WO2007142299A1 - Brushless motor - Google Patents

Brushless motor Download PDF

Info

Publication number
WO2007142299A1
WO2007142299A1 PCT/JP2007/061551 JP2007061551W WO2007142299A1 WO 2007142299 A1 WO2007142299 A1 WO 2007142299A1 JP 2007061551 W JP2007061551 W JP 2007061551W WO 2007142299 A1 WO2007142299 A1 WO 2007142299A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
brushless motor
heat
rotor
bearing
Prior art date
Application number
PCT/JP2007/061551
Other languages
French (fr)
Japanese (ja)
Inventor
Kigen Agehara
Tomonori Ichiba
Original Assignee
Max Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Co., Ltd. filed Critical Max Co., Ltd.
Priority to CN2007800215035A priority Critical patent/CN101467335B/en
Publication of WO2007142299A1 publication Critical patent/WO2007142299A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • the present invention relates to a brushless motor, and more particularly to a brushless motor including a cooling fan that cools heat generated from a switching element.
  • the switching element is fixed to the heat radiating member, and this heat radiating member is fixed to the stator core. Cooling by the cooling fan indirectly cools the switching element via the stator core and heat dissipation member.
  • the switching element since the switching element is fixed in an upright state on the substrate, the overall length is not necessarily improved although the size is reduced.
  • One or more embodiments of the present invention can improve the cooling efficiency by directly cooling the switching element with a cooling fan, and can reduce the size by bringing the switching element into close contact with the heat dissipation housing.
  • a brushless motor is provided.
  • a brushless motor according to one or more embodiments of the present invention has the following requirements.
  • the switching element for turning on / off the energization of the stator coil is tightly fixed to the bottom outer surface of the bottomed cylindrical heat radiating housing.
  • a cooling fan is fixed to the rotating shaft of the rotor, and the fixing fan is fixed to the center of the cooling fan. Provided a recess for receiving the fixed part
  • the heat radiating housing is formed of a metal excellent in heat conduction
  • the fixed portion of the bearing is A plurality of engaging grooves are formed on the peripheral surface of the heat radiating housing from the opening side to the bottom side, and the outer peripheral surface of the stator is engaged with the engaging grooves.
  • convex pieces are formed.
  • the switching element is fixed in close contact with the heat radiating housing, and the cooling fan wind is blown directly onto the heat radiating housing, so that the cooling efficiency of the switching element is improved.
  • the rotor bearing is housed inside the cooling fan, the overall length of the brushless motor is shortened.
  • FIG. 1 is a front perspective view of a brushless motor according to an exemplary embodiment of the present invention.
  • FIG. 4 Perspective view of the back side for explaining the mounting state of the switching element to the heat radiating housing.
  • FIG. 5 Vertical sectional view of the brushless motor.
  • FIG. 6 (b) A perspective view illustrating a state in which a bearing is attached to the cooling fan.
  • FIG. 8 is a front perspective view illustrating another example of a brushless motor according to the present invention.
  • FIG. 9 is an exploded perspective view illustrating the configuration of a brushless motor according to a second exemplary embodiment.
  • FIG. 10 is an exploded perspective view illustrating a brushless motor according to a third exemplary embodiment.
  • FIG. 11 is a rear perspective view illustrating the configuration of the brushless motor according to the third exemplary embodiment.
  • FIG. 1 is a front perspective view showing an example of a brushless motor according to a first exemplary embodiment of the present invention.
  • FIG. 2 is a rear perspective view of the brushless motor.
  • Fig. 3 is an exploded perspective view of the brushless motor.
  • This brushless motor includes a heat radiating housing 1, a rotor 2, a stator 3, and an inner cover 4.
  • the rotor 2 and the stator 3 are accommodated in the heat dissipation housing 1 and the inner cover 4 is fixed to the heat dissipation housing 1 with screws, so that the heat dissipation housing 1, the rotor 2, the stator 3 and the inner cover 4 are integrated as a brushless motor. Composed.
  • the heat radiating housing 1 is formed in a bottomed cylindrical shape with a material having high thermal conductivity such as aluminum.
  • a switching element 10 such as an FET is screwed to the bottom outer surface la in a state of being laid down and in close contact. The heat of the switching element 10 is transferred to the heat dissipation housing 1.
  • the terminal 10a of the switching element 10 is bent at a right angle toward the rear.
  • a terminal 10 a of the switching element 10 is inserted into a through hole 12 formed in the circuit board 11.
  • the circuit board 11 is fixed to the heat radiating housing 1. If the terminal 10 a is soldered, the circuit board 11 on which the switching element 10 is arranged is fixed to the heat radiating housing 1.
  • vent holes 13 are formed on the bottom surface side of the peripheral surface lb of the heat radiating housing 1.
  • a plurality of engaging grooves 14 are formed on the peripheral surface on the opening side toward the bottom surface. Further, a connecting piece 15 having a screw hole is formed on the peripheral surface on the opening side so as to protrude.
  • the center of the inner surface lc of the bottom portion bulges to the front and is molded.
  • a fixed portion 16 that fixes the bearing 30 of the mouth 2 by cutting is formed in the bulged portion (see FIG. 5).
  • a pinion gear 21 is provided at the tip of the rotating shaft 20 of the rotor 2.
