WO2007142013A1 - 水素化処理方法、環境低負荷型ガソリン基材および無鉛ガソリン組成物 - Google Patents

水素化処理方法、環境低負荷型ガソリン基材および無鉛ガソリン組成物 Download PDF

Info

Publication number
WO2007142013A1
WO2007142013A1 PCT/JP2007/060303 JP2007060303W WO2007142013A1 WO 2007142013 A1 WO2007142013 A1 WO 2007142013A1 JP 2007060303 W JP2007060303 W JP 2007060303W WO 2007142013 A1 WO2007142013 A1 WO 2007142013A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
oil
content
gasoline
mass
Prior art date
Application number
PCT/JP2007/060303
Other languages
English (en)
French (fr)
Inventor
Takashi Kaneko
Hideshi Iki
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006138298A external-priority patent/JP4914643B2/ja
Priority claimed from JP2006138360A external-priority patent/JP5137335B2/ja
Priority claimed from JP2006138300A external-priority patent/JP4914644B2/ja
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Publication of WO2007142013A1 publication Critical patent/WO2007142013A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/10Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a method for hydrotreating oil to be treated containing fat and oil components derived from animal and vegetable oils, and to an environmentally low-load gasoline substrate obtained by the hydrotreating method. Furthermore, the present invention relates to an unleaded gasoline composition that contains the low environmental load gasoline base material and is excellent in exhaust gas purification performance, fuel consumption performance, and driving performance.
  • gasoline is manufactured by blending one or more base materials of gasoline fraction obtained by processing crude oil with various refining equipment such as catalytic reforming equipment and catalytic cracking equipment. (For example, see Non-Patent Document 1).
  • biomass energy derived from plants can effectively use hydrocarbons converted from carbon dioxide by photosynthesis during plant growth, so from the viewpoint of life cycle, increase of carbon dioxide in the atmosphere. It does not lead to a so-called carbon neutral property. If such biomass energy can be used, for example, fuel derived from animal and vegetable oils as gasoline fuel, it is expected to play an effective role in reducing carbon dioxide emissions due to the high penetration rate of gasoline engines.
  • Base materials derived from biomass that can be blended with gasoline include sugarcane and corn Ethanol (biomass-derived ethanol) produced by fermenting starch-based carbohydrate components such as koshi in yeast, and the biomass-derived ethanol and refinery fluidized catalytic cracker (FCC) etc.
  • ET BE produced by reacting with isoprene obtained by separation from mixed ptylene generated from a steam cracker (steam cracker) or the like is known (for example, see Non-Patent Document 2).
  • fatty acid alkyl ester mixtures made from natural animal and vegetable oils and fats are being studied for use as fuel for diesel vehicles, either alone or by mixing with existing diesel oil (see Non-Patent Document 3, for example).
  • Non-Patent Document 3 for example.
  • Such fatty acid methyl ester oil is produced by transesterification with methanol with alkali or the like for the triglyceride structure, which is a general structure of animal and plant oil.
  • Patent Document 1 it is necessary to treat by-produced glycerin, and it is costly to wash the produced oil. It has been pointed out to do.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-154647
  • Non-Patent Document 1 Fuel Association, “New edition fuel manual”, Corona, 1 March 974, p. 264-267
  • Non-Patent Document 2 Document 3 of the 3rd Renewable Fuel Utilization Promotion Conference (October 10, 2003), Ministry of the Environment
  • Non-patent document 3 The 7th report of the Central Environment Council, July 29, 2003
  • the present invention provides an oxygen content and sulfur content that are sufficiently reduced and a normal paraffin content when an oil to be treated containing an oxygen-containing hydrocarbon compound or a sulfur-containing hydrocarbon compound is used.
  • Hydrorefining method capable of obtaining a hydrotreated oil with a sufficiently small amount, an environmentally low load gasoline base material obtained by using such a hydroprocessing method, and lead-free containing the environmentally low load gasoline base material The purpose is to provide gasoline composition.
  • the present invention is selected from an oil to be treated containing an oxygen-containing hydrocarbon compound in the presence of hydrogen, a carrier containing a crystalline metallosilicate, and an element of Group 8 of the periodic table carried on the carrier.
  • a hydroprocessing method characterized in that hydroprocessing oil is obtained by contacting with a catalyst containing one or more metals.
  • the present invention also provides an oil to be treated containing an oxygen-containing hydrocarbon compound and a sulfur-containing hydrocarbon compound in the presence of hydrogen, a carrier containing a crystalline metallosilicate, and a periodic table carried on the carrier.
  • a hydroprocessing method characterized in that hydroprocessing oil is obtained by contacting with a catalyst containing one or more metals selected from Group A and Group 8 elements.
  • the oxygen content and the sulfur content are sufficiently reduced and the normal paraffin content is obtained by bringing the oil to be treated containing the oxygenated hydrocarbon compound into contact with the specific catalyst. This makes it possible to obtain a hydrotreated oil that is sufficiently low in terms of economic efficiency.
  • the content of oxygen in the fraction of the boiling point range of 80 to 1355 ° C. of the obtained hydrotreated oil is 0.2% by mass or less and the content of normal paraffin It is preferable that the oil to be treated and the catalyst are brought into contact with each other under the condition that the amount is 30 mass% or less.
  • a hydrotreated oil containing a higher content of components useful as a gasoline base material can be obtained.
  • the oxygen content and sulfur content are sufficiently reduced and An environmentally low-load gasoline base material with a sufficiently low lumal paraffin content can be obtained economically and effectively.
  • an oil to be treated containing an oxygen-containing hydrocarbon compound, a carrier containing a crystalline metallosilicate, and a periodic table carried on the carrier.
  • the oxygen content is 0.1 to 15% by mass based on the total amount of oil to be treated.
  • the sulfur content is preferably 50 mass ppm or less.
  • an oil to be treated containing an oxygen-containing hydrocarbon compound and a sulfur-containing hydrocarbon compound, a carrier containing a crystalline metasilicate silicate, and a periodic rule carried on the carrier.
  • Table 6 When contacting a catalyst containing one or more metals selected from Group A and Group 8 elements, the oxygen content is 0.1 to 1 based on the total amount of oil to be treated. 5 mass. / 0 , and the sulfur content is 1 mass pp ⁇ ! ⁇ 1 mass. / 0 is preferred.
  • the oxygen-containing hydrocarbon compound is an oil and fat component derived from animal and vegetable oils from the viewpoint of effective use of biomass energy.
  • the proportion of the compound having a triglyceride structure in the oxygen-containing hydrocarbon compound is preferably 90 mol% or more.
  • the Group 8 element contained in the catalyst is preferably one or more metals selected from Pd, Pt, Rh, Ir, Au and Ni. .
  • the Group 6A and Group 8 elements contained in the catalyst are preferably one or more metals selected from Co, Mo and Ni.
  • the crystalline metallosilicate gate contained in the catalyst has a faujasite structure.
  • the crystalline metallosilicate is a super-stabilized Y-type zeolite having a silica to alumina molar ratio (silica / alumina) in the range of 10 to 100. That's right. When this molar ratio is less than 10, coke formation tends to be promoted and a significant decrease in activity tends to be caused. When the molar ratio exceeds 100, hydrotreatment activity becomes insufficient and useful as a fuel substrate. There is a tendency that the yield of the various components decreases.
  • the present invention includes an environmentally low load gasoline characterized in that it includes a fraction having a boiling point in the range of 25 to 220 ° C among the hydrotreated oil obtained by the hydrotreating method of the present invention.
  • a substrate is provided.
  • the environmentally low load gasoline base material has an oxygen content of 0.2% by mass or less and a normal paraffin content of 30% by mass. / 0 or less is preferable.
  • the present invention provides an unleaded gasoline composition comprising the environmentally low load gasoline substrate.
  • the unleaded gasoline composition containing the environmentally low-load gasoline base material of the present invention can effectively realize reduction of carbon dioxide emissions.
  • the lead-free gasoline composition of the present invention is a lead-free gasoline composition having a research octane number of 89.0 or more and less than 96.0 and a sulfur content of 10 mass ppm or less.
  • An unleaded gasoline composition having a sulfur content of 10 mass ppm or less is preferred.
  • the unleaded gasoline composition of the present invention has a 10% distillation temperature of 70 ° C or less, a 50% distillation temperature of 75 ° C or more and 1 10 ° C or less, a 90% distillation temperature of 180 ° C or less, and a distillation end point. or 22 0 ° C or less, vapor pressure (37. 8 ° C) is 44 k P a or 93 k P a less density (1 5 ° C) is 0. 783 g / cm 3 or less, oxidation stability is 240 Min.
  • the unleaded gasoline composition of the present invention has an aromatic content of 45 volumes. /.
  • the olefin content is preferably 3.5% by volume or less.
  • the lead-free gasoline composition of the present invention has a manganese content of 2 mass ppm or less, an iron content of 2 mass ppm or less, a sodium content of 2 mass ppm or less, and a potassium content. It is preferable that the mass is 2 mass ppm or less and the phosphorus content is 2 mass ppm or less.
  • the unleaded gasoline composition of the present invention preferably contains an antioxidant and a metal deactivator, preferably contains a cleaning dispersant, and preferably contains a friction modifier.
  • an oil to be treated containing an oxygen-containing hydrocarbon compound or a sulfur-containing hydrocarbon compound when used, the oxygen content and sulfur content are sufficiently reduced and the normal paraffin content is low.
  • a hydroprocessing method capable of obtaining a sufficiently small amount of hydroprocessing oil economically and effectively.
  • an environmentally low-load gasoline base material and an unleaded gasoline composition capable of effectively realizing reduction of carbon dioxide emissions are provided.
  • an oil to be treated containing an oxygen-containing hydrocarbon compound or an oil to be treated containing a sulfur-containing hydrocarbon compound is used.
  • the oxygen-containing hydrocarbon compound a plant-derived or animal-derived oil or fat component which is biomass is suitable.
  • the fat and oil component in the present invention includes animal and vegetable oils and fats and animal and vegetable oil components and / or components produced and produced from natural or artificially produced and manufactured, and the performance of these fat and oil products. Ingredients added for the purpose of maintaining and improving the above are included.
  • fat components derived from animal and vegetable oils include vegetable oils such as rapeseed oil, corn oil, soybean oil, grape seed oil and palm oil, and animal oils such as beef tallow and lard.
  • vegetable oils and fats are preferable from the viewpoint of carbon neutral, and rapeseed oil, soybean oil and palm oil are more preferable from the viewpoints of the number of fatty acid alkyl chain carbons and their reactivity.
  • Oils and fats derived from animal and vegetable oils generally have a fatty acid triglyceride structure, but may contain other oils and fats added to esters such as fatty acids and fatty acid methyl esters. However, since carbon dioxide is generated when fatty acids and fatty acid esters are produced from vegetable oils and fats, components with a triglyceride structure are mainly used as vegetable oils and fats from the viewpoint of reducing carbon dioxide emissions. preferable.
  • the proportion of the compound having a triglyceride structure in the oxygenated hydrocarbon compound contained in the oil to be treated is preferably 90 mol% or more, more preferably 92 mol% or more. Preferably, it is 95 mol% or more.
  • Oxygen component contained in the treated oil based on the treated oil total amount, preferably from 0.1 to 1 5 weight 0/0, more preferably 1-1 5 mass 0/0, more preferably 3 to 1 4 Mass. / 0 , particularly preferably 5 to 13% by mass.
  • the oxygen content is less than 0.1% by mass, it tends to be difficult to stably maintain the deoxidation activity and the desulfurization activity.
  • the oxygen content exceeds 15% by mass, equipment required for the treatment of by-product water is required, and the interaction between water and the catalyst carrier becomes excessive, resulting in decreased activity and catalyst strength. Or drop.
  • the oxygen content can be measured with a general element analyzer. For example, the sample is converted to carbon monoxide on platinum carbon, or further converted to carbon dioxide, and then the thermal conductivity is detected. It can be measured using a measuring instrument.
  • the oil to be treated may contain a sulfur-containing hydrocarbon compound.
  • a sulfur-containing hydrocarbon compound Specifically, a sulfide, a disnoredo, a polysnoredo, a thiol, a thiophene, a benzothiophene, a dibenzothiophene, these derivatives, etc. are mentioned.
  • the sulfur-containing hydrocarbon compound contained in the oil to be treated may be a single compound or a mixture of two or more. Further, as the sulfur-containing hydrocarbon compound, a petroleum hydrocarbon fraction containing a sulfur content can also be used.
  • a fraction obtained in a general petroleum refining process can be used.
  • a fraction corresponding to a predetermined boiling range may be used.
  • the fractions obtained from each of the above apparatuses may be used alone or in combination of two or more.
  • the oil to be treated may contain chemical-derived compounds such as plastics and solvents, and is obtained via a Fischer-Tropsch reaction using a synthesis gas composed of carbon monoxide and hydrogen as a raw material. It may contain oil.
  • the sulfur content contained in the oil to be treated is the oil to be treated containing the oxygen-containing hydrocarbon compound, the carrier containing the crystalline meta-orthosilicate, and the periodic rule carried on the carrier.
  • the total amount of oil to be treated is preferably 50 mass 1 11 or less.
  • an oil to be treated containing an oxygen-containing hydrocarbon compound and a sulfur-containing hydrocarbon compound, a carrier containing crystalline metallosilicate, and elements of Group 6A and Group 8 of the periodic table carried on the carrier.
  • a catalyst containing one or more metals selected from the above it is preferably 1 mass ppm to 1 mass%, more preferably 15 mass ppm to 0, based on the total amount of oil to be treated. 5 mass. /. More preferably, it is 30 mass ppm to 0.1 mass%.
  • the sulfur content in the present invention means the mass content of the sulfur content measured in accordance with the method described in JISK 25 4 1 “Sulfur content test method” or AS TM-5 4 5 3.
  • the sulfur-containing hydrocarbon compound may be mixed in advance with the oil to be treated and the mixture introduced into the reactor of the hydrotreating apparatus, or when the oil to be treated is introduced into the reactor, You may supply in.
  • the oil to be treated used in the present invention preferably contains a fraction having a boiling point of 300 ° C or higher and does not contain a heavy fraction having a boiling point of more than 700 ° C. preferable.
  • oil to be treated that does not contain a fraction having a boiling point of 300 ° C. or higher it tends to be difficult to obtain a sufficient yield due to excessive decomposition.
  • the oil to be treated contains a heavy fraction having a boiling point exceeding 70 ° C., carbon deposition in the catalyst is promoted by the heavy components, and the activity tends to decrease.
  • the boiling point in the present invention is a value measured in accordance with the method described in JISK 2 25 4 “Distillation test method” or AS TM-D 86.
  • the hydrotreating method of the present invention includes an oil to be treated containing an oxygen-containing hydrocarbon compound in the presence of hydrogen, a carrier containing crystalline metallosilicate, and a periodic table group 8 carried on the carrier.
  • a first method is a method in which a catalyst containing one or more metals selected from these elements is contacted and hydrotreated (hereinafter referred to as hydrotreating A).
  • hydrotreating method of the present invention in the presence of hydrogen, an oil to be treated containing an oxygen-containing hydrocarbon compound and a sulfur-containing hydrocarbon compound, a carrier containing a crystalline metallosilicate, and a carrier supported on the carrier.
  • the second method is to perform hydroprocessing (hereinafter referred to as hydroprocessing B) with a catalyst containing one or more metals selected from Group A and Group 8 elements of the Periodic Table. Provided as a method. '
  • a porous inorganic oxide composed of crystalline meta-mouth silicate is used as the carrier for the catalyst used in the present invention.
  • the crystalline metallosilicate preferably has a structure represented by each code of FAU, AEL, MFI, MMW, TON, MTW, * BEA, M0R among the structures specified by the International Zeolite Society. Those having a structure represented by the codes FAU, * BEA, MOR, and MFI are more preferable.
  • the crystalline meta-mouth silicate has a structure represented by FAU which is also called a faujasite type.
  • the crystalline metallosilicate is particularly preferably Y-type that has been subjected to ultrastabilization treatment.
  • Ultra-stabilization treatment refers to hydrothermal treatment and / or washing treatment with an acidic aqueous solution.
  • the structure contains aluminum
  • the content is adjusted, and the pore diameter is 2 to 50 nm.
  • the crystalline metamouth silicate contained in the catalyst support is preferably a crystalline aluminosilicate composed of three elements of aluminum, silicon and oxygen.
  • zeolite containing silica and alumina can be used as the crystalline aluminosilicate.
  • Preferred examples include Y-type zeolite, ultra-stabilized ⁇ -type zeolite (USY-type zeolite), 3 type zeolite, mordenite, ZSM-5, etc. Among them, US Y zeolite is particularly preferable.
  • one type of crystalline aluminosilicate gate may be used alone, or two or more types may be used in combination.
  • the molar ratio of silica force to alumina is in the range of 10 to 100.
  • the molar ratio is less than 10, coke formation tends to be promoted and a significant decrease in activity tends to be caused.
  • the molar ratio exceeds 100, the hydrotreating activity becomes insufficient, and the fuel substrate As a result, the yield of useful components tends to decrease.
  • the catalyst support contains, as a crystalline metallosilicate, a superstabilized Y-type zeolite having a molar ratio of silica to alumina (silica alumina) in the range of 10 to 100. Is particularly preferred.
  • the method for synthesizing the crystalline metallosilicate is not particularly limited, and a generally known method can be used.
  • a crystalline metallosilicate can be synthesized by heating a constituent raw material in the presence of a structure indicator if necessary.
  • the constituent raw materials include silicon-containing compounds such as sodium silicate, colloidal silica, and alkoxide of silicate, and aluminum-containing compounds such as aluminum hydroxide and sodium aluminate.
  • the structure directing agent include amine compounds such as tetrapropyl ammonium salt.
  • the catalyst used in the present invention may contain components other than the crystalline metallosilicate.
  • components other than the crystalline metallosilicate include inorganic oxides containing elements selected from aluminum, silicon, zirconium, boron, titanium, and magnesium. These inorganic oxides can function as a bonding agent when forming a crystalline metallosilicate, and can also function as an active ingredient that promotes hydrodeoxygenation and hydroisomerization. From the viewpoint of obtaining these functions more reliably, the inorganic oxide preferably contains two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium.
  • the content of the crystalline metal silicate in the entire catalyst is preferably from 0.2 to 90% by mass, more preferably from 5 to 85% by mass, and even more preferably from 10 to 80% by mass.
  • the content is less than 2% by mass, the hydrodeoxygenation activity and hydroisomerization activity of the catalyst tend to be insufficient, and the content is 90% by mass. If it exceeds / 0 , the catalyst moldability becomes too low, making it difficult to industrially produce the catalyst.
