WO2022168298A1 - Hoisting machine and elevator - Google Patents

Hoisting machine and elevator Download PDF

Info

Publication number
WO2022168298A1
WO2022168298A1 PCT/JP2021/004543 JP2021004543W WO2022168298A1 WO 2022168298 A1 WO2022168298 A1 WO 2022168298A1 JP 2021004543 W JP2021004543 W JP 2021004543W WO 2022168298 A1 WO2022168298 A1 WO 2022168298A1
Authority
WO
WIPO (PCT)
Prior art keywords
main shaft
rotating body
housing
central axis
air
Prior art date
Application number
PCT/JP2021/004543
Other languages
French (fr)
Japanese (ja)
Inventor
真人 中山
悠人 樋野
治 丸山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN202180092584.8A priority Critical patent/CN116963987A/en
Priority to PCT/JP2021/004543 priority patent/WO2022168298A1/en
Priority to JP2022579289A priority patent/JPWO2022168298A1/ja
Publication of WO2022168298A1 publication Critical patent/WO2022168298A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/08Driving gear ; Details thereof, e.g. seals with hoisting rope or cable operated by frictional engagement with a winding drum or sheave

Definitions

  • the present invention relates to a hoist and an elevator.
  • the hoist of the present invention includes a housing provided with an exhaust hole, a main shaft, a rotating body provided with an air intake hole, a sheave, a rib;
  • a housing is provided with a stator.
  • the main shaft is supported by the housing.
  • the rotating body is supported by the main shaft, has a rotor arranged at a position facing the stator, and rotates with respect to the housing by the stator and the rotor.
  • the sheave is provided on the outer surface of the rotating body opposite to the inner surface, which is the surface on the housing side in the axial direction of the main shaft.
  • the exhaust hole is provided in the housing and exhausts air from the side of the housing on which the stator is provided to the opposite side.
  • the rib is a convex rib provided on the inner surface of the rotating body so as to protrude toward the housing, and is provided so as to extend radially with respect to the central axis of the main shaft.
  • the air intake hole is provided in the rotating body and sucks air from the outer surface side to the inner surface side of the rotating body, and the distance from the central axis of the main shaft is greater than the distance from the central axis of the main shaft to the exhaust hole placed in a small position.
  • the elevator of the present invention includes a car that ascends and descends in a hoistway, a counterweight that connects the car and the car via a main rope, and a hoist that raises and lowers the car by winding the main rope around it. Prepare. And a winding machine has the above-mentioned composition.
  • FIG. 3 is a cross-sectional configuration diagram of the hoist 100 of FIG. 2 when a cross section along line AA is viewed from the direction of the arrow. It is a cross-sectional block diagram along the direction orthogonal to the rotating surface of the winding machine 200 which concerns on the 2nd Embodiment of this invention.
  • FIG. 5 is a cross-sectional configuration diagram of the hoist 200 of FIG. 4 when a cross section along line BB is viewed from the direction of the arrow.
  • FIG. 1 is a schematic configuration diagram showing a configuration example of an elevator 1 of this embodiment.
  • the elevator 1 of this embodiment moves up and down in a hoistway 110 formed in the building structure.
  • the elevator 1 includes a car 120 for carrying people and luggage, a main rope 130, a counterweight 140, and a hoist 100.
  • the hoistway 110 is formed within the building structure and has a machine room 160 at its top.
  • the hoisting machine 100 is arranged in the machine room 160 and raises and lowers the car 120 by winding the main rope 130 around it. In the vicinity of the hoisting machine 100, a deflection pulley 150 on which the main rope 130 is mounted is provided.
  • the balance weight 140 is set to have approximately the same mass as the mass of the car 120 when it is unloaded. Therefore, when the car 120 is not loaded with objects or people, the tension ratio between the car 120 side and the counterweight 140 side of the main rope 130 is 1. As a result, it is possible to keep the output of the hoist 100 low when there is no load.
  • the car 120 is formed in a hollow, substantially rectangular parallelepiped shape.
  • the car 120 is connected to the counterweight 140 via the main rope 130 and moves up and down in the hoistway 110 .
  • FIG. 2 is a cross-sectional configuration diagram along a direction perpendicular to the plane of rotation of the hoist 100 of the present embodiment.
  • 3 is a cross-sectional configuration diagram of the hoist 100 of FIG. 2, taken along line AA, viewed in the direction of the arrow.
  • the hoisting machine 100 includes a housing 2, a main shaft 3, a rotor 4, a sheave 5, a motor stator 6 (the stator of the present invention), and a motor rotor 7 (the rotor of the present invention) and a bearing 8. Further, in the present embodiment, the hoist 100 is provided with an intake hole 9 and an exhaust hole 10 for flowing cooling air therein.
  • an outer rotor type hoist 100 in which the motor rotor 7 is arranged radially outside the motor stator 6 will be described as an example.
  • the axial direction of the main shaft 3 is the X direction.
  • the vertical direction to the axial direction of the main shaft 3 and the elevation direction of the car 120 is defined as the Y direction.
  • a direction orthogonal to the X direction and the Y direction is defined as the Z direction.
  • the side on which the housing 2 is provided is the other side, and the side on which the sheave 5 is provided is the first side.
  • the upper side of the hoistway 110 is defined as the upper side, and the lower side thereof is defined as the lower side.
  • the housing 2 has a housing 11 to which the spindle 3 is attached, a stator mounting portion 13 to which the motor stator 6 is fixed, and a first connecting portion 12 which connects the housing 11 and the stator mounting portion 13. ing. Further, the housing 2 has an outer wall portion 15 that covers the outer peripheral surface of the motor rotor 7 attached to the rotating body 4, which will be described later, and a second connecting portion 14 that connects the stator mounting portion 13 and the outer wall portion 15. ing.
  • the housing 11 is provided substantially in the center of the housing 2 on the YZ plane, and is composed of a cylindrical member whose axial direction is the X direction.
  • a bearing 8 having an axial direction in the X direction is provided on the inner peripheral surface side of the housing 11 .
  • An end portion of the main shaft 3 whose axial direction is the X direction is fitted to the inner peripheral surface side of the bearing 8 to rotatably support the main shaft 3 .
  • the stator mounting portion 13 has an inner diameter larger than the outer diameter of the housing 11, is composed of a cylindrical member whose axial direction is the X direction, and is arranged radially outward of the housing 11.
  • a motor stator 6 is fixed to the outer peripheral surface of the stator mounting portion 13 on the radially outer side.
  • the first connecting portion 12 is provided at one end of the housing 11 and the stator mounting portion 13 in the X direction, and is composed of a plate-like member that connects the housing 11 and the stator mounting portion 13. there is
  • the outer wall portion 15 has an inner diameter larger than the outer diameter of the stator mounting portion 13, and is formed of a cylindrical member whose inner peripheral surface is circular in the YZ plane and whose axial direction is the X direction. , are arranged radially outside the stator mounting portion 13 . Further, the outer wall portion 15 is provided radially outside the stator mounting portion 13 . In the space between the outer wall portion 15 and the stator attachment portion 13, a motor stator 6 and a motor rotor 7 attached to a rotor 4, which will be described later, are arranged. Furthermore, a rotating body 4, which will be described later, is arranged on one side of the outer wall portion 15 in the X direction.
  • the second connecting portion 14 is provided at the other end of the stator mounting portion 13 and the outer wall portion 15 in the X direction, and is composed of a plate-like member that connects the stator mounting portion 13 and the outer wall portion 15. It is Further, the second connecting portion 14 is provided with an exhaust hole 10 for exhausting air from one side of the housing 2 where the motor stator 6 is provided to the other side.
  • the exhaust holes 10 are provided, for example, at positions facing the gaps between the motor stators 6 that are arranged adjacent to each other. The exhaust holes 10 will be detailed later.
  • the main shaft 3 is composed of a cylindrical member whose axial direction is the X direction.
  • the other end of the main shaft 3 in the X direction is cantilevered by the housing 11 by being supported by the inner peripheral side of the bearing 8 provided in the housing 2 .
  • One side of the main shaft 3 is fitted to the rotating body 4 .
  • the rotating body 4 includes a boss portion 16 fitted to one side of the main shaft 3 , a rotor mounting portion 18 to which the motor rotor 7 is mounted, and a third connecting portion connecting the boss portion 16 and the rotor mounting portion 18 . and a collar portion 19 that is provided continuously on the radially outer side of the rotor mounting portion 18 .
  • the boss portion 16 is provided substantially in the center of the rotating body 4 on the YZ plane, and is composed of a cylindrical member whose axial direction is the X direction.
  • One side of the main shaft 3 is fitted to the inner peripheral surface of the boss portion 16 .
  • the rotating body 4 is rotatably supported by the main shaft 3 with respect to the housing 2 .
  • a sheave 5 which will be described later, is fixed to the outer peripheral surface on the radially outer side of the boss portion 16. As shown in FIG.
  • the rotor mounting portion 18 has an inner diameter that is larger than the outer diameter of the boss portion 16 and is composed of a cylindrical member whose axial direction is the X direction. there is
  • the motor rotor 7 is fixed to the other end of the rotor mounting portion 18 .
  • the motor rotor 7 fixed to the rotor mounting portion 18 is arranged between the motor stator 6 and the outer wall portion 15 of the housing 2 .
  • the third connection portion 17 is provided on the outer peripheral surface of the boss portion 16 so as to extend from a position on the other side of the position where the sheave 5 is attached to one end portion of the rotor attachment portion 18, and is parallel to the YZ plane. It is composed of a plate-shaped member.
  • the other side surface (hereinafter referred to as the inner surface) of the third connecting portion 17 is configured to be closer to one side than the other side end surface of the boss portion 16 . That is, the other side of the boss portion 16 is configured to protrude further toward the housing 2 than the inner surface of the third connecting portion 17 .
  • the third connecting portion 17 is provided with an air intake hole 9, which will be described later, and a rib 20, which will be described later.
  • the flange portion 19 is formed of a plate-like member extending outward from the outer peripheral surface of the outer wall portion 15 of the housing 2 in the radial direction from the other end surface of the rotor mounting portion 18 . A gap between the motor rotor 7 and the outer wall portion 15 of the housing 2 is covered with the flange portion 19 .
  • the sheave 5 is composed of a cylindrical member having an axial direction in the X direction around which the main rope 130 can be wound.
  • the inner peripheral surface of the sheave 5 is fixed to the outer peripheral surface of the boss portion 16 on one side of the boss portion 16 in the X direction on the radially outer side of the boss portion 16 . Since the sheave 5 is fixed to the outer peripheral surface of the boss portion 16 of the rotating body 4 , the sheave 5 rotates with respect to the housing 2 as the rotating body 4 rotates.
  • the motor stator 6 is composed of an iron core and a coil wound around the iron core.
  • a plurality of motor stators 6 are attached to the outer peripheral surface of the stator attachment portion 13 .
  • the plurality of motor stators 6 are arranged at regular intervals, for example, at regular intervals.
  • the motor rotor 7 is made of a member made of a magnetic material, and is fixed to the end surface of the rotor mounting portion 18 on the other side in the X direction. Further, the motor rotor 7 is fixed to the rotor mounting portion 18 so as to face the motor stator 6 mounted on the outer peripheral surface of the stator mounting portion 13 in the radial direction across an air gap.