  • a cooling fan 22 is fixed to the rear end of the heat radiating housing 1 side. In the cooling fan 22, as shown in FIG. 6 (a), the center of the disk 23 bulges in an annular shape. Fins 25 are formed radially from the peripheral surface of the bulging portion 24. A large number of air holes 26 and 27 are formed in the disc 23 and the bulging portion 24.
  • the bulging portion 24 constitutes a housing portion for the bearing 30 that supports the rotating shaft of the rotor 2. As shown in FIGS. 6 (b) and 7, when the bearing 30 is attached to the rotary shaft 20 of the rotor 2, the bearing 30 is housed in the interior 24a of the bulging portion 24, and the cooling fan 22 and The bearings 30 are almost flush with each other, and the bearing 30 is almost within the thickness of the cooling fan 22.
  • a plurality of cores 31 are formed on the stator 3 from the inner wall surface toward the inside.
  • a winding wire (coil) 32 is wound around the core 31.
  • Engaging protrusions 33 that engage with the engaging grooves 14 of the heat radiating housing 1 are formed on the outer wall surface, so that the heat radiating housing 1 securely holds the stator 3 during assembly.
  • the inner cover 4 has a ring gear 34 fixed inside.
  • the rotation of the rotor is reduced by a planetary gear structure (not shown) and transmitted to the output shaft.
  • the rotation of the rotor is transmitted to the impact torque generation mechanism after deceleration, and the impact torque is generated and screw Tighten. If it is a drill driver, this impact torque generation mechanism is directly transmitted to the output shaft.
  • the switching element 10 is fixed to the heat dissipation housing 1, the cooling fan 22 and the bearing 30 are attached to the rotor 2, and the housing unit in which the circuit board 11 is fixed to the heat dissipation housing 1.
  • the rotor 2 and the stator 3 are accommodated.
  • the bearing 30 of the rotor 2 is fitted into the fixed portion of the heat radiating housing 1, the engaging convex piece 33 of the stator 3 is engaged with the engaging groove 14 of the heat radiating housing 1, and the rotor is connected to the bearing portion of the inner cover 4.
  • the assembly force S can be achieved by connecting the heat dissipation housing 1 and the inner cover 4 with screws.
  • the brushless motor can be unitized, and when it is assembled in an apparatus such as an impact driver, it can be pre-assembled as a motor unit, so that the installation time in the apparatus can be shortened.
  • the problem of the conventional brushless motor which requires high manufacturing accuracy of the resin housing and stabilizes the performance when placed directly in the housing, can be avoided.
  • the bearing 30 of the rotor 2 is supported by the heat radiating housing 1 and the inner cover 4, and the heat radiating housing 1 and the stator 3 are engaged by the engaging groove 14 and the engaging convex piece 33. Since the unit is unitized, the misalignment between the rotor 2 and the stator 3 rotating at high speed can be suppressed, and the generation of noise in the apparatus force can be suppressed.
  • the switching element 10 that generates heat is laid down and fixed to the outside of the bottom surface of the heat radiating housing 1, and a cooling fan 22 is disposed close to the inside of the bottom surface to enhance the heat radiation effect.
  • the overall length of the motor can be reduced, which can contribute to downsizing of the apparatus.
  • the force for connecting the heat radiating housing 1 and the inner cover 4 by using screws is used in the second exemplary embodiment.
  • the motor nut 40 is formed in a ring shape and is formed by forming a thread 41 on the inner peripheral surface.
  • a screw groove 42 is provided around the opening-side peripheral surface of the heat radiating housing 1, and the inner cover is provided.
  • Positioning projection 43 is formed on No. 4 and the rotor 2 and stator 3 are accommodated in the heat radiating housing 1, and then the positioning projection 43 of the inner cover 4 is engaged with the engaging groove 14 of the heat radiating housing 1 so that the motor nut As shown in FIG.
  • the inner cover 4 and the heat radiating housing 1 can be connected by screwing 40 into the heat radiating housing 1. According to this motor, since the connecting piece for connecting the inner cover 4 and the heat radiating housing 1 does not need to be formed to protrude, there is no protrusion on the peripheral surface of the motor, and assembling to the device is improved. Power S can be.
  • the above-mentioned motor assembly is a force motor that realizes unitization of the motor and simplifies the assembly process in the line.
  • heat dissipation housing 1, stator 3, and inner cover 4 are integrally connected to impact driver assembly 50 with two screws 51, 51.
  • Heat dissipation housing 1, stator 3, inner cover 4 is formed with connecting pieces 52, 53, 54 each having a through hole for inserting the screw 51, and the connecting piece 55 of the impact driver assembly 50 is formed with a screw hole to which the screw 51 is screwed.
  • the pieces 53 and 54 are combined while being engaged with the engaging groove 14 of the heat radiating housing 1, and the screw 51 inserted from the through hole of the engaging piece 52 passes through the connecting pieces 52, 53 and 54, and the By screwing into a screw hole formed in the connecting piece 55 of the assembly 50, the motor can be assembled integrally with the impact driver assembly 50 as shown in FIG.
  • the entire drive system inside the product for example, impact driver
  • the assembly process can be further simplified.
  • the present invention can be used for a brushless motor, more specifically, a brushless motor provided with a cooling fan that cools heat generated from a switching element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Brushless Motors (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

