos only need to be modified so that they are not degraded by nucleolytic enzymes in the nucleus.
  • Sense oligonucleotides are digested from both ends in the cell by the enzyme exonuclease, which removes nucleotides in order, such as 5 'or 3' terminal force.
  • S-sense oligonucleotide J Neurochem. 86, 374-382 (2003).
  • optical isomerism occurs, which is disadvantageous in terms of hybridization.
  • S-sense oligos include:
  • PNA peptide nucleic acids
  • LNA Locked Nucleic Acids
  • ENA 2'-O, 4'-C-Ethylene-bridged Nucleic Acids; Sigma Aldrich
  • morpholino Mo ⁇ holino
  • a sense oligo is introduced into a cell in which the presence of an antisense transcript of iNOS mRNA has been confirmed, so that it reacts (hybridizes) with the antisense transcript, and the antisense transcript is effective in the cell. Since it is thought to reduce the amount, it is possible to reduce the expression level of the original gene product (iNOS) by applying the sense oligo and to suppress the excessive production of NO.
  • iNOS original gene product
  • the following method is used to examine the presence of the antisense strand strength of the gene against the mRNA of latin HNOS, and whether or not there is a transcribed "antisense transcript".
  • the nucleotide sequence of the mRNA of ras HNOS is based on the DDBJ / EMBL / GenBank international nucleotide sequence database (http://www.ddbj.mg.ac.jp/, http://www.ebi.ac.uk / embl /, http: //www.ncbi.nlm.n ih.gov/Genbank/).
  • ARE AU-rich element
  • This method uses reverse transcription with a primer that hybridizes only to mRNA (strand-specific), such as oligo dT primer, to synthesize complementary DNA (cDNA), and then perform PCR. This method amplifies cDNA and measures the amount of mRNA.
  • RNA of rat primary hepatocytes in which iNOS mRNA was induced to synthesize cDNA was added to IL-1 in the medium, and RT-PCR was performed on the total RNA of rat primary hepatocytes in which iNOS mRNA was induced to synthesize cDNA.
  • RNA (1 ⁇ g) prepared from rat primary cultured hepatocytes and 2 pmol of primer were mixed, heated at 70 ° C for 10 minutes, and then rapidly cooled to 0 ° C.
  • dNTP (N A, C, G, T) (final concentration ImM)
  • 200 units ReverTra Ace reverse transcription Enzyme Toyobo was prepared and the total amount was 25 / il.
  • the reverse transcriptase was inactivated by heating at 70 ° C for 15 minutes.
  • 5 units of Tth RNase H (Toyobo) was covered and heated at 37 ° C for 20 minutes to degrade the RNA.
  • the synthesized cDNA was recovered by ethanol precipitation and dissolved in 20 ⁇ l of cocoon buffer.
  • a known temperature protocol for PCR is the step-down method (Nishizawa M, Nakajima T, Yasuda K, Kanzaki H, Sasaguri, Watanabe K, and ito S. Close kinsh ip of human 20a-hydroxysteroid dehydrogenase gene with three aldo-keto reductase genes. See Genes Cells (2000) 5, 111-125)). As a result of agarose gel electrophoresis of the PCR product, an amplification of a band of 186 base pairs (bp) was observed.
  • the RACE method (Frohman MA. Rapid amplification of complementary DNA ends for generation or full-end complementary DNAs: thermal RACE. Methods Enzymol. (1993 ) 218: 340-356).
  • the RACE method is a method in which a strand-specific primer is prepared from a known cDNA sequence and reverse transcription is performed to determine the 5 'and 3' cDNA sequences.
  • IL-1 was added to rat primary cultured hepatocytes to induce iNOS mRNA, and RNA was prepared with Trizol reagent (Invitrogen). Double-stranded cDNA was synthesized using this RNA as a saddle and using the primer of SEQ ID NO: 2 (iNOS forward primer; 5'_TGCCCCTCCCCCACATTCTCT_3 ').
  • RNA was prepared from rat primary cultured hepatocytes induced with IL-li3.
  • the RNA of the PolyA-fraction is purified, and this RNA is converted into a saddle shape and an anchor primer 1J (underlined) is attached to a random primer (anchor marker).
  • GCCGCNNNNNNN-3 ′ (SEQ ID NO: 5) was used to synthesize double-stranded cDNA. After the CA cassette adapter was ligated to this cDNA, PCR was performed using the primer of SEQ ID NO: 4 (an antisense primer for the 3 ′ UTR of iNS mRNA) and a CA primer.
  • the reaction mixture was purified into a saddle type, and an antisense primer (5 reverse ATATTAGAGCAGCGGGATGGCGCCTC-3 '(SEQ ID NO: 6)) to the 3' UTR of iNOS mRNA and an anchor of the above-mentioned "anchor random primer” Secondary PCR was performed using a primer for the sequence; 5′-ACTAGAATTCTCGAGCGGCCGC-3 ′ (SEQ ID NO: 7)).
  • a band having a size of 200 to 500 bp was amplified. This band was cut out and cloned into the pGEM-T Easy vector, and the nucleotide sequence was determined.
  • the total length of the antisense transcript was estimated to be approximately 600 bases or more.
  • the sequence is shown below (SEQ ID NO: 1; shown as cDNA sequence). That is, the antisense transcript corresponded to the 3′UTR of iNOS mRNA, and the transcription start point (5 ′ side) was in the complementary strand of the polyA addition site of iNOS mRNA.
  • Example 2 HI HNOS antisense transcript
  • the following method was used to examine whether the antisense strand strength of the gene was present on the mRNA of MNOS, and whether an “antisense transcript” transcribed from the mRNA was present.
  • the base sequence of HRNOS mRNA is DDBJ / EMBL / GenBank international base sequence database (http: ⁇ www.ddbj.mg.ac.jp/, http://www.ebi.ac.uk/embl/ Http://www.ncbi.nlm.nih.gov/Genban k /).
  • Total RN obtained A was treated with TURBO DNA-free Kit (Applied Biosystems) containing DNase to remove contaminating genomic DNA.
  • TURBO DNA-free Kit Applied Biosystems
  • Example 1 Reverse transcription was performed to synthesize cDNA. Specifically, in Example 1, instead of 1 ⁇ g of RNA prepared from rat primary cultured hepatocytes and the primer 2pmo 1 represented by SEQ ID NO: 2, total RNA (1 ag ) And (2 pmol) represented by SEQ ID NO: 8 were used to synthesize cDNA.
  • PCR was carried out in the same manner as in Example 1.
  • a 151 base pair (bp) band was amplified when cDNA derived from human placenta was used. No amplification was seen with other cDNAs (liver, gastric mucosa or unstimulated cells, lymphocytes).
  • the amplified band was cut out by gel force and purified, and the nucleotide sequence was determined. As a result, it was confirmed that the sequence was complementary to the 3 ′ UTR of HI HNOS mRNA sandwiched between the above primer sequences. In other words, the presence of HI HNOS antisense transcripts was proved by a strand-specific RT-PCR method using a sense primer for the iN0S gene.
  • the sequence of the MNOS antisense transcript is shown in SEQ ID NO: 11. However, it is shown as a cDNA sequence.
  • Example 3 Mouse iN ⁇ S antisense transcript The following method was used to examine whether or not “antisense transcript” transcribed from the antisense strand of the gene was present for mouse iNOS mRNA.
  • the nucleotide sequence of mouse iNOS mRNA is the DDBJ / EMBL / GenBank international nucleotide sequence database (http: / http://www.ebi.ac.uk/embl/, http://www.ncbi.nlm.mh.gov/Genbank/).
  • Example 2 Reverse transcription was performed to synthesize cDNA. Specifically, in Example 1, instead of 1 ⁇ g of RNA prepared from rat primary cultured hepatocytes and primer 2pmo 1 represented by SEQ ID NO: 2, total RNA (1 ⁇ g) prepared from RAW264 cells and SEQ ID NO: CDNA was synthesized in the same manner except that (2 pmol) represented by 12 was used.
  • the PCR was carried out in the same manner as in Example 1. As a result of electrophoretic electrophoresis of the PCR product, a 127 base pair (bp) band was amplified.
  • the amplified band was excised from the gel and purified, and the nucleotide sequence was determined.
  • the sequence was complementary to the 3 'UTR of mouse iNOS mRNA sandwiched between the above primer sequences. It was confirmed. That is, the presence of a mouse iNOS antisense transcript was proved by a chain-specific RT-PCR method using a sense primer for the iNOS gene.
  • the sequence of the mouse iNOS antisense transcript is shown in SEQ ID NO: 15. Shown as cDNA sequence.
  • antisense transcript complementary to iN ⁇ S mRNA (hereinafter simply referred to as antisense)
  • Example 4 Stabilization of iNOS mRNA by rat iNOS antisense transcript
  • sense oligo The iNOS sense oligonucleotide (hereinafter abbreviated as sense oligo), which has a sequence complementary to rat antisense and has the property of hybridizing to rat antisense, was introduced into rat primary cultured hepatocytes and the amount of iNOS mRNA was examined.
  • Sense oligos prevented the degradation of oligonucleotides by intracellular nucleolytic fermentation by substituting (S) one sulfur atom of the phosphoric acid oxygen atom of the phosphodiester bond in the oligonucleotide.
  • S-sense oligos were introduced into rat primary hepatocytes using a gene transfer reagent kit (MATra-A Reagent) based on the magnet assisted transfection method of IBA (Gottingen, Germany).
  • Rat primary cultured hepatocytes were prepared by a known method (J. Hepatol. 40, 616-623, 2004) and plated in 6-well plates (3 ⁇ 10 5 cells per well). Two hours later, 1.5 ml of fresh medium (wells' E medium (WE) containing 10% urine fetal serum, ⁇ dexamethasone and ⁇ insulin, abbreviated as WES-DI) was replaced per well. Four more hours later, oligo (2 ⁇ g) and WE (200 ⁇ 1) were mixed, then 2 ⁇ 1 MATra-A Reagent (IBA) was mixed and allowed to stand at room temperature for 20 minutes. The whole amount was dripped onto the well containing the cells.
  • WE E medium
  • IBA MATra-A Reagent
  • the 6-well plate was placed on a magnet board (IBA) and allowed to stand at room temperature for 15 minutes to introduce the oligo into the cells. It was replaced with WE containing 10% urinary fetal serum (1.5 ml per urn) and then placed at 37 ° C. The next morning, the medium was changed to WE containing InM IL-1j3, and after 4 hours at 37 ° C, total RNA was prepared.
  • IBA magnet board
  • the above-mentioned S-sense oligo is introduced and stimulated with IL-1 / 3. was measured.
  • the results are shown in Figs. [0044]
  • the sense strand arrangement lj of the iNOS gene used here that is, the S-oligonucleotide having the same sequence as iNOS mRNA is represented by the following sequence. In the experiment, it corresponds to S2, S4 and S5.
  • the base composition is the same, but the sequence is different, so “scrambled oligo” having a sequence that has been confirmed not to hybridize with iNOSmRNA, its transcript, or other RNA was introduced. did.
  • the sequence of the scrambled oligo is shown below.
  • scrambled oligos Like the sense oligos, these scrambled oligos were used in the form of S to prevent degradation in the cells. As for “scrambled oligo”, it has been confirmed by homology search with the rat genome that no similar sequence exists.
  • S1 for the stem portion of the stem of the iNOS mRNA 'norepe structure was introduced.
  • the sequence of S1 is shown below.
  • RNA-specific RT-PCR method When a strand-specific RT-PCR method is performed using a primer having the same sequence as the sense strand (the strand having the same sequence as the mRNA), only the cDNA for the “antisense transcript” is reverse transcribed. The amount of “antisense transcript” can be measured. In addition, a control that was subjected to PCR without reverse transcription was placed, and it was confirmed that it was not amplified by genomic force PCR mixed in the total RNA of hepatocytes. In the figure, it is indicated by RT (-).
  • the amount of iNOS mRNA was reduced when the S2, S4, and S5 S-sense oligos were introduced. This is because iNOS mRNA was also degraded because the antisense transcript was degraded by hybridization with the antisense transcript of the S-sense oligonucleotide iNOS. It shows. On the other hand, when scrambled oligo was introduced, the amount of iNOS mRNA did not vary greatly. In addition, even when S1 was introduced to the stem part, the amount of iNOSmRNA did not fluctuate significantly.
  • the amount of iNOS mRNA after addition of ⁇ was measured by real-time PCR using reverse-transcribed cDNA as a saddle. As a result, when scrambled oligo Scr5 was introduced, it took 119 minutes to double the amount of iNOS mRNA. In contrast, when the sense oligo S5 was introduced, it took 461 minutes (Fig. 2).
  • CINC-1 Cytokine- Induced Neutrophil Chemoattractant 1
  • CINC-1 also induces significant mRNA induction in hepatocytes under IL_1 j3 stimulation.
  • the CINC-1 mRNA also has an ARE sequence in the 3 ′ untranslated region (3 ′ UTR) of the mRNA, as in iNOS mRNA.
  • CINC-1 mRNA levels were measured when iN0S sense oligos were introduced into hepatocytes, and there was no difference in mRNA levels when no sense oligos were added. In other words, it was shown that the iNOS sense oligo function is limited to iNOS (Fig. 1).
  • iNOS sense oligos specifically hybridize with iNOS antisense transcripts and promote iNOS mRNA degradation, resulting in a specific reduction in iNOS mRNA levels.
  • Example 5 Stabilization of iNOS mRNA by mouse iNOS antisense transcript
  • S-sense oligos of iNOS sense oligonucleotides that hybridize to mouse antisense were introduced into RAW264 cells derived from mouse macrophages, and the suppression of iNOS mRNA expression by mouse antisense transcripts was examined.
  • Mouse RAW264 cells were seeded at 5 X 105 cells per tool, and cultured in a C02 incubator with the DMEM medium changed.
  • SiS oligo was introduced into RAW264 cells by Magnet assisted transfection method from IBA (Gottingen, Germany). The medium was replaced with DMEM medium (1.5 ml per well) containing 10% urine fetal serum, and then placed at 37 ° C. The next morning, E. coli LPS (1 ⁇ gZml The medium was changed to DMEM containing) and placed at 37 ° C for 4 hours, and then total RNA was extracted and subjected to RT-PCR. Total RNA was treated with a TURBO DNA-free Kit (Applied Systems) containing DNase to remove contaminating genomic DNA.
  • Sense oligos were generated for mouse iNOS mRNA corresponding to the mouse antisense transcript.
