WO2007142010A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2007142010A1
WO2007142010A1 PCT/JP2007/060255 JP2007060255W WO2007142010A1 WO 2007142010 A1 WO2007142010 A1 WO 2007142010A1 JP 2007060255 W JP2007060255 W JP 2007060255W WO 2007142010 A1 WO2007142010 A1 WO 2007142010A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
insulating film
forming
silicon
semiconductor device
Prior art date
Application number
PCT/JP2007/060255
Other languages
English (en)
French (fr)
Inventor
Kensuke Takahashi
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US12/227,974 priority Critical patent/US7911007B2/en
Priority to JP2008520476A priority patent/JPWO2007142010A1/ja
Publication of WO2007142010A1 publication Critical patent/WO2007142010A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823835Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes silicided or salicided gate conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Definitions

  • the present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly, to a technique related to a MOS field effect transistor (MOSFET: Metal Oxide Semiconductor Field Effect Transistor) having a gate electrode formed of metal silicide. .
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • Non-Patent Document 1 International 'Electron' Device 'Meeting' International Electron Devices Meeting Technical Digest 2002, p. 359 is a Ta electrode formed on SiO and Ru
  • the work function of the electrode is that They are 4.15 eV and 4.95 eV, respectively, and it is stated that a 0.8 eV work function modulation is possible between the two electrodes.
  • Non-Patent Document 2 International 'electron' device meeting & tech-calguinest (International electron devices meeting technical digest) 2004, p. 91
  • Patent Document 1 International Publication No. 2006Z001271 pamphlet
  • gate electrodes made of silicide having different work functions can be separately formed without performing a process of etching and removing a film deposited on a gate insulating film as in the dual metal gate technology. Therefore, damage to the gate insulating film can be prevented.
  • the composition of nickel silicide is utilized by utilizing the formation of a crystal phase. It is described that control of a wide range of effective work functions is possible by controlling. In particular, utilizing the formation of NiSi phase, NiSi phase and NiSi phase
  • Patent Document 2 (US Patent Application Publication No. 2005Z0070062) includes P-type MOSFE.
  • a metal silicide to which a p-type impurity is added is used for the gate electrode of T, N-type MO
  • Half of the metal silicide doped with n-type impurities is used for the gate electrode of SFET A conductor arrangement is disclosed.
  • Patent Document 3 JP 2005- 129551 discloses
  • Ni composition Ni composition (NIZ (Ni + Si)) is 40 to 70 atomic 0/0
  • a gate insulating film made of silicon oxide and a gate electrode containing an 11-type impurity with a Ni composition of 30 to 60 atomic% are used in the N-type MOSFET. It is described that the desired work function can be obtained, respectively.
  • NiSi nickel monosilicide
  • the silicide progresses nonuniformly, and there arises a problem that crystal phases of different compositions are formed depending on the gate size.
  • the nickel film formed on the polycrystalline silicon layer constituting the gate pattern also has the diffusion amount of nickel to the polycrystalline silicon layer, in particular, the diffusion amount from the lateral direction (in the plane of the substrate), the gate size.
  • the silicide speed is affected by the difference in the impurity species added to the polycrystalline silicon layer, and sufficient silicidation is not performed and the polycrystalline silicon remains. is there.
  • Such a phenomenon is caused by the fact that NiSi is not the most stable phase in nickel silicide.
  • the composition of the gate electrode varies, the amount of impurities near the interface between the gate electrode and the gate insulating film changes, resulting in the variation of the threshold voltage. If polycrystalline silicon remains without being silicided, the original metal gate effect can not be obtained.
  • Non-Patent Document 3 International 'electron's' anis 'meeting' Technical electron devices meeting technical digest 2004, p. 87
  • Non-patent document 4 international. Electron. Device ⁇ Meeting ⁇ Technical-cal-digest (International elec tron devices meeting technical digest) 2005, p. 06 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the first heat treatment is performed to make polycrystalline silicon halfway (polycrystalline silicon part Will remain )
  • nickel rich silicide such as Ni Si and remove excess Ni.
  • an object of the present invention is to provide a high-performance and highly reliable semiconductor device in which variations in element performance are suppressed, and a method of manufacturing the same.
  • a field effect transistor having a silicon substrate, a gate insulating film on the silicon substrate, a gate electrode on the gate insulating film, and source / drain regions formed on the substrate on both sides of the gate electrode.
  • a semiconductor device comprising
  • the gate electrode includes a NiSi crystal phase at least in a portion including the lower surface of the gate electrode.
  • the said transistor is a semiconductor device which has an adhesion layer containing a metal oxide component between the said gate insulating film and the said gate electrode.
  • the gate insulating film has a silicon oxide film or a silicon oxynitride film at least in a portion including the upper surface of the gate insulating film,
  • the silicide layer containing the above-mentioned NiSi crystal phase contains the impurity element.
  • P-channel type having a first gate insulating film on the silicon substrate, a first gate electrode on the first gate insulating film, and a source / drain region formed on the substrate on both sides of the first gate electrode
  • a field effect transistor
  • An N-channel field effect transistor having a second gate insulating film on the silicon substrate, a second gate electrode on the second gate insulating film, and source / drain regions formed on the substrate on both sides of the second gate electrode;
  • the first gate insulating film has a silicon oxide film or a silicon oxynitride film in a portion including at least the upper surface of the gate insulating film,
  • the first gate electrode has a silicide layer containing a first conductivity type impurity element and containing a NiSi crystalline phase in a portion including at least the lower surface of the gate electrode,
  • the N-channel field effect transistor has an adhesion layer containing a metal oxide component between the first gate insulating film and the first gate electrode.
  • the second gate insulating film has a silicon oxide film or a silicon oxynitride film in a portion including at least the upper surface of the gate insulating film,
  • the second gate electrode has a silicide layer containing a second conductivity type impurity element and containing a NiSi crystalline phase at least in a portion including the lower surface of the gate electrode,
  • a semiconductor device having an adhesion layer containing a metal oxide component between a second gate insulating film and a second gate electrode.
  • the oxide component of the adhesion layer is an oxide of a metal selected from Hf, Ta, Zr, La, Ti, Y, and Al, and also a metal oxide selected from any of the items 1 to 3.
  • the semiconductor device of description is an oxide of a metal selected from Hf, Ta, Zr, La, Ti, Y, and Al, and also a metal oxide selected from any of the items 1 to 3.
  • the semiconductor device according to any one of the items 1 to 5, having a resistive layer.
  • the silicide layer containing the above-mentioned NiSi crystal phase is formed of the silicide represented by the composition formula NiSi (0. 6 ⁇ x ⁇ 0. 9).
  • the semiconductor device according to claim 1. (9) A method of manufacturing a semiconductor device according to item 1 above,
  • the polycrystalline silicon under the nickel film is silicided by heat treatment to form Ni Si
  • the manufacturing method of the semiconductor device which has the process of forming the silicide layer containing 3 crystal phases.
  • a method of manufacturing a semiconductor device further comprising the step of: diffusing nickel from the silicide layer into the silicon film by heat treatment to form a low resistance silicide layer including a nickel monosilicide crystal phase.
  • the polycrystalline silicon under the nickel film is silicided by heat treatment to form Ni Si
  • the manufacturing method of the semiconductor device which has the process of forming the silicide layer containing 3 crystal phases.
  • the method of manufacturing a semiconductor device further comprising: a step of diffusing nickel from the silicide layer into the silicon film by heat treatment to form a low resistance silicide layer including a nickel monosilicide crystal phase.
  • the “effective work function” of the gate electrode is generally obtained from flat band voltage by CV measurement, and in addition to the work function inherent to the gate electrode, the insulating film can be used. It is affected by the fixed charge inside, the dipole formed at the interface, Fermi level pin Jung, etc. It is distinguished from the original "work function" of the material that constitutes the gate electrode.
  • the present invention it is possible to provide a high-performance, highly reliable semiconductor device with suppressed variations in element performance, and a method of manufacturing the same.
  • the formation of the silicide layer enables the formation of a uniform silicide, which suppresses the device performance. Thus, it is possible to provide the obtained semiconductor device. Further, according to the present invention, since the adhesion layer is provided between the gate electrode and the gate insulating film, sufficient adhesion of the gate electrode to the gate insulating film can be obtained, and a semiconductor device with high reliability is provided. can do.
  • the upper layer portion of the gate electrode is a silicon layer containing the NiSi phase in the lower layer portion.
  • the wiring resistance and contact resistance of the gate electrode can be reduced.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of the semiconductor device of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a second embodiment of the semiconductor device of the present invention.
  • FIG. 3 A cross-sectional photograph showing the state of the silicide layer (without the adhesion layer) on the silicon oxide film.