In a brushless motor, (i) a switching element (10), which turns on and off energization of a coil (32) arranged on a stator (3), is adhesively fixed to a bottom outer surface of a bottomed cylindrical heat dissipating housing (1). (ii) A rotor (2) and a stator (3) are stored inside the heat dissipating housing (1), and a fixing section (16) for fixing a bearing (30) for the rotor (2) is arranged on the bottom inner surface. (iii) On an end portion on the side of the heat dissipating housing (1) of a rotating shaft (20) of the rotor (2), a cooling fan (22) for cooling the heat dissipating housing (1) is fixed. A storing recessed section (24) for storing the bearing (30) is formed at the center of the cooling fan (22).

Description

明 細 書  Specification
ブラシレスモータ  Brushless motor
技術分野  Technical field
[0001] 本発明は、ブラシレスモータ、詳しくはスイッチング素子からの発熱を冷却する冷却 ファンを備えたブラシレスモータに関するものである。  [0001] The present invention relates to a brushless motor, and more particularly to a brushless motor including a cooling fan that cools heat generated from a switching element.
背景技術  Background art
[0002] 従来、ステータのコイルへの通電をオン'オフするためのスイッチング素子が発生す る熱を冷却するために、放熱部材をステータ鉄心に固定し、スイッチング素子が発生 した熱を放熱部材に放熱し、放熱部材力 ステータ鉄心に放熱させることによりステ ータ鉄心に放熱フィンの機能を持たせたブラシレスモータが提案されている(例えば 、特開 2004— 357371号)。  Conventionally, in order to cool the heat generated by the switching element for turning on / off the current to the stator coil, the heat dissipating member is fixed to the stator core, and the heat generated by the switching element is applied to the heat dissipating member. There has been proposed a brushless motor in which a stator core has a function of a radiating fin by dissipating heat and dissipating heat to the stator core (for example, JP 2004-357371 A).
[0003] 上述のブラシレスモータでは、放熱部材にスイッチング素子が固定され、この放熱 部材はステータ鉄心に固定される。冷却ファンによる冷却はステータ鉄心、放熱部材 を介して間接的にスイッチング素子を冷却する。し力もスイッチング素子は基板に直 立した状態で固定されているため小型化を図ったとはいえ全体の長さは必ずしも改 善されているとはいえなかった。  [0003] In the brushless motor described above, the switching element is fixed to the heat radiating member, and this heat radiating member is fixed to the stator core. Cooling by the cooling fan indirectly cools the switching element via the stator core and heat dissipation member. However, since the switching element is fixed in an upright state on the substrate, the overall length is not necessarily improved although the size is reduced.
発明の開示  Disclosure of the invention
[0004] 本発明の一以上の実施例は、スイッチング素子を直接的に冷却ファンで冷却する ことにより冷却効率を高めるとともに、スイッチング素子を放熱ハウジングに密着させ ることにより小型化を図ることができるブラシレスモータを提供する。  [0004] One or more embodiments of the present invention can improve the cooling efficiency by directly cooling the switching element with a cooling fan, and can reduce the size by bringing the switching element into close contact with the heat dissipation housing. A brushless motor is provided.
[0005] 本発明の第 1の観点によれば、本発明の一以上の実施例に係るブラシレスモータ は、以下の要件を備えることを特徴とする。  According to a first aspect of the present invention, a brushless motor according to one or more embodiments of the present invention has the following requirements.
(i)ステータのコイルへの通電をオン'オフするためのスイッチング素子を有底筒状の 放熱ハウジングの底部外側面に密着固定したこと  (i) The switching element for turning on / off the energization of the stator coil is tightly fixed to the bottom outer surface of the bottomed cylindrical heat radiating housing.
(ii)上記放熱ハウジングの内部にはロータと、ステータとを収容するとともに、底部内 側面には上記ロータの回転軸を支持する軸受を固定する固定部を設けたこと  (ii) The rotor and the stator are accommodated inside the heat radiating housing, and a fixing portion for fixing a bearing that supports the rotating shaft of the rotor is provided on the inner surface of the bottom.
(iii)上記ロータの回転軸には冷却ファンを固定し、該冷却ファンの中央には上記固 定部を収容する収容凹部を設けたこと (iii) A cooling fan is fixed to the rotating shaft of the rotor, and the fixing fan is fixed to the center of the cooling fan. Provided a recess for receiving the fixed part
[0006] また、本発明の第 2の観点によれば、本発明の一以上の実施例のブラシレスモータ において、前記放熱ハウジングは熱伝導に優れた金属で成型され、前記軸受の固 定部は切削にて形成され、前記放熱ハウジングの周面には、開口側から底部側に向 かって複数の係合溝が形成され、前記ステータの外周面には上記係合溝に係合す る係合凸片が形成されることが好ましレ、。  [0006] Further, according to a second aspect of the present invention, in the brushless motor according to one or more embodiments of the present invention, the heat radiating housing is formed of a metal excellent in heat conduction, and the fixed portion of the bearing is A plurality of engaging grooves are formed on the peripheral surface of the heat radiating housing from the opening side to the bottom side, and the outer peripheral surface of the stator is engaged with the engaging grooves. Preferably, convex pieces are formed.
[0007] 上記の第 1の観点によれば、スイッチング素子が放熱ハウジングに密着して固定さ れるとともに、冷却ファンの風が直接放熱ハウジングに吹き付けられるので、スィッチ ング素子の冷却効率が高められ、また、冷却ファンの内側にロータの軸受が収容さ れるので、ブラシレスモータの全体の長さが短縮される。  [0007] According to the first aspect described above, the switching element is fixed in close contact with the heat radiating housing, and the cooling fan wind is blown directly onto the heat radiating housing, so that the cooling efficiency of the switching element is improved. In addition, since the rotor bearing is housed inside the cooling fan, the overall length of the brushless motor is shortened.