  • mouse iNOS mRNA was measured according to the strand-specific RT-PCR method performed in Example 4.
  • iNOS sense oligos specifically hybridized with iNOS antisense transcripts in not only rats but also mice, thereby promoting iNOS mRNA degradation.
  • iNOS mRNA It was shown to specifically reduce the amount.
  • iNOS mRNA expression could be suppressed using sense oligonucleotides in both rat hepatocytes and mouse cells. Therefore, suppression of iNOS mRNA expression using sense oligonucleotides can be said to be an effective treatment method for liver damage by reducing iN0S induction and N0 production during inflammation of the liver.
  • an antisense transcript which is a sequence complementary to the mRNA of an early response gene other than the iN0S gene
  • Genes induced and expressed at the time of inflammation include not only iNOS but also genes of physiologically active substances such as cytokines and chemokines. These early response genes have various functions such as exacerbation and improvement of inflammation. Regulating early response gene expression ultimately leads to regulation of inflammation. Therefore, in addition to the antisense transcript of the iNOS gene, we investigated whether the antisense transcript was expressed in other early response genes.
  • 3 'UTRs contain multiple ARE sequences, and 3' UTR sequences are very similar between species (human, mouse, rat) For example. That is, the following 3 genes.
  • CINC— 1 Induced Neutrophil Chemoattractant 1 (CINC— 1): Also called nemokme (Shichi X— C motif) Ligand 1 (CXCL1), a chemokine induced in rat hepatocytes stimulated with IL-1 ⁇ .
  • CXCL1 Ligand 1
  • NF-/ B p50 One of the subunits of the transcription factor NF- / B, a protein that is deeply involved in inflammation.
  • I / B-a A protein that suppresses the activity of NF- ⁇ .
  • nucleotide sequences of these mRNAs in humans, mice and rats are as follows: DDBJ / EMBL / GenBank International Base ⁇ ⁇ 'J Data Base (http://www.ddbj.nig.ac.jp/, http: // www ebi. a c.uk/embl/, http://www.ncbi.nlm.nih.gov/Genbank/).
  • the following method was used to examine the presence of an “antisense transcript” transcribed from the antisense strand of the gene for rat CINC-1 mRNA.
  • the operations and procedures not specifically described below were performed in the same manner as in Example 1.
  • Primary cultured rat hepatocytes were stimulated with IL-1 ⁇ , and total RNA was extracted using Trizol reagent (Invitrogen) according to a conventional method.
  • the resulting total RNA was treated with a TURBO DNA-free Kit (Applied Biosystems) containing DNase to remove contaminating genomic DNA.
  • a TURBO DNA-free Kit containing DNase to remove contaminating genomic DNA.
  • Example 7 Rat NF- ⁇ B p50 antisense transcript
  • RNA obtained is treated with TURBO DNA-free Kit (Applied Biosystems) containing DNase to remove contaminating genomic DNA did.
  • TURBO DNA-free Kit Applied Biosystems
  • Example 8 Lac H f B- ⁇ antisense transcript
  • This force et al., Suggests that the antisense transcript contains an ARE sequence and is a molecule commonly found in early response genes that resemble the 3 'UTR sequence force between species. . Furthermore, it is strongly suggested that antisense transcripts regulate the stability of these mRNAs. Therefore, it is expected to suppress inflammation by suppressing the action of the antisense transcript of the early response gene in inflammation of the liver and the like.
  • Example 4 From the results of Example 1 and Example 4, in the system of rat primary cultured hepatocytes (in vitro), an antisense transcript corresponding to the 3′-untranslated region (3 ′ UTR) of iNOS mRNA upon induction of iNOS Has been shown to promote the stabilization of iNOS mRNA. It is shown below that iNOS antisense transcripts are expressed in response to iNOS induction in rats with liver damage (in vivo). In addition, changes in survival rate due to administration of hepatoprotective agents such as insulin-like growth factor-I (IGF-I) and Na + / H + exchanger inhibitors (FR183998) The relationship with the induction of sense transcripts is shown below.
  • IGF-I insulin-like growth factor-I
  • FR183998 Na + / H + exchanger inhibitors
  • mice Male 3 ⁇ ⁇ 11 ⁇ 2-0 & 3 ⁇ 43 ⁇ 4 rats (250 _ 300 g) were mixed with D-galactosamine (D-galactosamine) (400 g / kg) and bacterial endotoxin LPS (16 ⁇ g / kg) (D- GalN / LPS) was intravenously injected to prepare an acute liver failure model.
  • D-galactosamine D-galactosamine
  • bacterial endotoxin LPS (16 ⁇ g / kg)
  • IGF—I Insulin-like growth factor-I
  • FR183998 Na + / H + exchanger inhibitor
  • RT_PCR elongation factor-1a
  • the iNOS antisense transcript was quantified according to the method of Example 1.
  • the control which performed PCR without performing the reverse copy was placed, and it was confirmed that it was not amplified by genomic force PCR mixed in the total RNA of hepatocytes.
  • the iNOS mRNA detection results are shown in FIG. 4, and the iNO S antisense transcript detection results are shown in FIG. In the figure, RT (-) indicates a negative control of reverse transcription (one).
  • the actual PCR protocol is as follows.
  • Inflammatory mediators (TNF- ⁇ , IL-1 ⁇ , IL-6, interferon ⁇ , CINC-1, MIP-2, NO) increased in the blood and liver over time (1 to 12 hours) .
  • Antisense transcripts increased in response to iNOS mRNA induction in the liver (both i NOS mRNA and iNOS antisense transcripts reached a maximum after 6 hours), resulting in excessive N0 production.
  • IGF-I administration reduced mortality to 20-30% or less.
  • inflammatory site power in and NO production there is an increase in iNOS mRNA and antisense transcript induction. It was similarly suppressed ( Figures 4-6).
  • FR183998 also reduced mortality to 20-30% or less, and similarly suppressed iNOS mRNA and antisense transcript induction in addition to the above-mentioned inflammatory cytokines and NO production ( Figures 7-9). ).
  • RT (-) shows almost no amplified cDNA, suggesting that the amount of genomic DNA contaminated with total RNA is extremely small.
  • GalN / LPS rats had increased antisense transcript levels in 3-6 hours. Rats treated with FR183998 inhibited this increase.
  • Example 4 the sense oligo S5 or scrambled oligo Scr5 obtained in Example 4 was introduced into hepatocytes, and the amount of nitric oxide (NO) in the medium was determined from Nitric Oxide Colorimetric Assay kits (Roche (Diagno Stakes). However, the following morning, the medium was changed to WE containing IL-1 ⁇ of In M, and the cells were measured after being placed at 37 ° C for 8 to 10 hours. Ma In addition, total protein was extracted from the cells, and iNOS protein was detected by Western method using ECL kit (GE Healthcare). The result is shown in FIG.
  • NO nitric oxide
  • Rat hepatocytes were stimulated with IL-1 ⁇ for a certain period of time, and then total RNA was extracted using Trizol reagent (Invitrogene). The total RNA obtained was treated with TURBO DNA-free Kit (Applied Biosystems) containing DNase to remove contaminating genomic DNA. Poly (A) + and poly (A) -RNA were fractionated using PolyATract mRNA Isolation System (Promega). To prevent non-specific hybridization, ribosomal RNA (rRNA) is removed by precipitation in the presence of 5% polyethylene glycol 6000 and 0.75M NaCl at a final concentration of 5%, and the supernatant is recovered by ethanol precipitation. Used for electrophoresis.
  • RNA above total RNA of unstimulated rat hepatocytes, total RNA of IL-1 ⁇ -stimulated rat hepatocytes, Poly (A) + RNA of IL-1 ⁇ -stimulated rat hepatocytes, and IL-1 ⁇ -stimulated rat liver
  • Poly (A) + RNA of IL-1 ⁇ -stimulated rat hepatocytes Four of the cellular Poly (A) -RNA were separated by electrophoresis on agarose containing 2.2M formalin.
  • RNA in the gel was transferred to a Nytran N filter (Whatman).
  • DIG digoxigenin
  • iNOS 3 UTR sense probe was prepared by synthesizing RNA in vitro using DIG-11-UTP (Roche Diagnostics) and T3 RNA polymerase (Stratagene).
  • Fig. 11 shows the results of analysis of the above four RNAs by the Northern method (X-ray film autoradiogram).
  • IL-1 ⁇ -stimulated rat hepatocyte total RNA and “IL-1 ⁇ -stimulated rat hepatocyte poly (A) _RNA”, a thick smear-like band of 600 to 1000 nucleotides (nt) was observed. . Since a 3 'UTR sense probe of iNOOS is used, these smear-like bands are considered to be bands of antisense transcripts of iNOOS. Therefore, the length of the iNOS antisense transcript was found to be a collection of transcripts of various lengths (600 to 1000 nucleotides).
  • the luciferase gene is linked to the iNOS gene promoter. Since the promoter of the iNOS gene is an “inducible promoter,” promoter activity in rat hepatocytes is greatly altered by IL-1 ⁇ stimulation. The function of 3 'UTR bound after the porter gene cannot be observed well. Therefore, we decided to use the elongation factor-1a (EF) gene promoter, which is a “constitutive promoter” that promotes a certain amount of expression regardless of stimulation. Therefore, the luciferase gene and j3 galactosidase gene controlled by the EF promoter are expressed in almost constant amounts regardless of stimulation. As a result, only the effect of iNOS mRNA containing poly (A) signal sequence on 3 ′ UTR force S and quantity of sidase mRNA stability can be observed.
  • EF elongation factor-1a
  • SVpA is a poly (A) signal sequence derived from the SV40 virus and is known as a stable 3, UTR. The mRNA with SVpA added is not easily broken. iNOS 3 'UTR reference.
  • the CMV promoter is a constitutive promoter derived from cytomegalovirus, much stronger than the EF promoter.
  • the overexpression ability of the iNOS antisense transcript affected the stability of luciferase mRNA via the iN OS 3 'UTR. become.
  • the following plasmids were introduced into primary cultured rat hepatocytes by the method described above (MATra).
  • AS (+) indicates that the iN ⁇ S antisense transcript expression vector was inserted, and AS (-) indicates that the iN ⁇ S antisense transcript expression vector was not included.
  • a Trizol reagent (Invitrogen) was used.
  • the obtained total RNA was treated with a TURBO DNA-free Kit (Applied Biosystems) containing DNase to remove contaminating genomic DNA.
  • a TURBO DNA-free Kit (Applied Biosystems) containing DNase to remove contaminating genomic DNA.
  • reverse transcription was performed using an oligo (dT) primer to synthesize cDNA for mRNA.
  • the synthesized cDNA was used for quantification by real-time PCR.
  • the iCycler system from Nippon BioRad was used.
  • SYBR Green I Roche Diagnostics
  • anti-Taq high anti-Taq polymerase antibody.
  • Toyobo were added to the PCR reaction solution, and PCR was performed by the touchdown method, which is a known method.
  • the actual PCR protocol is as follows.
  • ⁇ Gal ⁇ galactosidase
  • Ct M threshold cycle of luciferase mRNA (Luc) and ⁇ -galactosidase mRNA (j3 Gal) Asked.
  • the iN0S antisense transcript was stabilized by luciferase mRNA via the iN0S 3 'UTR.
  • iNOS antisense transcript acts on the iNOS 3 'UTR to stabilize mRNA.
  • iNOS antisense transcripts can stabilize iNOS mRNA via the iNOS 3 'UTR.
  • the regulation mechanism of iNOS mRNA stability by the iNOS antisense transcript plays an important role in inflammation of the liver and the like. This mechanism can also be a target for the treatment of many diseases involving NO.
  • FIG. 1 is an electrophoretic diagram showing the results of measuring the amount of mRNA in rat hepatocytes by RT-PCR.
  • FIG. 2 is a graph showing the results of measuring the amount of mRNA in rat hepatocytes by real-time PCR.
  • FIG. 3 is an electrophoretogram showing that iNOS mRNA was degraded by a mouse iNOS antisense transcript.
  • FIG. 4 is an electrophoretogram showing the results of detection of iNOS mRNA by strand-specific RT-PCR showing that iNOS mRNA increase in rats administered with a hepatoprotectant (IGF-I) was suppressed.
  • IGF-I hepatoprotectant
  • FIG.5 Increase in iNOS antisense transcripts in rats treated with hepatoprotectant (IGF-I) was suppressed This is a result (electrophoresis diagram) of iNOS antisense transcripts detected by strand-specific RT-PCR.
  • FIG. 6 is a graph showing the results of quantifying the increase in iNOS antisense transcripts in rats administered with hepatoprotectant (IGF-I) by real-time PCR.
  • FIG. 7 is an electropherogram showing the detection results of iNOS mRNA by strand-specific RT-PCR, which shows that the increase in iNOS mRNA in rats administered with a hepatoprotectant (FR183998) was suppressed.
  • FIG. 8 Electrophoretic diagram showing the results of detection of iNOS antisense transcripts by strand-specific RT-PCR showing that the increase in iNOS antisense transcripts in rats administered with a hepatoprotectant (FR183998) was suppressed. It is.
  • FIG. 9 A graph showing the results of real-time PCR quantification of the increase in iNOS antisense transcripts in rats administered with a hepatoprotectant (FR183998).
  • FIG. 10 An electrophoretic diagram and a graph showing the measurement results of the iNOS protein in Example 10 and the amount of nitric oxide (NO) in the medium.
  • Example 11 An X-ray film autoradiogram showing the analysis results of the four RNAs in Example 11 by the Northern method. From left to right, “total RNA of unstimulated rat hepatocytes”, “total RNA of riL-1 intense rat hepatocytes”, “poly (A) + RNA of IL-1 ⁇ -stimulated rat hepatocytes”, and “IL_1 ⁇ -stimulated rat” The result of “Poly (A) -RNA of hepatocytes” is shown.
  • FIG. 12 shows the results of RACE and ribonuclease protection assay in Example 11.
  • FIG. 13 A schematic diagram of the vector constructed in Example 12.
  • Example 12 when the iNOS antisense transcript expression vector was prepared (AS (+)), in addition to the case (AS (—)), the Luc / ⁇ Gal value It is a graph which shows a change over time.
  • FIG. 15 is a graph showing changes over time in Luc / ⁇ Gal values when a reporter linked with SVpA was used as a control in Example 12.