  • FIG. 4 A cross-sectional photograph showing the state of the silicide layer (with the adhesion layer) on the silicon oxide film.
  • FIG. 5 A sectional view of a process for illustrating a method of manufacturing a semiconductor device (first embodiment) according to the present invention.
  • FIG. 6 is a cross-sectional view of a process for illustrating a method of manufacturing a semiconductor device (first embodiment) according to the present invention.
  • FIG. 7 is a cross-sectional view of a process for illustrating a method of manufacturing a semiconductor device (first embodiment) according to the present invention.
  • FIG. 8 is a cross-sectional view of a process for illustrating a method of manufacturing a semiconductor device (first embodiment) according to the present invention.
  • FIG. 9 is a cross-sectional view of a process for illustrating a method of manufacturing a semiconductor device (first embodiment) according to the present invention.
  • FIG. 10 is a process sectional view for illustrating a method of manufacturing a semiconductor device (second embodiment) according to the present invention.
  • FIG. 11 is a cross-sectional process view for explaining a manufacturing method of the semiconductor device (second embodiment) according to the present invention.
  • the present invention is suitable for a MOS type field effect transistor (hereinafter referred to as “MOSFET”) having a gate electrode formed of metal silicide, and in particular a P channel type field effect transistor
  • MOSFET MOS type field effect transistor
  • P-type MOSFET MOS type field effect transistor
  • N-type MOSFET TJ N-channel field effect transistor
  • CMOS complementary MOS
  • FIG. 1 and FIG. 2 show schematic cross-sectional views for describing first and second embodiments of the semiconductor device of the present invention, respectively.
  • reference numeral 1 is a silicon substrate
  • 2 is an element isolation region
  • 3a is a gate insulating film
  • 3b is an adhesion layer
  • 4 is an extension diffusion region
  • 5 is a source / drain diffusion region
  • 6 is a silicide layer
  • 7 is a gate sidewall
  • 8 and 9 are impurity-containing Ni Si electrodes
  • the semiconductor devices of the first and second embodiments have a P-type MOSFET and an N-type MOSFET, and a silicon oxide film or a silicon oxynitride film is used as a gate insulating film, and an impurity is contained as a gate electrode.
  • a NiSi electrode is used.
  • the gate electrode of P-type MOSFET is
  • the gate electrode of an N-type MOSFET contains an n-type impurity such as phosphorus (P), and each transistor has a predetermined threshold value depending on the type and concentration of the impurity. It is set.
  • One of the features of the present invention is that it has a silicide layer (hereinafter referred to as “Ni Si layer” as needed) in a region (at least the lowermost layer) including at least the lower surface of the gate electrode. , Or
  • the entire gate electrode includes a silicide layer containing a NiSi crystal phase (NiSi electrode 8,
  • a low resistance layer (low resistance) having a resistance lower than that of the lower silicide layer (Ni Si electrodes 8 and 9) in the upper layer portion of the gate electrode Silicide
  • a layer 11 can be provided.
  • the threshold voltage By having the Ni Si layer in at least the lowermost portion of the gate electrode, the threshold
  • Ni Si crystalline phase is
  • nickel silicide it is the crystal phase that can be formed most stably, and for example, by performing silicide heat treatment at a temperature of 350 ° C. or more, a nickel supply amount exceeding the necessary amount, and a heat treatment time longer than the necessary time. It is possible to form a silicide having a constant composition which does not depend on the gate pattern size and the amount of impurities in polycrystalline silicon. Therefore, since the impurity concentration in the vicinity of the interface between the gate electrode and the gate insulating film is stabilized at a predetermined value, You can reduce the fluctuation of the value.
  • the threshold in the first and second embodiments is controlled by the type and concentration of impurities added to the gate electrode.
  • a Ni Si layer is used for the gate electrode (at least the lowermost part) of both P-type MOSFET and N-type MOSFET, and silicon oxide is used for the gate insulating film.
  • a film or silicon oxynitride film is used.
  • the gate insulating film has a multilayer structure, it is preferable to have a silicon oxide film or a silicon oxynitride film in the uppermost layer portion.
  • the effective work function of the nickel silicide on the silicon oxide film or silicon oxynitride film shows a nearly constant value where the influence of the composition of the silicide crystal phase is small, so it is easy to add impurities to the silicide. It is possible to carry out value control.
  • the adhesion layer between the gate electrode and the gate insulating film by providing the adhesion layer between the gate electrode and the gate insulating film, the adhesion between the gate electrode and the gate insulating film can be improved, and a highly reliable semiconductor device can be provided. . Moreover, the yield at the time of manufacture can also be improved.
  • Figs. 3 and 4 show cross-sectional photographs of the nickel silicide layer formed on the silicon oxide film.
  • Fig. 3 shows an example without an adhesion layer between the silicon oxide film and the silicide layer
  • Fig. 4 shows an example with an adhesion layer between the silicon oxide film and the silicide layer.
  • a silicon oxide film (3 nm in thickness) is formed on a silicon substrate by thermal oxidation, and a Ni Si layer (120 nm in thickness) is formed on this oxide film as follows. Formed. Silicon oxide film type
  • a polycrystalline silicon film 60 nm thick was deposited by chemical vapor deposition (CVD) and subjected to an annealing treatment under the same conditions as the active barrier of the source / drain diffusion layer used in the usual CMOS process.
  • a nickel film (thickness 100 nm) for forming a polycrystalline silicon film was formed on the entire surface.
  • heat treatment is carried out to
  • the heat treatment conditions were set to a temperature of 400 ° C. and a heat treatment time of 5 minutes.
  • excess Ni was removed by wet etching using a mixed solution of sulfuric acid and hydrogen peroxide water. Through the above process, the structure shown in FIG. 3 was formed.
  • a silicon oxide film (3 nm in thickness) is formed on a silicon substrate by thermal oxidation, and an adhesion layer (0.06 ML) and an oxide layer are formed on this oxide film as follows.
  • Ni Si layer 120 nm in thickness
  • hafnium silicon oxide was deposited on the silicon oxide film using atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • Deposition conditions are substrate temperature 3 At 00 ° C, tetragetylaminohafnium (Hf [(CH 3) N]) and tri-trile as film-forming materials.
  • Hf raw material gas was supplied for 10 seconds by publishing nitrogen carrier gas at a flow rate of 20 sccm.
  • H20 was again supplied to acidify the Hf and elemental silicon surfaces. At this time, the amount of the acid hafnium component (Hf-O component) contained in the silicon nitride silicon oxide film deposited on the silicon oxide film was 0.33 ML in molecular layer conversion.
  • a polycrystalline silicon film having a thickness of 60 nm was deposited by CVD (Chemical Vapor Deposition) and subjected to an annealing treatment under the same conditions as the active energy of the source / drain diffusion layer used in a normal CMOS process.
  • a nickel film (10 O nm in thickness) for silicidation of the polycrystalline silicon film was formed on the entire surface.
  • heat treatment was performed to form NiSi. Heat treatment conditions are warm
  • the heat treatment time was set to 5 minutes.
  • excess Ni was removed by wet etching using a mixed solution of sulfuric acid and hydrogen peroxide water. Through the above process, the structure shown in Fig. 4 was formed.
  • FIG. 3 and FIG. 4 were taken of the cross section of the substrate on which the silicide layer was formed, using a scanning electron microscope (SEM) (trade name: S5000, manufactured by Hitachi High-Technologies).
  • SEM scanning electron microscope
  • the silicide layer Ni Si
  • the adhesion between the silicon oxide film and the silicide layer is improved in the example shown in FIG. I understand that.
  • the adhesion between the silicon oxide film and the silicide layer was low even if the adhesion layer was not provided, and no peeling was observed when the NiSi layer was formed. It was confirmed that the phenomenon was remarkable when the NiSi layer was formed.
  • the adhesive layer in the present invention is a region including a metal oxide component provided at the interface between the gate oxide film and the gate electrode.
  • the metal oxide component is preferably provided in a range of 0.1 ML (monolayer) or more and 0.1 ML or less as the coverage of the interface in molecular layer conversion. More than 03ML and less than 0. 07ML are more preferable.
  • this metal oxide component as the amount of metal atoms at the interface, is lE 13 cm Above, lE14cm_ 2 following ranges preferably instrument 3E13cm_ 2 or more, 7E13cm_ 2 following range is preferable.
  • the formation region of the metal oxide component of the adhesion layer is too wide or the amount is too large, the Fermi leveling phenomenon occurs, and it becomes difficult to control the threshold value by the impurity.
  • the physical film thickness increases, the equivalent oxide thickness (EOT) of the gate insulating film increases, and the driving capability of the transistor decreases.
  • EOT equivalent oxide thickness
  • metal oxide of the adhesion layer examples include Hf, Ta, Zr, La, Ti, Y and Al, and among these, metals selected from Hf, Zr, La and Ta are preferable.
  • the metal oxide of the adhesion layer is Hf02, HfSiO, HfSiON, TaO, TaSiO, TaSiON, ZrO, ZrSiO, ZrSiON
  • the genus acid is preferred.
  • the thickness of the Ni Si layer constituting the gate electrode is the same as that of the impurity-containing Ni Si layer.
  • a thickness that can ensure the effective work function that can be originally obtained, and can be set to, for example, 10 nm or more, preferably 20 nm or more. On the other hand, it can be set to 120 nm or less, preferably 100 nm or less from the viewpoint of miniaturization.
  • the thickness of the low resistance layer of the second embodiment is sufficiently thick within a range that does not affect the value of the effective work function determined by the silicide that constitutes the lower layer portion of the gate electrode. I like it.