  • the rib 20 is provided on the inner surface of the third connecting portion 17 of the rotating body 4 so as to protrude toward the housing 2 side. Further, as shown in FIG. 3 , the rib 20 extends from the outer peripheral surface of the boss portion 16 to the inner peripheral surface of the rotor mounting portion 18 on the inner surface of the third connecting portion 17 so as to It extends radially. That is, the rib 20 is provided so as to extend radially outward from the boss portion 16 side. In addition, in this embodiment, the ribs 20 are provided in a plural number symmetrically with respect to the central axis of the main shaft 3 .
  • the other side of the boss portion 16 is configured to protrude toward the housing 2 from the inner surface of the third connecting portion 17, and the rib 20 described above is provided so that the rib 20 and the boss A plurality of regions surrounded by the portion 16 are formed.
  • each region partitioned by the rib 20, the boss portion 16, and the rotor mounting portion 18 serves as an air passage 21 through which air sucked from an air intake hole 9, which will be described later, passes.
  • the width of the rib 20 in the direction along the circumferential direction of the rotating body 4 can be changed in various ways, but is formed to a width that allows the air passage 21 to be sufficiently secured. Further, in this embodiment, the ribs 20 are formed with a constant width in the circumferential direction of the rotating body 4, but the width is not limited to this, and various modifications are possible. Even in this case, the shape is such that the flow of air passing through the ventilation path 21 is not hindered.
  • the air intake holes 9 are holes for sucking air from the outer surface side to the inner surface side of the rotating body 4 , and are provided in plurality so as to pass through the third connecting portion 17 . Further, as shown in FIG. 2, in this embodiment, the plurality of air intake holes 9 are arranged on the circumference of a circle centered on the rotation axis of the main shaft 3 and having a predetermined radius R1. Further, in the present embodiment, the air intake holes 9 are arranged one by one between the adjacent ribs 20 and are formed on the boss portion 16 side in the ventilation path 21 surrounded by the ribs 20 and the boss portion 16. be.
  • the distance R1 from the center of the main shaft 3 to the air intake hole 9 is set to be smaller than the distance R2 from the center of the main shaft 3 to the air discharge hole 10, which will be described later.
  • the intake hole 9 is provided so as not to overlap the exhaust hole 10 in the direction parallel to the central axis of the main shaft 3 .
  • the intake hole 9 has a circular shape as shown in FIG. 2, but it is not limited to this, and can be configured in a rectangular shape or other various shapes.
  • the size of the intake hole 9 may be any size that does not hinder the generation of differential pressure between the inner surface side and the outer surface side of the rotating body 4 due to the centrifugal force caused by the rotation of the rotating body 4. is appropriately set depending on the size of
  • the exhaust hole 10 is a hole for exhausting air from the side of the housing 2 on which the motor stator 6 is provided to the opposite side.
  • a plurality of exhaust holes 10 are provided so as to pass through the second connecting portion 14 .
  • a plurality of exhaust holes 10 are provided on the circumference of a circle having a predetermined radius R2 centered on the rotation axis of the main shaft 3, and the stator mounting portion It is provided at a position facing the gap between the motor stators 6 attached to the outer peripheral surface of 13 .
  • the distance R2 from the center of the main shaft 3 to the exhaust hole 10 is set to be larger than the distance R1 from the center of the main shaft 3 to the air intake hole 9 .
  • the shape of the exhaust hole 10 is not particularly limited, it may be formed in a rectangular slit shape or in a circular shape like the intake hole 9 shown in FIG. 3, and may be configured in various shapes.
  • Winding Machine Cooling Mechanism due to the centrifugal force generated by the rotation of the rotating body 4, on the inner surface side of the rotating body 4, in the ventilation path 21, the radius of the rotating body 4 from the rotation axis side of the main shaft 3 Air movement occurs in an outward direction. This air movement occurs along the extending direction of the ribs 20 . As a result, the pressure on the central axis side of the main shaft 3 decreases on the inner surface side of the rotating body 4 , and a pressure difference is generated between the outer surface side and the inner surface side of the rotating body 4 on the central axis side of the main shaft 3 . That is, due to the rotation of the rotating body 4 , the inner surface of the rotating body 4 near the intake hole 9 becomes a negative pressure with respect to the air pressure on the outer surface of the rotating body 4 .
  • the air flowing in the ventilation path 21 in the direction away from the rotation axis of the rotating body 4 passes between the motor rotor 7 and the motor stator 6 or between the adjacent motor stators 6 and moves toward the housing 2 side. flow to Then, in the vicinity of the exhaust hole 10 of the second connecting portion 14 of the housing 2, air flows in from the side of the rotating body 4, and the pressure rises. A pressure difference occurs between That is, due to the rotation of the rotating body 4 , the pressure on the inner surface of the housing 2 near the exhaust hole 10 becomes positive with respect to the air pressure on the outer surface of the housing 2 .
  • the air is sucked from the outer surface side through the air intake hole 9 because the inner surface side near the air intake hole 9 has a negative pressure with respect to the outside air.
  • the air on the inner surface side of the housing 2 is exhausted to the outer surface side because the inner surface side near the exhaust hole 10 has a positive pressure with respect to the outside air.
  • the pressure distribution is formed such that the inner surface near the intake hole 9 has a negative pressure and the inner surface near the exhaust hole 10 has a more positive pressure than the outside air. Therefore, cooling air can always flow inside the hoisting machine 100 while the rotating body 4 is rotating.
  • the pressure distribution near the intake hole 9 and the exhaust hole 10 caused by the rotation of the rotor 4 does not depend on the direction of rotation of the rotor 4 . That is, even if the rotation direction of the rotating body 4 is different, the same pressure distribution occurs. Thus, in the hoisting machine 100 of the present embodiment, stable cooling air can flow inside the hoisting machine 100 regardless of the rotation direction of the rotating body 4 .
  • ribs 20 are formed on the back side of the rotating body 4 . Therefore, since the air on the inner surface side of the rotating body 4 flows along the radial direction of the ribs 20 , the air also flows radially on the inner surface side of the rotating body 4 . In this embodiment, by providing a plurality of ribs 20 axially symmetrically, the air flows radially along the axially symmetrical ventilation paths 21, so that the air flow can be stabilized.
  • the size and number of air intake holes 9, the size and number of air discharge holes 10 are determined so that the pressure distribution inside and outside the hoisting machine 100 becomes the pressure distribution described above. As long as it is designed, it can take various forms. That is, with the rotation of the rotating body 4, the pressure distribution is formed so that the inner surface near the intake hole 9 becomes negative pressure and the inner surface near the exhaust hole 10 becomes more positive than the outer air. Just do it.
  • the exhaust holes 10 are provided at positions facing the gaps between the adjacent motor stators 6 .
  • the air flowing between the motor stators 6 can be exhausted to the outside, and the motor stators 6 can be efficiently cooled.
  • the ribs 20 are provided axially symmetrically, but this is not the only option. Even if the ribs 20 are not axially symmetrical, they may have a shape that can guide the air flowing radially outward from the central axis side of the main shaft 3 on the inner surface side of the third connecting portion 17 . By providing the ribs 20 axially symmetrically as in the present embodiment, the air flows evenly in the radial direction on the inner surface side of the third connecting portion 17, so that the air can flow efficiently.
  • an air intake hole 9 is provided at a position near the rotation axis of the rotating body 4
  • an exhaust hole 10 is provided at a position facing the gap between the motor stators 6 of the housing 2, and the diameter R1 of the row of the air intake holes 9 is set to , the diameter R2 of the hole row of the exhaust holes 10 can be made smaller to create an air flow inside the hoisting machine 200 where the differential pressure is generated. Then, the differential pressure in the hoisting machine 200 generated with the rotation of the rotating body 4 can be used to flow the cooling air.
  • the air intake hole 9 is provided in the third connecting portion 17, but the position where the air intake hole 9 is formed is the distance R1 from the central axis of the main shaft 3 to the air intake hole 9. If the position is smaller than the distance R2 from the shaft to the exhaust hole 10, it is not limited to this.
  • the position of the intake holes 9 is arranged at a position different from that of the first embodiment.
  • FIG. 4 is a cross-sectional block diagram along the direction orthogonal to the rotating surface of the winding machine 200 which concerns on the 2nd Embodiment of this invention.
  • FIG. 5 is a cross-sectional configuration diagram of the hoist 200 of FIG. 4, taken along the line BB, viewed in the direction of the arrow. 5 shows a cross-sectional view at a position different from that in FIG. 3 in order to make the position of the intake hole 30 easier to understand.
  • the hoisting machine 200 in this embodiment is also applicable to the elevator 1 shown in FIG. 1, like the first embodiment.
  • parts corresponding to those in FIGS. 2 and 3 are denoted by the same reference numerals, and repeated explanations are omitted.
  • the air intake holes 30 are provided in the boss portion 16 of the rotating body 4, and are arranged in plurality on the circumference of a circle having a predetermined radius R3 centered on the rotation axis of the main shaft 3. .
  • the intake hole 30 is composed of a long hole portion 30a and a horizontal hole portion 30b.
  • the long hole portion 30 a is formed in the boss portion 16 in parallel with the rotation axis of the main shaft 3 from the outer surface side to the inner surface side of the rotor 4 .
  • the horizontal hole portion 30b is provided in a direction orthogonal to the rotation axis of the main shaft 3 from the side peripheral surface side of the boss portion 16, and communicates the long hole portion 30a and the air passage 21 with each other.
  • the air sucked from the intake hole 30 flows into the air passage 21 through the long hole portion 30a and the horizontal hole portion 30b.
  • the area surrounded by the ribs 20 and the boss portions 16 on the back side of the rotating body 4 serves as the air passage 21 .
  • the air sucked from the air intake hole 30 flows into the air passage 21 from the horizontal hole portion 30 b provided in the boss portion 16 .
  • the centrifugal force generated by the rotation of the rotor 4 causes the air on the side closer to the rotation axis of the main shaft 3 to flow radially outward on the inner surface side of the rotor 4. .
  • the air near the boss portion 16 of the ventilation passage 21 flows radially outward of the rotating body 4, so that the pressure near the intake hole 30 becomes negative compared to the outside air. Therefore, air is further sucked from the intake hole 30 and flows to the exhaust hole 10 side through the ventilation path 21 .
  • the cooling air can flow inside the hoisting machine 200 as the rotating body 4 rotates.
  • cooling air can be sent to the inside of the hoisting machine in the same direction regardless of the ascending/descending direction of the elevator car, unlike the conventional configuration in which the cooling air is sent out using the blower blades having a fluid shape. Therefore, the cooling efficiency can be stabilized.
  • the hoisting machine provided in the elevator provided with the machine room has been described, but the hoisting machine of the present invention can also be applied to an elevator without a machine room.
  • the outer rotor type hoisting machine was described as an example, but the present invention can also be applied to an inner rotor type hoisting machine.

