WO2022209762A1 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
WO2022209762A1
WO2022209762A1 PCT/JP2022/010907 JP2022010907W WO2022209762A1 WO 2022209762 A1 WO2022209762 A1 WO 2022209762A1 JP 2022010907 W JP2022010907 W JP 2022010907W WO 2022209762 A1 WO2022209762 A1 WO 2022209762A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
electric motor
resin
circuit board
outer shell
Prior art date
Application number
PCT/JP2022/010907
Other languages
French (fr)
Japanese (ja)
Inventor
パーオブトン パッタラワディー
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to CN202280023589.XA priority Critical patent/CN117044086A/en
Publication of WO2022209762A1 publication Critical patent/WO2022209762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating

Definitions

  • the present invention relates to an electric motor, and more particularly to a heat dissipation structure for a circuit board built into the electric motor.
  • Electric motors having heat sinks are also known in which the circuit board includes electronic components that generate heat when energized, and the heat generated by the electronic components is dissipated to the outside of the motor.
  • Patent Document 1 a resin for molding a stator core (hereinafter referred to as a resin shell) and a bearing on the non-output side of the motor are supported and attached to the end of the resin shell on the non-output side of the motor.
  • a metal bracket a radiation fin (heat sink) fixed to an end of the resin shell via the metal bracket and including projections that can be inserted into holes provided on the outer surface of the metal bracket;
  • a brushless motor is provided with a circuit board disposed inside, and a structure is described in which the protrusions are brought into contact with electronic components on the circuit board via thermally conductive resin.
  • heat radiation fins as heat sinks are fixed to the ends of the resin shell via metal brackets.
  • motors with heat sinks are subject to dimensional variations and assembly variations.
  • Dimensional variations are variations in the dimensions of each part itself.
  • Assembly variations are variations in the relative positions of the parts (the position of one part when the position of the other part is used as a reference) that occurs when the parts are assembled.
  • the heat sink is formed by casting (die casting)
  • the dimensional accuracy of the heat sink itself tends to be low, and dimensional variations tend to increase.
  • an object of the present invention is to provide an electric motor that can stably dissipate heat generated in a circuit board.
  • An electric motor includes: a cylindrical resin shell having an open end on one end in an axial direction; a stator core integrally formed with the resin shell; and an inner diameter side of the stator core. a rotor arranged in the inner space, a heat sink covering the open end of the resin shell, and a circuit board arranged in an internal space covered with the resin shell and the heat sink.
  • the heat sink includes a disk portion, an annular protrusion projecting from the disk portion toward the circuit board in the axial direction, and an inner diameter side of the resin outer shell relative to the annular protrusion. a projecting portion projecting from the terminal toward the circuit board side and in thermal contact with the circuit board.
  • the disc portion has an axial positioning portion that contacts the open end of the resin shell, and the annular protrusion has a radial positioning portion that contacts the inner or outer peripheral surface of the resin shell. .
  • the axial positioning portion abuts the opening end portion of the resin outer shell, and the radial positioning portion abuts the inner peripheral surface or the outer peripheral surface of the resin outer shell, whereby the heat sink is provided. Positional accuracy in the axial direction and the radial direction between the protrusion and the circuit board is ensured. Thereby, the heat generated in the circuit board can be stably dissipated through the heat sink.
  • the radial positioning portion may be formed on the outer peripheral surface of the annular projecting portion and may abut on the inner peripheral surface of the resin outer shell.
  • the axial positioning portion may be located on the outer peripheral side of the annular protrusion of the disk portion.
  • the protrusion height in the axial direction of the protrusion may be greater than the protrusion height of the annular protrusion.
  • the circuit board may include a wiring board and an electronic component mounted on the wiring board that generates heat when energized, and the protrusion may have a facing surface facing the electronic component.
  • the cylindrical resin shell may have a mounting surface to which the circuit board is fixed.
  • the heat sink may further have a bearing accommodating portion that accommodates a first bearing that rotatably supports the rotating shaft.
  • a method of manufacturing an electric motor according to one embodiment of the present technology forms the heat sink by die casting.
  • the heat generated in the circuit board can be stably dissipated.
  • FIG. 1 is a cross-sectional view of an electric motor according to a first embodiment of the present invention
  • FIG. 4 is a perspective view of a resin outer shell in the electric motor
  • FIG. It is a perspective view of the heat sink in the said electric motor
  • FIG. 4A is a cross-sectional view showing a process for processing a heat sink in the electric motor, wherein (A) is a cross-sectional view showing a process for processing a radial positioning portion, and (B) is a process for processing an axial positioning portion and a facing surface; It is a sectional view.
  • FIG. 7 is a cross-sectional view of a main part of an electric motor according to a second embodiment of the invention.
  • FIG. 1 is a cross-sectional view of an electric motor 1 according to the first embodiment.
  • the electric motor 1 of the present embodiment is used, for example, as a rotational drive source for a blower fan mounted in an indoor unit of an air conditioner.
  • the electric motor 1 includes a stator core 21 , a rotor 3 , a resin shell 10 , a first bearing 71 , a second bearing 81 , a heat sink 4 and a circuit board 5 .
  • the stator core 21 is integrally formed with the resin outer shell 10 .
  • the rotor 3 is fixed to the rotating shaft 6 and arranged on the inner diameter side of the stator core 21 .
  • the resin shell 10 has a cylindrical shape having an open end 101 at one end in a direction parallel to the axis C of the rotating shaft 6 (hereinafter also referred to as an axial direction).
  • the heat sink 4 is arranged to cover the open end 101 of the resin shell 10 .
  • the circuit board 5 is arranged in an internal space covered with the resin shell 10 and the heat sink 4 .
  • an inner rotor type brushless DC motor in which a cylindrical rotor 3 having a permanent magnet portion 31 is rotatably disposed radially inside a cylindrical stator 2 that generates a rotating magnetic field will be described.
  • a motor 1 will be described.
  • the electric motor 1 is of course not limited to this, and may be, for example, an outer rotor type brushless DC motor, an AC motor, or another electric motor.
  • the axis C of the rotating shaft 6 is also the central axis of the electric motor 1, that is, the rotating shaft of the rotor 3.
  • the radial direction is a direction passing through the axis C and orthogonal to the axial direction.
  • the inner diameter side is the inner side in the radial direction, and the outer diameter side is the outer side in the radial direction.
  • the circumferential direction is the direction of rotation about the axis C. As shown in FIG.
  • the rotor 3 has an annular permanent magnet portion 31 and a rotor main body 30 .
  • the rotor main body 30 has an outer peripheral surface and an inner peripheral surface.
  • a permanent magnet portion 31 is fixed to the outer peripheral surface of the rotor main body 30 .
  • a rotary shaft 6 is fixed to the inner peripheral surface of the rotor main body. As a result, the rotating shaft 6 rotates integrally with the rotor main body 30 .
  • the rotor 3 is a surface magnet type in which a permanent magnet portion 31 is annularly fixed to the outer peripheral surface.
  • the permanent magnet portion 31 is annularly formed of a plurality of (e.g., 8 or 10) permanent magnets so that N poles and S poles appear alternately at equal intervals in the circumferential direction.
  • the permanent magnet portion 31 is typically made of a sintered metal such as an Nd--Fe--B alloy. A plastic magnet may also be used.
  • the rotor body 30 has an outer core 32, an insulating member 33, and an inner core .
  • the outer core 32 is annular and forms the outer peripheral surface of the rotor main body 30 .
  • the outer core 32 is a laminate of plates made of a soft magnetic material such as a plurality of electromagnetic steel plates.
  • the inner peripheral iron core 34 is formed in an annular shape and forms the inner peripheral surface of the rotor main body 30 .
  • the inner peripheral core 34 is a laminate of plates made of a soft magnetic material such as a plurality of electromagnetic steel plates.
  • the rotating shaft 6 is fixed to the center of the inner peripheral iron core 34 by press fitting or caulking.
  • the insulating member 33 electrically insulates between the outer core 32 and the inner core 34 .
  • the insulating member 33 is made of dielectric resin such as PBT (polybutylene terephthalate) or PET (polyethylene terephthalate), and is fixed between the outer core 32 and the inner core 34 .
  • the insulating member 33 may be an annular molded body, or may be a resin material filled between the outer core 32 and the inner core 34 by insert molding or the like.
  • the stator 2 includes a stator core 21 having a cylindrical yoke portion and a plurality of teeth extending radially from the yoke, and windings (coils) 22 wound around the teeth.
  • the stator core 21 is, for example, a laminate of plates made of a soft magnetic material such as a plurality of electromagnetic steel plates.
  • the outer peripheral surface of the stator 2 (stator core 21) is covered with a resin shell 10 (see FIG. 1).
  • the stator 2 is arranged such that the permanent magnet portion 31 of the rotor 3 faces the stator core 21 of the stator 2 in the radial direction via an air gap (magnetic gap).
  • the resin shell 10 is made of an insulating resin material.
  • FIG. 2 is a perspective view of the resin shell 10 in the electric motor 1, and as shown in FIG. It is formed in a hollow cylindrical shape with
  • the counter-output end portion 61 is the end portion of the rotary shaft 6 opposite to the output end portion 62 .
  • the output end portion 62 is the end portion of the electric motor 1 on the load side (the side connected to the load).
  • the resin shell 10 is integrally molded with the stator 2 .
  • the resin material forming the resin shell 10 is not particularly limited, and is formed of, for example, BMC (Bulk Molding Compound: unsaturated polyester resin) resin.
  • the resin shell 10 has a mounting surface 9 .
  • the mounting surface 9 is formed on the side of the inner peripheral surface 10a of the resin outer shell 10, is an inner peripheral plane perpendicular to the axial direction, and is axially opposite to the rotor 3 with a gap therebetween. It is provided on the end portion 61 side.
  • the mounting surface 9 supports the circuit board 5 which will be described later.
  • the mounting surface 9 is the surface of the counter-output end portion 61 side of the step provided so as to protrude from the inner peripheral surface 10a of the resin outer shell 10 toward the inner diameter side.
  • the mounting surface 9 may be formed continuously in the circumferential direction of the inner peripheral surface 10a of the resin outer shell 10, or may be formed at a plurality of locations at intervals in the circumferential direction.
  • the resin outer shell 10 further has a second bearing accommodating portion 82 that accommodates a second bearing 81, which will be described later.
  • the general shape of the second bearing accommodating portion 82 is a cylindrical shape centered on the axis C and one end side of which is closed.
  • the second bearing accommodating portion 82 is provided on the bottom portion 102 of the resin outer shell 10 on the side opposite to the open end portion 101 .
  • the circuit board 5 includes a wiring board 50 and an electronic component 51 mounted on the surface of the wiring board 50 (the surface on the side opposite to the output end 61 of the rotary shaft 6) and generating heat when energized.
  • the circuit board 5 is generally disc-shaped, and the periphery of the circuit board 5 is supported by the mounting surface 9 and fixed by, for example, adhesion, adhesion, screw fastening, soldering, or the like.
  • a positioning protrusion may be provided on the peripheral edge of the circuit board 5, and a positioning recess may be provided on the inner peripheral surface 10a of the resin shell 10 to engage with the protrusion. It can be fixed to the mounting surface 9 while being positioned in the circumferential direction.
  • the electronic components 51 that generate heat when energized are mainly semiconductor package components such as power supply ICs and motor drive current control ICs, but may also include passive components such as capacitors.
  • the wiring board 50 is mounted with other components such as a connector component to be connected to a power cable, but illustration of these components is omitted.
  • the power cable is connected to a power source (not shown) through a cable insertion portion 105 formed in the vicinity of the open end portion 101 of the resin shell 10 over a predetermined angular range in the circumferential direction.
  • the mounting surface 9 is provided with a plurality of (two in this example) positioning pins 9c penetrating the circuit board 5 .
  • the inner peripheral surface 10a of the resin outer shell 10 may be partially provided with a positioning recess 104 for accommodating the circuit board 5. This also allows the circuit board 5 to be positioned on the mounting surface 9 in a state of being positioned in the circumferential direction. can be fixed to 2 is formed to be electrically connected to the circuit board 5, and the circuit board 5 is positioned on the mounting surface 9 by a plurality of positioning pins 9c. At the same time, it is fixed on the mounting surface 9 by soldering the circuit board 5 and the end portion 221 of the coil.
  • the first bearing 71 is a ball bearing having an outer ring 711, an inner ring 712, a plurality of balls 713, and the like.
  • the second bearing 81 is a ball bearing having an outer ring 811, an inner ring 812, balls 813, and the like.
  • the outer ring 711 of the first bearing 71 is fixed to the heat sink 4 (first bearing housing portion 41), and the inner ring 712 of the first bearing 71 is fixed to the counter-output end portion 61 side of the rotary shaft 6.
  • the outer ring 813 of the second bearing 81 is fixed to the resin outer shell 10 (second bearing accommodating portion 82 ), and the inner ring 812 of the second bearing 81 is fixed to the output end portion 62 of the rotary shaft 6 .
  • the rotating shaft 6 is rotatably supported around the axis C with respect to the heat sink 4 and the resin shell 10 by the first bearing 71 and the second bearing 81 .
  • the heat sink 4 has a first bearing accommodating portion 41 , a disk portion 42 , an annular projecting portion 43 and a projecting portion 44 .
  • the heat sink 4 is attached and fixed to the open end 101 of the resin shell 10 .
  • the heat sink 4 is made of a metal material having excellent thermal conductivity, such as aluminum.
  • the heat sink 4 is integrally formed with a disk portion 42, an annular projecting portion 43, and a projecting portion 44, respectively.
  • the heat sink 4 is molded by die casting (casting), for example.
  • the heat sink 4 functions as a cover member (bracket) that closes the opening of the resin outer shell 10 by covering the opening end 101 of the resin outer shell 10, and a bearing housing part (bearing house) that supports the first bearing 71. and a function as a heat radiating member that radiates heat generated by the electronic components 51 inside the motor to the outside of the motor.
  • the heat sink 4 is fixed to the open end 101 of the resin outer shell 10 using a plurality of unillustrated screw members.
  • FIG. 3(A) is a perspective view of the inner side of the heat sink 4 (lower side in FIG. 1)
  • FIG. 3(B) is a perspective view of the outer side of the heat sink 4 (upper side in FIG. 1).
  • the disk portion 42 is an annular plate portion having a center hole 40 centered on the axis C.
  • the outer diameter of the disc portion 42 is the same or substantially the same size as the outer diameter of the open end portion 101 of the resin shell 10 .
  • the disk portion 42 has an upper surface 423 and a rear surface 424 on the opposite side.
  • the upper surface portion 423 of the disc portion 42 is formed with the first bearing accommodating portion 41 .
  • a rear surface 424 of the disk portion 42 is provided with the axial positioning portion 420 , the annular projection portion 43 and the projection portion 44 .
  • the annular projecting portion 43 is formed so as to project from the rear surface 424 side of the disk portion 42 toward the circuit board 5 side. Further, the annular projecting portion 43 has a radial positioning portion 430 that contacts the inner peripheral surface 10 a of the resin outer shell 10 .
  • the projecting portion 44 is arranged on the inner diameter side of the annular projecting portion 43, projects from the back surface 424 side of the disk portion 42 toward the circuit board 5 side, and thermally contacts the circuit board 5 (the electronic component 51 in this embodiment). come into contact with
  • the protrusion 44 is formed in a region between the first bearing accommodating portion 41 and the annular protrusion 43 in the radial direction. It is arranged and faces the electronic component 51 . The details of each unit will be described below.
  • the first bearing housing portion 41 houses the first bearing 71 .
  • the first bearing accommodating portion 41 has a cylindrical shape with one end side centered on the axis C and is closed, and accommodates the first bearing 71 .
  • the first bearing accommodating portion 41 is formed on the upper surface 423 side of the inner peripheral edge portion 401 of the center hole 40 of the disc portion 42 .