Abstract

 本発明は、細胞内における遺伝子産物の産生量を制御する方法に関するものであり、前記遺伝子産物に対応するmRNAの塩基配列に相補的な配列を含む物質もしくはその前駆体またはそれらと同等の作用を細胞内において有し得る物質を細胞内に導入する工程を含み、前記遺伝子産物の産生量を増大させる。

Description

明 細 書
遺伝子産物の産生量を制御する方法及び産生量制御剤
技術分野
[0001] 本発明は、細胞内における遺伝子産物の産生量を制御する方法、特に産生量を 増大させる方法及び産生量制御剤に関する。
背景技術
[0002] 従来、 RNAi (RNA干渉: RNA interference)と呼ばれる、二本鎖の RNAで標的と なる mRNAを切断して転写を抑制する方法が知られている力 通常、 RNAiは 20塩 基対程度の塩基長であり(特許文献 1:特開 2005— 13224号公報)、その二本鎖ォ リゴヌクレオチド及びそのアンチセンス RNAのスクリーニング方法が開示されている。 また、小核酸分子、例えば短干渉核酸(siNA)、短干渉 RNA (siRNA)、二本鎖 RN A (dsRNA)、マイクロ RNA(miRNA)、及び短ヘアピン RNA(shRNA)分子を用い る RNA干渉(RNAi)により、インターロイキン遺伝子、インターロイキンスーパーファ ミリ一遺伝子、または遺伝子発現及び/または活性のインターロイキン経路に関与す る遺伝子の発現及び活性を調節するのに有用な化合物に関して開示されている(特 許文献 2 :特開 2005— 524393号公報)。
[0003] 細胞内にアンチセンス RNAが存在すると、それと相補的な mRNAとハイブリダィズ し、 mRNAからタンパク質への翻訳が阻害されるために遺伝子の発現を阻害するこ とができる。人為的にアンチセンス RNAを細胞内に導入すれば、ターゲット遺伝子の 発現を阻害することができるので、現在、遺伝子の機能を解明する技術として使われ ており、医薬品への応用も検討されている。しかし、細胞内における RNAの存在態 様については不明な点も多ぐ mRNAからタンパク質への転写過程をターゲットとし たその発現制御に関しては不明な点が多かった。
[0004] 特許文献 1 :特開 2005— 13224号公報
特許文献 2 :特開 2005— 524393号公報
発明の開示
発明が解決しょうとする課題 [0005] 本発明は、細胞内における遺伝子産物の産生量を制御する方法、特に産生量を 増大させる方法及び産生量制御剤を提供する。
課題を解決するための手段
[0006] 本発明者らは、細胞内において、 mRNAに相補的な配列を持つ一本鎖 RNA (ァ ンチセンス転写物(アンチセンストランスクリプト)、通常は DNAのアンチセンス鎖の 転写物と考えられる力 その由来は問わない。)が存在し、それが従来のアンチセン ス RNAとは異なり、 mRNAの安定化に寄与しているケースがあることを見出し、本発 明を完成させた。
[0007] すなわち、本発明は以下の遺伝子産物の産生量を制御する方法、その方法が適 用可能な遺伝子産物をスクリーニングする方法及び産生量制御剤に関する。
1.細胞内における遺伝子産物の産生量を増大させる方法であって、前記遺伝子産 物に対応する mRNAの塩基配列に相補的な配列を含む物質もしくはその前駆体ま たはそれらと同等の作用を細胞内において有し得る物質を細胞内に導入する工程を 含むことを特徴とする前記遺伝子産物の産生量を増大させる方法。
2.前記遺伝子産物に対応する mRNAの塩基配列に相補的な配列を含む物質もし くはその前駆体またはそれらと同等の作用を細胞内において有し得る物質が、細胞 内において mRNAの安定化に寄与する物質である前記 1に記載の遺伝子産物の産 生量を増大させる方法。
3.前記遺伝子産物がサイト力インまたはその前駆体である前記 1または 2に記載の 遺伝子産物の産生量を増大させる方法。
4.前記遺伝子産物が誘導型一酸化窒素合成酵素 (iNOS)である前記:!〜 3のいず れかに記載の遺伝子産物の産生量を増大させる方法。
5.遺伝子産物に対応する mRNAの塩基配列に相補的な配列を含むアンチセンス 転写物が細胞内に存在するか否かを判定する工程を含む前記 1に記載の産生量増 大方法が適用され得る遺伝子産物のスクリーニング方法。
6.前記アンチセンス転写物の存在の判定が、前記遺伝子産物に対応する mRNA の 5 '末端及び 3 '末端またはこれらの近傍の一部のセンス配列を含むプライマーを 用いて細胞内 mRNAから逆転写を行なレ、、逆転写産物の有無を確認することにより 行なわれる前記 5に記載の遺伝子産物のスクリーニング方法。
7.アンチセンス転写物に含まれる塩基配列にハイブリダィズ可能なオリゴヌクレオチ ドまたはその誘導体を細胞内に導入し、前記遺伝子産物の産生量の増減を観察す る工程をさらに含む前記 5または 6に記載の遺伝子産物のスクリーニング方法。
8.サイト力イン mRNAの全部または一部の配列と相補的な配列を含み、前記サイト 力インの合成量を増大させる物質。
9.前記 8に記載の物質を含むサイト力イン産生量制御剤。
10.誘導型一酸化窒素合成酵素(iN〇S) mRNAの全部または一部の配列と相補 的な配列を含み、誘導型一酸化窒素合成酵素 (iNOS)の合成量を増大させる物質
11.配列番号 1またはこれと 75%以上の相同性を有する塩基配列を含み、誘導型 一酸化窒素合成酵素 (iNOS)の合成量を増大させる物質。
12.誘導型一酸化窒素合成酵素(iNOS) mRNAの 5'末端及び 3'末端またはこれ らの近傍の一部の配列を含むプライマーを用いて、細胞内 mRNAから逆転写により 誘導された cDNAから得られる配列に対応する塩基配列を含み、誘導型一酸化窒 素合成酵素(iNOS)の合成量を増大させる RNA。
13.前記 10〜: 12のいずれかに記載の物質を含む iNOSmRNA発現制御剤。 発明の効果
[0008] 本発明に従い、遺伝子の mRNAの塩基配列に相補的な配列を含む物質もしくは その前駆体またはそれらと同等の作用を細胞内において有し得る物質を用いれば、 対応する遺伝子産物の産生を制御することができ、幅広い分野での応用、例えば、 がんや自己免疫疾患、炎症性疾患を含む疾病の治療及び予防に有用である。 発明を実施するための最良の形態
[0009] 本発明では、特定の遺伝子産物に対応する mRNAの塩基配列に相補的な配列を 含む物質もしくはその前駆体またはそれらと同等の作用を細胞内において有し得る 物質を用いて前記遺伝子産物の産生量を増大させる。
[0010] すなわち、従来のアンチセンス RNAによる発現量制御方法では、例えば、アンチ センス RNAがセンス RNAとハイブリダィズすることにより、その翻訳を抑制する過程 が含まれると考えられるが、本発明では、アンチセンス転写物と同一または類似する 物質がセンス鎖による遺伝子産物の産生量を増大させる。その詳細な機構は不明で あるが、例えば、アンチセンス転写物が、細胞内においてセンス mRNAの安定化に 寄与すると考えられ、従来のアンチセンス RNAによる発現量制御方法とは作用機序 が全く異なる。なお、 mRNAの塩基配列に相補的な配列を含む物質もしくはその前 駆体またはそれらと同等の作用を細胞内において有し得る物質は、通常は当該 mR NAの塩基配列に対して 30%以上、好ましくは 50%以上、より好ましくは 70%以上 の塩基長を有すればよい。典型的には RNA鎖である力 部分的な修飾を受けてい てもよいし他の物質 (例えば、タンパク質や糖、低分子等)と結合していてもよい。前 駆体は導入する細胞内または投与する生物体内での代謝により前記物質に転じるも のであればよい。
[0011] ある遺伝子産物について本発明の方法が有効であるかを判定するには、初めに、 細胞内において当該遺伝子産物に対応する mRNAの塩基配列に相補的な配列を 含むアンチセンス転写物が存在するか否かを判定する。アンチセンス転写物の存在 の判定は、遺伝子産物に対応する mRNAの 5 '末端及び 3 '末端またはこれらの近傍 の一部のセンス配列を含むプライマーを用いて細胞内の全 RNAから逆転写を行な レ、、逆転写産物(cDNA)の有無を確認することにより行なわれる。 cDNAを合成した 後、 PCR法によりその cDNAを増幅し、例えば、 RACE法により全構造を決定しても よい。
[0012] アンチセンス転写物の存在が確認された場合は、 mRNAの塩基配列に相補的な 配列を含む物質もしくはその前駆体またはそれらと同等の作用を細胞内において有 し得る物質(以下、これらを「本発明物質」という。)を細胞内に導入する力、、アンチセ ンス転写物に含まれる塩基配列にハイブリダィズ可能なオリゴヌクレオチド(以下、こ れらをセンスオリゴという。)またはその誘導体を細胞内に導入し、前記遺伝子産物の 産生量の増減を観察する。本発明物質を投与して遺伝子産物(本来の遺伝子産物) の発現量が増大するのであれば、従来のアンチセンス RNAとは反対に正の制御が 可能である。また、センスオリゴはアンチセンス転写物と反応(ノヽイブリダィズ)すること により、細胞内におけるアンチセンス転写物の有効量を低減させると考えられるので 、センスオリゴの投与により遺伝子産物(本来の遺伝子産物)の発現量が減少するの であれば、アンチセンス転写物は正の発現量制御に関与していると考えられる。
[0013] なお、本願において「正の発現量制御」という場合、アンチセンス転写物により発現 量が増大する場合のみならず、アンチセンス転写物の投与がなければ発現量が減 少するであろう場合における発現量の維持も含む。
[0014] 上述のように、(1)対象とする遺伝子産物について、細胞内においてそのアンチセン ス転写物が存在し、(2)アンチセンス転写物が遺伝子産物(本来の遺伝子産物)の発 現量制御(特に正の制御)に寄与する限り、本発明の方法は有効である。従って、適 用可能な遺伝子産物は、上記 (1)及び (2)の方法により容易にスクリーニングできる。 近年、こうしたアンチセンス転写物がかなり多くの種類存在することが明らかにされて レ、ることから(Science 309: 1564-1566 (2005)参照)、本発明物質としては様々なもの が挙げられる。例えば、遺伝子産物がサイト力イン、炎症との関連が深いシクロォキシ ゲナーゼ 2 (cyclo-oxygenase 2 ; COX_2)、ケモカイン(chemokine)、 CINC—l (cytok me-induced neutrophil chemoattractant 1)、 NF— κ B p50、 I κ B— 等、特に ¾l 導型一酸化窒素合成酵素(iNOS)またはその前駆体である場合に有用である。また 、遺伝子産物が由来する種は問わない。
[0015] 本発明における誘導型一酸化窒素合成酵素(iNOS inducible nitric oxide syntha se) mRNAに相補的な塩基配列からなるアンチセンス転写物は、 iNOSmRNAのセ ンス鎖プライマー(mRNAだけにハイブリダィズする(ストランド(鎖)特異的な)プライ マーを含む)を用いて逆転写を行って相補的 DNA (cDNA)から得られる配列に対 応する塩基配列を含む。
[0016] iN〇Sの mRNAに相補的な塩基配列からなる本発明物質は、配列番号 1で表わさ れる塩基配列と同一又は実質的に同一な塩基配歹 1Jを含むヌクレオチドである。実質 的に同一なヌクレオチドは、配列番号 1またはこれと 75%以上、好ましくは 90%以上 、より好ましくは 95%以上の相同性を有する塩基配列を含み、誘導型一酸化窒素合 成酵素(iNOS)の合成量を増大させる物質である。
[0017] mRNAの塩基配列に相補的な配列を含む物質もしくはその前駆体またはそれらと 同等の作用を細胞内において有し得る本発明物質は、化学合成、公知の発現法及 び精製法あるいは実施例に記載の方法によって調製することができる。 また、本発明は、これらのアンチセンス転写物等を含むサイト力イン産生量制御剤、 特に iNOS産生量制御剤にも及ぶ。
[0018] 上記の、 iNOSmRNAのアンチセンス転写物に相補的な配列を持つセンスオリゴ ヌクレオチド(センスオリゴ)とは、アンチセンス転写物とハイブリダィズ可能なオリゴヌ クレオチドまたはその誘導体であり、核内の核酸分解酵素で分解されなレ、ように修飾 されてレ、るものであればょレ、。
[0019] センスオリゴ設計は、 Nucleic Acids Res. 31, 3406-3415 (2003)及び J. Mol. Biol. 28 8, 911-940 (1999)に開示されたプログラム「mfold」(http:〃 www.bioinfo.卬 i.edu zu kerm/rna/参照)を使用して RNAの 2次構造を予測して行うことができる。センスオリ ゴの候補配列は、熱力学的に安定でなレ、部分(たとえばステム 'ノレープ(stem-loop) 構造の stem部分以外の領域)、好ましくはステム'ノレープ構造のループ (loop)構造 を含む部分に対するセンスオリゴヌクレオチドを設計する。
[0020] 上記のセンスオリゴの候補配列について、細胞に配列非特異的な反応を起こす 5 '
CG— 3 '、 5 '— GGGG 3 '、及び 5 '— GGGGG 3 '等の配列を含まなレ、配列 を選び、ラットゲノムで相同性検索を行ない、類似の配列が存在しないことを確認して 好ましい配列を選択する(J. Neurochem. 86, 374382 (2003)参照)。
[0021] センスオリゴとしては、以下に示されるオリゴヌクレオチド等が挙げられる(下記の配 列は修飾を省略して示す。)。
5' - GCCTCATACTTCCTCAGAGC - 3 ' (配列番号 36)
5, -TAGCTGCATTGTGTACAGAT- 3 ' (配列番号 37)
5, - GTGTATAATTCCTTGATGAA - 3 ' (配列番号 38)
これらは、化学合成、公知の発現法および精製法あるいは実施例に記載の方法によ つて調製することができる。
[0022] センスオリゴは、核内の核酸分解酵素で分解されないように修飾されていればよぐ その修飾に特に制限はなレ、。センスオリゴヌクレオチドは細胞内では、 5 'または 3 '末 端力、ら順にヌクレオチドをはずしていく酵素ェキソヌクレアーゼ(exonuclease)により、 両端から消化されることから、例えば、両端から 1つ以上のリン酸結合 P = 0を P = S に置換した、分解酵素に安定な Phosphorothioate (フォスフォロチォエート)型に修飾 するのが好ましレ、(以下、これを「S化センスオリゴヌクレオチド(S化センスオリゴ)」と いう。 ) (J. Neurochem.86, 374-382 (2003)参照)。ただし、すべてのリン酸結合を S 化すると光学異性が生じ、ハイブリダィゼーシヨンの面から不利になる。