[0008] また、現在、世に出ているブラシレスモータ (インパクトドライバ)において、プラスチ ックの外側ハウジングに形成された台座力 回転するロータの軸受けとして機能する 。このような従来のブラシレスモータでは、上記台座の成形精度のバラツキは否めず 、台座の成形精度が悪い場合は芯ズレが発生し、雑音の原因となり、また、台座の成 形精度のバラツキは性能のバラツキにつながっていた。し力 ながら、上記第 2の観 点のブラシレスモータによれば、金属製の放熱ハウジングにロータの軸受の固定部 を切削して形成したので、固定部の精度が高くなり芯ズレによる雑音の発生や性能 のバラツキを回避することができる。  [0008] In addition, in a brushless motor (impact driver) that is now on the market, it functions as a bearing for a rotor that rotates on a pedestal force formed on the outer housing of the plastic. In such a conventional brushless motor, variations in the molding accuracy of the pedestal cannot be denied, and if the molding accuracy of the pedestal is poor, misalignment occurs, causing noise, and variations in the accuracy of molding of the pedestal are It was connected to the variation. However, according to the brushless motor of the second aspect described above, since the fixing portion of the rotor bearing is cut in the metal heat radiating housing, the accuracy of the fixing portion is increased and noise due to misalignment is generated. And variations in performance can be avoided.
[0009] その他の特徴および効果は、実施例の記載および添付のクレームより明白である。  [0009] Other features and advantages will be apparent from the description of the examples and the appended claims.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]本発明の典型的実施例に係るブラシレスモータの正面側斜視図  FIG. 1 is a front perspective view of a brushless motor according to an exemplary embodiment of the present invention.
[図 2]上記ブラシレスモータの背面側斜視図  [Figure 2] Rear perspective view of the brushless motor
[図 3]上記ブラシレスモータの分解斜視図  [Fig.3] Exploded perspective view of the brushless motor
[図 4]放熱ハウジングへのスイッチング素子の取り付け状態を説明する背面側斜視図 [図 5]上記ブラシレスモータの縦断面図  [Fig. 4] Perspective view of the back side for explaining the mounting state of the switching element to the heat radiating housing. [Fig. 5] Vertical sectional view of the brushless motor.
[図 6(a)]冷却ファンと軸受とを示す斜視図  [Fig. 6 (a)] Perspective view showing cooling fan and bearing
[図 6(b)]冷却ファンに軸受が取り付けられた状態を示す説明する斜視図  [FIG. 6 (b)] A perspective view illustrating a state in which a bearing is attached to the cooling fan.
[図 7]冷却ファンと軸受との関係を説明する要部断面図 [図 8]本発明に係るブラシレスモータの他の例を説明する正面側斜視図[Fig. 7] Cross-sectional view of the main part explaining the relationship between the cooling fan and the bearing FIG. 8 is a front perspective view illustrating another example of a brushless motor according to the present invention.
[図 9]第 2の典型的実施例のブラシレスモータの構成を説明する分解斜視図 FIG. 9 is an exploded perspective view illustrating the configuration of a brushless motor according to a second exemplary embodiment.
[図 10]第 3の典型的実施例に係るブラシレスモータを説明する分解斜視図  FIG. 10 is an exploded perspective view illustrating a brushless motor according to a third exemplary embodiment.
[図 11]上記第 3の典型的実施例のブラシレスモータの構成を説明する背面側斜視図 符号の説明  FIG. 11 is a rear perspective view illustrating the configuration of the brushless motor according to the third exemplary embodiment.
[0011] 1 放熱ハウジング [0011] 1 Heat dissipation housing
2 ロータ  2 rotor
3 ステータ  3 Stator
4 インナーカバー  4 Inner cover
10 スイッチング素子  10 Switching element
16 固定部  16 Fixed part
22 冷却ファン  22 Cooling fan
24 収容凹部 (膨出部)  24 Housing recess (bulging part)
30 軸受  30 Bearing
32 コイル  32 coils
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、図面に基づいて本発明の典型的実施例を説明する。  [0012] Exemplary embodiments of the present invention will be described below with reference to the drawings.
[0013] <第 1の典型的実施例 >  [0013] <First exemplary embodiment>
図 1は、本発明の第 1の典型的実施例に係るブラシレスモータの一例を示す正面 側斜視図である。図 2はブラシレスモータの背面側斜視図である。図 3はブラシレスモ ータの分解斜視図である。このブラシレスモータは放熱ハウジング 1、ロータ 2、ステー タ 3、インナーカバー 4とで構成される。ロータ 2とステータ 3とが放熱ハウジング 1内に 収容され、インナーカバー 4が放熱ハウジング 1にネジで固定されることにより、放熱 ハウジング 1、ロータ 2、ステータ 3、インナーカバー 4がブラシレスモータとして一体に 構成される。  FIG. 1 is a front perspective view showing an example of a brushless motor according to a first exemplary embodiment of the present invention. FIG. 2 is a rear perspective view of the brushless motor. Fig. 3 is an exploded perspective view of the brushless motor. This brushless motor includes a heat radiating housing 1, a rotor 2, a stator 3, and an inner cover 4. The rotor 2 and the stator 3 are accommodated in the heat dissipation housing 1 and the inner cover 4 is fixed to the heat dissipation housing 1 with screws, so that the heat dissipation housing 1, the rotor 2, the stator 3 and the inner cover 4 are integrated as a brushless motor. Composed.
[0014] 放熱ハウジング 1はアルミニウム等の熱伝導性の高い材質で有底筒状に形成され る。底部外側面 laには、図 4に示すように FETなどのスイッチング素子 10が寝かせ て密着させた状態でネジ止めされる。スイッチング素子 10の熱は放熱ハウジング 1に 伝導する。スイッチング素子 10の端子 10aは後方に向かって直角に折り曲げられる。 スイッチング素子 10の端子 10aは、回路基板 11に形成されたスルーホール 12に差 し込まれる。回路基板 11は放熱ハウジング 1に固定される。端子 10aを半田付けす れば、スイッチング素子 10を配置した回路基板 1 1が放熱ハウジング 1に固定される。 The heat radiating housing 1 is formed in a bottomed cylindrical shape with a material having high thermal conductivity such as aluminum. As shown in FIG. 4, a switching element 10 such as an FET is screwed to the bottom outer surface la in a state of being laid down and in close contact. The heat of the switching element 10 is transferred to the heat dissipation housing 1. Conduct. The terminal 10a of the switching element 10 is bent at a right angle toward the rear. A terminal 10 a of the switching element 10 is inserted into a through hole 12 formed in the circuit board 11. The circuit board 11 is fixed to the heat radiating housing 1. If the terminal 10 a is soldered, the circuit board 11 on which the switching element 10 is arranged is fixed to the heat radiating housing 1.
[0015] さらに、放熱ハウジング 1の周面 lbの底面側には多数の通気口 13が形成される。  Furthermore, a large number of vent holes 13 are formed on the bottom surface side of the peripheral surface lb of the heat radiating housing 1.