  • the disk portion 42 has an axial positioning portion 420 . As shown in FIG. 3A, the axial positioning portion 420 is formed on the rear surface 424 side of the outer peripheral edge portion 422 of the disc portion 42 . In this embodiment, the outer peripheral edge portion 422 is a region of the disk portion 42 on the outer diameter side of the annular projecting portion 43 .
  • the axial thickness of the disk portion 42 in the region on the inner diameter side of the outer peripheral edge portion 422 may be thinner than the axial thickness of the outer peripheral edge portion 422 .
  • the thickness of the disk portion 42 in the area on the inner diameter side of the outer peripheral edge portion 422 is made thinner than the outer peripheral edge portion 422, as shown in FIG. 425 may be provided.
  • a plurality of rib portions 425 are radially formed from the first bearing accommodating portion 41 toward the annular projecting portion 43 . By providing the plurality of rib portions 425, the strength of the heat sink 4 can be ensured.
  • the axial positioning portion 420 is formed on the rear surface 424 side of the outer peripheral edge portion 422 and contacts the open end portion 101 of the resin outer shell 10 . As shown in FIG. 1, the axial positioning portion 420 abuts the open end portion 101 in the direction of the axis C. As shown in FIG.
  • the axial positioning portion 420 may be processed into a flat surface by a lathe or the like after the heat sink 4 is formed by die casting or the like. In this embodiment, the axial positioning portion 420 is formed on a plane perpendicular to the axis C. As shown in FIG.
  • the axial positioning portion 420 is formed by a plane perpendicular to the axis C over the entire rear surface 424 side of the outer peripheral edge portion 422, but this is not the only option.
  • the axial positioning portion 420 of the heat sink 4 may have an annular projection projecting toward the open end 101, and the open end 101 of the resin shell 10 has an annular projection corresponding to the projection. It may have grooves.
  • a cross section of the protruding portion viewed from the radial direction may be trapezoidal or curved.
  • holes 421 through which screws are inserted are formed at a plurality of locations on the outer peripheral edge portion 422 of the disc portion 42 .
  • three holes 421 are provided at equal angular intervals on the outer peripheral edge 422 .
  • the number and positions of the holes 421 provided in the outer peripheral edge portion 422 can be changed as appropriate, and the outer peripheral edge portion 422 need not be provided with the hole portions 421 .
  • the opening end 101 of the resin shell 10 is formed with the screw receiving portion 103 shown in FIG.
  • the heat sink 4 is fixed to the open end 101 of the resin outer shell 10 with a plurality of screws inserted through the holes 421 . At this time, the heat sink 4 is positioned in the circumferential direction with respect to the open end portion 101 of the resin shell 10 .
  • the disc part 42 further has a notch part 426 formed over a predetermined angular range in a part of the outer peripheral edge part 422 thereof.
  • the notch portion 426 is provided at a position corresponding to the above-described cable insertion portion formed over the vicinity of the open end portion 101 of the resin outer shell 10 . Accordingly, the notch 426 can be used as a mark for positioning the heat sink 4 in the resin shell 10 in the circumferential direction when the heat sink 4 is assembled to the open end 101 of the resin shell 10 .
  • the annular projection 43 has a radial positioning portion 430 .
  • the radial positioning portion 430 is formed on the outer peripheral surface of the annular projecting portion 43 that contacts the inner peripheral surface of the open end portion 101 of the resin outer shell 10 . That is, as shown in FIGS. 1, 2, and 3A, the radial positioning portion 430 has a cylindrical surface that fits into the inner peripheral surface 10a of the resin outer shell 10. As shown in FIG.
  • the annular projecting portion 43 is formed in an annular shape around the axis C on the rear surface 424 of the disc portion 42 .
  • the cross section parallel to the axis C of the annular protrusion 43 is generally rectangular.
  • the annular projecting portion 43 is continuously formed in the circumferential direction without any discontinuities, but this is not the only option, and a discontinuous portion may be provided.
  • the projecting portion 44 is arranged on the inner diameter side of the annular projecting portion 43 and projects from the back surface 424 of the disk portion 42 toward the circuit board 5 side in the axial direction.
  • the protrusion 44 is a rectangular parallelepiped block that protrudes toward the electronic component 51 mounted on the circuit board 5 . Furthermore, the protrusion 44 has a facing surface 441 that faces the electronic component 51 .
  • the shape of the protrusion 44 is not limited to a rectangular parallelepiped shape, and may be, for example, a cylindrical shape.
  • the projection height of the projection 44 in the axial direction be greater than the projection height of the annular projection 43 .
  • the protruding height here is the height protruding in the axial direction with respect to the back surface 424 of the disc portion 42 .
  • the facing surface 441 of the protrusion 44 is positioned closer to the circuit board 5 than the tip of the annular protrusion 43 in the axial direction.
  • the protrusion height of the protrusion 44 is such that when the axial positioning portion 420 of the disc portion 42 abuts against the open end portion 101 of the resin shell 10 , the facing surface 441 of the protrusion 44 touches the upper surface of the electronic component 51 . It is set to form a gap with a size within a predetermined range.
  • the shape of the facing surface 441 viewed from the electronic component 51 side may be formed in accordance with the shape of the electronic component 51, and is, for example, a square plane (see FIG. 3A).
  • the facing surface 441 may be processed into a flat surface by a lathe or the like after the heat sink 4 is formed by die casting or the like, for example.
  • a heat transfer member 52 and an adhesive member 53 are arranged in order from the electronic component 51 side between the electronic component 51 and the protrusion 44 . is in thermal contact with the electronic component 51 via the .
  • the distance between facing surface 441 and electronic component 51 is set to be equal to or less than the total thickness of heat transfer member 52 and adhesive member 53 . Accordingly, the opposing surface 441 can be stably brought into contact with the upper surface of the electronic component 51 via the heat transfer member 52 and the adhesive member 53 .
  • only the heat transfer member 52 or the adhesive member 53 may be arranged between the electronic component 51 and the protrusion 44 .
  • the heat transfer member 52 preferably has good thermal conductivity and high insulation, and for example, a heat dissipation sheet made of silicone resin is used.
  • the adhesive member 53 preferably has good thermal conductivity and high insulating properties, and for example, a silicon resin adhesive is used.
  • the adhesive member 53 not only bonds the heat transfer member 52 and the protrusion 44 together, but also absorbs variations in axial position between the protrusion 44 and the electronic component 51 due to deformation of the adhesive member 53 . Further, the adhesive member 53 relieves the pressing force from the protrusion 44 to the electronic component 51 by deformation of the adhesive member 53 when the heat sink 4 is fitted to the resin shell 10 . As a result, stable thermal connection between the protrusion 44 and the electronic component 51 can be ensured, and the electronic component 51 and the circuit board 5 can be prevented from being damaged by the force applied from the protrusion 44 in the axial direction.
  • FIG. 4 is a schematic diagram showing a part of the processing steps of the heat sink 4 in this embodiment.
  • the axial positioning portion 420 and the opposing surface 441 of the heat sink 4 are made flat. It is machined on a lathe.
  • the heat sink 4 is first formed as a casting in a casting (die casting) process by solidifying a metal (alloy) poured into a mold (not shown). After that, the heat sink 4 is machined by lathe processing for the radial positioning portion 430 , the axial positioning portion 420 , and the facing surface 441 .
  • a case is exemplified in which the heat sink 4 is machined in the order of the radial positioning portion 430, the axial positioning portion 420, and the facing surface 441 by a normal lathe (general-purpose lathe).
  • the cast heat sink 4 is fixed to a headstock (not shown) (mechanism for rotating attached members) using a chuck (claw) not shown. As a result, the heat sink 4 rotates around the axis C. As shown in FIG. Next, by bringing a cutting tool B (cutting tool) fixed to the tool post into contact with the rotating heat sink 4 , the end surface of the heat sink 4 is shaved. At this time, by moving the cutting tool B in the radial direction of the axis C, a plane perpendicular to the axis C is formed. Further, by moving the cutting tool B parallel to the axis C, a cylindrical surface is formed.
  • FIG. 4(A) is a cross-sectional view showing the machining process of the radial positioning portion 430.
  • FIG. 4A by moving the cutting tool B in parallel with the axis C, the radial positioning portion 430, which is the outer peripheral surface of the annular projecting portion 43, can be adjusted with high accuracy in its radial dimension. It is formed.
  • the radial positioning portion 430 is formed on the outer peripheral surface of the annular protrusion 43, when the tool B is brought closer to the lathe from the outer diameter side of the axis C, the annular protrusion 43 is machined. out of the way.
  • the heat sink 4 is formed by die casting (casting)
  • the outer peripheral surface (radial direction positioning portion 430) of the annular projecting portion 43 and the resin outer shell 10 can be brought into contact with the inner peripheral surface 10a (not shown) of 10 with high dimensional accuracy.
  • FIG. 4B is a cross-sectional view showing the process of machining the axial positioning portion 420 and the facing surface 441.
  • the axial positioning portion 420 formed on the outer diameter side of the annular projecting portion 43 moves along the axis.
  • Directional dimensions are formed with high accuracy.
  • the axial positioning portion 420 is formed on the outer peripheral side of the annular protrusion 43 described above, when the tool B is brought closer to the lathe from the outer diameter side of the axis C, the annular protrusion 43 does not interfere with processing.
  • the heat sink 4 is formed by die casting (casting), when combining the resin outer shell 10 (not shown) and the heat sink 4, the axial positioning portion 420 of the heat sink 4 and the open end portion 101 of the resin outer shell 10 are separated. (not shown) can be brought into contact with high dimensional accuracy.
  • the facing surface 441 of the protrusion 44 formed on the inner diameter side of the annular protrusion 43 is Axial dimensions are formed with high accuracy.
  • the facing surface 441 is formed on the inner peripheral side of the annular projecting portion 43
  • the projecting height of the projecting portion 44 is formed to be higher than the projecting height of the annular projecting portion 43 .
  • the annular projecting portion 43 does not interfere with the machining.
  • the circuit board 5 fixed to the resin shell 10 and the protrusions 44 of the heat sink 4 are not in contact with each other. can be positioned with high dimensional accuracy.
  • the heat sink 4 of this embodiment includes the axial positioning portion 420 that contacts the open end portion 101 of the resin outer shell 10 and the radial positioning portion that contacts the inner peripheral surface of the open end portion 101 of the resin outer shell 10 . 430. Therefore, at the same time as the heat sink 4 is assembled to the resin outer shell 10 , the heat sink 4 is positioned in both the axial direction and the radial direction with respect to the resin outer shell 10 .
  • the heat sink 4 which is an integrated component, is provided with an axial positioning portion 420 for positioning the relative position of the heat sink 4 in the axial direction with respect to the resin outer shell 10, and the heat sink 4 with respect to the electronic component 51 of the circuit board 5.
  • a facing surface 441 of the protrusion 44 is provided for positioning the relative axial position of the . Therefore, the accuracy of the relative position of the heat sink 4 in the axial direction with respect to the resin shell 10 is ensured.
  • variations in the axial relative positions (dimensional variations and assembly variations) between the facing surfaces 441 of the projections 44 and the electronic components 51 are suppressed, and heat is stably transferred from the electronic components 51 to the heat sink 4 . can sufficiently dissipate heat to the outside of the
  • the heat sink 4 is formed with the radial positioning portion 430 , it is possible to reduce radial assembly variations between the heat sink 4 and the resin outer shell 10 . It is possible to accurately face the electronic component 51 on the circuit board 5 fixed to the shaft in the axial direction. Further, the first bearing 71 can be arranged coaxially with the axis C with high accuracy.
  • the heat sink 4 is directly attached to the open end portion 101 of the resin shell 10 without interposing the metal bracket.
  • the protrusion 44 of the heat sink 4 can be positioned with high precision with respect to the circuit board 5 (electronic component 51).
  • variations in the distance between the facing surface 441 of the protrusion 44 of the heat sink 4 and the electronic component 51 of the circuit board 5 can be suppressed. Therefore, the distance between the projecting portion 44 (opposing surface 441) and the circuit board 5 (electronic component 51) becomes larger than necessary (for example, the distance between the opposing surface 441 and the electronic component 51 is greater than the thickness of the heat transfer member 52).
  • the heat sink 4 includes the bearing housing portion 41, so that the first bearing 71 can be supported without the need for the metal bracket. As a result, the number of parts can be reduced and the assembling workability of the electric motor 1 can be improved.
  • the axial positioning portion 420 and the opposing surface 441 are end-faced in a post-process using a lathe, so that the heat sink 4 dimensional variation in the axial direction can be reduced. Therefore, variation in the axial relative position (assembly variation) between the facing surface 441 of the protrusion 44 and the electronic component 51 is further suppressed, and heat is stably transferred from the electronic component 51 to the heat sink 4, thereby can sufficiently dissipate heat to
  • FIG. 5 is a schematic cross-sectional view of essential parts of an electric motor 1A according to a second embodiment of the invention.
  • configurations different from those of the first embodiment will be mainly described, and configurations similar to those of the first embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the electric motor 1A of this embodiment includes a heat sink 4A having a disk portion 42A, an annular projecting portion 43A, and a projecting portion 44.
  • the heat sink 4A of this embodiment differs from that of the first embodiment in that the annular projecting portion 43A is located outside the open end portion 101 of the resin outer shell 10 .
  • the disk portion 42A has an outer diameter larger than the outer diameter of the open end portion 101 of the resin outer shell 10.
  • the disk portion 42A has an axial positioning portion 420A on its rear surface 424 side, which contacts the open end portion 101 of the resin outer shell 10 .
  • the axial positioning portion 420A is formed of a plane perpendicular to the axis C, as in the first embodiment.
  • the annular projecting portion 43A is formed on the rear surface 424 side of the disk portion 42A so as to protrude in the axial direction from the outer peripheral edge portion 427 of the disk portion 42A.
  • the outer peripheral edge portion 427 is a region of the disk portion 42A on the outer peripheral side of the axial positioning portion 420A.
  • the radial positioning portion 430A is formed on the inner peripheral surface of the annular projecting portion 43A and contacts the outer peripheral surface of the resin outer shell 10 .
  • the heat sink 4A of this embodiment configured as described above includes an axial positioning portion 420A that contacts the open end portion 101 of the resin outer shell 10, and a radial positioning portion 420A that contacts the outer peripheral surface of the open end portion 101 of the resin outer shell 10. It has a part 430 . Therefore, as in the first embodiment, the heat sink 4A is positioned both in the axial direction and the radial direction with respect to the resin outer shell 10 at the same time as the heat sink 4A is attached to the resin outer shell 10. FIG. As a result, the projections 44 of the heat sink 4A can be positioned with high accuracy with respect to the circuit board 5 (electronic components 51), so that good heat transfer can be achieved between the heat sink 4A and the circuit board 5 (electronic components 51). characteristics can be secured.
  • a load is provided at one end of the shaft 6 of the electric motor 1, and a single-shaft motor that produces an output in response to the load has been described as an example.
  • a dual-shaft motor may be used in which a load (torque) is provided to the motor and the output is generated in response to the load.
  • the circuit board 5 has a disk shape along the inner peripheral surface 10a of the resin outer shell 10, but it is of course not limited to this. It may have any shape as long as it can be supported on the mounting surface 9, and may be rectangular, for example.
  • the rotor main body 30 has a three-part structure consisting of the outer core 32, the insulating member 33, and the inner core 34.
  • the outer core 32 the insulating member 33, and the inner core 34.
  • it is not limited to this, and may be composed of a single core member. good too.
  • the rotor 3 is not limited to the surface magnet type as in the embodiment, but may be an embedded magnet type in which a plurality of magnet embedding holes for embedding permanent magnets are formed in the rotor main body 30 (rotor core). good too.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