Abstract

The present invention comprises: an air discharge hole that is provided in a casing and that allows discharge of air from the side of the casing where a stator is provided to the opposite side of the casing; and a projecting rib provided to the inner surface of a rotating body so as to protrude toward the casing, the rib being provided so as to extend radially with respect to the central axis of a main shaft. The rotating body is also provided with an air suction hole through which air is suctioned from the outer-surface side of the rotating body to the inner-surface side thereof, the air suction hole being provided at a position such that the distance from the central axis of the main shaft to the air suction hole is less than the distance from the central axis of the main shaft to the air discharge hole.

Description

巻上機及びエレベーターHoist and elevator
 本発明は、巻上機、及び、エレベーターに関する。 The present invention relates to a hoist and an elevator.
 近年、エレベーター用の巻上機は、小型化が求められている。巻上機を小型化するとモータの放熱面積が減る一方、出力が向上すれば発熱量が増加するため、モータ性能の安定化に問題が生じることになる。これに対し、従来、例えば特許文献1のように、ロータの端面に送風翼を設け、ロータの回転に伴ってロータの回転軸方向の風をロータとステータとの間に流すことによって冷却機能を発揮させる構成が開示されている。 In recent years, hoisting machines for elevators have been required to be smaller. If the size of the hoist is reduced, the heat dissipation area of the motor will be reduced, but if the output is improved, the amount of heat generated will increase. Conventionally, as disclosed in Patent Document 1, for example, a cooling function is achieved by providing air blowing blades on the end surface of the rotor to flow air in the direction of the rotation axis of the rotor between the rotor and the stator as the rotor rotates. A configuration for exhibiting is disclosed.
特開2016-220370号公報JP 2016-220370 A
 しかしながら、巻上機は、エレベーターの昇降方向によって正逆回転するため、特許文献1に記載されたモータでは、ロータの回転方向によって冷却風の向きが変わる。このため、冷却効率がエレベーターの昇降方向によって異なってしまうという問題があった。 However, since the hoist rotates forward and backward depending on the ascending and descending direction of the elevator, in the motor described in Patent Document 1, the direction of the cooling air changes depending on the rotating direction of the rotor. For this reason, there is a problem that the cooling efficiency differs depending on the ascending/descending direction of the elevator.
 そこで、本発明は、昇降方向が異なる場合にも同じ向きの冷却風を巻上機内に送り込み、冷却効果の安定した巻上機、及びその巻上機を用いたエレベーターを提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a hoist with a stable cooling effect by sending cooling air in the same direction into the hoist even when the directions of elevation are different, and to provide an elevator using the hoist. do.
 上記課題を解決し、本発明の目的を達成するため、本発明の巻上機は、排気孔が設けられた筐体と、主軸と、吸気孔が設けられた回転体と、綱車と、リブと、を備える。筐体は、固定子が設けられる。主軸は、筐体に支持されている。回転体は、主軸に支持され、固定子に対向する位置に配置された回転子を有し、固定子と回転子とによって筐体に対して回転する。綱車は、回転体の、主軸の軸方向における筐体側の面である内面とは反対側の外面に設けられている。排気孔は、筐体に設けられ、筐体の固定子が設けられる側から反対側に空気を排気する。リブは、回転体の内面において、筐体側に突出して設けられた凸状のリブであって、主軸の中心軸に対して放射状に延在して設けられている。吸気孔は、回転体に設けられ、回転体の外面側から内面側に空気を吸入する吸気孔であって、主軸の中心軸からの距離が、主軸の中心軸から排気孔までの距離よりも小さい位置に設けられている。 In order to solve the above problems and achieve the object of the present invention, the hoist of the present invention includes a housing provided with an exhaust hole, a main shaft, a rotating body provided with an air intake hole, a sheave, a rib; A housing is provided with a stator. The main shaft is supported by the housing. The rotating body is supported by the main shaft, has a rotor arranged at a position facing the stator, and rotates with respect to the housing by the stator and the rotor. The sheave is provided on the outer surface of the rotating body opposite to the inner surface, which is the surface on the housing side in the axial direction of the main shaft. The exhaust hole is provided in the housing and exhausts air from the side of the housing on which the stator is provided to the opposite side. The rib is a convex rib provided on the inner surface of the rotating body so as to protrude toward the housing, and is provided so as to extend radially with respect to the central axis of the main shaft. The air intake hole is provided in the rotating body and sucks air from the outer surface side to the inner surface side of the rotating body, and the distance from the central axis of the main shaft is greater than the distance from the central axis of the main shaft to the exhaust hole placed in a small position.
 本発明のエレベーターは、昇降路内を昇降する乗りかごと、乗りかごと主ロープを介して連結される釣合錘と、主ロープを巻き掛けることにより、乗りかごを昇降させる巻上機とを備える。そして、巻上機は、上述の構成を有する。 The elevator of the present invention includes a car that ascends and descends in a hoistway, a counterweight that connects the car and the car via a main rope, and a hoist that raises and lowers the car by winding the main rope around it. Prepare. And a winding machine has the above-mentioned composition.
 本発明によれば、巻上機の回転方向によらず、同じ向きの冷却風を巻上機内部の固定子と回転子との間に流すことができるため、冷却効率の安定化を図ることができる。 According to the present invention, it is possible to flow cooling air in the same direction between the stator and the rotor inside the hoist regardless of the direction of rotation of the hoist, thereby stabilizing the cooling efficiency. can be done.
本発明の第1の実施形態に係るエレベーターの全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the elevator which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る巻上機100の回転面に直交する方向に沿う断面構成図である。It is a cross-sectional block diagram along the direction orthogonal to the rotating surface of the winding machine 100 which concerns on the 1st Embodiment of this invention. 図2の巻上機100のA-A線上に沿う断面を矢印方向から見たときの断面構成図である。FIG. 3 is a cross-sectional configuration diagram of the hoist 100 of FIG. 2 when a cross section along line AA is viewed from the direction of the arrow. 本発明の第2の実施形態に係る巻上機200の回転面に直交する方向に沿う断面構成図である。It is a cross-sectional block diagram along the direction orthogonal to the rotating surface of the winding machine 200 which concerns on the 2nd Embodiment of this invention. 図4の巻上機200のB-B線上に沿う断面を矢印方向から見たときの断面構成図である。FIG. 5 is a cross-sectional configuration diagram of the hoist 200 of FIG. 4 when a cross section along line BB is viewed from the direction of the arrow.
 以下、本発明の実施形態に係るエレベーター及び巻上機の一例を、図面を参照しながら説明する。なお、本発明は以下の例に限定されるものではない。以下で説明する各図において、共通の部材には同一の符号を付している。 An example of an elevator and a hoist according to an embodiment of the present invention will be described below with reference to the drawings. In addition, the present invention is not limited to the following examples. In each figure explained below, the same code|symbol is attached|subjected to a common member.
1.第1の実施形態
1-1.エレベーターの構成
 まず、本発明の第1の実施形態(以下、「本実施形態」という。)に係るエレベーター1の構成について、図1を参照して説明する。図1は、本実施形態のエレベーター1の構成例を示す概略構成図である。
1. First Embodiment 1-1. Configuration of Elevator First, the configuration of an elevator 1 according to a first embodiment (hereinafter referred to as "this embodiment") of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram showing a configuration example of an elevator 1 of this embodiment.
 図1に示すように、本実施形態のエレベーター1は、建物構造物内に形成された昇降路110内を昇降動作する。エレベーター1は、人や荷物を載せる乗りかご120と、主ロープ130と、釣合錘140と、巻上機100とを備える。昇降路110は、建築構造物内に形成され、その頂部には機械室160が設けられている。 As shown in FIG. 1, the elevator 1 of this embodiment moves up and down in a hoistway 110 formed in the building structure. The elevator 1 includes a car 120 for carrying people and luggage, a main rope 130, a counterweight 140, and a hoist 100. - 特許庁The hoistway 110 is formed within the building structure and has a machine room 160 at its top.
 巻上機100は、機械室160に配置され、主ロープ130を巻き掛けることにより乗りかご120を昇降させる。また、巻上機100の近傍には、主ロープ130が装架される反らせ車150が設けられている。 The hoisting machine 100 is arranged in the machine room 160 and raises and lowers the car 120 by winding the main rope 130 around it. In the vicinity of the hoisting machine 100, a deflection pulley 150 on which the main rope 130 is mounted is provided.
 釣合錘140は、乗りかご120における無積載時の質量とほぼ同じ質量に設定されている。そのため、乗りかご120内に物や人が積載されていない無積載時では、乗りかご120側と釣合錘140側の主ロープ130の張力比は、1となる。これにより、無積載時における巻上機100の出力を低く抑えることが可能である。 The balance weight 140 is set to have approximately the same mass as the mass of the car 120 when it is unloaded. Therefore, when the car 120 is not loaded with objects or people, the tension ratio between the car 120 side and the counterweight 140 side of the main rope 130 is 1. As a result, it is possible to keep the output of the hoist 100 low when there is no load.
 乗りかご120は、中空の略直方体状に形成されている。乗りかご120は、主ロープ130を介して、釣合錘140と連結され、昇降路110内を昇降する。 The car 120 is formed in a hollow, substantially rectangular parallelepiped shape. The car 120 is connected to the counterweight 140 via the main rope 130 and moves up and down in the hoistway 110 .
1-2.巻上機の構成
 次に、図2及び図3を参照して本実施形態の巻上機100について説明する。図2は、本実施形態の巻上機100の回転面に直交する方向に沿う断面構成図である。また、図3は、図2の巻上機100のA-A線上に沿う断面を矢印方向から見たときの断面構成図である。
1-2. Configuration of Hoist Next, the hoist 100 of the present embodiment will be described with reference to FIGS. 2 and 3. FIG. FIG. 2 is a cross-sectional configuration diagram along a direction perpendicular to the plane of rotation of the hoist 100 of the present embodiment. 3 is a cross-sectional configuration diagram of the hoist 100 of FIG. 2, taken along line AA, viewed in the direction of the arrow.
 図2に示すように、巻上機100は、筐体2と、主軸3と、回転体4と、綱車5と、モータ固定子6(本発明の固定子)と、モータ回転子7(本発明の回転子)と、軸受け8とを有する。さらに、本実施形態では、巻上機100は、内部に冷却風を流すための吸気孔9及び排気孔10が設けられている。本実施形態では、モータ固定子6の半径方向の外側にモータ回転子7が配置されるアウターロータ式の巻上機100を例に説明する。 As shown in FIG. 2, the hoisting machine 100 includes a housing 2, a main shaft 3, a rotor 4, a sheave 5, a motor stator 6 (the stator of the present invention), and a motor rotor 7 ( the rotor of the present invention) and a bearing 8. Further, in the present embodiment, the hoist 100 is provided with an intake hole 9 and an exhaust hole 10 for flowing cooling air therein. In this embodiment, an outer rotor type hoist 100 in which the motor rotor 7 is arranged radially outside the motor stator 6 will be described as an example.
 下記の説明において、主軸3の軸方向をX方向とする。また、主軸3の軸方向に対して鉛直方向であって、乗りかご120の昇降方向をY方向とする。また、X方向及びY方向に直交する方向をZ方向とする。また、下記の説明においては、X方向において、筐体2が設けられる側を他側とし、綱車5が設けられる側を一側とする。さらに、Y方向においては、昇降路110上方側を上側、下方側を下側とする。  In the following description, the axial direction of the main shaft 3 is the X direction. Also, the vertical direction to the axial direction of the main shaft 3 and the elevation direction of the car 120 is defined as the Y direction. A direction orthogonal to the X direction and the Y direction is defined as the Z direction. Further, in the following description, in the X direction, the side on which the housing 2 is provided is the other side, and the side on which the sheave 5 is provided is the first side. Furthermore, in the Y direction, the upper side of the hoistway 110 is defined as the upper side, and the lower side thereof is defined as the lower side.