開口側の周面には、底面側に向かって複数の係合溝 14形成される。また、開口側の 周面には、ネジ孔が形成された連結片 15が突出して形成される。  A plurality of engaging grooves 14 are formed on the peripheral surface on the opening side toward the bottom surface. Further, a connecting piece 15 having a screw hole is formed on the peripheral surface on the opening side so as to protrude.
[0016] 底部内側面 lcの中央は前面に膨出して成型される。この膨出部には、切削にて口 ータ 2の軸受 30を固定する固定部 16が形成されている(図 5参照)。  [0016] The center of the inner surface lc of the bottom portion bulges to the front and is molded. A fixed portion 16 that fixes the bearing 30 of the mouth 2 by cutting is formed in the bulged portion (see FIG. 5).
[0017] ロータ 2の回転軸 20の先端にはピニオンギヤ 21が設けられる。放熱ハウジング 1側 の後端には冷却ファン 22が固定されている。この冷却ファン 22では、図 6 (a)に示す ように、円板 23の中央が環状に膨出する。この膨出部 24の周面から放射状にフィン 25が形成される。円板 23と膨出部 24とには通気孔 26、 27が多数形成されている。  A pinion gear 21 is provided at the tip of the rotating shaft 20 of the rotor 2. A cooling fan 22 is fixed to the rear end of the heat radiating housing 1 side. In the cooling fan 22, as shown in FIG. 6 (a), the center of the disk 23 bulges in an annular shape. Fins 25 are formed radially from the peripheral surface of the bulging portion 24. A large number of air holes 26 and 27 are formed in the disc 23 and the bulging portion 24.
[0018] 上記膨出部 24はロータ 2の回転軸を軸支する軸受 30の収容部を構成する。図 6 (b )及び図 7に示すように、ロータ 2の回転軸 20に軸受 30を取り付けたときには、この軸 受 30は膨出部 24の内部 24aに収容された状態になり冷却ファン 22とほぼ面一にな り、冷却ファン 22の厚みに軸受 30がほぼ収まる。  The bulging portion 24 constitutes a housing portion for the bearing 30 that supports the rotating shaft of the rotor 2. As shown in FIGS. 6 (b) and 7, when the bearing 30 is attached to the rotary shaft 20 of the rotor 2, the bearing 30 is housed in the interior 24a of the bulging portion 24, and the cooling fan 22 and The bearings 30 are almost flush with each other, and the bearing 30 is almost within the thickness of the cooling fan 22.
[0019] 軸受 30を放熱ハウジング 1の固定部 16に固定させたときは、固定部 16が軸受 30と ともに膨出部 24内に収容され(図 5参照)、冷却ファン 22と放熱ハウジング 1の底部 内側面 lcとは直近で対向した状態になり、冷却ファン 22による冷却効果が最大に発 揮できる。  [0019] When the bearing 30 is fixed to the fixed portion 16 of the heat radiating housing 1, the fixed portion 16 is accommodated in the bulging portion 24 together with the bearing 30 (see FIG. 5), and the cooling fan 22 and the heat radiating housing 1 The inner surface of the bottom portion is in a state of facing the nearest side lc, and the cooling effect by the cooling fan 22 can be maximized.
[0020] ステータ 3には、内壁面から内側に向けて複数のコア 31が形成される。このコア 31 に卷線 (コイル) 32が卷回される。外壁面には放熱ハウジング 1の係合溝 14に係合 する係合凸片 33が形成され、組み付け時には放熱ハウジング 1がステータ 3を確実 に保持するようになっている。  A plurality of cores 31 are formed on the stator 3 from the inner wall surface toward the inside. A winding wire (coil) 32 is wound around the core 31. Engaging protrusions 33 that engage with the engaging grooves 14 of the heat radiating housing 1 are formed on the outer wall surface, so that the heat radiating housing 1 securely holds the stator 3 during assembly.
[0021] インナーカバー 4は、内側にリングギヤ 34が固定される。ロータの回転は、図示しな い遊星ギヤ構造で減速され出力軸に伝達される。本製品の場合には、ロータの回転 は、減速後にインパクトトルク発生機構に伝達され、インパクトトルクが発生されてネジ を締める。また、ドリルドライバであれば、このインパクトトルクの発生機構はなぐ直接 出力軸に伝達される。 [0021] The inner cover 4 has a ring gear 34 fixed inside. The rotation of the rotor is reduced by a planetary gear structure (not shown) and transmitted to the output shaft. In the case of this product, the rotation of the rotor is transmitted to the impact torque generation mechanism after deceleration, and the impact torque is generated and screw Tighten. If it is a drill driver, this impact torque generation mechanism is directly transmitted to the output shaft.
[0022] 上記構成のブラシレスモータによれば、放熱ハウジング 1にスイッチング素子 10を 固定し、回路基板 11を放熱ハウジング 1に固定したハウジングユニットに、ロータ 2に 冷却ファン 22と軸受 30とを取り付けたロータ 2とステータ 3とを収容する。この際、ロー タ 2の軸受 30を放熱ハウジング 1の固定部に嵌め合わせ、ステータ 3の係合凸片 33 を放熱ハウジング 1の係合溝 14に係合させ、インナーカバー 4の軸受部にロータ 2の 前側の軸受 30を嵌め合わせた後、ネジで放熱ハウジング 1とインナーカバー 4とを連 結することにより組み上げること力 Sできる。このことによりブラシレスモータをユニットィ匕 することができ、インパクトドライバーなどの装置に組み付ける際、モータユニットとし て事前アッセンブリーができるので装置への組み付け時間の短縮が図れる。さらに、 直接ハウジングに配置する場合に性能を安定させるために樹脂製ハウジングの高度 の製造精度が要求され製造コストが上がるという従来のブラシレスモータの問題も回 避できる。  [0022] According to the brushless motor having the above configuration, the switching element 10 is fixed to the heat dissipation housing 1, the cooling fan 22 and the bearing 30 are attached to the rotor 2, and the housing unit in which the circuit board 11 is fixed to the heat dissipation housing 1. The rotor 2 and the stator 3 are accommodated. At this time, the bearing 30 of the rotor 2 is fitted into the fixed portion of the heat radiating housing 1, the engaging convex piece 33 of the stator 3 is engaged with the engaging groove 14 of the heat radiating housing 1, and the rotor is connected to the bearing portion of the inner cover 4. After fitting the front bearing 30 of 2, the assembly force S can be achieved by connecting the heat dissipation housing 1 and the inner cover 4 with screws. As a result, the brushless motor can be unitized, and when it is assembled in an apparatus such as an impact driver, it can be pre-assembled as a motor unit, so that the installation time in the apparatus can be shortened. In addition, the problem of the conventional brushless motor, which requires high manufacturing accuracy of the resin housing and stabilizes the performance when placed directly in the housing, can be avoided.
