WO2007141854A1 - 成形金型の補修方法、耐熱性無機補修材、成形金型、成形製品及び製品 - Google Patents

成形金型の補修方法、耐熱性無機補修材、成形金型、成形製品及び製品 Download PDF

Info

Publication number
WO2007141854A1
WO2007141854A1 PCT/JP2006/311439 JP2006311439W WO2007141854A1 WO 2007141854 A1 WO2007141854 A1 WO 2007141854A1 JP 2006311439 W JP2006311439 W JP 2006311439W WO 2007141854 A1 WO2007141854 A1 WO 2007141854A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
molding die
repair material
inorganic
resistant inorganic
Prior art date
Application number
PCT/JP2006/311439
Other languages
English (en)
French (fr)
Inventor
Toshiaki Kitazawa
Original Assignee
Asahi Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Co., Ltd filed Critical Asahi Co., Ltd
Priority to JP2008520090A priority Critical patent/JP4884468B2/ja
Priority to PCT/JP2006/311439 priority patent/WO2007141854A1/ja
Publication of WO2007141854A1 publication Critical patent/WO2007141854A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • B22D7/066Manufacturing, repairing or reinforcing ingot moulds

Definitions

  • Mold repair methods heat-resistant inorganic repair materials, molds, molded products and products
  • the present invention relates to a method for repairing a molding die, a heat-resistant inorganic repair material, a molding die, a molded product, and a product.
  • FIG. 13 is a diagram schematically showing a molding die 1010 used for aluminum die casting.
  • Fig. 13 (a) is a sectional view of the molding die 1010
  • Fig. 13 (b) is a perspective view of the moving die 1020 in the molding die 1010
  • Fig. 13 (c) is a diagram of the molding die 1010.
  • FIG. 10 is a perspective view of a fixed mold 10 30. In FIG. 13, the gates, runners and the like for pouring molten aluminum into the cavity S are omitted.
  • FIG. 14 is a view showing a molded product P manufactured using the molding die 1010.
  • FIG. 14 (a) is a perspective view of the molded product P
  • FIG. 14 (b) is a cross-sectional view of the molded product P.
  • the molding die 1010 has a moving die 1020 and a fixed die 1030. Molding is performed by pouring molten aluminum into the cavity S formed between the moving mold 1020 and the fixed mold 130. And when molding is done normally
  • a molded product P having a good surface condition is manufactured.
  • FIG. 15 to FIG. 17 are diagrams schematically showing how a molded product Px with burrs and sacrificial meat is produced.
  • Fig. 15 (a) is a cross-sectional view showing a molding die 1010 in which a crack has occurred on the molding surface
  • Fig. 15 (b) is an enlarged cross-sectional view showing the portions indicated by reference signs A to F in Fig. 15 (a).
  • Fig. 16 (a) is a perspective view of a molded product Px with burrs and meat
  • Fig. 16 (b) is burrs and meat.
  • 17 (a) is an enlarged cross-sectional view of the portion indicated by reference signs A to F in FIG. 16 (b)
  • FIG. 17 (b) is a further enlarged view of the portion indicated by reference numeral F ′ in FIG. 17 (a). It is sectional drawing shown greatly.
  • Molded product Px with such burrs and waste meat Q may be defective.
  • burrs and meat Q on the surface of molded product Px are scraped off with endless paper. Therefore, there is a problem that it takes time and cost.
  • this molded product Px has burrs or waste meat Q, it will cause damage to the molded product or mold when taking out the molded product Px from the mold 1010! / I have a problem.
  • the first molding die repair method since the molding die itself needs to be melted, there is a problem that the shape accuracy of the molding die surface deteriorates.
  • the first method for repairing the molding die has a problem that it is not easy to flatten the raised portion formed after the crack is closed.
  • it is easy to close the surface portion inside the crack for example, a portion having a surface force of 1 to 2 mm
  • the bottom portion inside the crack is easy to close. Since it is not easy to close the mold, for example, when a crack reaches the cooling pipe of the molding die, there is a problem that it is not easy to repair the cooling pipe portion of the molding die.
  • a crack repairing mold repair putty (for example, refer to Patent Document 2) containing a binder having an epoxy resin strength and inorganic particles having an alumina strength is generated on the molding surface of the molding die.
  • a method of filling the inside of the mold (hereinafter referred to as a second molding die repair method) is conceivable.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-433
  • Patent Document 2 Japanese Patent Laid-Open No. 10-244588
  • the second molding die repair method described above uses an organic binder having an epoxy resin equivalent force as the binder, this method is used as a harsh die casting die.
  • the organic binder deteriorates due to the severe temperature environment and the putty peels off from the inside of the cracks.
  • the present invention has been made to solve the above-described problem, and flattenes a raised portion formed after closing a crack that does not deteriorate the shape accuracy of the molding die surface. It is easy to close the bottom part inside the crack, and there is a method for repairing a mold that can maintain the quality of the molding surface of the mold even if it is exposed to a severe temperature environment.
  • the purpose is to provide.
  • the method of repairing a molding die of the present invention is the Filled with a heat-resistant inorganic repair material containing a heat-resistant inorganic repair material containing inorganic particles, inorganic particles and metal particles having a melting point lower than the melting point of the metal material constituting the molding die And an inorganic binder curing step for heating the heat-resistant inorganic repair material to cure the inorganic binder, and a metal particle melting step for heating the heat-resistant inorganic repair material to melt the metal particles. It is characterized by including.
  • the inside of the crack generated on the molding surface of the molding die is filled with a heat-resistant inorganic repair material.
  • the surface of the molded product manufactured using the mold will not have burrs or meat.
  • the surface of the molded product is free of burrs and sagging, the molded product and the molding die are not damaged when the molded product is taken out from the molding die.
  • the raised portion is a file or an endless paper. Can be easily flattened.
  • the method for repairing a molding die of the present invention if a heat-resistant inorganic repair material having a relatively low viscosity is selected as the heat-resistant inorganic repair material, it is easy to reach the bottom portion inside the crack. Since the inorganic repair material can be filled, the bottom portion inside the crack can be easily closed.
  • the metal particles are melted and solidified through the metal particle melting step, thereby increasing the strength of the heat-resistant inorganic repair material and increasing the surface smoothness. Therefore, the internal force of the cracks makes it difficult to peel off the heat-resistant inorganic repair material. As a result, the quality of the molding surface of the molding die can be maintained even when exposed to a severe temperature environment.
  • the repair method of the molding die of the present invention is easy to flatten the raised portion formed after closing the crack that does not deteriorate the shape accuracy of the molding die surface, It is easy to close the bottom part inside the crack, and it is a method for repairing the mold that can maintain the quality of the molding surface of the mold even if it is exposed to severe temperature environment.
  • any of a moving die, a fixed die, and a core can be selected as a molding die to be repaired.
  • a molding die having an extrusion pin and a deviation of a molding die without an extrusion pin can be selected.
  • the metal particle is melted by heating a heat-resistant inorganic repair material in the vicinity of the surface among the heat-resistant inorganic repair materials filled in the cracks. It is preferable to carry out the process.
  • the metal particles are melted and solidified through the metal particle melting step, thereby increasing the strength of the heat-resistant inorganic repair material and heat resistance. Effect of improving surface smoothness of functional inorganic repair materials .
  • the metal particles are not melted and solidified even after the metal particle melting step, so that the heat-resistant inorganic repair material and the molding die are improved by the adhesive force of the inorganic binder. The effect of bonding is obtained. As a result, even when exposed to harsh temperature environments, the internal heat of the cracks makes it difficult for the heat-resistant inorganic repair material to peel off.
  • the entire molding die is heated, the heat-resistant inorganic repair material is heated with an oxygen burner, or electric discharge machining is performed in the air. It is of course possible to heat the heat-resistant inorganic repair material by heating, but it is preferable to heat the heat-resistant inorganic repair material by performing electric discharge machining in an inert gas atmosphere.
  • the heating temperature can be easily adjusted, and appropriate conditions (only the heat-resistant inorganic repair material near the surface of the heat-resistant inorganic repair material is melted, the molding die is melted). It is possible to carry out the metal particle melting step under conditions such as not to let
  • the metal particles have an aluminum or aluminum alloy force.
  • the difference between the melting point of the metal material (for example, hot die steel) constituting the molding die and the melting point of the metal particles can be increased. It is possible to melt only metal particles without melting the mold in the melting process.
  • the inorganic particles are preferably ceramic particles.
  • ceramic particles having a strength such as acid aluminum, silicon oxide, acid zirconium, and acid chromium can be preferably used.
  • ceramic particles made of an appropriate material can be appropriately selected and used in view of the molding die material, molding conditions, crack size, depth or shape.
  • the inorganic particles have a metal material force having a melting point higher than that of the metal material constituting the metal particles. Also preferred to be particles.
  • metal particles include tungsten, tandastain alloy, molybdenum, molybdenum alloy, tantalum, tantalum alloy, gold, gold alloy, platinum, platinum alloy, iridium, high melting point and excellent chemical stability.
  • Metal particles such as iridium alloy, osmium, and osmium alloy can be suitably used.
  • metal particles made of a metal material (for example, a steel material) constituting a molding die and gold made of a highly conductive metal material (copper, silver, nickel, etc.) are used. Genus particles can also be suitably used.
  • a metal material for example, a steel material
  • gold made of a highly conductive metal material copper, silver, nickel, etc.
  • the inorganic binder is preferably a phosphate-based or silicate-based inorganic binder.
  • phosphate-based or silicate-based inorganic binders have high chemical stability and thermal stability, the use of the above-described method enables the chemistry of the heat-resistant inorganic repair material after curing.
  • the thermal stability and thermal stability can be increased, and even when exposed to harsh temperature environments, the internal force of the cracks can be prevented from easily peeling off the heat-resistant inorganic repair material.
  • the quality of the molding surface of the molding die can be maintained even when exposed to a severe temperature environment.
  • phosphate-based or silicate-based inorganic binders are easy to handle and inexpensive, it is possible to repair the molding die at low cost.
  • the inorganic binder is more preferably a silicate based inorganic binder.
  • the heat-resistant inorganic repair material is a one-component heat-curable inorganic repair material.
  • the inorganic binder is a thermosetting inorganic binder.
  • the heat-resistant inorganic repair material further contains an inorganic fiber.
  • the material, length, thickness, shape, and addition amount of the inorganic fiber are the size, depth or shape of the crack, and the filling amount.
  • an appropriate one can be appropriately selected and used.
  • the inorganic fiber is preferably a carbon fiber.
  • carbon fibers carbon nanotubes and carbon nanofibers can be preferably used in addition to ordinary carbon fibers.
  • the inorganic fiber is a ceramic fiber.
  • a ceramic fiber having a strength such as acid-aluminum, silicon oxide, acid-zirconium, or acid-chromium can be preferably used.
  • the inorganic fiber is a glass fiber.
  • quartz glass fibers and other glass fibers can be preferably used.
  • SiC fibers and other inorganic fibers can be used as the inorganic fibers.
  • an inorganic binder and inorganic particles are contained in addition to the heat resistant inorganic repair material before the heat resistant inorganic repair material filling step.
  • the bottom portion inside the crack is filled with another heat-resistant inorganic repair material having a viscosity lower than that of the heat-resistant inorganic repair material. It is possible to sufficiently close the bottom portion inside the crack.
  • the average particle size of the inorganic particles contained in the other heat-resistant inorganic repair material is the inorganic particle contained in the heat-resistant inorganic repair material.
  • U preferably smaller than the average particle size of the particles.
  • the molding die is a molding die for rubber molding or a molding die for resin molding, fill the heat-resistant inorganic repair material prior to performing the heat-resistant inorganic repair material filling step.
  • the step of cleaning the inside of the crack with an organic solvent it is possible to remove the rubber and resin that may be present inside the crack. This improves the adhesion between the molding die and the heat-resistant inorganic repair material.