  • a catalyst is used in which one or more metals selected from elements of Group 8 of the periodic table are supported on the porous inorganic oxide support. Among these metals, one or more metals selected from Pd, Pt, Rh, Ir, Au, and Ni are preferable.
  • the preferred combinations are Pd—Pt, Pd—Ir, Pd—Rh, Pd—Au, Pd—Ni, and Pt—Rh. , P t—I r, P t—Au, P t—N i, Rh—I r, R h —Au, Rh—N i, I r ⁇ 1 Au, I r—N i, Au—N i, P d—P t—Rh, P d—P t—I r, P t—P d—N i and the like.
  • Rh, P d— P t— N i, P d— P t— I r is preferred, and P d — P t, P d— N i, P t— N i, P d— I r, P t —
  • a combination of I r, P d — P t — N i, P d — P t — I r is more preferable.
  • the total of metals selected from Group 8 elements of the periodic table is preferably within the range of 0.1 to 2% by mass, 0.2 to 1 More preferably within the range of 5% by mass, even more preferably within the range of 0.5 to 1.3% by mass. If the total content of the above metals is less than 0.1% by mass, the active sites tend to decrease and sufficient activity cannot be obtained. On the other hand, if it exceeds 2% by mass, the metal tends not to disperse effectively and sufficient activity tends not to be obtained.
  • a catalyst in which one or more metals selected from Group 6A and Group 8 elements of the periodic table are supported on the porous inorganic oxide support is used.
  • these metals it is preferable that one or more metals selected from Co, Mo, and Ni are supported, and two or more metals of Co, Mo, and Ni may be supported in combination. More preferred. Suitable combinations include Co—Mo, Ni i Mo, and Ni—Co—Mo.
  • the porous inorganic oxide carries at least one metal selected from elements of Group 6A of the periodic table. In the hydrotreatment, it is preferable to convert these metals into a sulfide state.
  • the catalyst mass As the content of the active metal based on the total amount of such metals is 15 to 35 mass. / Is preferably in the range of 0 , more preferably in the range of 17 to 30% by mass. If the total metal content is less than 15% by mass, the active sites tend to decrease and sufficient activity cannot be obtained. On the other hand, if it exceeds 35% by mass, the metal is not effectively dispersed and sufficient activity tends not to be obtained.
  • the values in terms of oxide are adopted.
  • the method of incorporating these active metals into the catalyst is not particularly limited, and a known method applied when producing an ordinary desulfurization catalyst can be used.
  • a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed.
  • the equilibrium adsorption fe, the Por-f i l i n g method, the In c i p i e n t -we t ns ss method and the like are preferably employed.
  • the Por-f i 11 i ng method is a method in which the pore volume of a support is measured in advance and impregnated with a metal salt solution of the same volume.
  • the impregnation method is not particularly limited, and it can be impregnated by an appropriate method according to the amount of metal supported and the physical properties of the catalyst support.
  • the number of types of hydrotreating catalyst to be used is not particularly limited.
  • one type of catalyst may be used alone, or a plurality of catalysts having different active metal species and carrier components may be used.
  • a plurality of catalysts having different support components are combined, for example, the content of the crystalline metallosilicate is included in the subsequent stage of the catalyst in which the content of the crystalline metallosilicate is 5% by mass or less based on the total mass of the support.
  • Use a catalyst whose amount is in the range of 2-90% by mass.
  • a guard catalyst is removed for the purpose of trapping the scale that flows along with the oil to be treated, if necessary, and supporting the hydrotreating catalyst at the partition of the catalyst bed.
  • Metal catalysts and inert packing may be used. These can be used alone or in combination.
  • the conditions for contacting the above oil to be treated with the catalyst in the presence of hydrogen are as follows: hydrogen pressure 2 to 13 MPa, liquid space velocity (LHSV) 0.:! To 3.
  • the reaction temperature is preferably 2550 to 5500C, more preferably 2800 to 4800C, and further preferably 3200 to 4600C.
  • a reactor type a fixed bed system can be adopted. That is, hydrogen can adopt either a countercurrent or a cocurrent flow with respect to the oil to be treated. It is also possible to use a combination of counter flow and parallel flow using multiple reactors. As a general format, it is a down flow, and a gas-liquid twin parallel flow format can be adopted. In addition, the reactors may be used singly or in combination, and a structure in which one reactor is divided into a plurality of catalyst beds may be adopted.
  • the hydrotreated oil hydrotreated in the reactor is fractionated into hydrotreated oil containing a predetermined fraction through a gas-liquid separation process and a rectification process.
  • a light oil fraction is fractionated into a residual fraction.
  • gas, naphtha and kerosene fractions may be fractionated as necessary.
  • Water, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. may be generated due to the reaction of oxygen and sulfur contained in the oil to be treated.
  • Gas-liquid separation equipment and other by-product gas removal equipment may be installed in the material recovery process.
  • hydrogen gas is introduced from the inlet of the first reactor along with the oil to be treated before or after passing through the heating furnace, but separately from this, the temperature in the reactor is controlled.
  • hydrogen gas may be introduced between the catalyst beds or between a plurality of reactors.
  • Hydrogen introduced in this way is generally called Quench hydrogen.
  • the ratio of quench hydrogen to hydrogen gas introduced along with the oil to be treated is preferably 10 to 60% by volume, and 15 to 50% by volume. More preferably / 0 . If the proportion of Taenti hydrogen is less than 10 volumes, the reaction at the subsequent reaction site tends not to proceed sufficiently. If it exceeds 60% by volume, the reaction near the reactor inlet tends not to proceed sufficiently.
  • the kerosene fraction and / or light oil fraction and / or residue obtained by the hydrotreating method of the present invention may be mixed with the oil to be treated, or may be subjected to a recycling treatment. Thereby, the yield of a gasoline fraction can be raised more.
  • the oxygen content of the base material consisting of all or a part of the fraction having a distillation temperature range of 25 ° C. to 220 ° C. is 0.2 mass. %
  • the normal paraffin content is preferably 30% by mass or less.
  • the oxygen content in the fraction is 0.2 mass. / 0 or less and the content of normal paraffins it is more preferable hydrotreating the treated oil under conditions such that a 2 to 5% by weight.
  • the remaining oxygen content is mainly present in the state of one of a hydroxyl group, an aldehyde group, a carboxyl group, or a plurality of these functional groups.
  • the oxygen content in the fraction exceeds 0.2% by mass, there is a concern that the corrosivity increases and the aldehyde concentration in the exhaust gas increases.
  • the content of normal paraffin in the above fraction exceeds 30% by mass, the octane number as a gasoline base material will decrease, and when used in gasoline products, the knocking resistance at high speed will deteriorate. There is a fear.
  • the reaction temperature and the liquid space velocity are adjusted so as to satisfy the conditions for the hydrotreated oil.
  • a component useful as a gasoline base material can be obtained in high yield from the oil to be treated.
  • the normal paraffin content can be obtained by measuring in accordance with JISK 2 5 3 6-2 “Method for obtaining one component of petroleum products, one method for obtaining total analysis by gas chromatograph”.
  • a hydrotreated oil consisting of all or part of a fraction having a distillation temperature range of 25 ° C. to 220 ° C. produced by the present invention is preferably used as a gasoline base.
  • the unleaded gasoline composition of the present invention (hereinafter also referred to as gasoline of the present invention) contains such a gasoline base (hereinafter also referred to as environmentally low load gasoline base of the present invention).
  • distillate ranges include light fractions from 25 ° C to 70 ° C, middle distillates from 70 ° C to 160 ° C, and 160 ° C to 220 ° C. Examples include heavy fractions. In addition, it is also possible to use the remainder obtained by removing a part of the fraction range from the fraction of 25 ° C to 220 ° C as the base material. it can.
  • a light fraction is preferable. Specifically, a fraction at 150 ° C or lower is preferable, a fraction at 120 ° C or lower is more preferable, and a fraction at 100 ° C or lower is preferable. A fraction is more preferred.
  • the base material of the present invention when the environmentally low load gasoline base material of the present invention is blended, the base material can be subjected to treatment such as desulfurization as necessary.
  • the treatment such as desulfurization may be performed on the entire fraction of the base material to be blended or on a part of the fraction.
  • the low environmental load gasoline base material of the present invention can be treated with a catalytic reformer and blended with the gasoline of the present invention as a higher octane gasoline base material.
  • the content of the environmentally low load gasoline base material of the present invention is preferably 3% by volume or more based on the total amount of gasoline from the viewpoint of containing a large amount of biomass-derived base materials. A volume% or more is more preferable.
  • the content of the base material is preferably 30% by volume or less, more preferably 25% by volume or less, and further preferably 20% by volume or less. preferable.
  • the gasoline of the present invention is not particularly limited to the base material to be combined except for the environmentally low load gasoline base material of the present invention, and can be produced by any conventionally known method. A gasoline base material can also be blended.
  • straight-run propane fraction centered on propane straight-run butane fraction centered on butane obtained from crude oil distillation equipment, naphtha reforming equipment, alkylation equipment, etc.
  • Straight-run desulfurized propane fraction obtained by desulfurization treatment straight-run desulfurized butane fraction, cracked propane fraction centered on propane / propylene obtained from catalytic cracker etc., cracking centered on butane'butene Butane fraction, naphtha fraction obtained by atmospheric distillation of crude oil (hole range naphtha), naphtha light fraction, naphtha heavy fraction, desulfurized whole range naphtha desulfurized whole range naphtha, light Desulfurized light naphtha obtained by desulfurizing naphtha, desulfurized heavy naphtha obtained by desulfurizing heavy naphtha, isomerized gasoline obtained by converting light naphtha into isoparaffin using an isomerizer,
  • the blending amounts of these base materials are arbitrary as long as the gasoline of the present invention is adjusted so as to have a necessary property range, but typical examples of blending ranges of base materials are shown below.
  • gasoline of the present invention may contain an oxygen-containing compound.
  • oxygen-containing compound examples include alcohols having 2 to 4 carbon atoms and ethers having 4 to 8 carbon atoms.
  • Specific oxygen-containing compounds include, for example, ethanol, methyl tert-butyl ether (MTBE), tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), tert-amyl ether Can be mentioned. Of these, ethanol, MTBE, and ETBE are preferred. From the viewpoint of suppressing carbon dioxide emissions, biomass-derived ethanol and ETB produced using biomass-derived ethanol as a raw material can be particularly preferably used. Methanol is corrosive and may have a high concentration of aldehyde in the exhaust gas. W
  • the content of oxygenated compounds in the gasoline of the present invention is 3.8% by mass or less in terms of oxygen atom, from the viewpoint of compatibility with automobile fuel system components and suppressing NOx in exhaust gas. Is more preferable, and 3.5 mass% or less is more preferable, and 2.7 mass. / 0 or less is more preferable, and 1. 3% by mass or less is most preferable.
  • the research method octane number (RON) of the gasoline of the present invention requires 89.0 or more, and more preferably 90.0 or more, from the viewpoint of knocking resistance, speed of calorie, and drivability.
  • the RON is 96 from the viewpoint that the increase in CO 2 emissions during gasoline production exceeds the reduction in CO 2 emissions during driving. Must be less than 0.
  • the motor method octane number (MON) of the gasoline of the present invention is preferably 80.0 or more, and more preferably 81.0 or more.
  • the RON needs to be 96.0 or more in order to maximize the knocking resistance, acceleration and driving performance. More preferably, it is 98.0 or more, more preferably 99.5 or more, and most preferably 100.00 or more.
  • MOI ⁇ 3 ⁇ 48 5.0 or higher is preferable, and 87.0 or higher is more preferable.
  • the sulfur content of the gasoline of the present invention needs to be 10 mass ppm or less, preferably 8 mass ppm or less, and more preferably 5 mass ppm or less. If the sulfur content exceeds 10 mass p pm, the performance of the exhaust gas purification treatment catalyst will be adversely affected, and the concentration of NOx, CO, and HC in the exhaust gas may increase, and benzene emissions will also increase. This is not preferable because it may cause
  • the sulfur content here is defined as JISK 254 1 "Crude oil and petroleum products-sulfur It means the value measured by “Yellow content test method”.
  • the gasoline of the present invention needs to be unleaded.
  • Lead-free means that an aralkyl lead compound such as tetraethyl lead is not substantially added. Even if it contains a trace amount of lead compound, its content is JISK 22 5 5 “ It means that it is less than the lower limit value (0 OO lg / 1) for “Test method for lead content in gasoline”.
  • the distillation initial boiling point (IBP) of the gasoline of the present invention is preferably 20 ° C or higher, more preferably 23 ° C or higher. If I B P is less than 20 ° C, hydrocarbons in the exhaust gas may increase. On the other hand, I B P is preferably 37 ° C. or less, more preferably 35 ° C. or less. If I B P exceeds 37 ° C, low-temperature drivability may be reduced.
  • the 10% distillation temperature (T 10) of the gasoline of the present invention is preferably 35 ° C or higher, more preferably 40 ° C or higher. If T 10 is less than 35 ° C, hydrocarbons in the exhaust gas may increase, and vapor lock may reduce high temperature operability. On the other hand, T 10 is preferably 70 ° C or less, more preferably
  • T 10 exceeds 70 ° C, the cold startability may be reduced. .
  • the 30% distillation temperature (T 30) of the gasoline of the present invention is preferably 55 ° C or higher, more preferably 60 ° C or higher. If T 30 is less than 55 ° C, fuel consumption may deteriorate. On the other hand, T30 is preferably 77 ° C or lower, more preferably 75 ° C or lower, and further preferably 70 ° C or lower. If T 30 exceeds 77 ° C, mid- and low-temperature drivability may be reduced.
  • the 50% distillation temperature (T 50) of the gasoline of the present invention is preferably 75 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of preventing deterioration of fuel consumption.
  • T 50 is preferably 110 ° C. or less, more preferably 105 ° C. or less, and preferably 100 ° C. or less. Further preferred.
  • the 70% distillation temperature (T70) of the gasoline of the present invention is preferably 95 ° C or higher. If T70 is less than 95 ° C, fuel consumption may deteriorate. Meanwhile, T
  • T 70 is preferably 1 35 ° C. or lower, more preferably 1 30 ° C. or lower. T 70 If the temperature exceeds 135 ° C, the low-temperature operability during cold operation may decrease, and there may be an increase in hydrocarbons in exhaust gas, an increase in intake pulp deposits, and an increase in combustion chamber deposits. .
  • the 90% distillation temperature (T 90) of the gasoline of the present invention is preferably 1 15 ° C or higher, more preferably 120 ° C or higher. If T 90 is less than 1 15 ° C, fuel consumption may deteriorate.
  • T 90 is It is preferably 180 ° C or lower, more preferably 175 ° C or lower, further preferably 170 ° C or lower, and even more preferably 165 ° C or lower.
  • the distillation end point (EP) of the gasoline of the present invention is preferably 150 ° C. or higher. Further, EP is preferably 220 ° C or lower, more preferably 215 ° C or lower, further preferably 200 ° C or lower, and even more preferably 195 ° C or lower. If EP exceeds 220 ° C, intake valve deposits may increase combustion chamber deposits and spark plug smoldering may occur.
  • I B ⁇ , ⁇ 10, ⁇ 30, ⁇ 50, ⁇ 70, ⁇ 90, and ⁇ mean values (° C) measured by JISK 2254 “Petroleum products—distillation test method”.
  • the lead vapor pressure (RVP) of the gasoline of the present invention is preferably adjusted according to the season and region where the gasoline is used. Specifically, for warm seasons' regions, 44-72 k Pa is preferred, 44-65 k Pa is more preferred, 50-65 k Pa is more preferred, and 55-65 k Pa is most preferred. preferable. On the other hand, for cold seasons and regions, 60 to 93 kPa is preferable, 65 to 93 kPa is more preferable, 70 to 93 kPa is more preferable, and 70 to 88 kPa is most preferable. If the RVP is high, malfunctions due to vapor lock may occur, and if the RVP is low, the startability in the cold state may deteriorate. Vapor pressure (R VP) here refers to the value (k Pa) measured according to JIS K 2258 “Crude oil and fuel oil vapor pressure test method (Lead method)”.
  • the density at 15 ° C of the gasoline of the present invention is not less than 0.690 g / cm 3 when used mainly in regular gasoline specification cars from the viewpoint of suppressing deterioration of fuel consumption.
  • the above is preferable, 0.7 g / cm 3 or more is more preferable, 0.7 10 g / cm 3 or more is more preferable, and 0.7 15 g / cm 3 or more is most preferable.
  • it is preferably not more than 0.7ys gZcm 3 , more preferably not more than 0.760 g / cm 3, and still more preferably not more than 0.750 g / cm 3. And most preferably 0.745 g / cm 3 or less.
  • the density at 15 C is preferably 0.700 gZcm 3 or more, more preferably 0.7 10 gZcm 3 or more, and 0.720 g / cm. cm 3 or more and more preferably, 0. 7 30 gZcm 3 or more on being most preferred.
  • the density at 15 C is preferably 0.700 gZcm 3 or more, more preferably 0.7 10 gZcm 3 or more, and 0.720 g / cm. cm 3 or more and more preferably, 0. 7 30 gZcm 3 or more on being most preferred.
  • 0. 78 3 g / cm 3 or less from the viewpoint of preventing the smoldering acceleration of deterioration or plug, preferably 0. 78 3 g / cm 3 or less, more preferably 0. 7 70 g / cm 3 or less, 0. 760 g / cm 3 or less Further preferred.
  • the density at 15 ° C here means the value (gZc m 3 ) measured by JISK 2249 “Density test method and density / mass / capacity conversion table for crude oil and petroleum products”.
  • the oxidation stability of the gasoline of the present invention is preferably 240 minutes or more, more preferably 480 minutes or more, and further preferably 1440 minutes or more, from the viewpoint of suppressing the formation of gum during storage. .
  • the oxidation stability here means the value (minutes) measured by JISK2287 “Gasoline oxidation stability test method (induction period method) J”.
  • the gasoline of the present invention has a copper plate corrosion (50 ° (, 3 h) force S 1 or less, more preferably 1 a. If the copper plate corrosion exceeds 1, the fuel system conduit is corroded. there's a possibility that.
  • the copper plate corrosion here means a value measured in accordance with JISK 251 3 “Petroleum product-copper plate corrosion test method” (test temperature 50 ° (:, test time 3 hours).
  • the amount of the actual gum to be washed is preferably 5 mg / 100 ml or less, more preferably 3 mg / l 0 Om 1 or less, and further preferably 1 mg Z 100 ml or less.
  • the amount of unwashed actual gum of the gasoline of the invention is preferably 2 Omg / 10 Om 1 or less, more preferably 10 mg / 100 ml or less, and even more preferably SmgZl O Oml. If the amount of unwashed actual gum exceeds the above value, introduce fuel.
  • the actual amount of washed gum and the amount of unwashed actual gum are the values measured in accordance with JISK 2 26 1 “Petroleum products – Automobile gasoline and aviation fuel oil – Real gum test method – Injection evaporation method” (mg / 1 0 0 ml).
  • the benzene content in the gasoline of the present invention is preferably 1% by volume or less, and more preferably 0.5% by volume or less. If the benzene content exceeds 1% by volume, the concentration of benzene in the exhaust gas may increase.
  • the benzene content mentioned here means the benzene content (capacity ° / 0 ) measured according to JISK 2 5 3 6 “Petroleum product one-component test method, one aromatic test method using gas chromatography”.