  • the thickness of the low resistance layer can be set to, for example, 10 nm or more, preferably 20 nm or more, for obtaining sufficiently low resistance, and 120 nm from the viewpoint of the effect on the effective work function and easiness of formation. In the following, preferably, it can be set to 100 nm or less.
  • the thickness of the gate electrode lower layer portion (NiSi electrode) of the second embodiment is the same as that of the NiSi electrode 8, 9 of the first embodiment.
  • the size of the gate electrode (including the low resistance layer) in the present invention can be set to a height (length in a direction perpendicular to the substrate) of 200 nm or less, further 100 nm or less, from the viewpoint of miniaturization. 20 nm or more is preferable in terms of securing the operation performance and manufacturing accuracy. 40 nm or more is more preferable.
  • the gate length can be set, for example, in the range of 10 to: LOO nm.
  • the Ni Si layer constituting the gate electrode that is, the first and second embodiments
  • the NiSi electrode is a silicide layer containing a NiSi phase as a main crystal component. This silicide
  • the layer should have a thread structure represented by Ni Si _ (0. 6 ⁇ x ⁇ 0. 9), 0.70 ⁇ x ⁇ 0.
  • the low resistance layer in the present invention ie, the low resistance layer 11 of the second embodiment, is preferably a silicide layer containing a Ni monosilicide (NiSi) phase as a main crystal component, in terms of resistance value.
  • This silicide layer preferably has a composition represented by Ni Si _ (0.4 ⁇ x ⁇ 0.6).
  • the crystal phase of nickel silicide is mainly composed of NiSi, NiSi, Ni Si, Ni Si, Ni Si, Ni Si,
  • the gate electrode is Ni 2 Si etc., and mixtures of these can also be formed. Therefore, the gate electrode is
  • the average composition of the resulting silicide may deviate from the stoichiometric composition, but it is desirable to be within the above composition range.
  • the Ni Si layer and the low resistance layer constituting the gate electrode consist of a single crystal as much as possible from the point of suppressing the variation of the device performance, and a constant reflecting this
  • the gate insulating film in the present invention is not particularly limited as long as threshold control can be performed by the impurities contained in the gate electrode, but at least a portion including the upper surface of the insulating film on the gate electrode side It is preferable to have a silicon oxide film or a silicon oxynitride film in part).
  • the gate insulating film may be a silicon oxide film, a silicon oxynitride film, a laminated film of a silicon oxide film and a silicon oxynitride film, a silicon oxide film or a silicon oxynitride film provided on the uppermost layer portion, and the like. A stacked film with another insulating film can be used.
  • the thickness of the gate insulating film is preferably set as thin as possible within the range where its function can be exhibited, but can be set, for example, to a thickness of 1 to 2 nm.
  • An element isolation region 2 formed by STI (Shallow Trench Isolation) technology, and a silicon substrate 1 having a P-type active region and an n-type active region are prepared, and the process shown in FIG. 5 Form the laminated structure shown in (a).
  • STI Shallow Trench Isolation
  • a gate insulating film 3 a (thickness 1.1 to 1.2 nm) is formed by thermal oxidation on a silicon substrate on which elements have been separated.
  • the adhesion layer 3 b is formed on the gate insulating film 3 a as follows.
  • atomic layer deposition is used to form an adhesion layer made of hafnium silicon oxide (HfSiO).
  • ALD atomic layer deposition
  • HfSiO hafnium silicon oxide
  • a substrate temperature 200 to 500 ° C.
  • tetragetilaminohafnium Hf [(CH 2) N]
  • trisdimethylaminosilicon as raw materials for film formation.
  • H 2 O is supplied as an oxidant gas onto the silicon dioxide film (first step).
  • a silicon source gas is supplied by a mass flow controller at a flow rate of 2 to 20 sccm (second step).
  • the silicon source gas partial pressure during film formation can be set to 1 ⁇ 10 " 4 Torr (0.03 Pa) force as well as 0.3 Torr (40. OPa), the supply time is 0 to 300 seconds, and the temperature of the silicon source can be set to 45 ° C.
  • supply the Hf source gas from the container at 87 ° C.
  • Hf is supplied under the same conditions as the first step for the purpose of oxidizing the Hf and silicon element surface (fourth step).
  • First Step Force After performing the fourth step, the second step force repeats the fourth step.
  • the second process force can also carry out one cycle of the fourth process in the range of 1 to 10 cycles. In addition, you may provide the process to substitute between each process.
  • An adhesion layer was formed on the silicon oxide film by such a process. At this time, the deposition amount in Hf atomic equivalent was 6 ⁇ 10 13 cm ′ ′ 2 (0.06 ML).
  • the adhesive layer in the present invention can also be formed by the following method.
  • PVD physical vapor deposition
  • hafnium and silicon are simultaneously deposited on the silicon oxide film by the sputtering method (co-sputtering method), and oxidation treatment is performed.
  • the sputtering apparatus one provided with two sputtering targets of hafnium and silicon can be used. Sputtering damage to the silicon oxide film can be minimized by setting the sputtering power to 15 to 100 W and setting the distance between the target and the silicon wafer 240 to 330 mm. . 20: Generate a plasma using LOO sccm Ar gas. By flowing lOOsccm Ar gas, the background pressure of the chamber can be maintained at 1.6 x 10 13 Torr (2.1 3 x 10 15 Pa).
  • Hf and Si are co-sputtered on a silicon oxide film by depositing for 5 seconds with a sputtering power of 15 W, an Ar flow rate of 100 sccm, a substrate rotational speed of 60 rpm, and a distance between the target and the silicon wafer of 300 mm. Deposited. Adhesion amount of Hf in this case was of 4 X 10 13 c m_ 2 ( 0. 04ML). After that, Hf and Si were sputtered by oxidizing the silicon wafer in an oxygen atmosphere at a normal pressure of 800 ° C. for 30 seconds to acidify the Hf and Si, and the HfO and HfSiO become dense.
  • a layer of fouling was formed.
  • a polycrystalline silicon film 13 having a thickness of 60 nm is deposited by CVD (Chemical Vapor Deposition) on the gate insulating film 3b on which the adhesion layer 3b is formed, and then a silicon oxide film having a thickness of 15 nm is formed.
  • the SiO mask 19 is formed.
  • the P-type MOSFET region is covered with a resist mask 20, and phosphorus (P) is ion-implanted into the polycrystalline silicon film of the N-type MOSFET region with lO keV.
  • phosphorus P
  • Injection amount of phosphorus can be set to 4 X 10 15 cm_ 2.
  • the N-type MOSFET region is covered with a resist mask 20 to implant boron (B) into the polycrystalline silicon film of the P-type MOSFET region at 3 keV.
  • boron B
  • Injection of boron can be set to 4 X 10 15 cm_ 2.
  • the laminated film (the gate insulating film 3a, the adhesion layer 3b, the impurity-implanted polycrystalline silicon film 14a, 14b, the SiO mask 19) is subjected to the lithography technique and the RIE (React)
  • silicon nitride is applied to cover the gate pattern by the CVD method.
  • a gate sidewall 7 is formed by depositing a film (not shown) and a silicon oxide film and then etching back.
  • ion implantation is performed again, and then active ion is performed to form the source / drain diffusion region 5.
  • FIG. 6 (e) silicon nitride is applied to cover the gate pattern by the CVD method.
  • the extension diffusion region and the source / drain region described above are formed by ion-implanting an impurity of the opposite conductivity type to each active region while masking one of the p-type active region and the n-type active region. Can.
  • a nickel film 15 is deposited on the entire surface by sputtering, and then, as shown in FIG. 7 (h), the gate pattern, gate sidewall and device isolation are formed by salicide technology.
  • the silicide layer 6 is formed only on the source / drain diffusion region using the region as a mask.
  • a Ni monosilicide (NiSi) layer capable of minimizing the contact resistance is formed as the silicide layer 6.
  • a Co silicide layer or a Ti silicide layer may be formed.
  • excess Ni is removed by wet etching using a mixed solution of sulfuric acid and hydrogen peroxide water.
  • an interlayer insulating film 10 made of a silicon dioxide film is formed by the CVD method so as to embed the gate pattern.
  • the surface of the interlayer insulating film 10 is planarized by CMP (Chemical Mechanic Polishing) technology.
  • the interlayer insulating film 10 is etched back, and the SiO mask 19 in the upper layer of the gate pattern is removed to form the impurity-implanted polycrystalline silicon films 14a and 14b.
  • a nickel film 15 (thickness 100 nm) for forming the impurity-implanted polycrystalline silicon films 14 a and 14 b is formed over the entire surface.
  • a temperature of 400 ° C. and a heat treatment time of 5 minutes can be set.
  • excess Ni is removed by wet etching using a mixed solution of sulfuric acid and hydrogen peroxide water.
  • the structure of the first embodiment shown in FIG. 1 can be formed. Can. Thereafter, an interlayer insulating film is formed on the entire surface according to a conventional method. Thereafter, a desired semiconductor device can be formed in accordance with a normal process.
  • FIG. 10 (a) corresponding to FIG. 9 (n) is formed.
  • a silicon (Si) film 21 with a thickness of about 60 nm is formed on the entire surface by sputtering.
  • the impurity-containing Ni in the N-type MOSFET region is formed by heat treatment.
  • the upper layer portion of the 3 3 pole 17 and the Si film 21 are reacted to form a resistance layer region 18 respectively.
  • the conditions of the heat treatment may be set, for example, in an inert gas atmosphere at 350 to 500 ° C. for 1 to 20 minutes, for example, in a nitrogen atmosphere for 2 to 5 minutes at 400 ° C. it can
  • the excess Si film is removed by wet etching or dry etching.
  • the structure of the second embodiment shown in FIG. 2 can be formed. Thereafter, an interlayer insulating film is formed on the entire surface according to a conventional method. Thereafter, a desired semiconductor device can be formed in accordance with a normal process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 シリコン基板と、このシリコン基板上のゲート絶縁膜、このゲート絶縁膜上のゲート電極、及びこのゲート電極両側の基板に形成されたソース・ドレイン領域を有する電界効果トランジスタとを備えた半導体装置であって、前記ゲート電極は、少なくともこのゲート電極の下面を含む部分に、Ni3Si結晶相を含むシリサイド層を有し、前記トランジスタは、ゲート絶縁膜とゲート電極との間に、金属酸化物成分を含む密着層を有する半導体装置。