  • the molding die is a die casting molding die, a low pressure forging molding die, a gravity forging molding die or a glass molding die, a heat resistant inorganic repair material
  • a step of washing the inside of the crack with a strong alkaline aqueous solution and a step of washing the inside of the crack with an organic solvent Prior to performing the filling step, by performing a step of washing the inside of the crack with a strong alkaline aqueous solution and a step of washing the inside of the crack with an organic solvent, a glass that may be present inside the crack and Oil components or metals and oil components can be removed. This Therefore, the adhesion between the molding die and the heat-resistant inorganic repair material is improved.
  • the molding die is a die casting molding die.
  • a die for die casting molding In the method for repairing a molding die of the present invention, a die for die casting molding, a molding die for low-pressure molding, a molding die for gravity molding, and a glass molding It can be applied to all molding dies, rubber molding dies, and resin molding molding dies, especially when the molding die is a die casting molding die. It has an excellent effect in terms of durability with respect to heat resistance, cold heat resistance, and mechanical strength. The reason for this is that a die for die casting is molded under extremely large temperature and pressure conditions, so that the mold is likely to crack.
  • the heat-resistant inorganic repair material of the present invention is characterized by containing an inorganic binder, inorganic particles, and metal particles.
  • the metal particle having a melting point lower than the melting point of the metal material constituting the molding die is used. It is preferable to use it.
  • the metal particles preferably have aluminum or aluminum alloy strength.
  • the inorganic particles are preferably ceramic particles.
  • the heat-resistant inorganic repair material of the present invention it is possible to carry out the molding die repair method according to the above (5) by using the heat-resistant inorganic repair material of the present invention.
  • the inorganic particles may be other metal particles having a metal material force having a melting point higher than that of the metal material constituting the metal particles. preferable.
  • the inorganic binder is preferably a phosphate-based or silicate-based inorganic binder.
  • the heat-resistant inorganic repair material of the present invention it is possible to carry out the molding die repair method according to the above (7) by using the heat-resistant inorganic repair material of the present invention. Become.
  • the heat-resistant inorganic repair material of the present invention preferably further contains an inorganic fiber.
  • the inorganic fiber is a carbon fiber.
  • the inorganic fiber is preferably a ceramic fiber.
  • the inorganic fiber is a glass fiber.
  • the preferred feature of the heat-resistant inorganic repair material described in the method for repairing a molding die of the present invention is as follows.
  • the heat-resistant inorganic repair material of the present invention (the heat-resistant inorganic repair material described in any one of (14) to (22) above) is also applicable.
  • the heat-resistant inorganic repair material of the present invention (the heat-resistant inorganic repair material described in any one of (14) to (22) above) is the method for repairing a molding die of the present invention as described above. In addition, it can be used for repairing a product that is used in a severe temperature environment when a crack occurs.
  • the molding die of the present invention is a molding die repaired by the molding die repair method of the present invention.
  • the molding die of the present invention is a molding die in which the inside of the crack is filled with a heat-resistant inorganic repair material, a high-quality molded product free from burrs and fillets on the surface is produced. be able to. Further, due to this, by using the molding die of the present invention, the molded product and the molding die are not damaged when the molded product is taken out from the molding die.
  • the molded product of the present invention is a molded product manufactured using the molding die of the present invention.
  • the molded product of the present invention is a molded product manufactured using the excellent molding die as described above, and thus is a molded product with high quality and low manufacturing cost.
  • the molding die is a die casting molding die, a low-pressure molding molding die or a gravity molding molding die, aluminum, zinc, Various metal products such as magnesium and brass are exemplified.
  • the molding die is a molding die for glass molding, various glass products are exemplified.
  • the molding die is a molding die for rubber molding, various rubber products are exemplified.
  • the molding die is a molding die for resin molding, various types of resin products are exemplified.
  • the product of the present invention is a product repaired using the heat-resistant inorganic repair material of the present invention. [0095] Therefore, the product of the present invention is a product that can be suitably used even in a severe temperature environment. Examples of products of the present invention include internal combustion engines, rocket engines, gas turbines, rocket structures, and various boilers.
  • FIG. 1 is a diagram schematically showing a molding die repair method according to Embodiment 1.
  • FIG. 2 is a diagram schematically showing a molding die repair method according to Embodiment 1.
  • FIG. 3 is a diagram schematically showing the inside of a crack H after the metal particle melting step (Embodiment 1).
  • FIG. 4 shows electron micrographs of heat-resistant inorganic repair material 140 before and after the metal particle melting step (Embodiment 1).
  • FIG. 5 is a view showing a molded product Pa manufactured by the molding die 110.
  • FIG. 6 is a diagram schematically showing the inside of a crack H after the metal particle melting step (Embodiment 2).
  • FIG. 7 shows an electron micrograph of heat-resistant inorganic repair material 240 after the metal particle melting step (Embodiment 2).
  • FIG. 8 is a diagram schematically showing the inside of a crack H after the metal particle melting step (Embodiment 3).
  • FIG. 9 shows an electron micrograph of heat-resistant inorganic repair material 340 after the metal particle melting step (Embodiment 3).
  • FIG. 10 is a diagram schematically showing the inside of a crack H after the metal particle melting step (Embodiment 4).
  • FIG. 11 is a diagram schematically showing the inside of a crack H after the metal particle melting step (Embodiment 5).
  • FIG. 12 is a diagram schematically showing the inside of a crack H after the metal particle melting step (Embodiment 6).
  • FIG. 13 is a view schematically showing a molding die 1010 used for aluminum die casting.
  • FIG. 14 is a view showing a molded product P manufactured using a molding die 1010.
  • FIG. 15 A diagram schematically showing how a molded product Px with burrs and meat is produced.
  • FIG. 16 is a diagram schematically showing how a molded product Px with burrs and meat is produced.
  • FIG. 17 A diagram schematically showing how a molded product Px with burrs and meat is produced.
  • the molding die repair method according to Embodiment 1 is a molding die repair method for repairing an aluminum die casting molding die.
  • FIG. 1 and FIG. 2 are diagrams schematically showing the molding die repair method according to the first embodiment.
  • FIG. 1 (a) is a cross-sectional view showing the repaired molding die 110
  • FIG. 1 (b) is an enlarged cross-sectional view showing portions indicated by reference signs A to F in FIG. 1 (a).
  • FIGS. 2 (a) to 2 (e) are enlarged views showing each step in the molding die repair method according to the first embodiment.
  • FIG. 3 is a diagram schematically showing the inside of the crack H after the metal particle melting step.
  • FIG. 4 is a view showing electron micrographs of the heat-resistant inorganic repair material 140 before and after the metal particle melting step.
  • Fig. 4 (a) is before the metal particle melting step
  • Fig. 4 (b) is after the metal particle melting step.
  • FIG. 5 is a view showing a molded product Pa manufactured by the molding die 110.
  • Fig. 5 (a) is a perspective view of the molded product Pa
  • Fig. 5 (b) is a cross-sectional view of the molded product Pa.
  • the repair method of the molding die according to Embodiment 1 occurs on the molding surface of the molding die 110 for aluminum die casting (moving die 120 and fixed die 130) as shown in FIG.
  • This is a method of repairing a molding die in which the molding die 100 is repaired by filling a heat resistant inorganic repairing material 140 into a crack H (see symbols A to F) that may occur.
  • the molding die repair method according to Embodiment 1 includes the following steps (P1) to (P7).
  • a heat-resistant inorganic adhesive containing an inorganic binder 150 and inorganic particles 160 having ceramic particle power dispersed in the inorganic binder 150 is prepared.
  • the heat-resistant inorganic adhesive Toron Gosei Co., Ltd., a silicate-based one-component heat-curable inorganic adhesive Ceramic C was used.
  • lg of metal particles 170 having an average particle diameter of 30 m made of aluminum-mumber is added to produce a heat-resistant inorganic repair material 140.
  • FIG. 1 shows the inside of the crack H when the cleaning process with an organic solvent is completed.
  • the inside of the crack H is filled with a heat-resistant inorganic repair material 140.
  • the molding die is left in a dryer at 150 ° C. to heat the heat-resistant inorganic repair material 140 and harden the inorganic binder 150 and thus the heat-resistant inorganic repair material 140 (see FIG. 4 See (a).)
  • the metal particles 170 are melted by heating the heat-resistant inorganic repair material 140 near the surface, and then the heat-resistant inorganic repair material 140 is heated. (Refer to Fig. 2 (d).) 0 Heat resistant inorganic repair material 140 is heated using an argon discharge welder.
  • the metal particles 170 are melted and solidified through the metal particle melting step to be agglomerated (see symbols G and D in FIG. 2 (d)).
  • Figure 4 (b) reference. ;).
  • the metal particles 170 still exist as metal particles that do not melt even after the metal particle melting step (see symbol G in FIG. 2 (d)).
  • the raised portion of the heat-resistant inorganic repair material 140 is flattened.
  • the raised portion is flattened using a file.
  • the heat resistant inorganic repair material 140 is filled into the crack H generated on the molding surface of the molding die 110. Therefore, as shown in FIG. 5, the surface of the molded product Pa manufactured using the molding die 110 is free from burrs and burrs. Further, since the surface of the molded product Pa is free from burrs and sagging, the molded product Pa and the molding die 110 are not damaged when the molded product Pa is taken out from the molding die 110.
  • the raised portion is not a file or endless. It can be easily flattened using paper or the like.
  • the heat-resistant inorganic repair material 140 having a relatively low viscosity is selected as the heat-resistant inorganic repair material, so that it is easy to reach the bottom portion inside the crack H. Can be filled with heat-resistant inorganic repair material 140, and the bottom of the crack H can be easily plugged.
  • the heat-resistant inorganic repair material 140 containing the inorganic binder 150 is used instead of containing the organic binder, it is harsh. Even if it is exposed to a certain temperature environment, the binder is not deteriorated and the internal force of the crack H is prevented from being easily peeled off.
  • the metal particle melting step is performed. As the metal particles 170 are melted and solidified, the strength of the heat-resistant inorganic repair material 140 can be increased and the surface smoothness can be increased, so the internal force of the crack H is also peeled off from the heat-resistant inorganic repair material 140. It becomes hard to fall.
  • the molding die repair method according to the first embodiment it is possible to maintain the quality of the molding surface of the molding die 110 even when exposed to a severe temperature environment.
  • the method for repairing the molding die according to Embodiment 1 flattens the raised portion formed after plugging the crack H, which does not deteriorate the shape accuracy of the surface of the molding die 110.
  • a mold repair method that can easily close the bottom of crack H and can maintain the quality of the molding surface of mold 110 even when exposed to harsh temperature environments. It becomes.
  • the inside of the crack H is filled because the argon discharge welding machine is used to heat the heat-resistant inorganic repair material 140 using V.
  • the heat-resistant inorganic repair material 140 near the surface can be heated, and the following effects can be obtained.
  • the metal particles 170 are melted and solidified through the metal particle melting step, whereby the strength of the heat-resistant inorganic repair material 140 is increased and the heat-resistant inorganic repair material 140.
  • the effect of improving the surface smoothness is obtained.
  • the metal particles 170 are not melted and solidified even after the metal particle melting step, so that the heat-resistant inorganic repair material 140 and the molding die are bonded by the adhesive force of the inorganic binder 150.
  • the effect that 110 adheres well is acquired.
  • the internal force of crack H also makes it difficult for the heat-resistant inorganic repair material 140 to peel off.
  • the heat-resistant inorganic repair material 140 near the surface of the heat-resistant inorganic repair material 140 filled in the crack H can be efficiently heated.
  • the metal particles 170 are no longer oxidized during the metal particle melting process, and if the strength of the heat-resistant inorganic repair material 140 decreases due to this, it is possible to prevent the occurrence of the situation.
  • the surface of the molding die is not oxidized during the metal particle melting step, and it is possible to prevent the occurrence of a situation when the quality of the molding die 110 deteriorates due to this.
  • the heating temperature and appropriate conditions (such as melting only the heat-resistant inorganic repair material in the vicinity of the surface of the heat-resistant inorganic repair material 140, not melting the mold 110), etc. It becomes possible to carry out the metal particle melting step with.