[0023] S化センスオリゴヌクレオチド(S化センスオリゴ)の具体例としては、
5'-G*C*C*TCATACTTCCTCAG*A*G*C-3'
5'-T*A*G*CTGCATTGTGTACA*G*A*T-3'
5'-G*T*G*TATAATTCCTTGAT*G*A*A-3'
(配列中、 *は S化した部分を示す。)等が挙げられる。
[0024] 他の修飾法としては、 PNA (peptide nucleic acids)、 LNA (Locked Nucleic Acids) 、 ENA(2'-〇, 4'-C-Ethylene- bridged Nucleic Acids;シグマアルドリッチ社)、モルホ リノ(Mo卬 holino)オリゴ(Gene Tools社, OR, USA)等が挙げられる。
[0025] センスオリゴは、 iNOSmRNAのアンチセンス転写物の存在が確認された細胞内 に導入することにより、アンチセンス転写物と反応 (ハイブリダィズ)して、細胞内にお けるアンチセンス転写物の有効量を低減させると考えられるので、センスオリゴの投 与により本来の遺伝子産物(iNOS)の発現量を減少させ、 NOの過剰産生を抑制す ること力 Sできる。
実施例
[0026] 以下に実施例を示して本発明を具体的に説明するが、本発明はこれらによって限 定されるものではない。
[0027] (1) iNOSmRNAに相補的な配列であるアンチセンス転写物の配列と領域 (塩基長) の決定方法
実施例 1:ラット iNOSアンチセンス転写物
以下の方法により、ラッ HNOSの mRNAに対して、遺伝子のアンチセンス鎖力、ら転 写された「アンチセンス転写物」が存在するかどうか調べ、この「アンチセンス転写物」 がセンス遺伝子産物の産生の制御にどのように関わっているかを調べた。なお、ラッ HNOSの mRNAの塩基配列は、 DDBJ/EMBL/GenBank国際塩基配列データべ一 ス (http://www.ddbj.mg.ac.jp/、 http://www.ebi.ac.uk/ embl/、 http://www.ncbi. nlm.n ih.gov/Genbank/)によって既知である。
[0028] サイト力インや急性期タンパク質など、誘導的発現の起こる遺伝子の mRNAの 3'非 翻訳領域(3'UTR)には、 AU-rich element (ARE)と呼ばれる配列、すなわち 5 '— A UUUA- 3 'または 5 ' - AUUUUA- 3 'とレ、う配列が存在してレ、る (Proc Natl Acad Sci USA 83: 1670-1674 (1986)参照)。 AREはヒト、ラット及びマウスの iNOSmRNA の 3'UTRにも存在しているので、この AREを含む 3'UTRに対応する(配列が相補 的な)アンチセンス転写物が存在するかどうかを、鎖特異的 RT—PCR法により調べ た。本法はオリゴ dTプライマーのように、 mRNAだけにハイブリダィズする(ストランド (鎖)特異的な)プライマーを使って逆転写を行って相補的 DNA(cDNA)を合成し た後、 PCR法を行って cDNAを増幅し、 mRNAの量を測定する方法である。
[0029] すなわち、以下に示す iNOS遺伝子のセンス鎖のプライマー:
5' -TGCCCCTCCCCCACATTCTCT- 3 ' (配歹' J番号 2)
を用い、培地に IL—1 を添カ卩して iNOS mRNAを誘導したラット初代培養肝細胞 の全 RNAに対して RT— PCRを行ない cDNAを合成した。
[0030] ラット初代培養肝細胞から調製した RNA (1 μ g)と 2pmolのプライマーを混ぜてか ら、 70°C、 10分間加熱後、 0°Cに急冷した。これに ReverTra Ace反応バッファー(東 洋紡)、 dNTP (N=A, C, G, T) (最終濃度 ImMになるように)、 20 units RNase inh ibitor (東洋紡)、及び 200 units ReverTra Ace逆転写酵素(東洋紡)をカロえ、全量を 2 5 /i lとした。 47°Cで 60分間保温して逆転写した後、 70°C、 15分間加温して逆転写 酵素を失活させた。次に、 5 unitsの Tth RNase H (東洋紡)をカ卩えて、 37°C、 20分間 加温して铸型 RNAを分解した。合成した cDNAはエタノール沈澱を行なって回収し 、 20 μ 1の ΤΕバッファーで溶解した。
[0031] このようにして得られた cDNA 2 μ 1に、 PCR反応バッファー(二ツボンジーン社)、 d NTP (N=A, C, G, T;二ツボンジーン社)(最終濃度 125 μ Μになるように)、下記 2種類のプライマー、順方向(Forward)プライマー 40pmol、逆方向(Reverse)プライ マー 40pmol、 1 unit Gene Taq DNAポリメラーゼ(二ツボンジーン社)、及び anti- Taq high ( =抗 Taqポリメラーゼ抗体,東洋紡) #を加えて、全量を 40 μ 1としてさらに PCRを 行なった。 順方向:
5,一 ACCAGGAGGCGCCATCCCGCTGC— 3' (配列番号 3)
逆方向:
5, - CTTG ATC AAAC ACTC ATTTTATTAAA - 3,(配列番号 4)
[0032] PCRの温度プロトコールには公知の方法、すなわちステップダウン法(Nishizawa M , Nakajima T, Yasuda K, Kanzaki H, Sasaguri , Watanabe K, and ito S. Close kinsh ip of human 20a-hydroxysteroid dehydrogenase gene with three aldo—keto reductase genes. Genes Cells (2000) 5, 111-125)参照)に従って行った。 PCR産物のァガロー スゲル電気泳動を行った結果、 186塩基対(bp)のバンドの増幅が見られた。
このバンドをゲル力 切り出して精製し、塩基配列を決定したところ、上記のプライ マー配列に挟まれた、ラッ HNOSmRNAの 3' UTRの配列に相補的な配列であるこ とを確認した。すなわち、 iN〇S遺伝子のセンスプライマーを用いた鎖特異的 RT—P CR法により、アンチセンス転写物の存在を証明した。
[0033] さらに iNOS遺伝子のアンチセンス転写物の全構造を調べるために、 RACE法(Fr ohman MA. Rapid amplification of complementary DNA ends for generation or full-ie ngth complementary DNAs: thermal RACE. Methods Enzymol. (1993) 218: 340-356 参照)による解析を試みた。 RACE法は既知の cDNA配列から鎖特異的なプライマ 一を作製して逆転写を行い、 5'側及び 3'側の cDNAの配列を決定する方法である。
[5'側の cDNAの配列決定]
ラット初代培養肝細胞に IL—1 を添加して、 iNOS mRNAを誘導し、 Trizol試薬 (インビトロジェン)で RNAを調製した。この RNAを铸型とし、配列番号 2のプライマ 一(iNOSのセンス (forward)プライマー; 5'_TGCCCCTCCCCCACATTCTCT_3') を使って二本鎖 cDNAを合成した。この cDNAに CAカセットアダプター(cDNA PCR Library Kit (タカラバイオ (株))に添付)を連結した後、配列番号 3のプライマー(iN〇 S mRNAの 3, UTRに対するセンス(forward)プライマー)と CAプライマー(cDNA P CR Library Kit (タカラバイオ (株))に添付)を使って PCRを行なった。反応液をァガロ ースゲル電気泳動したところ、約 250bpのサイズのバンドが増幅していた。このバンド を切り出して、 pGEM-T Easyベクター(プロメガ)にクローニングして、塩基配列を決 定した。
[3'側の cDNAの配列決定]
上記と同様に、 IL- l i3で誘導したラット初代培養肝細胞から RNAを調製した。 Pol yATract mRNA Isolation System (プロメガ)を使って、 PolyA—画分の RNAを精製し、 この RNAを铸型とし、アンカー配歹 1J(下線部)を付けたランダムプライマー(アンカーラ
GCCGCNNNNNNN-3' (配列番号 5) )を使って二本鎖 cDNAを合成した。この cDN Aに CAカセットアダプターを連結した後、配列番号 4のプライマー(iN〇S mRNAの 3 ' UTRに対するアンチセンス(reverse)プライマー)と CAプライマーを使って PCRを 行なった。この反応液を精製して铸型とし、 iNOS mRNAの 3 ' UTRに対するアンチ センス(reverse)プライマー(5し ATATTAGAGCAGCGGGATGGCGCCTC-3' (配列 番号 6) )とアンカープライマー(上記の「アンカーランダムプライマー」のアンカー配列 に対するプライマー; 5'-ACTAGAATTCTCGAGCGGCCGC-3' (配列番号 7) )を使 つて 2次 PCRを行なった。反応液をァガロースゲル電気泳動したところ、 200〜500b pのサイズのバンドが増幅していた。このバンドを切り出して、 pGEM-T Easyベクター にクローニングして、塩基配列を決定した。
この結果、アンチセンス転写物の全長はほぼ 600塩基以上と推定された。以下にそ の配列を示した(配列番号 1 ;但し、 cDNA配列として示す。)。すなわち、アンチセン ス転写物は iNOS mRNAの 3'UTRに対応し、転写開始点(5'側)は iNOS mRNA のポリ A付加部位の相補鎖にあった。
[0034] 実施例 2 :ヒ HNOSアンチセンス転写物
以下の方法により、ヒ MNOSの mRNAに対して、遺伝子のアンチセンス鎖力、ら転 写された「アンチセンス転写物」が存在するかどうか調べた。なお、ヒ HNOSの mRN Aの塩基配列は、 DDBJ/EMBL/GenBank国際塩基配列データベース(http:〃 www. ddbj.mg.ac.jp/、 http://www.ebi.ac.uk/ embl/、 http://www.ncbi.nlm.nih.gov/ Genban k/)により既知である。
[0035] ヒトの組織 (胎盤、肝臓、胃粘膜)または細胞 (刺激していないリンパ球)から、常法 に従レ、 Trizol試薬(インビトロジヱン社)を用いて、全 RNAを抽出した。得られた全 RN Aは、 DNaseを含む TURBO DNA-free Kit (アプライドバイオシステムズ社)で処理し、 混入するゲノム DNAを除去した。この全 RNAを铸型として、以下に示すヒト iNOS遺 伝子のセンス鎖のプライマー:
5, - CTGAGTGCACCACTTCAAGTGAC - 3, (配列番号 8)
を用レ、、逆転写を行ない、 cDNAを合成した。具体的には、実施例 1において、ラット 初代培養肝細胞から調製した RNA1 μ gと配列番号 2で表わされるプライマー 2pmo 1の代わりに、ヒトの組織または細胞力、ら調製した全 RNA (1 a g)と上記配列番号 8で 表わされる(2pmol)を用いた他は、同様の方法で cDNAを合成した。
[0036] このようにして得られた cDNA 2 μ 1に、 PCR反応バッファー(二ツボンジーン社)、 d NTP (N=A, C, G, T ;二ツボンジーン社)(最終濃度 125 μ Μになるように)、下記 2種類のプライマー、順方向(Forward)プライマー 40pmol、逆方向(Reverse)プライ マー 40pmol、 1 unit Gene Taq DNAポリメラーゼ(二ツボンジーン社)、及び anti- Taq ( =抗丁&9ポリメラーゼ抗体,東洋紡) #を加えて、全量を 40 μ 1としてさらに PCRを 行なった。
順方向:
5, - CAGGAGGTGCTATCGCACCACT- 3 ' (配列番号 9)
逆方向:
5, - GCAATTCATGTAAATATCTCCATC - 3, (配列番号 10)
[0037] PCRの方法は実施例 1と同様の方法で行った。 PCR産物のァガロースゲル電気泳 動を行った結果、ヒト胎盤由来の cDNAを用いたときに 151塩基対 (bp)のバンドの 増幅が見られた。その他の cDNA (肝臓、胃粘膜または刺激していなレ、リンパ球)で は増幅が見られなかった。
増幅したバンドをゲル力 切り出して精製し、塩基配列を決定したところ、上記のプ ライマー配列に挟まれた、ヒ HNOSmRNAの 3 ' UTRに相補的な配列であることを 確認した。すなわち、 iN〇S遺伝子のセンスプライマーを用いた鎖特異的 RT—PCR 法により、ヒ HNOSアンチセンス転写物の存在を証明した。ヒ MNOSアンチセンス転 写物の配列を配列番号 11に示す。但し、 cDNA配列として示す。
[0038] 実施例 3 :マウス iN〇Sアンチセンス転写物 以下の方法により、マウス iNOSの mRNAに対して、遺伝子のアンチセンス鎖から 転写された「アンチセンス転写物」が存在するかどうか調べた。なお、マウス iNOSの mRNAの塩基配列は、 DDBJ/EMBL/GenBank国際塩基配列データベース(http:/
Figure imgf000013_0001
http://www.ebi.ac.uk/ embl/、 http://www.ncbi.nlm.mh.gov/ G enbank/)により既知である。
[0039] RAW264細胞力ら、から、常法に従レ、 Trizol試薬(インビトロジヱン社)を用いて、全 RNAを抽出した。得られた全 RNAは、 DNaseを含む TURBO DNA-free Kit (アプライ ドバイオシステムズ社)で処理し、混入するゲノム DNAを除去した。この全 RNAを錡 型として、以下に示すマウス iNOS遺伝子のセンス鎖のプライマー:
5, - CCTTCTTCTCCACTCCCCAGCT- 3 ' (配列番号 12)
を用レ、、逆転写を行ない、 cDNAを合成した。具体的には、実施例 1において、ラット 初代培養肝細胞から調製した RNA1 μ gと配列番号 2で表わされるプライマー 2pmo 1の替わりに、 RAW264細胞から調製した全 RNA(1 μ g)と配列番号 12で表わされ る(2pmol)を用いた他は、同様の方法で cDNAを合成した。