Description

明 細 書
半導体装置およびその製造方法
技術分野
[0001] 本発明は、半導体装置およびその製造方法に関するものであり、特に、メタルシリ サイドで形成されたゲート電極を有する MOS型電界効果トランジスタ(MOSFET: Metal Oxide Semiconductor Field Effect Transistor)に関する技 でめ る。
背景技術
[0002] 近年、トランジスタの微細化が進む先端 CMOS (相補型 MOS)デバイスの開発に おいて、ゲート電極の空乏化による駆動電流の劣化が問題となっている。そのため、 駆動能力の向上を目的として、従来の多結晶シリコンに代えて金属系材料を用いる 技術、いわゆるメタルゲート技術が検討されている。
[0003] 一方、トランジスタの微細化に伴い、ゲート絶縁膜の薄膜ィ匕によるゲートリーク電流 の増加が問題となっている。そのため、消費電力の低減を目的として、ゲート絶縁膜 に高誘電率材料 (High— k材料)を用いて物理膜厚を厚くすることでゲートリーク電 流を低減することが検討されて 、る。
[0004] メタルゲート電極に用いる材料として、純金属や金属窒化物ある!/ヽはシリサイド材料 等が検討されている力 いずれの場合においても、(1)メタルゲート電極を形成する 際にゲート絶縁膜の劣化を引き起こさないこと、(2) N型 MOSFET及び P型 MOSF ETのしき 、値電圧 (Vth)を適切な値に設定可能であることが必要である。
[0005] これらを実現する手段として、 N型 MOSFETのゲート電極および P型 MOSFETの ゲート電極にそれぞれ最適な仕事関数を持った金属あるいは合金を用い、作り分け ることでトランジスタの Vthを制御する方法 (デュアルメタルゲート技術)が提案されて いる。
[0006] 例えば、非特許文献 1 (インターナショナル'エレクトロン 'デバイス 'ミーティング'テ クニカノレタづンェスト (International electron devices meeting technical di gest) 2002, p. 359)〖こは、 SiO上に形成した Ta電極と Ru電極の仕事関数はそれ ぞれ 4. 15eVと 4. 95eVであり、この二つの電極間で 0. 8eVの仕事関数変調が可 能であると述べられている。
[0007] し力しながら、デュアルメタルゲート技術は、異なる仕事関数を持った異種の金属あ るいは合金力もなるメタル層を基板上に作り分ける必要があるため、 P型 MOSFETと N型 MOSFETのいずれか一方のゲート絶縁膜上に堆積されたメタル層をエツチン グ除去するプロセスが行われ、そのエッチング除去の際にゲート絶縁膜の品質が低 下し、結果、素子の性能や信頼性が損なわれるといった問題がある。
[0008] 一方、非特許文献 2 (インターナショナル 'エレクトロン'デバイス ·ミーティング ·テク -カルグィンェスト (International electron devices meeting technical dig est) 2004, p. 91)及び特許文献 1 (国際公開第 2006Z001271号パンフレット)に は、多結晶シリコン力もなるゲートパターンをニッケル (Ni)で完全にシリサイド化して 得られる Niフルシリサイドゲート電極に関する技術が記載されて 、る。この技術では 、 CMOSのソース'ドレイン拡散領域の不純物活性ィ匕のための高温熱処理を行った 後に、多結晶シリコン力もなるゲートパターンをサリサイドプロセスによってシリサイド 化をすることができる。このため、従来の CMOSプロセスと整合性が高い。また、デュ アルメタルゲート技術のようにゲート絶縁膜上に堆積した膜をエッチング除去するェ 程を行わなくても、互いに異なる仕事関数をもつシリサイドからなるゲート電極を作り 分けることができる。このため、ゲート絶縁膜へのダメージを防止できる。
[0009] 具体的には、ゲート絶縁膜として HfSiON高誘電率膜を有し、ゲート電極として Ni フルシリサイド電極を有する MOSFETの作製にぉ 、て、結晶相の形成を利用して- ッケルシリサイドの組成を制御することにより、広範囲な実効仕事関数の制御が可能 であることが記載されている。特に、 Ni Si相、 NiSi相および NiSi相の形成を利用し
3 2
て ±0. 3Vの Vthを実現できることが記載されている。
[0010] 上記の他、しき 、値を制御する技術として、ゲート電極に、不純物を含むシリサイド を用いる技術が提案されて 、る。
[0011] 特許文献 2 (米国特許出願公開 2005Z0070062号明細書)には、 P型 MOSFE
Tのゲート電極用として p型不純物が添加された金属シリサイドが用いられ、 N型 MO
SFETのゲート電極用として n型不純物が添加された金属シリサイドが用いられた半 導体装置が開示されている。
[0012] 特許文献 3 (特開 2005— 129551号公報)には、 P型 MOSFETにおいては、酸化 シリコン力もなるゲート絶縁膜、 Ni組成 (NiZ (Ni+Si) )が 40〜70原子0 /0で p型不 純物を含むゲート電極を用い、 N型 MOSFETにおいては、酸化シリコンからなるゲ ート絶縁膜、 Ni組成が 30〜60原子%で11型不純物を含むゲート電極を用いて、そ れぞれ所望の仕事関数が得られることが記載されて 、る。
[0013] ゲート電極全体がニッケルシリサイドで形成されて 、る Niフルシリサイドゲート電極 を使用する技術においては、ゲート材料として、通常、抵抗の低いニッケルモノシリサ イド (NiSi)が用いられる。しかしながら、微細なゲート電極と比較的大きなゲート電極 を同時に形成する場合、シリサイドィ匕が不均一に進行し、ゲートサイズに応じて異な る組成の結晶相が形成される問題が生じる。これは、ゲートパターンを構成する多結 晶シリコン層上に形成されたニッケル膜力もその多結晶シリコン層へのニッケルの拡 散量、特に横方向(基板平面方向)からの拡散量が、ゲートサイズに応じて異なるた めと考えられる。また、ゲート電極のサイズが同じであっても、多結晶シリコン層へ添 カロされている不純物種の違いによりシリサイドィ匕速度が影響を受け、十分なシリサイド 化が行われず多結晶シリコンが残る虡もある。
[0014] このような現象は、ニッケルシリサイドにおいて、 NiSiが最安定相ではなぐ NiSi相
2
、 Ni Si相、 Ni Si相等の種々の結晶相が形成されやすいためと考えられる。シリサイ
2 3
ド組成のバラツキが生じると、ゲート電極とゲート絶縁膜との界面付近の不純物量が 変化し、結果、しきい値のバラツキが生じる。多結晶シリコンがシリサイド化されずに 残ると、本来のメタルゲートの効果を得ることができない。
[0015] このような問題を解決するために、 2段階の熱処理を行ってシリサイド化を行う技術 が提案されている。このような技術が非特許文献 3 (インターナショナル'エレクトロン' ァノ イス'ミーティング 'テク二力ノレグイシェスト (International electron devices meeting technical digest) 2004, p. 87)及び非特許文献 4 (インターナショナ ル.エレクトロン.デバイス ·ミーティング ·テク-カルダイジェスト(International elec tron devices meeting technical digest) 2005, p. 06丄パこ己载されてい o。 例えば、第 1の熱処理を行って多結晶シリコンを途中まで (多結晶シリコン部分が残る ように)シリサイドィ匕して Ni Si等のニッケルリッチシリサイドを形成し、余剰 Niを除去し
2
た後、第 2の熱処理を行って残りの多結晶シリコンをシリサイドィ匕して NiSiを形成する 。これにより、微細パターンにおける横方向力もの過剰な Niの供給を回避できる。
[0016] し力しながら、このような技術を用いても、微細化が進行し、特にゲート電極の高さ が低くなると、プロセスマージンが小さくなりプロセス制御が困難となるため、多結晶 シリコンへの Ni供給量がバラついてしまう。特に、この技術の第 1の熱処理における ニッケルリッチシリサイドの形成はウェハー上の僅かな温度分布の影響を受けやすい こと、第 1の熱処理後にシリサイドと多結晶シリコンとの界面に結晶粒界を反映した大 きなラフネスが生じること力 多結晶シリコンへの Ni供給量の制御を困難にしている。 発明の開示
[0017] 本発明の目的は、上記背景技術に鑑み、素子性能のバラツキが抑えられ、高性能 で信頼性に優れた半導体装置およびその製造方法を提供することにある。
[0018] 本発明によれば、以下の各項に記載した態様の半導体装置およびその製造方法 が提供される。
[0019] (1)シリコン基板と、このシリコン基板上のゲート絶縁膜、このゲート絶縁膜上のゲー ト電極、及びこのゲート電極両側の基板に形成されたソース ·ドレイン領域を有する電 界効果トランジスタとを備えた半導体装置であって、
前記ゲート電極は、少なくとも該ゲート電極の下面を含む部分に、 Ni Si結晶相を
3
含むシリサイド層を有し、
前記トランジスタは、前記ゲート絶縁膜と前記ゲート電極との間に、金属酸化物成 分を含む密着層を有する半導体装置。
[0020] (2)前記ゲート絶縁膜は、少なくとも該ゲート絶縁膜の上面を含む部分に、シリコン 酸化膜またはシリコン酸窒化膜を有し、
前記の Ni Si結晶相を含むシリサイド層は、不純物元素を含有する 1項に記載の半
3
導体装置。
[0021] (3)シリコン基板と、
前記シリコン基板上の第 1ゲート絶縁膜、第 1ゲート絶縁膜上の第 1ゲート電極、及 び第 1ゲート電極両側の基板に形成されたソース ·ドレイン領域を有する Pチャネル型 電界効果トランジスタと、
前記シリコン基板上の第 2ゲート絶縁膜、第 2ゲート絶縁膜上の第 2ゲート電極、及 び第 2ゲート電極両側の基板に形成されたソース ·ドレイン領域を有する Nチャネル 型電界効果トランジスタを備えた半導体装置であって、
前記 Pチャネル型電界効果トランジスタは、
第 1ゲート絶縁膜が、少なくとも該ゲート絶縁膜の上面を含む部分に、シリコン酸ィ匕 膜またはシリコン酸窒化膜を有し、