[筐体]
 筐体2は、主軸3が取り付けられるハウジング11と、モータ固定子6が固定される固定子取付部13と、ハウジング11と固定子取付部13とを連結する第1連結部12とを有している。また、筐体2は後述する回転体4に取り付けられるモータ回転子7の外周面を覆う外壁部15と、固定子取付部13と外壁部15とを連結する第2連結部14とを有している。
[Chassis]
The housing 2 has a housing 11 to which the spindle 3 is attached, a stator mounting portion 13 to which the motor stator 6 is fixed, and a first connecting portion 12 which connects the housing 11 and the stator mounting portion 13. ing. Further, the housing 2 has an outer wall portion 15 that covers the outer peripheral surface of the motor rotor 7 attached to the rotating body 4, which will be described later, and a second connecting portion 14 that connects the stator mounting portion 13 and the outer wall portion 15. ing.
 ハウジング11は、筐体2のYZ平面上におけるほぼ中央部に設けられ、X方向を軸方向とする円筒形状の部材で構成されている。ハウジング11の内周面側には、X方向を軸方向とする軸受け8が設けられている。軸受け8の内周面側には、X方向を軸方向とする主軸3の端部が嵌合され、主軸3を回転可能に支持する。 The housing 11 is provided substantially in the center of the housing 2 on the YZ plane, and is composed of a cylindrical member whose axial direction is the X direction. A bearing 8 having an axial direction in the X direction is provided on the inner peripheral surface side of the housing 11 . An end portion of the main shaft 3 whose axial direction is the X direction is fitted to the inner peripheral surface side of the bearing 8 to rotatably support the main shaft 3 .
 固定子取付部13は、ハウジング11の外径よりも大きい内径を有し、X方向を軸方向とする円筒形状の部材で構成されており、ハウジング11の半径方向の外側に配置されている。そして、固定子取付部13の半径方向に外側における外周面には、モータ固定子6が固定されている。第1連結部12は、ハウジング11及び固定子取付部13の、X方向における一側の端部に設けられており、ハウジング11と固定子取付部13とを連結する板状部材で構成されている。 The stator mounting portion 13 has an inner diameter larger than the outer diameter of the housing 11, is composed of a cylindrical member whose axial direction is the X direction, and is arranged radially outward of the housing 11. A motor stator 6 is fixed to the outer peripheral surface of the stator mounting portion 13 on the radially outer side. The first connecting portion 12 is provided at one end of the housing 11 and the stator mounting portion 13 in the X direction, and is composed of a plate-like member that connects the housing 11 and the stator mounting portion 13. there is
 外壁部15は、固定子取付部13の外径よりも大きい内径を有すると共に、内周面がYZ平面において、円状に形成されたX方向を軸方向とする筒状部材で構成されており、固定子取付部13の半径方向の外側に配置されている。また、外壁部15は、固定子取付部13の半径方向の外側に設けられている。外壁部15と固定子取付部13との間の空間には、モータ固定子6と、後述する回転体4に取り付けられたモータ回転子7とが配置される。さらに、外壁部15のX方向における一側には、後述する回転体4が配置される。 The outer wall portion 15 has an inner diameter larger than the outer diameter of the stator mounting portion 13, and is formed of a cylindrical member whose inner peripheral surface is circular in the YZ plane and whose axial direction is the X direction. , are arranged radially outside the stator mounting portion 13 . Further, the outer wall portion 15 is provided radially outside the stator mounting portion 13 . In the space between the outer wall portion 15 and the stator attachment portion 13, a motor stator 6 and a motor rotor 7 attached to a rotor 4, which will be described later, are arranged. Furthermore, a rotating body 4, which will be described later, is arranged on one side of the outer wall portion 15 in the X direction.
 第2連結部14は、固定子取付部13及び外壁部15の、X方向における他側の端部に、設けられており、固定子取付部13及び外壁部15を連結する板状部材で構成されている。また、第2連結部14には、筐体2のモータ固定子6が設けられる一側から他側に空気を排気する排気孔10が設けられている。排気孔10は、例えば、隣り合って配置されるモータ固定子6間の隙間に対向する位置に設けられている。排気孔10については後で詳述する。 The second connecting portion 14 is provided at the other end of the stator mounting portion 13 and the outer wall portion 15 in the X direction, and is composed of a plate-like member that connects the stator mounting portion 13 and the outer wall portion 15. It is Further, the second connecting portion 14 is provided with an exhaust hole 10 for exhausting air from one side of the housing 2 where the motor stator 6 is provided to the other side. The exhaust holes 10 are provided, for example, at positions facing the gaps between the motor stators 6 that are arranged adjacent to each other. The exhaust holes 10 will be detailed later.
 [主軸]
 主軸3は、X方向を軸方向とする円柱状部材で構成されている。主軸3のX方向における他側の端部は、筐体2に設けられた軸受け8の内周側に支持されることによりハウジング11に片持ち支持されている。また、主軸3の一側は回転体4に嵌合されている。
[Spindle]
The main shaft 3 is composed of a cylindrical member whose axial direction is the X direction. The other end of the main shaft 3 in the X direction is cantilevered by the housing 11 by being supported by the inner peripheral side of the bearing 8 provided in the housing 2 . One side of the main shaft 3 is fitted to the rotating body 4 .
 [回転体]
 回転体4は、主軸3の一側に嵌合されるボス部16と、モータ回転子7が取り付けられる回転子取付部18と、ボス部16と回転子取付部18とを連結する第3連結部17と、回転子取付部18の半径方向の外側に連続して設けられる鍔部19とを有している。
[Rotating body]
The rotating body 4 includes a boss portion 16 fitted to one side of the main shaft 3 , a rotor mounting portion 18 to which the motor rotor 7 is mounted, and a third connecting portion connecting the boss portion 16 and the rotor mounting portion 18 . and a collar portion 19 that is provided continuously on the radially outer side of the rotor mounting portion 18 .
 ボス部16は、回転体4のYZ平面上におけるほぼ中央部に設けられ、X方向を軸方向とする円筒形状の部材で構成されている。ボス部16の内周面側には、主軸3の一側が嵌合されている。主軸3により、回転体4は、筐体2に対して回転可能に支持される。ボス部16の一側には、ボス部16の半径方向の外側における外周面に、後述する綱車5が固定されている。 The boss portion 16 is provided substantially in the center of the rotating body 4 on the YZ plane, and is composed of a cylindrical member whose axial direction is the X direction. One side of the main shaft 3 is fitted to the inner peripheral surface of the boss portion 16 . The rotating body 4 is rotatably supported by the main shaft 3 with respect to the housing 2 . On one side of the boss portion 16, a sheave 5, which will be described later, is fixed to the outer peripheral surface on the radially outer side of the boss portion 16. As shown in FIG.
 回転子取付部18は、ボス部16の外径よりも大きい内径を有し、X方向を軸方向とする円筒形状の部材で構成されており、ボス部16の半径方向の外側に配置されている。回転子取付部18の他側の端部には、モータ回転子7が固定されている。回転子取付部18に固定されたモータ回転子7は、モータ固定子6と筐体2の外壁部15との間に配置されている。 The rotor mounting portion 18 has an inner diameter that is larger than the outer diameter of the boss portion 16 and is composed of a cylindrical member whose axial direction is the X direction. there is The motor rotor 7 is fixed to the other end of the rotor mounting portion 18 . The motor rotor 7 fixed to the rotor mounting portion 18 is arranged between the motor stator 6 and the outer wall portion 15 of the housing 2 .
 第3連結部17は、ボス部16の外周面において、綱車5が取り付けられる位置よりも他側の位置から回転子取付部18の一側の端部に架けて設けられ、YZ平面に平行な板状部材で構成されている。また、第3連結部17の他側の面(以下、内面)は、ボス部16の他側の端面よりも一側に来るように構成されている。すなわち、ボス部16の他側が、第3連結部17の内面よりも筐体2側に突出するように構成されている。第3連結部17には、後述する吸気孔9が設けられると共に、後述するリブ20が形成されている。 The third connection portion 17 is provided on the outer peripheral surface of the boss portion 16 so as to extend from a position on the other side of the position where the sheave 5 is attached to one end portion of the rotor attachment portion 18, and is parallel to the YZ plane. It is composed of a plate-shaped member. The other side surface (hereinafter referred to as the inner surface) of the third connecting portion 17 is configured to be closer to one side than the other side end surface of the boss portion 16 . That is, the other side of the boss portion 16 is configured to protrude further toward the housing 2 than the inner surface of the third connecting portion 17 . The third connecting portion 17 is provided with an air intake hole 9, which will be described later, and a rib 20, which will be described later.
 鍔部19は、回転子取付部18の他側の端面から半径方向において、筐体2の外壁部15の外周面よりも外側に延在する板状部材で構成されている。鍔部19により、モータ回転子7と筐体2の外壁部15との隙間が覆われている。 The flange portion 19 is formed of a plate-like member extending outward from the outer peripheral surface of the outer wall portion 15 of the housing 2 in the radial direction from the other end surface of the rotor mounting portion 18 . A gap between the motor rotor 7 and the outer wall portion 15 of the housing 2 is covered with the flange portion 19 .
 [綱車]
 綱車5は、外周面に主ロープ130を巻き掛けることができるX方向を軸方向とする円筒形状の部材で構成されている。そして、綱車5は、ボス部16の半径方向の外側であって、ボス部16のX方向における一側において、その内周面がボス部16の外周面に固定されている。綱車5は、回転体4のボス部16の外周面に固定されていることにより、回転体4の回転に伴い筐体2に対して回転する。
[Sheave]
The sheave 5 is composed of a cylindrical member having an axial direction in the X direction around which the main rope 130 can be wound. The inner peripheral surface of the sheave 5 is fixed to the outer peripheral surface of the boss portion 16 on one side of the boss portion 16 in the X direction on the radially outer side of the boss portion 16 . Since the sheave 5 is fixed to the outer peripheral surface of the boss portion 16 of the rotating body 4 , the sheave 5 rotates with respect to the housing 2 as the rotating body 4 rotates.
 [モータ固定子]
 モータ固定子6は、鉄芯及び鉄芯に巻き回されたコイルで構成されている。複数のモータ固定子6が、固定子取付部13の外周面において取り付けられている。複数のモータ固定子6は、所定の間隔を空けて例えば等間隔に配置されている。
[Motor stator]
The motor stator 6 is composed of an iron core and a coil wound around the iron core. A plurality of motor stators 6 are attached to the outer peripheral surface of the stator attachment portion 13 . The plurality of motor stators 6 are arranged at regular intervals, for example, at regular intervals.
 [モータ回転子]
 モータ回転子7は、磁性体からなる部材で構成されており、回転子取付部18のX方向における他側の端面に固定されている。また、モータ回転子7は、固定子取付部13の外周面に取り付けられたモータ固定子6とエアギャップを挟んで径方向に対向するように、回転子取付部18に固定されている。
[Motor rotor]
The motor rotor 7 is made of a member made of a magnetic material, and is fixed to the end surface of the rotor mounting portion 18 on the other side in the X direction. Further, the motor rotor 7 is fixed to the rotor mounting portion 18 so as to face the motor stator 6 mounted on the outer peripheral surface of the stator mounting portion 13 in the radial direction across an air gap.
 [リブ]
 リブ20は、回転体4の第3連結部17の内面において、筐体2側に凸状に突出して設けられている。また、図3に示すように、リブ20は、第3連結部17の内面において、ボス部16の外周面から回転子取付部18の内周面に架けて、主軸3の中心軸に対して放射状に延在して設けられている。すなわち、リブ20は、ボス部16側から半径外方向に向けて延在するように設けられている。また、本実施形態では、リブ20は、主軸3の中心軸に対して軸対称に複数本設けられている。
[rib]