  • the metal particles 170 are made of metal particles such as aluminum particles.
  • the melting point of hot die steel SKD61. the melting point of the metal material constituting the metal particles (in this case, aluminum). It is possible to melt only the metal particles 170 without melting 110.
  • the average particle diameter of inorganic particles 160 and the viscosity of heat-resistant inorganic repair material 140 are appropriately adjusted according to the size, depth or shape of crack H. By adjusting, appropriate repairs can be made for various cracks. That is, when the crack H is a crack having an elongated shape, it is preferable to use the heat-resistant inorganic repair material 140 having relatively small viscosity and containing inorganic particles 160 having a relatively small particle size.
  • the crack H is a crack having a wide shape
  • the heat-resistant inorganic repair material 140 that has a relatively large particle size, contains inorganic particles 160, and has a relatively high viscosity. preferable.
  • the heat-resistant inorganic repair material 140 uses a heat-resistant inorganic repair material containing a silicate inorganic binder. It is possible to increase the chemical stability and thermal stability of the heat-resistant inorganic repair material after curing, and the heat-resistant inorganic repair material 140 peels from the inside of the crack H even if it is exposed to a severe temperature environment. As a result, it is possible to maintain the quality of the molding surface of the molding die 110. In addition, the mold 110 can be repaired at a low cost.
  • the heat-resistant inorganic repair material 140 since the one-component heat-curable inorganic repair material is used as the heat-resistant inorganic repair material 140, the heat-resistant inorganic repair material It is no longer necessary to mix a plurality of liquids before filling the crack, and the workability when filling the heat resistant inorganic repair material inside the crack H is improved.
  • the heat resistant inorganic repair material 140 containing a thermosetting inorganic binder is used, the heat resistant inorganic repair is performed inside the crack H. After the material 140 is filled, the inorganic binder curing process can be performed by simply heating the molding die 110 as it is. As a heating condition, a relatively mild condition (for example, normal temperature to 200 ° C.) can be selected.
  • the heat-resistant inorganic repair material 140 is to be filled.
  • the process of cleaning the interior of crack H with a strong alkaline aqueous solution (P2) and the process of cleaning the interior of crack H that is going to be filled with heat-resistant inorganic repair material 140 with an organic solvent (P3)! Therefore, aluminum A1 and oil and fat components that may be present inside the crack H can be removed. For this reason, the adhesion between the molding die 110 and the heat-resistant inorganic repair material 140 is improved.
  • the molding die 110 according to Embodiment 1 is a molding die that has been repaired by the above-described repairing method, as shown in Figs.
  • the molding die 110 according to Embodiment 1 is a molding die in which the inside of the crack H is filled with the heat-resistant inorganic repair material 140. Molded product Pa can be produced. Further, due to this, by using the molding die 110 according to the first embodiment, the molded product Pa and the molding die 110 are not damaged when the molding product Pa is taken out from the molding die 110. .
  • the molded product Pa according to the first embodiment is a molded product manufactured using the molding die 110 according to the first embodiment.
  • the molded product Pa according to Embodiment 1 is a molded product manufactured using the excellent molding die 110 as described above. Therefore, the molded product Pa is a molded product with high quality and low manufacturing cost.
  • the molding die repair method according to Embodiment 2 is a molding die repair method in which a molding die is repaired using a heat-resistant inorganic repair material 240 containing inorganic fibers 280 made of carbon fibers.
  • FIG. 6 is a view schematically showing the inside of the crack H after the metal particle melting step.
  • FIG. 7 is an electron micrograph of the heat-resistant inorganic repair material 240 after the metal particle melting step.
  • the molding die repair method according to Embodiment 2 is a molding die repair method that is similar to the molding die repair method according to Embodiment 1, but the composition of the heat-resistant inorganic repair material is implemented. This is different from the method for repairing the mold according to Form 1.
  • the inorganic fiber 280 made of carbon fiber is used in addition to the inorganic binder 250, the inorganic particles 260, and the metal particles 270. Furthermore, the heat-resistant inorganic repair material 240 contained is used.
  • the heat-resistant inorganic repair further containing the inorganic fibers 280. Since the material 240 is used, the inorganic fibers 280 are entangled with the inorganic particles 260 in the heat-resistant inorganic repair material 240, so that the bond between the inorganic particles 260 is strengthened, and the heat-resistant inorganic repair material filled in the crack H Inorganic particles 260 are difficult to peel off from 240.
  • the inorganic particles 260, the metal particles 270, and the inorganic fibers 280 are appropriately dispersed in the heat-resistant inorganic repair material 240, the toughness of the cured heat-resistant inorganic repair material can be increased. As a result, according to the method for repairing a molding die according to Embodiment 2, it is possible to maintain the quality of the molding surface of the molding die even when exposed to a severe temperature environment.
  • the heat-resistant inorganic repair material 240 contains the inorganic fiber 280 that also has carbon fiber strength, and thus the heat-resistant inorganic repair material 240 has high conductivity. Therefore, when the metal particle melting step is performed by electric discharge machining, workability is improved!
  • the molding die repair method according to Embodiment 2 is the same method as the molding die repair method according to Embodiment 1 except that a heat-resistant inorganic repair material further containing inorganic fibers is used. Therefore, the corresponding effects among the effects of the molding die repair method according to the first embodiment are maintained.
  • a method for repairing a molding die according to Embodiment 3 is a method of repairing a molding die that repairs the molding die using a heat-resistant inorganic repair material 340 containing inorganic fibers 380 made of ceramic fibers. Is the law.
  • FIG. 8 is a diagram schematically showing the inside of the crack H after the metal particle melting step.
  • FIG. 9 is an electron micrograph of the heat resistant inorganic repair material 340 after the metal particle melting step.
  • the molding die repair method according to the third embodiment is a molding die repair method that is similar to the molding die repair method according to the second embodiment. This is different from the method of repairing the mold.
  • the method for repairing the molding die according to the third embodiment uses inorganic fibers 380 having ceramic fiber strength.
  • the method for repairing the molding die according to Embodiment 3 differs from the method for repairing the molding die according to Embodiment 2 in the type of inorganic fiber, but the method for repairing the molding die according to Embodiment 2 is different.
  • the repair method since the heat-resistant inorganic repair material containing inorganic fibers is used, the corresponding effect of the repair method of the molding die according to the second embodiment remains as it is.
  • the heat-resistant inorganic repair material further containing inorganic fibers 380. Because 340 is used, the inorganic fiber 380 is entangled with the inorganic particles 360 in the heat resistant inorganic repair material 340, and the bond between the inorganic particles 360 is strengthened, and the heat resistant inorganic repair material filled in the crack H 340 It becomes difficult for the inorganic particles 360 to peel off.
  • the inorganic particles 360, the metal particles 370, and the inorganic fibers 380 are appropriately dispersed in the heat resistant inorganic repair material 340, the toughness of the cured heat resistant inorganic repair material can be increased. As a result, according to the molding die repair method according to the third embodiment, it is possible to maintain the quality of the molding surface of the molding die even when exposed to a severe temperature environment.
  • the heat-resistant inorganic repair material 340 contains the inorganic fiber 380 having ceramic fiber strength, the following effects are also obtained.
  • the molding die repair method according to Embodiment 4 is a molding die repair method in which a molding die is repaired using a heat-resistant inorganic repair material 440 containing inorganic fibers 480 made of glass fibers.
  • FIG. 10 is a diagram schematically showing the inside of the crack H after the metal particle melting step.
  • the molding die repair method according to the fourth embodiment is a molding die repair method that is similar to the molding die repair method according to the third embodiment. This is different from the method of repairing the mold.
  • the method for repairing a molding die according to Embodiment 4 uses inorganic fibers 480 that also have glass fiber strength.
  • the method for repairing the molding die according to Embodiment 4 differs from the method for repairing the molding die according to Embodiment 3 in the type of inorganic fiber, but the method for repairing the molding die according to Embodiment 3 is different.
  • the repair method since the heat-resistant inorganic repair material containing inorganic fibers is used, it has the corresponding effect as it is among the effects of the repair method for the molding die according to the third embodiment.
  • the heat-resistant inorganic repair material further containing inorganic fibers 480. Because 440 is used, the inorganic fibers 480 are entangled with the inorganic particles 460 in the heat-resistant inorganic repair material 440, so that the bonds between the inorganic particles 460 are strengthened and the heat-resistant inorganic repair material filled in the crack H 440 Therefore, the inorganic particles 460 are difficult to peel off.
  • the inorganic particles 460, the metal particles 470, and the inorganic fibers 480 are appropriately dispersed in the heat resistant inorganic repair material 440, the toughness of the cured heat resistant inorganic repair material can be increased. As a result, according to the method for repairing a molding die according to Embodiment 4, it is possible to maintain the quality of the molding surface of the molding die even when exposed to a severe temperature environment.
  • the heat-resistant inorganic repair material 440 is Because it contains inorganic fiber 480 such as glass fiber cover, it becomes possible to increase the acid resistance, and the heat resistance is reduced due to the oxidation of the inorganic fiber during the metal particle melting process. The repair material will not deteriorate. In addition, since the conductivity of the heat resistant inorganic repair material 440 can be increased, workability is improved when the metal particle melting step is performed by electric discharge machining.
  • the molding die repair method according to the fifth embodiment is a molding die repair method in which a molding die is repaired using a heat-resistant inorganic repair material 540 containing other metal particles 570 as inorganic particles.
  • FIG. 11 is a diagram schematically showing the inside of the crack H after the metal particle melting step.
  • the molding die repair method according to the fifth embodiment is a molding die repair method that is similar to the molding die repair method according to the first embodiment. This is different from the method of repairing the mold.
  • the method for repairing a molding die according to Embodiment 5 replaces the inorganic particles 160 made of ceramic particles as the inorganic particles with a metal material (aluminum) constituting the metal particles 570.
  • a metal material aluminum
  • Other metal particles 560 having a melting point higher than the melting point of the metal material (molybdenum) having a melting point are used.
  • the method for repairing the molding die according to Embodiment 5 it is possible to melt only the metal particles 570 without melting the other metal particles 560 in the metal particle melting step.
  • the heat resistant inorganic repair material 540 after the metal particle melting step has other metal particles 560 in a particle state, and the strength of the heat resistant inorganic repair material 540 does not decrease. As a result, it can be suitably used for repairing a mold that is exposed to a severe temperature environment such as a die-cast mold.
  • the molding die repair method according to Embodiment 5 is the same method as the molding die repair method according to Embodiment 1 except that other metal particles 560 are used as the inorganic particles. Therefore, it has the corresponding effect as it is among the effects of the molding die repair method according to the first embodiment.
  • Embodiment 6
  • the method for repairing the molding die according to Embodiment 6 includes other inorganic noda 652 and inorganic particles 662, and has other viscosity that is lower than the viscosity of the heat-resistant inorganic repair material 640. This is a method of repairing a molding die in which the molding die is repaired using heat-resistant inorganic repair material 642.
  • FIG. 12 is a diagram schematically showing the inside of the crack H after the metal particle melting step.
  • the molding die repair method according to Embodiment 6 is a molding die repair method that is similar to the molding die repair method according to Embodiment 1, but the heat-resistant inorganic repair material filling step is performed. This is different from the repair method for the mold according to Form 1.
  • the bottom portion inside the crack H has another heat-resistant inorganic repair material having a low viscosity. Therefore, the bottom portion inside the crack H can be sufficiently blocked.
  • the surface side portion inside the crack H is filled with the heat-resistant inorganic repair material 640 having sufficiently high mechanical strength and sufficiently high surface smoothness, the heat-resistant inorganic repair material 640 is formed during molding. However, the internal force of crack H will not be peeled off.
  • the inorganic particles contained in the other heat-resistant inorganic repair material 642 in order to sufficiently close the bottom portion inside the crack H 6 62 The average particle size is less than the average particle size of inorganic particles 660 contained in heat-resistant inorganic repair material 640 / J.