[Problem] To provide an electric motor capable of stably dissipating heat generated from a circuit board. [Solution] The electric motor according to the one embodiment of the present invention comprises: a heat sink that covers an opening end portion of a cylindrical resin outer shell; and a circuit board disposed in an internal space covered by the resin outer shell and the heat sink. The heat sink has: a disc portion; an annular protruding portion that protrudes from the disc portion toward the circuit board side in the axial direction; and a projecting portion which is disposed on the inner diameter side of the resin outer shell relative to the annular protruding portion and which protrudes from the disc portion toward the circuit board side to come into thermal contact with the circuit board. The disc portion has an axial-direction positioning portion that abuts against the opening end portion of the resin outer shell, and the annular protruding portion has a radial-direction positioning portion that abuts against the inner peripheral surface or outer peripheral surface of the resin outer shell.

Description

電動機Electric motor
 本発明は、電動機に関し、さらに詳しくは電動機に内蔵された回路基板の放熱構造に関する。 The present invention relates to an electric motor, and more particularly to a heat dissipation structure for a circuit board built into the electric motor.
 従来から、電動機の内部に電動機の回転駆動を制御する回路基板を備えた電動機が知られている。そしてこの回路基板は、通電により発熱する電子部品を含み、その電子部品で発生した熱を電動機の外部へ放熱する、ヒートシンクを有する電動機もまた知られている。  Conventionally, there has been known an electric motor provided with a circuit board inside the electric motor for controlling the rotational drive of the electric motor. Electric motors having heat sinks are also known in which the circuit board includes electronic components that generate heat when energized, and the heat generated by the electronic components is dissipated to the outside of the motor.
 例えば特許文献1には、固定子鉄心をモールドする樹脂(以下、樹脂外郭という)と、モータの反出力側の軸受を支持し、上記モータの反出力側の樹脂外郭の端部に取り付けられた金属ブラケットと、上記金属ブラケットを介して上記樹脂外郭の端部に固定され、上記金属ブラケットの外面に設けられた孔部に挿入可能な突起部を含む放熱フィン(ヒートシンク)と、上記樹脂外郭の内部に配置された回路基板とを備えたブラシレスモータであって、上記突起部を、熱伝導樹脂を介して上記回路基板上の電子部品へ接触させる構造が記載されている。 For example, in Patent Document 1, a resin for molding a stator core (hereinafter referred to as a resin shell) and a bearing on the non-output side of the motor are supported and attached to the end of the resin shell on the non-output side of the motor. a metal bracket; a radiation fin (heat sink) fixed to an end of the resin shell via the metal bracket and including projections that can be inserted into holes provided on the outer surface of the metal bracket; A brushless motor is provided with a circuit board disposed inside, and a structure is described in which the protrusions are brought into contact with electronic components on the circuit board via thermally conductive resin.
特開2009-131127号公報JP 2009-131127 A
 特許文献1において、ヒートシンクとしての放熱フィンは、金属ブラケットを介して樹脂外郭の端部に固定される。しかしながら、ヒートシンクを備える電動機には、寸法ばらつき、そして、組立ばらつきなどが存在する。寸法ばらつきとは、各部品そのものの寸法のばらつきである。そして、組立ばらつきとは、各部品を組み立てる際に生じる各部品同士の相対位置(一方の部品の位置を基準としたときの他方の部品の位置)のばらつきである。特に、ヒートシンクが鋳造(ダイカスト)により成形される場合には、ヒートシンクそのものの寸法精度が低くなりやすく、寸法ばらつきが大きくなる傾向がある。 In Patent Document 1, heat radiation fins as heat sinks are fixed to the ends of the resin shell via metal brackets. However, motors with heat sinks are subject to dimensional variations and assembly variations. Dimensional variations are variations in the dimensions of each part itself. Assembly variations are variations in the relative positions of the parts (the position of one part when the position of the other part is used as a reference) that occurs when the parts are assembled. In particular, when the heat sink is formed by casting (die casting), the dimensional accuracy of the heat sink itself tends to be low, and dimensional variations tend to increase.
 そのため、金属ブラケットを介して樹脂外郭の端部にヒートシンク(放熱フィン)を固定する特許文献1の構造では、上記電動機の各種ばらつきの影響により、ヒートシンクと樹脂外郭の端部との間における上記軸方向および径方向の相対位置でのばらつきが生じやすい。これにより、ヒートシンクの突起部と回路基板との間における上記軸方向および径方向の相対位置のばらつきが生じやすくなり、回路基板の電子部品とヒートシンクの突起部との間に隙間が生じるなどして、十分な放熱を行えなくなる(すなわち放熱性が低下する)おそれがあった。 Therefore, in the structure of Patent Document 1, in which the heat sink (radiating fin) is fixed to the end of the resin shell via a metal bracket, the above-described shaft between the heat sink and the end of the resin shell may be affected by the various variations in the electric motor. Variations in direction and radial relative position are likely to occur. As a result, variations in relative positions in the axial and radial directions between the protrusions of the heat sink and the circuit board are likely to occur, and gaps may occur between the electronic components of the circuit board and the protrusions of the heat sink. , there is a possibility that sufficient heat dissipation cannot be performed (that is, the heat dissipation performance is lowered).
 以上のような事情に鑑み、本発明の目的は、回路基板で生じた熱を安定的に放熱することのできる電動機を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide an electric motor that can stably dissipate heat generated in a circuit board.
 本発明の一形態に係る電動機は、軸方向の一端側に開口端部を有する円筒状の樹脂外郭と、上記樹脂外郭と一体的に形成された固定子鉄心と、上記固定子鉄心の内径側に配置された回転子と、上記樹脂外郭の上記開口端部を覆うヒートシンクと、上記樹脂外郭と上記ヒートシンクとで覆われた内部空間に配置される回路基板と、を備える。上記ヒートシンクは、円板部と、上記円板部から上記軸方向の上記回路基板側に突出する環状突出部と、上記環状突出部よりも前記樹脂外郭の内径側に配置され、上記円板部から上記回路基板側に向かって突出し上記回路基板と熱的に接触する突起部と、を有する。上記円板部は、上記樹脂外郭の上記開口端部と当接する軸方向位置決め部を有し、上記環状突出部は、上記樹脂外郭の内周面または外周面に当接する径方向位置決め部を有する。 An electric motor according to one aspect of the present invention includes: a cylindrical resin shell having an open end on one end in an axial direction; a stator core integrally formed with the resin shell; and an inner diameter side of the stator core. a rotor arranged in the inner space, a heat sink covering the open end of the resin shell, and a circuit board arranged in an internal space covered with the resin shell and the heat sink. The heat sink includes a disk portion, an annular protrusion projecting from the disk portion toward the circuit board in the axial direction, and an inner diameter side of the resin outer shell relative to the annular protrusion. a projecting portion projecting from the terminal toward the circuit board side and in thermal contact with the circuit board. The disc portion has an axial positioning portion that contacts the open end of the resin shell, and the annular protrusion has a radial positioning portion that contacts the inner or outer peripheral surface of the resin shell. .
 上記電動機によれば、上記軸方向位置決め部によって上記樹脂外郭の上記開口端部と当接し、さらに上記径方向位置決め部によって上記樹脂外郭の内周面または外周面に当接することで、上記ヒートシンクの上記突起部と上記回路基板との上記軸方向および上記径方向の位置精度が確保される。これにより、上記回路基板で発生する熱を、上記ヒートシンクを介して安定した放熱性を確保できる。 According to the electric motor, the axial positioning portion abuts the opening end portion of the resin outer shell, and the radial positioning portion abuts the inner peripheral surface or the outer peripheral surface of the resin outer shell, whereby the heat sink is provided. Positional accuracy in the axial direction and the radial direction between the protrusion and the circuit board is ensured. Thereby, the heat generated in the circuit board can be stably dissipated through the heat sink.
 上記径方向位置決め部は、上記環状突出部の外周面に形成されるとともに、上記樹脂外郭の内周面に当接してもよい。 The radial positioning portion may be formed on the outer peripheral surface of the annular projecting portion and may abut on the inner peripheral surface of the resin outer shell.
 上記軸方向位置決め部は、上記円板部の上記環状突出部より外周側に位置してもよい。 The axial positioning portion may be located on the outer peripheral side of the annular protrusion of the disk portion.
 上記突起部の上記軸方向への突出高さは、上記環状突出部の突出高さよりも大きくてもよい。 The protrusion height in the axial direction of the protrusion may be greater than the protrusion height of the annular protrusion.
 上記回路基板は、配線基板と、上記配線基板の上に搭載された通電により発熱する電子部品とを含み、上記突起部は、上記電子部品に対向する対向面を有してもよい。 The circuit board may include a wiring board and an electronic component mounted on the wiring board that generates heat when energized, and the protrusion may have a facing surface facing the electronic component.
 上記円筒状の樹脂外郭は、上記回路基板が固定される載置面を有してもよい。 The cylindrical resin shell may have a mounting surface to which the circuit board is fixed.
 上記ヒートシンクは、上記回転シャフトを回転自在に支持する第1の軸受を収容する軸受収容部をさらに有してもよい。 The heat sink may further have a bearing accommodating portion that accommodates a first bearing that rotatably supports the rotating shaft.
 本技術の一形態に係る電動機の製造方法は、上記ヒートシンクを、ダイカスト成型によって形成する。 A method of manufacturing an electric motor according to one embodiment of the present technology forms the heat sink by die casting.
 本発明によれば、回路基板で生じた熱を安定的に放熱することができる。 According to the present invention, the heat generated in the circuit board can be stably dissipated.
本発明の第1の実施形態に係る電動機の断面図である。1 is a cross-sectional view of an electric motor according to a first embodiment of the present invention; FIG. 上記電動機における樹脂外郭の斜視図である。4 is a perspective view of a resin outer shell in the electric motor; FIG. 上記電動機におけるヒートシンクの斜視図であって、(A)は上面側斜視図、(B)は背面側斜視図である。It is a perspective view of the heat sink in the said electric motor, Comprising: (A) is a top side perspective view, (B) is a back side perspective view. 上記電動機におけるヒートシンクの加工工程を示す断面図であって、(A)は、径方向位置決め部の加工工程を示す断面図、(B)は、軸方向位置決め部と対向面との加工工程を示す断面図である。FIG. 4A is a cross-sectional view showing a process for processing a heat sink in the electric motor, wherein (A) is a cross-sectional view showing a process for processing a radial positioning portion, and (B) is a process for processing an axial positioning portion and a facing surface; It is a sectional view. 本発明の第2の実施形態に係る電動機の要部の断面図である。FIG. 7 is a cross-sectional view of a main part of an electric motor according to a second embodiment of the invention;
 次に、図面を参照して、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、現実のものとは異なり得ることに留意すべきである。したがって、具体的な構成部品については以下の説明を参酌して判断すべきものである。 Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and may differ from reality. Therefore, specific components should be determined with reference to the following description.
 また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Further, the embodiments shown below are examples of apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the shape, structure, arrangement, etc. of the component parts. It is not specific to the following. Various modifications can be made to the technical idea of the present invention within the technical scope defined by the claims.
<第1の実施形態>
 図1は、第1の実施形態に係る電動機1の断面図である。本実施形態の電動機1は、例えば、空気調和機の室内機に搭載される送風ファンの回転駆動源に用いられる。
<First embodiment>
FIG. 1 is a cross-sectional view of an electric motor 1 according to the first embodiment. The electric motor 1 of the present embodiment is used, for example, as a rotational drive source for a blower fan mounted in an indoor unit of an air conditioner.
[電動機の全体構成]
 電動機1は、固定子鉄心21と、回転子3と、樹脂外郭10と、第1の軸受71と、第2の軸受81と、ヒートシンク4と、回路基板5とを備えている。
[Overall configuration of electric motor]
The electric motor 1 includes a stator core 21 , a rotor 3 , a resin shell 10 , a first bearing 71 , a second bearing 81 , a heat sink 4 and a circuit board 5 .
 固定子鉄心21は、樹脂外郭10と一体的に形成される。
 回転子3は、回転シャフト6に固定され、固定子鉄心21の内径側に配置される。
 樹脂外郭10は、回転シャフト6の軸心Cに平行な方向(以下、軸方向ともいう)の一端に開口端部101を有する円筒形状である。
 ヒートシンク4は、樹脂外郭10の開口端部101を覆うように配置される。
 回路基板5は、樹脂外郭10とヒートシンク4とで覆われた内部空間に配置される。
The stator core 21 is integrally formed with the resin outer shell 10 .
The rotor 3 is fixed to the rotating shaft 6 and arranged on the inner diameter side of the stator core 21 .
The resin shell 10 has a cylindrical shape having an open end 101 at one end in a direction parallel to the axis C of the rotating shaft 6 (hereinafter also referred to as an axial direction).
The heat sink 4 is arranged to cover the open end 101 of the resin shell 10 .
The circuit board 5 is arranged in an internal space covered with the resin shell 10 and the heat sink 4 .
 以下では、例として、回転磁界を発生する円筒状の固定子2の径方向の内側に、永久磁石部31を有する円柱状の回転子3を回転可能に配置したインナーロータ型のブラシレスDCモータを電動機1として説明する。なお、電動機1は、もちろんこれに限られず、例えばアウターロータ型のブラシレスDCモータや、ACモータ等の他の電動機であってもよい。 In the following, as an example, an inner rotor type brushless DC motor in which a cylindrical rotor 3 having a permanent magnet portion 31 is rotatably disposed radially inside a cylindrical stator 2 that generates a rotating magnetic field will be described. A motor 1 will be described. The electric motor 1 is of course not limited to this, and may be, for example, an outer rotor type brushless DC motor, an AC motor, or another electric motor.
 また以下の説明において、回転シャフト6の軸心Cは、電動機1の中心軸、つまり回転子3の回転軸でもある。径方向とは、軸心Cを通り、軸方向とは直交する方向である。また内径側とは、径方向の内側であり、外径側とは、径方向の外側である。さらに、周方向とは、軸心Cを中心とする回転方向である。 Also, in the following description, the axis C of the rotating shaft 6 is also the central axis of the electric motor 1, that is, the rotating shaft of the rotor 3. The radial direction is a direction passing through the axis C and orthogonal to the axial direction. The inner diameter side is the inner side in the radial direction, and the outer diameter side is the outer side in the radial direction. Furthermore, the circumferential direction is the direction of rotation about the axis C. As shown in FIG.
(回転子)
 回転子3は、環状の永久磁石部31と、回転子本体30とを有する。回転子本体30は、外周面と、内周面とを有する。回転子本体30の外周面には、永久磁石部31が固定される。回転子本体の内周面には、回転シャフト6が固定される。これにより、回転子本体30と一体となって回転シャフト6が回転駆動する。
(rotor)
The rotor 3 has an annular permanent magnet portion 31 and a rotor main body 30 . The rotor main body 30 has an outer peripheral surface and an inner peripheral surface. A permanent magnet portion 31 is fixed to the outer peripheral surface of the rotor main body 30 . A rotary shaft 6 is fixed to the inner peripheral surface of the rotor main body. As a result, the rotating shaft 6 rotates integrally with the rotor main body 30 .
 回転子3は、上記外周面に環状に永久磁石部31が固定された表面磁石型である。永久磁石部31は、N極とS極が周方向に等間隔に交互に現れるように、複数(例えば8または10個)の永久磁石で環状に形成されている。なお、永久磁石部31は、典型的には、Nd-Fe-B系合金等の金属焼結体で形成されるが、これ以外にも、磁石粉末を樹脂で固めることで環状に形成されたプラスチックマグネットを用いてもよい。 The rotor 3 is a surface magnet type in which a permanent magnet portion 31 is annularly fixed to the outer peripheral surface. The permanent magnet portion 31 is annularly formed of a plurality of (e.g., 8 or 10) permanent magnets so that N poles and S poles appear alternately at equal intervals in the circumferential direction. The permanent magnet portion 31 is typically made of a sintered metal such as an Nd--Fe--B alloy. A plastic magnet may also be used.
 図1に示すように、回転子本体30は、外周側鉄心32と、絶縁部材33と、内周側鉄心34とを有する。 As shown in FIG. 1, the rotor body 30 has an outer core 32, an insulating member 33, and an inner core .
 外周側鉄心32は、環状に形成されており、回転子本体30の外周面を形成する。外周側鉄心32は、複数枚の電磁鋼板等の軟磁性材料からなる板の積層体である。内周側鉄心34は、環状に形成されており、回転子本体30の内周面を形成する。
 内周側鉄心34は、複数枚の電磁鋼板等の軟磁性材料からなる板の積層体である。内周側鉄心34の中心には、回転シャフト6が圧入やカシメなどによって固着されている。
The outer core 32 is annular and forms the outer peripheral surface of the rotor main body 30 . The outer core 32 is a laminate of plates made of a soft magnetic material such as a plurality of electromagnetic steel plates. The inner peripheral iron core 34 is formed in an annular shape and forms the inner peripheral surface of the rotor main body 30 .