The rib 20 is provided on the inner surface of the third connecting portion 17 of the rotating body 4 so as to protrude toward the housing 2 side. Further, as shown in FIG. 3 , the rib 20 extends from the outer peripheral surface of the boss portion 16 to the inner peripheral surface of the rotor mounting portion 18 on the inner surface of the third connecting portion 17 so as to It extends radially. That is, the rib 20 is provided so as to extend radially outward from the boss portion 16 side. In addition, in this embodiment, the ribs 20 are provided in a plural number symmetrically with respect to the central axis of the main shaft 3 .
 本実施形態では、ボス部16の他側が、第3連結部17の内面よりも筐体2側に突出するように構成されていると共に、上述したリブ20が設けられることによって、リブ20とボス部16とで囲まれる領域が複数形成される。図3に示すように、このリブ20とボス部16と回転子取付部18とで区切られた各領域は、後述する吸気孔9から吸い込まれた空気が通る通気路21となる。 In this embodiment, the other side of the boss portion 16 is configured to protrude toward the housing 2 from the inner surface of the third connecting portion 17, and the rib 20 described above is provided so that the rib 20 and the boss A plurality of regions surrounded by the portion 16 are formed. As shown in FIG. 3, each region partitioned by the rib 20, the boss portion 16, and the rotor mounting portion 18 serves as an air passage 21 through which air sucked from an air intake hole 9, which will be described later, passes.
 リブ20において、回転体4の円周方向に沿う方向の幅は、種々の変更が可能であるが、通気路21が十分に確保できる程度の幅に形成される。また、本実施形態では、リブ20は、回転体4の円周方向において一定の幅で形成されているがこれに限られるものではなく、種々の変更が可能である。この場合においても、通気路21を通る空気の流れを阻害しない形状とする。 The width of the rib 20 in the direction along the circumferential direction of the rotating body 4 can be changed in various ways, but is formed to a width that allows the air passage 21 to be sufficiently secured. Further, in this embodiment, the ribs 20 are formed with a constant width in the circumferential direction of the rotating body 4, but the width is not limited to this, and various modifications are possible. Even in this case, the shape is such that the flow of air passing through the ventilation path 21 is not hindered.
 [吸気孔]
 吸気孔9は、回転体4の外面側から内面側に空気を吸入するための孔であり、第3連結部17を貫通するように複数個設けられている。また、図2に示すように、本実施形態では、複数の吸気孔9が、主軸3の回転軸を中心とした所定の半径R1を有する円の円周上に配置されている。また、本実施形態では、吸気孔9は、隣り合うリブ20とリブ20との間に一つずつ配置され、リブ20とボス部16で囲まれる通気路21において、ボス部16側に形成される。さらに、本実施形態では、主軸3の中心から吸気孔9までの距離R1が、主軸3の中心から後述する排気孔10までの距離R2よりも小さくなるように設定されている。また、吸気孔9は、主軸3の中心軸に平行な方向において排気孔10と重ならないように設けられている。
[Intake hole]
The air intake holes 9 are holes for sucking air from the outer surface side to the inner surface side of the rotating body 4 , and are provided in plurality so as to pass through the third connecting portion 17 . Further, as shown in FIG. 2, in this embodiment, the plurality of air intake holes 9 are arranged on the circumference of a circle centered on the rotation axis of the main shaft 3 and having a predetermined radius R1. Further, in the present embodiment, the air intake holes 9 are arranged one by one between the adjacent ribs 20 and are formed on the boss portion 16 side in the ventilation path 21 surrounded by the ribs 20 and the boss portion 16. be. Furthermore, in this embodiment, the distance R1 from the center of the main shaft 3 to the air intake hole 9 is set to be smaller than the distance R2 from the center of the main shaft 3 to the air discharge hole 10, which will be described later. Also, the intake hole 9 is provided so as not to overlap the exhaust hole 10 in the direction parallel to the central axis of the main shaft 3 .
 本実施形態では、吸気孔9は、図2に示すように円形状としたが、これに限定されるものではなく、矩形状や、その他種々の形状で構成することができる。また、吸気孔9の大きさは、回転体4の回転による遠心力に起因した、回転体4の内面側と外面側とにおける差圧の発生を阻害しない大きさであればよく、排気孔10の大きさ等によって適切に設定される。 In this embodiment, the intake hole 9 has a circular shape as shown in FIG. 2, but it is not limited to this, and can be configured in a rectangular shape or other various shapes. In addition, the size of the intake hole 9 may be any size that does not hinder the generation of differential pressure between the inner surface side and the outer surface side of the rotating body 4 due to the centrifugal force caused by the rotation of the rotating body 4. is appropriately set depending on the size of
 [排気孔]
 排気孔10は、筐体2のモータ固定子6が設けられる側から反対側に空気を排気するための孔である。排気孔10は、第2連結部14を貫通するように複数個設けられている。本実施形態では、図示を省略するが、複数の排気孔10が、主軸3の回転軸を中心とした所定の半径R2を有する円の円周上に設けられており、かつ、固定子取付部13の外周面に取り付けられたモータ固定子6間の隙間に対向する位置に設けられている。また、本実施形態では、主軸3の中心から排気孔10までの距離R2が、主軸3の中心から吸気孔9までの距離R1よりも大きくなるように設定されている。
[Exhaust hole]
The exhaust hole 10 is a hole for exhausting air from the side of the housing 2 on which the motor stator 6 is provided to the opposite side. A plurality of exhaust holes 10 are provided so as to pass through the second connecting portion 14 . In this embodiment, although illustration is omitted, a plurality of exhaust holes 10 are provided on the circumference of a circle having a predetermined radius R2 centered on the rotation axis of the main shaft 3, and the stator mounting portion It is provided at a position facing the gap between the motor stators 6 attached to the outer peripheral surface of 13 . Further, in this embodiment, the distance R2 from the center of the main shaft 3 to the exhaust hole 10 is set to be larger than the distance R1 from the center of the main shaft 3 to the air intake hole 9 .
 排気孔10の形状は特に限定されないが、例えば矩形のスリット状や、図3に示した吸気孔9と同様、円状に形成されていてもよく、種々の形状で構成することができる。 Although the shape of the exhaust hole 10 is not particularly limited, it may be formed in a rectangular slit shape or in a circular shape like the intake hole 9 shown in FIG. 3, and may be configured in various shapes.
 以上の構成を有する巻上機において、モータ固定子6に交流電流を流すと、回転体4の周方向に回転する磁界が発生するため、モータ回転子7に電磁力が作用する。これにより、回転体4及び綱車5は主軸3を回転軸として一体に回転する。そして、綱車5が回転することによって主ロープ130が綱車5に巻き取られる。また、本実施形態の巻上機100では、回転体4が回転することに伴い、吸気孔9から外側の空気が巻上機100内部に吸い込まれ、巻上機100の内部を通って排気孔10から排気される。これよって巻上機100が冷却される。以下に、巻上機100の冷却機構について詳述する。 In the hoist having the above configuration, when an alternating current is passed through the motor stator 6, a magnetic field is generated that rotates in the circumferential direction of the rotating body 4, so that an electromagnetic force acts on the motor rotor 7. As a result, the rotating body 4 and sheave 5 rotate integrally with the main shaft 3 as the rotation axis. The main rope 130 is wound around the sheave 5 by rotating the sheave 5 . Further, in the hoisting machine 100 of the present embodiment, as the rotating body 4 rotates, outside air is sucked into the hoisting machine 100 through the air intake hole 9 and passes through the inside of the hoisting machine 100 to the exhaust hole. 10 is exhausted. The hoisting machine 100 is thereby cooled. The cooling mechanism of the hoist 100 will be described in detail below.
1-3.巻上機の冷却機構
 本実施形態では、回転体4が回転することで発生する遠心力により、回転体4の内面側では、通気路21において、主軸3の回転軸側から回転体4の半径外方向に向けて空気の移動が起こる。この空気の移動は、リブ20の延在方向に沿って起こる。これにより、回転体4の内面側では、主軸3の中心軸側の圧力が下がり、主軸3の中心軸側において回転体4の外面側と内面側で圧力差が発生する。すなわち、回転体4の回転によって、回転体4の吸気孔9付近の内面側では、回転体4の外面における気圧に対して、負圧になる。
1-3. Winding Machine Cooling Mechanism In the present embodiment, due to the centrifugal force generated by the rotation of the rotating body 4, on the inner surface side of the rotating body 4, in the ventilation path 21, the radius of the rotating body 4 from the rotation axis side of the main shaft 3 Air movement occurs in an outward direction. This air movement occurs along the extending direction of the ribs 20 . As a result, the pressure on the central axis side of the main shaft 3 decreases on the inner surface side of the rotating body 4 , and a pressure difference is generated between the outer surface side and the inner surface side of the rotating body 4 on the central axis side of the main shaft 3 . That is, due to the rotation of the rotating body 4 , the inner surface of the rotating body 4 near the intake hole 9 becomes a negative pressure with respect to the air pressure on the outer surface of the rotating body 4 .
 一方、遠心力により、通気路21において回転体4の回転軸から離れる方向に流れる空気は、モータ回転子7とモータ固定子6の間や隣り合うモータ固定子6間を通って筐体2側に流れる。そうすると、筐体2の第2連結部14の排気孔10付近では、回転体4側から空気が流れ込んでくることによって圧力が上がり、第2連結部14付近で筐体2の外面側と内面側とで圧力差が発生する。すなわち、回転体4の回転によって、筐体2の排気孔10付近の内面側では、筐体2の外面における気圧に対して、正圧になる。 On the other hand, due to centrifugal force, the air flowing in the ventilation path 21 in the direction away from the rotation axis of the rotating body 4 passes between the motor rotor 7 and the motor stator 6 or between the adjacent motor stators 6 and moves toward the housing 2 side. flow to Then, in the vicinity of the exhaust hole 10 of the second connecting portion 14 of the housing 2, air flows in from the side of the rotating body 4, and the pressure rises. A pressure difference occurs between That is, due to the rotation of the rotating body 4 , the pressure on the inner surface of the housing 2 near the exhaust hole 10 becomes positive with respect to the air pressure on the outer surface of the housing 2 .
 そして、吸気孔9付近の内面側では外気に対して負圧になることで、吸気孔9からは外面側から空気が吸い込まれる。一方、排気孔10付近の内面側では外気に対して正圧になることで、筐体2の内面側の空気が外面側に排気される。このように、本実施形態では、回転体4の回転に伴って、吸気孔9付近の内面では外気が負圧に、排気孔10付近の内面では外気より正圧になるように圧力分布が形成されるため、回転体4が回転している間は、巻上機100内部に常に冷却風を流すことができる。 Then, the air is sucked from the outer surface side through the air intake hole 9 because the inner surface side near the air intake hole 9 has a negative pressure with respect to the outside air. On the other hand, the air on the inner surface side of the housing 2 is exhausted to the outer surface side because the inner surface side near the exhaust hole 10 has a positive pressure with respect to the outside air. Thus, in this embodiment, as the rotating body 4 rotates, the pressure distribution is formed such that the inner surface near the intake hole 9 has a negative pressure and the inner surface near the exhaust hole 10 has a more positive pressure than the outside air. Therefore, cooling air can always flow inside the hoisting machine 100 while the rotating body 4 is rotating.
 回転体4の回転に伴って起こる吸気孔9付近及び排気孔10付近における圧力分布は、回転体4の回転方向に依存しない。すなわち、回転体4の回転方向が異なっていても同様に圧力分布が起こる。これにより、本実施形態の巻上機100では、回転体4の回転方向によらずに安定した冷却風を巻上機100内部に流すことができる。 The pressure distribution near the intake hole 9 and the exhaust hole 10 caused by the rotation of the rotor 4 does not depend on the direction of rotation of the rotor 4 . That is, even if the rotation direction of the rotating body 4 is different, the same pressure distribution occurs. Thus, in the hoisting machine 100 of the present embodiment, stable cooling air can flow inside the hoisting machine 100 regardless of the rotation direction of the rotating body 4 .