第 1ゲート電極が、少なくとも該ゲート電極の下面を含む部分に、第 1導電型不純 物元素を含有し且つ Ni Si結晶相を含むシリサイド層を有し、
3
第 1ゲート絶縁膜と第 1ゲート電極との間に、金属酸化物成分を含む密着層を有し 前記 Nチャネル型電界効果トランジスタは、
第 2ゲート絶縁膜が、少なくとも該ゲート絶縁膜の上面を含む部分に、シリコン酸ィ匕 膜またはシリコン酸窒化膜を有し、
第 2ゲート電極が、少なくとも該ゲート電極の下面を含む部分に、第 2導電型不純 物元素を含有し且つ Ni Si結晶相を含むシリサイド層を有し、
3
第 2ゲート絶縁膜と第 2ゲート電極との間に、金属酸化物成分を含む密着層を有す る半導体装置。
[0022] (4)前記密着層の酸化物成分は、 Hf、 Ta、 Zr、 La、 Ti、 Y、 Al力もなる群力も選ば れる金属の酸ィ匕物である 1から 3項のいずれかに記載の半導体装置。
[0023] (5)前記密着層として、分子層換算で 0. 01-0. 1ML (モノレイヤー)の金属酸ィ匕 物が形成されて 、る 1から 4項の 、ずれかに記載の半導体装置。
[0024] (6)前記の Ni Si結晶相を含むシリサイド層上に、該シリサイド層より抵抗の低い低
3
抵抗層を有する 1から 5項のいずれかに記載の半導体装置。
[0025] (7)前記低抵抗層は、ニッケルモノシリサイド結晶相を含むシリサイド層である 6項 に記載の半導体装置。
[0026] (8)前記の Ni Si結晶相を含むシリサイド層は、組成式 Ni Si (0. 6<x< 0. 9) で表されるシリサイドで形成されている 1から 7項のいずれかに記載の半導体装置。 [0027] (9)前記の 1項に記載の半導体装置の製造方法であって、
シリコン基板上に、シリコン酸ィ匕膜またはシリコン酸窒化膜を最表面側に有するゲ ート絶縁膜を形成する工程と、
前記ゲート絶縁膜上に密着層を形成する工程と、
前記密着層が形成されたゲート絶縁膜上に多結晶シリコン膜を形成する工程と、 前記多結晶シリコン膜上にキャップ膜を形成する工程と、
前記キャップ膜を上面に有する多結晶シリコンのゲートパターンを形成する工程と、 前記ゲートパターンの両側の基板にソース'ドレイン領域を形成する工程と、 全面に層間絶縁膜を形成する工程と、
前記層間絶縁膜の表面側部分および前記キャップ膜を除去して前記ゲートパター ンを構成する多結晶シリコンを露出させる工程と、
全面にニッケル膜を形成する工程と、
熱処理によって前記ニッケル膜下の多結晶シリコンをシリサイド化して、 Ni Si
3 結晶 相を含むシリサイド層を形成する工程を有する半導体装置の製造方法。
[0028] (10)前記多結晶シリコン膜中へ不純物元素を添加する工程を有する 9項に記載の 半導体装置の製造方法。
[0029] (11)前記の Ni Si結晶相を含むシリサイド層を形成した後、全面にシリコン膜を形
3
成する工程と、
熱処理によって、前記シリサイド層から前記シリコン膜中へニッケルを拡散させて、 ニッケルモノシリサイド結晶相を含む低抵抗シリサイド層を形成する工程を有する 9項 又は 10項に記載の半導体装置の製造方法。
[0030] (12)前記の 3項に記載の半導体装置の製造方法であって、
P型活性領域と n型活性領域を有する半導体装置を用意する工程と、
シリコン基板上に、シリコン酸ィ匕膜またはシリコン酸窒化膜を最表面側に有するゲ ート絶縁膜を形成する工程と、
前記ゲート絶縁膜上に密着層を形成する工程と、
前記密着層が形成されたゲート絶縁膜上に多結晶シリコン膜を形成する工程と、 一方の活性領域上の多結晶シリコン膜をマスクし、他方の活性領域上の多結晶シリ コン膜に第 1導電型の不純物元素を添加する工程と、
後者の活性領域上の多結晶シリコン膜をマスクし、前者の活性領域上の多結晶シリ コン膜に第 2導電型の不純物元素を添加する工程と、
前記多結晶シリコン膜上にキャップ膜を形成する工程と、
前記キャップ膜を上面に有する多結晶シリコンのゲートパターンを形成する工程と、 一方の活性領域をマスクし、他方の活性領域上のゲートパターン両側の基板にソ ース ·ドレイン領域を形成する工程と、
後者の活性領域をマスクし、前者の活性領域上のゲートパターン両側の基板にソ ース ·ドレイン領域を形成する工程と、
全面に層間絶縁膜を形成する工程と、
前記層間絶縁膜の表面側部分および前記キャップ膜を除去して前記ゲートパター ンを構成する多結晶シリコンを露出させる工程と、
全面にニッケル膜を形成する工程と、
熱処理によって前記ニッケル膜下の多結晶シリコンをシリサイド化して、 Ni Si
3 結晶 相を含むシリサイド層を形成する工程を有する半導体装置の製造方法。
[0031] (13)前記の Ni Si結晶相を含むシリサイド層を形成した後、全面にシリコン膜を形
3
成する工程と、
熱処理によって、前記シリサイド層から前記シリコン膜中へニッケルを拡散させて、 ニッケルモノシリサイド結晶相を含む低抵抗シリサイド層を形成する工程を有する 12 項に記載の半導体装置の製造方法。
[0032] なお本明細書にぉ 、て、ゲート電極の「実効仕事関数」とは、一般に CV測定による フラットバンド電圧より求められるものであり、ゲート電極本来の仕事関数の他に、絶 縁膜中の固定電荷、界面に形成される双極子、フェルミレベルピンユング等の影響 を受ける。ゲート電極を構成する材料本来の「仕事関数」とは区別される。
[0033] 本発明によれば、素子性能のバラツキが抑えられ、高性能で信頼性に優れた半導 体装置およびその製造方法を提供することができる。
[0034] 本発明によれば、特に、ゲート電極の少なくとも最下層部分に Ni Si相を含むシリサ
3
イド層を設けるため、組成の均一なシリサイドが形成でき、素子性能のノ ラツキが抑 えられた半導体装置を提供することができる。また本発明によれば、このようなゲート 電極とゲート絶縁膜との間に密着層を設けるため、ゲート絶縁膜に対するゲート電極 の十分な接着性が得られ、信頼性の高 、半導体装置を提供することができる。
[0035] さらに本発明によれば、ゲート電極の上層部に、その下層部の Ni Si相を含むシリ
3
サイド層より抵抗の低い低抵抗層を設けることにより、ゲート電極の配線抵抗およびコ ンタクト抵抗を低減することができる。
図面の簡単な説明
[0036] [図 1]本発明の半導体装置の第 1の実施形態を示す模式的断面図である。
[図 2]本発明の半導体装置の第 2の実施形態を示す模式的断面図である。
[図 3]シリコン酸ィ匕膜上のシリサイド層の状態 (密着層なし)を示す断面写真である。
[図 4]シリコン酸ィ匕膜上のシリサイド層の状態 (密着層あり)を示す断面写真である。
[図 5]本発明に係る半導体装置 (第 1の実施形態)の製造方法を説明するための工程 断面図である。
[図 6]本発明に係る半導体装置 (第 1の実施形態)の製造方法を説明するための工程 断面図である。
[図 7]本発明に係る半導体装置 (第 1の実施形態)の製造方法を説明するための工程 断面図である。
[図 8]本発明に係る半導体装置 (第 1の実施形態)の製造方法を説明するための工程 断面図である。
[図 9]本発明に係る半導体装置 (第 1の実施形態)の製造方法を説明するための工程 断面図である。
[図 10]本発明に係る半導体装置 (第 2の実施形態)の製造方法を説明するためのェ 程断面図である。
[図 11]本発明に係る半導体装置 (第 2の実施形態)の製造方法を説明するためのェ 程断面図である。
発明を実施するための最良の形態
[0037] 本発明は、メタルシリサイドで形成されたゲート電極を有する MOS型電界効果トラ ンジスタ(以下「MOSFET」)に好適であり、特に Pチャネル型電界効果トランジスタ( 以下「P型 MOSFET」 )及び Nチャネル型電界効果トランジスタ(以下「N型 MOSFE TJ )を備えた半導体装置、例えば相補型 MOS (以下「CMOS」 )構造を有する半導 体装置に好適である。
[0038] 図 1及び図 2に、それぞれ本発明の半導体装置の第 1及び第 2の実施形態を説明 するための模式的断面図を示す。図中の符号 1はシリコン基板、 2は素子分離領域、 3aはゲート絶縁膜、 3bは密着層、 4はエクステンション拡散領域、 5はソース'ドレイン 拡散領域、 6はシリサイド層、 7はゲート側壁、 8及び 9は不純物含有 Ni Si電極、 10
3
は層間絶縁膜、 11は低抵抗層を示す。
[0039] 第 1及び第 2の実施形態の半導体装置は、 P型 MOSFET及び N型 MOSFETを 有し、ゲート絶縁膜としてシリコン酸ィ匕膜またはシリコン酸窒化膜が用いられ、ゲート 電極として不純物含有 Ni Si電極が用いられている。 P型 MOSFETのゲート電極は
3
ホウ素(B)等の p型不純物を含有し、 N型 MOSFETのゲート電極はリン (P)等の n型 不純物を含有し、不純物の種類および濃度に応じて各トランジスタは所定のしき 、値 に設定されている。
[0040] 本発明の特徴の一つは、少なくともゲート電極の下面を含む領域 (少なくとも最下 層部分)に Ni Si結晶相を含むシリサイド層(以下、適宜「Ni Si層」という)を有し、か
3 3
つ、このゲート電極とゲート絶縁膜の間に密着層を有することにある。図 1に示す第 1 の実施形態では、ゲート電極全体が Ni Si結晶相を含むシリサイド層(Ni Si電極 8、
3 3
9)で形成されているが、図 2に示す第 2の実施形態のように、ゲート電極の上層部分 に下層のシリサイド層(Ni Si電極 8、 9)より抵抗の低い低抵抗層(低抵抗シリサイド
3
層 11)を設けることができる。
[0041] ゲート電極の少なくとも最下層部分に Ni Si層を有することにより、しきい値のバラッ
3
キが抑えられ、素子性能の優れた半導体装置を得ることができる。 Ni Si結晶相は、
3
ニッケルシリサイドの結晶相のなかでも最も安定して形成できる結晶相であり、例えば 350°C以上の温度で、必要量以上のニッケル供給量、必要時間以上の熱処理時間 でシリサイドィ匕を行うことにより、ゲートパターンサイズや多結晶シリコン中の不純物量 に依存することなぐ一定の組成をもつシリサイドを形成することができる。したがって 、ゲート電極とゲート絶縁膜との界面付近の不純物濃度が所定値で安定するため、 しき 、値の変動を抑えることができる。