  • the aromatic content in gasoline is preferably 40% by volume or less, and 35% by volume. / 0 or less is more preferable, and 30% by volume or less is further preferable. If the aromatic content exceeds 40% by volume, intake valve deposits and combustion chamber deposits may increase, and spark plug smoldering may occur. In addition, the concentration of benzene in the exhaust gas may increase. On the other hand, the aromatic content is 10 capacity. / 0 or more is preferable, and 15% by volume or more is more preferable. If the aromatic content is less than 10% by volume, the fuel efficiency may deteriorate.
  • the aromatic content in the gasoline is preferably 45% by volume or less, more preferably 42% by volume or less. It is preferably 40% by volume or less. If the aromatic content exceeds 45% by volume, intake valve deposits and combustion chamber deposits may increase, and spark plug smoldering may occur. In addition, the concentration of benzene in the exhaust gas may increase. On the other hand, the aromatic content is preferably 20% by volume or more, and more preferably 25% by volume or more. If the aromatic content is less than 20% by volume, the fuel efficiency may deteriorate.
  • the aromatic content here means the aromatic content (volume. / 0 ) in gasoline as measured by JIS ⁇ 2 5 3 6 “Petroleum product one-component test method, one fluorescent indicator adsorption method”. To do.
  • Orefuin content in the gasoline of the present invention is preferably 3 5 volume 0/0 or less, 2 5 capacity. More preferably / 0 or less. If the olefin content exceeds 35% by volume, the oxidation stability of gasoline may deteriorate and intake valve deposits may increase.
  • the olefin component means the olefin content (capacity%) in gasoline measured by J I S K 2 5 3 6 "Petroleum products-Ingredient test method-Fluorescent indicator adsorption method".
  • the amount of kerosene in the gasoline of the present invention is preferably 4% by volume or less.
  • the amount of kerosene mixed is 4 volumes. If the value exceeds 0 , engine startability may deteriorate.
  • the amount of kerosene mixed is determined by the content of normal paraffin hydrocarbons with 1 and 3 carbon atoms based on the total amount of gasoline, and is obtained according to the provisions of JISK 2 5 3 6 “One-component test method for petroleum products”
  • the converted value of kerosene is 4 volumes. / Means that it is 0 or less.
  • the manganese content in the gasoline of the present invention is preferably 2 mass ppm or less, and more preferably 1 mass ppm or less.
  • the iron content in the gasoline of the present invention is preferably 2 mass ppm or less, and more preferably 1 mass ppm or less.
  • the content of sodium in the gasoline of the present invention is preferably 2 mass pm or less, and more preferably 1 mass pm or less.
  • the content of potassium in the gasoline of the present invention is preferably 2 mass ppm or less, and more preferably 1 mass ppin or less.
  • the phosphorus content in the gasoline of the present invention is preferably 2 mass ppm or less, more preferably 1 mass ppm or less, and even more preferably 0.2 mass ppm or less.
  • the manganese, iron, and sodium contents here are “combustion ashing-inductively coupled plasma emission method”
  • the potassium content is “combustion ashing-atomic absorption method”
  • the phosphorus content is ASTMD 3 2 3 1 It is a value measured by “Standard Test Method for Phosphorus in Gasoline”.
  • Manganese, iron, and sodium contents are inductively coupled plasma emission spectrometer (Shimadzu Corporation, I CP S-8000), phosphorus content is atomic absorption photometer (Hitachi, Z 6100) Analyze using
  • the gasoline of the present invention preferably contains an antioxidant and a metal deactivator for storage stability.
  • antioxidants include N, N'-diisopropyl-1-p-phenylenediamine, N, N'-diisoptinoleol p-phenylenediamine, and the like, and 2, 6 —Di-t-t--peptide—
  • Known compounds can be used as alkyl phenol-based antioxidants such as hindered phenols represented by 4-methylphenol, and metal deactivators include ⁇ ,
  • metal deactivators such as an amine carbonyl condensation compound such as N ′ monodisalicylidene 1,2-diaminopropane.
  • the amount of antioxidant and metal deactivator added is not particularly limited, but the above-mentioned oxidation stability is set to a preferred value, and the amount of unwashed gasoline in the gasoline composition after addition including other additives Is preferably set to the above-mentioned preferable value.
  • the antioxidant is preferably 5 to 10 Omg / 1, more preferably 10 to 5 Omg / 1.
  • the metal deactivator is preferably 0.5 to 1 Omg / l. ⁇ 5mg / l is more preferred.
  • the gasoline of the present invention preferably contains a clean dispersant in order to prevent deposits such as intake valves from accumulating.
  • a clean dispersant compounds known as gasoline detergent dispersants such as succinic acid imide, polyalkylamine, and polyetheramine can be used. Of these, those that do not have a residue when pyrolyzed at 300 ° C in air are desirable. More preferably, polysoptyramine and poly or polyether amine are used.
  • the content of the cleaning dispersant is preferably 25 to 1000 mg per liter of gasoline of the present invention, preventing intake pulp deposits, and combustion chamber deposits. Is more preferable, and 50 to 50 mg is more preferable, and 100 to 300 mg is most preferable.
  • an active ingredient that contributes to cleanliness may be diluted with an appropriate solvent. In such a case, the above addition amount means the addition amount as an active ingredient.
  • the gasoline of the present invention can contain a friction modifier in order to improve lubricity, and preferably contains a friction modifier especially when used in premium gasoline specification vehicles.
  • Examples of the main friction modifier include, for example, alcohol; alcohol compound having 1 to 4 hydroxyl groups and having 1 to 30 carbon atoms; carboxylic acid; reaction product of monocarboxylic acid and glycol or trihydric alcohol A hydroxyl group-containing ester; an ester of a polycarboxylic acid and a polyhydric alcohol;> NR (where R is a hydrocarbon group having 5 to 40 carbon atoms), and having one or more substituents
  • Examples include esters of polyhydric alcohols in combination with at least one nitrogen compound possessed; amide compounds of carboxylic acids and alcoholamines, and the like. These can be used alone or as a mixture.
  • a hydroxyl group-containing ester which is a reaction product of a monocarboxylic acid having 10 to 25 carbon atoms and glycol or a trihydric alcohol and / or a carboxylic acid having 5 to 25 carbon atoms and an alcohol amine. More preferred are amide compounds of C10-C25 monocarboxylic acid and glycerin ester and Z or C5-C25 monocarboxylic acid and diethanolamine. Further preferred.
  • the addition amount of the friction modifier is not particularly limited, but it may be added together with other additives so that the unwashed actual gum amount of the gasoline composition after the addition satisfies the above-mentioned preferable range.
  • it is preferably 10 to 300 mg per 1 liter of gasoline of the present invention. More preferably, it is added so that the content ratio is 30 to 2500 mg.
  • surface ignition inhibitors such as organic phosphorus compounds
  • anti-icing agents such as polyhydric alcohols or ethers thereof
  • alkali metal salts of organic acids or Auxiliary agents such as alkaline earth metal salts, higher alcohol sulfates,
  • the gasoline fraction obtained by the hydrotreating method of the present invention can also be used as a raw material oil for a catalytic reformer.
  • the oil to be treated contains biomass, carbon dioxide emissions estimated from a life cycle perspective in the production of hydrogen, gasoline engine fuel, and benzene, toluene and xylenes, which are the basic raw materials for petrochemical products (LCA—C 0 2 ) can be effectively reduced.
  • hydrogen capable of sufficiently reducing LCA—CO 2 , fuel for a gasoline engine, and benzene, toluene, and xylenes as basic raw materials for petrochemical products can be obtained.
  • Hydrogen can be produced by reforming a portion of the hydrotreated oil produced according to the present invention with a steam reformer or a catalytic reformer.
  • the oil to be treated contains biomass, the resulting hydrogen has the characteristic of being carbon neutral, so the environmental burden in hydrogen production and / or gasoline base production can be reduced.
  • the kerosene fraction having a boiling point within the range of 220 to 350 ° C. can be suitably used particularly as a diesel light oil or heavy oil base material.
  • the sulfur content in the fraction is preferably 10 mass ppm or less. If the sulfur content exceeds the above upper limit, it may affect the filters and catalysts used in the exhaust gas treatment equipment of diesel engines.
  • Hydrogenated oil is a diesel diesel oil or although it may be used as a heavy oil base material, it can be used as diesel light oil or a heavy base material mixed with components such as other base materials.
  • a light oil fraction and / or kerosene fraction obtained in a general petroleum refining step, and a residual fraction obtained by the hydrotreating method of the present invention can be mixed.
  • so-called synthesis gas composed of hydrogen and carbon monoxide can be used as a raw material, and synthetic light oil or synthetic kerosene obtained through a Fischer-Tropsch reaction or the like can be mixed.
  • These synthetic light oils and synthetic kerosene are characterized by being almost free of aromatics, consisting mainly of saturated hydrocarbons, and having a high cetane number.
  • a known method can be used as a method for producing the synthesis gas, and it is not particularly limited.
  • the hydrotreating method of the to-be-processed oil containing the fats and oils component derived from animal and vegetable oil is provided.
  • an environmentally low-load gasoline base material and an unleaded gasoline composition that can effectively reduce carbon dioxide emissions can be provided by the hydrotreating method.
  • the ratio of silica to alumina (S i 0 2 / A 1 2 0 is 5) is hydrothermally treated in a saturated water vapor atmosphere for 1 hour at 780 ° 0 using a steaming device.
  • acid treatment with 1% nitric acid aqueous solution and the lattice constant determined by X-ray diffraction is 24.3 3 ⁇ , ratio of silica and alumina (S i 0 2 / A 1 2 0 3 )
  • a Proton-type ultra-stabilized Y-type zeolite 21.0 g having a T of 30 was obtained.
  • water glass No. 3 1 85 g was added to 300 g of an aqueous solution of sodium aluminate having a concentration of 5% by mass and placed in a container kept at 65 ° C.
  • 300 g of an aluminum sulfate aqueous solution having a concentration of 2.5% by mass was prepared in another container kept at 65 ° C., and the aqueous solution containing sodium aluminate was added dropwise thereto. The end point was when the pH of the mixed solution reached 7.0, and the resulting slurry-like product was filtered through a filter to obtain a cake-like slurry.
  • the cake-like slurry was transferred to a vessel equipped with a reflux condenser, 150 ml of distilled water and 10 g of 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 75 ° C. for 20 hours.
  • the slurry was put into a kneading apparatus, heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product.
  • 1 86 g of the ultra-stabilized Y-type zeolite obtained above was added to the kneaded product obtained above and kneaded further, and this was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine. After drying at ° C for 1 hour, calcining at 550 ° C was performed to obtain a shaped support A.
  • the obtained shaped carrier B 50 g was put into an eggplant-shaped flask, and degassed with a rotary evaporator, using a mixed aqueous solution 35 ml of dinitroammineplatinum (II) and dinitroammine palladium (II). Metal was contained, dried at 110 ° C., and calcined at 350 ° C. to obtain catalyst B.
  • the amounts of platinum and palladium supported on catalyst B were 0.5% by mass and 0.7% by mass, respectively, based on the total amount of the catalyst. (Preparation of catalyst c)
  • a first reaction tube (inner diameter 2 Omm) filled with catalyst A (50 ml) and a second reaction tube (inner diameter 2 Omm) also filled with catalyst A (50 ml) are attached in series to a fixed bed flow reactor. It was. Thereafter, the catalyst was subjected to reduction treatment for 6 hours under conditions of an average catalyst layer temperature of 300 ° (hydrogen partial pressure of 5 MPa, hydrogen gas amount of 83 m 1 / in).
  • the hydrogen oil ratio obtained from the total hydrogen introduced was set to 1 0 10 NLZL.
  • a first reaction tube (inner diameter 2 Omm) filled with catalyst C (50 ml) and a second reaction tube (inner diameter 20 mm) also filled with catalyst C (50 ml) are attached in series to a fixed bed flow reactor. It was. Then, using straight-run gas oil (sulfur content 3% by mass) with dimethyl disulfide added, average temperature of catalyst layer 300 ° C, hydrogen partial pressure 6MPa, liquid space velocity 1 h ⁇ ⁇ hydrogen / oil ratio 200 NLZL The catalyst was presulfided for 4 hours under these conditions.
  • dimethyl sulfide is added to palm oil (ratio of the compound having triglyceride structure in the oxygenated hydrocarbon compound: 98 mol%) to reduce the sulfur content in the treated oil to 51 mass p.
  • Hydrotreating was performed using the oil to be treated prepared at pm.
  • the oil to be treated had a density of 15.916 g / m 1 and an oxygen content of 1.1.4% by mass.
  • the hydrotreating conditions were such that the reaction temperature in the first and second reaction tubes was 425 ° C, the pressure was 5 MPa, and the liquid space velocity was 0.4 h 1 .
  • the volume ratio of hydrogen gas introduced between the first reaction tube and the second reaction tube (quotient hydrogen ratio) is 20% by volume of the total introduced hydrogen, and the hydrogen / oil ratio obtained from the total hydrogen introduced is 1 010NL. / L.
  • Oxygen content, sulfur content and normal paraffin content were measured. Table 2 shows the results obtained. Comparative Example 2>
  • catalyst E for hydrotreating 55 mass of ultrastable Y-type zeolite with crystalline metal silicate having a faujasite type structure. /.
  • a catalyst comprising 0.5% by mass and 0.7% by mass of platinum and palladium of Group 8 of the periodic table on a support composed of 15.75% by mass of silica and 29.25% by mass of alumina, respectively.
  • the silica-to-alumina ratio of ultrastable Y-type zeolite was 33.
  • Palm oil which is a vegetable oil of biomass, is used as the hydrotreated oil.
  • the triglyceride content is 98 mol%, the oxygen content is 11.4 mass%, and the sulfur content is 0.1 massppm. Was less than.
  • the biomass hydrotreatment substrate E which is a fraction of 35 ° C to 1 35 ° C, was obtained by distillation of the product oil.
  • This biomass substrate E has an oxygen content of 0.1 mass. /. Less than 0.1 mass p pm, normal paraffin content is 24.8 mass 0 /. Met.
  • Example 3 (Distillation range 28 ⁇ : I 05 ° C, density 0.637 g / cm 3 , saturation 99% by volume), gasoline base such as toluene and normal butane, antioxidant, metal deactivator As a result, the gasoline composition of Example 3 was prepared.
  • Example 4 764 g / cm 3, Orefin content of 33 volume 0/0), alkylate (a fraction range 33 to 1 79 ° C, density 0.696 g / cm 3 , saturation volume 100 /., Light naphtha (distillation range 28 to: I 05 ° C, density 0.637 gZcm 3 , saturation volume 99 %),
  • a gasoline base such as toluene, normal butane, etc.
  • a gasoline composition of Example 4 was prepared by combining an antioxidant and a metal deactivator.
  • catalyst F for hydroprocessing 55 mass of ultrastable Y-type zeolite with crystalline metal silicide having a faujasite structure. / 0 , silica 1 5.75% by mass, alumina 29.25% by mass, periodic group 8 nickel (4.0% by mass) (as nickel oxide) and periodic table 6 Group A molybdenum 16.0 mass% (as molyptene trioxide) supported catalyst was prepared.
  • the silica / alumina ratio of the ultrastable Y-type zeolite was 30.
  • the hydrotreated oil is palm oil, which is a vegetable oil of biomass (the content of tridarylide is 98 mol%, the oxygen content is 11.4 mass%, the sulfur content is less than 0.1 mass ppm) Dimethyl disulfide was added to the mixture to prepare a sulfur content of 51 mass ppm.
  • Alkylate (Fraction range 3 3 ⁇ : L 7 9 ° C, Density 0. ese gZcm 3 Saturation 1 0 0 Capacity /.), Light naphtha (Fraction range 2 8 ⁇ : L 0 5 ° C, Density 0.66 7 g_cm 3 , saturation 99% volume), gasoline base such as toluene, normal butane, antioxidant, metal deactivator, detergent dispersant Five gasoline compositions were prepared.
  • Biomass hydrotreatment substrate F is 10 volumes. / 0 and 3 volumes of biomass-derived ethanol. /.
  • Light reformed gasoline (distillation range 2 7 to 1 2 8 ° 0, density 0.6 90 gZ cm 3 , aromatic content 23% by volume), medium heavy reformed gasoline (distillation range 9 2 ⁇ 1 95 ° C, density 0.8 5 3 gZc m 3 , aromatic content 90% by volume), light catalytic cracking gasoline (distillation temperature 2 7 ⁇ 8 1 ° C S density 0.66 5 6 g / cm 3, Orefin min 4 7 volumes 0/0), heavy catalytic cracked gasoline (a fraction range 7 5 ⁇ : L 9 8 ° C , density 0.
  • Example 6 was prepared by blending a friction modifier.
  • Comparative Example 4 is a commercially available regular gasoline.
  • Table 3 shows the properties of each gasoline composition. ⁇ Examples 7 to 10 and Comparative Examples 5 and 6>
  • Example 7 A gasoline composition of Example 7 was prepared in the same manner as in Example 3 except that the biomass hydrotreating substrate E was changed to 5 volumes / zero .
  • Example 8 A gasoline composition of Example 8 was prepared in the same manner as in Example 4 except that Pioma hydrogenated substrate E was changed to 5% by volume.
  • Example 9 5 volumes of biomass hydrotreating substrate F.
  • a gasoline composition of Example 9 was prepared in the same manner as in Example 5 except that the value was changed to 0 .
  • Example 10 A gasoline composition of Example 10 was prepared in the same manner as in Example 6 except that the biomass hydrogenation-treated substrate F was changed to 7% by volume.
  • a gasoline composition of Comparative Example 5 was prepared in the same manner as in Comparative Example 3, except that the biomass hydrogenated substrate E was changed to 40% by volume.
  • Comparative Example 6 is a commercially available premium gasoline.
  • Table 5 shows the properties of each gasoline composition.
  • the research octane number and the motor octane number are values based on the research method octane number and the motor method octane number measured by J I S K 2280 “Test method for octane and cetane number”.
  • Lead content was measured by J I S K 2255 “Test method for lead content in gasoline”. Distillation properties ( ⁇ ⁇ , ⁇ 10, ⁇ 30, ⁇ 50, ⁇ 70, ⁇ 90, ⁇ ⁇ ) were all measured by JI S K 2254 “Petroleum product one distillation test method—atmospheric pressure method”. Vapor pressure (@ 37.8 ° C) was measured by J I S K 2258 “Crude oil and fuel oil vapor pressure test method (Lead method)”.
  • the density (@ 15 ° C) was measured according to J I S K 2249 “Density test method and density / mass / capacity conversion table for crude oil and petroleum products”.
  • Oxidation stability is JISK 2287 “Gasoline oxidation stability test method (induction period Method) ”.
  • Copper plate corrosion was measured according to JI S K 2 5 1 3 “Petroleum product-copper plate corrosion test method” (test temperature 50 ° C., test time 3 hours).
  • Aromatic and olefins were measured by J I S K 2 5 3 6 “Petroleum product one-component test method, one fluorescent indicator adsorption method”.
  • Kerosene content was measured in accordance with J I S K 2 5 3 6 “Petroleum product one-component test method”.
  • Manganese, iron, and sodium contents are “combustion ashing inductively coupled plasma emission method”
  • the content of power lime is “combustion ashing one atomic absorption method”
  • the phosphorus content is ASTMD 3 2 3 1 “Standard Test It was measured by “Method for Phosphorus in Gasoline”.
  • vehicle 1 for regular gasoline
  • vehicle 2 for premium gasoline
  • fully open acceleration from 50 km / h to 110 k / h was performed 10 times in the D range ( ⁇ D is on), 60 k mZ
  • the time required to reach 100 km / h from h was measured, and the average value of the seven required times excluding the first three was defined as the acceleration time.
  • Exhaust gas purification system three-way catalyst, air-fuel ratio feedback control
  • Exhaust gas purification system Three-way catalyst, air-fuel ratio feedback control
  • the fuel consumption test was measured using the above-mentioned test vehicle according to the gasoline automobile 10-0-15 mode fuel consumption test method by the Ministry of Land, Infrastructure, Transport and Tourism.
  • the gasoline of the present invention (Examples 3 to 1 0), by blending the base material derived from biomass, a fuel supply source C_ ⁇ 2 in diversification and lifecycle It can be considered that it contributes to the increase suppression, and also realizes good acceleration performance, low exhaust gas (CO, NO x) level, and good fuel efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