The inner peripheral core 34 is a laminate of plates made of a soft magnetic material such as a plurality of electromagnetic steel plates. The rotating shaft 6 is fixed to the center of the inner peripheral iron core 34 by press fitting or caulking.
 絶縁部材33は、外周側鉄心32と内周側鉄心34との間を電気的に絶縁する。これにより、電動機1の固定子側の静電容量と回転子側の静電容量との差を低減して軸受71、81の電食を抑制することができる。絶縁部材33は、PBT(ポリブチレンテレフタレート)やPET(ポリエチレンテレフタレート)などの誘電体の樹脂で形成されており、外周側鉄心32と内周側鉄心34の間に固定されている。絶縁部材33は、環状の成形体であってもよいし、外周側鉄心32と内周側鉄心34の間にインサート成形等により充填された樹脂材料であってもよい。 The insulating member 33 electrically insulates between the outer core 32 and the inner core 34 . As a result, the difference between the static capacitance on the stator side and the static capacitance on the rotor side of the electric motor 1 can be reduced, and electrolytic corrosion of the bearings 71 and 81 can be suppressed. The insulating member 33 is made of dielectric resin such as PBT (polybutylene terephthalate) or PET (polyethylene terephthalate), and is fixed between the outer core 32 and the inner core 34 . The insulating member 33 may be an annular molded body, or may be a resin material filled between the outer core 32 and the inner core 34 by insert molding or the like.
(固定子)
 固定子2は、円筒形状のヨーク部と同ヨーク部から内径側に延びる複数のティース部を有した固定子鉄心21と、ティース部に巻回された巻線(コイル)22と、を備えている。固定子鉄心21は、例えば複数枚の電磁鋼板等の軟磁性材料からなる板の積層体である。この固定子2(固定子鉄心21)の外周面は、樹脂外郭10で覆われている(図1参照)。固定子2は、回転子3の永久磁石部31が固定子2の固定子鉄心21に径方向に空隙(磁気ギャップ)を介して対向するように配置されている。
(stator)
The stator 2 includes a stator core 21 having a cylindrical yoke portion and a plurality of teeth extending radially from the yoke, and windings (coils) 22 wound around the teeth. there is The stator core 21 is, for example, a laminate of plates made of a soft magnetic material such as a plurality of electromagnetic steel plates. The outer peripheral surface of the stator 2 (stator core 21) is covered with a resin shell 10 (see FIG. 1). The stator 2 is arranged such that the permanent magnet portion 31 of the rotor 3 faces the stator core 21 of the stator 2 in the radial direction via an air gap (magnetic gap).
(樹脂外郭)
 樹脂外郭10は、絶縁性の樹脂材料で形成される。図2は、電動機1における樹脂外郭10の斜視図であり、図2に示すように、軸方向の一端側(本実施形態では回転シャフト6の反出力端部61側)に開口端部101を有する中空円筒状に形成される。ここで、反出力端部61とは、回転シャフト6の出力端部62とは反対側の端部である。出力端部62とは、電動機1の負荷側(負荷に接続される側)の端部である。
 上述のように、樹脂外郭10は、固定子2と一体成形される。樹脂外郭10を形成する樹脂材料は特に限定されず、例えばBMC(Bulk Molding Compound:不飽和ポリエステル樹脂)樹脂で形成される。
(Resin shell)
The resin shell 10 is made of an insulating resin material. FIG. 2 is a perspective view of the resin shell 10 in the electric motor 1, and as shown in FIG. It is formed in a hollow cylindrical shape with Here, the counter-output end portion 61 is the end portion of the rotary shaft 6 opposite to the output end portion 62 . The output end portion 62 is the end portion of the electric motor 1 on the load side (the side connected to the load).
As described above, the resin shell 10 is integrally molded with the stator 2 . The resin material forming the resin shell 10 is not particularly limited, and is formed of, for example, BMC (Bulk Molding Compound: unsaturated polyester resin) resin.
 また、樹脂外郭10は、載置面9を有する。載置面9は、樹脂外郭10の内周面10a側に形成され、軸方向に垂直な内周平面であって、軸方向で回転子3よりもから間隙を介して回転シャフト6の反出力端部61側に設けられる。載置面9は、後述する回路基板5を支持する。本実施形態において載置面9は、樹脂外郭10の内周面10aから内径側に突出するように設けられた段部の上記反出力端部61側の面である。載置面9は、樹脂外郭10の内周面10aに、その周方向に連続的に形成されてもよいし、その周方向に間隔をおいて複数個所に形成されてもよい。 Also, the resin shell 10 has a mounting surface 9 . The mounting surface 9 is formed on the side of the inner peripheral surface 10a of the resin outer shell 10, is an inner peripheral plane perpendicular to the axial direction, and is axially opposite to the rotor 3 with a gap therebetween. It is provided on the end portion 61 side. The mounting surface 9 supports the circuit board 5 which will be described later. In the present embodiment, the mounting surface 9 is the surface of the counter-output end portion 61 side of the step provided so as to protrude from the inner peripheral surface 10a of the resin outer shell 10 toward the inner diameter side. The mounting surface 9 may be formed continuously in the circumferential direction of the inner peripheral surface 10a of the resin outer shell 10, or may be formed at a plurality of locations at intervals in the circumferential direction.
 樹脂外郭10は、後述する第2の軸受81を収容する第2の軸受収容部82をさらに有する。第2の軸受収容部82の概形は、軸心Cを中心とする一端側が塞がれた円筒形状である。第2の軸受収容部82は、樹脂外郭10の開口端部101とは反対側の底部102に設けられている。 The resin outer shell 10 further has a second bearing accommodating portion 82 that accommodates a second bearing 81, which will be described later. The general shape of the second bearing accommodating portion 82 is a cylindrical shape centered on the axis C and one end side of which is closed. The second bearing accommodating portion 82 is provided on the bottom portion 102 of the resin outer shell 10 on the side opposite to the open end portion 101 .
(回路基板)
 回路基板5は、配線基板50と、配線基板50の表面(回転シャフト6の反出力端部61側の面)に搭載された通電により発熱する電子部品51とを含む。回路基板5は、概ね円板形状であり、回路基板5の周縁部は、載置面9に支持され、例えば、接着、粘着、ネジ締結、はんだ付け等によって固定される。なお、回路基板5の周縁部に位置決め用の凸部を、そして樹脂外郭10の内周面10aに上記凸部と係合する位置決め用の凹部をそれぞれ設けてもよく、これにより回路基板5を周方向に位置決めした状態で載置面9に固定することができる。
(circuit board)
The circuit board 5 includes a wiring board 50 and an electronic component 51 mounted on the surface of the wiring board 50 (the surface on the side opposite to the output end 61 of the rotary shaft 6) and generating heat when energized. The circuit board 5 is generally disc-shaped, and the periphery of the circuit board 5 is supported by the mounting surface 9 and fixed by, for example, adhesion, adhesion, screw fastening, soldering, or the like. A positioning protrusion may be provided on the peripheral edge of the circuit board 5, and a positioning recess may be provided on the inner peripheral surface 10a of the resin shell 10 to engage with the protrusion. It can be fixed to the mounting surface 9 while being positioned in the circumferential direction.
 通電により発熱する電子部品51とは、主として、電源パワーIC、モータ駆動電流の制御用IC等の半導体パッケージ部品であるが、コンデンサ等の受動部品が含まれてもよい。なお、配線基板50には、電子部品51のほか、電源ケーブルと接続されるコネクタ部品等の他の部品が搭載されるが、これらの図示は省略する。上記電源ケーブルは、樹脂外郭10の開口端部101の近傍にその周方向の所定角度範囲にわたって形成されたケーブル挿通部105を通して図示しない電源に接続される。 The electronic components 51 that generate heat when energized are mainly semiconductor package components such as power supply ICs and motor drive current control ICs, but may also include passive components such as capacitors. In addition to the electronic component 51, the wiring board 50 is mounted with other components such as a connector component to be connected to a power cable, but illustration of these components is omitted. The power cable is connected to a power source (not shown) through a cable insertion portion 105 formed in the vicinity of the open end portion 101 of the resin shell 10 over a predetermined angular range in the circumferential direction.
 図2に示すように載置面9には、回路基板5を貫通する複数(本例では2つ)の位置決めピン9cが設けられている。
 また、樹脂外郭10の内周面10aに、回路基板5を収容する位置決め用の凹部104を部分的に設けてもよく、これによっても回路基板5を周方向に位置決めした状態で載置面9に固定することができる。
 また、図2に示されるコイル22の端部221は、回路基板5に電気的に接続されるように形成され、回路基板5は、複数の位置決めピン9cにより載置面9上に位置決めされるとともに、回路基板5とコイルの端部221とのはんだ付けにより、載置面9上に固定される。
As shown in FIG. 2, the mounting surface 9 is provided with a plurality of (two in this example) positioning pins 9c penetrating the circuit board 5 .
Further, the inner peripheral surface 10a of the resin outer shell 10 may be partially provided with a positioning recess 104 for accommodating the circuit board 5. This also allows the circuit board 5 to be positioned on the mounting surface 9 in a state of being positioned in the circumferential direction. can be fixed to
2 is formed to be electrically connected to the circuit board 5, and the circuit board 5 is positioned on the mounting surface 9 by a plurality of positioning pins 9c. At the same time, it is fixed on the mounting surface 9 by soldering the circuit board 5 and the end portion 221 of the coil.
(軸受)
 図1に示すように、第1の軸受71は、外輪711、内輪712、複数のボール713等を有するボールベアリングである。第2の軸受81は、外輪811、内輪812、ボール813等を有するボールベアリングである。
(bearing)
As shown in FIG. 1, the first bearing 71 is a ball bearing having an outer ring 711, an inner ring 712, a plurality of balls 713, and the like. The second bearing 81 is a ball bearing having an outer ring 811, an inner ring 812, balls 813, and the like.
 第1の軸受71の外輪711は、ヒートシンク4(第1の軸受収容部41)に固定され、第1の軸受71の内輪712は、回転シャフト6の反出力端部61側に固定される。第2の軸受81の外輪813は、樹脂外郭10(第2の軸受収容部82)に固定され、第2の軸受81の内輪812は、回転シャフト6の出力端部62に固定される。これにより、回転シャフト6は、第1の軸受71および第2の軸受81により、ヒートシンク4および樹脂外郭10に対して軸心Cのまわりに回転可能に支持される。 The outer ring 711 of the first bearing 71 is fixed to the heat sink 4 (first bearing housing portion 41), and the inner ring 712 of the first bearing 71 is fixed to the counter-output end portion 61 side of the rotary shaft 6. The outer ring 813 of the second bearing 81 is fixed to the resin outer shell 10 (second bearing accommodating portion 82 ), and the inner ring 812 of the second bearing 81 is fixed to the output end portion 62 of the rotary shaft 6 . As a result, the rotating shaft 6 is rotatably supported around the axis C with respect to the heat sink 4 and the resin shell 10 by the first bearing 71 and the second bearing 81 .
(ヒートシンク)
 ヒートシンク4は、第1の軸受収容部41と、円板部42と、環状突出部43と、突起部44とを有する。ヒートシンク4は、樹脂外郭10の開口端部101に取り付けられ、固定される。ヒートシンク4は、アルミニウム等の熱伝導性に優れた金属材料で形成される。ヒートシンク4は、円板部42と、環状突出部43と、突起部44とがそれぞれ一体に成形される。ヒートシンク4は例えば、ダイカスト(鋳造)によって成型される。
(heatsink)
The heat sink 4 has a first bearing accommodating portion 41 , a disk portion 42 , an annular projecting portion 43 and a projecting portion 44 . The heat sink 4 is attached and fixed to the open end 101 of the resin shell 10 . The heat sink 4 is made of a metal material having excellent thermal conductivity, such as aluminum. The heat sink 4 is integrally formed with a disk portion 42, an annular projecting portion 43, and a projecting portion 44, respectively. The heat sink 4 is molded by die casting (casting), for example.
 ヒートシンク4は、樹脂外郭10の開口端部101を覆うことで樹脂外郭10の開口部を閉塞する蓋部材(ブラケット)としての機能と、第1の軸受71を支持する軸受収容部(ベアリングハウス)としての機能と、電動機内部の電子部品51で生じた熱を電動機外部へ放熱する放熱部材としての機能を有する。ヒートシンク4は、樹脂外郭10の開口端部101に図示しない複数のネジ部材を用いて固定される。 The heat sink 4 functions as a cover member (bracket) that closes the opening of the resin outer shell 10 by covering the opening end 101 of the resin outer shell 10, and a bearing housing part (bearing house) that supports the first bearing 71. and a function as a heat radiating member that radiates heat generated by the electronic components 51 inside the motor to the outside of the motor. The heat sink 4 is fixed to the open end 101 of the resin outer shell 10 using a plurality of unillustrated screw members.
 図3(A)は、ヒートシンク4の内面側(図1において下面側)の斜視図であり、図3(B)はヒートシンク4の外面側(図1において上面側)の斜視図である。 3(A) is a perspective view of the inner side of the heat sink 4 (lower side in FIG. 1), and FIG. 3(B) is a perspective view of the outer side of the heat sink 4 (upper side in FIG. 1).
 円板部42は、軸心Cを中心とする中心孔40を有する円環状の板部である。本実施形態では、円板部42の外径は、樹脂外郭10の開口端部101の外径と同一又はほぼ同一の大きさである。図3(A)、(B)に示すように、円板部42は、上面423と、その反対側の背面424とを有する。後述するように、円板部42の上面部423には、第1の軸受収容部41が形成される。円板部42の背面424には、軸方向位置決め部420、環状突出部43および突起部44が設けられる。 The disk portion 42 is an annular plate portion having a center hole 40 centered on the axis C. In this embodiment, the outer diameter of the disc portion 42 is the same or substantially the same size as the outer diameter of the open end portion 101 of the resin shell 10 . As shown in FIGS. 3A and 3B, the disk portion 42 has an upper surface 423 and a rear surface 424 on the opposite side. As will be described later, the upper surface portion 423 of the disc portion 42 is formed with the first bearing accommodating portion 41 . A rear surface 424 of the disk portion 42 is provided with the axial positioning portion 420 , the annular projection portion 43 and the projection portion 44 .
 環状突出部43は、円板部42の背面424側から回路基板5側に向かって突出するように形成される。また、環状突出部43は、樹脂外郭10の内周面10aに当接する径方向位置決め部430を有する。 The annular projecting portion 43 is formed so as to project from the rear surface 424 side of the disk portion 42 toward the circuit board 5 side. Further, the annular projecting portion 43 has a radial positioning portion 430 that contacts the inner peripheral surface 10 a of the resin outer shell 10 .
 突起部44は、環状突出部43よりも内径側に配置され、円板部42の背面424側から回路基板5側に向かって突出し、回路基板5(本実施形態では電子部品51)に熱的に接触する。本実施形態では、図1に示すように、突起部44は、ヒートシンク4を樹脂外郭10に取り付けたとき、径方向において、第1の軸受収容部41と環状突出部43との間の領域に配置され、電子部品51と対向する。
 以下、各部の詳細について説明する。
The projecting portion 44 is arranged on the inner diameter side of the annular projecting portion 43, projects from the back surface 424 side of the disk portion 42 toward the circuit board 5 side, and thermally contacts the circuit board 5 (the electronic component 51 in this embodiment). come into contact with In this embodiment, as shown in FIG. 1, when the heat sink 4 is attached to the resin outer shell 10, the protrusion 44 is formed in a region between the first bearing accommodating portion 41 and the annular protrusion 43 in the radial direction. It is arranged and faces the electronic component 51 .
The details of each unit will be described below.
 (第1の軸受収容部)
 第1の軸受収容部41は、第1の軸受71を収容する。第1の軸受収容部41は、軸心Cを中心とする一端側が塞がれた円筒形状を有し、第1の軸受71を収容する。第1の軸受収容部41は、円板部42の中心孔40の内周縁部401の上面423側に形成されている。
(First bearing accommodating portion)
The first bearing housing portion 41 houses the first bearing 71 . The first bearing accommodating portion 41 has a cylindrical shape with one end side centered on the axis C and is closed, and accommodates the first bearing 71 . The first bearing accommodating portion 41 is formed on the upper surface 423 side of the inner peripheral edge portion 401 of the center hole 40 of the disc portion 42 .
 (円板部)
 円板部42は、軸方向位置決め部420を有する。図3(A)に示すように、軸方向位置決め部420は、円板部42の外周縁部422の背面424側に形成される。本実施形態において、外周縁部422とは、円板部42の、環状突出部43よりも外径側の領域である。
(Disc part)
The disk portion 42 has an axial positioning portion 420 . As shown in FIG. 3A, the axial positioning portion 420 is formed on the rear surface 424 side of the outer peripheral edge portion 422 of the disc portion 42 . In this embodiment, the outer peripheral edge portion 422 is a region of the disk portion 42 on the outer diameter side of the annular projecting portion 43 .
 外周縁部422より内径側の領域における円板部42の軸方向の厚みは、外周縁部422の軸方向の厚みより、薄くてもよい。外周縁部422より内径側の領域における円板部42の厚みを外周縁部422よりも薄くした場合、図3(A)に示すように、円板部42の背面424側に複数のリブ部425を設けてもよい。複数のリブ部425は、第1の軸受収容部41から環状突出部43に向かって放射状に形成される。複数のリブ部425を設けることにより、ヒートシンク4の強度を確保することができる。 The axial thickness of the disk portion 42 in the region on the inner diameter side of the outer peripheral edge portion 422 may be thinner than the axial thickness of the outer peripheral edge portion 422 . When the thickness of the disk portion 42 in the area on the inner diameter side of the outer peripheral edge portion 422 is made thinner than the outer peripheral edge portion 422, as shown in FIG. 425 may be provided. A plurality of rib portions 425 are radially formed from the first bearing accommodating portion 41 toward the annular projecting portion 43 . By providing the plurality of rib portions 425, the strength of the heat sink 4 can be ensured.