  • the molding die repair method according to Embodiment 6 was performed except that the inside of the crack H was filled with other heat-resistant inorganic repair material 642 and heat-resistant inorganic repair material 640 in this order. Since this method is the same as the method for repairing the molding die according to the first embodiment, it has the corresponding effect as it is among the effects of the method for repairing the molding die according to the first embodiment. [0160] Although the molding die repair method, heat-resistant inorganic repair material, molding die, molded product, and product of the present invention have been described based on the above embodiments, the present invention has been described above. Without departing from the scope of the invention, it can be carried out in various modes within the scope thereof, and for example, the following modifications are possible.
  • a silicate inorganic binder is used as the inorganic binder, but the present invention is not limited to this. Instead of the silicate inorganic binder, a phosphate or other inorganic binder can also be used.
  • metal particles having an aluminum force are used as the metal particles, but the present invention is not limited to this. Aluminum alloy or other metal material strength metal particles can also be used.
  • the force using other metal particles having molybdenum force as the other metal particles is not limited to this.
  • Metal particles such as tungsten, tandasten alloy, molybdenum alloy, tantalum, tantalum alloy, gold, gold alloy, platinum, platinum alloy, iridium, iridium alloy, osmium, osmium alloy and other metal materials can also be used.
  • the force using carbon fiber, ceramic fiber, or glass fiber as the inorganic fiber is not limited to this. Instead of these fibers, SiC fibers, metal fibers, etc. can be used.
  • the molding die repair method of the present invention is applied to a molding die for die casting for aluminum fabrication!
  • the method for repairing a molding die of the present invention can also be applied to a molding die for die casting or other die casting molding.
  • the molding die repair method of the present invention includes a molding die for low-pressure forging molding, a molding die for gravity forging molding, a molding die for glass product molding, a molding die for rubber product molding,
  • the present invention can also be applied to a molding die for molding fat products and other molding die for product molding.
  • the heat-resistant inorganic repair material of the present invention was used to repair a molding die, but the present invention is not limited to this. .
  • the heat-resistant machine repair material of the present invention can be applied to internal combustion engines, rocket engines, gas turbines, rocket structures, Can also be used to repair products used in harsh temperature environments such as boilers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 本発明の成型金型の補修方法は、成形金型110の成形面に発生したクラックHの内部に、無機バインダ、無機粒子及び金属粒子を含有する耐熱性無機補修材140を充填する耐熱性無機補修材充填工程と、耐熱性無機補修材140を加熱して無機バインダを硬化させる無機バインダ硬化工程と、耐熱性無機補修材140を加熱して金属粒子を溶融させる金属粒子溶融工程とをこの順序で含む。  このため、本発明の成型金型の補修方法によれば、成形金型110の成型面に発生したクラックHの内部には耐熱性無機補修材140が充填されることになるため、成型製品Paの表面にバリ、駄肉Qがつかなくなる。また、成型製品Paの表面にはバリ、駄肉Qがつかなくなるため、成形金型110から成型製品Paを取り出す際に、成形金型110及び成型製品Paの損傷を招くことがなくなる。

Description

明 細 書
成形金型の補修方法、耐熱性無機補修材、成形金型、成形製品及び製
PP
技術分野
[0001] 本発明は、成形金型の補修方法、耐熱性無機補修材、成形金型、成形製品及び 製品に関する。
背景技術
[0002] 図 13は、アルミニウムダイカスト成形に用いる成形金型 1010を模式的に示す図で ある。図 13 (a)は成形金型 1010の断面図であり、図 13 (b)は成形金型 1010におけ る移動金型 1020の斜視図であり、図 13 (c)は成形金型 1010における固定金型 10 30の斜視図である。なお、図 13においては、溶融状態のアルミニウムをキヤビティ S に流し込むための湯口、湯道などについては省略してある。図 14は、成形金型 101 0を用いて製造される成形製品 Pを示す図である。図 14 (a)は成形製品 Pの斜視図 であり、図 14 (b)は成形製品 Pの断面図である。
[0003] 成形金型 1010は、図 13に示すように、移動金型 1020及び固定金型 1030を有す る。成形は、移動金型 1020と固定金型 130との間に形成されるキヤビティ Sに溶融 状態のアルミニウムを注湯することにより行われる。そして、正常に成形が行われると
、図 14に示すように、表面状態のよい成形製品 Pが製造されることになる。
[0004] ところで、このような成形金型 1010を用いて何回も成形を行うと、成形金型 1010の 表面 (特に、湯口の近傍の角部)にクラック、ピンホール、面荒れなど(以下、この明細 書ではこれらを総称して「クラック」ということとする。)が発生することがある。そうなると 、このクラックに起因して、表面にバリ、駄肉がついた成形製品が製造されることにな る。
[0005] 図 15〜図 17は、バリ、駄肉がついた成形製品 Pxが製造される様子を模式的に示 す図である。図 15 (a)は成形面にクラックが発生した成形金型 1010を示す断面図で あり、図 15 (b)は図 15 (a)の符号 A〜Fに示す部分を拡大して示す断面図である。図 16 (a)はバリ、駄肉がついた成形製品 Pxの斜視図であり、図 16 (b)はバリ、駄肉が ついた成形製品 Pxの断面図である。図 17 (a)は図 16 (b)の符号 A〜Fに示す部分 を拡大して示す断面図であり、図 17 (b)は図 17 (a)の符号 F 'に示す部分をさらに拡 大して示す断面図である。
[0006] すなわち、成形金型 1010を用いて何回も成形を行うと、成形金型 1010の表面に は、図 15の符号 A〜Fに示すようなクラックが発生することがある。そうなると、これに 起因して、図 16及び図 17の符号 A〜Fに示すようなバリ、駄肉 Qが表面についた成 形製品 Pxが製造されることになる。
[0007] このようなバリ、駄肉 Qがついた成形製品 Pxは不良品となることがあり、その場合に は、成形製品 Pxの表面にあるバリ、駄肉 Qをエンドレスペーパーなどによって削り落 とす必要があるため、そのための時間、コストがかかるという問題がある。
また、この成形製品 Pxにバリ、駄肉 Qがあると、成形金型 1010から成形製品 Pxを 取り出す際に成形製品や成形金型の損傷を招くこととなると!/ヽぅ問題がある。
[0008] なお、これらの問題は、アルミニウムダイカスト成形に用いる成形金型だけに見られ る問題ではなぐ他の金属のダイカスト成形に用いる成形金型、低圧铸造成形に用 いる成形金型、重力铸造成形に用いる成形金型、ガラス成形に用いる成形金型、ゴ ム成形に用いる成形金型、榭脂成形に用いる成形金型の場合などにも共通して見ら れる問題である。
[0009] そこで、従来より、上記のような問題を解決することのできる第 1の成形金型の補修 方法が開示されている (例えば、特許文献 1参照。 ) oこの第 1の成形金型の補修方 法は、成形金型の補修部分及び補修材の双方を例えば 1400°C以上に加熱して補 修部分に溶融池を作り、これを冷却するというものである。これにより、成形金型の表 面に発生したクラックを塞ぐことができ、上記のような問題を解決することができる。
[0010] し力しながら、上記した第 1の成形金型の補修方法においては、成形金型そのもの を溶融させる必要があるため、成形金型表面の形状精度が劣化するという問題があ る。また、第 1の成形金型の補修方法においては、クラックを塞いだ後に形成される 盛り上がり部分を平坦ィ匕するのが容易ではないという問題がある。さらにまた、第 1の 成形金型の補修方法においては、クラックの内部における表面部分 (例えば、表面 力 l〜2mmの部分。)を塞ぐことは容易である一方、クラックの内部における底部分 を塞ぐことは容易ではな 、ため、成形金型の例えば冷却用配管までクラックが達して いるような場合には、成形金型における冷却用配管部分の補修が容易ではないとい う問題がある。
[0011] そこで、エポキシ榭脂等力もなるバインダ及びアルミナ等力もなる無機粒子を含有 するシボ加工用金型補修パテ (例えば、特許文献 2参照。)を、成形金型の成形面に 発生したクラックの内部に充填する方法 (以下、第 2の成形金型の補修方法という。 ) が考えられる。