含酸素炭化水素化合物を含有する被処理油と結晶性メタロシリケートを含有する担体及び該担体に担持された周期律表第8族の元素から選ばれる1種以上の金属を含有する触媒とを水素の存在下に接触させることにより、酸素分が十分に低減されると共にノルマルパラフィン含有量が十分少ない水素化処理油が得られ、かかる水素化処理油は環境低負荷型ガソリン基材として利用でき、それを含有する無鉛ガソリン組成物が提供される。

Description

水素化処理方法、 環境低負荷型ガソリン基材および無鉛ガソリン組成物 [技術分野]
本発明は、 動植物油由来の油脂成分を含む被処理油の水素化処理方法おょぴ該 水素化処理方法により得られる環境低負荷型ガソリン基材に関する。 さらに本発 明は、 該環境低負荷型ガソリン基材を含有し、 排出ガス浄化性能、 燃費性能、 運 転性能に優れる無鉛ガソリン組成明物に関する。
[背景技術] 田 ·
従来、 ガソリンは、 接触改質装置や接触分解装置等の各種精製装置で原油を処 理することにより得られるガソリン留分の基材を、 1種または 2種以上配合する ことにより製造されている (例えば、 非特許文献 1参照)。
近年、 自動車には、 大気環境改善のための排出ガス中の有害物質の低減と、 地 球温暖化抑制の観点から温室効果ガスの C O 2排出量低減の両立が求められてお り、 ガソリン自動車については、 排出ガス中の有害物質の量は極めて低いが、 熱 効率改善、 燃費改善等による c o 2排出量の低減が課題とされている。 また、 中 長期的には輸送用燃料供給源の多様化、 持続可能なモビリティの構築が要望され ている。
こうした中、 ガソリン自動車用の燃料として、 ライフサイクルで c o 2の増加 抑制が可能であり、 燃料供給源の多様化に寄与し、 再生可能なエネルギーでもあ るバイオマス由来の燃料の利用が注目されている。 バイオマスエネルギーの中で も植物由来のバイオマスエネルギーは、 植物の成長過程で光合成により二酸化炭 素から変換された炭化水素を有効利用できるため、 ライフサイクルの観点からす ると大気中の二酸化炭素の増加につながらない、 いわゆるカーボンニュートラル という性質を持つ。 このようなバイオマスエネルギーを、 例えば、 ガソリン燃料 として動植物油由来の燃料を使用できれば、 ガソリンエンジンの普及率の高さか ら二酸化炭素の排出量削減において有効な役割を果たすと期待されている。
ガソリンに配合可能なバイオマス由来の基材としては、 サトウキビ、 トウモロ コシ等のデンプン主体の糖質成分を酵母で発酵させることにより製造されるエタ ノール(バイオマス由来のエタノール)、及びこのバイオマス由来のエタノールと 製油所の流動接触分解装置 (FCC) 等やエチレンプラントにおける水蒸気分解 装置 (スチームクラッカー) 等から発生する混合プチレンから分離して得られる イソプチレンとを反応させて製造される ET BEが知られている (例えば、 非特 許文献 2参照)。
一方、 天然の動植物油脂を原料にした脂肪酸アルキルエステル混合物は、 単独 であるいは既存の軽油等に混合することによりディーゼル自動車用の燃料として の使用が検討されている (例えば、 非特許文献 3参照)。 しかしながら、 ガソリン 機関とディーゼル機関では、 燃料に求められる着火特性、 留分範囲等が異なるた め、 これらの動植物油由来の脂肪酸メチルエステルをガソリン自動車用の燃料と して使用することは困難である。 また、 かかる脂肪酸メチルエステル油は、 動植 物油の一般的な構造であるトリグリセリ ド構造に対し、 アルカリ等によってメタ ノールとのエステル交換を行うことで製造されている。 しかしながら、 脂肪酸メ チルエステル油を製造するプロセスにおいては、 以下の特許文献 1に記載されて いる通り、 副生するグリセリンの処理が必要であったり、 生成油の洗浄などにコ ストゃエネルギーがかかったりすることが指摘されている。
( 1 ) 特許文献 1 :特開 2005— 154647号公報
(2) 非特許文献 1 :燃料協会編, 「新版燃料便覧」, コロナ社, 1 974年 3月, p. 264- 267
(3) 非特許文献 2 :環境省 第 3回 再生可能燃料利用推進会議 (200 3年 10月 10日) の配布資料 3
(4) 非特許文献 3 : 中央環境審議会第七次答申, 2003年 7月 29日
[発明の開示]
動植物油由来の油脂成分やこれを原料として製造される燃料を使用するには、 上記のような問題に加え、 以下のような問題がある。 すなわち、 動植物油由来の 油脂成分は、 一般に分子中に酸素原子を有しているため、 酸素分がエンジン材質 に与える悪影響が懸念されること、 並びに、 当該酸素分を極低濃度まで除去する ことが困難であることなどである。 また、 動植物油由来の油脂成分と石油系炭化 水素留分とを混合して使用する場合には、 従来の技術では、 当該油脂成分中の酸 素分及び石油系炭化水素留分中の硫黄分の両方を十分に低減化することできない。 更に、 燃料基材として使用する場合、 ノルマルパラフィン含有量が少なく、 逆に イソパラフィン含有量が高い方が望ましい。 例えば自動車用ガソリンの場合、 ノ ルマルパラフィン含有量が多くなるとォクタン価が不十分となる。
そこで、 本発明は、 含酸素炭化水素化合物、 あるいはさらに含硫黄炭化水素化 合物を含有する被処理油を用いた場合に、 酸素分及び硫黄分が十分に低減されて いるとともにノルマルパラフィン含有量が十分少ない水素化処理油を得ることが 可能な水素化精製方法及びかかる水素化処理方法を利用して得られる環境低負荷 型ガソリン基材、 および該環境低負荷型ガソリン基材を含有する無鉛ガソリン組 成物を提供することを目的とする。
すなわち、 本発明は、 水素の存在下、 含酸素炭化水素化合物を含有する被処理 油と、 結晶性メタロシリケートを含有する担体及び該担体に担持された周期律表 第 8族の元素から選ばれる 1種以上の金属を含有する触媒とを接触させて水素化 処理油を得ることを特徴とする水素化処理方法を提供する。
また本発明は、 水素の存在下、 含酸素炭化水素化合物及び含硫黄炭化水素化合 物を含有する被処理油と、 結晶性メタロシリケートを含有する担体及び該担体に 担持された周期律表第 6 A族及び第 8族の元素から選ばれる 1種以上の金属を含 有する触媒とを接触させて水素化処理油を得ることを特徴とする水素化処理方法 を提供する。 '
本発明の水素化処理方法によれば、 含酸素炭化水素化合物を含有する被処理油 と特定の触媒とを接触させることによって、 酸素分及び硫黄分が十分に低減され ているとともにノルマルパラフィン含有量が十分少ない水素化処理油を経済的に 極めて有効に得ることができる。 '
本発明の水素化処理方法においては、 得られる水素化処理油の沸点範囲 8 0〜 1 3 5 °Cの留分における酸素分の含有量が 0 . 2質量%以下且つノルマルパラフ ィンの含有量が 3 0質量%以下となる条件で被処理油と触媒とを接触させること が好ましい。 このような条件を満たすように被処理油を水素化処理することによ り、 ガソリン基材として有用な成分をより高い含有量で含む水素化処理油を得る ことができる。 この場合、 酸素分及び硫黄分が十分に低減されているとともにノ ルマルパラフィン含有量が十分少ない環境低負荷型ガソリン基材を経済的に極め て有効に得ることができる。
本発明の水素化処理方法において、 含酸素炭化水素化合物を含有する被処理油 と、 結晶性メタロシリケートを含有する担体及ぴ該担体に担持された周期律表第
8族の元素から選ばれる 1種以上の金属を含有する触媒とを接触させる際は、 被 処理油の全量を基準として、 酸素分の含有量が 0 . 1〜1 5質量%でぁり、 硫黄 分の含有量が 5 0質量 p p m以下であることが好ましい。 被処理油の酸素分及び 硫黄分のそれぞれが上記の範囲内であると、 安定した脱酸素活性を長期にわたつ て維持することができる。
また、 本発明の水素化処理方法において、 含酸素炭化水素化合物及び含硫黄炭 化水素化合物を含有する被処理油と、 結晶性メタ口シリケートを含有する担体及 び該担体に担持された周期律表第 6 A族及び第 8族の元素から選ばれる 1種以上 の金属を含有する触媒とを接触させる際は、 被処理油の全量を基準として、 酸素 分の含有量が 0 . 1〜 1 5質量。 /0であり、 硫黄分の含有量が 1質量 p p π!〜 1質 量。 /0であることが好ましい。 被処理油の酸素分及び硫黄分のそれぞれが上記の範 囲内であると、 安定した脱酸素活性を長期にわたって維持することができる。 また、 本発明の水素化処理方法においては、 バイオマスエネルギーの有効利用 の点から、 含酸素炭化水素化合物が動植物油に由来する油脂成分であることが好 ましい。
また、 原材料の加工に必要なエネルギーを低減できることから、 含酸素炭化水 素化合物に占めるトリグリセリ ド構造を有する化合物の割合は 9 0モル%以上で あることが好ましい。
本発明の水素化処理方法においては、触媒に含まれる第 8族元素が P d、 P t、 R h、 I r、 A u及ぴ N iから選ばれる 1種以上の金属であることが好ましい。 本発明の水素化処理方法においては、 触媒に含まれる第 6 A族及び第 8族元素 が C o、 M oおよび N iから選ばれる 1種以上の金属であることが好ましい。 また、 本発明の水素化処理方法においては、 触媒に含まれる結晶性メタロシリ ゲートがフォージャサイ ト型の構造を有するものであることが好ましい。
更に、 結晶性メタロシリケートが、 シリカとアルミナとのモル比 (シリカ/ァ ルミナ) が 1 0〜 1 0 0の範囲にある超安定化 Y型ゼォライ トであることが好ま しい。 かかるモル比が 10未満である場合、 コーク生成が促進され大幅な活性低 下を招きやすくなる傾向にあり、 モル比が 100を超える場合、 水素化処理活性 が不十分となり、 燃料基材として有用な成分の収率が低下する傾向にある。
また、 本発明は、 上記本発明の水素化処理方法により得られる水素化処理油の うちの沸点が 25〜220°Cの範囲内にある留分を含むことを特徴とする環境低 負荷型ガソリン基材を提供する。
該環境低負荷型ガソリン基材は、 酸素分含有量が 0. 2質量%以下、 ノルマル パラフィン含有率が 30質量。 /0以下であることが好ましい。
また、 本発明は、 前記環境低負荷型ガソリン基材を含有することを特徴とする 無鉛ガソリン組成物を提供する。 本発明の環境低負荷型ガソリン基材を含有する 無鉛ガソリン組成物は、 二酸化炭素の排出量の削減を有効に実現できる。
本発明の無鉛ガソリン組成物は、 リサーチ法オクタン価が 89. 0以上96. 0未満、硫黄分含有量が 10質量 p pm以下である無鉛ガソリン組成物である力 リサーチ法オクタン価が 96. 0以上、 硫黄分含有量が 10質量 p p m以下であ る無鉛ガソリン組成物が好ましい。
本発明の無鉛ガソリン組成物は、 10 %留出温度が 70°C以下、 50 %留出温 度が 75 °C以上 1 10 °C以下、 90 %留出温度が 180 °C以下、 蒸留終点か 22 0 °C以下、蒸気圧(37. 8°C)が 44 k P a以上 93 k P a以下、密度(1 5 °C) が 0. 783 g/cm3以下、 酸化安定度が 240分以上、 銅板腐食 (50°C、 3時間) 1以下、 洗浄実在ガムが 5mg/l 0 Οπχ 1以下、 未洗実在ガムが 2 Omg/10 Om 1以下、ベンゼン含有量が 1容量%以下であることが好ましい。 また、 本発明の無鉛ガソリン組成物は、 芳香族分含有量が 45容量。 /。以下、 ォ レフィン分含有量が 3.5容量%以下であることが好ましい。
また、本発明の無鉛ガソリン組成物は、マンガンの含有量が 2質量 p p m以下、 鉄の含有量が 2質量 p pm以下、 ナトリウムの含有量が 2質量 p pm以下、 カリ ゥムの含有量が 2質量 p pm以下、 及びリンの含有量が 2質量 p pm以下である ことが好ましい。
また、 本発明の無鉛ガソリン組成物は、 酸化防止剤と金属不活性化剤を含有す ることが好ましく、 また清浄分散剤を含有することが好ましく、 また摩擦調整剤 を含有することが好ましい。 [発明の効果]
本発明によれば、 含酸素炭化水素化合物、 あるいはさらに含硫黄炭化水素化合 物を含有する被処理油を用いた場合に、 酸素分及び硫黄分が十分に低減されてい るとともにノルマルパラフィン含有量が十分少ない水素化処理油を経済的に極め て有効に得ることが可能な水素化処理方法が提供される。また、本発明によれば、 二酸化炭素の排出量の削減を有効に実現できる環境低負荷型ガソリン基材および 無鉛ガソリン組成物が提供される。
[発明を実施するための最良の形態]
以下、 本発明の好適な実施形態について詳細に説明する。
本発明においては、 含酸素炭化水素化合物を含有する被処理油、 あるいはさら に含硫黄炭化水素化合物を含有する被処理油が用いられる。 含酸素炭化水素化合 物としては、バイオマスである植物由来または動物由来の油脂成分が好適である。 ここで、 本発明における油脂成分には、 天然もしくは人工的に生産、 製造される 動植物油脂及び動植物油成分及び/又はこれらの油脂を由来して生産、 製造され る成分及びこれらの油脂製品の性能を維持、 向上させる目的で添加される成分が 包含される。
動植物油に由来する油脂成分としては、 例えば、 菜種油、 コーン油、 大豆油、 グレープシード油、 パーム油などの植物油、 牛脂、 ラードなどの動物油などが挙 げられる。 本発明においては動植物油に由来する油脂成分として、 いかなる油脂 を用いてもよく、 これら油脂を使用した後の廃油でもよい。 ただし、 カーボン二 ユートラルの観点からは植物油脂が好ましく、 脂肪酸アルキル鎖炭素数及びその 反応性の観点から、 菜種油、 大豆油及びパーム油がより好ましい。 なお、 上記の 油脂は 1種を単独で又は 2種以上を混合して用いてもよい。
動植物油に由来する油脂成分は、 一般に脂肪酸トリグリセリ ド構造を有してい るが、 その他の脂肪酸や脂肪酸メチルエステルなどのエステル体に加 !:されてい る油脂成分を含んでいてもよい。 ただし、 植物油脂から脂肪酸や脂肪酸エステル を製造する際には二酸化炭素が発生するため、 二酸化炭素の排出量を低減化する 観点から、 植物油脂としてトリグリセリ ド構造を有した成分が主体であることが 好ましい。 本発明においては、 被処理油に含まれる含酸素炭化水素化合物に占め るトリグリセリ ド構造を有する化合物の割合が 9 0モル%以上であることが好ま しく、 9 2モル%以上であることがより好ましく、 9 5モル%以上であることが 更に好ましい。
被処理油に含まれる酸素分は、 被処理油全量を基準として、 好ましくは 0 . 1 〜 1 5質量0 /0であり、 より好ましくは 1〜 1 5質量0 /0、 更に好ましくは 3〜 1 4 質量。 /0、 特に好ましくは 5〜1 3質量%である。 酸素分の含有量が 0 . 1質量% 未満であると、 脱酸素活性及び脱硫活性を安定的に維持することが困難となる傾 向にある。 他方、 酸素分の含有量が 1 5質量%を超えると、 副生する水の処理に 要する設備が必要となることや、 水と触媒担体との相互作用が過度となり活性低 下したり触媒強度が低下したりする。 なお、 酸素分の含有量は、 一般的な元素分 析装置で測定することができ、例えば、試料を白金炭素上で一酸化炭素に変換し、 もしくは更に二酸化炭素に変換した後に熱伝導度検出器を用いて測定することが できる。
また、本発明において、被処理油が含硫黄炭化水素化合物を含んでいてもよい。 含硫黄炭化水素化合物としては、特に制限されないが、具体的には、スルフィ ド、 ジスノレフィ ド、 ポリスノレフィ ド、 チオール、 チ才フェン、 ベンゾチォフェン、 ジ ベンゾチォフエン及びこれらの誘導体などが挙げられる。 被処理油に含まれる含 硫黄炭化水素化合物は単一の化合物であってもよく、 あるいは 2種以上の混合物 であってもよい。 また含硫黄炭化水素化合物として、 硫黄分を含有する石油系炭 化水素留分を用いることもできる。
石油系炭化水素留分としては、 一般的な石油精製工程で得られる留分を用いる ことができる。 例えば、 常圧蒸留装置や減圧蒸留装置から得られる所定の沸点範 囲に相当する留分、 あるいは、 水素化脱硫装置、 水素化分解装置、 残油直接脱硫 装置、 流動接触分解装置などから得られる、 所定の沸点範囲に相当する留分を使 用してもよい。 なお、 上記の各装置から得られる留分は 1種を単独で又は 2種以 上を混合して用いてもよい。
さらに、 被処理油は、 プラスチックや溶剤等の化学品由来の化合物を含んでい てもよく、 一酸化炭素と水素とからなる合成ガスを原料としたフィッシャートロ プシュ反応を経由して得られる合成油を含んでいてもよい。 被処理油に含まれる硫黄分は、 本発明の水素化処理方法において、 含酸素炭化 水素化合物を含有する被処理油と、 結晶性メタ口シリケートを含有する担体及び 該担体に担持された周期律表第 8族の元素から選ばれる 1種以上の金属を含有す る触媒とを接触させる際は、 被処理油全量を基準として、 5 0質量 111以下と することが好ましい。 硫黄分の含有量が 5 0質量 p p mを超えると、 水素化処理 油に含まれる硫黄分が増加する傾向にあり、 ガソリンエンジン等の燃料として用 いる場合にエンジン排ガス浄化装置への悪影響が懸念される。 また、 含酸素炭化 水素化合物及び含硫黄炭化水素化合物を含有する被処理油と、 結晶性メタロシリ ケートを含有する担体及び該担体に担持された周期律表第 6 A族及び第 8族の元 素から選ばれる 1種以上の金属を含有する触媒とを接触させる際は、 被処理油全 量を基準として、 好ましくは 1質量 p p m〜l質量%であり、 より好ましくは 1 5質量 p p m〜0 . 5質量。/。、 更に好ましくは 3 0質量 p p m〜0 . 1質量%で ある。 硫黄分の含有量が 1質量 p p m未満であると、 脱酸素活性を安定的に維持 することが困難となる傾向にある。他方、硫黄分の含有量が 1質量%を超えると、 水素化処理油に含まれる硫黄分含有量が増加する傾向にあり、 ディーゼルェンジ ン等の燃料として用いる場合にエンジン排ガス浄化装置への悪影響が懸念される。 なお、 本発明における硫黄分は、 J I S K 2 5 4 1 「硫黄分試験方法」 又は A S TM- 5 4 5 3に記載の方法に準拠して測定される硫黄分の質量含有量を意 味する。
含硫黄炭化水素化合物は、 被処理油と予め混合してその混合物を水素化処理装 置の反応器に導入してもよく、 あるいは被処理油を反応器に導入する際に、 反応 器の前段において供給してもよい。
本発明で用いられる被処理油は、 沸点 3 0 0 °C以上の留分を含有することが好 ましく、また、沸点 7 0 0 °Cを超える重質な留分を含んでいないことが好ましい。 沸点 3 0 0 °C以上の留分を含有しない被処理油を用いると、 過度の分解によって 十分な収率を得ることが困難となる傾向にある。 他方、 被処理油が沸点 7 0 0 °C を超える重質な留分を含む場合は、 重質成分によって触媒における炭素の析出が 促進され、活性が低下する傾向にある。 なお、本発明における沸点は、 J I S K 2 2 5 4 「蒸留試験方法」 又は A S TM— D 8 6に記載の方法に準拠して測定 される値である。 本発明の水素化処理方法としては、 水素の存在下、 含酸素炭化水素化合物を含 有する被処理油と、 結晶性メタロシリケートを含有する担体及び該担体に担持さ れた周期律表第 8族の元素から選ばれる 1種以上の金属を含有する触媒とを接触 させて水素化処理 (以下、 水素化処理 Aという。 ) する方法が一つ目の方法とし て提供される。
また本発明の水素化処理方法としては、 水素の存在下、 含酸素炭化水素化合物 及び含硫黄炭化水素化合物を含有する被処理油と、 結晶性メタロシリケートを含 有する担体及び該担体に担持された周期律表第 6 A族及び第 8族の元素から選ば れる 1種以上の金属を含有する触媒とを接触させて水素化処理 (以下、 水素化処 理 Bという。 ) する方法が二つ目の方法として提供される。'
本発明で用いられる触媒の担体としては、 結晶性メタ口シリケートを含んで構 成される多孔性無機酸化物が用いられる。 結晶性メタロシリケートは、 国際ゼォ ライ ト学会が定める構造のうち FAU、 AEL、 MF I、 MMW、 TON, MT W、 *BEA、 M〇Rの各コードで表される構造を有するものが好ましく、 FA U、 *BEA、 MOR、 MF Iの各コードで表される構造を有するものがより好 ましい。 本発明においては、 結晶性メタ口シリケートがフォージャサイ ト型とも 呼ばれる FAUで表される構造を有するものであることが更により好ましい。 ま た、 結晶性メタロシリケートは、 超安定化処理を施した Y型であることが特に好 ましい。 超安定化処理は、 水熱処理および/または酸性水溶液による洗浄処理を 指し、 このような操作によって、 例えば、 構造にアルミニウムが含まれる場合に はその含有量を調整し、 細孔直径 2〜 50 nmと定義されるメソ細孔に由来する 細孔容積を付与することができる。