[0042] 第 1及び第 2実施形態におけるしきい値は、ゲート電極に添加する不純物の種類お よび濃度によって制御する。その際、 P型 MOSFETおよび N型 MOSFETの両方の ゲート電極 (少なくとも最下層部分)に Ni Si層を使用し、ゲート絶縁膜にシリコン酸ィ匕
3
膜またはシリコン酸窒化膜を使用している。ゲート絶縁膜が多層構造を有するときは 、最上層部分にシリコン酸ィ匕膜またはシリコン酸窒化膜を有することが好ましい。シリ コン酸ィ匕膜またはシリコン酸窒化膜上のニッケルシリサイドの実効仕事関数は、シリ サイド結晶相の組成の影響が小さぐほぼ一定の値を示すため、シリサイドへの不純 物添カ卩により容易にしき 、値制御を行うことが可能である。
[0043] 本発明において、ゲート電極とゲート絶縁膜の間に密着層を有することにより、ゲー ト電極とゲート絶縁膜との密着性が向上し、信頼性の高い半導体装置を提供すること ができる。また、製造時の歩留まりも向上することができる。
[0044] 図 3及び図 4に、シリコン酸ィ匕膜上に形成されたニッケルシリサイド層の断面写真を 示す。図 3はシリコン酸ィ匕膜とシリサイド層の間に密着層を有しない例を示し、図 4は シリコン酸ィ匕膜とシリサイド層の間に密着層を有する例を示す。
[0045] 図 3の場合は、シリコン基板上に熱酸ィ匕によりシリコン酸ィ匕膜 (厚み 3nm)を形成し、 この酸ィ匕膜上に次のようにして Ni Si層(厚み 120nm)を形成した。シリコン酸ィ匕膜形
3
成後、厚み 60nmの多結晶シリコン膜を CVD (Chemical Vapor Deposition)法 により堆積し、通常の CMOSプロセスで用いる、ソース'ドレイン拡散層の活性ィヒア- ールと同じ条件でァニール処理を行った。次に、多結晶シリコン膜をシリサイドィ匕する ためのニッケル膜 (厚み lOOnm)を全面に形成した。次に、熱処理を行って Ni Siを
3 形成した。熱処理条件は温度 400°C、熱処理時間 5分に設定した。次に、余剰の Ni を硫酸と過酸ィ匕水素水の混合溶液を用いてウエットエッチングにより除去した。以上 のプロセスを経ることで図 3に示す構造を形成した。
[0046] 図 4の場合は、シリコン基板上に熱酸ィ匕によりシリコン酸ィ匕膜 (厚み 3nm)を形成し、 この酸化膜上に次のようにして、密着層(0. 06ML)および Ni Si層(厚み 120nm)を
3
形成した。シリコン酸化膜形成後、アトミックレイヤーデポジション (ALD)法を用いて 、ハフニウムシリコン酸ィ匕物をシリコン酸ィ匕膜上に堆積した。堆積条件は、基板温度 3 00°Cで、成膜原料としてテトラジェチルァミノハフニウム (Hf[ (C H ) N] )及びトリ
2 5 2 4 スジメチルァミノシリコン (HSi[N (CH ) ] )を用いた。まず、シリコン酸ィ匕膜上に酸
3 2 3
化剤ガスとして H Oを供給し、その後、 H Oを流量 20sccm (standard cmVmin)
2 2
で 50秒間供給した。次に、シリコン原料ガスを lOsccmで供給した。次に、 Hf原料ガ スを、流量 20sccmの窒素キャリアガスのパブリングによって 10秒間供給した。次に、 Hfおよびシリコン元素表面を酸ィ匕するために、再度、 H20を供給した。このとき、シリ コン酸ィ匕膜上に堆積したノヽフニゥムシリコン酸ィ匕物に含まれる酸ィ匕ハフニウム成分( Hf-O成分)の量は分子層換算で 0. 03MLであった。次に、厚み 60nmの多結晶シ リコン膜を CVD (Chemical Vapor Deposition)法により堆積し、通常の CMOS プロセスで用いる、ソース'ドレイン拡散層の活性ィ匕ァニールと同じ条件でァニール 処理を行った。次に、多結晶シリコン膜をシリサイド化するためのニッケル膜 (厚み 10 Onm)を全面に形成した。次に、熱処理を行って Ni Siを形成した。熱処理条件は温
3
度 400°C、熱処理時間 5分に設定した。次に、余剰の Niを硫酸と過酸ィ匕水素水の混 合溶液を用いてウエットエッチングにより除去した。以上のプロセスを経ることで図 4に 示す構造を形成した。
[0047] 図 3及び図 4の写真は、走査電子顕微鏡 (SEM) (商品名: S5000、 日立ハイテクノ ロジー製)を使用して、シリサイド層が形成された基板の断面を撮影した。
[0048] これらの図から明らかなように、密着層のない図 3に示す例ではシリサイド層(Ni Si
3 層)の剥がれがみられるのに対して、密着層のある図 4に示す例では、剥がれがなく 、シリコン酸ィ匕膜とシリサイド層(Ni Si層)との密着性が向上していることがわかる。な
3
お、シリコン酸ィ匕膜とシリサイド層との密着性は、密着層を設けていなくても、ニッケル 組成の低 、NiSi層を形成した場合は剥がれがみられなかったことから、 Ni組成の大 き 、Ni Si層を形成したときに顕著な現象であることを確認した。
3
[0049] 本発明における密着層は、ゲート酸ィ匕膜とゲート電極との界面に設けられた、金属 酸化物成分を含む領域である。この密着層として、この金属酸化物成分は、分子層 換算での界面の被覆率として、 0. 01ML (モノレイヤー)以上、 0. 1ML以下の範囲 で設けられていることが好ましぐ 0. 03ML以上、 0. 07ML以下がより好ましい。また 、この金属酸化物成分は、金属原子換算での界面における存在量として、 lE13cm 以上、 lE14cm_2以下の範囲が好ましぐ 3E13cm_2以上、 7E13cm_2以下の範 囲がより好ましい。
[0050] 密着層の金属酸化物成分の形成領域が広すぎたり、量が多すぎると、フェルミレべ ルビ-ング現象が起こり、不純物によるしきい値制御が困難になる。力!]えて、物理膜 厚が増加し、ゲート絶縁膜の等価酸ィ匕膜厚 (EOT)が厚くなり、トランジスタの駆動能 力が低下する。一方、密着層の金属酸ィ匕物成分の形成領域力 、さすぎたり量が少な すぎると、ゲート絶縁膜とゲート電極との密着性を十分に高めることが困難になる。
[0051] 密着層の金属酸化物の金属は、 Hf、 Ta、 Zr、 La、 Ti、 Y、 Alが挙げられ、これらの 中でも、 Hf、 Zr、 La、 Ta力 選ばれる金属が好ましい。密着層の金属酸化物として は、 Hf02、 HfSiO、 HfSiON、 TaO、 TaSiO、 TaSiON、 ZrO、 ZrSiO、 ZrSiON
2 2
、: La O、 LaSiO、 LaSiON、 TiO、 TiSiO、 TiSiON、 Y O、 YSiO、 YSiON、 Al
2 3 2 2 3 2
O、 AIONが挙げられ、これらの中でも、 HfO、 HfSiO、 HfSiONから選ばれる金
3 2
属酸ィ匕物が好ましい。
[0052] 本発明にお!/、て、ゲート電極を構成する Ni Si層の厚みは、不純物含有 Ni Si層に
3 3 よって本来得られる実効仕事関数が確保できる以上の厚みが必要であり、例えば 10 nm以上、好ましくは 20nm以上に設定できる。一方、微細化の観点から 120nm以下 、好ましくは lOOnm以下に設定できる。
[0053] 第 2の実施形態の低抵抗層の厚みは、ゲート電極下層部を構成するシリサイドによ つて決定される実効仕事関数の値に影響を及ぼさな 、範囲で、十分に厚 、ことが好 ましい。低抵抗層の厚みは、十分に低い抵抗を得る点力も例えば 10nm以上、好まし くは 20nm以上に設定でき、一方、実効仕事関数への影響や、形成のし易さの点か ら例えば 120nm以下、好ましくは lOOnm以下に設定することができる。第 2の実施 形態のゲート電極下層部(Ni Si電極)の厚みは、第 1の実施形態の Ni Si電極 8、 9
3 3
と同様な範囲内で適宜設定することができる。
[0054] 本発明におけるゲート電極 (低抵抗層を含む)のサイズは、微細化の点から、高さ( 基板に垂直方向の長さ)が 200nm以下、さらには lOOnm以下に設定できる。動作 性能の確保、製造精度の点からは 20nm以上が好ましぐ 40nm以上がより好ましい 。ゲート長は、例えば 10〜: LOOnmの範囲に設定することができる。 [0055] 本発明においてゲート電極を構成する Ni Si層、すなわち第 1及び第 2の実施形態
3
の Ni Si電極は、 Ni Si相を主結晶成分として含むシリサイド層である。このシリサイド
3 3
層は、 Ni Si _ (0. 6<x< 0. 9)で表される糸且成を持つこと力 子ましく、 0. 7<x< 0
. 8を満たすことがより好ましい。
[0056] 本発明における低抵抗層、すなわち第 2の実施形態の低抵抗層 11は、抵抗値の 点から、 Niモノシリサイド (NiSi)相を主結晶成分として含むシリサイド層が好ま 、。 このシリサイド層は、 Ni Si _ (0. 4<x< 0. 6)で表される組成を持つことが好ましく
、 0. 45<x< 0. 55を満たすこと力より好まし!/ヽ。
[0057] ニッケルシリサイドの結晶相は、主として、 NiSi、 NiSi、 Ni Si、 Ni Si、 Ni Si 、
2 3 2 2 31 21
Ni Si等に分類され、これらの混合物も形成可能である。そのため、ゲート電極を構
3
成するシリサイドの平均的な組成が化学量論組成カゝら外れることあるが、上記の組成 範囲にあることが望ましい。素子性能のバラツキを抑える点から、ゲート電極を構成 する Ni Si層及び低抵抗層は、できるだけ単一の結晶からなり、これを反映した一定
3
の組成を有することが望まし 、。
[0058] 本発明におけるゲート絶縁膜は、ゲート電極に含有される不純物によりしきい値制 御が可能であれば特に制限はないが、少なくともゲート電極側の絶縁膜上面を含む 部分 (少なくとも最上層部分)に、シリコン酸ィ匕膜またはシリコン酸窒化膜を有すること が好ましい。このゲート絶縁膜としては、シリコン酸ィ匕膜、シリコン酸窒化膜、シリコン 酸ィ匕膜とシリコン酸窒化膜との積層膜、最上層部分に設けられたシリコン酸化膜また はシリコン酸窒化膜と他の絶縁膜との積層膜を用いることができる。ゲート絶縁膜の 厚みは、その機能が発揮できる範囲内でできるだけ薄く設定することが好ましいが、 例えば l〜2nmの厚みに設定できる。