[0012] 特許文献 1 :特開平 3— 433号公報
特許文献 2:特開平 10— 244588号公報
発明の開示
発明が解決しょうとする課題
[0013] し力しながら、上記した第 2の成形金型の補修方法は、バインダとしてエポキシ榭脂 等力もなる有機バインダを用いているため、この方法をダイカスト成形金型のような過 酷な温度環境 (高温環境及び温度差が大き!ヽ冷熱サイクル環境)に晒される成形金 型に用いた場合には、過酷な温度環境により有機バインダが劣化して、クラックの内 部からパテが剥げ落ち易くなつてしまい、成形金型における成形面の品質を維持す ることが容易ではな ヽと 、う問題がある。
[0014] そこで、本発明は、上記した問題を解決するためになされたもので、成形金型表面 の形状精度が劣化することがなぐクラックを塞いだ後に形成される盛り上がり部分を 平坦化するのが容易で、クラックの内部における底部分を塞ぐことも容易であり、過酷 な温度環境に晒されても成形金型における成形面の品質を維持することが可能な成 形金型の補修方法を提供することを目的とする。また、このような成形金型の補修方 法などに適用することが可能な耐熱性無機補修材を提供することを目的とする。また 、このような成形金型の補修方法によって補修された成形金型及びこのような成形金 型を用いて製造された各種成形製品を提供することを目的とする。さらにまた、このよ うな耐熱性無機補修材を用いて補修された各種製品を提供することを目的とする。 課題を解決するための手段
[0015] (1)本発明の成形金型の補修方法は、成形金型の成形面に発生したクラックの内部 に、無機バインダ、無機粒子及び前記成形金型を構成する金属材料の融点よりも低 い融点を有する金属材料からなる金属粒子を含有する耐熱性無機補修材を充填す る耐熱性無機補修材充填工程と、前記耐熱性無機補修材を加熱して前記無機バイ ンダを硬化させる無機バインダ硬化工程と、前記耐熱性無機補修材を加熱して前記 金属粒子を溶融させる金属粒子溶融工程とをこの順序で含むことを特徴とする。
[0016] このため、本発明の成形金型の補修方法によれば、成形金型の成形面に発生した クラックの内部には耐熱性無機補修材が充填されることになるため、この成形金型を 用いて製造した成形製品の表面にはバリ、駄肉がつ力なくなる。また、成形製品の表 面にはバリ、駄肉がっかなくなるため、成形金型から成形製品を取り出す際に成形 製品や成形金型の損傷を招くことがなくなる。
[0017] また、本発明の成形金型の補修方法によれば、成形金型そのものを溶融させる必 要がないため、このことに起因して成形金型表面の形状精度が劣化することがなくな る。
[0018] また、本発明の成形金型の補修方法によれば、成形金型の表面に耐熱性無機補 修材の盛り上がり部分が形成されたとしても、この盛り上がり部分はやすりやエンドレ スペーパーなどを用いて容易に平坦ィ匕することができる。
[0019] また、本発明の成形金型の補修方法によれば、耐熱性無機補修材として比較的低 粘度の耐熱性無機補修材を選択すれば、クラックの内部における底部分まで容易に 耐熱性無機補修材を充填することができるため、クラックの内部における底部分を容 易に塞ぐことができる。
[0020] さらにまた、本発明の成形金型の補修方法によれば、有機バインダを含有するので はなく無機バインダを含有する耐熱性無機補修材を用いているため、過酷な温度環 境に晒されたとしてもバインダが劣化してクラックの内部カゝら耐熱性無機補修材が剥 げ落ち易くなつてしまう、ということがなくなる。
また、本発明の成形金型の補修方法によれば、金属粒子溶融工程を経て金属粒 子が溶融及び固化することで、耐熱性無機補修材の強度を高くするとともに表面の 平滑度を高くすることが可能となるため、クラックの内部力 耐熱性無機補修材が剥 げ落ち難くなる。 これらの結果、過酷な温度環境に晒されても成形金型における成形面の品質を維 持することが可能となる。
[0021] よって、本発明の成形金型の補修方法は、成形金型表面の形状精度が劣化するこ とがなぐクラックを塞いだ後に形成される盛り上がり部分を平坦ィ匕するのが容易で、 クラックの内部における底部分を塞ぐことも容易であり、過酷な温度環境に晒されても 成形金型における成形面の品質を維持することが可能な成形金型の補修方法となる
[0022] 本発明の成形金型の補修方法にお!、ては、補修対象の成形金型として、移動金 型、固定金型、中子のいずれをも選択することができる。
また、本発明の成形金型の補修方法においては、補修対象の成形金型として、押 し出しピンのある成形金型及び押し出しピンのな ヽ成形金型の ヽずれをも選択する ことができる。
[0023] 押し出しピンのない成形金型の成形面にクラックが発生すると、成形製品についた バリ、駄肉の存在により、成形金型から成形製品を取り出すことができなくなることが ある。本発明の成形金型の補修方法をこのような押し出しピンのない成形金型に適 用すると、そのような重大な問題が解消される。
[0024] 一方、押し出しピンのある成形金型の成形面にクラックが発生すると、成形製品に ついたバリ、駄肉の存在により、成形金型から成形製品を取り出し難くなることがある 。このような場合には、押し出しピンにより成形製品を成形金型から取り外すことがで きるが、成形金型から成形製品を取り出す際に、成形製品や成形金型の損傷を招く ことがある。本発明の成形金型の補修方法をこのような押し出しピンのある成形金型 に適用すると、そのような問題も解消される。
[0025] (2)本発明の成形金型の補修方法においては、前記クラックの内部に充填された耐 熱性無機補修材のうち表面近傍の耐熱性無機補修材を加熱することにより前記金属 粒子溶融工程を行うことが好まし ヽ。
[0026] このような方法とすることにより、クラックの内部における表面側においては、金属粒 子溶融工程を経て金属粒子が溶融及び固化することで、耐熱性無機補修材の強度 が高くなるとともに耐熱性無機補修材の表面平滑度が向上するという効果が得られる 。また、クラックの内部における底側においては、金属粒子溶融工程を経ても金属粒 子が溶融及び固化することがなくなるため、無機バインダの接着力により耐熱性無機 補修材と成形金型とが良好に接着するという効果が得られる。その結果、過酷な温度 環境に晒されてもクラックの内部力も耐熱性無機補修材がさらに剥げ落ち難くなる。
[0027] (3)本発明の成形金型の補修方法においては、成形金型全体を加熱したり、酸素バ ーナにより耐熱性無機補修材を加熱したり、空気中で放電加工を行うことにより耐熱 性無機補修材を加熱したりすることももちろん可能であるが、不活性ガス雰囲気下で 放電加工を行うことにより耐熱性無機補修材を加熱することが好ましい。
[0028] このような方法とすることにより、クラックの内部に充填された耐熱性無機補修材のう ち表面近傍の耐熱性無機補修材のみを効率的に加熱することが可能となる。また、 このような方法とすることにより、金属粒子溶融工程中に金属粒子が酸化されることが なくなり、このことに起因して耐熱性無機補修材の強度が低下するといつた事態の発 生を防止することが可能となる。また、このような方法とすることにより、金属粒子溶融 工程中に成形金型表面が酸化されることもなくなり、このことに起因して成形金型の 品質が劣化するといつた事態の発生を防止することが可能となる。さらにまた、このよ うな方法とすることにより、加熱温度の調整が容易となり、適正な条件 (耐熱性無機補 修材のうち表面近傍の耐熱性無機補修材のみを溶融させる、成形金型を溶融させな い、などの条件。)で金属粒子溶融工程を実施することが可能となる。
[0029] (4)本発明の成形金型の補修方法にお!、ては、前記金属粒子は、アルミニウム又は アルミニウム合金力 なることが好まし 、。
[0030] このような方法とすることにより、成形金型を構成する金属材料 (例えば、熱間ダイス 鋼)の融点と金属粒子の融点との差を大きくすることが可能となるため、金属粒子溶 融工程で成形金型を溶融させることなく金属粒子のみを溶融させることが可能となる
[0031] (5)本発明の成形金型の補修方法においては、前記無機粒子は、セラミックス粒子 であることが好ましい。
[0032] セラミックス粒子は、高温にも強ぐ温度変化にも強いため、上記のように構成するこ とにより、ダイカスト成形金型のような苛酷な温度環境に晒される成形金型を補修す る場合に好適に使用することができる。また、セラミックス粒子は、機械的強度も高い ため、硬化後の耐熱性無機補修材の機械的強度も高くなり、過酷な温度環境に晒さ れても成形金型における成形面の品質を維持することが可能となる。
[0033] セラミックス粒子としては、酸ィ匕アルミニウム、酸化ケィ素、酸ィ匕ジルコニウム、酸ィ匕 クロム等力もなるセラミックス粒子を好ましく用いることができる。セラミックス粒子として は、成形金型の材料、成形条件、クラックの大きさ、深さ又は形状等に鑑みて適切な 材料カゝらなるセラミックス粒子を適宜選択して用いることができる。
[0034] (6)本発明の成形金型の補修方法にお!ヽては、前記無機粒子は、前記金属粒子を 構成する金属材料の融点よりも高い融点を有する金属材料力 なる他の金属粒子で あることも好まし 、。
[0035] このような方法とすることにより、金属粒子溶融工程で他の金属粒子を溶融させるこ となく金属粒子のみを溶融させることが可能となるため、金属粒子溶融工程後の耐熱 性無機補修材には他の金属粒子が粒子状態で存在することとなり、耐熱性無機補修 材の強度が低下することがなくなる。その結果、ダイカスト成形金型のような苛酷な温 度環境に晒される成形金型を補修する場合に好適に使用することができる。
[0036] 他の金属粒子としては、高融点でィ匕学的安定性に優れるタングステン、タンダステ ン合金、モリブデン、モリブデン合金、タンタル、タンタル合金、金、金合金、白金、白 金合金、イリジウム、イリジウム合金、オスミウム、オスミウム合金などカゝらなる金属粒子 を好適に用いることができる。
また、他の金属粒子としては、成形金型を構成する金属材料 (例えば、鉄鋼材料な ど。)からなる金属粒子や、高導電性の金属材料 (銅、銀、ニッケルなど。)からなる金 属粒子をも好適に用いることができる。
[0037] (7)本発明の成形金型の補修方法においては、前記無機バインダは、リン酸塩系又 はケィ酸塩系の無機バインダであることが好まし 、。
[0038] リン酸塩系又はケィ酸塩系の無機バインダは、化学的安定性や熱的安定性が高い ため、上記のような方法とすることにより、硬化後の耐熱性無機補修材の化学的安定 性や熱的安定性を高くすることが可能になり、過酷な温度環境に晒されてもクラック の内部力も耐熱性無機補修材が剥げ落ち易くなつてしまうということが抑制され、その 結果、過酷な温度環境に晒されても成形金型における成形面の品質を維持すること が可能となる。また、リン酸塩系又はケィ酸塩系の無機バインダは、取扱いが容易で 安価であるため、成形金型の補修を安価に行うことが可能となる。
[0039] なお、本発明の成形金型の補修方法にお!ヽては、前記無機バインダは、ケィ酸塩 系の無機バインダであることがさらに好ましい。
[0040] このような方法とすることにより、リン酸塩系の無機バインダと比較して、金属粒子の 変質を抑制することが可能となる。
[0041] なお、本発明の成形金型の補修方法にお!ヽては、前記耐熱性無機補修材は、一 液加熱硬化性の無機補修材であることが好ましい。
[0042] このような方法とすることにより、耐熱性無機補修材を充填する前に複数の液を混 合する必要がなくなるため、クラックの内部に耐熱性無機補修材を充填する際の作 業性が向上する。
[0043] また、本発明の成形金型の補修方法にお!ヽては、前記無機バインダは、熱硬化性 無機バインダであることが好まし 、。
[0044] このような方法とすることにより、クラックの内部に耐熱性無機補修材を充填した後 は、成形金型をそのまま加熱するだけで無機バインダ硬化工程を実施することが可 能となる。加熱条件としても比較的穏和な条件 (例えば、常温〜 200°C。)を選択する ことができる。
[0045] (8)本発明の成形金型の補修方法にお!ヽては、前記耐熱性無機補修材は、無機繊 維をさらに含有することが好ましい。
[0046] このような方法とすることにより、耐熱性無機補修材中で無機繊維が無機粒子に絡 みつくことで無機粒子間の結びつきが強固になるため、クラックに充填された耐熱性 無機補修材から無機粒子が剥離し難くなる。また、耐熱性無機補修材中で無機粒子 及び無機繊維が適度に分散された状態となるため、硬化した耐熱性無機補修材の 靭性を高めることが可能となる。その結果、本発明の成形金型の補修方法によれば、 過酷な温度環境に晒されても成形金型における成形面の品質を維持することが可能 となる。