また、触媒の担体に含まれる結晶性メタ口シリケ一トとしては、アルミニウム、 珪素及び酸素の 3元素で構成され ¾結晶性アルミノシリケートが好ましい。 結晶 性アルミノシリケ一トとしては、 シリカ及ぴアルミナを含有するいわゆるゼオラ ィ トを使用することができる。 好ましい例としては、 Y型ゼォライ ト、 超安定化 γ型ゼオライ ト (USY型ゼオライ ト) 、 ;3型ゼオライ ト、 モルデナイ ト、 Z S M— 5などが挙げられ、 中でも US Yゼォライ トが特に好ましい。 本発明では結 晶性アルミノシリゲートの 1種類を単独で用いてもよく、 2種類以上を組み合わ せて用いてもよい。 結晶性メタ口シリケートがシリカ及びアルミナを含んで構成される場合、 シリ 力とアルミナとのモル比 (シリカ/アルミナ) が 1 0〜 1 0 0の範囲内にあるこ とが好ましい。 かかるモル比が 1 0未満である場合、 コーク生成が促進され大幅 な活性低下を招きやすくなる傾向にあり、 モル比が 1 0 0を超える場合、 水素化 処理活性が不十分となり、 燃料基材として有用な成分の収率が低下する傾向にあ る。 本発明においては、 触媒の担体が、 結晶性メタロシリケートとして、 シリカ とアルミナとのモル比 (シリカ アルミナ) が 1 0〜 1 0 0の範囲内にある超安 定化 Y型ゼォライ トを含むことが特に好ましい。
結晶性メタロシリケートの合成方法としては、 特に限定されるものではなく、 一般的に知られている方法を利用できる。 例えば、 構成成分原料を、 必要に応じ て構造指示剤を共存させ、 加熱することにより結晶性メタロシリケートを合成す ることができる。 構成成分原料としては、 例えば、 ケィ酸ナトリウム、 コロイダ ルシリカ、ケィ酸アルコキサイ ドなどのケィ素含有化合物、水酸化アルミニウム、 アルミン酸ナトリゥムなどのアルミニウム含有化合物が挙げられる。 構造指示剤 としては、 例えば、 テトラプロピルアンモニゥム塩などのアミン化合物が挙げら れる。
本発明で用いられる触媒には、 上記結晶性メタロシリケート以外の構成成分が 含まれていてもよい。結晶性メタロシリケート以外の構成成分としては、例えば、 アルミニウム、 ケィ素、 ジルコニウム、 ホウ素、 チタン及ぴマグネシゥムから選 ばれる元素を含む無機酸化物が挙げられる。 これらの無機酸化物は、 結晶性メタ ロシリケートを成形する際の接合剤として機能するとともに、 水素化脱酸素と水 素化異性化を促進する活性成分としても機能することができる。 これらの機能を より確実に得る観点から、 上記無機酸化物は、 アルミニウム、 ケィ素、 ジルコ- ゥム、 ホウ素、 チタン及ぴマグネシウムから選ばれる 2種以上の元素を含むもの であることが好ましい。
触媒全体に占める結晶性メタ口シリケートの含有量は、 .2〜9 0質量%が好ま しく、 5〜8 5質量%がより好ましく、 1 0〜8 0質量%がさらにより好ましい。 かかる含有量が 2質量%未満である場合には、 触媒の水素化脱酸素活性及び水素 化異性化活性が不十分となる傾向にあり、含有量が 9 0質量。 /0を超える場合には、 触媒成形性が低くなりすぎて触媒を工業的に製造することが困難となる。 水素化処理 Aにおいては、 上記多孔性無機酸化物担体に、 周期律表第 8族の元 素から選ばれる 1種以上の金属が担持された触媒が用いられる。 これらの金属の 中でも、 P d、 P t、 Rh、 I r、 Au及び N iから選ばれる 1種以上の金属が 好ましい。 2種以上の金属を組み合わせて用いる場合、 好適な組み合わせとして は、 P d— P t、 P d— I r、 P d— Rh、 P d— Au、 P d— N i、 P t -R h、 P t— I r、 P t— Au、 P t— N i、 Rh— I r、 R h -Au, Rh— N i、 I r一 Au、 I r—N i、 Au— N i、 P d— P t— Rh、 P d— P t— I r、 P t— P d—N iなどが挙げられる。 これらのうち、 P d— P t、 P d— N i、 P t— N i、 P d— I r、 P t -Rh, P t— I r、 Rh— I r、 P d— P t— Rh、 P d— P t— N i、 P d— P t— I rの組み合わせが好ましく、 P d — P t、 P d— N i、 P t— N i、 P d— I r、 P t— I r、 P d— P t _N i、 P d— P t— I rの組み合わせがより好ましい。 水素化処理に際しては、 これら の金属を還元物の状態に転換して使用することが好ましい。
触媒質量を基準とする活性金属の含有量としては、 周期律表第 8族の元素から 選ばれる金属の合計が 0. 1〜 2質量%の範囲内であることが好ましく、 0. 2 〜1. 5質量%の範囲内であることがより好ましく、 0. 5〜1. 3質量%の範 囲内であることがさらにより好ましい。 上記金属の合計含有量が 0. 1質量%未 満であると、 活性点が少なくなり、 十分な活性が得られなくなる傾向がある。 他 方、 2質量%を越えると、 金属が効果的に分散せず、 十分な活性が得られなくな る傾向がある。
また水素化処理 Bにおいては、 上記多孔性無機酸化物担体に、 周期律表第 6 A 族及び第 8族の元素から選ばれる 1種以上の金属が担持された触媒が用いられる。 これらの金属の中でも、 C o、 Mo及び N iから選ばれる 1種以上の金属が担持 されることが好ましく、 C o、 Mo及び N iのうちの金属が 2種以上組み合わせ 担持されることがより好ましい。 好適な組み合わせとしては、 C o—Mo、 N i 一 Mo、 及び N i— C o— Moが挙げられる。 このように上記多孔性無機酸化物 には、 少なくとも周期律表第 6 A族の元素から選ばれる 1種以上の金属が担持さ れることが好ましい。 水素化処理に際しては、 これらの金属を硫化物の状態に転 換して使用することが好ましい。
C o、 Mo及ぴ N iから選ばれる 1種以上の金属が担持される場合、 触媒質量 を基準とする活性金属の含有量としては、 かかる金属の合計が 1 5〜35質量。 /0 の範囲内であることが好ましく、 1 7〜30質量%の範囲内であることがより好 ましい。 金属の合計含有量が 1 5質量%未満であると、 活性点が少なくなり、 十 分な活性が得られなくなる傾向がある。 他方、 35質量%を越えると、 金属が効 果的に分散せず、 十分な活性が得られなくなる傾向がある。 なお、 C o、 Mo及 び N iの含有量については酸化物換算での値を採用する。
これらの活性金属を触媒に含有させる方法は特に限定されず、 通常の脱硫触媒 を製造する際に適用される公知の方法を用いることができる。 通常、 活性金属の 塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。 また、 平衡吸着 fe、 P o r e— f i l l i n g法、 I n c i p i e n t— we t n e s s法など も好ましく採用される。 例えば、 P o r e— f i 1 1 i n g法は、 担体の細孔容 積を予め測定しておき、 これと同じ容積の金属塩溶液を含浸する方法である。 な お、 含浸方法は特に限定されるものではなく、 金属担持量や触媒担体の物性に応 じて適当な方法で含浸することができる。
本発明の水素化処理 Aおよび水素化処理 Bのそれぞれにおいて、 使用する水素 化処理触媒の種類数は特に限定されない。 例えば、 一種類の触媒を単独で使用し てもよく、 活性金属種や担体構成成分の異なる触媒を複数使用してもよい。 担体 成分が異なる複数の触媒を組み合せる場合には、 例えば、 担体の総質量を基準と して結晶性メタロシリケートの含有量が 5質量%以下である触媒の後段に、 結晶 性メタロシリケートの含有量が 2〜 90質量%の範囲にある触媒を用いればよレ、。
さらに、 水素化処理触媒以外に、 必要に応じて被処理油に随伴して流入するス ケール分をトラップしたり触媒床の区切り部分で水素化処理触媒を支持したりす る目的でガード触媒、 脱金属触媒、 不活性充填物を用いてもよい。 なお、 これら は単独又は組み合せて用いることができる。
水素の存在下で上記の被処理油と触媒とを接触させる際の条件は、 水素圧力 2 〜13MP a、 液空間速度 (LHSV) 0. :!〜 3. O h 水素油比 (水素/ 油比) 1 50〜1 500 NL/Lであり、好ましくは、水素圧力 2〜1 OMP a、 液空間速度 0. 2〜2. 0 h 1、 水素油比 200〜1200NL/Lであること がより好ましく、 水素圧力 2〜6MP a、 空間速度 0. 3〜1. 5 h 1、 水素油 比 250〜 1000 NLZLであることが更に好ましい。 これらの条件はいずれ W も反応活性を左右する因子であり、 例えば水素圧力及び水素油比が上記の下限値 に満たない場合には、 反応性が低下したり活性が急速に低下したりする傾向があ る。 他方、 水素圧力及び水素油比が上記の上限値を超える場合には、 圧縮機等の 過大な設備投資が必要となる傾向がある。 また、 液空間速度は低いほど反応に有 利な傾向にあるが、 上記の下限値未満の場合は、 極めて大きな内容積の反応器が 必要となり過大な設備投資が必要となる傾向があり、 他方、 液空間速度が上記の 上限値を超える場合は、 反応が十分に進行しなくなる傾向がある。 また、 反応温 度は 2 5 0〜5 5 0 °Cが好ましく、 2 8 0〜4 8 0 °Cがより好ましく、 3 0 0〜 4 6 0 °Cが更に好ましい。
反応器の形式としては、 固定床方式を採用することができる。 すなわち、 水素 は被処理油に対して向流又は並流のいずれの形式を採用することができる。また、 複数の反応器を用いて、 向流、 並流を組み合せた形式としてもよい。 一般的な形 式としては、 ダウンフローであり、 気液双並流形式を採用することができる。 ま た、 反応器は単独又は複数を組み合せてもよく、 一つの反応器内部を複数の触媒 床に区分した構造を採用してもよい。
反応器内で水素化処理された水素化処理油は気液分離工程ゃ精留工程等を経て 所定の留分を含有する水素化処理油に分画される。 例えば、 軽油留分ゃ残さ留分 に分画される。 さらに必要に応じてガス、 ナフサ留分、 灯油留分を分画すること もある。 なお、 被処理油に含まれている酸素分や硫黄分の反応に伴って水、 一酸 化炭素、 二酸化炭素、 硫化水素などが発生する可能性があるが、 複数の反応器の 間や生成物回収工程に気液分離設備やその他の副生ガス除去装置を設置してもよ レ、。
水素ガスは加熱炉を通過前もしくは通過後の被処理油に随伴させて最初の反応 器の入口から導入することが一般的であるが、 これとは別に、 反応器内の温度を 制御するとともに、 反応器内全体にわたって水素圧力を維持する目的で触媒床の 間や複数の反応器の間から水素ガスを導入してもよい。 このようにして導入され る水素を一般にクェンチ水素と呼ぶ。 被処理油に随伴して導入する水素ガスに対 するクェンチ水素の割合は、 1 0〜6 0容量%であることが好ましく、 1 5〜5 0容量。 /0であることがより好ましい。 タエンチ水素の割合が 1 0容量未満である と後段の反応部位での反応が十分に進行しない傾向があり、 クェンチ水素の割合 が 6 0容積%を超えると反応器入口付近での反応が十分に進行しない傾向がある。 本発明の水素化処理方法によって得られる灯油留分および または軽油留分お よび/または残さ分はその全量または一部を被処理油に混合し、 リサイクル処理 を行っても良い。 これによりガソリン留分の収率をより高めることができる。
本発明の水素化処理方法においては、 得られる留出温度範囲が 2 5 °Cから 2 2 0 °Cの留分の全部もしくはその一部からなる基材の酸素分含有量は 0 . 2質量% 以下、ノルマルパラフィン含有率は 3 0質量%以下であることが好ましい。更に、 上記留分における酸素分の含有量が 0 . 2質量。 /0以下且つノルマルパラフィンの 含有量が 2 5質量%以下となる条件で上記被処理油を水素化処理することがより 好ましい。 本発明の水素化処理方法で得られる水素化処理油においては、 残存 する酸素分は主として水酸基、 アルデヒ ド基、 カルボキシル基のうちのいずれか の官能基又はこれらの複数の官能基の状態で存在しているが、 上記留分における 酸素分の含有量が 0 . 2質量%を超えると、 腐食性の増大と排出ガス中のアルデ ヒ ド濃度が高くなる懸念がある。 また、 上記留分におけるノルマルパラフィンの 含有量が 3 0質量%を超えると、 ガソリン基材としてのオクタン価が低下してし まい、 ガソリン製品に利用した場合に高速における耐ノッキング性能の悪化を招 く虞がある。 上記の水素化処理油における条件を満足するように、 上記の被処理 油と触媒とを接触させる際の条件のうち好ましくは反応温度及び液空間速度を調 節して水素化処理を行うことにより、 上記被処理油からガソリン基材として有用 な成分を高収率で得ることができる。 なお、 ノルマルパラフィン含有量は、 J I S K 2 5 3 6—2 「石油製品一成分試験方法一ガスクロマトグラフによる全 分析の求め方」 に準処して測定することにより求めることができる。
本発明によって製造される留出温度範囲が 2 5 °Cから 2 2 0 °Cの留分の全部も しくはその一部からなる水素化処理油はガソリン基材として好ましく用いられる。 本発明の無鉛ガソリン組成物 (以下、 本発明のガソリンともいう。 ) は、 かかる ガソリン基材 (以下、 本発明の環境低負荷型ガソリン基材ともいう。 ) を含有し てなる。
留分範囲の例としては、 例えば 2 5 °C〜7 0 °Cの軽質留分、 7 0 °C〜1 6 0 °C の中間留分、 1 6 0 °C〜2 2 0 °Cの重質留分等が挙げられる。 この他、 2 5 °C〜 2 2 0 °Cの留分から一部の留分範囲を除いた残りを基材として使用すること等も できる。
オクタン価の観点からは、 軽質な留分が好ましく、 具体的には、 1 5 0 °C以下 の留分が好ましく、 1 2 0 °C以下の留分がより好ましく、 1 0 0 °C以下の留分が さらに好ましい。
本発明のガソリンにおいて、 本発明の環境低負荷型ガソリン基材を配合する際 には、 必要に応じて、 この基材に対して脱硫等の処理を行うことができる。 脱硫 等の処理を行うのは、 配合する基材の全留分であっても、 一部の留分であっても 良い。 また、 本発明の環境低負荷型ガソリン基材を接触改質装置で処理して、 よ り高オクタン価のガソリン基材として、 本発明のガソリンに配合することもでき る。
本発明のガソリンにおいて、 本発明の環境低負荷型ガソリン基材の含有量は、 バイオマス由来の基材を多く含むとの観点から、 ガソリン全量に対して 3容量% 以上であることが好ましく、 5容量%以上がより好ましい。 一方、 燃費性能の観 点から、 基材の含有量は、 3 0容量%以下であることが好ましく、 2 5容量%以 下であることがより好ましく、 2 0容量%以下であることがさらに好ましい。 本発明のガソリンは、 本発明の環境低負荷型ガソリン基材以外については、 配 合される基材に特に限定はなく、 従来公知の任意の方法で製造することができる 一種又は二種以上のガソリン基材を配合することもできる。
具体的には、 例えば、 原油蒸留装置、 ナフサ改質装置、 アルキレーシヨン装置 等から得られるプロパンを中心とした直留系プロパン留分、 ブタンを中心とした 直留系ブタン留分、 それらを脱硫処理して得られる直留系脱硫プロパン留分、 直 留系脱硫ブタン留分、 接触分解装置等から得られるプロパン ·プロピレンを中心 とした分解系プロパン留分、 ブタン 'ブテンを中心とした分解系ブタン留分、 原 油を常圧蒸留して得られるナフサ留分(ホールレンジナフサ)、ナフサの軽質留分、 ナフサの重質留分、 ホールレンジナフサを脱硫した脱硫ホールレンジナフサ、 軽 質ナフサを脱硫した脱硫軽質ナフサ、 重質ナフサを脱硫した脱硫重質ナフサ、 軽 質ナフサを異性化装置でィソパラフィンに転化して得られる異性化ガソリン、 ィ ソブタンなどの炭化水素に低級ォレフィンを付加 (アルキル化) することによつ て得られるアルキレート、 接触改質法で得られる改質ガソリン、 改質ガソリンよ り芳香族分を抽出した残分であるラフイネ一ト、 改質ガソリンの軽質留分である 軽質改質ガソリ ン、 改質ガソリンの中質留分である中質改質ガソリン、 改質ガソ リンの中重質留分である中重質改質ガソリン、 改質ガソリンの重質留分である重 質改質ガソリン、 各改質ガソリンの 2種類以上の混合物、 接触分解法で得られる 接触分解ガソリン(ホールレンジ分解ガソリン)、接触分解ガソリンの軽質留分で ある軽質分解ガソリン、 接触分解ガソリンの重質留分である重質分解ガソリン、 水素化分解法で得られる水素化分解ガソリン、 ォレフィン分の重合によって得ら れる重合ガソリン、 プロピレンまたはプテンの二量化によって得られるォレフィ ン留分、 プロピレンまたはプテンの二量化によって得られたォレフィン留分を水 素化して得られるパラフィン留分、 脱ノルマルパラフィン油、 芳香族炭化水素化 合物 (トルエン、 炭素数 8の芳香族 (キシレン類)、 炭素数 9の芳香族等)、 天然ガ ス等を一酸化炭素と水素に分解した後に F— T (F i s c h e r -T r o p s c h) 合成で得られる GTL (G a s t o L i q u i d s ) の軽質留分等の基 材が挙げられる。
これらの基材の配合量は、 本発明のガソリンが必要な性状範囲となるように調 整される限りにおいて、 任意であるが、 以下に代表的な基材の配合量範囲の例を 示す。
( 1 ) 改質ガソリン: 0〜 80容量0 /0
( 2 ) 分解ガソリン : 0〜 60容量0 /0
( 3 ) アルキレート : 0〜 40容量0 /0
( 4 ) 異性化ガソリン : 0〜 30容量0 /0
また、 本発明のガソリンは、 含酸素化合物を含有していてもよい。
含酸素化合物としては、 例えば、 炭素数 2〜 4のアルコール類、 炭素数 4〜 8 のエーテル類などが含まれる。 具体的な含酸素化合物としては、 例えば、 ェタノ ール、 メチルー tert—プチルエーテル (MTBE)、 ェチル一 tert—プチルエーテ ル (ETBE)、 tert—ァミルメチルエーテル (TAME)、 tert—アミルェチルェ 一テルなどを挙げることができる。 なかでもエタノール、 MTBE、 ETBEが 好ましく、 二酸化炭素排出量抑制の観点からは、 バイオマス由来のエタノール、 バイオマス由来のエタノールを原料として製造した ETB を特に好ましく使用 することができる。 なお、 メタノールは、 腐食性と、 排出ガス中のアルデヒ ド濃 度が高くなる可能性もあるので、 J I S K 25 36 「石油製品—成分試験方 W
法」 の規定により試験したときに検出されない (0. 5容量%以下) ことが好ま しい。
本発明のガソリン中の含酸素化合物含有量は、 自動車燃料系部材の適合性と、 排出ガス中の NOxが増加を抑制する観点から、 酸素原子換算で 3. 8質量 ,%以 下であることが好ましく、 3. 5質量%以下であることがより好ましく、 2. 7 質量。 /0以下であることがさらに好ましく、 1. 3質量%以下であることが最も好 ましい。
本発明のガソリンのリサーチ法オクタン価 (RON) は、 耐ノッキング性、 カロ 速性、 運転性の観点から、 8 9. 0以上が必要であり、 90. 0以上であること がより好ましい。
本発明のガソリンが主にレギュラーガソリン仕様車で使用される場合には、 ガ ソリン製造時の CO 2排出量の増加が走行時の CO 2排出量の低減を上回るとの 観点から、 RONは 96. 0未満であることが必要である。 また、 高速における 耐ノッキング性能の悪化を防止する観点から、 本発明のガソリンのモーター法ォ クタン価 (MON) は 80. 0以上が好ましく、 8 1. 0以上がより好ましい。 一方、 本発明のガソリンが主にプレミアムガソリン仕様車で使用される場合に は、 その耐ノッキング性、 加速性、 運転性を最大限引き出すために、 RONは 9 6. 0以上であることが必要であり、 より好ましくは 98. 0以上であり、 さら に好ましくは 9 9. 5以上であり、最も好ましくは 1 00. 0以上である。 また、 高速における耐ノッキング性能の悪化を防止する観点から、 MOI^¾8 5. 0以 上が好ましく、 87. 0以上がより好ましい。
ここでいうリサーチ法オクタン価 (RON) およびモーター法オクタン価 (M ON) とは、 J I S K 2280 「オクタン価及びセタン価試験方法」 により測 定されるリサーチ法ォクタン価およびモーター法ォクタン価を意味する。
本発明のガソリンの硫黄含有量は 1 0質量 p pm以下であることが必要であり、 好ましくは 8質量 p pm以下、 より好ましくは 5質量 p pm以下である。 硫黄分 が 1 0質量 p pmを超える場合、排出ガス浄化処理触媒の性能に悪影響を及ぼし、 排出ガス中の NOx、 CO、 HCの濃度が高くなる可能性があり、 またベンゼン の排出量も増加するおそれがあるため、 好ましくない。
ここでいう硫黄分含有量とは、 J I S K 254 1 「原油及び石油製品ー硫 黄分試験方法」 により測定される値を意味する。
本発明のガソリンは無鉛であることが必要である。 ここでいう無鉛とは、 四ェ チル鉛等のァルキル鉛化合物を実質的に添加しないことをいい、 たとえ極微量の 鉛化合物を含有する場合であっても、 その含有量は J I S K 22 5 5 「ガソ リン中の鉛分試験方法」 の適用区分下限値 (0. O O l g/ 1 ) 以下であること を意味する。