[0059] 以下に、図 1に示す第 1の実施形態の半導体装置の製造方法について説明する。
[0060] STI (Shallow Trench Isolation)技術により形成された素子分離領域 2、並び に P型活性領域および n型活性領域を有するシリコン基板 1を用意し、以下の工程に 従って、シリコン基板上に図 5 (a)に示される積層構造を形成する。
[0061] まず、素子分離されたシリコン基板上に熱酸化によりゲート絶縁膜 3a (厚み 1. 1〜 1. 2nm)を形成する。 [0062] 次に、このゲート絶縁膜 3a上に、次のようにして密着層 3bを形成する。
[0063] 本方法では、アトミックレイヤーデポジション (ALD)法を用いて、ハフニウムシリコン 酸化物 (HfSiO)からなる密着層を形成する。具体的には、シリコン酸ィ匕膜上に、基 板温度 200〜500°Cの範囲で、成膜原料としてテトラジェチルァミノハフニウム (Hf [ (C H ) N] )及びトリスジメチルァミノシリコン (HSi[N (CH ) ] )を用い、ハフ-ゥ
2 5 2 4 3 2 3
ムシリコン酸ィ匕物を堆積する。
[0064] まず、シリコン酸ィ匕膜上に酸化剤ガスとして H Oを供給する (第 1の工程)。 H Oを
2 2 マスフローコントローラーによって流量 20sccm(standard cm°Zmin)で 50秒、間供 給する。次に、シリコン原料ガスをマスフローコントローラーによって流量 2〜20sccm の範囲で供給する(第 2の工程)。成膜中のシリコン原料ガス分圧は 1 X 10"4Torr (0 . 0133Pa)力も 0. 3Torr(40. OPa)、供給時間は 0〜300秒、シリコン原料の温度 を 45°Cに設定できる。次に、 Hf原料ガスを、 87°Cで容器より流量 20sccmの窒素キ ャリアガスのパブリングによって 5秒〜 20秒間供給する。(第 3の工程)。また、このとき 、 Hf原料とシリコン原料を同時に供給してもよい。成膜中の圧力は 1 X 10"4Torr (0 . 0133Pa)力 100Torr (l. 33 X 104Pa)の範囲に設定できる。次に、 Hfおよびシ リコン元素表面の酸ィ匕を目的として、第 1の工程と同じ条件で H20を供給する(第 4 の工程)。第 1の工程力 第 4の工程を行った後、第 2の工程力も第 4の工程を繰り返 し行う。例えば、第 2工程力も第 4工程の 1サイクルを 1から 10サイクルの範囲で実施 できる。なお、各工程の間に置換する工程を設けてもよい。このようなプロセスにより シリコン酸化膜上に密着層を形成した。このとき、 Hf原子換算の付着量は 6 X 1013c m"2 (0. 06ML)であった。
[0065] 本発明における密着層は、以下の方法によっても形成することができる。
[0066] 本方法では、物理気相成長(PVD)法を用いて、 HfO、 HfSiO力もなる密着層を
2
形成する。具体的には、シリコン酸ィ匕膜上に、スパッタ法によりハフニウムとシリコンを 同時に堆積し (コスパッタ法)、酸化処理を行う。スパッタ装置として、ハフニウムとシリ コンの 2個のスパッタターゲットが設置されたものを用いることができる。スパッタパヮ 一が 15〜100W、ターゲットとシリコンウェハーの距離が 240〜330mmの条件に設 定することにより、シリコン酸ィ匕膜へのスパッタダメージを最小限に抑えることができる 。 20〜: LOOsccmの Arガスを用いてプラズマを発生させる。 lOOsccmの Arガスを流 すことで、チャンバ一の背景圧力を 1. 6 X 1013Torr (2. 13 X 1015Pa)に保つことが できる。スパッタパワーを低ぐ Arの流量を多くするほどスパッタレートを抑えることが 可能であり、シリコン酸ィ匕膜上に、より微量の元素を堆積させることができる。また、成 膜の際には基板を回転させることでスパッタ成膜の均一性を向上させることが可能で ある。例えば、スパッタパワーを 15W、 Ar流量を 100sccm、基板回転数を 60rpm、 ターゲットとシリコンウェハーの距離を 300mmとして、 5秒成膜することにより、シリコ ン酸ィ匕膜上に Hfと Siをコスパッタにより堆積した。このときの Hfの付着量は 4 X 1013c m_2の(0. 04ML)であった。その後、シリコンウェハーを 800°Cの常圧の酸素雰囲 気中に 30秒さらすことでスパッタ成膜した Hfと Siを酸ィ匕し、 HfO、 HfSiO力 なる密
2
着層を形成した。
[0067] 次に、密着層 3bが形成されたゲート絶縁膜 3b上に、厚み 60nmの多結晶シリコン 膜 13を CVD (Chemical Vapor Deposition)法により堆積し、次いで厚み 15nm のシリコン酸ィ匕膜からなる SiOマスク 19を形成する。
2
[0068] 次に、図 5 (b)に示すように、 P型 MOSFET領域をレジストマスク 20により被覆して 、 N型 MOSFET領域の多結晶シリコン膜中へリン(P)を lOkeVでイオン注入し、 n 型不純物注入多結晶シリコン膜 14aを形成する。リンの注入量は、 4 X 1015cm_2に 設定することができる。
[0069] 次に、図 5 (c)〖こ示すように、 N型 MOSFET領域をレジストマスク 20により被覆して 、 P型 MOSFET領域の多結晶シリコン膜中へホウ素(B)を 3keVでイオン注入し、 p 型不純物注入多結晶シリコン 14bを形成する。ホウ素の注入量は、 4 X 1015cm_2に 設定することができる。
[0070] 次に、図 6 (d)に示すように、この積層膜 (ゲート絶縁膜 3a、密着層 3b、不純物注入 多結晶シリコン膜 14a、 14b、 SiOマスク 19)をリソグラフィー技術および RIE (React
2
ive Ion Etching)技術を用いてゲートパターンに加工する。続いて、このゲートパ ターンをマスクとしてイオン注入を行い、エクステンション拡散領域 4を自己整合的に 形成する。
[0071] 次に、図 6 (e)に示すように、 CVD法によりゲートパターンを覆うようにシリコン窒化 膜 (図示せず)及びシリコン酸ィ匕膜を堆積し、その後エッチバックすることによってゲ ート側壁 7を形成する。次いで、図 6 (f)に示すように、再度イオン注入を行い、その 後に活性ィ匕ァニールを行ってソース ·ドレイン拡散領域 5を形成する。
[0072] 上記のエクステンション拡散領域およびソース'ドレイン領域は、 p型活性領域と n型 活性領域の一方をマスクした状態で、それぞれの活性領域に反対導電型の不純物 をイオン注入して形成することができる。
[0073] 次に、図 7 (g)に示すように、ニッケル膜 15をスパッタにより全面に堆積し、次いで 図 7 (h)に示すように、サリサイド技術により、ゲートパターン、ゲート側壁および素子 分離領域をマスクとして、ソース'ドレイン拡散領域上のみにシリサイド層 6を形成する 。本実施形態では、このシリサイド層 6として、コンタクト抵抗を最も低くすることができ る Niモノシリサイド (NiSi)層を形成する。この Niモノシリサイド層の代わりに Coシリサ イド層や Tiシリサイド層を形成してもよ 、。
[0074] 次に、 07 (1)に示すように、余剰の Niを硫酸と過酸ィ匕水素水の混合溶液を用いて ウエットエッチングにより除去する。
[0075] 次に、図 8 (j)に示すように、 CVD法により、ゲートパターンを埋め込むように、シリコ ン酸ィ匕膜からなる層間絶縁膜 10を形成する。次いで、 CMP (Chemical Mechani cal Polishing)技術によって、層間絶縁膜 10の表面を平坦ィ匕する。
[0076] 次に、図 8 (k)に示すように、層間絶縁膜 10のエッチバックを行うとともに、ゲートパ ターン上層の SiOマスク 19を除去して、不純物注入多結晶シリコン膜 14a、 14bを
2
露出させる。
[0077] 次に、図 8 (1)に示すように、不純物注入多結晶シリコン膜 14a、 14bをシリサイドィ匕 するためのニッケル膜 15 (厚み lOOnm)を全面に形成する。
[0078] 次に、図 9 (m)に示すように、熱処理を行って不純物含有 Ni Si電極 16、 17を形成
3
する。熱処理条件としては、例えば温度 400°C、熱処理時間 5分に設定することがで きる。
[0079] 次に、図 9 (n)に示すように、余剰の Niを硫酸と過酸ィ匕水素水の混合溶液を用いて ウエットエッチングにより除去する。
[0080] 以上のプロセスを経ることで図 1に示す第 1の実施形態の構造を形成することがで きる。その後、全面に、通常の方法に従って層間絶縁膜を形成する。以降、通常のプ 口セスに従って所望の半導体装置を形成することができる。
[0081] 次に、図 2に示す第 2の実施形態の半導体装置の製造方法について説明する。
[0082] 上述の半導体装置の製造方法にしたがって、図 9 (n)に対応する図 10 (a)に示す 構造を形成する。
[0083] 次に、図 10 (b)に示すように、スパッタにより厚さ 60nm程度のシリコン(Si)膜 21を 全面に形成する。
[0084] 次に、図 11 (c)に示すように、熱処理により、 N型 MOSFET領域の不純物含有 Ni
Si電極 16の上層部と Si膜 21との反応、 P型 MOSFET領域の不純物含有 Ni Si電
3 3 極 17の上層部と Si膜 21との反応を行い、それぞれ抵抗層領域 18を形成する。この 熱処理の条件は、例えば、不活性ガス雰囲気中で 350〜500°Cで 1〜20分に設定 することが望ましぐ例えば窒素雰囲気中で 400°Cで 2〜5分に設定することができる
[0085] 次に、図 11 (d)に示すように、余剰の Si膜をウエットエッチング又はドライエッチング により除去する。
[0086] 以上のプロセスを経ることで図 2に示す第 2の実施形態の構造を形成することがで きる。その後、全面に、通常の方法に従って層間絶縁膜を形成する。以降、通常のプ 口セスに従って所望の半導体装置を形成することができる。