[0047] 無機繊維の材質、長さ、太さ、形状、添加量は、クラックの大きさ、深さ又は形状、充 填する耐熱性無機補修材に含有される無機粒子の大きさ又は形状等に鑑みて適切 なものを適宜選択して用いることができる。
[0048] (9)本発明の成形金型の補修方法にお!ヽては、前記無機繊維は、炭素繊維であるこ とが好ましい。
[0049] このような方法とすることにより、耐熱性無機補修材の導電性を高くすることが可能 となるため、金属粒子溶融工程を放電加工で行う場合に作業性が向上する。
[0050] 炭素繊維としては、通常の炭素繊維の他に、カーボンナノチューブ、カーボンナノ ファイバをも好ましく用いることができる。
[0051] (10)本発明の成形金型の補修方法にお!ヽては、前記無機繊維は、セラミックス繊維 であることも好まし 、。
[0052] このような方法とすることにより、耐酸ィ匕性を高くすることが可能となるため、金属粒 子溶融工程を行う際に、無機繊維が酸ィ匕することに起因して耐熱性無機補修材が劣 化するということがなくなる。
[0053] セラミックス繊維としては、酸ィ匕アルミニウム、酸化ケィ素、酸ィ匕ジルコニウム、酸ィ匕 クロム等力 なるセラミックス繊維を好ましく用いることができる。
[0054] (11)本発明の成形金型の補修方法にお!、ては、前記無機繊維は、ガラス繊維であ ることも好まし 、。
[0055] このような方法とすることによつても、耐酸ィ匕性を高くすることが可能となるため、金 属粒子溶融工程を行う際に、無機繊維が酸ィ匕することに起因して耐熱性無機補修材 が劣化するということがなくなる。
[0056] ガラス繊維としては、石英ガラス繊維その他のガラス繊維を好ましく用いることがで きる。
[0057] なお、本発明の成形金型の補修方法にお!ヽては、無機繊維として、 SiC繊維その 他の無機繊維を用いることもできる。
[0058] (12)本発明の成形金型の補修方法においては、前記耐熱性無機補修材充填工程 を実施する前に、前記耐熱性無機補修材に加えて、無機バインダ及び無機粒子を 含有し前記耐熱性無機補修材の粘度よりも低い粘度を有する他の耐熱性無機補修 材を準備しておき、前記耐熱性無機補修材充填工程においては、前記成形金型の 成形面に発生したクラックの内部に、前記他の耐熱性無機補修材及び前記耐熱性 無機補修材をこの順序で充填することが好まし 、。
[0059] このような方法とすることにより、クラックの内部における底部分には耐熱性無機補 修材の粘度よりも低い粘度を有する他の耐熱性無機補修材が充填されることとなるた め、クラックの内部における底部分を十分に塞ぐことが可能となる。
[0060] また、クラックの内部における表面側部分には機械的強度が十分に高く表面平滑 性が十分に高い耐熱性無機補修材が充填されることになるため、成形中に耐熱性無 機補修材がクラックの内部力も剥げ落ちてしまうということがなくなる。
[0061] なお、クラックの内部における底部分を十分に塞ぐという観点力も言えば、他の耐熱 性無機補修材に含有される無機粒子の平均粒径は、耐熱性無機補修材に含有され る無機粒子の平均粒径よりも小さ 、ことが好ま U、。
[0062] なお、本発明の成形金型の補修方法にお!ヽては、前記耐熱性無機補修材充填ェ 程を行うのに先立って、前記耐熱性無機補修材を充填しょうとするクラックの内部を 有機溶剤で洗浄する工程を行うことが好まし ヽ。
[0063] 成形金型がゴム成形用の成形金型又は榭脂成形用の成形金型の場合には、耐熱 性無機補修材充填工程を行うのに先立って、耐熱性無機補修材を充填しょうとする クラックの内部を有機溶剤で洗浄する工程を行うことにより、クラックの内部に存在す ることがあるゴムや榭脂を取り除くことができる。このため、成形金型と耐熱性無機補 修材との接着性が向上する。
[0064] また、本発明の成形金型の補修方法にお!ヽては、前記耐熱性無機補修材充填ェ 程を行うのに先立って、前記耐熱性無機補修材を充填しょうとするクラックの内部を 強アルカリ性水溶液で洗浄する工程と、前記耐熱性無機補修材を充填しょうとするク ラックの内部を有機溶剤で洗浄する工程とを行うことも好ましい。
[0065] 成形金型がダイカスト成形用の成形金型、低圧铸造成形用の成形金型、重力铸造 成形用の成形金型又はガラス成形用の成形金型の場合には、耐熱性無機補修材充 填工程を行うのに先立って、クラックの内部を強アルカリ性水溶液で洗浄する工程と 、クラックの内部を有機溶剤で洗浄する工程とを行うことにより、クラックの内部に存在 することがあるガラス及び油脂成分又は金属及び油脂成分を取り除くことができる。こ のため、成形金型と耐熱性無機補修材との接着性が向上する。
[0066] (13)本発明の成形金型の補修方法にお!、ては、前記成形金型は、ダイカスト成形 用の成形金型であることが好まし 、。
[0067] 本発明の成形金型の補修方法にお!、ては、ダイカスト成形用の成形金型、低圧铸 造成形用の成形金型、重力铸造成形用の成形金型、ガラス成形用の成形金型、ゴ ム成形用の成形金型、榭脂成形用の成形金型のすべてに適用することができるが、 特に、成形金型がダイカスト成形用の成形金型である場合に、耐熱性、耐冷熱サイク ル性、機械的強度に関する耐久性の観点で優れた効果を有する。その理由は、ダイ カスト成形用の成形金型においては、極めて大きな温度差及び圧力差の条件下で 成形が行われるため、成形金型にクラックが入り易いからである。
[0068] (14)本発明の耐熱性無機補修材は、無機バインダ、無機粒子及び金属粒子を含有 することを特徴とする。
[0069] このため、本発明の耐熱性無機補修材によれば、本発明の耐熱性無機補修材を 用いることによって上記(1)に記載の成形金型の補修方法を実施することが可能とな る。
[0070] 従って、本発明の耐熱性無機補修材にお!/ヽては、金属粒子としては、成形金型を 構成する金属材料の融点よりも低 、融点を有する金属材料力 なる金属粒子を用い ることが好ましい。
[0071] (15)本発明の耐熱性無機補修材においては、前記金属粒子は、アルミニウム又は アルミニウム合金力 なることが好まし 、。
[0072] このため、本発明の耐熱性無機補修材によれば、本発明の耐熱性無機補修材を 用いることによって上記 (4)に記載の成形金型の補修方法を実施することが可能とな る。
[0073] (16)本発明の耐熱性無機補修材においては、前記無機粒子は、セラミックス粒子で あることが好ましい。
[0074] このため、本発明の耐熱性無機補修材によれば、本発明の耐熱性無機補修材を 用いることによって上記(5)に記載の成形金型の補修方法を実施することが可能とな る。 [0075] (17)本発明の耐熱性無機補修材においては、前記無機粒子は、前記金属粒子を 構成する金属材料の融点よりも高い融点を有する金属材料力 なる他の金属粒子で あることが好ましい。
[0076] このため、本発明の耐熱性無機補修材によれば、本発明の耐熱性無機補修材を 用いることによって上記(6)に記載の成形金型の補修方法を実施することが可能とな る。
[0077] (18)本発明の耐熱性無機補修材においては、前記無機バインダは、リン酸塩系又 はケィ酸塩系の無機バインダであることが好まし 、。
[0078] このため、本発明の耐熱性無機補修材によれば、本発明の耐熱性無機補修材を 用いることによって上記(7)に記載の成形金型の補修方法を実施することが可能とな る。
[0079] (19)本発明の耐熱性無機補修材においては、前記耐熱性無機補修材は、無機繊 維をさらに含有することが好ましい。
[0080] このため、本発明の耐熱性無機補修材によれば、本発明の耐熱性無機補修材を 用いることによって上記(8)に記載の成形金型の補修方法を実施することが可能とな る。
[0081] (20)本発明の耐熱性無機補修材にお!/ヽては、前記無機繊維は、炭素繊維であるこ とが好ましい。
[0082] このため、本発明の耐熱性無機補修材によれば、本発明の耐熱性無機補修材を 用いることによって上記(9)に記載の成形金型の補修方法を実施することが可能とな る。
[0083] (21)本発明の耐熱性無機補修材にお ヽては、前記無機繊維は、セラミックス繊維で あることが好ましい。
[0084] このため、本発明の耐熱性無機補修材によれば、本発明の耐熱性無機補修材を 用いることによって上記(10)に記載の成形金型の補修方法を実施することが可能と なる。
[0085] (22)本発明の耐熱性無機補修材にお!/ヽては、前記無機繊維は、ガラス繊維である ことが好ましい。 [0086] このため、本発明の耐熱性無機補修材によれば、本発明の耐熱性無機補修材を 用いることによって上記(11)に記載の成形金型の補修方法を実施することが可能と なる。
[0087] なお、本発明の成形金型の補修方法 (上記(1)〜(13)のいずれかに記載の成形 金型の補修方法)で説明した耐熱性無機補修材の好適な特徴は、本発明の耐熱性 無機補修材 (上記(14)〜(22)の ヽずれかに記載の耐熱性無機補修材)にも適用可 能である。
[0088] なお、本発明の耐熱性無機補修材 (上記(14)〜(22)の ヽずれかに記載の耐熱性 無機補修材)は、上記したように本発明の成形金型の補修方法に用いることができる ほか、過酷な温度環境で使用する製品にクラックが発生した場合における当該製品 の補修方法にも用いることができる。
[0089] (23)本発明の成形金型は、本発明の成形金型の補修方法によって補修された成形 金型である。
[0090] このため、本発明の成形金型は、クラックの内部が耐熱性無機補修材で充填された 成形金型であるため、表面にバリ、駄肉のない高品質の成形製品を製造することが できる。また、このことに起因して、本発明の成形金型を用いることにより、成形金型 から成形製品を取り出す際に成形製品や成形金型の損傷を招くことがなくなる。
[0091] (24)本発明の成形製品は、本発明の成形金型を用いて製造された成形製品である
[0092] このため、本発明の成形製品は、上記のように優れた成形金型を用いて製造され た成形製品であるため、高品質で製造コストの安い成形製品となる。
[0093] このような成形製品としては、成形金型がダイカスト成形用の成形金型、低圧铸造 成形用の成形金型又は重力铸造成形用の成形金型の場合には、アルミニウム、亜 鉛、マグネシウム、真鍮などの各種金属製品が例示される。成形金型がガラス成形用 の成形金型の場合には、各種ガラス製品が例示される。成形金型がゴム成形用の成 形金型の場合には、各種ゴム製品が例示される。成形金型が榭脂成形用の成形金 型の場合には、各種榭脂製品が例示される。
[0094] (25)本発明の製品は、本発明の耐熱性無機補修材を用いて補修された製品である [0095] このため、本発明の製品は、過酷な温度環境でも好適に用いることが可能な製品と なる。本発明の製品としては、内燃エンジン、ロケットエンジン、ガスタービン、ロケット の構造体、各種ボイラーを例示することができる。
図面の簡単な説明
[0096] [図 1]実施形態 1に係る成形金型の補修方法を模式的に示す図である。
[図 2]実施形態 1に係る成形金型の補修方法を模式的に示す図である。
[図 3]金属粒子溶融工程後におけるクラック Hの内部を模式的に示す図である(実施 形態 1)。
[図 4]金属粒子溶融工程前後における耐熱性無機補修材 140の電子顕微鏡写真を 示す図である (実施形態 1)。
[図 5]成形金型 110によって製造される成形製品 Paを示す図である。
[図 6]金属粒子溶融工程後におけるクラック Hの内部を模式的に示す図である(実施 形態 2)。
[図 7]金属粒子溶融工程後における耐熱性無機補修材 240の電子顕微鏡写真を示 す図である(実施形態 2)。
[図 8]金属粒子溶融工程後におけるクラック Hの内部を模式的に示す図である(実施 形態 3)。
[図 9]金属粒子溶融工程後における耐熱性無機補修材 340の電子顕微鏡写真を示 す図である(実施形態 3)。
[図 10]金属粒子溶融工程後におけるクラック Hの内部を模式的に示す図である(実 施形態 4)。
[図 11]金属粒子溶融工程後におけるクラック Hの内部を模式的に示す図である(実 施形態 5)。
[図 12]金属粒子溶融工程後におけるクラック Hの内部を模式的に示す図である(実 施形態 6)。
[図 13]アルミニウムダイカスト成形に用いる成形金型 1010を模式的に示す図である。
[図 14]成形金型 1010を用いて製造される成形製品 Pを示す図である。 [図 15]バリ、駄肉がついた成形製品 Pxが製造される様子を模式的に示す図である。
[図 16]バリ、駄肉がついた成形製品 Pxが製造される様子を模式的に示す図である。
[図 17]バリ、駄肉がついた成形製品 Pxが製造される様子を模式的に示す図である。 発明を実施するための最良の形態