 さらに、本実施形態では、回転体4の裏面側にはリブ20が形成されている。したがって、回転体4の内面側における空気は、リブ20の放射方向に沿って流れるため、回転体4の内面側において空気も放射状に流れる。そして、本実施形態では、複数のリブ20を軸対称に設けておくことにより、空気の軸対称に設けられた通気路21に沿って放射状に流れるため、空気の流れを安定させることができる。 Furthermore, in this embodiment, ribs 20 are formed on the back side of the rotating body 4 . Therefore, since the air on the inner surface side of the rotating body 4 flows along the radial direction of the ribs 20 , the air also flows radially on the inner surface side of the rotating body 4 . In this embodiment, by providing a plurality of ribs 20 axially symmetrically, the air flows radially along the axially symmetrical ventilation paths 21, so that the air flow can be stabilized.
 本実施形態では、吸気孔9の大きさや、配置される数、排気孔10の大きさや、配置される数等は、巻上機100の内外における圧力分布が、上述した圧力分布になるように設計されればよく、種々の形態を採ることができる。すなわち、回転体4の回転に伴って、吸気孔9付近の内面では外気が負圧に、排気孔10付近の内面では外気より正圧になるように圧力分布が形成されるような構成であればよい。 In the present embodiment, the size and number of air intake holes 9, the size and number of air discharge holes 10 are determined so that the pressure distribution inside and outside the hoisting machine 100 becomes the pressure distribution described above. As long as it is designed, it can take various forms. That is, with the rotation of the rotating body 4, the pressure distribution is formed so that the inner surface near the intake hole 9 becomes negative pressure and the inner surface near the exhaust hole 10 becomes more positive than the outer air. Just do it.
 また、本実施形態では、排気孔10は、隣り合うモータ固定子6間の隙間に対向する位置に設けられている。これにより、モータ固定子6間から流れてくる空気を外側に排気することができ、効率よく、モータ固定子6を冷却することができる。 Also, in this embodiment, the exhaust holes 10 are provided at positions facing the gaps between the adjacent motor stators 6 . As a result, the air flowing between the motor stators 6 can be exhausted to the outside, and the motor stators 6 can be efficiently cooled.
 本実施形態では、リブ20を軸対称に設ける例としたが、これに限られるものではない。リブ20が軸対称に設けられていなくても、第3連結部17の内面側において、主軸3の中心軸側から半径外方向に向けて流れる空気を誘導できる形状であればよい。本実施形態のように、リブ20を軸対称に設けることにより、第3連結部17の内面側で空気が均等に放射方向に流れるため、空気を効率よく流すことができる。 In this embodiment, the ribs 20 are provided axially symmetrically, but this is not the only option. Even if the ribs 20 are not axially symmetrical, they may have a shape that can guide the air flowing radially outward from the central axis side of the main shaft 3 on the inner surface side of the third connecting portion 17 . By providing the ribs 20 axially symmetrically as in the present embodiment, the air flows evenly in the radial direction on the inner surface side of the third connecting portion 17, so that the air can flow efficiently.
 以上のように、本実施形態では、回転体4の内面側に放射状のリブ20を設けることで、回転体4の回転に伴い半径外方向に流れようとする空気の流れを放射状にすることができる。さらに、回転体4の回転軸に近い位置に吸気孔9を設け、筐体2のモータ固定子6間の隙間に対向する位置に排気孔10を設け、吸気孔9の孔列の径R1を、排気孔10の孔列の径R2よりも小さくすることで、差圧が生じた巻上機200内部に空気の流れを作ることができる。そして、回転体4の回転に伴って発生する巻上機200内の差圧を利用して冷却風を流すことができる。 As described above, in this embodiment, by providing the radial ribs 20 on the inner surface side of the rotating body 4, it is possible to make the air flow radially outward as the rotating body 4 rotates. can. Furthermore, an air intake hole 9 is provided at a position near the rotation axis of the rotating body 4, an exhaust hole 10 is provided at a position facing the gap between the motor stators 6 of the housing 2, and the diameter R1 of the row of the air intake holes 9 is set to , the diameter R2 of the hole row of the exhaust holes 10 can be made smaller to create an air flow inside the hoisting machine 200 where the differential pressure is generated. Then, the differential pressure in the hoisting machine 200 generated with the rotation of the rotating body 4 can be used to flow the cooling air.
 本実施形態では、吸気孔9を第3連結部17に設ける例としたが、吸気孔9が形成される位置は、主軸3の中心軸から吸気孔9までの距離R1が、主軸3の中心軸から排気孔10までの距離R2よりも小さい位置であれば、これに限られるものではない。以下では、第2の実施形態として、吸気孔9の位置を第1の実施形態とは異なる位置に配置した例について説明する。 In this embodiment, the air intake hole 9 is provided in the third connecting portion 17, but the position where the air intake hole 9 is formed is the distance R1 from the central axis of the main shaft 3 to the air intake hole 9. If the position is smaller than the distance R2 from the shaft to the exhaust hole 10, it is not limited to this. In the following, as a second embodiment, an example in which the position of the intake holes 9 is arranged at a position different from that of the first embodiment will be described.
2.第2の実施形態
 図4は、本発明の第2の実施形態に係る巻上機200の回転面に直交する方向に沿う断面構成図である。また、図5は、図4の巻上機200のB-B線上に沿う断面を矢印方向から見た断面構成図である。なお、図5では、吸気孔30の位置をわかりやすくするため、図3とは異なる位置における断面図を示している。本実施形態における巻上機200も、第1の実施形態と同様、図1に示すエレベーター1に適用可能なものである。また、図4及び図5において、図2及び図3に対応する部分には同一符号を付し、重複説明を省略する。
2. 2nd Embodiment FIG. 4 : is a cross-sectional block diagram along the direction orthogonal to the rotating surface of the winding machine 200 which concerns on the 2nd Embodiment of this invention. FIG. 5 is a cross-sectional configuration diagram of the hoist 200 of FIG. 4, taken along the line BB, viewed in the direction of the arrow. 5 shows a cross-sectional view at a position different from that in FIG. 3 in order to make the position of the intake hole 30 easier to understand. The hoisting machine 200 in this embodiment is also applicable to the elevator 1 shown in FIG. 1, like the first embodiment. In addition, in FIGS. 4 and 5, parts corresponding to those in FIGS. 2 and 3 are denoted by the same reference numerals, and repeated explanations are omitted.
 吸気孔30は、図4に示すように、回転体4のボス部16に設けられ、主軸3の回転軸を中心とした所定の半径R3を有する円の円周上に複数個配置されている。吸気孔30は、長孔部30aと、横孔部30bとで構成されている。長孔部30aは、ボス部16において、回転体4の外面側から内面側にかけて、主軸3の回転軸に平行に形成されたている。横孔部30bは、ボス部16の側周面側から主軸3の回転軸に直交する方向に設けられ、長孔部30aと通気路21とを連通する。本実施形態では、吸気孔30から吸い込まれる空気は、長孔部30a及び横孔部30bを通って通気路21に流入する。 As shown in FIG. 4, the air intake holes 30 are provided in the boss portion 16 of the rotating body 4, and are arranged in plurality on the circumference of a circle having a predetermined radius R3 centered on the rotation axis of the main shaft 3. . The intake hole 30 is composed of a long hole portion 30a and a horizontal hole portion 30b. The long hole portion 30 a is formed in the boss portion 16 in parallel with the rotation axis of the main shaft 3 from the outer surface side to the inner surface side of the rotor 4 . The horizontal hole portion 30b is provided in a direction orthogonal to the rotation axis of the main shaft 3 from the side peripheral surface side of the boss portion 16, and communicates the long hole portion 30a and the air passage 21 with each other. In this embodiment, the air sucked from the intake hole 30 flows into the air passage 21 through the long hole portion 30a and the horizontal hole portion 30b.
 本実施形態においても、第1の実施形態と同様、回転体4の裏面側において、リブ20とボス部16とで囲まれる領域が通気路21となる。そして、吸気孔30から吸い込まれる空気は、ボス部16に設けられた横孔部30bから通気路21内に流入する。 Also in this embodiment, as in the first embodiment, the area surrounded by the ribs 20 and the boss portions 16 on the back side of the rotating body 4 serves as the air passage 21 . The air sucked from the air intake hole 30 flows into the air passage 21 from the horizontal hole portion 30 b provided in the boss portion 16 .
 本実施形態においても、第1の実施形態と同様、回転体4の回転によって生じた遠心力により、回転体4の内面側では、主軸3の回転軸に近い側の空気が半径外方向に流れる。これにより、通気路21のボス部16付近の空気が回転体4の半径外方向に流れるため、吸気孔30付近が外気に比較して負圧になる。このため、さらに吸気孔30から空気が吸い込まれ、通気路21を介して排気孔10側に流れる。これにより、本実施形態においても、回転体4の回転に伴って、巻上機200内部に冷却風を流すことができる。 Also in this embodiment, as in the first embodiment, the centrifugal force generated by the rotation of the rotor 4 causes the air on the side closer to the rotation axis of the main shaft 3 to flow radially outward on the inner surface side of the rotor 4. . As a result, the air near the boss portion 16 of the ventilation passage 21 flows radially outward of the rotating body 4, so that the pressure near the intake hole 30 becomes negative compared to the outside air. Therefore, air is further sucked from the intake hole 30 and flows to the exhaust hole 10 side through the ventilation path 21 . Thus, in the present embodiment as well, the cooling air can flow inside the hoisting machine 200 as the rotating body 4 rotates.
 以上、本発明では、流体形状を有する送風翼を用いて冷却風を送り出す従来の構成と異なり、エレベーターの乗りかごの昇降方向によらずに同じ向きの冷却風を巻上機内部に送ることができるため、冷却効率の安定化を図ることができる。 As described above, in the present invention, cooling air can be sent to the inside of the hoisting machine in the same direction regardless of the ascending/descending direction of the elevator car, unlike the conventional configuration in which the cooling air is sent out using the blower blades having a fluid shape. Therefore, the cooling efficiency can be stabilized.
 上述した実施形態では、機械室を設けたエレベーターに設けられる巻上機について説明したが、本発明の巻上機は、機械室レスのエレベーター等にも適用可能である。また、上述した実施形態では、アウターロータ型の巻上機を例に説明したが、インナーロータ型の巻上機にも本発明を適用可能である。 In the above-described embodiment, the hoisting machine provided in the elevator provided with the machine room has been described, but the hoisting machine of the present invention can also be applied to an elevator without a machine room. Further, in the above-described embodiment, the outer rotor type hoisting machine was described as an example, but the present invention can also be applied to an inner rotor type hoisting machine.
 また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、実施形態の構成の一部を他の構成に置き換えることが可能であり、また、実施形態の構成について他の構成を加えることも可能である。また、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, the above-described embodiments have been described in detail for easy-to-understand description of the present invention, and are not necessarily limited to those having all the described configurations. For example, it is possible to replace part of the configuration of the embodiment with another configuration, or to add another configuration to the configuration of the embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of the embodiment with another configuration.
 1…エレベーター、2…筐体、3…主軸、4…回転体、5…綱車、6…モータ固定子、7…モータ回転子、8…支持台、9、30…吸気孔、10…排気孔、11…ハウジング、12…第1連結部、13…固定子取付部、14…第2連結部、15…外壁部、16…ボス部、17…第3連結部、18…回転子取付部、19…鍔部、20…リブ、21…通気路、30a…長孔部、30b…横孔部、100…巻上機、110…昇降路、130…主ロープ、140…釣合錘、150…そらせ車、160…機械室 DESCRIPTION OF SYMBOLS 1... Elevator, 2... Case, 3... Main shaft, 4... Rotating body, 5... Sheave, 6... Motor stator, 7... Motor rotor, 8... Support base, 9, 30... Intake hole, 10... Exhaust Hole 11 Housing 12 First connecting portion 13 Stator mounting portion 14 Second connecting portion 15 Outer wall portion 16 Boss portion 17 Third connecting portion 18 Rotor mounting portion , 19... Collar part 20... Rib 21... Air passage 30a... Long hole part 30b... Horizontal hole part 100... Hoisting machine 110... Hoistway 130... Main rope 140... Balance weight 150 … deflector, 160 … machine room