Claims

請求の範囲
[1] シリコン基板と、このシリコン基板上のゲート絶縁膜、このゲート絶縁膜上のゲート電 極、及びこのゲート電極両側の基板に形成されたソース ·ドレイン領域を有する電界 効果トランジスタとを備えた半導体装置であって、
前記ゲート電極は、少なくとも該ゲート電極の下面を含む部分に、 Ni Si
3 結晶相を 含むシリサイド層を有し、
前記トランジスタは、前記ゲート絶縁膜と前記ゲート電極との間に、金属酸化物成 分を含む密着層を有する半導体装置。
[2] 前記ゲート絶縁膜は、少なくとも該ゲート絶縁膜の上面を含む部分に、シリコン酸ィ匕 膜またはシリコン酸窒化膜を有し、
前記の Ni Si結晶相を含むシリサイド層は、不純物元素を含有する請求項 1に記載
3
の半導体装置。
[3] シリコン基板と、
前記シリコン基板上の第 1ゲート絶縁膜、第 1ゲート絶縁膜上の第 1ゲート電極、及 び第 1ゲート電極両側の基板に形成されたソース ·ドレイン領域を有する Pチャネル型 電界効果トランジスタと、
前記シリコン基板上の第 2ゲート絶縁膜、第 2ゲート絶縁膜上の第 2ゲート電極、及 び第 2ゲート電極両側の基板に形成されたソース ·ドレイン領域を有する Nチャネル 型電界効果トランジスタを備えた半導体装置であって、
前記 Pチャネル型電界効果トランジスタは、
第 1ゲート絶縁膜が、少なくとも該ゲート絶縁膜の上面を含む部分に、シリコン酸ィ匕 膜またはシリコン酸窒化膜を有し、
第 1ゲート電極が、少なくとも該ゲート電極の下面を含む部分に、第 1導電型不純 物元素を含有し且つ Ni Si結晶相を含むシリサイド層を有し、
3
第 1ゲート絶縁膜と第 1ゲート電極との間に、金属酸化物成分を含む密着層を有し 前記 Nチャネル型電界効果トランジスタは、
第 2ゲート絶縁膜が、少なくとも該ゲート絶縁膜の上面を含む部分に、シリコン酸ィ匕 膜またはシリコン酸窒化膜を有し、
第 2ゲート電極が、少なくとも該ゲート電極の下面を含む部分に、第 2導電型不純 物元素を含有し且つ Ni Si結晶相を含むシリサイド層を有し、
3
第 2ゲート絶縁膜と第 2ゲート電極との間に、金属酸化物成分を含む密着層を有す る半導体装置。
[4] 前記密着層の酸化物成分は、 Hf、 Ta、 Zr、 La、 Ti、 Y、 Al力もなる群力も選ばれる 金属の酸ィ匕物である請求項 1から 3のいずれかに記載の半導体装置。
[5] 前記密着層として、分子層換算で 0. 01〜0. 1ML (モノレイヤー)の金属酸ィ匕物が 形成されて 、る請求項 1から 4の 、ずれかに記載の半導体装置。
[6] 前記の Ni Si結晶相を含むシリサイド層上に、該シリサイド層より抵抗の低い低抵抗
3
層を有する請求項 1から 5のいずれかに記載の半導体装置。
[7] 前記低抵抗層は、ニッケルモノシリサイド結晶相を含むシリサイド層である請求項 6 に記載の半導体装置。
[8] 前記の Ni Si結晶相を含むシリサイド層は、組成式 Ni Si (0. 6<x< 0. 9)で表 されるシリサイドで形成されて 、る請求項 1から 7の 、ずれかに記載の半導体装置。
[9] 請求項 1に記載の半導体装置の製造方法であって、
シリコン基板上に、シリコン酸ィ匕膜またはシリコン酸窒化膜を最表面側に有するゲ ート絶縁膜を形成する工程と、
前記ゲート絶縁膜上に密着層を形成する工程と、
前記密着層が形成されたゲート絶縁膜上に多結晶シリコン膜を形成する工程と、 前記多結晶シリコン膜上にキャップ膜を形成する工程と、
前記キャップ膜を上面に有する多結晶シリコンのゲートパターンを形成する工程と、 前記ゲートパターンの両側の基板にソース'ドレイン領域を形成する工程と、 全面に層間絶縁膜を形成する工程と、
前記層間絶縁膜の表面側部分および前記キャップ膜を除去して前記ゲートパター ンを構成する多結晶シリコンを露出させる工程と、
全面にニッケル膜を形成する工程と、
熱処理によって前記ニッケル膜下の多結晶シリコンをシリサイド化して、 Ni Si結晶 相を含むシリサイド層を形成する工程を有する半導体装置の製造方法。
[10] 前記多結晶シリコン膜中へ不純物元素を添加する工程を有する請求項 9に記載の 半導体装置の製造方法。
[11] 前記の Ni Si結晶相を含むシリサイド層を形成した後、全面にシリコン膜を形成する
3
工程と、
熱処理によって、前記シリサイド層から前記シリコン膜中へニッケルを拡散させて、 ニッケルモノシリサイド結晶相を含む低抵抗シリサイド層を形成する工程を有する請 求項 9又は 10に記載の半導体装置の製造方法。
[12] 請求項 3に記載の半導体装置の製造方法であって、
P型活性領域と n型活性領域を有する半導体装置を用意する工程と、
シリコン基板上に、シリコン酸ィ匕膜またはシリコン酸窒化膜を最表面側に有するゲ ート絶縁膜を形成する工程と、
前記ゲート絶縁膜上に密着層を形成する工程と、
前記密着層が形成されたゲート絶縁膜上に多結晶シリコン膜を形成する工程と、 一方の活性領域上の多結晶シリコン膜をマスクし、他方の活性領域上の多結晶シリ コン膜に第 1導電型の不純物元素を添加する工程と、
後者の活性領域上の多結晶シリコン膜をマスクし、前者の活性領域上の多結晶シリ コン膜に第 2導電型の不純物元素を添加する工程と、
前記多結晶シリコン膜上にキャップ膜を形成する工程と、
前記キャップ膜を上面に有する多結晶シリコンのゲートパターンを形成する工程と、 一方の活性領域をマスクし、他方の活性領域上のゲートパターン両側の基板にソ ース ·ドレイン領域を形成する工程と、
後者の活性領域をマスクし、前者の活性領域上のゲートパターン両側の基板にソ ース ·ドレイン領域を形成する工程と、
全面に層間絶縁膜を形成する工程と、
前記層間絶縁膜の表面側部分および前記キャップ膜を除去して前記ゲートパター ンを構成する多結晶シリコンを露出させる工程と、
全面にニッケル膜を形成する工程と、 熱処理によって前記ニッケル膜下の多結晶シリコンをシリサイド化して、 Ni Si結晶
3 相を含むシリサイド層を形成する工程を有する半導体装置の製造方法。
前記の Ni Si結晶相を含むシリサイド層を形成した後、全面にシリコン膜を形成する
3
工程と、
熱処理によって、前記シリサイド層から前記シリコン膜中へニッケルを拡散させて、 ニッケルモノシリサイド結晶相を含む低抵抗シリサイド層を形成する工程を有する請 求項 12に記載の半導体装置の製造方法。
PCT/JP2007/060255 2006-06-09 2007-05-18 半導体装置およびその製造方法 WO2007142010A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/227,974 US7911007B2 (en) 2006-06-09 2007-05-18 Semiconductor device and method of manufacturing the same
JP2008520476A JPWO2007142010A1 (ja) 2006-06-09 2007-05-18 半導体装置およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006161168 2006-06-09
JP2006-161168 2006-06-09

Publications (1)

Publication Number Publication Date
WO2007142010A1 true WO2007142010A1 (ja) 2007-12-13

Family

ID=38801274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060255 WO2007142010A1 (ja) 2006-06-09 2007-05-18 半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US7911007B2 (ja)
JP (1) JPWO2007142010A1 (ja)
WO (1) WO2007142010A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302085A (ja) * 2008-06-10 2009-12-24 Renesas Technology Corp 半導体装置および半導体装置の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235501B2 (en) 2004-12-13 2007-06-26 Micron Technology, Inc. Lanthanum hafnium oxide dielectrics
US7776765B2 (en) 2006-08-31 2010-08-17 Micron Technology, Inc. Tantalum silicon oxynitride high-k dielectrics and metal gates
US7544604B2 (en) 2006-08-31 2009-06-09 Micron Technology, Inc. Tantalum lanthanide oxynitride films
US7563730B2 (en) * 2006-08-31 2009-07-21 Micron Technology, Inc. Hafnium lanthanide oxynitride films
DE102010063778B4 (de) * 2010-12-21 2018-05-09 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Verfahren zur Herstellung einer Gateelektrodenstruktur mit erhöhter Strukturierungsgleichmäßigkeit
US9530842B2 (en) * 2015-01-15 2016-12-27 Micron Technology, Inc. Semiconductor devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129551A (ja) * 2003-10-21 2005-05-19 Fujitsu Ltd 半導体装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4130237B2 (ja) * 1995-01-28 2008-08-06 株式会社半導体エネルギー研究所 結晶性珪素膜の作製方法及び半導体装置の作製方法
US6605513B2 (en) * 2000-12-06 2003-08-12 Advanced Micro Devices, Inc. Method of forming nickel silicide using a one-step rapid thermal anneal process and backend processing
JP3974507B2 (ja) 2001-12-27 2007-09-12 株式会社東芝 半導体装置の製造方法
US7148546B2 (en) 2003-09-30 2006-12-12 Texas Instruments Incorporated MOS transistor gates with doped silicide and methods for making the same
TWI252539B (en) * 2004-03-12 2006-04-01 Toshiba Corp Semiconductor device and manufacturing method therefor
JP4623006B2 (ja) 2004-06-23 2011-02-02 日本電気株式会社 半導体装置及びその製造方法
US20090045469A1 (en) 2005-11-28 2009-02-19 Kensuke Takahashi Semiconductor Device and Manufacturing Method Thereof
KR100836763B1 (ko) * 2006-12-28 2008-06-10 삼성전자주식회사 반도체 소자 및 그 형성 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129551A (ja) * 2003-10-21 2005-05-19 Fujitsu Ltd 半導体装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KITTL J.A. ET AL.: "Work Function of Ni Silicide Phases and HfSiON and SiO2: NiSI, Ni2Si, Ni31Si12, and Ni3Si Fully Silicided Gates", IEEE ELECTRON DEVICE LETTERS, vol. 27, no. 1, January 2006 (2006-01-01), pages 34 - 36, XP001237875 *
MASAYUKI TERAI ET AL.: "Highly Reliable HfSiON MOSFET with Phase Controlled NiSi (NFET) and Ni3Si (PFET) FUSI Gate Electrode", SYMPOSIUM ON VLSI TECHNOLOGY DIGEST OF TECHNICAL PAPERS, 2005, pages 68 - 69, XP010818175 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302085A (ja) * 2008-06-10 2009-12-24 Renesas Technology Corp 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
JPWO2007142010A1 (ja) 2009-10-22
US20090166748A1 (en) 2009-07-02
US7911007B2 (en) 2011-03-22

Similar Documents

Publication Publication Date Title
JP4871433B2 (ja) 半導体装置およびその製造方法
JP4623006B2 (ja) 半導体装置及びその製造方法
TWI624060B (zh) 具有鎢閘極電極的半導體裝置及其製造方法
JP5157450B2 (ja) 半導体装置およびその製造方法
JP5937297B2 (ja) 金属窒化膜、該金属窒化膜を用いた半導体装置、および半導体装置の製造方法
JP2007513498A (ja) FETゲート電極用のCVDタンタル化合物(TaおよびNを含む化合物の化学的気相堆積方法および半導体電界効果デバイス)
WO2007142010A1 (ja) 半導体装置およびその製造方法
WO2007026677A1 (ja) 半導体装置の製造方法
WO2007058042A1 (ja) 半導体装置およびその製造方法
JP5209791B2 (ja) 半導体装置およびその製造方法
JP5056418B2 (ja) 半導体装置およびその製造方法
WO2007148600A1 (ja) 半導体装置およびその製造方法
JPWO2006129637A1 (ja) 半導体装置
JP2013232470A (ja) 半導体装置およびその製造方法
JP5387173B2 (ja) 半導体装置及びその製造方法
JP4784734B2 (ja) 半導体装置及びその製造方法
JP5195421B2 (ja) 半導体装置
JP2009038229A (ja) 半導体装置
JP2006012900A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12227974

Country of ref document: US

Ref document number: 2008520476

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743690

Country of ref document: EP

Kind code of ref document: A1