[0097] 以下、本発明の成形金型の補修方法、耐熱性無機補修材、成形金型、成形製品 及び製品につ 、て、図に示す実施の形態に基づ!、て説明する。
[0098] 〔実施形態 1〕
実施形態 1に係る成形金型の補修方法は、アルミニウムダイカスト成形用の成形金 型を補修する成形金型の補修方法である。
[0099] 図 1及び図 2は、実施形態 1に係る成形金型の補修方法を模式的に示す図である。
図 1 (a)は補修された成形金型 110を示す断面図であり、図 1 (b)は図 1 (a)の符号 A 〜Fに示す部分を拡大して示す断面図である。図 2 (a)〜図 2 (e)は実施形態 1に係 る成形金型の補修方法における各工程を拡大して示す図である。
[0100] 図 3は、金属粒子溶融工程後におけるクラック Hの内部を模式的に示す図である。
図 4は、金属粒子溶融工程前後における耐熱性無機補修材 140の電子顕微鏡写真 を示す図である。図 4 (a)は金属粒子溶融工程前のものであり、図 4 (b)は金属粒子 溶融工程後のものである。図 5は、成形金型 110によって製造される成形製品 Paを 示す図である。図 5 (a)は成形製品 Paの斜視図であり、図 5 (b)は成形製品 Paの断 面図である。
[0101] 実施形態 1に係る成形金型の補修方法は、図 1に示すように、アルミニウムダイカス ト成形用の成形金型 110 (移動金型 120及び固定金型 130)の成形面に発生するこ とのあるクラック H (符号 A〜F参照。)に耐熱性無機補修材 140を充填することにより 成形金型 100の補修を行う成形金型の補修方法である。実施形態 1に係る成形金型 の補修方法は、以下の (P1)工程〜 (P7)工程を含む。
[0102] (P1)耐熱性無機補修材準備工程
まず、無機バインダ 150と、無機バインダ 150に分散されたセラミックス粒子力もなる 無機粒子 160とを含有する耐熱性無機接着剤を準備する。耐熱性無機接着剤として は、ケィ酸塩系の一液加熱硬化性無機接着剤である東亞合成株式会社製のァロン セラミック Cを用いた。次に、この耐熱性無機接着剤 8gに、平均粒径 30 mのアルミ -ゥムカゝらなる金属粒子 170を lg添加することにより、耐熱性無機補修材 140を作製 する。
[0103] (P2)強アルカリ性水溶液による洗浄工程
次に、成形金型 (移動金型 120又は固定金型 130)の成形面に発生したクラック H の内部に存在することがあるアルミニウム A1 (図 2 (a)参照。)を除去するために、クラ ック Hの内部を強アルカリ性水溶液で洗浄する。強アルカリ性水溶液としては、例え ば、水酸ィ匕カリウム水溶液を用いる。
[0104] (P3)有機溶剤による洗浄工程
次に、クラック Hの内部に存在することのある油脂成分(図示せず。)を除去するた めに、クラック Hの内部を有機溶剤で洗浄する。有機溶剤としては、例えば、アセトン などを用いる。図 2 (b)は、有機溶剤による洗浄工程が終了したときのクラック Hの内 部の様子を示している。
[0105] (P4)耐熱性無機補修材充填工程
次に、図 2 (c)に示すように、クラック Hの内部に耐熱性無機補修材 140を充填する
[0106] (P5)無機バインダ硬化工程
次に、成形金型を 150°Cの乾燥機内に静置することにより、耐熱性無機補修材 14 0を加熱して無機バインダ 150、ひ 、ては耐熱性無機補修材 140を硬化させる(図 4 ( a)参照。)。
[0107] (P6)金属粒子溶融工程
次に、クラック Hの内部に充填された耐熱性無機補修材 140のうち表面近傍の耐熱 性無機補修材 140を加熱することにより金属粒子 170を溶融させ、その後耐熱性無 機補修材 140の加熱を中止することにより、溶融した金属(アルミニウム)を固化させ る(図 2 (d)参照。 )0耐熱性無機補修材 140の加熱は、アルゴン放電溶接機を用い て行う。
[0108] その結果、クラック Hの内部の表面側では、図 3に示すように、金属粒子 170が金属 粒子溶融工程を経て溶融及び固化して塊状化する(図 2 (d)の符号 G及び図 4 (b) 参照。;)。その一方で、クラック Hの内部の底側では、金属粒子 170が金属粒子溶融 工程を経ても溶融することはなぐ金属粒子のまま存在している(図 2 (d)の符号 G参
2 昭 )ノ
[0109] (P7)平坦化工程
次に、図 2 (e)に示すように、耐熱性無機補修材 140の盛り上がり部分を平坦化す る。盛り上がり部分の平坦ィ匕は、例えばやすりを用いて行う。
[0110] 以上の工程を経て、実施形態 1に係る成形金型の補修方法が完了する。
[0111] このため、実施形態 1に係る成形金型の補修方法によれば、成形金型 110の成形 面に発生したクラック Hの内部には耐熱性無機補修材 140が充填されることになるた め、図 5に示すように、成形金型 110を用いて製造した成形製品 Paの表面にはバリ、 駄肉がっかなくなる。また、成形製品 Paの表面にはバリ、駄肉がっかなくなるため、 成形金型 110から成形製品 Paを取り出す際に成形製品 Paや成形金型 110の損傷 を招くことがなくなる。
[0112] また、実施形態 1に係る成形金型の補修方法によれば、成形金型 110そのものを 溶融させる必要がないため、このことに起因して成形金型表面の形状精度が劣化す ることがなくなる。
[0113] また、実施形態 1に係る成形金型の補修方法によれば、成形金型 110の表面に耐 熱性無機補修材 140の盛り上がり部分が形成されたとしても、この盛り上がり部分は やすりやエンドレスペーパーなどを用いて容易に平坦ィ匕することができる。
[0114] また、実施形態 1に係る成形金型の補修方法によれば、耐熱性無機補修材として 比較的低粘度の耐熱性無機補修材 140を選択したため、クラック Hの内部における 底部分まで容易に耐熱性無機補修材 140を充填することができ、クラック Hの内部に おける底部分を容易に塞ぐことができる。
[0115] さらにまた、実施形態 1に係る成形金型の補修方法によれば、有機バインダを含有 するのではなく無機バインダ 150を含有する耐熱性無機補修材 140を用いて 、るた め、過酷な温度環境に晒されたとしてもバインダが劣化してクラック Hの内部力 耐熱 性無機補修材 140が剥げ落ち易くなつてしまう、ということがなくなる。
また、実施形態 1に係る成形金型の補修方法によれば、金属粒子溶融工程を経て 金属粒子 170が溶融及び固化することで、耐熱性無機補修材 140の強度を高くする とともに表面の平滑度を高くすることが可能となるため、クラック Hの内部力も耐熱性 無機補修材 140が剥げ落ち難くなる。
これらの結果、実施形態 1に係る成形金型の補修方法によれば、過酷な温度環境 に晒されても成形金型 110における成形面の品質を維持することが可能となる。
[0116] よって、実施形態 1に係る成形金型の補修方法は、成形金型 110表面の形状精度 が劣化することがなぐクラック Hを塞いだ後に形成される盛り上がり部分を平坦ィ匕す るのが容易で、クラック Hの内部における底部分を塞ぐことも容易であり、過酷な温度 環境に晒されても成形金型 110における成形面の品質を維持することが可能な成形 金型の補修方法となる。
[0117] また、実施形態 1に係る成形金型の補修方法によれば、アルゴン放電溶接機を用 V、て耐熱性無機補修材 140を加熱することとして ヽるため、クラック Hの内部に充填 された耐熱性無機補修材 140のうち表面近傍の耐熱性無機補修材 140を加熱する ことが可能となり、以下のような効果が得られる。
[0118] すなわち、クラック Hの内部における表面側においては、金属粒子溶融工程を経て 金属粒子 170が溶融及び固化することで、耐熱性無機補修材 140の強度が高くなる とともに耐熱性無機補修材 140の表面平滑度が向上するという効果が得られる。また 、クラック Hの内部における底側においては、金属粒子溶融工程を経ても金属粒子 1 70が溶融及び固化することがなくなるため、無機バインダ 150の接着力により耐熱性 無機補修材 140と成形金型 110とが良好に接着するという効果が得られる。その結 果、過酷な温度環境に晒されてもクラック Hの内部力も耐熱性無機補修材 140がさら に剥げ落ち難くなる。
[0119] また、クラック Hの内部に充填された耐熱性無機補修材 140のうち表面近傍の耐熱 性無機補修材 140のみを効率的に加熱することが可能となる。また、金属粒子溶融 工程中に金属粒子 170が酸ィ匕されることがなくなり、このことに起因して耐熱性無機 補修材 140の強度が低下すると 、つた事態の発生を防止することが可能となる。また 、金属粒子溶融工程中に成形金型表面が酸化されることもなくなり、このことに起因し て成形金型 110の品質が劣化するといつた事態の発生を防止することが可能となる。 さらにまた、加熱温度の調整が容易となり、適正な条件 (耐熱性無機補修材 140のう ち表面近傍の耐熱性無機補修材のみを溶融させる、成形金型 110を溶融させな 、、 などの条件。 )で金属粒子溶融工程を実施することが可能となる。
[0120] また、実施形態 1に係る成形金型の補修方法によれば、金属粒子 170として、アル ミニゥムカゝらなる金属粒子を用いて ヽるため、成形金型 110を構成する金属材料 (こ の場合、熱間ダイス鋼 SKD61。)の融点と金属粒子を構成する金属材料 (この場合 、アルミニウム。)の融点との差を大きくすることが可能となるため、金属粒子溶融工程 で成形金型 110を溶融させることなく金属粒子 170のみを溶融させることが可能とな る。
[0121] 実施形態 1に係る成形金型の補修方法においては、クラック Hの大きさ、深さ又は 形状に応じて、無機粒子 160の平均粒径や耐熱性無機補修材 140の粘度を適宜調 整することで、種々のクラックに対して適切な補修が可能となる。すなわち、クラック H が細長い形状を有するクラックである場合には、相対的に粒径の小さい無機粒子 16 0を含有し比較的粘度の低 ヽ耐熱性無機補修材 140を用いるのが好ま Uヽ。その一 方において、クラック Hが幅広な形状を有するクラックである場合には、相対的に粒径 の大き 、無機粒子 160を含有し比較的粘度の高 、耐熱性無機補修材 140を用いる のが好ましい。
[0122] また、実施形態 1に係る成形金型の補修方法によれば、耐熱性無機補修材 140と して、ケィ酸塩系の無機バインダを含有する耐熱性無機補修材を用いているため、 硬化後の耐熱性無機補修材の化学的安定性や熱的安定性を高くすることが可能に なり、過酷な温度環境に晒されてもクラック Hの内部から耐熱性無機補修材 140が剥 げ落ち易くなつてしまうということが抑制され、その結果、成形金型 110における成形 面の品質を維持することが可能となる。また、成形金型 110の補修を安価に行うこと が可能となる。
[0123] また、実施形態 1に係る成形金型の補修方法によれば、耐熱性無機補修材 140と して、一液加熱硬化性の無機補修材を用いているため、耐熱性無機補修材を充填 する前に複数の液を混合する必要がなくなり、クラック Hの内部に耐熱性無機補修材 を充填する際の作業性が向上する。 [0124] また、実施形態 1に係る成形金型の補修方法によれば、熱硬化性無機バインダを 含有する耐熱性無機補修材 140を用いて ヽるため、クラック Hの内部に耐熱性無機 補修材 140を充填した後は、成形金型 110をそのまま加熱するだけで無機バインダ 硬化工程を実施することが可能となる。加熱条件としても比較的穏和な条件 (例えば 、常温〜 200°C。)を選択することができる。
[0125] 実施形態 1に係る成形金型の補修方法においては、上記したように、耐熱性無機 補修材充填工程 (P4)を行うのに先立って、耐熱性無機補修材 140を充填しようとす るクラック Hの内部を強アルカリ性水溶液で洗浄する工程 (P2)と、耐熱性無機補修 材 140を充填しょうとするクラック Hの内部を有機溶剤で洗浄する工程 (P3)とを行う こととして!/、るため、クラック Hの内部に存在することがあるアルミニウム A1及び油脂成 分を取り除くことができる。このため、成形金型 110と耐熱性無機補修材 140との接 着性が向上する。
[0126] 実施形態 1に係る成形金型 110は、図 1〜図 4に示すように、上記した補修方法に よって補修された成形金型である。
[0127] このため、実施形態 1に係る成形金型 110は、クラック Hの内部が耐熱性無機補修 材 140で充填された成形金型であるため、表面にバリ、駄肉のない高品質の成形製 品 Paを製造することができる。また、このことに起因して、実施形態 1に係る成形金型 110を用いることにより、成形金型 110から成形製品 Paを取り出す際に成形製品 Pa や成形金型 110の損傷を招くことがなくなる。