[0023] し力も、ロータ 2の軸受 30を放熱ハウジング 1と、インナーカバー 4とで夫々支持し、 放熱ハウジング 1とステータ 3とを係合溝 14と係合凸片 33とで係合させた状態でュニ ット化しているので、高速で回転するロータ 2とステータ 3の芯ずれを抑制でき、装置 力 の雑音発生を抑制することができる。  [0023] Also, the bearing 30 of the rotor 2 is supported by the heat radiating housing 1 and the inner cover 4, and the heat radiating housing 1 and the stator 3 are engaged by the engaging groove 14 and the engaging convex piece 33. Since the unit is unitized, the misalignment between the rotor 2 and the stator 3 rotating at high speed can be suppressed, and the generation of noise in the apparatus force can be suppressed.
[0024] さらに、発熱の元であるスイッチング素子 10を寝かせた状態で放熱ハウジング 1の 底面外側に固定し、底面内側には近接して冷却ファン 22を配置して放熱効果を高 めるとともに、モータの全長縮小を図ることができ、装置の小型化に寄与することがで きる。  [0024] Further, the switching element 10 that generates heat is laid down and fixed to the outside of the bottom surface of the heat radiating housing 1, and a cooling fan 22 is disposed close to the inside of the bottom surface to enhance the heat radiation effect. The overall length of the motor can be reduced, which can contribute to downsizing of the apparatus.
[0025] <第 2の典型的実施例 >  [0025] <Second exemplary embodiment>
上記第 1の典型的実施例のブラシレスモータでは、放熱ハウジング 1とインナーカバ 一 4との連結をネジを用いて行なっている力 第 2の典型的実施例においては、図 8 に示すように、モーターナット 40を用いて放熱ハウジング 1とインナーカバー 4との連 結を行う。このモーターナット 40はリング状に形成し、内周面にネジ山 41を形成した もので構成し、放熱ハウジング 1の開口側周面にはネジ溝 42を周設し、インナーカバ 一 4には位置決め突起 43を形成し、放熱ハウジング 1にロータ 2、ステータ 3を収容し た後、インナーカバー 4の位置決め突起 43を放熱ハウジング 1の係合溝 14に係合さ せてモーターナット 40を放熱ハウジング 1に螺合させることにより、図 9に示すように、 インナーカバー 4と、放熱ハウジング 1とを連結できるようにしてもよレ、。このモータによ れば、インナーカバー 4と放熱ハウジング 1とを連結するための連結片を突出形成し なくてよいので、モータの周面に突起がなくなり、装置への組み付け性の向上を図る こと力 Sできる。 In the brushless motor of the first exemplary embodiment, the force for connecting the heat radiating housing 1 and the inner cover 4 by using screws. In the second exemplary embodiment, as shown in FIG. Use the motor nut 40 to connect the heat radiating housing 1 and the inner cover 4 together. The motor nut 40 is formed in a ring shape and is formed by forming a thread 41 on the inner peripheral surface. A screw groove 42 is provided around the opening-side peripheral surface of the heat radiating housing 1, and the inner cover is provided. Positioning projection 43 is formed on No. 4 and the rotor 2 and stator 3 are accommodated in the heat radiating housing 1, and then the positioning projection 43 of the inner cover 4 is engaged with the engaging groove 14 of the heat radiating housing 1 so that the motor nut As shown in FIG. 9, the inner cover 4 and the heat radiating housing 1 can be connected by screwing 40 into the heat radiating housing 1. According to this motor, since the connecting piece for connecting the inner cover 4 and the heat radiating housing 1 does not need to be formed to protrude, there is no protrusion on the peripheral surface of the motor, and assembling to the device is improved. Power S can be.
[0026] <第 3の典型的実施例 > <Third exemplary embodiment>
なお、上述のモータの組み付けは、何れもモータのユニット化を実現し、ラインでの 組み付け工程の簡便化を図ったものである力 モータのさらに他の組付けの仕方を インパクトドライバの場合について、図 10に基づいて説明する。これは、放熱ハウジ ング 1と、ステータ 3、インナーカバー 4を 2本のネジ 51、 51でインパクトドライバーァセ ンブリ 50に一体に連結するようにしたもので、放熱ハウジング 1、ステータ 3、インナー カバー 4にはそれぞれネジ 51を挿通する揷通孔が形成された連結片 52、 53、 54を 形成し、インパクトドライバーアセンブリ 50の連結片 55にはネジ 51を螺合するネジ孔 を形成し、連結片 53、 54を放熱ハウジング 1の係合溝 14に係合させながら合体させ 、係合片 52の揷通孔から差し込んだネジ 51が、連結片 52、 53、 54を貫通し、インパ タトドライバーアセンブリ 50の連結片 55に形成されたネジ孔にねじ込むことにより、図 11に示すように、インパクトドライバーアセンブリ 50と一体にモータを組み付けること ができる。  In addition, in the case of the impact driver, the above-mentioned motor assembly is a force motor that realizes unitization of the motor and simplifies the assembly process in the line. This will be explained based on FIG. In this case, heat dissipation housing 1, stator 3, and inner cover 4 are integrally connected to impact driver assembly 50 with two screws 51, 51. Heat dissipation housing 1, stator 3, inner cover 4 is formed with connecting pieces 52, 53, 54 each having a through hole for inserting the screw 51, and the connecting piece 55 of the impact driver assembly 50 is formed with a screw hole to which the screw 51 is screwed. The pieces 53 and 54 are combined while being engaged with the engaging groove 14 of the heat radiating housing 1, and the screw 51 inserted from the through hole of the engaging piece 52 passes through the connecting pieces 52, 53 and 54, and the By screwing into a screw hole formed in the connecting piece 55 of the assembly 50, the motor can be assembled integrally with the impact driver assembly 50 as shown in FIG.
[0027] 上述のモータの組み付けによれば、製品(例えば、インパクトドライバ)内部の駆動 系を全てアッセンプリ化することができ、一層の組み付け工程の簡素化を図ることが できる。  [0027] According to the assembly of the motor described above, the entire drive system inside the product (for example, impact driver) can be assembled, and the assembly process can be further simplified.
[0028] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。  [0028] Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there.
[0029] 本出願は、 2006年 6月 9日出願の日本特許出願(特願 2006— 161261)に基づくもの であり、その内容はここに参照として取り込まれる。 産業上の利用可能性 [0029] This application is based on a Japanese patent application filed on June 9, 2006 (Japanese Patent Application No. 2006-161261), the contents of which are incorporated herein by reference. Industrial applicability
本発明は、ブラシレスモータ、詳しくはスイッチング素子からの発熱を冷却する冷却 ファンを備えたブラシレスモータに利用可能である。  INDUSTRIAL APPLICABILITY The present invention can be used for a brushless motor, more specifically, a brushless motor provided with a cooling fan that cools heat generated from a switching element.