Claims (7)

  1.  固定子が設けられた筐体と、
     前記筐体に支持された主軸と、
     前記主軸に支持され、前記固定子に対向する位置に配置された回転子を有し、前記固定子と前記回転子によって前記筐体に対して回転する回転体と、
     前記回転体の、前記主軸の軸方向における前記筐体側の面である内面とは反対側の外面に設けられた綱車と、
     前記回転体の前記内面において、前記筐体側に突出して設けられた凸状のリブであって、前記主軸の中心軸に対して放射状に延在して設けられたリブと、を備え、
     前記筐体には、前記固定子が設けられる側から反対側に空気を排気する排気孔が設けられ、
     前記回転体には、前記主軸の中心軸からの距離が、前記主軸の中心軸から前記排気孔までの距離よりも小さい位置に、前記回転体の前記外面側から前記内面側に空気を吸入する吸気孔が設けられている
     巻上機。
    a housing provided with a stator;
    a spindle supported by the housing;
    a rotating body supported by the main shaft and having a rotor arranged at a position facing the stator, and rotated with respect to the housing by the stator and the rotor;
    a sheave provided on the outer surface of the rotating body opposite to the inner surface, which is the surface on the housing side in the axial direction of the main shaft;
    a convex rib protruding toward the housing on the inner surface of the rotating body, the rib extending radially with respect to the central axis of the main shaft;
    The housing is provided with an exhaust hole for exhausting air from the side where the stator is provided to the opposite side,
    Air is sucked into the rotating body from the outer surface side to the inner surface side of the rotating body at a position where the distance from the central axis of the main shaft is smaller than the distance from the central axis of the main shaft to the exhaust hole. A hoist provided with air intake holes.
  2.  前記排気孔は、前記主軸の中心軸に対する円周方向に所定の間隔を空けて複数個設けられている
     請求項1に記載の巻上機。
    The hoisting machine according to claim 1, wherein a plurality of the exhaust holes are provided at predetermined intervals in a circumferential direction with respect to the central axis of the main shaft.
  3.  前記吸気孔は、前記主軸の中心軸に対する円周方向に所定の間隔を空けて複数個設けられている
     請求項1に記載の巻上機。
    The hoisting machine according to claim 1, wherein a plurality of said intake holes are provided at predetermined intervals in a circumferential direction with respect to the central axis of said main shaft.
  4.  前記リブは、前記主軸の中心軸に対して軸対称となるように複数本設けられており、
     前記吸気孔は、隣り合って配置される前記リブの間に設けられている
     請求項3に記載の巻上機。
    A plurality of the ribs are provided so as to be axially symmetrical with respect to the central axis of the main shaft,
    The hoisting machine according to claim 3, wherein the intake holes are provided between the ribs arranged adjacent to each other.
  5.  前記固定子は、前記主軸の中心軸に対して円周方向に所定の間隔を空けて複数個設けられており、
     前記排気孔は、隣り合って配置される前記固定子間の隙間に対向する位置に設けられている
     請求項2に記載の巻上機。
    A plurality of the stators are provided at predetermined intervals in a circumferential direction with respect to the central axis of the main shaft,
    The hoisting machine according to claim 2, wherein the exhaust hole is provided at a position facing the gap between the adjacent stators.
  6.  前記リブは、前記主軸の中心軸に対して軸対称となるように複数本設けられており、
     前記吸気孔は、隣り合って配置される前記リブの間に設けられると共に、前記主軸の中心軸に対する円周方向に沿って複数個設けられており、
     前記固定子は、前記主軸の中心軸に対して円周方向に所定の間隔を空けて複数個設けられており、
     前記排気孔は、隣り合って配置される前記固定子間の隙間に対向する位置に設けられると共に、前記主軸の中心軸に対する円周方向に沿って複数個設けられている
     請求項1に記載の巻上機。
    A plurality of the ribs are provided so as to be axially symmetrical with respect to the central axis of the main shaft,
    The air intake holes are provided between the ribs arranged adjacent to each other and are provided in plurality along a circumferential direction with respect to the central axis of the main shaft,
    A plurality of the stators are provided at predetermined intervals in a circumferential direction with respect to the central axis of the main shaft,
    2. The exhaust hole according to claim 1, wherein the exhaust holes are provided at positions facing the gaps between the adjacent stators, and are provided in plurality along the circumferential direction with respect to the central axis of the main shaft. hoisting machine.
  7.  昇降路内を昇降する乗りかごと、
     前記乗りかごと主ロープを介して連結される釣合錘と、
     前記主ロープを巻き掛けることにより、前記乗りかごを昇降させる巻上機とを備え、
     前記巻上機は、
     固定子が設けられた筐体と、
     前記筐体に支持された主軸と、
     前記主軸に支持され、前記固定子に対向する位置に配置された回転子を有し、前記固定子と前記回転子によって前記筐体に対して回転する回転体と、
     前記回転体の、前記主軸の軸方向における前記筐体側の面である内面とは反対側の外面に設けられた綱車と、
     前記回転体の前記内面において、前記筐体側に突出して設けられた凸状のリブであって、前記主軸の中心軸に対して放射状に延在して設けられたリブと、を備え、
     前記筐体には、前記固定子が設けられる側から反対側に空気を排気する排気孔が設けられ、
     前記回転体には、前記主軸の中心軸からの距離が、前記主軸の中心軸から前記排気孔までの距離よりも小さい位置に、前記回転体の前記外面側から前記内面側に空気を吸入する吸気孔が設けられている
     エレベーター。
    A car that ascends and descends in the hoistway,
    a counterweight connected to the car via a main rope;
    a hoisting machine that raises and lowers the car by winding the main rope,
    The hoist is
    a housing provided with a stator;
    a spindle supported by the housing;
    a rotating body supported by the main shaft and having a rotor arranged at a position facing the stator, and rotated with respect to the housing by the stator and the rotor;
    a sheave provided on the outer surface of the rotating body opposite to the inner surface, which is the surface on the housing side in the axial direction of the main shaft;
    a convex rib protruding toward the housing on the inner surface of the rotating body, the rib extending radially with respect to the central axis of the main shaft;
    The housing is provided with an exhaust hole for exhausting air from the side where the stator is provided to the opposite side,
    Air is sucked into the rotating body from the outer surface side to the inner surface side of the rotating body at a position where the distance from the central axis of the main shaft is smaller than the distance from the central axis of the main shaft to the exhaust hole. Elevator with ventilation holes.
PCT/JP2021/004543 2021-02-08 2021-02-08 Hoisting machine and elevator WO2022168298A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180092584.8A CN116963987A (en) 2021-02-08 2021-02-08 Hoist and elevator
PCT/JP2021/004543 WO2022168298A1 (en) 2021-02-08 2021-02-08 Hoisting machine and elevator
JP2022579289A JPWO2022168298A1 (en) 2021-02-08 2021-02-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/004543 WO2022168298A1 (en) 2021-02-08 2021-02-08 Hoisting machine and elevator