[0040] このようにして得られた cDNA 2 β 1に、 PCR反応バッファー(二ツボンジーン社)、 d NTP (N=A, C, G, T;二ツボンジーン社)(最終濃度 125 μ Μになるように)、下記 2種類のプライマー、順方向(Forward)プライマー 40pmol、逆方向(Reverse)プライ マー 40pmol、 1 unit Gene Taq DNAポリメラーゼ(二ツボンジーン社)、及び anti-Taq (=抗丁&9ポリメラーゼ抗体,東洋紡) #を加えて、全量を 40 μ 1としてさらに PCRを 行なった。
順方向:
5, - GACCACCAGGAGGCACCATGCCG - 3 ' (配列番号 13)
逆方向:
5, -ATACAGGAAAGGCCCAAGCCATC - 3' (配列番号 14)
[0041] PCRの方法は実施例 1と同様の方法で行った。 PCR産物のァガロースゲル電気泳 動を行った結果、 127塩基対(bp)のバンドの増幅が見られた。
増幅したバンドをゲル力 切り出して精製し、塩基配列を決定したところ、上記のプ ライマー配列に挟まれた、マウス iNOS mRNAの 3' UTRに相補的な配列であること を確認した。すなわち、 iNOS遺伝子のセンスプライマーを用いた鎖特異的 RT— PC R法により、マウス iNOSアンチセンス転写物の存在を証明した。マウス iNOSアンチ センス転写物の配列を配列番号 15に示す。但し、 cDNA配列として示す。
[0042] (2) iN〇SmRNAに相補的なアンチセンス転写物(以下、単にアンチセンスと略す) による iNOSmRNAの安定化
実施例 4:ラット iNOSアンチセンス転写物による iNOSmRNAの安定化
ラットアンチセンスが iNOSmRNAを安定化しているかどうかを明らかにするために
、ラットアンチセンスに相補的な配列を持ち、ラットアンチセンスにハイブリダィズする 性質を持つ iNOSのセンスオリゴヌクレオチド(以下、センスオリゴと略す)をラット初代 培養肝細胞に導入し iNOSmRNA量を調べた。
センスオリゴはオリゴヌクレオチドにおけるホスホジエステル結合のリン酸の酸素原 子の一つを硫黄原子に置換 (S化)することによって、細胞内における核酸分解酵に よるオリゴヌクレオチドの分解を防いだ。 IBA社(Gottingen, Germany)の Magnet assis ted transfection法による遺伝子導入試薬キット(MATra-A Reagent)により、 S化セン スオリゴをラット初代培養肝細胞に導入した。
[0043] ラット初代培養肝細胞は公知の方法(J. Hepatol. 40, 616-623, 2004)で調製し、 6 穴プレートに(1ゥエルあたり 3 X 105細胞)蒔いた。 2時間後に、 1ゥエルあたり 1. 5ml の新しい培地(Williams' E培地(WE)に、 10%ゥシ胎児血清、 ΙΟηΜデキサメタゾン 及び ΙΟηΜインスリンを含む培地。 WES— DIと略す)と交換した。さらに 4時間後、ォ リゴ(2 μ g)と WE (200 μ 1)を混合し、次に 2 μ 1の MATra-A Reagent (IBA社)を混ぜ て室温で 20分間静置した後、肝細胞の入っているゥエルに全量を滴下した。 6穴プ レートを磁石盤 (IBA社)の上に載せ、室温で 15分間静置してオリゴを細胞に導入し た。 10%ゥシ胎児血清を含む WE (1ゥヱルあたり 1. 5ml)と交換してから、ー晚 37°C に置いた。翌朝、 InMの IL—1 j3を含む WEに培地交換し、 4時間、 37°Cに置いた 後、全 RNAを調製した。
肝細胞を IL_ 1 j3で刺激すると、 iNOSmRNAの量が顕著に増加する力 上記の S化センスオリゴを導入して IL—1 /3で刺激して、 RT—PCR法及びリアルタイム PCR 法による mRNA量の測定を行った。この結果を図 1及び 2に示す。 [0044] ここで用いた iNOS遺伝子のセンス鎖配歹 lj、すなわち iNOSmRNAと同じ配列を持 つ S化オリゴヌクレオチドは以下の配列で示される。実験では S2、 S4と S5に相当す る。
S2:5' -G*C*C*TCATACTTCCTCAG*A*G*C-3'
S4:5' -T * A * G * CTGCATTGTGTACA * G * A * T- 3 '
S5:5' -G*T*G*TATAATTCCTTGAT*G*A*A-3'
(S化した部分は *で示した。 )
[0045] 一方、陰性対照として塩基組成が同じでありながら配列が異なるため、 iNOSmRN Aやその転写物、あるいは他の RNAとハイブリダィズしないことが確認されている配 列を持つ「スクランブルオリゴ」を導入した。スクランブルオリゴの配列を以下に示す。
Scr2:5' -G*G*T*ATTGCCCACCCAAC*T*C*T-3'
Scr4:5' -G*G*C*TCCATATGATTAGA*T*G*T-3'
Scr5 :5'— G氺 A氺 T氺 TGTTACTTAGAGAC氺 T氺 A氺 T 3 '
これらのスクランブルオリゴもセンスオリゴと同様、細胞内での分解を防ぐために、 S 化して用いた。 「スクランブルオリゴ」についてはラットゲノムとの相同性検索により、類 似の配列が存在しなレ、ことを確認してある。
[0046] さらに、もう一つの陰性対照として、 iNOSmRNAのステム 'ノレープ構造のステム部 分に対する S化センスオリゴヌクレオチド S 1を導入した。 S 1の配列を以下に示す。
Sl:5'— C氺 A氺 T氺 TCTC丁 TTCCTTTGC氺 C氺 T氺 C 3'
(*は前記と同様の意味を表わす。)
[0047] センス鎖(mRNAと同じ配列を持つ鎖)と同じ配列のプライマーを用いて鎖特異的 RT—PCR法を行うと、「アンチセンス転写物」に対する cDNAのみが逆転写されるの で、「アンチセンス転写物」の量を測定することができる。なお、逆転写を行なわずに PCRを行なった対照を置き、肝細胞の全 RNAに混入したゲノム力 PCRによって増 幅しないことを確認した。図の中では RT (―)で示した。
[0048] この結果、 S2、 S4、及び S5の S化センスオリゴを導入した場合には iNOSmRNA の量が減少した。これは、 S化センスオリゴカ iNOSのアンチセンス転写物とハイブリ ダイズして、アンチセンス転写物が分解されたために、 iNOSmRNAも分解されたこ とを示している。一方、スクランブルオリゴを導入した場合には、 iNOSmRNAの量は 大きく変動しなかった。また、ステム部分に対する S1を導入した場合にも、 iNOSmR NAの量は大きく変動しな力 た。
[0049] また、センスオリゴ S5またはスクランブルオリゴ Scr5を肝細胞に導入した時に、 IL-1
βを添加後の iNOSmRNA量を、逆転写した cDNAを錡型としてリアルタイム PCR 法で測定した。その結果、スクランブルオリゴ Scr5を導入すると、 iNOSmRNA量が 2倍になるのに要した時間は 119分間であった。これに対し、センスオリゴ S5を導入 した時には 461分間であった(図 2 )。
[0050] iN〇Sと同様に、 iN〇S以外の初期応答遺伝子 Cytokine- Induced Neutrophil Che moattractant 1 ; CINC— 1も肝細胞において IL_ 1 j3刺激下で顕著な mRNAの誘 導を起こす。そして、 CINC— 1の mRNAの 3'非翻訳領域(3 ' UTR)にも、 iNOSm RNAと同様に ARE配列が存在する。 iN〇Sのセンスオリゴを肝細胞に導入した際に 、 CINC—1の mRNA量を測定したところ、センスオリゴを入れない場合と mRNA量 に差がなかった。すなわち、 iNOSのセンスオリゴの働きは iNOSに限定されるもので あることを示していた(図 1)。
以上の結果を併せると、 iNOSのセンスオリゴは iNOSアンチセンス転写物と特異的 にハイブリダィズして iNOSmRNAの分解を促進して、その結果として iNOSmRNA の量を特異的に減少させることが示された。
[0051] 実施例 5:マウス iNOSアンチセンス転写物による iNOSmRNAの安定化
マウスアンチセンスにハイブリダィズする性質を持つ iNOSセンスオリゴヌクレオチド の S化センスオリゴを、マウスマクロファージ由来の RAW264細胞に導入して、マウス アンチセンス転写物による iNOSmRNAの発現抑制を調べた。
以下に記載しない操作は実施例 4と同様の方法により行なった。マウス RAW264 細胞を、ゥヱルあたり 5 X 105細胞蒔き、 DMEM培地を交換して C〇2恒温器で培養し た。
IBA社 (Gottingen, Germany)の Magnet assisted transfection法により Sィ匕センスオリ ゴを、 RAW264細胞に導入した。 10%ゥシ胎児血清を含む DMEM培地(1ゥエル あたり 1. 5ml)と交換してから、ー晚、 37°Cに置いた。翌朝、大腸菌 LPS (1 μ gZml )を含む DMEMに培地交換し、 4時間、 37°Cに置いた後、全 RNAを抽出し RT— P CRに供した。なお、全 RNAは、 DNaseを含む TURBO DNA- free Kit (アプライドバイ ォシステムズ社)で処理し、混入するゲノム DNAを除去した。
センスオリゴは、マウスアンチセンス転写物に対応する、マウス iNOSmRNAに対し て作製した。
[0052] ここで用いられたマウス iN〇S遺伝子のセンス鎖の配歹 IJ、すなわち iNOSmRNAと 同じ配列を持つ S化オリゴヌクレオチドは配列で示される。実験では Sl、 S2と S3に 相当する。
Sl:5' -G*A*A*GCACTTTGGGTGAC*C*A*C-3'
S2:5' -T * A * G * CTGCACTATGTACA *G*A*T-3'
S3 :5' -C*A*G*ATATTTATACTTCA*T*A*T-3'
(S化した部分は *で示した。 )
[0053] 実施例 4で行なった鎖特異的 RT— PCR法に従って、マウス iNOSmRNAの量を 測定した。
この結果、マウス iNOSmRNAの量が減少した。これは、 S化センスオリゴカ iNO Sのアンチセンス転写物とハイブリダィズして、アンチセンス転写物が分解または競合 されたために、 iNOSmRNAも分解されたことを示した(図 3)。
[0054] [実施例:!〜 5まとめ]
実施例 4及び 5の結果から、ラットのみならず、マウスでも iNOSのセンスオリゴは iN OSアンチセンス転写物と特異的にハイブリダィズすることにより、 iNOSmRNAの分 解を促進して、その結果として iNOSmRNAの量を特異的に減少させることが示され た。
このように、ラット肝細胞でも、マウスの細胞でも、センスオリゴヌクレオチドを用いて i NOSmRNAの発現を抑制することができた。従って、センスオリゴヌクレオチドを用 いた iNOSmRNAの発現抑制は、肝臓などの炎症時の iN〇S誘導及び N〇産生を 軽減し、肝障害の有効な治療方法となるといえる。
[0055] (3) iN〇S遺伝子以外の初期応答遺伝子の mRNAに相補的な配列であるアンチセ ンス転写物の配列と領域 (塩基長)の決定方法 炎症の時に誘導されて発現する遺伝子(レ、わゆる「初期応答遺伝子」 )には、 iNOS のみならず、サイトカインゃケモカインなどの生理活性物質の遺伝子が含まれる。こ れらの初期応答遺伝子は炎症を増悪させたり、改善させたりするなど、多彩な働きを 持っている。初期応答遺伝子の発現を調節することは、最終的には炎症を調節する ことにつながる。そこで、 iNOS遺伝子のアンチセンス転写物以外にも、他の初期応 答遺伝子においてもアンチセンス転写物が発現しているかどうかを調べた。次に、種 間でよく保存されており、かつ複数の ARE配列を含んでレ、る 3 ' UTRの配列に対して 、アンチセンス転写物が発現されていると予想した。そして、この部分に対して、逆転 写用のセンスプライマーと、 PCR用の 1対のプライマーをデザインし、ラットの iNOS 遺伝子でアンチセンス転写物を検出した実施例 4と同様に、鎖特異的 RT—PCR法 を行なって、ラット肝細胞においてアンチセンス転写物が発現しているかどうかを調 ベた。
[0056] iNOS以外の初期応答遺伝子のうち、 3 ' UTRに複数の ARE配列を含むもので、 かつ種間(ヒト、マウス、ラット)で 3 ' UTRの配列がよく類似している 3つの典型的な遺 伝子を例にとって調べた。すなわち、以下の 3遺伝子である。
)し ytokme— Induced Neutrophil Chemoattractant 1 (CINC— 1 ):し nemokme (し一 X— C motif) Ligand 1 (CXCL1)とも呼ばれ、 IL-1 βで刺激したラット肝細胞で誘導される ケモカインである。
(b) NF - / B p50 :転写因子 NF— / Bのサブユニットの 1つであり、炎症に深く関 与してレ、るタンパク質である。
(c) I / B - a: NF - κ Βの活性を抑制するタンパク質である。
なお、ヒト、マウス及びラットにおけるこれらの mRNAの塩基配列は、 DDBJ/EMBL/ GenBank国際塩基 ΰ歹 'Jテータベース (http://www.ddbj.nig.ac.jp/、 http://www.ebi. a c.uk/embl/、 http://www.ncbi.nlm.nih.gov/ Genbank/)により既夭口である。
[0057] 実施例 6:ラット CINC-1アンチセンス転写物
以下の方法により、ラット CINC-1の mRNAに対して、遺伝子のアンチセンス鎖から 転写された「アンチセンス転写物」が存在するかどうか調べた。以下に特に記載のな レ、操作は実施例 1と同様の方法で行なった。 初代培養ラット肝細胞を IL- 1 βで刺激してから、常法に従い Trizol試薬 (インビトロ ジェン社)を用いて、全 RNAを抽出した。得られた全 RNAは、 DNaseを含む TURBO DNA-free Kit (アプライドバイオシステムズ社)で処理し、混入するゲノム DNAを除去 した。この全 RNAを錡型として、以下に示すラット CINC- 1遺伝子のセンス鎖のプライ マー:
5, -TGTCTGGTGAACGCTGGCTTCTGA- 3' (配列番号 16)
を用レ、、逆転写を行ない、 cDNAを合成した。
[0058] 得られた cDNAと以下に示すラット CINC-1遺伝子のセンス鎖の 2種類のプライマー 順方向:
5, -TGTGGATGCGTTTCATCGATGGT - 3 ' (配列番号 1 7)
逆方向:
5 ' 一 CTAGCACAGTGGTTGACACTTA- 3' (配列番号 18)
を用いて、実施例 1と同様の方法のステップダウン法に従って PCRを行なった。
[0059] PCR産物のァガロースゲル電気泳動を行った結果、 122塩基対(bp)のバンドの増 幅が見られた。この増幅したバンドをゲル力 切り出して精製し、塩基配列を決定し たところ、上記のプライマー配列に挟まれた、ラット CINC- 1 mRNAの 3 ' UTRの配列 であることを確認した。すなわち、 iNOS遺伝子のセンスプライマーを用いた鎖特異 的 RT— PCR法により、ラット CINC- 1遺伝子のアンチセンス転写物の存在を証明した 。ラット CINC- 1遺伝子のアンチセンス転写物の配列を配列番号 1 9に示す。但し、 cD NA配列として示す。
[0060] 実施例 7:ラット NF- κ B p50アンチセンス転写物
以下の方法により、ラット NF- κ B p50の mRNAに対して、遺伝子のアンチセンス鎖 力 転写された「アンチセンス転写物」が存在するかどうか調べた。以下に特に記載 のない操作は実施例 6と同様の方法で行なった。
初代培養ラット肝細胞を IL- 1 βで刺激してから、常法に従い Trizol試薬 (インビトロ ジェン社)を用いて、全 RNAを抽出した。得られた全 RNAは、 DNaseを含む TURBO DNA-free Kit (アプライドバイオシステムズ社)で処理し、混入するゲノム DNAを除去 した。この全 RNAを铸型として、以下に示すラット NF- κ B p50遺伝子のセンス鎖の プライマー:
5, - CTGTCATTAAGGTATCGCAGTCC - 3 ' (配列番号 20)
を用レ、、逆転写を行ない、 cDNAを合成した。
[0061] 得られた cDNAと以下に示すラット NF- κ Β ρ50遺伝子のセンス鎖の 2種類のプライ マー:
順方向:
5, - CATCTACAGTACAGTCATGCACTC - 3, (配列番号 21 )
逆方向:
5 ' - GGGAAAATACTATTTTCAGCACTGAT- 3 ' (配列番号 22)
を用いて、実施例 1と同様の方法のステップダウン法に従って PCRを行なった。
[0062] PCR産物のァガロースゲル電気泳動を行った結果、 192塩基対(bp)のバンドの増 幅が見られた。このバンドをゲル力 切り出して精製し、塩基配列を決定したところ、 上記のプライマー配列に挟まれた、ラット NF- κ B p50 mRNAの 3 ' UTRの配列であ ることを確認した。すなわち、 iNOS遺伝子のセンスプライマーを用いた鎖特異的 RT PCR法により、ラット NF- κ B p50遺伝子のアンチセンス転写物の存在を証明した。 ラット NF- κ B p50遺伝子のアンチセンス転写物の配列を配列番号 23に示す。但し、 cDNA配列として示す。
[0063] 実施例 8:ラッ H f B- αアンチセンス転写物
以下の方法により、ラッ H / B- aの mRNAに対して、遺伝子のアンチセンス鎖から 転写された「アンチセンス転写物」が存在するかどうか調べた。以下に特に記載のな レ、操作は実施例 6と同様の方法で行なった。
初代培養ラット肝細胞を IL-1 βで刺激してから、常法に従い Trizol試薬 (インビトロ ジェン社)を用いて、全 RNAを抽出した。得られた全 RNAは、 DNaseを含む TURBO DNA-free Kit (アプライドバイオシステムズ社)で処理し、混入するゲノム DNAを除去 した。この全 RNAを錡型として、以下に示すラット I κ B-ひ遺伝子のセンス鎖のプライ マー:
5 ' -TCCAGAATCTGATAAAAGGACCAC - 3' (配列番号 24) を用い、逆転写を行ない、 cDNAを合成した。
[0064] 得られた cDNAと以下に示すラット I κ ~ a遺伝子のセンス鎖の 2種類のプライマ 順方向:
5, -TGAACCGCCATAGACTGTAGCTG - 3 ' (配列番号 25)
逆方向:
5, - GCACATACCACTGAACACCTGGT - 3' (配列番号 26)
を用いて、実施例 1と同様の方法のステップダウン法に従って PCRを行なった。
[0065] PCR産物のァガロースゲル電気泳動を行った結果、 102塩基対(bp)のバンドの増 幅が見られた。このバンドをゲル力 切り出して精製し、塩基配列を決定したところ、 上記のプライマー配列に挟まれた、ラッ H /c B_ひ mRNAの 3 ' UTRの配列であるこ とを確認した。すなわち、 iN〇S遺伝子のセンスプライマーを用いた鎖特異的 RT—P CR法により、ラッ H κ - α遺伝子のアンチセンス転写物の存在を証明した。ラッ Η κ Β- α遺伝子のアンチセンス転写物の配列を配列番号 27に示す。但し、 cDNA配列 として示す。
[0066] [実施例 6〜8のまとめ]
炎症の時に発現する初期応答遺伝子として、 iNOS以外の代表的な 3つの遺伝子 (CINC- 1、 NF_ / B p50、 I / B- α )を選んだ力 いずれにおいても 3 ' UTRに複数の ARE配列を含み、かつ種間(ヒト、マウス、ラット)で 3 ' UTRの配列がよく似ている。 i NOSと同様に、この 3遺伝子においてもアンチセンス転写物が発現していることが確 p' c! "れ /こ。
[0067] このこと力、ら、アンチセンス転写物は ARE配列を含み、かつ種間で 3 ' UTRの配列 力はく似ている初期応答遺伝子では共通に見られる分子であることが推察される。さ らに、アンチセンス転写物がこれらの mRNAの安定性を調節してレ、る可能性が強く 示唆される。したがって、肝臓などの炎症において初期応答遺伝子のアンチセンス 転写物の働きを抑制することにより、炎症を抑える事が期待される。
[0068] (4)ラット急性肝不全モデルを用いた生体(in vivo)での iNOSとアンチセンス転写物 の発現誘導と肝臓保護剤(IGF-Iと FR183998)による iNOSとアンチセンス転写物の 発現誘導の抑制効果
実施例 1及び実施例 4の結果より、ラット初代培養肝細胞 (in vitro)の系において、 i N〇S誘導時に iNOSmRNAの 3 '—非翻訳領域(3 ' UTR)に対応するアンチセンス 転写物が発現し、 iNOSmRNAの安定化を促進することを示した。肝障害ラット (in vi vo)においても iNOS誘導に呼応して、 iNOSアンチセンス転写物が発現することを 以下に示す。さらに、 Insulin—like growth factor-I (IGF— I)や Na+/H+ exchanger阻害 剤(FR183998)などの肝臓保護剤の投与による生存率の変化と炎症性サイト力イン、 i N〇SmRNA、及びアンチセンス転写物の誘導との関係を以下に示す。
[0069] 実施例 9
(I)急性肝不全モデルの作製と肝臓保護剤の投与
雄3 ^§1½-0&¾¾ ラット(250 _ 300 g)に、 D—ガラクトサミン(D- galactosamine) (400 g/kg)と細菌エンドトキシンである LPS (16 μ g/kg)との混合液(D- GalN/LPS)を静注 し、急性肝不全モデルを調製した。 Insulin-like growth factor-I (IGF—I ; 3.2 mg/kg)あ るいは Na+/H+ exchanger阻害剤(FR183998; 1 mg/kg)を D-GalN/LPS処理の 30分 前に投与した。血中及び肝臓の炎症性サイト力イン (TNF- a, IL-1 β , IL_6,インタ 一フエロン γ , CINC_1)、 ΜΙΡ-2及び一酸化窒素(NO)を測定した。肝臓より全 RNA を調製し、 iNOSmRNA及び iNOSアンチセンス転写物を RT—PCRで検討した。
[0070] (II) RNAの解析
D—ガラクトサミンと LPS混合液の静注後、 3または 6時間後に、ラットの肝臓を取り 出して、常法に従い Trizol試薬 (インビトロジヱン社)を用いて、全 RNAを抽出した。 この全 RNAを铸型として、オリゴ dTプライマーを用いて、逆転写を行ない、次に実施 例 1等と同様の方法で PCR (RT_ PCR法)を行なった。 iNOSmRNAや、内部標準 となる elongation factor- 1 a (EFl) mRNAの定量には、逆転写のときオリゴ dTプライ マーを用い、 PCRのときには
iNOSmRNA :
CCAACCTGCAGGTCTTCGATG (配列番号 28)及び
GTCGATGCACAACTGGGTGAAC (配列番号 29);及び
EFmRNA : TCTGGTTGGAATGGTGACAACATGC (配列番号 30)及び
CCAGGAAGAGCTTCACTCAAAGCTT (配列番号 31 )
を用いた。なお、 PCR反応液には ant Taq high (=抗丁&(1ポリメラーゼ抗体,東洋紡) を添加した。
また、 iNOSアンチセンス転写物の定量は、実施例 1の方法に従った。なお、逆転 写を行なわずに PCRを行なった対照を置き、肝細胞の全 RNAに混入したゲノム力 PCRによって増幅しないことを確認した。 iNOSmRNA検出結果を図 4に示し、 iNO Sアンチセンス転写物の検出結果を図 5に示す。図中、 RT (—)は逆転写(一)の陰 性対照を示す。
[0071] (III)リアルタイム PCRによる mRNA及びアンチセンス転写物の定量
逆転写して合成した cDNAは、 日本バイオラド社の iCycler Systemを用いて、リアル タイム PCRによっても定量を行なった。 PCR反応液に SYBR Green I (ロシュ ·ダイァグ ノステイクス社)及び ant Taq high (=抗丁&9ポリメラーゼ抗体,東洋紡)を添カ卩して、 公知の方法であるタツチダウン法で PCRを行なった。実際の PCRプロトコールは次 の通りである。
1サイクル(94°C, 1 min)、
50サイクル(94°C, 30 sec; (72— 0.3 X n) °C, 1 min; 72°C, 30 sec); nはサイクル数。 結果を図 6に示す。図中、「*」は「p<0.05 vs. GalN/LPSラット (n= 3-6ラット /グループ)」 を示す。
[0072] (IV)肝臓保護剤による iNOSmRNA及び iNOSアンチセンス転写物量の変化
肝臓保護剤を投与しなかった場合、 D-GalN/LPSの静注後、約 24時間でほとんど の動物(90%以上)が死亡した。血中及び肝臓に、経時的(1〜: 12時間)に炎症性メ ディエイター(TNF- α , IL-1 β, IL-6,インターフェロン γ, CINC-1, MIP-2, NO)が 増加した。肝臓の iNOSmRNA誘導に呼応してアンチセンス転写物が増加を示し (i NOSmRNA及び iNOSアンチセンス転写物とも 6時間後に最大)、その結果過剰な N〇産生が認められた。
IGF-Iの投与により死亡率は 20〜30%以下に減少した。そして、上述の炎症性サ イト力イン、 NO産生に加えて iNOSmRNA及びアンチセンス転写物誘導の増加が 同様に抑制された(図 4〜6)。
FR183998の投与によっても死亡率は 20〜30%以下に減少し、上述の炎症性サイ トカイン、 NO産生に加えて iNOSmRNA及びアンチセンス転写物誘導の増加が同 様に抑制された(図 7〜9)。
(IV- 1)ラット急性肝不全モデルにおける肝臓保護剤 IGF-Iの iNOSmRNA及びァ ンチセンス転写物の発現誘導への効果
図 4の結果より、 D—ガラクトサミサンと LPSを投与したラット; GalN/LPSラットは、は 3 〜6時間で iNOSmRNAレベルが増加した力 IGF-Iを投与したラットはこの増加が 抑制された。
図 5及び 6の結果より、 RT (―)ではほとんど増幅した cDNAが見られないことから、 全 RNAに混入したゲノム DNAは極めて微量であると考えられる。 GalN/LPSラットは 3〜6時間でアンチセンス転写物レベルが増加した力 IGF-Iを投与したラットはこの 増加が抑制された。
(IV-2)ラット急性肝不全モデルにおける肝臓保護斉 ljFR183998の iNOSmRNA及 びアンチセンス転写物の発現誘導への効果
図 7の結果より、 GalN/LPSラットは 3〜6時間で iNOSmRNAレベルが増加したが、 FR183998を投与したラットはこの増加が抑制された。
図 8及び 9の結果より、 RT (—)ではほとんど増幅した cDNAが見られないことから、 全 RNAに混入したゲノム DNAは極めて微量であると考えられる。 GalN/LPSラットは 3〜6時間でアンチセンス転写物レベルが増加した力 FR183998を投与したラットは この増加が抑制された。
(5)ラット肝細胞でのセンスオリゴの効果 (iNOSタンパク質と一酸化窒素(NO)量の 変化)
実施例 10
実施例 4と同様の方法で、実施例 4において得られたセンスオリゴ S5またはスクラン ブルオリゴ Scr5を肝細胞に導入し、培地中の一酸化窒素(NO)量を Nitric Oxide Co lorimetric Assay kits (ロシュ ·ダイァグノステイクス社)で測定した。ただし、翌朝、 In Mの IL-1 βを含む WEに培地交換し、 8〜10時間、 37°Cに置いた後、測定した。ま た、細胞から全タンパク質を抽出して、 ECLキット(GEヘルスケア社)を用いたウェス タン法で iNOSタンパク質を検出した。結果を図 10に示す。
その結果、ラット肝細胞にセンスオリゴ S5を導入することで、 iNOSタンパク質及び 培地中の一酸化窒素(NO)量が減少することが示された。
[0074] (6)ノーザン法による iNOSアンチセンス転写物の検出
実施例 11
IL-1 βで刺激したラット肝細胞において、 iNOS遺伝子のアンチセンス転写物が存 在することを、 Northern blot analysis (以下、ノーザン法と略す)で確認した。
(I) RNAの調製
ラット肝細胞を一定時間、 IL-1 βで刺激してから、 Trizol試薬 (インビトロジヱン社)を 用いて、全 RNAを抽出した。得られた全 RNAは、 DNaseを含む TURBO DNA-free K it (アプライドバイオシステムズ社)で処理し、混入するゲノム DNAを除去した。 Poly(A )+と poly(A)- RNAは、 PolyATract mRNA Isolation System (プロメガ社)で分画した。 非特異的なハイブリダィゼーシヨンを防ぐため、リボゾーム RNA (rRNA)を、終濃度 5% ポリエチレングリコール 6000及び終濃度 0.75M NaCl存在下で沈澱させて除き、上 清をエタノール沈澱により回収して電気泳動に用いた。