 軸方向位置決め部420は、外周縁部422の背面424側に形成され、樹脂外郭10の開口端部101と当接する。図1に示すように、軸方向位置決め部420は、開口端部101に軸心Cの方向に当接する。軸方向位置決め部420は、例えばヒートシンク4のダイカスト等による成形後、旋盤等により、平面に加工されてもよい。本実施形態では、軸方向位置決め部420は、軸心Cに直交する平面に形成されている。 The axial positioning portion 420 is formed on the rear surface 424 side of the outer peripheral edge portion 422 and contacts the open end portion 101 of the resin outer shell 10 . As shown in FIG. 1, the axial positioning portion 420 abuts the open end portion 101 in the direction of the axis C. As shown in FIG. For example, the axial positioning portion 420 may be processed into a flat surface by a lathe or the like after the heat sink 4 is formed by die casting or the like. In this embodiment, the axial positioning portion 420 is formed on a plane perpendicular to the axis C. As shown in FIG.
 軸方向位置決め部420は、図3(A)に示すように、外周縁部422の背面424側全域が軸心Cに直交する平面で形成されるが、この限りではない。例えば、ヒートシンク4の軸方向位置決め部420は、開口端部101に向かって突出する環状の突出部を有してもよく、樹脂外郭10の開口端部101にはその突出部と対応する環状の溝部を有していてもよい。この突出部の径方向から見た断面は、台形状であってもよいし、曲面形状であってもよい。 As shown in FIG. 3A, the axial positioning portion 420 is formed by a plane perpendicular to the axis C over the entire rear surface 424 side of the outer peripheral edge portion 422, but this is not the only option. For example, the axial positioning portion 420 of the heat sink 4 may have an annular projection projecting toward the open end 101, and the open end 101 of the resin shell 10 has an annular projection corresponding to the projection. It may have grooves. A cross section of the protruding portion viewed from the radial direction may be trapezoidal or curved.
 図3(A)、(B)に示すように、円板部42の外周縁部422の複数個所には、ねじが挿通される孔部421が形成される。孔部421は、本実施形態では、外周縁部422に等角度間隔で3箇所設けられる。なお、外周縁部422に設けられる孔部421の数や位置は適宜変更可能であり、外周縁部422に孔部421を設けなくともよい。本実施形態では、樹脂外郭10の開口端部101には、孔部421と対向する位置に図2に示されるねじ受部103が形成される。ヒートシンク4は、各孔部421に挿通される複数のねじによって樹脂外郭10の開口端部101に固定される。この際、ヒートシンク4は、樹脂外郭10の開口端部101に対してその周方向に位置決めされる。 As shown in FIGS. 3A and 3B, holes 421 through which screws are inserted are formed at a plurality of locations on the outer peripheral edge portion 422 of the disc portion 42 . In this embodiment, three holes 421 are provided at equal angular intervals on the outer peripheral edge 422 . Note that the number and positions of the holes 421 provided in the outer peripheral edge portion 422 can be changed as appropriate, and the outer peripheral edge portion 422 need not be provided with the hole portions 421 . In this embodiment, the opening end 101 of the resin shell 10 is formed with the screw receiving portion 103 shown in FIG. The heat sink 4 is fixed to the open end 101 of the resin outer shell 10 with a plurality of screws inserted through the holes 421 . At this time, the heat sink 4 is positioned in the circumferential direction with respect to the open end portion 101 of the resin shell 10 .
 円板部42はさらに、その外周縁部422の一部に所定角度範囲にわたって形成された切欠き部426を有する。切欠き部426は、樹脂外郭10の開口端部101の近傍にわたって形成された上述のケーブル挿通部に対応する位置に設けられる。これにより、切欠き部426を、ヒートシンク4を樹脂外郭10の開口端部101に組み付けるに際して、樹脂外郭10に対する周方向の位置決めの目印として用いることができる。 The disc part 42 further has a notch part 426 formed over a predetermined angular range in a part of the outer peripheral edge part 422 thereof. The notch portion 426 is provided at a position corresponding to the above-described cable insertion portion formed over the vicinity of the open end portion 101 of the resin outer shell 10 . Accordingly, the notch 426 can be used as a mark for positioning the heat sink 4 in the resin shell 10 in the circumferential direction when the heat sink 4 is assembled to the open end 101 of the resin shell 10 .
 (環状突出部)
 上述したように、環状突出部43は、径方向位置決め部430を有する。本実施形態では径方向位置決め部430は、樹脂外郭10の開口端部101の内周面に当接する環状突出部43の外周面に形成されている。すなわち、図1、図2、図3(A)に示すように、径方向位置決め部430は、樹脂外郭10の内周面10aに嵌合する円筒面を有する。
(Annular protrusion)
As mentioned above, the annular projection 43 has a radial positioning portion 430 . In this embodiment, the radial positioning portion 430 is formed on the outer peripheral surface of the annular projecting portion 43 that contacts the inner peripheral surface of the open end portion 101 of the resin outer shell 10 . That is, as shown in FIGS. 1, 2, and 3A, the radial positioning portion 430 has a cylindrical surface that fits into the inner peripheral surface 10a of the resin outer shell 10. As shown in FIG.
 図3(A)に示すように、環状突出部43は、円板部42の背面424に、軸心Cを中心とする円環状に形成される。図1に示すように、環状突出部43の軸心Cに平行な断面は、概ね長方形状である。また、図3(A)に示すように、環状突出部43は、切れ目なく周方向に連続的に形成されているが、この限りではなく、一部に切れ目があってもよい。 As shown in FIG. 3(A), the annular projecting portion 43 is formed in an annular shape around the axis C on the rear surface 424 of the disc portion 42 . As shown in FIG. 1, the cross section parallel to the axis C of the annular protrusion 43 is generally rectangular. Further, as shown in FIG. 3A, the annular projecting portion 43 is continuously formed in the circumferential direction without any discontinuities, but this is not the only option, and a discontinuous portion may be provided.
 (突起部)
 上述したように、突起部44は、環状突出部43よりも内径側に配置され、円板部42の背面424から軸方向における回路基板5側に向かって突出する。
(protrusion)
As described above, the projecting portion 44 is arranged on the inner diameter side of the annular projecting portion 43 and projects from the back surface 424 of the disk portion 42 toward the circuit board 5 side in the axial direction.
 図3(A)に示すように、本実施形態では、突起部44は、回路基板5上に搭載された電子部品51に向かって突出する直方体形状のブロックである。さらに、突起部44は、電子部品51と対向する対向面441を有する。なお、突起部44の形状は、直方体形状に限られず、例えば、円柱形状であってもよい。 As shown in FIG. 3(A), in the present embodiment, the protrusion 44 is a rectangular parallelepiped block that protrudes toward the electronic component 51 mounted on the circuit board 5 . Furthermore, the protrusion 44 has a facing surface 441 that faces the electronic component 51 . In addition, the shape of the protrusion 44 is not limited to a rectangular parallelepiped shape, and may be, for example, a cylindrical shape.
 詳しくは後述するが、図1に示されるように、突起部44の軸方向への突出高さは、環状突出部43の突出高さよりも大きく形成されるのが好ましい。ここでいう突出高さとは、円板部42の背面424を基準として軸方向に突出する高さである。本実施形態では、突起部44の対向面441は、環状突出部43の軸方向の先端部よりも、回路基板5に近い位置にある。突起部44の上記突出高さは、円板部42の軸方向位置決め部420が樹脂外郭10の開口端部101に当接したときに、突起部44の対向面441が電子部品51の上面に所定範囲の大きさの間隙を形成するように設定される。 Although details will be described later, as shown in FIG. 1, it is preferable that the projection height of the projection 44 in the axial direction be greater than the projection height of the annular projection 43 . The protruding height here is the height protruding in the axial direction with respect to the back surface 424 of the disc portion 42 . In the present embodiment, the facing surface 441 of the protrusion 44 is positioned closer to the circuit board 5 than the tip of the annular protrusion 43 in the axial direction. The protrusion height of the protrusion 44 is such that when the axial positioning portion 420 of the disc portion 42 abuts against the open end portion 101 of the resin shell 10 , the facing surface 441 of the protrusion 44 touches the upper surface of the electronic component 51 . It is set to form a gap with a size within a predetermined range.
 対向面441の電子部品51側から見た形状は、電子部品51の形状に合わせて形成されてもよく、例えば四角形状の平面である(図3(A)参照)。対向面441は、例えばヒートシンク4のダイカスト等による成形後、旋盤等により、平面に加工されてもよい。 The shape of the facing surface 441 viewed from the electronic component 51 side may be formed in accordance with the shape of the electronic component 51, and is, for example, a square plane (see FIG. 3A). The facing surface 441 may be processed into a flat surface by a lathe or the like after the heat sink 4 is formed by die casting or the like, for example.
 電子部品51と突起部44との間には、電子部品51側から順に伝熱部材52と接着部材53が配置されており、突起部44の対向面441は、伝熱部材52および接着部材53を介して電子部品51と熱的に接触する。対向面441と電子部品51との距離は、伝熱部材52の厚みと接着部材53の厚みを足した合計の厚み以下に設定される。これにより、伝熱部材52および接着部材53を介して対向面441を電子部品51の上面に安定して接触させることができる。なお、これに限られず、電子部品51と突起部44との間には伝熱部材52または接着部材53のみが配置されてもよい。 A heat transfer member 52 and an adhesive member 53 are arranged in order from the electronic component 51 side between the electronic component 51 and the protrusion 44 . is in thermal contact with the electronic component 51 via the . The distance between facing surface 441 and electronic component 51 is set to be equal to or less than the total thickness of heat transfer member 52 and adhesive member 53 . Accordingly, the opposing surface 441 can be stably brought into contact with the upper surface of the electronic component 51 via the heat transfer member 52 and the adhesive member 53 . Alternatively, only the heat transfer member 52 or the adhesive member 53 may be arranged between the electronic component 51 and the protrusion 44 .
 伝熱部材52としては、熱伝導性が良好で、絶縁性が高いものが好ましく、例えばシリコン樹脂製の放熱シートが用いられる。接着部材53に関しても同様に、熱伝導性が良好で、絶縁性が高いものが好ましく、例えばシリコン樹脂製の接着剤が用いられる。接着部材53は、伝熱部材52と突起部44とを接着するだけでなく、接着部材53の変形により、突起部44と電子部品51との軸方向の位置のばらつきを吸収する。さらに、接着部材53は、ヒートシンク4が樹脂外郭10へ嵌合される際に、突起部44から電子部品51への押し付ける力を、接着部材53の変形により逃がす。これにより、突起部44と電子部品51との安定した熱的接続を確保できるとともに、突起部44から軸方向へ加わる力で電子部品51や回路基板5が破損するのを防止することができる。 The heat transfer member 52 preferably has good thermal conductivity and high insulation, and for example, a heat dissipation sheet made of silicone resin is used. Similarly, the adhesive member 53 preferably has good thermal conductivity and high insulating properties, and for example, a silicon resin adhesive is used. The adhesive member 53 not only bonds the heat transfer member 52 and the protrusion 44 together, but also absorbs variations in axial position between the protrusion 44 and the electronic component 51 due to deformation of the adhesive member 53 . Further, the adhesive member 53 relieves the pressing force from the protrusion 44 to the electronic component 51 by deformation of the adhesive member 53 when the heat sink 4 is fitted to the resin shell 10 . As a result, stable thermal connection between the protrusion 44 and the electronic component 51 can be ensured, and the electronic component 51 and the circuit board 5 can be prevented from being damaged by the force applied from the protrusion 44 in the axial direction.
[ヒートシンクの加工工程]
 図4は、本実施形態における、ヒートシンク4の加工工程の一部を示す模式図である。本実施形態では、ダイカスト(鋳造)により形成されるヒートシンク4の軸心C方向の寸法精度を高めるため、後加工として、ヒートシンク4の軸方向位置決め部420と対向面441とが平面となるように旋盤で加工している。ヒートシンク4は、まず、鋳造(ダイカスト)工程において、図示しない金型に流し込まれた金属(合金)が固まることによって、その概形が鋳物として形成される。その後、ヒートシンク4は、旋盤加工により、径方向位置決め部430、軸方向位置決め部420、および対向面441のそれぞれが加工される。本実施形態では、ヒートシンク4を、普通旋盤(汎用旋盤)によって、径方向位置決め部430、軸方向位置決め部420、対向面441の順番で加工する場合を例示する。
[Processing process of heat sink]
FIG. 4 is a schematic diagram showing a part of the processing steps of the heat sink 4 in this embodiment. In the present embodiment, in order to increase the dimensional accuracy in the direction of the axis C of the heat sink 4 formed by die casting (casting), as post-processing, the axial positioning portion 420 and the opposing surface 441 of the heat sink 4 are made flat. It is machined on a lathe. The heat sink 4 is first formed as a casting in a casting (die casting) process by solidifying a metal (alloy) poured into a mold (not shown). After that, the heat sink 4 is machined by lathe processing for the radial positioning portion 430 , the axial positioning portion 420 , and the facing surface 441 . In the present embodiment, a case is exemplified in which the heat sink 4 is machined in the order of the radial positioning portion 430, the axial positioning portion 420, and the facing surface 441 by a normal lathe (general-purpose lathe).
 旋盤加工では、鋳造されたヒートシンク4が、図示しないチャック(爪)を用いて、図示しない主軸台(取り付けた部材を回転させる機構)に対して固定される。これにより、ヒートシンク4が、軸心Cを中心に回転する。次に、刃物台に固定されたバイトB(切削加工用の刃物)を、回転するヒートシンク4に対して接触させることで、ヒートシンク4の端面が削れていく。このとき、バイトBを軸心Cの径方向に移動させることで、軸心Cに対して垂直な平面が形成される。また、バイトBを軸心Cに対して平行に移動させることで、円筒面が形成される。 In lathe processing, the cast heat sink 4 is fixed to a headstock (not shown) (mechanism for rotating attached members) using a chuck (claw) not shown. As a result, the heat sink 4 rotates around the axis C. As shown in FIG. Next, by bringing a cutting tool B (cutting tool) fixed to the tool post into contact with the rotating heat sink 4 , the end surface of the heat sink 4 is shaved. At this time, by moving the cutting tool B in the radial direction of the axis C, a plane perpendicular to the axis C is formed. Further, by moving the cutting tool B parallel to the axis C, a cylindrical surface is formed.
 図4(A)は、径方向位置決め部430の加工工程を示す断面図である。すなわち、図4(A)に示すように、バイトBを軸心Cと平行に移動させることで、環状突出部43の外周面である径方向位置決め部430は、その径方向寸法が高い精度で形成される。このとき、径方向位置決め部430が、環状突出部43の外周面に形成されていることで、旋盤に対して軸心Cの外径側からバイトBを近づける場合に、環状突出部43が加工の邪魔にならない。そのため、ヒートシンク4がダイカスト(鋳造)により成型された場合であっても、樹脂外郭10(不図示)とヒートシンク4を組み合わせる際、環状突出部43の外周面(径方向位置決め部430)と樹脂外郭10の内周面10a(不図示)とを、高い寸法精度で当接させることができる。 FIG. 4(A) is a cross-sectional view showing the machining process of the radial positioning portion 430. FIG. That is, as shown in FIG. 4A, by moving the cutting tool B in parallel with the axis C, the radial positioning portion 430, which is the outer peripheral surface of the annular projecting portion 43, can be adjusted with high accuracy in its radial dimension. It is formed. At this time, since the radial positioning portion 430 is formed on the outer peripheral surface of the annular protrusion 43, when the tool B is brought closer to the lathe from the outer diameter side of the axis C, the annular protrusion 43 is machined. out of the way. Therefore, even if the heat sink 4 is formed by die casting (casting), when combining the resin outer shell 10 (not shown) and the heat sink 4, the outer peripheral surface (radial direction positioning portion 430) of the annular projecting portion 43 and the resin outer shell 10 can be brought into contact with the inner peripheral surface 10a (not shown) of 10 with high dimensional accuracy.
 図4(B)は、軸方向位置決め部420と対向面441との加工工程を示す断面図である。
また、図4(B)に示すように、バイトBを軸心Cと垂直な径方向に移動させることで、環状突出部43の外径側に形成された軸方向位置決め部420は、その軸方向寸法が高い精度で形成される。このとき、軸方向位置決め部420が、上述の環状突出部43よりも外周側に形成されていることで、旋盤に対して軸心Cの外径側からバイトBを近づける場合に、環状突出部43が加工の邪魔にならない。そのため、ヒートシンク4がダイカスト(鋳造)により成型された場合であっても、樹脂外郭10(不図示)とヒートシンク4を組み合わせる際、ヒートシンク4の軸方向位置決め部420と樹脂外郭10の開口端部101(不図示)とを、高い寸法精度で当接させることができる。
FIG. 4B is a cross-sectional view showing the process of machining the axial positioning portion 420 and the facing surface 441. As shown in FIG.
Further, as shown in FIG. 4(B), by moving the cutting tool B in the radial direction perpendicular to the axis C, the axial positioning portion 420 formed on the outer diameter side of the annular projecting portion 43 moves along the axis. Directional dimensions are formed with high accuracy. At this time, since the axial positioning portion 420 is formed on the outer peripheral side of the annular protrusion 43 described above, when the tool B is brought closer to the lathe from the outer diameter side of the axis C, the annular protrusion 43 does not interfere with processing. Therefore, even if the heat sink 4 is formed by die casting (casting), when combining the resin outer shell 10 (not shown) and the heat sink 4, the axial positioning portion 420 of the heat sink 4 and the open end portion 101 of the resin outer shell 10 are separated. (not shown) can be brought into contact with high dimensional accuracy.