Publications (1)

Publication Number Publication Date
WO2022168298A1 true WO2022168298A1 (en) 2022-08-11

Family

ID=82742106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004543 WO2022168298A1 (en) 2021-02-08 2021-02-08 Hoisting machine and elevator

Country Status (3)

Country Link
JP (1) JPWO2022168298A1 (en)
CN (1) CN116963987A (en)
WO (1) WO2022168298A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258210A (en) * 2000-03-13 2001-09-21 Mitsubishi Electric Corp Gearless hoist for elevator
JP2006081305A (en) * 2004-09-09 2006-03-23 Mitsubishi Electric Corp Toroidally wound motor for elevator
JP2007330076A (en) * 2006-06-09 2007-12-20 Max Co Ltd Brushless motor
JP2013009461A (en) * 2011-06-22 2013-01-10 Hitachi Ltd Hoist for elevator device
JP2015229587A (en) * 2014-06-06 2015-12-21 三菱電機株式会社 Hoisting machine for elevator
JP2016105668A (en) * 2014-12-01 2016-06-09 株式会社日立製作所 Motor and hoist for elevator device
WO2020053968A1 (en) * 2018-09-11 2020-03-19 三菱電機株式会社 Elevator hoisting machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258210A (en) * 2000-03-13 2001-09-21 Mitsubishi Electric Corp Gearless hoist for elevator
JP2006081305A (en) * 2004-09-09 2006-03-23 Mitsubishi Electric Corp Toroidally wound motor for elevator
JP2007330076A (en) * 2006-06-09 2007-12-20 Max Co Ltd Brushless motor
JP2013009461A (en) * 2011-06-22 2013-01-10 Hitachi Ltd Hoist for elevator device
JP2015229587A (en) * 2014-06-06 2015-12-21 三菱電機株式会社 Hoisting machine for elevator
JP2016105668A (en) * 2014-12-01 2016-06-09 株式会社日立製作所 Motor and hoist for elevator device
WO2020053968A1 (en) * 2018-09-11 2020-03-19 三菱電機株式会社 Elevator hoisting machine

Also Published As

Publication number Publication date
CN116963987A (en) 2023-10-27
JPWO2022168298A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
JP5627681B2 (en) Elevator machine with outer rotor and motor in traction sheave
WO2016174790A1 (en) Centrifugal blower and cleaner
JP6480832B2 (en) Rotating electric machine and elevator hoisting machine and elevator using the same
JP4369192B2 (en) Elevator hoisting machine
JP2016105668A (en) Motor and hoist for elevator device
WO2004108579A1 (en) Hoist and motor for elevator
US7227286B2 (en) Long life fan motor
US20100143164A1 (en) Fan motor structure
US20190219062A1 (en) Air blower and cleaner
US10113551B2 (en) Axial flow fan
EP3760878B1 (en) Electric blower, electric vacuum cleaner and hand dryer
JP2019157656A (en) Centrifugal fan
JPWO2006137141A1 (en) Blower
SG186575A1 (en) Traction machine for elevator
WO2022168298A1 (en) Hoisting machine and elevator
JP6038315B2 (en) Elevator hoisting machine
JP2005162448A (en) Hoisting machine for elevator
JP2012107561A (en) Fan
JP6841711B2 (en) Abduction type rotary electric machine and elevator hoisting machine using this
JP2016106197A (en) Centrifugal fan
JP2011201671A (en) Low-profile hoisting machine for elevator, and elevator device
WO2023175882A1 (en) Hoist and elevator
KR102154048B1 (en) Motor with integrated impeller and bell mouth
JP4849002B2 (en) Blower
WO2023013439A1 (en) Hoisting machine and elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579289

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092584.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924690

Country of ref document: EP

Kind code of ref document: A1