[0075] (II)ノーザン法:電気泳動
上記の RNA、すなわち無刺激ラット肝細胞の全 RNA、 IL-1 β刺激ラット肝細胞の全 RNA、 IL-1 β刺激ラット肝細胞の Poly(A)+ RNA、及び IL-1 β刺激ラット肝細胞の Poly( A)- RNAの 4つを、 2.2Mホルマリン含有ァガロースで電気泳動を行ない、分離した。
[0076] (III)ノーザン法:ハイブリダィゼーシヨン
常法に従い、ゲル中の RNAを Nytran Nフィルター(ワットマン社)に移した。次に、 D IG EasyHybバッファー(ロシュダイァグノステイタス社)中で、ディゴキシゲニン(DIG) 標識した iNOSの 3,UTRのセンスプローブと、 73。Cでー晚、ハイブリダィゼーシヨン を行なった。翌朝、ロシュダイァグノステイタス社のマニュアルに従って、フィルターを 洗った。なお、 iNOSの 3, UTRのセンスプローブは、 DIG-11-UTP (ロシュダイァグノ ステイタス社)と T3 RNAポリメラーゼ(ストラタジーン社)を用いて、試験管内で RNAを 合成することによって作製した。 [0077] (IV)ノーザン法:検出
ロシュダイァグノステイタス社のマニュアルに従って、ブロッキングを行なレ、、アルカリ フォスファターゼと結合した抗 DIG抗体(ロシュダイァグノステイタス社)とインキュベー トした。洗浄後、基質である CDP-Star (アプライドバイオシステムズ社)と反応させ、ェ ックス線フィルムで、 iNOSセンスプローブとハイブリダィズする RNAのバンドを検出 した。
[0078] (V)結果と考察
上記 4種の RNAのノーザン法による解析結果(エックス線フィルムのオートラジオグ ラム)を図 11に示す。
「IL-1 β刺激ラット肝細胞の全 RNA」と「IL-1 β刺激ラット肝細胞の Poly(A)_RNA」で は、 600〜1000ヌクレオチド (nt)のスメァ状の濃いバンドが観察された。 iN〇Sの 3 ' UT Rのセンスプローブを用いているので、これらのスメァ状バンドは、 iN〇Sのアンチセ ンス転写物のバンドと考えられる。従って、 iNOSのアンチセンス転写物の長さは一 定ではなぐさまざまな長さ(600〜1000ヌクレオチド)の転写物の集合であることがわ かった。
[0079] RACEの結果とリボヌクレアーゼプロテクションアツセィの結果とを併せると、図 12 に示すように、 iNOSのアンチセンス転写物が合成されていると考えられた。図中、点 線は 600ヌクレオチド以上のさまざまなサイズのアンチセンス転写物ができていること を示す。図中の数字は iNOS遺伝子のェクソンの番号、黒い部分はタンパク質の翻 訳領域で、白抜きのボックスはェクソン 27にある 3' UTRである。 iNOSの mRNAは 遺伝子の図中上側に示す。
[0080] (7) iNOSアンチセンス転写物の過剰発現による mRNAの安定化
実施例 12
ラット肝細胞において、 iNOS遺伝子のアンチセンス転写物を過剰発現させると、 i N〇Sの 3' UTRを介して mRNAが安定化されることを確認した。
ふつうのレポーターの場合、 iNOS遺伝子のプロモーターにルシフェラーゼ遺伝子 を結合する。 iNOS遺伝子のプロモーターは「誘導型プロモーター」であるため、ラッ ト肝細胞においては IL-1 β刺激により、プロモーター活性が大きく変化してしまレ、、レ ポーター遺伝子の後に結合した 3 ' UTRの働きがよく観察できない。そこで、刺激に かかわらず、一定量の発現を促す「構成的プロモーター」である、 elongation factor- 1 a (EF)遺伝子のプロモーターを用いることにした。従って、 EFプロモーターでコント ロールされるルシフェラーゼ遺伝子や j3ガラクトシダーゼ遺伝子は、刺激にかかわら ず、ほぼ一定量で発現する。これにより、ポリ(A)シグナル配列を含む iNOSmRNA の 3 ' UTR力 S、ルシフェラーゼ mRNAの安定性に与える影響のみを観察することが できる。
[0081] 以下の 3種のベクターを、 pGL3_Basicプラスミド(プロメガ社)をもとに構築した。構 築したベクターの模式図を図 13に示す。
(i)レポーター(ノレシフェラーゼベクター):
EFプロモーター +ルシフェラーゼ遺伝子(Luc) + iNOS 3 ' UTR EFプロモータ" ~ " hルシフェラーゼ遺伝子(Luc) + SVpA
(ルシフェラーゼ mRNAが構成的に発現する力 S、ルシフェラーゼ遺伝子の後の部 分で mRNAの安定性を制御されうる)
(ii) iNOSアンチセンス転写物発現ベクター:
CMVプロモーター + iNOS 3 ' UTRを逆方向に挿入 + SVpA
(iNOSアンチセンス転写物力 細胞内で過剰に発現する)
(iii)内部標準( j3ガラクトシダーゼベクター):
EFプロモーター + ガラクトシダーゼ(lacZ)遺伝子 + SVpA
( βガラクトシダーゼ mRNAが構成的に発現する)
なお、 SVpAとは、 SV40ウィルス由来のポリ(A)シグナルの配列で、安定な 3,UTR として知られており、 SVpAの付加された mRNAは壊れにくい。 iNOS 3 ' UTRの対 照である。 CMVプロモーターとは、サイトメガロウィルス由来で、 EFプロモーターより はるかに強レ、構成的プロモーターである。
[0082] (i)と(iii)のプラスミドを同時にラット肝細胞に導入したとき、ルシフェラーゼ mRNA ( Luc)と βガラクトシダーゼ mRNA ( j3 Gal)の合成量は、 EFプロモーターが構成的 であることから、ほぼ一定である。さらに iNOSアンチセンス転写物発現ベクター(ii) を加えた時と加えない時で差があれば、 Luc mRNA/ β Gal mRNA (Luc/ β Ga 1値)にも差があるはずである。もし Luc/ β Gal値力 iNOSアンチセンス転写物発現 ベクターの有無により変化するならば、 iNOSアンチセンス転写物の過剰発現力 iN OS 3' UTRを介してルシフェラーゼ mRNAの安定性に影響を与えたことになる。
[0083] [方法]
(I)トランスフエクシヨン
初代培養ラット肝細胞に、前述の方法 (MATra)により以下のプラスミドを導入した。
(i)レポーター(400 ng/ゥエル)、
土(ii) iNOSアンチセンス転写物発現ベクター(50 ng/ゥエル)、
(iii)内部標準 (400 ng/ゥエル)。
iN〇Sアンチセンス転写物発現ベクターを入れたものは AS ( + )、入れないものは AS (―)とした。
[0084] (II) RNAの調製
トランスフエクシヨンして、ー晚経った肝細胞の培地を交換した後、経時的に全 RN Aを抽出した。常法に従い Trizol試薬 (インビトロジェン社)を用いて行なった。得られ た全 RNAは、 DNaseを含む TURBO DNA-free Kit (アプライドバイオシステムズ社)で 処理し、混入するゲノム DNAを除去した。この全 RNAを铸型として、オリゴ(dT)プラ イマ一を用いて逆転写を行ない、 mRNAに対する cDNAを合成した。
[0085] (III)リアルタイム PCRによる mRNAの定量
合成した cDNAを用いて、リアルタイム PCRによって定量を行なった。 日本バイオラ ド社の iCyclerシステムを用いた。 PCR反応液に SYBR Green I (ロシュ ·ダイァグノステ イクス社)及び anti-Taq high ( =抗Taqポリメラーゼ抗体。東洋紡)を添加して、公知の 方法であるタツチダウン法で PCRを行なった。実際の PCRプロトコールは次の通りで ある。
1サイクノレ (94°C, 1 min)、
50サイクル (94°C, 30 sec; (72 - 0.3 X n)°C, 1 min; 72°C, 30 sec) (nはサイクル数) レポーターであるルシフェラーゼ(Luc)の mRNAの PCRに用いたプライマーは次 の 2種類である。 順方向:
5, - GCGAAGGTTGTGGATCTGGATAC - 3 ' (配列番号 32)
逆方向:
5, -GAGCCACCTGATAGCCTTTGTAC- 3' (配列番号 33)
内部標準である βガラクトシダーゼ( β Gal)の mRNAの PCRに用いたプライマーは 次の 2種類である。
順方向:
5, -GTCACACTACGTCTGAACGTCGA- 3' (配列番号 34)
逆方向:
5, -TGCAGAGGATGATGCTCGTGACG- 3' (配列番号 35)
リアルタイム PCRを行なった後、 iCyclerシステムの解析ソフトウェアを用いて、ルシ フェラーゼ mRNA (Luc)と βガラクトシダーゼ mRNA ( j3 Gal)の threshold cycle (Ct M直を求めた後、除して、 Luc/ Gal値を求めた。
[結果]
iNOSアンチセンス転写物発現ベクターを加えた場合と加えなレ、場合にっレ、て、 L uc/ β Gal値を経時的に示した。結果を図 14に示す。
(i)レポーター(EFプロモータ^ ~ " l· Luc + iNOS 3 ' UTR)、
土(ii) iNOSアンチセンス転写物発現ベクター、
(iii)内部標準。
この場合、 iNOSアンチセンス転写物発現ベクターを加えたとき AS ( + )、加えないと き AS (—)に比べると、有意に Luc/ Gal値が増加した。図中、「**」は く 0.01 ver sus AS (-) Jを表わす。
すなわち、 iN〇Sアンチセンス転写物は iN〇S 3 ' UTRを介して、ルシフェラーゼ mR NAが安定化させた。
対照として、 SVpAを連結したレポーターを用いた結果を図 15に示す。
(i)レポーター(EFプロモータ^—— h Luc + SVpA)、
土(ii) iN〇Sアンチセンス転写物発現ベクター、
(iii)内部標準。 この場合、 iNOSアンチセンス転写物発現ベクターを加えると [AS ( + ) ]、カロえないと き [AS (―) ]に比べて、 Luc/ Gal値は増加しなかった。すなわち、 SVpAでは m RNAの安定性に影響を与えなかった。
[0087] [意義]
以上の結果 (iNOSアンチセンス転写物の過剰発現実験)より、 iN〇Sアンチセンス 転写物には、 iNOS 3 ' UTRに働きかけて mRNAを安定化させるという作用を有す ると考えられる。 S化センスオリゴヌクレオチドによる iNOSmRNAのノックダウン実験 の結果と併せると、 iNOSアンチセンス転写物が、 iNOS 3 ' UTRを介して、 iNOSm RNAを安定化させてレ、ることがレ、える。
従って、 iNOSアンチセンス転写物による iNOSmRNAを安定性の制御機構は、肝 臓などの炎症の際に重要な働きを果たしていることが強く示唆される。また、この機構 は NOが関与している多くの疾病の治療のターゲットになり得る。
産業上の利用可能性
[0088] 肝臓保護剤の投与により、 iNOSmRNAとアンチセンス転写物の誘導が抑制され た。以上の結果はアンチセンス転写物がインビボ(in vivo)においても iNOSmRNA 発現誘導の制御因子として関与していることを強く示唆する。従って、肝臓保護剤を 用いたアンチセンス転写物の発現抑制は、肝臓などの炎症時の iNOS誘導及び N〇 産生を軽減し、肝障害の有効な治療方法となると考える。
図面の簡単な説明
[0089] [図 1]RT— PCR法によるラット肝細胞における mRNA量の測定結果を示す電気泳 動図である。
[図 2]リアルタイム PCR法によるラット肝細胞における mRNA量の測定結果を示すグ ラフである。
[図 3]マウス iNOSアンチセンス転写物により、 iNOSmRNAが分解されたことを示す 電気泳動図である。
[図 4]肝臓保護剤(IGF-I)を投与したラットの iNOSmRNA増加が抑制されたことを示 す鎖特異的 RT— PCRによる iNOSmRNAの検出結果を示す電気泳動図である。
[図 5]肝臓保護剤 (IGF-I)を投与したラットの iNOSアンチセンス転写物増加が抑制さ れたことを示す鎖特異的 RT— PCRによる iNOSアンチセンス転写物の検出結果(電 気泳動図)である。
[図 6]肝臓保護剤 (IGF-I)を投与したラットの iNOSアンチセンス転写物の増加をリア ルタイム PCRで定量した結果を示すグラフである。なお、図中、「*」は pく 0.05 vs. Gal N/LPSラット (n= 3-6ラット /グループ)を示す。
園 7]肝臓保護剤(FR183998)を投与したラットの iNOSmRNA増加が抑制されたこと を示す鎖特異的 RT—PCRによる iNOSmRNAの検出結果を示す電気泳動図でで ある。
[図 8]肝臓保護剤(FR183998)を投与したラットの iNOSアンチセンス転写物増加が抑 制されたことを示す鎖特異的 RT—PCRによる iNOSアンチセンス転写物の検出結 果を示す電気泳動図である。
[図 9]肝臓保護剤(FR183998)を投与したラットの iNOSアンチセンス転写物の増加を リアルタイム PCRで定量した結果を示すグラフであるなお、図中、「*」は pく 0.05 vs. G alN/LPSラッ Kn= 3-6ラット /グループ)を示す。
園 10]実施例 10における iNOSタンパク質及び培地中の一酸化窒素(NO)量の測 定結果を示す電気泳動図及びグラフである。
園 11]実施例 11における RNA4種のノーザン法による解析結果を示すエックス線フ イルムオートラジオグラムである。左から、「無刺激ラット肝細胞の全 RNA」、 riL-1 激ラット肝細胞の全 RNA」、「IL-1 β刺激ラット肝細胞の Poly(A)+ RNA」、及び「IL_1 β 刺激ラット肝細胞の Poly(A)- RNA」の結果を示す。
[図 12]実施例 11における RACEの結果とリボヌクレアーゼプロテクションアツセィの 結果を示す図である。
園 13]実施例 12において構築したベクターの模式図である。
園 14]実施例 12において、 iNOSアンチセンス転写物発現ベクターをカ卩えた場合 (A S ( + ) )と加えなレ、場合 (AS (—))につレ、ての Luc/ β Gal値の経時的変化を示す グラフである。
[図 15]実施例 12において、対照として SVpAを連結したレポーターを用いた場合の Luc/ β Gal値の経時的変化を示すグラフである。