 さらに、図4(B)に示すように、バイトBを軸心Cと垂直な径方向に移動させることで、環状突出部43の内径側に形成された突起部44の対向面441は、その軸方向寸法が高い精度で形成される。このとき、対向面441は、環状突出部43よりも内周側に形成されているものの、突起部44の突出高さが環状突出部43の突出高さよりも高くなるように形成されていることで、旋盤に対して軸心Cの外径側からバイトBを近づける場合に、環状突出部43が加工の邪魔にならない。そのため、ヒートシンク4がダイカスト(鋳造)により成型された場合であっても、樹脂外郭10(不図示)とヒートシンク4を組み合わせる際、樹脂外郭10に固定された回路基板5とヒートシンク4の突起部44とを、高い寸法精度で位置決めすることができる。 Further, as shown in FIG. 4B, by moving the cutting tool B in the radial direction perpendicular to the axis C, the facing surface 441 of the protrusion 44 formed on the inner diameter side of the annular protrusion 43 is Axial dimensions are formed with high accuracy. At this time, although the facing surface 441 is formed on the inner peripheral side of the annular projecting portion 43 , the projecting height of the projecting portion 44 is formed to be higher than the projecting height of the annular projecting portion 43 . Also, when the cutting tool B is brought closer to the lathe from the outer diameter side of the axis C, the annular projecting portion 43 does not interfere with the machining. Therefore, even if the heat sink 4 is molded by die casting (casting), when the resin shell 10 (not shown) and the heat sink 4 are combined, the circuit board 5 fixed to the resin shell 10 and the protrusions 44 of the heat sink 4 are not in contact with each other. can be positioned with high dimensional accuracy.
[ヒートシンクの作用]
 上述のように、本実施形態のヒートシンク4は、樹脂外郭10の開口端部101と当接する軸方向位置決め部420と、樹脂外郭10の開口端部101の内周面に当接する径方向位置決め部430とを有する。このため、樹脂外郭10へのヒートシンク4の組み付けと同時に、樹脂外郭10に対してヒートシンク4が軸方向および径方向の双方向に位置決めされる。
[Action of heat sink]
As described above, the heat sink 4 of this embodiment includes the axial positioning portion 420 that contacts the open end portion 101 of the resin outer shell 10 and the radial positioning portion that contacts the inner peripheral surface of the open end portion 101 of the resin outer shell 10 . 430. Therefore, at the same time as the heat sink 4 is assembled to the resin outer shell 10 , the heat sink 4 is positioned in both the axial direction and the radial direction with respect to the resin outer shell 10 .
 より具体的には、一体の部品であるヒートシンク4に、樹脂外郭10に対するヒートシンク4の軸方向の相対位置を位置決めする軸方向位置決め部420が設けられるとともに、回路基板5の電子部品51に対するヒートシンク4の軸方向の相対位置を位置決めする突起部44の対向面441が設けられる。そのため、ヒートシンク4の樹脂外郭10に対する軸方向の相対位置の精度が確保される。これにより、突起部44の対向面441と電子部品51との軸方向の相対位置のばらつき(寸法ばらつき、組立ばらつき)を抑えて、電子部品51からヒートシンク4へと安定的に伝熱し、電動機1の外部へと十分に放熱することができる。 More specifically, the heat sink 4, which is an integrated component, is provided with an axial positioning portion 420 for positioning the relative position of the heat sink 4 in the axial direction with respect to the resin outer shell 10, and the heat sink 4 with respect to the electronic component 51 of the circuit board 5. A facing surface 441 of the protrusion 44 is provided for positioning the relative axial position of the . Therefore, the accuracy of the relative position of the heat sink 4 in the axial direction with respect to the resin shell 10 is ensured. As a result, variations in the axial relative positions (dimensional variations and assembly variations) between the facing surfaces 441 of the projections 44 and the electronic components 51 are suppressed, and heat is stably transferred from the electronic components 51 to the heat sink 4 . can sufficiently dissipate heat to the outside of the
 また、ヒートシンク4に径方向位置決め部430が形成されていることにより、ヒートシンク4と樹脂外郭10の径方向の組立ばらつきを小さくできるので、ヒートシンク4の突起部44の対向面441を、樹脂外郭10に固定された回路基板5上の電子部品51に軸方向に精度よく対向させることができる。また、第1の軸受71を軸心Cと同軸上に精度よく配置することができる。 In addition, since the heat sink 4 is formed with the radial positioning portion 430 , it is possible to reduce radial assembly variations between the heat sink 4 and the resin outer shell 10 . It is possible to accurately face the electronic component 51 on the circuit board 5 fixed to the shaft in the axial direction. Further, the first bearing 71 can be arranged coaxially with the axis C with high accuracy.
 したがって本実施形態によれば、ヒートシンク4と樹脂外郭10の開口端部101との間に位置決め用の別途の支持部材(例えば、特許文献1に記載の金属ブラケット)を必要とすることなく、樹脂外郭10に対してヒートシンク4を直接組み付けることができる。これにより、例えば特許文献1に記載のように、軸受を支持する金属ブラケットを介して放熱フィンを樹脂外郭の端部に固定する場合と比較して、部品点数の削減および組立作業性の向上を図ることができるだけでなく、樹脂外郭に対するヒートシンクの位置決めの精度を高めることができる。 Therefore, according to this embodiment, there is no need for a separate supporting member for positioning between the heat sink 4 and the open end 101 of the resin shell 10 (for example, the metal bracket described in Patent Document 1). A heat sink 4 can be assembled directly to the shell 10 . As a result, the number of parts can be reduced and assembly workability can be improved compared to the case where the heat radiation fins are fixed to the ends of the resin shell via metal brackets that support the bearings, as described in Patent Document 1, for example. In addition, it is possible to improve the positioning accuracy of the heat sink with respect to the resin shell.
 すなわち、樹脂外郭とヒートシンク(放熱フィン)との間に上記金属ブラケットのような他の部材が介在する場合、当該金属ブラケットやヒートシンク自体の厚みばらつき、加工寸法ばらつき、樹脂外郭と金属ブラケットの組立ばらつき、金属ブラケットとヒートシンクの組立ばらつきなどの各種ばらつきの影響を受けて、ヒートシンクと樹脂外郭との間における軸方向および径方向の相対位置のばらつきが生じやすい。このため、回路基板とヒートシンクの突起部との間における所望距離がばらつくことで、とする伝熱特性が安定して確保することができないおそれがあった。 That is, when another member such as the metal bracket is interposed between the resin shell and the heat sink (radiating fin), the thickness variation of the metal bracket and the heat sink itself, the processing size variation, and the assembly variation of the resin shell and the metal bracket Influenced by various variations such as variations in assembly of the metal bracket and the heat sink, variation in relative position between the heat sink and the resin shell in the axial and radial directions is likely to occur. For this reason, there is a possibility that the desired heat transfer characteristics cannot be stably ensured due to variations in the desired distance between the circuit board and the protrusion of the heat sink.
 これに対して本実施形態によれば、上記金属ブラケットを介在させることなく、ヒートシンク4を樹脂外郭10の開口端部101に直接組み付けているため、上記金属ブラケットの各種ばらつきの影響を小さくし、ヒートシンク4の突起部44を回路基板5(電子部品51)に対して高い精度で位置決めすることができる。これにより、ヒートシンク4の突起部44の対向面441と回路基板5の電子部品51との距離のばらつきを抑えることができる。したがって、突起部44(対向面441)と回路基板5(電子部品51)との距離が必要以上大きくなってしまう(例えば、対向面441と電子部品51との距離が、伝熱部材52の厚みと接着部材53の厚みを足した合計の厚み以上となる)ことを防ぎ、電子部品51からヒートシンク4への伝熱が妨げられ安定した放熱ができなくなってしまうのを防止できる。さらに、対向面441と電子部品51との距離が必要以上小さくなってしまうことを防ぎ、突起部44から軸方向へ加わる力で電子部品51や回路基板5が破損するのを防止できる。 In contrast, according to the present embodiment, the heat sink 4 is directly attached to the open end portion 101 of the resin shell 10 without interposing the metal bracket. The protrusion 44 of the heat sink 4 can be positioned with high precision with respect to the circuit board 5 (electronic component 51). As a result, variations in the distance between the facing surface 441 of the protrusion 44 of the heat sink 4 and the electronic component 51 of the circuit board 5 can be suppressed. Therefore, the distance between the projecting portion 44 (opposing surface 441) and the circuit board 5 (electronic component 51) becomes larger than necessary (for example, the distance between the opposing surface 441 and the electronic component 51 is greater than the thickness of the heat transfer member 52). and the thickness of the adhesive member 53), and it is possible to prevent the heat transfer from the electronic component 51 to the heat sink 4 from being hindered and stable heat dissipation to be impossible. Furthermore, it is possible to prevent the distance between the facing surface 441 and the electronic component 51 from becoming smaller than necessary, and to prevent the electronic component 51 and the circuit board 5 from being damaged by the force applied from the protrusion 44 in the axial direction.
 また、本実施形態によれば、ヒートシンク4が軸受収容部41を備えているため、上記金属ブラケットを必要とすることなく第1の軸受71を支持することができる。これにより、部品点数の削減と電動機1の組立作業性の向上を図ることができる。 Also, according to this embodiment, the heat sink 4 includes the bearing housing portion 41, so that the first bearing 71 can be supported without the need for the metal bracket. As a result, the number of parts can be reduced and the assembling workability of the electric motor 1 can be improved.
 また、本実施形態によれば、ヒートシンク4が寸法ばらつきの大きいダイカスト成型によって形成される場合に、軸方向位置決め部420と対向面441とを、旋盤による後工程で端面処理することで、ヒートシンク4の軸方向の寸法ばらつきを小さくすることができる。よって、突起部44の対向面441と電子部品51との軸方向の相対位置のばらつき(組立ばらつき)をも更に抑えて、電子部品51からヒートシンク4へと安定的に伝熱し、電動機1の外部へと十分に放熱することができる。 Further, according to the present embodiment, when the heat sink 4 is formed by die-casting with large dimensional variations, the axial positioning portion 420 and the opposing surface 441 are end-faced in a post-process using a lathe, so that the heat sink 4 dimensional variation in the axial direction can be reduced. Therefore, variation in the axial relative position (assembly variation) between the facing surface 441 of the protrusion 44 and the electronic component 51 is further suppressed, and heat is stably transferred from the electronic component 51 to the heat sink 4, thereby can sufficiently dissipate heat to
<第2の実施形態>
 図5は、本発明の第2の実施形態に係る電動機1Aの要部の概略断面図である。以下、第1の実施形態と異なる構成について主に説明し、第1の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
<Second embodiment>
FIG. 5 is a schematic cross-sectional view of essential parts of an electric motor 1A according to a second embodiment of the invention. Hereinafter, configurations different from those of the first embodiment will be mainly described, and configurations similar to those of the first embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
 図5に示されるように、本実施形態の電動機1Aは、円板部42Aと、環状突出部43Aと、突起部44とを有するヒートシンク4Aを備える。本実施形態のヒートシンク4Aは、環状突出部43Aが樹脂外郭10の開口端部101よりも外側に位置している点で、第1の実施形態と異なる。 As shown in FIG. 5, the electric motor 1A of this embodiment includes a heat sink 4A having a disk portion 42A, an annular projecting portion 43A, and a projecting portion 44. As shown in FIG. The heat sink 4A of this embodiment differs from that of the first embodiment in that the annular projecting portion 43A is located outside the open end portion 101 of the resin outer shell 10 .
 本実施形態において、円板部42Aは、樹脂外郭10の開口端部101の外径よりも大きな外径を有する。円板部42Aは、その背面424側に、樹脂外郭10の開口端部101と当接する軸方向位置決め部420Aを有する。軸方向位置決め部420Aは、第1の実施形態と同様に軸心Cに直交する平面で形成される。 In this embodiment, the disk portion 42A has an outer diameter larger than the outer diameter of the open end portion 101 of the resin outer shell 10. The disk portion 42A has an axial positioning portion 420A on its rear surface 424 side, which contacts the open end portion 101 of the resin outer shell 10 . The axial positioning portion 420A is formed of a plane perpendicular to the axis C, as in the first embodiment.
 環状突出部43Aは、円板部42Aの背面424側であって、円板部42Aの外周縁部427から軸方向に突出するように形成される。本実施形態において、外周縁部427とは、円板部42Aの、軸方向位置決め部420Aより外周側の領域である。径方向位置決め部430Aは環状突出部43Aの内周面に形成され、樹脂外郭10の外周面に当接する。 The annular projecting portion 43A is formed on the rear surface 424 side of the disk portion 42A so as to protrude in the axial direction from the outer peripheral edge portion 427 of the disk portion 42A. In this embodiment, the outer peripheral edge portion 427 is a region of the disk portion 42A on the outer peripheral side of the axial positioning portion 420A. The radial positioning portion 430A is formed on the inner peripheral surface of the annular projecting portion 43A and contacts the outer peripheral surface of the resin outer shell 10 .
 以上のように構成される本実施形態のヒートシンク4Aは、樹脂外郭10の開口端部101と当接する軸方向位置決め部420Aと、樹脂外郭10の開口端部101の外周面に当接する径方向位置決め部430を有する。このため、第1の実施形態と同様に、樹脂外郭10へのヒートシンク4Aの組み付けと同時に、樹脂外郭10に対してヒートシンク4Aが軸方向および径方向の双方向に位置決めされる。これにより、ヒートシンク4Aの突起部44を回路基板5(電子部品51)に対して高い精度で位置決めすることができるため、ヒートシンク4Aと回路基板5(電子部品51)との間の良好な伝熱特性を確保することができる。 The heat sink 4A of this embodiment configured as described above includes an axial positioning portion 420A that contacts the open end portion 101 of the resin outer shell 10, and a radial positioning portion 420A that contacts the outer peripheral surface of the open end portion 101 of the resin outer shell 10. It has a part 430 . Therefore, as in the first embodiment, the heat sink 4A is positioned both in the axial direction and the radial direction with respect to the resin outer shell 10 at the same time as the heat sink 4A is attached to the resin outer shell 10. FIG. As a result, the projections 44 of the heat sink 4A can be positioned with high accuracy with respect to the circuit board 5 (electronic components 51), so that good heat transfer can be achieved between the heat sink 4A and the circuit board 5 (electronic components 51). characteristics can be secured.
<変形例>
 以上の各本実施形態では、ヒートシンク4,4Aの突起部44が一つの場合を記載したが勿論これに限られず、電子部品等に合わせて複数設けられてもよい。例えば、異なる高さの電子部品が2つ以上ある場合、それぞれの高さに合わせた突起部を複数設けてもよいし、2つの同じ高さの電子部品が近くにある場合、一つの突起部で2つの電子部品に突出するように形成されてもよい。
<Modification>
In each of the embodiments described above, the case where the heat sink 4, 4A has one protrusion 44 has been described. For example, if there are two or more electronic components with different heights, a plurality of projections corresponding to the respective heights may be provided. may be formed so as to protrude into the two electronic components at .
 また以上の本実施形態では、電動機1のシャフト6の一方の端部に負荷(トルク)が設けられ、その負荷に対して出力をする片軸モータを例に説明したが、シャフト6の両端部に負荷(トルク)が設けられ、その負荷に対して出力をする両軸モータであってもよい。 Further, in the above-described embodiment, a load (torque) is provided at one end of the shaft 6 of the electric motor 1, and a single-shaft motor that produces an output in response to the load has been described as an example. A dual-shaft motor may be used in which a load (torque) is provided to the motor and the output is generated in response to the load.
 また、以上の本実施形態では、回路基板5は、樹脂外郭10の内周面10aに沿った円板形状であったが、もちろんこれに限られない。載置面9に支持できる形状であればよく、例えば、長方形状であってもよい。 Also, in the present embodiment described above, the circuit board 5 has a disk shape along the inner peripheral surface 10a of the resin outer shell 10, but it is of course not limited to this. It may have any shape as long as it can be supported on the mounting surface 9, and may be rectangular, for example.
 さらに以上の実施形態では、回転子本体30が外周側鉄心32、絶縁部材33および内周側鉄心34の3分割構造で構成されたが、これに限られず、単一の鉄心部材で構成されてもよい。 Furthermore, in the above embodiment, the rotor main body 30 has a three-part structure consisting of the outer core 32, the insulating member 33, and the inner core 34. However, it is not limited to this, and may be composed of a single core member. good too.
 また、回転子3は、実施形態のような表面磁石型に限られず、回転子本体30(回転子鉄心)に永久磁石が埋め込まれる磁石埋込穴が複数形成された埋込磁石型であってもよい。 Further, the rotor 3 is not limited to the surface magnet type as in the embodiment, but may be an embedded magnet type in which a plurality of magnet embedding holes for embedding permanent magnets are formed in the rotor main body 30 (rotor core). good too.
 1、1A…電動機
 4,4A…ヒートシンク
 10…樹脂外郭
 101…開口端部
 2…固定子
 21…固定子鉄心
 3…回転子
 31…永久磁石部
 32…外周側鉄心
 33…絶縁部材
 34…内周側鉄心
 4…ヒートシンク
 41…第1の軸受収容部
 42,42A…円板部
 43,43A…環状突出部
 44…突起部
 420,420A…軸方向位置決め部
 430,430A…環状突出部
 5…回路基板
 51…電子部品
 6…回転シャフト
 C…軸心
DESCRIPTION OF SYMBOLS 1, 1A... Electric motor 4, 4A... Heat sink 10... Resin shell 101... Opening end part 2... Stator 21... Stator iron core 3... Rotor 31... Permanent magnet part 32... Outer circumference side iron core 33... Insulating member 34... Inner circumference Side iron core 4 Heat sink 41 First bearing accommodating portion 42, 42A Disk portion 43, 43A Annular projection 44 Projection 420, 420A Axial positioning portion 430, 430A Annular projection 5 Circuit board 51... Electronic component 6... Rotary shaft C... Axis center