本発明のガソリンの蒸留初留点 ( I B P) は、 好ましくは 20°C以上、 より好 ましくは 23 °C以上である。 I B Pが 20°Cに満たない場合は排出ガス中の炭化 水素が増加する可能性がある。 一方、 I B Pは、 好ましくは 3 7°C以下、 より好 ましくは 3 5°C以下である。 I B Pが 3 7°Cを超える場合には、 低温運転性が低 下する可能性がある。
本発明のガソリンの 1 0%留出温度 (T 1 0) は、 好ましくは 3 5°C以上、 よ り好ましくは 40°C以上である。 T 1 0が 3 5 °Cに満たない場合は排出ガス中の 炭化水素が増加する可能性があり、 また、 ベーパーロックにより高温運転性が低 下する可能性がある。 一方、 T 1 0は、 好ましくは 70°C以下、 より好ましくは
60°C以下である。 T 1 0が 70°Cを超える場合には、 低温始動性が低下する可 能性がある。 .
本発明のガソリンの 30%留出温度 (T 30) は、 好ましくは 5 5°C以上、 よ り好ましくは 60°C以上である。 T 30が 5 5 °Cに満たない場合は燃費が悪化す る可能性がある。一方、 T 30は、好ましくは 7 7°C以下、 より好ましくは 7 5°C 以下、 さらに好ましくは 70°C以下である。 T 30が 77°Cを超える場合には、 中低温運転性が低下する可能性がある。
本発明のガソリンの 50%留出温度 (T 50) は、 燃費の悪化を防止する観点 から、 7 5 °C以上であることが好ましく、 80°C以上であることがより好ましい。 一方、 常温運転性の悪化を防止する観点から、 T 50は、 1 1 0°C以下であるこ とが好ましく、 1 05°C以下であることがより好ましく、 1 00°C以下であるこ とがさらに好ましい。
本発明のガソリンの 70%留出温度 (T 70) は、 好ましくは 9 5°C以上であ る。 T 70が 9 5°Cに満たない場合は、 燃費が悪化する可能性がある。 一方、 T
70は、 好ましくは 1 3 5°C以下、 より好ましくは 1 30°C以下である。 T 70 が 135°Cを超える場合は冷機時の中低温運転性が低下する可能性があり、また、 排出ガス中の炭化水素の増加、 吸気パルプデポジッ トの増加、 燃焼室デポジット が増加する可能性がある。
本発明のガソリンの 90%留出温度 (T 90) は、 好ましくは 1 1 5°C以上、 より好ましくは 1 20°C以上である。 T 90が 1 1 5°Cに満たない場合は、 燃費 が悪化する可能性がある。 一方、 冷機時の低温及び常温運転性の悪化、 エンジン オイルのガソリンによる希釈の増加、 炭化水素排出ガスの増加、 エンジンオイル の劣化及ぴスラッジの発生等の現象を防止できる観点から、 T 90は、 好ましく は 180°C以下、より好ましくは 175 °C以下、さらに好ましくは 1 70°C以下、 さらにより好ましくは 165 °C以下である。
本発明のガソリンの蒸留終点(EP)は、 1 50°C以上であることが好ましい。 また、 E Pは、 好ましくは 220°C以下、 より好ましくは 21 5°C以下、 さらに 好ましくは 200°C以下、 さらにより好ましくは 1 95°C以下である。 EPが 2 20°Cを超えると、 吸気弁デポジットゃ燃焼室デポジットが増加する可能性があ り、 また、 点火プラグのくすぶりが発生する可能性がある。
ここでいう I B Ρ、 Τ 10、 Τ 30、 Τ 50、 Τ 70、 Τ 90、 ΕΡとは、 J I S K 2254 「石油製品—蒸留試験方法」 により測定される値 (°C) を意 味する。
本発明のガソリンのリード蒸気圧 (RVP) は、 ガソリンが使用される季節や 地域によって調整することが好ましい。具体的には、暖かい季節'地域向けには、 44〜 72 k P aが好ましく、 44〜 65 k P aがより好ましく、 50〜65 k P aがさらに好ましく、 55〜65 k P aが最も好ましい。 一方、 寒い季節 ·地 域向けには、 60〜 93 k P aが好ましく、 65〜 93 k P aがより好ましく、 70〜 93 k P aがさらに好ましく、 70〜88 k P aが最も好ましい。 RVP が高いと、 ベーパーロックなどによる運転性の不具合が生じる可能性があり、 R VPが低いと冷機状態の始動性が悪化する可能性がある。 ここでいう蒸気圧 (R VP) とは、 J I S K 2258 「原油及び燃料油蒸気圧試験方法(リード法)」 により測定される値 (k P a) を指す。
本発明のガソリンの 1 5°Cにおける密度は、 燃費の悪化を抑制する観点から、 主にレギュラーガソリン仕様車で使用される場合には、 0. 690 g/cm3以 上が好ましく、 0. 700 g/cm3以上がより好ましく、 0. 7 10 g/cm3 以上がさらに好ましく、 0. 7 1 5 g/ cm3以上が最も好ましい。 また、 加速 性の悪化やプラグのくすぶりを防止する観点から、 0. y s s gZcm3以下が 好ましく、 0. 76 0 g/c m3以下がより好ましく、 0. 7 50 g/c m3以下 がさらに好ましく、 0. 745 g/ cm3以下であることが最も好ましい。
一方、 主にプレミアムガソリン仕様車で使用される場合には、 1 5 Cにおける 密度は、 0. 700 gZcm3以上が好ましく、 0. 7 1 0 gZc m3以上がより 好ましく、 0. 720 g/cm3以上がさらに好ましく、 0. 7 30 gZcm3以 上が最も好ましい。また、加速性の悪化やプラグのくすぶりを防止する観点から、 0. 78 3 g/c m3以下が好ましく、 0. 7 70 g / c m 3以下がより好ましく、 0. 760 g/cm3以下がさらに好ましい。
ここでいう 1 5°Cにおける密度とは、 J I S K 2249 「原油及ぴ石油製 品の密度試験方法並びに密度 ·質量 ·容量換算表」 により測定される値 (gZc m3) を意味する。
本発明のガソリンの酸化安定度は、 貯蔵中のガムの生成を抑制する観点から、 240分以上であることが好ましく、 480分以上であることがより好ましく、 1440分以上であることがさらに好ましい。
ここでいう酸化安定度とは、 J I S K 228 7 「ガソリン酸化安定度試験 方法 (誘導期間法) J によって測定した値 (分) を意味する。
本発明のガソリンは、銅板腐食(50° ( 、 3 h) 力 S 1以下であるのが好ましく、 1 aであるのがより好ましい。 銅板腐食が 1を越える場合は、 燃料系統の導管が 腐食する可能性がある。
ここでいう銅板腐食とは、 J I S K 251 3 「石油製品一銅板腐食試験方 法」 (試験温度 50° (:、 試験時間 3時間) に準拠して測定した値を意味する。 本発明のガソリンの洗浄実在ガム量は、 5mg/1 00m l以下であることが 好ましく、 3mg/l 0 Om 1以下であることがより好ましく、 1 m g Z 1 00 m 1以下であることがさらに好ましい。 また、 本発明のガソリンの未洗実在ガム 量は、 2 Omg/1 0 Om 1以下であることが好ましく、 1 0mg/1 00m l 以下であることがより好ましく、 SmgZl O Om lであることがさらに好まし い。 未洗実在ガム量おょぴ洗浄実在ガム量が上記の値を超えた場合は、 燃料導入 系統において析出物が生成したり、 吸入パルプが膠着する心配がある。 ここでいう洗浄実在ガム量および未洗実在ガム量とは、 J I S K 2 2 6 1 「石油製品一自動車ガソリン及ぴ航空燃料油一実在ガム試験方法一噴射蒸発法」 により測定した値 (m g / 1 0 0 m l ) を意味する。
本発明のガソリン中のベンゼン含有量は、 1容量%以下であることが好ましく、 0 . 5容量%以下であることがより好ましい。 ベンゼン含有量が 1容量%を越え ると排出ガス中のべンゼン濃度が高くなる可能性がある。
ここでいうベンゼン含有量とは、 J I S K 2 5 3 6 「石油製品一成分試験 方法一ガスクロによる芳香族試験方法」 により測定されるベンゼン含有量 (容 量 °/0) を意味する。
本発明のガソリンが主にレギュラーガソリン仕様車で使用される場合には、 ガ ソリン中の芳香族分は 4 0容量%以下であることが好ましく、 3 5容量。 /0以下で あることがより好ましく、 3 0容量%以下であることがさらに好ましい。 芳香族 分が 4 0容量%を超えると、 吸気弁デポジッ ト、 燃焼室デポジットが増加する可 能性があり、 また、 点火プラグのくすぶりが発生する可能性がある。 また、 排出 ガス中のベンゼン濃度が増加する可能性がある。 一方、 芳香族分は、 1 0容量。 /0 以上が好ましく、 1 5容量%以上がより好ましい。 芳香族分が 1 0容量%を下回 る場合には燃費が悪化する可能性がある。
一方、 本発明のガソリンが主にプレミアムガソリン仕様車で使用される場合に は、ガソリン中の芳香族分は、 4 5容量%以下であることが好ましく、 4 2容量% 以下であることがより好ましく、 4 0容量%以下であることがさらに好ましい。 芳香族分が 4 5容量%を超えると、 吸気弁デポジット、 燃焼室デポジッ トが増加 する可能性があり、また、点火プラグのくすぶりが発生する可能性がある。また、 排出ガス中のベンゼン濃度が増加する可能性がある。 一方、 芳香族分は、 2 0容 量%以上が好ましく、 2 5容量%以上がより好ましい。 芳香族分が 2 0容量%を 下回る場合には燃費が悪化する可能性がある。
ここでいう芳香族分とは、 J I S Κ 2 5 3 6 「石油製品一成分試験方法一蛍 光指示薬吸着法」 により測定されるガソリン中の芳香族分含有量 (容量。 /0) を意 味する。
本発明のガソリン中のォレフイン分は、 3 5容量0 /0以下であることが好ましく、 2 5容量。 /0以下であることがより好ましい。 ォレフィン分が 3 5容量%を超える と、 ガソリンの酸化安定性を悪化させ吸気バルブデポジッ トを増加させる可能性 がある。
ここでいぅォレフイン分とは、 J I S K 2 5 3 6 「石油製品 -成分試験方法 —蛍光指示薬吸着法」 により測定されるガソリン中のォレフィン分含有量 (容 量%) を意味する。
本発明のガソリン中の灯油混入量は 4容量%以下であることが望ましい。 灯油 混入量が 4容量。 /0を越えると、 エンジンの始動性が悪化する可能性がある。
ここで、 灯油混入量とはガソリン全量基準での炭素数 1 3及び 1 4のノルマル パラフィン炭化水素の含有量で判定し、 J I S K 2 5 3 6 「石油製品一成分 試験方法」 の規定によって得られる灯油の換算値が 4容量。 /0以下であることであ ることを意味する。
本発明のガソリン中のマンガンの含有量は、 2質量 p p m以下が好ましく、 1 質量 p p m以下がより好ましい。 本発明のガソリン中の鉄の含有量は 2質量 p p m以下が好ましく、 1質量 p p m以下がより好ましい。 本発明のガソリン中のナ トリゥムの含有量は 2質量 p p m以下が好ましく、 1質量 p p m以下がより好ま しい。 本発明のガソリン中のカリゥムの含有量は 2質量 p p m以下が好ましく、 1質量 p p in以下がより好ましい。 本発明のガソリン中のリンの含有量は 2質量 p p m以下好ましく、 1質量 p p m以下がより好ましく、 0 . 2質量 p p m以下 がさらに好ましい。 マンガン、 鉄、 ナトリウム、 カリウム、 リンの含有量が上述 の値を超えると、 排出ガス浄化触媒上への蓄積量の増加、 触媒担体の劣化、 空燃 比センサの劣化等により排出ガス浄化システムの効率を低下させる恐れがある。 ここでいうマンガン、 鉄、 ナトリウムの含有量は 「燃焼灰化一誘導結合プラズ マ発光法」、 カリウムの含有量は 「燃焼灰化—原子吸光法」、 リンの含有量は A S T M D 3 2 3 1 " Standard Test Method for Phosphorus in Gasoline" により 測定される値である。
以下、 「燃焼灰化一誘導結合プラズマ発光法」、 「燃焼灰化一原子吸光法」 の測定 法について詳述する。
( 1 )試料 2 0 gを白金皿に採取する。
( 2 )成分元素の揮散を抑えるために粉末硫黄 0 . 4 gを加え、 サンドバス上で 1 50°Cで時間おき、 揮発分を除く。
(3)残留分を燃焼させる。
(4) 500°Cの電気炉で 2〜3時間灰化する。
(5) 2〜3mLの濃硫酸で溶解し、 20mLに定容する。
(6)マンガン、鉄、ナトリゥムの含有量は誘導結合プラズマ発光分光分析計(島津 製作所社製、 I CP S— 8000)、 リンの含有量は原子吸光光度計(日立製作所 社製、 Z 6100) を用いて分析する。 本発明のガソリンは、 貯蔵安定性のために、 酸化防止剤及び金属不活性化剤を 含有していることが好ましい。 具体的には、 酸化防止剤としては、 N, N' —ジ イソプロピル一 p—フエ二レンジアミンゃ N, N' —ジイソプチノレ一 p—フエ二 レンジァミン等のフエ二レンジアミン系、 及び 2, 6—ジ一 t一プチ — 4ーメ チルフエノールに代表されるヒンダードフエノール類等のアルキルフエノール系 等の酸化防止剤として公知の化合物を用いることができ、 金属不活性化剤として は、 Ν, N' 一ジサリチリデンー 1, 2—ジァミノプロパンのようなァミンカル ボニル縮合化合物等の金属不活性化剤として公知の化合物を用いることができる。 酸化防止剤や金属不活性化剤の添加量には特に制限はないが、 前述の酸化安定 度を好ましい値とし、 他の添加剤を含めた添加後のガソリン組成物の未洗実在ガ ム量が前述の好ましい値となるようにするのが良い。 具体的には、 酸化防止剤は 5〜 10 Omg/ 1が好ましく、 10〜5 Omg/1がより好ましい。 また、 金 属不活性化剤は、 0. 5〜1 Omg/lが好ましく、 :!〜 5mg/ lがより好ま しレ、。
本発明のガソリンは、 吸気バルブ等のデポジットの堆積防止のために、 清浄分 散剤を含有していることが好ましい。 清浄分散剤としては、 コハク酸イミ ド、 ポ リアルキルァミン、 ポリエーテルァミンなどのガソリン清浄分散剤として公知の 化合物を用いることができる。 これらの中でも空気中 300°Cで熱分解を行った 場合にその残分が無いものが望ましい。 より好ましくはポリィソプテュルァミン 及びノまたはポリエーテルアミンを使用するのが良い。
清浄分散剤の含有量は、 本発明のガソリン 1リットル当たり、 25〜1000 m gであることが好ましく、 吸気パルプデポジットを防止し、 燃焼室デポジット をより低減させる点から、 5 0〜 5 0 O m gがさらに好ましく、 1 0 0〜3 0 0 m gが最も好ましい。 なお、 清浄分散剤は、 清浄性に寄与する有効成分が適当な 溶剤で希釈されていることがあるが、 こうした場合、 上記の添加量は、 有効成分 としての添加量を意味している。
本発明のガソリンは、 潤滑性を向上させるため、 摩擦調整剤を含有することが でき、 特にプレミアムガソリン仕様車で使用される場合には摩擦調整剤を含有し ていることが好ましい。
主な摩擦調整剤としては、 例えば、 アルコール; ヒ ドロキシル基を 1〜4個有 する炭素数 1〜3 0のアルコール化合物;カルボン酸;モノカルボン酸と、 グリ コール又は 3価アルコールとの反応物であるヒ ドロキシル基含有エステル;ポリ カルボン酸と多価アルコールとのエステル; > N R ( Rは炭素原子数 5〜4 0の 炭化水素基である) を含む組成を示し、 1以上の置換基を有する少なく とも 1個 の窒素化合物とを組み合わせた多価アルコールのエステル;カルボン酸とアルコ ールァミンとのアミ ド化合物等が挙げられる。 これらは、 単独又は混合物として 用いることができる。これらのうちでは、炭素数 1 0〜2 5のモノカルボン酸と、 グリコール又は 3価アルコールとの反応物であるヒ ドロキシル基含有エステル及 び/又は炭素数 5〜2 5のカルボン酸とアルコールアミンとのアミ ド化合物がよ り好ましく、 炭素数 1 0〜2 5のモノカルボン酸とグリセリンエステル及ぴ Z又 は炭素数 5〜 2 5のモノカルボン酸とジエタノールァミンとのアミ ド化合物がさ らに好ましい。
摩擦調整剤の添加量は特に制限はないが、 他の添加剤と合わせて添加後のガソ リン組成物の未洗実在ガム量が前述の好ましい範囲を満たすように添加するのが 良い。 また、 十分な燃費及び出力改善効果を発揮させ、 一方、 それ以上添加して も効果の向上が期待できない等の観点から、本発明のガソリン 1 リツトル当たり、 好ましくは 1 0〜3 0 0 m g、 より好ましくは 3 0〜2 5 0 m gの含有割合とな るように添加するのが良い。
なお、 摩擦調整剤と称して市販されている商品は、 耐摩耗性に寄与する有効成 分が適当な溶剤で希釈されていることがあるため、 こうした市販品を本発明のガ ソリンに添加する場合にあたっては、 上記の添加量は、 有効成分としての添加量 を意味している。 本発明のガソリンに添加することができるその他の燃料油添加剤としては、 有 機リン系化合物などの表面着火防止剤、 多価アルコールあるいはそのエーテルな どの氷結防止剤、 有機酸のアルカリ金属塩またはアルカリ土類金属塩、 高級アル コール硫酸エステルなどの助燃剤、 ァ-オン系界面活性剤、 カチオン系界面活性 剤、 両性界面活性剤などの帯電防止剤、 ァゾ染料などの着色剤、 有機カルボン酸 あるいはそれらの誘導体類、 アルケニルコハク酸エステル等の防鲭剤、 ソルビタ ンエステル類等の水抜き剤、 キリザニン、 クマリ ンなどの識別剤、 天然精油合成 香料などの着臭剤等が挙げられる。
これらの添加剤は、 1種または 2種以上を添加することができ、 その合計添加 量はガソリン全量基準で 0 . 1質量%以下とすることが好ましい。 本発明の水素化処理方法によって得られるガソリン留分は、 接触改質装置の原 料油として用いることもできる。 被処理油がバイオマスを含む場合、 水素、 ガソ リンエンジン用燃料、 並びに、 石油化学製品の基礎原料であるベンゼン、 トルェ ン及びキシレン類の製造において、 ライフサイクルの観点で見積もられる二酸化 炭素の排出量 (L C A— C 0 2 ) の削減効果を有効に付与することができる。 す なわち、 本発明によれば、 L C A— C O 2を十分に低減化できる水素、 ガソリン エンジン用燃料、 並びに、 石油化学製品の基礎原料であるベンゼン、 トルエン及 びキシレン類を得ることができる。
本発明によつて製造される水素化処理油の一部の留分を水蒸気改質装置や接触 改質装置により改質することで、 水素を製造することができる。 被処理油がバイ ォマスを含む場合には得られる水素がカーボンニュートラルという特徴を有する ことから、 水素製造および/またはガソリン基材製造における環境への負荷を低 減することができる。
本発明によって製造される水素化処理油のうち、 沸点が 2 2 0〜3 5 0 °Cの範 圏内にある灯油留分は、 特にディーゼル軽油や重油基材として好適に用いること ができる。 上記の留分をディーゼル軽油として使用する場合、 かかる留分におけ る硫黄分の含有量が 1 0質量 p p m以下であることが好ましい。 硫黄分が上記の 上限値を超える場合、 ディーゼルエンジンの排出ガス処理装置で使用されるフィ ルターや触媒に影響を及ぼす恐れがある。 水素化理油は単独でディーゼル軽油や 重油基材として用いてもよいが、 他の基材などの成分を混合したディーゼル軽油 又は重質基材として用いることができる。 他の基材としては、 一般的な石油精製' 工程で得られる軽油留分及び 又は灯油留分、 本発明の水素化処理方法で得られ る残さ留分を混合することもできる。さらに、水素と一酸化炭素から構成される、 いわゆる合成ガスを原料とし、 フィッシヤートロプシュ反応などを経由して得ら れる合成軽油もしくは合成灯油を混合することができる。 これらの合成軽油や合 成灯油は芳香族分をほとんど含有せず、 飽和炭化水素を主成分とし、 セタン価が 高いことが特徴である。 なお、 合成ガスの製造方法としては公知の方法を用いる ことができ、 特に限定されるものではない。
[産業上の利用可能性]
本発明によれば、 動植物油由来の油脂成分を含む被処理油の水素化処理方法が 提供される。 また該水素化処理方法により、 二酸化炭素の排出量の削減を有効に 実現できる環境低負荷型ガソリン基材および無鉛ガソリン組成物が提供される。
[実施例]
以下、 実施例及び比較例に基づき本発明を更に具体的に説明するが、 本発明は 以下の実施例に何ら限定されるものではない。
(触媒 Aの調製)
シリカとアルミナとの比(S i 0 2/A 1 20 が 5である Y型ゼォライ トを、 スチーミング装置を用い、 7 8 0 °〇で1時間、 飽和水蒸気雰囲気中で水熱処理し て超安定化した後、 1 Ν硝酸水溶液により酸処理を施し、 X線回折によって求め られる格子定数が 2 4 . 3 3 Α、 シリカとアルミナとの比 ( S i 0 2 /A 1 2 0 3 ) が 3 0であるプロ トン型の超安定化 Y型ゼォライ ト 2 1 0 gを得た。