Claims

請求の範囲 The scope of the claims
[1] 有底筒状の放熱ハウジングと、 [1] a bottomed cylindrical heat radiating housing;
上記放熱ハウジングの内部に収容されたロータと、  A rotor housed inside the heat dissipation housing;
上記放熱ハウジングの内部に収容されたステータと、  A stator housed inside the heat dissipation housing;
上記放熱ハウジングの底部外面に密着固定され、上記ステータのコイルへの通電 をオン'オフするスイッチング素子と、  A switching element that is closely fixed to the outer surface of the bottom of the heat-dissipating housing, and that turns on and off the energization of the stator coil;
上記放熱ハウジングの底部内面に設けられ、上記ロータの軸受を固定する固定部 と、  A fixing portion provided on an inner surface of a bottom portion of the heat dissipation housing and fixing the bearing of the rotor;
上記ロータの回転軸の上記放熱ハウジング側の端部に固定され、上記放熱ハウジ ングを冷却する冷却ファンと、  A cooling fan fixed to the end of the rotor rotating shaft on the side of the heat dissipating housing and cooling the heat dissipating housing;
上記冷却ファンの中央に形成され、上記軸受を収容する収容凹部と、 を具備する、ブラシレスモータ。  A brushless motor comprising: a housing recess formed in the center of the cooling fan and housing the bearing.
[2] 更に、上記放熱ハウジングの周面に上記放熱ハウジングの開口側から底部側に向 かって形成された複数の係合溝と、  [2] Furthermore, a plurality of engagement grooves formed on the peripheral surface of the heat dissipation housing from the opening side to the bottom side of the heat dissipation housing;
上記ステータの外周面に形成され上記係合溝に係合する係合凸片と、 を具備する、請求項 1記載のブラシレスモータ。  The brushless motor according to claim 1, further comprising: an engaging convex piece formed on an outer peripheral surface of the stator and engaged with the engaging groove.
[3] 前記放熱ハウジングは熱伝導に優れた金属で成型され、  [3] The heat radiating housing is formed of a metal having excellent heat conduction,
前記軸受の固定部は切削にて形成される、  The fixed part of the bearing is formed by cutting.
請求項 2記載のブラシレスモータ。  The brushless motor according to claim 2.
PCT/JP2007/061551 2006-06-09 2007-06-07 Brushless motor WO2007142299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800215035A CN101467335B (en) 2006-06-09 2007-06-07 Brushless motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006161261A JP4857924B2 (en) 2006-06-09 2006-06-09 Brushless motor
JP2006-161261 2006-06-09