Claims (8)

  1.  軸方向の一端側に開口端部を有する円筒状の樹脂外郭と、前記樹脂外郭と一体的に形成された固定子鉄心と、前記固定子鉄心の内径側に配置された回転子と、前記樹脂外郭の前記開口端部を覆うヒートシンクと、前記樹脂外郭と前記ヒートシンクとで覆われた内部空間に配置される回路基板と、を備え、
     前記ヒートシンクは、
     円板部と、
     前記円板部から前記軸方向の前記回路基板側に突出する環状突出部と、
     前記環状突出部よりも前記樹脂外郭の内径側に配置され、前記円板部から前記回路基板側に向かって突出し前記回路基板と熱的に接触する突起部と、
     を有し、
     前記円板部は、前記樹脂外郭の前記開口端部と当接する軸方向位置決め部を有し、
     前記環状突出部は、前記樹脂外郭の内周面または外周面に当接する径方向位置決め部を有する
     電動機。
    A cylindrical resin shell having an open end at one end in the axial direction, a stator core formed integrally with the resin shell, a rotor disposed on the inner diameter side of the stator core, and the resin a heat sink covering the open end of the outer shell; and a circuit board arranged in an internal space covered with the resin outer shell and the heat sink,
    The heat sink
    a disk portion;
    an annular projecting portion projecting from the disk portion toward the circuit board in the axial direction;
    a protruding portion disposed on the inner diameter side of the resin outer shell relative to the annular protruding portion, protruding from the disk portion toward the circuit board side and in thermal contact with the circuit board;
    has
    The disk portion has an axial positioning portion that contacts the open end portion of the resin outer shell,
    The said annular protrusion part has a radial direction positioning part contact|abutted to the inner peripheral surface or outer peripheral surface of the said resin outer shell. Electric motor.
  2.  請求項1に記載の電動機であって、
     前記径方向位置決め部は、前記環状突出部の外周面に形成されるとともに、前記樹脂外郭の内周面に当接する
     電動機。
    The electric motor according to claim 1,
    The radial positioning portion is formed on the outer peripheral surface of the annular projecting portion and is in contact with the inner peripheral surface of the resin outer shell.
  3.  請求項1又は2に記載の電動機であって、
     前記軸方向位置決め部は、前記円板部の前記環状突出部より外周側に位置する
     電動機。
    The electric motor according to claim 1 or 2,
    The axial positioning portion is located on the outer peripheral side of the annular projecting portion of the disk portion.
  4.  請求項1~3のいずれか1つに記載の電動機であって、
     前記突起部の前記軸方向への突出高さは、前記環状突出部の突出高さよりも大きい
     電動機。
    The electric motor according to any one of claims 1 to 3,
    The projection height in the axial direction of the projection is greater than the projection height of the annular projection.
  5.  請求項1~4のいずれか1つに記載の電動機であって、
     前記回路基板は、通電により発熱する電子部品を含み、
     前記突起部は、前記電子部品に対向する対向面を有する
     電動機。
    The electric motor according to any one of claims 1 to 4,
    The circuit board includes electronic components that generate heat when energized,
    The electric motor, wherein the protrusion has a facing surface facing the electronic component.
  6.  請求項1~5のいずれか1つに記載の電動機であって、
     前記樹脂外郭は、前記回路基板が固定される載置面を有する
     電動機。
    The electric motor according to any one of claims 1 to 5,
    The electric motor, wherein the resin shell has a mounting surface to which the circuit board is fixed.
  7.  請求項1~6のいずれか1つに記載の電動機であって、
     前記電動機は、前記回転子が固定される回転シャフトと、前記回転シャフトを回転自在に支持する第1の軸受とを有し、
     前記ヒートシンクは、前記第1の軸受を収容する軸受収容部をさらに有する
     電動機。
    The electric motor according to any one of claims 1 to 6,
    The electric motor has a rotating shaft to which the rotor is fixed, and a first bearing that rotatably supports the rotating shaft,
    The electric motor, wherein the heat sink further includes a bearing accommodating portion that accommodates the first bearing.
  8.  請求項2~4のいずれか1つに記載の電動機の製造方法であって、
     前記ヒートシンクは、ダイカスト成型によって形成される
     電動機の製造方法。
    A method for manufacturing an electric motor according to any one of claims 2 to 4,
    The method of manufacturing an electric motor, wherein the heat sink is formed by die casting.
PCT/JP2022/010907 2021-03-29 2022-03-11 Electric motor WO2022209762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280023589.XA CN117044086A (en) 2021-03-29 2022-03-11 Motor with a motor housing having a motor housing with a motor housing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021055494A JP7255621B2 (en) 2021-03-29 2021-03-29 Electric motor and method for manufacturing electric motor
JP2021-055494 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209762A1 true WO2022209762A1 (en) 2022-10-06