Claims

請求の範囲
[1] 細胞内における遺伝子産物の産生量を増大させる方法であって、前記遺伝子産物 に対応する mRNAの塩基配列に相補的な配列を含む物質もしくはその前駆体また はそれらと同等の作用を細胞内において有し得る物質を細胞内に導入する工程を 含むことを特徴とする前記遺伝子産物の産生量を増大させる方法。
[2] 前記遺伝子産物に対応する mRNAの塩基配列に相補的な配列を含む物質もしく はその前駆体またはそれらと同等の作用を細胞内において有し得る物質が、細胞内 において mRNAの安定化に寄与する物質である請求項 1に記載の遺伝子産物の産 生量を増大させる方法。
[3] 前記遺伝子産物がサイト力インまたはその前駆体である請求項 1または 2に記載の 遺伝子産物の産生量を増大させる方法。
[4] 前記遺伝子産物が誘導型一酸化窒素合成酵素 (iNOS)である請求項:!〜 3のい ずれかに記載の遺伝子産物の産生量を増大させる方法。
[5] 遺伝子産物に対応する mRNAの塩基配列に相補的な配列を含むアンチセンス転 写物が細胞内に存在するか否かを判定する工程を含む請求項 1に記載の産生量増 大方法が適用され得る遺伝子産物のスクリーニング方法。
[6] 前記アンチセンス転写物の存在の判定が、前記遺伝子産物に対応する mRNAの
5'末端及び 3'末端またはこれらの近傍の一部のセンス配列を含むプライマーを用 いて細胞内 mRNAから逆転写を行ない、逆転写産物の有無を確認することにより行 なわれる請求項 5に記載の遺伝子産物のスクリーニング方法。
[7] アンチセンス転写物に含まれる塩基配列にハイブリダィズ可能なオリゴヌクレオチド またはその誘導体を細胞内に導入し、前記遺伝子産物の産生量の増減を観察する 工程をさらに含む請求項 5または 6に記載の遺伝子産物のスクリーニング方法。
[8] サイト力イン mRNAの全部または一部の配列と相補的な配列を含み、前記サイト力 インの合成量を増大させる物質。
[9] 請求項 8に記載の物質を含むサイト力イン産生量制御剤。
[10] 誘導型一酸化窒素合成酵素(iNOS) mRNAの全部または一部の配列と相補的な 配列を含み、誘導型一酸化窒素合成酵素 (iNOS)の合成量を増大させる物質。
[11] 配列番号 1またはこれと 75%以上の相同性を有する塩基配列を含み、誘導型一酸 化窒素合成酵素 (iNOS)の合成量を増大させる物質。
[12] 誘導型一酸化窒素合成酵素(iNOS) mRNAの 5'末端及び 3'末端またはこれらの 近傍の一部の配列を含むプライマーを用いて、細胞内 mRNAから逆転写により誘導 された cDNAから得られる配列に対応する塩基配列を含み、誘導型一酸化窒素合 成酵素(iNOS)の合成量を増大させる RNA。
[13] 請求項 10〜: 12のいずれかに記載の物質を含む iNOSmRNA発現制御剤。
PCT/JP2007/061564 2006-06-08 2007-06-07 遺伝子産物の産生量を制御する方法及び産生量制御剤 WO2007142303A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2007255731A AU2007255731B2 (en) 2006-06-08 2007-06-07 Method for controlling the amount of gene product, and agent for controlling the amount of gene product
JP2008520620A JP5271706B2 (ja) 2006-06-08 2007-06-07 遺伝子産物の産生量を制御する方法及び産生量制御剤
EP07744892.6A EP2031056B1 (en) 2006-06-08 2007-06-07 Method for controlling the amount of gene product, and agent for controlling the amount of gene product
CN2007800211123A CN101466835B (zh) 2006-06-08 2007-06-07 控制基因产物产量的方法以及产量控制剂
US12/303,908 US8399424B2 (en) 2006-06-08 2007-06-07 Method for controlling the amount of gene product, and agent for controlling the amount of gene product
NZ574033A NZ574033A (en) 2006-06-08 2007-06-07 Method for controlling the amount of gene product, and agent for controlling the amount of gene product
US13/770,682 US8975023B2 (en) 2006-06-08 2013-02-19 Method for controlling the amount of gene product, and agent for controlling the amount of gene product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-159729 2006-06-08
JP2006159729 2006-06-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/303,908 A-371-Of-International US8399424B2 (en) 2006-06-08 2007-06-07 Method for controlling the amount of gene product, and agent for controlling the amount of gene product
US13/770,682 Division US8975023B2 (en) 2006-06-08 2013-02-19 Method for controlling the amount of gene product, and agent for controlling the amount of gene product

Publications (1)

Publication Number Publication Date
WO2007142303A1 true WO2007142303A1 (ja) 2007-12-13

Family

ID=38801549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061564 WO2007142303A1 (ja) 2006-06-08 2007-06-07 遺伝子産物の産生量を制御する方法及び産生量制御剤

Country Status (9)

Country Link
US (2) US8399424B2 (ja)
EP (1) EP2031056B1 (ja)
JP (2) JP5271706B2 (ja)
KR (1) KR20090023464A (ja)
CN (2) CN101466835B (ja)
AU (1) AU2007255731B2 (ja)
NZ (1) NZ574033A (ja)
TW (1) TWI448553B (ja)
WO (1) WO2007142303A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153854A1 (ja) * 2011-05-12 2012-11-15 学校法人立命館 サイトカイン・ケモカインモジュレーター

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10758558B2 (en) 2015-02-13 2020-09-01 Translate Bio Ma, Inc. Hybrid oligonucleotides and uses thereof
MX2022015299A (es) * 2020-06-02 2023-03-13 Bioplx Inc Metodos para integracion genomica estable en microorganismos recombinantes.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013224A (ja) 2003-05-30 2005-01-20 Nippon Shinyaku Co Ltd RNAiを発揮しうる最適なオリゴ二本鎖ヌクレオチド又はそのアンチセンス鎖RNAを見出すためのスクリーニング方法
JP2005524393A (ja) 2002-02-20 2005-08-18 サーナ・セラピューティクス・インコーポレイテッド 短干渉核酸(siNA)を用いるインターロイキン遺伝子発現のRNA干渉媒介性阻害

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060063788A (ko) 2003-05-30 2006-06-12 니뽄 신야쿠 가부시키가이샤 올리고 핵산 담지 복합체, 이 복합체를 함유하는 의약조성물
EP2251039A3 (en) 2003-05-30 2010-12-08 Nippon Shinyaku Co., Ltd. Oligo double-stranded rna inhibiting the expression of bcl-2 and pharmaceutical composition containing the same
CN101437933B (zh) * 2005-12-28 2013-11-06 斯克里普斯研究所 作为药物靶标的天然反义和非编码的rna转录物
CN101460624B (zh) * 2006-06-08 2013-06-05 阿明诺化学株式会社 具有iNOS的表达控制作用的正义寡核苷酸以及含有其的组合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524393A (ja) 2002-02-20 2005-08-18 サーナ・セラピューティクス・インコーポレイテッド 短干渉核酸(siNA)を用いるインターロイキン遺伝子発現のRNA干渉媒介性阻害
JP2005013224A (ja) 2003-05-30 2005-01-20 Nippon Shinyaku Co Ltd RNAiを発揮しうる最適なオリゴ二本鎖ヌクレオチド又はそのアンチセンス鎖RNAを見出すためのスクリーニング方法

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
BAKHEET T. ET AL.: "ARED 2.0: an update of AU-rich element mRNA database", NUCLEIC ACIDS RES., vol. 31, no. 1, 2003, pages 421 - 423, XP003020136 *
FROHMAN MA: "Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE", METHODS ENZYMOL., vol. 218, 1993, pages 340 - 356, XP008036737, DOI: doi:10.1016/0076-6879(93)18026-9
J. HEPATOL., vol. 40, 2004, pages 616 - 623
J. MOL. BIOL., vol. 288, 1999, pages 911 - 940
J. NEUROCHEM., vol. 86, 2003, pages 374 - 382
KATAYAMA S. ET AL.: "Antisense transcription in the mammalian transcriptome", SCIENCE, vol. 309, no. 5740, 2005, pages 1564 - 1566, XP003020135 *
KEINONEN R. ET AL.: "Molecular cloning and characterization of the rat inducible nitric oxide synthase (iNOS) gene", GENE, vol. 234, 1999, pages 297 - 305, XP004173101 *
LI Q. ET AL.: "Gene therapy with inducible nitric oxide synthase protects against myocardial infarction via a cyclooxygenase-2-dependent mechanism", CIRCULATION RESEARCH, vol. 92, 2003, pages 741 - 748, XP003020133 *
MAHER J.J. ET AL.: "Adenovirus-mediated expression of cytokine-induced neutrophil chemoattractant in rat liver inducs as neutrophilic hepatitis", HEPATOLOGY, vol. 25, 1997, pages 624 - 630, XP003020132 *
NISHIMURA Y. ET AL.: "Antisense transcript and RNA processing alterations suppress instability of polyadenylated mRNA in chlamydomonas chloroplasts", PLANT CELL, vol. 16, 2004, pages 2849 - 2869, XP003020134 *
NISHIZAWA M ET AL.: "Close kinship of human 20a-hydroxysteroid dehydrogenase gene with three aldo- keto reductase genes", GENES CELLS, vol. 5, 2000, pages 111 - 125, XP002229946, DOI: doi:10.1046/j.1365-2443.2000.00310.x
NUCLEIC ACIDS RES., vol. 31, 2003, pages 3406 - 3415
PROC NATL ACAD SCI USA, vol. 83, 1986, pages 1670 - 1674
SCIENCE, vol. 309, 2005, pages 1564 - 1566
See also references of EP2031056A4
YAMADA M. ET AL.: "Characterization of alternatively spliced isoforms of the type I interleukin-1 receptor on iNOS induction in rat hepatocytes", NITRIC OXIDE, vol. 17, no. 2, September 2007 (2007-09-01), pages 98 - 105, XP022207178 *
YIN J.H. ET AL.: "Inducible nitric oxide synthase neutralizes carbamoylaing potential of 1,3-bis(2-chloroethyl)-1-nitrosourea in c6 glioma cells", J. PHARMACOL. EXP. THER., vol. 297, no. 1, 2001, pages 308 - 315, XP008066680 *
YOSHIZAWA S. ET AL.: "Nuclease resistance of an extraordinarily thermostable mini-hairpin DNA fragment, d(GCGAAGC) and its application to in vitro protei synthesis", NUCLEIC ACIDS RESEARCH, vol. 22, no. 12, 1994, pages 2217 - 2221, XP001084025 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153854A1 (ja) * 2011-05-12 2012-11-15 学校法人立命館 サイトカイン・ケモカインモジュレーター

Also Published As

Publication number Publication date
US20100227318A1 (en) 2010-09-09
CN101466835A (zh) 2009-06-24
TW200815595A (en) 2008-04-01
AU2007255731A1 (en) 2007-12-13
US20130177909A1 (en) 2013-07-11
US8399424B2 (en) 2013-03-19
EP2031056A1 (en) 2009-03-04
US8975023B2 (en) 2015-03-10
JP2013165732A (ja) 2013-08-29
JP5271706B2 (ja) 2013-08-21
JP5759509B2 (ja) 2015-08-05
EP2031056B1 (en) 2016-04-13
CN101466835B (zh) 2013-06-19
NZ574033A (en) 2013-03-28
EP2031056A4 (en) 2009-09-30
AU2007255731B2 (en) 2013-07-18
JPWO2007142303A1 (ja) 2009-10-29
KR20090023464A (ko) 2009-03-04
TWI448553B (zh) 2014-08-11
CN103320508A (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5466402B2 (ja) iNOSの発現制御作用を有するセンスオリゴヌクレオチド及びそれを含む組成物
Balkhi et al. miR-29 acts as a decoy in sarcomas to protect the tumor suppressor A20 mRNA from degradation by HuR
Hirota et al. Genome-wide gene expression profiles of clear cell renal cell carcinoma: identification of molecular targets for treatment of renal cell carcinoma
WO2009148137A1 (ja) 肥満細胞の脱顆粒を制御する核酸
JP5759509B2 (ja) 遺伝子産物のスクリーニング方法
Jurado et al. Alternative splicing of c-fos pre-mRNA: contribution of the rates of synthesis and degradation to the copy number of each transcript isoform and detection of a truncated c-Fos immunoreactive species
Verbeeren et al. Alternative exon definition events control the choice between nuclear retention and cytoplasmic export of U11/U12-65K mRNA
Watanabe et al. Altered expression of CUG binding protein 1 mRNA in myotonic dystrophy 1: possible RNA–RNA interaction
CN117511945A (zh) 半滑舌鳎miRNA和lncRNA及其调控cdk2基因的应用
WO2004092414A1 (en) Method of calibration of reverse transcription using a synthetic messenger rna (smrna) as an internal control
Garside Analysis of the canonical initiation and trans-acting factor requirements of 5'TOP containing mRNAs
Borchert MicroRNAs: Functional and regulatory insights based on origin
JP2011190176A (ja) 肥満細胞の脱顆粒抑制剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021112.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520620

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12303908

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 574033

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2007255731

Country of ref document: AU

Ref document number: 1020097000203

Country of ref document: KR

Ref document number: 2007744892

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007255731

Country of ref document: AU

Date of ref document: 20070607

Kind code of ref document: A