Publications (1)

Publication Number Publication Date
WO2007142299A1 true WO2007142299A1 (en) 2007-12-13

Family

ID=38801545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061551 WO2007142299A1 (en) 2006-06-09 2007-06-07 Brushless motor

Country Status (4)

Country Link
JP (1) JP4857924B2 (en)
CN (1) CN101467335B (en)
TW (1) TW200824230A (en)
WO (1) WO2007142299A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011030405A (en) * 2009-06-24 2011-02-10 Denso Corp Drive unit
US8866357B2 (en) 2010-12-28 2014-10-21 Denso Corporation Drive device
US8957556B2 (en) 2010-12-28 2015-02-17 Denso Corporation Drive device
US11437900B2 (en) 2019-12-19 2022-09-06 Black & Decker Inc. Modular outer-rotor brushless motor for a power tool
US11757330B2 (en) 2019-12-19 2023-09-12 Black & Decker, Inc. Canned outer-rotor brushless motor for a power tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008044390A1 (en) * 2008-12-05 2010-06-10 Robert Bosch Gmbh Power tool with a DC motor and power electronics
DE102010040875A1 (en) * 2010-09-16 2012-03-22 Robert Bosch Gmbh Electric motor with a power output stage and with efficient heat transport and process
CN105186787B (en) * 2015-08-18 2018-09-25 常州格力博有限公司 The radiator structure of brushless motor
WO2022168298A1 (en) * 2021-02-08 2022-08-11 株式会社日立製作所 Hoisting machine and elevator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417653U (en) * 1990-06-05 1992-02-13
JPH06121507A (en) * 1992-10-07 1994-04-28 Matsushita Electric Ind Co Ltd Brushless motor
JPH08111967A (en) * 1994-10-07 1996-04-30 Mitsuba Electric Mfg Co Ltd Motor
JP2000278913A (en) * 1999-03-25 2000-10-06 Suzuki Motor Corp Engine generator
JP2004135447A (en) * 2002-10-11 2004-04-30 Denso Corp Motor integrated with inverter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508360B2 (en) * 1990-05-11 1996-06-19 住友金属工業株式会社 Continuous hot dip coating equipment
JP4631382B2 (en) * 2004-10-04 2011-02-16 日本電産株式会社 Brushless motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417653U (en) * 1990-06-05 1992-02-13
JPH06121507A (en) * 1992-10-07 1994-04-28 Matsushita Electric Ind Co Ltd Brushless motor
JPH08111967A (en) * 1994-10-07 1996-04-30 Mitsuba Electric Mfg Co Ltd Motor
JP2000278913A (en) * 1999-03-25 2000-10-06 Suzuki Motor Corp Engine generator
JP2004135447A (en) * 2002-10-11 2004-04-30 Denso Corp Motor integrated with inverter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011030405A (en) * 2009-06-24 2011-02-10 Denso Corp Drive unit
US8866357B2 (en) 2010-12-28 2014-10-21 Denso Corporation Drive device
US8957556B2 (en) 2010-12-28 2015-02-17 Denso Corporation Drive device
DE102011056364B4 (en) * 2010-12-28 2017-08-10 Asmo Co., Ltd. driving device
DE102011056364B8 (en) * 2010-12-28 2017-10-05 Asmo Co., Ltd. driving device
DE102011056364C5 (en) 2010-12-28 2019-07-11 Denso Corporation driving device
US11437900B2 (en) 2019-12-19 2022-09-06 Black & Decker Inc. Modular outer-rotor brushless motor for a power tool
US11757330B2 (en) 2019-12-19 2023-09-12 Black & Decker, Inc. Canned outer-rotor brushless motor for a power tool

Also Published As

Publication number Publication date
CN101467335B (en) 2011-06-08
JP2007330076A (en) 2007-12-20
CN101467335A (en) 2009-06-24
TW200824230A (en) 2008-06-01
JP4857924B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
WO2007142299A1 (en) Brushless motor
JP5186899B2 (en) Brushless motor
JP2008295116A (en) Alternating current generator for vehicle
JP2010098816A (en) Blower motor
KR101998284B1 (en) Cooling fan motor
JP4780315B2 (en) Axial air gap type electric motor
US11025144B2 (en) Outer rotor motor having support member
JP5410715B2 (en) Electric motor
JP2017153343A (en) motor
JP5430211B2 (en) Drive motor
JP2013115923A (en) Brushless motor
JP5430480B2 (en) Drive motor
JP2004222428A (en) Power module integrated actuator
JP2008199799A (en) Electric motor
JP4681390B2 (en) Electric motor control device
JP2001286095A (en) Geared motor
JP2017147857A (en) Motor with controller and motor with speed reducer
JP2021118624A (en) motor
JP2011166977A (en) Molded motor
TWI747263B (en) Motor structure
JP6608304B2 (en) Motor and motor with reduction gear
KR101828065B1 (en) Fan motor and electronic device having the same
WO2022209762A1 (en) Electric motor
JP2005036676A (en) Fan motor
JP7327462B2 (en) Electric motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021503.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744880

Country of ref document: EP

Kind code of ref document: A1