一方、 濃度 5質量%のアルミン酸ナトリゥム水溶液 3 0 0 0 gに水ガラス 3号 1 8 5 gを加え、 6 5 °Cに保温した容器に入れた。 他方、 6 5 °Cに保温した別の 容器において濃度 2 . 5質量%の硫酸アルミニウム水溶液 3 0 0 0 gを調製し、 これに前述のアルミン酸ナトリゥムを含む水溶液を滴下した。 混合溶液の p Hが 7 . 0になる時点を終点とし、 得られたスラリー状の生成物をフィルターに通し て濾取し、 ケーキ状のスラリーを得た。 ケーキ状のスラリーを還流冷却器を取り付けた容器に移し、 蒸留水 1 50m l と 27%アンモニア水溶液 1 0 gを加え、 75°Cで 20時間加熱攪拌した。 該ス ラリーを混練装置に入れ、 80°C以上に加熱し水分を除去しながら混練し、 粘土 状の混練物を得た。 得られた混練物に上記で得られた超安定化 Y型ゼォライ ト 1 86 gを加えさらに混練し、 これを押出し成形機によって直径 1. 5 mmのシリ ンダ一の形状に押し出し、 1 1 0°Cで 1時間乾燥した後、 550°Cで焼成し、 成 形担体 Aを得た。
得られた成形担体 A 50 gをナス型フラスコに入れ、 ロータリーエバポレータ 一で脱気しながらテトラアンミン白金 (II) クロライ ドとテトラアンミンパラジ ゥム(II)クロライ ドの混合水溶液 35m lを用いて金属を含浸せしめ、 1 1 0 °C で乾燥後、 3 50°Cで焼成を行い、 触媒 Aを得た。 触媒 Aにおける白金、 パラジ ゥムの担持量はそれぞれ、 触媒全量に対して 0. 5質量%、 0. 7質量%であつ た。
(触媒 Bの調製)
濃度 5質量%のアルミン酸ナトリウム水溶液 3000 gを 65。(:に保温した容 器に入れた。 他方、 65 °Cに保温した別の容器において濃度 2. 5質量%の硫酸 アルミニウム水溶液 3000 gを調製し、 これに前述のアルミン酸ナトリウム水 溶液を滴下した。 混合溶液の pHが 7. 0になる時点を終点とし、 得られたスラ リー状生成物をフィルターに通して濾取し、 ケーキ状のスラリーを得た。
ケーキ状スラリーを乾留冷却器を取り付けた容器に移し、 蒸留水 1 5 Om 1 と
27 %アンモニア代水溶液 10 gを加え、 75でで 20時間加熱撹拌した。 該ス ラリーを混練装置に入れ、 80°C以上に加熱し水分を除去しながら混練し、 粘土 状の混練物を得た。 得られた混練物を押出し成形機によって直径 1. 5 mmのシ リンダ一の形状に押し出し、 1 1 0°Cで 1時間乾燥した後、 550°Cで焼成し、 成形担体 Bを得た。
得られた成形担体 B 50 gをナス型フラスコに入れ、 ロータリ一エバポレータ 一で脱気しながら、 ジニトロアンミン白金 (I I ) とジニトロアンミンパラジゥ ム (I I ) との混合水溶液 35 m 1を用いて金属を含有せしめ、 1 1 0°Cで乾燥 後、 350°Cで焼成を行い、 触媒 Bを得た。 触媒 Bにおける白金、 パラジウムの 担持量はそれぞれ、 触媒全量に対して 0. 5質量%、 0, 7質量%であった。 (触媒 cの調製)
前記で得られた成形担体 A 50 gをナス型フラスコに入れ、 口一タリーエバポ レーターで脱気しながら三酸化モリブデン 1 0. 0 g、 硝酸ニッケル (I I ) 6 水和物 1 8. 3 g、 リン酸 (濃度 85%) 0. 9 g及びリンゴ酸 4. 0 gを含む 含浸溶液をフラスコ内に注入した。含浸した試料は 1 20°Cで 1時間乾燥した後、 550°Cで焼成し、 触媒 Aを得た。 触媒 Aにおけるニッケル、 モリブデンの担持 量は酸化物換算でそれぞれ、 触媒全量に対して 4. 0質量% (酸化ニッケルとし て) 、 1 6. 0質量0 /0 (酸化モリブデンとして) であった。
(触媒 Dの調製)
前記で得られた成形担体 B 50 gをナス型フラスコに入れ、 ロータリ一エバポ レーターで脱気しながら、 三酸化モリブデン 1 0. 0 g、 硝酸ニッケル (I I ) 6水和物 1 8. 3 g、 リン酸 (濃度 85%) 0. 9 g及びリンゴ酸 4. 0 gを含 む含浸溶液をフラスコ内に注入した。 含浸した試料は 1 20°Cで 1時間乾燥した 後、 550°Cで焼成し、 触媒 Bを得た。 触媒 Bにおけるニッケル、 モリブデンの 担持量は酸化物換算でそれぞれ、 触媒全量に対して 4. 0質量% (酸化ュッケル として) 、 1 6. 0質量% (酸化モリブデンとして) であった。
<実施例 1 >
触媒 A (50m l ) を充填した第一反応管 (内径 2 Omm) と、 同じく触媒 A (50m l ) を充填した第二反応管 (内径 2 Omm) を直列に固定床流通式反応 装置に取り付けた。 その後、 触媒層平均温度 300° ( 、 水素分圧 5MP a、 水素 ガス量 83m 1 / i nの条件下で、 6時間触媒の還元処理を行った。
触媒の還元処理後、 被処理油としてパーム油 (含酸素炭化水素化合物に占める トリグリセリ ド構造を有する化合物の割合: 98モル。/。) を用いて、 水素化処理 を行った。 なお、 被処理油の 1 5で密度は0. 9 1 6 g/m 1、 酸素分含有量は 1 1. 4質量%であった。 また、 水素化処理の条件は、 第一及び第二反応管の反 応温度を 4 1 5°C、 圧力を 5 MP a、 液空間速度を 0. 45 h—1とした。 なお、 第一反応管と第二反応管の間で導入する水素ガスの容量比率 (クェンチ水素比率) は全導入水素の 20容量。 /。とし、 導入した全水素によって求めた水素 油比を 1 01 0NLZLとした。 水素化処理によって得られた水素化処理油について、 水 素化処理油中の酸素分及び硫黄分、 各留分の収量、 沸点範囲 80〜135°Cのナ フサ留分 (炭素数 5〜10の炭化水素に相当する留分) 中の酸素分及びノルマル パラフィン含有量を測定した。 得られた結果を表 1に示す。
<比較例 1 >
触媒 Aの代わりに触媒 Bを用いたこと以外は実施例 1と同様にして水素化処理 を行った。 得られた水素化処理油について実施例 1と同様の測定を行った。 得ら れた結果を表 1に示す。 く実施例 2 >
触媒 C (50m l) を充填した第一反応管 (内径 2 Omm) と、 同じく触媒 C (50m l) を充填した第二反応管 (内径 20 mm) を直列に固定床流通式反応 装置に取り付けた。 その後、 ジメチルジサルファイ ドを加えた直留軽油 (硫黄分 3質量%) を用いて触媒層平均温度 300°C、 水素分圧 6MP a、 液空間速度 1 h~\ 水素/油比 200 NLZLの条件下で、 4時間触媒の予備硫化を行った。 触媒の予備硫化後、 パーム油 (含酸素炭化水素化合物に占めるトリグリセリ ド 構造を有する化合物の割合: 98モル%) にジメチルサルフアイドを添加して被 処理油中の硫黄分含有量を 51質量 p pmに調製した被処理油を用いて、 水素化 処理を行った。 なお、 被処理油の 15で密度は0. 916 g/m 1、 酸素分含有 量は 1 1. 4質量%であった。 また、 水素化処理の条件は、 第一及び第二反応管 の反応温度を 425°C、圧力を 5MP a、液空間速度を 0. 4 h 1とした。なお、 第一反応管と第二反応管の間で導入する水素ガスの容量比率(クェンチ水素比率) は全導入水素の 20容量%とし、 導入した全水素によって求めた水素/油比を 1 010NL/Lとした。 水素化処理によって得られた水素化処理油について、 水 素化処理油中の酸素分及び硫黄分、 各留分の収量、 沸点範囲 80〜135°Cのナ フサ留分 (炭素数 5〜1◦の炭化水素に相当する留分) 中の酸素分、 硫黄分及び ノルマルパラフィン含有量を測定した。 得られた結果を表 2に示す。 く比較例 2 >
触媒 Cの代わりに触媒 Dを用い、 水素化処理の際に第一及ぴ第二反応管の反応 温度を 430°Cとしたこと以外は実施例 2と同様にして水素化処理を行った。 得 られた水素化処理油について実施例 2と同様の測定を行った。 得られた結果を表 2に示す。 く実施例 3〜6および比較例 3, 4 >
水素化処理用の触媒 Eとして、 結晶型メタルシリケートがフォージャサイ ト型 の構造を有する超安定型 Y型ゼオライ ト 55質量。 /。、 シリカ 1 5. 75質量%、 アルミナ 29. 25質量%で構成される担体に、 周期律表第 8族の白金およびパ ラジウムを各々 0. 5質量%および 0, 7質量%担持した触媒を調製した。なお、 超安定型 Y型ゼォライトのシリカ Zアルミナ比は 33であった。
水素化処理の被処理油には、 バイオマスの植物油であるパーム油を用い、 その トリグリセライ ドの含有量は 98モル%、 酸素分含有量 1 1. 4質量%、 硫黄分 は 0. 1質量 p p m未満であった。
触媒 Eを還元前処理した後に、 反応温度 425°C、 水素圧力 5MP a、 液空間 速度 0. 4 h— 水素油比 1 01 0NL/Lの条件下で、 被処理油のパーム油と 接触することにより水素化処理を行い、 生成油の蒸留により 35°C〜 1 35°Cの 留分であるバイオマス水素化処理基材 Eを得た。 このバイオマス基材 Eの酸素分 含有量は 0. 1質量。/。未満、 硫黄分含有量は 0. 1質量 p pm未満、 ノルマルバ ラフィン含有量は 24. 8質量0 /。であった。
バイオマス水素化処理基材 Eを 10容量%と、 軽質改質ガソリン (留分範囲 2 7〜: 1 28°C、 密度 0. 690 gZcm3、 芳香族分 23容量%)、 中重質改質ガ ソリン (留分範囲 92〜1 95°C、 密度 0. 853 g/cm3、 芳香族分 90容 量%)、 軽質接触分解ガソリン (留出温度 27〜81°C、 密度 0. 656 g/cm 3、ォレフィン分 47容量0 /0)、重質接触分解ガソリン(留分範囲 75〜1 98°C、 密度 0. 764 g/cm3、 ォレフィン分 33容量。/。)、 アルキレート (留分範囲 33〜: 1 79°C、 密度 696 g/cm3, 飽和分 100容量%)、 軽質ナフサ
(留分範囲 28〜: I 05°C、 密度 0. 637 g/cm3、 飽和分 99容量%)、 ト ルェン、 ノルマルブタンなどのガソリン基材および酸化防止剤、 金属不活性化剤 を配合することにより、 実施例 3のガソリン組成物を調製した。
バイオマス水素化処理基材 Eを 1 2容量%と、 バイオマス由来のエタノールを 原料として製造した ETBEを 7容量%に、 軽質改質ガソリン (留分範囲 27〜 128°C、 密度 0. 690 g/cm3、 芳香族分 23容量%)、 中重質改質ガソリ ン(留分範囲 92〜: I 95°C、密度 0. 853 g / Cm3、芳香族分 90容量%)、 軽質接触分解ガソリン (留出温度 27〜8 1°C、 密度 0. 656 g / c m3、 ォ レフイン分 47容量%)、重質接触分解ガソリン (留分範囲 75〜198°C、密度 0. 764 g/cm3、 ォレフィン分 33容量0 /0)、 アルキレート (留分範囲 33 〜1 79°C、 密度 0. 696 g/cm3、 飽和分 100容量。/。)、 軽質ナフサ (留 分範囲 28〜: I 05°C、 密度 0. 637 gZcm3、 飽和分 99容量%)、 トルェ ン、 ノルマルブタンなどのガソリン基材および酸化防止剤、 金属不活性化剤を配 合することにより、 実施例 4のガソリン組成物を調製した。
水素化処理用の触媒 Fとして、 結晶型メタルシリゲートがフォージャサイ ト型 の構造を有する超安定型 Y型ゼオライ ト 55質量。 /0、 シリカ 1 5. 75質量%、 アルミナ 29.25質量%で構成される担体に、周期律表第 8族のニッケルを 4. 0質量% (酸化ニッケルとして) および周期律表 6 A族のモリブテンを 1 6. 0 質量% (三酸化モリプテンとして) 担持した触媒を調製した。 なお、 超安定型 Y 型ゼォライ トのシリカ/アルミナ比は 30であった。
水素化処理の被処理油は、 バイオマスの植物油であるパーム油 (トリダリセラ ィドの含有量は 98モル%、 酸素分含有量 1 1. 4質量%、 硫黄分は 0. 1質量 p pm未満) にジメチルジサルフアイドを添加して硫黄分を 51質量 p pmに調 製した。
触媒 Fを予備硫化した後に、 反応温度 425°C、 水素圧力 5 MP a、 液空間速 度 0. 4 h 水素油比 101 ONLZLの条件下で、 被処理油の上記のジメチ ルジサルフアイ ド添加パーム油と接触することにより水素化処理を行い、 生成油 の蒸留により 35°C〜135 °Cの留分であるバイオマス水素化処理基材 Fを得た このバイオマス水素化処理基材 Fの酸素分含有量は 0. 1質量。 /。未満、 硫黄分含 有量は 1· 3質量 p pm、ノルマルパラフィン含有量は 24. 3質量%であった。 バイオマス水素化処理基材 Fを 10容量%と、 軽質改質ガソリン (留分範囲 2 7〜1 28で、 密度0. 690 g/cm3、 芳香族分 23容量%)、 中重質改質ガ ソリン (留分範囲 92〜: 1 95°C、 密度 0. 853 gZc m3 芳香族分 90容 量%)、 軽質接触分解ガソリン (留出温度 27〜81°〇、 密度0. e s e gZcm 3、ォレフィン分 4 7容量%)、重質接触分解ガソリン(留分範囲 7 5〜1 9 8°C、 密度 0. 7 6 4 §ノ0 !113、 ォレフィン分 3 3容量0 /0)、 アルキレート (留分範囲 3 3〜: L 7 9°C、 密度 0. e s e gZcm3 飽和分 1 0 0容量。/。)、 軽質ナフサ (留分範囲 2 8〜: L 0 5°C、 密度 0. 6 3 7 g_ c m3、 飽和分 9 9容量%)、 ト ルェン、ノルマルブタンなどのガソリン基材および酸化防止剤、金属不活性化剤、 清浄分散剤を配合することにより、 実施例 5のガソリン組成物を調製した。
バイオマス水素化処理基材 Fを 1 0容量。 /0と、 バイオマス由来のエタノールを 3容量。 /。に、 軽質改質ガソリン (留分範囲 2 7〜1 2 8°0、 密度0. 6 9 0 gZ c m3、 芳香族分 2 3容量%)、 中重質改質ガソリン (留分範囲 9 2〜 1 9 5°C、 密度 0. 8 5 3 gZc m3、 芳香族分 9 0容量%)、 軽質接触分解ガソリン (留出 温度 2 7〜8 1°CS 密度 0. 6 5 6 g/c m3、 ォレフィン分 4 7容量0 /0)、 重質 接触分解ガソリン (留分範囲 7 5〜: L 9 8°C、 密度 0. 7 6 4 g/c m3、 ォレ フィン分 3 3容量0/。)、 アルキレート (留分範囲 3 3〜: 1 7 9 °C、 密度 0. 6 9 6 g/c m 飽和分 1 0 0容量%;)、 軽質ナフサ (留分範囲 2 8〜: L 0 5°C、 密度 0. 6 3 7 gZ c m3、 飽和分 9 9容量0 /0)、 トルエン、 ノルマルブタンなどのガ ソリン基材および酸化防止剤、 金属不活性化剤、 清浄分散剤、 摩擦調整剤を配合 することにより、 実施例 6のガソリン組成物を調製した。
バイオマス水素化処理基材 Eを 5 5容量%、 軽質改質ガソリン (留分範囲 2 7 〜1 2 8°C、 密度 0. 6 9 0 g/cm3、 芳香族分 2 3容量%)、 中重質改質ガソ リン(留分範囲 9 2〜 1 9 5°C、密度 0. 8 5 3 gZc m3、芳香族分 9 0容量%;)、 軽質接触分解ガソリン (留出温度 2 7〜8 1°C、 密度 0. 6 5 6 g/ C m3、 ォ レフイン分 4 7容量。 /0)、重質接触分解ガソリン (留分範囲 7 5〜1 9 8°C、密度 0. 7 6 4 g/ c m3, ォレフィン分 3 3容量0 /0)、 アルキレート (留分範囲 3 3 〜: 1 7 9°C、 密度 0. 6 9 6 g/ c m 3、 飽和分 1 0 0容量。 /0)、 軽質ナフサ (留 分範囲 2 8〜: 1 0 5°C、 密度 0. 6 3 7 § c m3、 飽和分 9 9容量。/。)、 トルェ ン、 ノルマルブタンなどのガソリン基材および酸化防止剤、 金属不活性化剤を配 合することにより、 比較例 3のガソリン組成物を調製した。
比較例 4は市販のレギュラー.ガソリンである。
表 3に各ガソリン組成物の性状を示す。 <実施例 7〜 10および比較例 5 , 6 >
バイオマス水素化処理基材 Eを 5容量 °/0とした以外は実施例 3と同様の方法で、 実施例 7のガソリン組成物を調製した。
パイォマス水素化処理基材 Eを 5容量%とした以外は実施例 4と同様の方法で、 実施例 8のガソリン組成物を調製した。
バイォマス水素化処理基材 Fを 5容量。 /0とした以外は実施例 5と同様の方法で、 実施例 9のガソリン組成物を調製した。
バイオマス水素化処理基材 Fを 7容量%とした以外は実施例 6と同様の方法で、 実施例 10のガソリン組成物を調製した。
バイオマス水素化処理基材 Eを 40容量%とした以外は比較例 3と同様の方法 で、 比較例 5のガソリン組成物を調製した。
比較例 6は市販のプレミアムガソリンである。
表 5に各ガソリン組成物の性状を示す。
(性状測定)
実施例および比較例におけるガソリン組成物の性状は以下の方法により測定し た。
リサーチ法オクタン価およびモーター法オクタン価は、 J I S K 2280 「ォクタン価及ぴセタン価試験方法」 により測定されるリサーチ法ォクタン価お よびモーター法オクタン価による値である。
硫黄分は、 J I S K 2541 「原油及び石油製品一硫黄分試験方法」により 測定した。
鉛分は、 J I S K 2255 「ガソリン中の鉛分試験方法」により測定した。 蒸留性状 (Ι ΒΡ、 Τ 10、 Τ 30、 Τ 50、 Τ 70、 Τ 90、 Ε Ρ) は、 全 て J I S K 2254 「石油製品一蒸留試験方法—常圧法」 により測定した。 蒸気圧 (@ 37. 8°C) は、 J I S K 2258 「原油及び燃料油蒸気圧試 験方法 (リード法)」 により測定した。
密度 (@ 15°C) は、 J I S K 2249 「原油及び石油製品の密度試験方 法並びに密度 ·質量 ·容量換算表」 により測定した。
酸化安定度は、 J I S K 2287 「ガソリン酸化安定度試験方法 (誘導期 法)」 によって測定した。
銅板腐食は、 J I S K 2 5 1 3 「石油製品一銅板腐食試験方法」 (試験温度 5 0 °C, 試験時間 3時間) に準拠して測定した。
未洗実在ガム量および洗浄実在ガム量は、 J I S K 2 2 6 1 「石油製品— 自動車ガソリン及ぴ航
空燃料油一実在ガム試験方法一噴射蒸発法」 により測定した。
ベンゼンは、 J I S Κ 2 5 3 6 「石油製品一成分試験方法一ガスクロによる 芳香族試験方法」 により測定した。
芳香族分及ぴォレフイン分は、 J I S K 2 5 3 6 「石油製品一成分試験方法 一蛍光指示薬吸着法」 により測定した。
灯油分は、 J I S K 2 5 3 6 「石油製品一成分試験方法」 の規定に従って 測定した。
マンガン、 鉄、 ナトリウムの含有量は 「燃焼灰化一誘導結合プラズマ発光法」、 力リゥムの含有量は「燃焼灰化一原子吸光法」、 リンの含有量は A S T M D 3 2 3 1 " Standard Test Method for Phosphorus in Gasoline" により測定した。
(バイオマス由来基材含有量)
' 実施例および比較例のガソリン組成物について、 基材配合割合から、 バイオマ ス由来基材の含有量およびバイオマスの植物油由来基材の含有量を示した。
(加速性能評価)
環境温度 2 5 °C、 環境湿度 5 0 %に保持したシャーシダイナモメータ上で、 下 記の試験車両 (レギュラーガソリンについては車両 1、 プレミアムガソリンにつ いては車両 2 ) を使用し、 加速性能評価を実施した。 試験は試験車両を十分に暖 機走行させた後、 Dレンジ (〇Dはオン) で 5 0 k m/ hから 1 1 0 k / hま での全開加速を 1 0回行い、 6 0 k mZ hから 1 0 0 k m/ hに達するまでの所 要時間を測定し、 最初の 3回を除いた 7回の所要時間の平均値を加速時間と定義 した。
[試験車両] :車両 1
エンジン:直列 4気筒 (レギュラーガソリン仕様)
排気量: 1 4 9 8 c c
噴射方式:マルチボイント式 ミッション:ォートマチック トランスミッション
排出ガス浄化システム:三元触媒、 空燃比フィードバック制御
平成 1 2年排出ガス規制適合
[試験車両] :車両 2
エンジン:直列 4気筒 (プレミアムガソリン仕様、 加給器あり)
排気量: 1 9 9 8 c c
噴射方式:マルチポイント式
ミッション:ォートマチック トランスミッション
排出ガス浄化システム :三元触媒、 空燃比フィードバック制御
平成 1 2年排出ガス規制適合
(排出ガス試験)
排出ガス試験は、 上記の試験車両を用いて、 国土交通省によるガソリン自動車 1 0 · 1 5モード排出ガス測定の技術指針に従って、 排出ガス中に含まれる C O および N O Xの排出量を計測した。
(燃料消費試験)
燃料消費試験は、 上記の試験車両を用いて、 国土交通省によるガソリン自動車 1 0 - 1 5モード燃料消費試験方法に従って計測した。
表 4及ぴ表 6に示す通り、 本発明のガソリン (実施例 3〜1 0 ) は、 バイオマ ス由来の基材を配合することにより、 燃料供給源の多様化およびライフサイクル で C〇2の増加抑制に寄与すると考えられると共に、 良好な加速性能、 低い排出 ガス (C O、 N O x ) レベル、 良好な燃費を実現できることが分かる。
表 1
Figure imgf000037_0001
表 2
Figure imgf000037_0002
表 3
Figure imgf000038_0001
表 4
Figure imgf000039_0001
表 5
Figure imgf000040_0001
表 6
Figure imgf000041_0001