Family

ID=83456113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010907 WO2022209762A1 (en) 2021-03-29 2022-03-11 Electric motor

Country Status (3)

Country Link
JP (1) JP7255621B2 (en)
CN (1) CN117044086A (en)
WO (1) WO2022209762A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037262A (en) * 2005-07-26 2007-02-08 Mitsubishi Electric Corp Rotating electric machine with integrated inverter
JP2009131127A (en) * 2007-11-28 2009-06-11 Panasonic Corp Brushless motor
WO2020217790A1 (en) * 2019-04-24 2020-10-29 株式会社富士通ゼネラル Stator and electric motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037262A (en) * 2005-07-26 2007-02-08 Mitsubishi Electric Corp Rotating electric machine with integrated inverter
JP2009131127A (en) * 2007-11-28 2009-06-11 Panasonic Corp Brushless motor
WO2020217790A1 (en) * 2019-04-24 2020-10-29 株式会社富士通ゼネラル Stator and electric motor

Also Published As

Publication number Publication date
JP7255621B2 (en) 2023-04-11
CN117044086A (en) 2023-11-10
JP2022152645A (en) 2022-10-12

Similar Documents

Publication Publication Date Title
US20070252451A1 (en) Motor having heat-dissipating structure for circuit component and fan unit including the motor
JP6726630B2 (en) Blower motor unit for air conditioning
JP2009131127A (en) Brushless motor
JP2008148367A (en) Rotary electric machine
JP6768142B2 (en) Axial gap type rotary electric machine
EP3573219B1 (en) Electric motor, air conditioner, and method for manufacturing electric motor
US11962229B2 (en) Motor, fan, air conditioner, and manufacturing method of motor
JP7255621B2 (en) Electric motor and method for manufacturing electric motor
JPH08275432A (en) Motor and its manufacturing method
JP2021118624A (en) motor
WO2020213601A1 (en) Motor, blower, air-conditioning apparatus, and method for manufacturing motor
WO2022209765A1 (en) Electric motor
JP7375805B2 (en) Electric motor
JP7255623B2 (en) Electric motor
JP7327462B2 (en) Electric motor
CN112615458B (en) Motor
JP3509287B2 (en) Brushless DC motor
JP7400436B2 (en) motor and electric pump
WO2022180708A1 (en) Stator, electric motor, and air conditioner
WO2006016578A1 (en) Stepping motor
WO2021020195A1 (en) Electric motor, fan, air conditioner, and method for manufacturing electric motor
JP2023019431A (en) Electric motor
JPH11234945A (en) Cooling fan device
JP2021061656A (en) motor
AU2022428570A1 (en) Electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280023589.X

Country of ref document: CN

Ref document number: 2301006051

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779983

Country of ref document: EP

Kind code of ref document: A1