Claims

請 求 の 範 囲
1. 水素の存在下、 含酸素炭化水素化合物を含有する被処理油と、 結晶 性メタ口シリケートを含有する担体及び該担体に担持された周期律表第 8族の元 素から選ばれる 1種以上の金属を含有する触媒とを、 接触させて水素化処理油を 得ることを特徴とする水素化処理方法。
2. 水素の存在下、 含酸素炭化水素化合物及び含硫黄炭化水素化合物を 含有する被処理油と、 結晶性メタロシリケートを含有する担体及び該担体に担持 された周期律表第 6 A族及び第 8族の元素から選ばれる 1種以上の金属を含有す る触媒とを、 接触させて水素化処理油を得ること.を特徴とする水素化処理方法。
3. 前記水素化処理油の沸点範囲 80〜135 °Cの留分における酸素分 の含有量が 0. 2質量%以下且つノルマルパラフィンの含有量が 30質量%以下 となる条件で前記被処理油と前記触媒とを接触させることを特徴とする、 請求項 1又は 2に記載の水素化処理方法。
4. 前記被処理油の全量を基準として、 酸素分の含有量が 0. 1〜1 5 質量%であり、 硫黄分の含有量が 50質量 p pm以下であることを特徴とする請 求項 1または 3に記載の水素化処理方法。
5. 前記被処理油の全量を基準として、 酸素分の含有量が 0. 1〜1 5 質量%であり、 硫黄分の含有量が 1質量 p p n!〜 1質量%であることを特徴とす る請求項 2または 3に記載の水素化処理方法。
6. 前記含酸素炭化水素化合物が動植物油に由来する油脂成分であるこ とを特徴とする請求項 1〜 5のうちのいずれか 1項に記載の水素化処理方法。
7. 前記含酸素炭化水素化合物に占めるトリグリセリ ド構造を有する化 合物の割合が 90モル%以上であることを特徴とする請求項 1〜 6のうちのいず れか 1項に記載の水素化処理方法。
8. 前記第 8族元素が P d、 P t、 Rh、 I r、 11及ぴ 1から選ば れる 1種以上の金属であることを特徴とする請求項 1〜7のうちのいずれか 1項 に記載の水素化処理方法。
9. 前記第 6 A族元素が C o、 Moおよび N iから選ばれる 1種以上の 金属であることを特徴とする請求項 2〜 6のうちのいずれか 1項に記載の水素化 処理方法。
1 0. 前記結晶性メタロシリゲートがフォージャサイ ト型の構造を有する ものであることを特徴とする請求項 1〜9のうちのいずれか 1項に記載の水素化 処理方法。
1 1. 前記結晶性メタロシリケートが、 シリカとアルミナとのモル比 (シ リ力/アルミナ) が 1 0〜 1 00の範囲内にある超安定化 γ型ゼォライ トである ことを特徴とする請求項 1〜 1 0のうちのいずれか 1項に記載の水素化処理方法。
1 2. 請求項 1 ~1 1のうちのいずれか 1項に記載の水素化処理方法によ り得られる水素化処理油のうちの沸点が 25〜220°Cの範囲内にある留分を含 むことを特徴とする環境低負荷型ガソリン基材。
1 3. 酸素分含有量が 0. 2質量%以下、 ノルマルパラフィン含有率が 3 0質量。 /0以下であることを特徴とする請求項 1 2に記載の環境低負荷型ガソリン 基材。
14. 請求項 1 2項又は 1 3項に記載の環境低負荷型ガソリン基材を含有 することを特徴とする無鉛ガソリン組成物。
1 5. リサーチ法オクタン価が 89. 0以上96. 0未満、 硫黄分含有量 が 1 0質量 p pm以下であることを特徴とする請求項 14の無鉛ガソリン組成物。
1 6. リサーチ法オクタン価が 96. 0以上、 硫黄分含有量が 1 0質量 p pm以下であることを特徴とする請求項 14の無鉛ガソリン組成物。
1 7. 1 0%留出温度が 70°C以下、 50%留出温度が 7 5°C以上 1 1 0 °C 以下、 90%留出温度が 1 80°C以下、蒸留終点が 220°C以下、蒸気圧(3 7. 8 °C) が 44 k P a以上 9 3 k P a以下、 密度 ( 1 5 °C) が 0. 78 3 gノ c m 3以下、 酸化安定度が 240分以上、 銅板腐食 (50°C、 3時間) が 1以下、 洗 浄実在ガムが 5mg/l 00m l以下、 未洗実在ガムが 20mg/1 00m l以 下、 ベンゼン含有量が 1容量%以下であることを特徴とする請求項 14〜 1 6の うちのいずれか 1項に記載の無鉛ガソリン組成物。
1 8. 芳香族分含有量が 45容量%以下、ォレフィン分含有量が 3 5容量% 以下であることを特徴とする請求項 14〜 1 7のうちのいずれか 1項に記載の無 鉛ガソリン組成物。
1 9. マンガンの含有量が 2質量 p pm以下、 鉄の含有量が 2質量 p pm 以下、 ナトリウムの含有量が 2質量 p p m以下、 カリウムの含有量が 2質量 p p m以下、 及ぴリンの含有量が 2質量 p p m以下であることを特徴とする請求項 1 4〜 1 8のうちのいずれか 1項に記載の無鉛ガソリン組成物。
2 0 . 酸化防止剤と金属不活性化剤を含有することを特徴とする請求項 1 4〜1 9のうちのいずれか 1項に記載の無鉛ガソリン組成物。
2 1 . 清浄分散剤を含有することを特徴とする請求項 1 4〜2 0のうちの いずれか 1項に記載の無鉛ガソリン組成物。
2 2 . 摩擦調整剤を含有することを特徴とする請求項 1 4〜2 1のうちの いずれか 1項に記載の無鉛ガソリン組成物。
PCT/JP2007/060303 2006-05-17 2007-05-15 水素化処理方法、環境低負荷型ガソリン基材および無鉛ガソリン組成物 WO2007142013A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006138298A JP4914643B2 (ja) 2006-05-17 2006-05-17 水素化精製方法及び環境低負荷型ガソリン基材
JP2006-138360 2006-05-17
JP2006138359 2006-05-17
JP2006-138300 2006-05-17
JP2006138360A JP5137335B2 (ja) 2006-05-17 2006-05-17 ガソリン組成物の製造方法
JP2006-138359 2006-05-17
JP2006138300A JP4914644B2 (ja) 2006-05-17 2006-05-17 水素化精製方法及び環境低負荷型ガソリン基材
JP2006-138298 2006-05-17

Publications (1)

Publication Number Publication Date
WO2007142013A1 true WO2007142013A1 (ja) 2007-12-13

Family

ID=38801277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060303 WO2007142013A1 (ja) 2006-05-17 2007-05-15 水素化処理方法、環境低負荷型ガソリン基材および無鉛ガソリン組成物

Country Status (2)

Country Link
KR (1) KR20090025241A (ja)
WO (1) WO2007142013A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032752A1 (ja) * 2008-09-18 2010-03-25 新日本石油株式会社 炭化水素油の製造方法
US7982079B2 (en) 2008-09-11 2011-07-19 Uop Llc Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing
US8551325B2 (en) 2008-09-18 2013-10-08 Jx Nippon Oil & Energy Corporation Process for producing hydrocarbon oil
US9447333B2 (en) 2008-11-20 2016-09-20 Jx Nippon Oil & Energy Corporation Aviation fuel base oil and aviation fuel composition
US9464250B2 (en) 2008-11-20 2016-10-11 Jx Nippon Oil & Energy Corporation Process for producing aviation fuel base oil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300009A (en) * 1978-12-28 1981-11-10 Mobil Oil Corporation Conversion of biological material to liquid fuels
JPS5962694A (ja) * 1982-10-02 1984-04-10 Honda Motor Co Ltd ガソリン製造法
JPS59108088A (ja) * 1982-11-10 1984-06-22 Honda Motor Co Ltd パラフイン系炭化水素の製造法
US4992605A (en) * 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
JP2005029763A (ja) * 2003-07-11 2005-02-03 Nippon Oil Corp ガソリン組成物
WO2007063874A1 (ja) * 2005-11-30 2007-06-07 Nippon Oil Corporation 環境低負荷型燃料の製造方法および環境低負荷型燃料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300009A (en) * 1978-12-28 1981-11-10 Mobil Oil Corporation Conversion of biological material to liquid fuels
JPS5962694A (ja) * 1982-10-02 1984-04-10 Honda Motor Co Ltd ガソリン製造法
JPS59108088A (ja) * 1982-11-10 1984-06-22 Honda Motor Co Ltd パラフイン系炭化水素の製造法
US4992605A (en) * 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
JP2005029763A (ja) * 2003-07-11 2005-02-03 Nippon Oil Corp ガソリン組成物
WO2007063874A1 (ja) * 2005-11-30 2007-06-07 Nippon Oil Corporation 環境低負荷型燃料の製造方法および環境低負荷型燃料

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982079B2 (en) 2008-09-11 2011-07-19 Uop Llc Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing
WO2010032752A1 (ja) * 2008-09-18 2010-03-25 新日本石油株式会社 炭化水素油の製造方法
JP2010070651A (ja) * 2008-09-18 2010-04-02 Nippon Oil Corp 炭化水素油の製造方法
CN102159671A (zh) * 2008-09-18 2011-08-17 吉坤日矿日石能源株式会社 烃油的制造方法
US8551325B2 (en) 2008-09-18 2013-10-08 Jx Nippon Oil & Energy Corporation Process for producing hydrocarbon oil
US8784645B2 (en) 2008-09-18 2014-07-22 Jx Nippon Oil & Energy Corporation Process for producing hydrocarbon oil
AU2009293731B2 (en) * 2008-09-18 2016-03-10 Jx Nippon Oil & Energy Corporation Process for producing hydrocarbon oil
US9447333B2 (en) 2008-11-20 2016-09-20 Jx Nippon Oil & Energy Corporation Aviation fuel base oil and aviation fuel composition
US9464250B2 (en) 2008-11-20 2016-10-11 Jx Nippon Oil & Energy Corporation Process for producing aviation fuel base oil

Also Published As

Publication number Publication date
KR20090025241A (ko) 2009-03-10

Similar Documents

Publication Publication Date Title
JP4925653B2 (ja) 液化燃料ガス組成物の製造方法
JP5142588B2 (ja) ガソリン組成物の製造方法
WO2007064015A1 (ja) 軽油組成物
JP5072008B2 (ja) 軽油組成物の製造方法
US20120198757A1 (en) Aviation fuel oil composition
JP5121137B2 (ja) 軽油組成物
WO2007142013A1 (ja) 水素化処理方法、環境低負荷型ガソリン基材および無鉛ガソリン組成物
JP5072005B2 (ja) 無鉛ガソリン組成物の製造法
JP5137335B2 (ja) ガソリン組成物の製造方法
CN101473016A (zh) 加氢处理方法,环境友好的汽油基础油和无铅汽油组合物
WO2007132939A1 (ja) 軽油組成物
JP2008303345A (ja) 軽油組成物
JP5072010B2 (ja) 軽油組成物
WO2007132938A1 (ja) 軽油組成物
JP5121138B2 (ja) 軽油組成物
JP4948018B2 (ja) 無鉛ガソリン組成物の製造法
JP5072004B2 (ja) 無鉛ガソリン組成物の製造法
JP5403596B2 (ja) 無鉛ガソリン
JP4847116B2 (ja) 液化燃料ガス組成物の製造方法。
JP2007308568A (ja) A重油組成物
JP5667271B2 (ja) 無鉛ガソリン
JP5403594B2 (ja) 無鉛ガソリン
JP5403595B2 (ja) 無鉛ガソリン
JP5499396B2 (ja) 無鉛ガソリン
JP5702456B2 (ja) 無鉛ガソリン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780022764.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12008502550

Country of ref document: PH

Ref document number: 6250/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087030554

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07743738

Country of ref document: EP

Kind code of ref document: A1