[0128] 実施形態 1に係る成形製品 Paは、実施形態 1に係る成形金型 110を用いて製造さ れた成形製品である。
[0129] このため、実施形態 1に係る成形製品 Paは、上記のように優れた成形金型 110を 用いて製造された成形製品であるため、高品質で製造コストの安い成形製品となる。
[0130] 〔実施形態 2〕
実施形態 2に係る成形金型の補修方法は、炭素繊維からなる無機繊維 280を含有 する耐熱性無機補修材 240を用いて成形金型を補修する成形金型の補修方法であ る。
[0131] 図 6は、金属粒子溶融工程後におけるクラック Hの内部を模式的に示す図である。 図 7は、金属粒子溶融工程後における耐熱性無機補修材 240の電子顕微鏡写真を 示す図である。
[0132] 実施形態 2に係る成形金型の補修方法は、実施形態 1に係る成形金型の補修方法 とよく似た成形金型の補修方法であるが、耐熱性無機補修材の組成が実施形態 1に 係る成形金型の補修方法の場合とは異なって ヽる。
すなわち、実施形態 2に係る成形金型の補修方法は、図 5及び図 6に示すように、 無機バインダ 250、無機粒子 260及び金属粒子 270にカ卩えて、炭素繊維からなる無 機繊維 280をさらに含有する耐熱性無機補修材 240を用いる。
[0133] このため、実施形態 2に係る成形金型の補修方法によれば、無機バインダ 250、無 機粒子 260及び金属粒子 270にカ卩えて、無機繊維 280をさらに含有する耐熱性無 機補修材 240を用いているため、耐熱性無機補修材 240中で無機繊維 280が無機 粒子 260に絡みつくことで無機粒子 260間の結びつきが強固になり、クラック Hに充 填された耐熱性無機補修材 240から無機粒子 260が剥離し難くなる。また、耐熱性 無機補修材 240中で無機粒子 260、金属粒子 270及び無機繊維 280が適度に分散 された状態となるため、硬化した耐熱性無機補修材の靭性を高めることが可能となる 。その結果、実施形態 2に係る成形金型の補修方法によれば、過酷な温度環境に晒 されても成形金型における成形面の品質を維持することが可能となる。
[0134] また、実施形態 2に係る成形金型の補修方法によれば、耐熱性無機補修材 240が 炭素繊維力もなる無機繊維 280を含有するため、耐熱性無機補修材 240の導電性 を高くすることが可能となるため、金属粒子溶融工程を放電加工で行う場合に作業 性が向上すると!、う効果も得られる。
[0135] なお、実施形態 2に係る成形金型の補修方法は、無機繊維をさらに含有する耐熱 性無機補修材を用いること以外は実施形態 1に係る成形金型の補修方法と同様の 方法であるため、実施形態 1に係る成形金型の補修方法が有する効果のうち該当す る効果をそのまま有する。
[0136] 〔実施形態 3〕
実施形態 3に係る成形金型の補修方法は、セラミックス繊維からなる無機繊維 380 を含有する耐熱性無機補修材 340を用いて成形金型を補修する成形金型の補修方 法である。
[0137] 図 8は、金属粒子溶融工程後におけるクラック Hの内部を模式的に示す図である。
図 9は、金属粒子溶融工程後における耐熱性無機補修材 340の電子顕微鏡写真を 示す図である。
[0138] 実施形態 3に係る成形金型の補修方法は、実施形態 2に係る成形金型の補修方法 とよく似た成形金型の補修方法であるが、無機繊維の種類が実施形態 2に係る成形 金型の補修方法の場合とは異なって ヽる。
すなわち、実施形態 3に係る成形金型の補修方法は、図 8及び図 9に示すように、 セラミックス繊維力もなる無機繊維 380を用いる。
[0139] このように、実施形態 3に係る成形金型の補修方法は、実施形態 2に係る成形金型 の補修方法とは無機繊維の種類が異なるが、実施形態 2に係る成形金型の補修方 法の場合と同様に、無機繊維を含有する耐熱性無機補修材を用いているため、実施 形態 2に係る成形金型の補修方法が有する効果のうち該当する効果をそのまま有す る。
[0140] すなわち、実施形態 3に係る成形金型の補修方法によれば、無機バインダ 350、無 機粒子 360及び金属粒子 370にカ卩えて、無機繊維 380をさらに含有する耐熱性無 機補修材 340を用いているため、耐熱性無機補修材 340中で無機繊維 380が無機 粒子 360に絡みつくことで無機粒子 360間の結びつきが強固になり、クラック Hに充 填された耐熱性無機補修材 340から無機粒子 360が剥離し難くなる。また、耐熱性 無機補修材 340中で無機粒子 360、金属粒子 370及び無機繊維 380が適度に分散 された状態となるため、硬化した耐熱性無機補修材の靭性を高めることが可能となる 。その結果、実施形態 3に係る成形金型の補修方法によれば、過酷な温度環境に晒 されても成形金型における成形面の品質を維持することが可能となる。
[0141] また、実施形態 3に係る成形金型の補修方法によれば、耐熱性無機補修材 340が セラミックス繊維力もなる無機繊維 380を含有するため、以下の効果をも有する。
[0142] すなわち、実施形態 3に係る成形金型の補修方法によれば、耐酸化性を高くするこ とが可能となるため、金属粒子溶融工程を行う際に、無機繊維が酸化することに起因 して耐熱性無機補修材が劣化する、ということがなくなる。また、耐熱性無機補修材 3 40の導電性を高くすることが可能となるため、金属粒子溶融工程を放電加工で行う 場合に作業性が向上する。
[0143] 〔実施形態 4〕
実施形態 4に係る成形金型の補修方法は、ガラス繊維からなる無機繊維 480を含 有する耐熱性無機補修材 440を用いて成形金型を補修する成形金型の補修方法で ある。
[0144] 図 10は、金属粒子溶融工程後におけるクラック Hの内部を模式的に示す図である
[0145] 実施形態 4に係る成形金型の補修方法は、実施形態 3に係る成形金型の補修方法 とよく似た成形金型の補修方法であるが、無機繊維の種類が実施形態 3に係る成形 金型の補修方法の場合とは異なって ヽる。
すなわち、実施形態 4に係る成形金型の補修方法は、図 10に示すように、ガラス繊 維力もなる無機繊維 480を用いる。
[0146] このように、実施形態 4に係る成形金型の補修方法は、実施形態 3に係る成形金型 の補修方法とは無機繊維の種類が異なるが、実施形態 3に係る成形金型の補修方 法の場合と同様に、無機繊維を含有する耐熱性無機補修材を用いているため、実施 形態 3に係る成形金型の補修方法が有する効果のうち該当する効果をそのまま有す る。
[0147] すなわち、実施形態 4に係る成形金型の補修方法によれば、無機バインダ 450、無 機粒子 460及び金属粒子 470にカ卩えて、無機繊維 480をさらに含有する耐熱性無 機補修材 440を用いているため、耐熱性無機補修材 440中で無機繊維 480が無機 粒子 460に絡みつくことで無機粒子 460間の結びつきが強固になり、クラック Hに充 填された耐熱性無機補修材 440から無機粒子 460が剥離し難くなる。また、耐熱性 無機補修材 440中で無機粒子 460、金属粒子 470及び無機繊維 480が適度に分散 された状態となるため、硬化した耐熱性無機補修材の靭性を高めることが可能となる 。その結果、実施形態 4に係る成形金型の補修方法によれば、過酷な温度環境に晒 されても成形金型における成形面の品質を維持することが可能となる。
[0148] また、実施形態 4に係る成形金型の補修方法によれば、耐熱性無機補修材 440が ガラス繊維カゝらなる無機繊維 480を含有するため、耐酸ィ匕性を高くすることが可能と なり、金属粒子溶融工程を行う際に、無機繊維が酸化することに起因して耐熱性無 機補修材が劣化する、ということがなくなる。また、耐熱性無機補修材 440の導電性 を高くすることが可能となるため、金属粒子溶融工程を放電加工で行う場合に作業 性が向上する。
[0149] 〔実施形態 5〕
実施形態 5に係る成形金型の補修方法は、無機粒子としての他の金属粒子 570を 含有する耐熱性無機補修材 540を用いて成形金型を補修する成形金型の補修方 法である。
[0150] 図 11は、金属粒子溶融工程後におけるクラック Hの内部を模式的に示す図である
[0151] 実施形態 5に係る成形金型の補修方法は、実施形態 1に係る成形金型の補修方法 とよく似た成形金型の補修方法であるが、無機粒子の種類が実施形態 1に係る成形 金型の補修方法の場合とは異なって ヽる。
すなわち、実施形態 5に係る成形金型の補修方法は、図 11に示すように、無機粒 子として、セラミックス粒子カゝらなる無機粒子 160に代えて、金属粒子 570を構成する 金属材料 (アルミニウム)の融点よりも高 、融点を有する金属材料 (モリブデン)力もな る他の金属粒子 560を用いる。
[0152] このため、実施形態 5に係る成形金型の補修方法によれば、金属粒子溶融工程で 他の金属粒子 560を溶融させることなく金属粒子 570のみを溶融させることが可能と なるため、金属粒子溶融工程後の耐熱性無機補修材 540には他の金属粒子 560が 粒子状態で存在することとなり、耐熱性無機補修材 540の強度が低下することがなく なる。その結果、ダイカスト成形金型のような苛酷な温度環境に晒される成形金型を 補修する場合に好適に使用することができる。
[0153] なお、実施形態 5に係る成形金型の補修方法は、無機粒子として他の金属粒子 56 0を用いること以外は実施形態 1に係る成形金型の補修方法と同様の方法であるた め、実施形態 1に係る成形金型の補修方法が有する効果のうち該当する効果をその まま有する。 [0154] 〔実施形態 6〕
実施形態 6に係る成形金型の補修方法は、耐熱性無機補修材 640に加えて、無機 ノインダ 652及び無機粒子 662を含有し耐熱性無機補修材 640の粘度よりも低い粘 度を有する他の耐熱性無機補修材 642を用いて成形金型を補修する成形金型の補 修方法である。
[0155] 図 12は、金属粒子溶融工程後におけるクラック Hの内部を模式的に示す図である
[0156] 実施形態 6に係る成形金型の補修方法は、実施形態 1に係る成形金型の補修方法 とよく似た成形金型の補修方法であるが、耐熱性無機補修材充填工程が実施形態 1 に係る成形金型の補修方法の場合とは異なっている。
すなわち、実施形態 6に係る成形金型の補修方法においては、クラック Hの内部〖こ 、他の耐熱性無機補修材 642及び耐熱性無機補修材 640をこの順序で充填するこ ととして!/、る。
[0157] このため、実施形態 6に係る成形金型の補修方法によれば、図 12に示すように、ク ラック Hの内部における底部分には低い粘度を有する他の耐熱性無機補修材 642 が充填されることとなるため、クラック Hの内部における底部分を十分に塞ぐことが可 能となる。また、クラック Hの内部における表面側部分には機械的強度が十分に高く 表面平滑性が十分に高い耐熱性無機補修材 640が充填されることになるため、成形 中に耐熱性無機補修材 640がクラック Hの内部力も剥げ落ちてしまうということがなく なる。
[0158] なお、実施形態 6に係る成形金型の補修方法においては、クラック Hの内部におけ る底部分を十分に塞ぐために、他の耐熱性無機補修材 642に含有される無機粒子 6 62の平均粒径を耐熱性無機補修材 640に含有される無機粒子 660の平均粒径より も/ J、さくしている。
[0159] 実施形態 6に係る成形金型の補修方法は、クラック Hの内部に他の耐熱性無機補 修材 642及び耐熱性無機補修材 640をこの順序で充填することとしていること以外 は実施形態 1に係る成形金型の補修方法と同様の方法であるため、実施形態 1に係 る成形金型の補修方法が有する効果のうち該当する効果をそのまま有する。 [0160] 以上、本発明の成形金型の補修方法、耐熱性無機補修材、成形金型、成形製品 及び製品を上記の各実施形態に基づいて説明したが、本発明は上記の各実施形態 に限られるものではなぐその要旨を逸脱しな 、範囲にぉ 、て種々の態様にお!、て 実施することが可能であり、例えば次のような変形も可能である。
[0161] (1)上記実施形態 1〜6においては、無機バインダとしてケィ酸塩系の無機バインダ を用いているが、本発明はこれに限定されるものではない。ケィ酸塩系の無機ノ イン ダの代わりに、リン酸塩系その他の無機バインダを用いることもできる。
[0162] (2)上記実施形態 1〜6においては、金属粒子としてアルミニウム力もなる金属粒子 を用いているが、本発明はこれに限定されるものではない。アルミニウム合金その他 の金属材料力 なる金属粒子を用いることもできる。
[0163] (3)上記実施形態 5においては、他の金属粒子としてモリブデン力 なる他の金属粒 子を用いている力 本発明はこれに限定されるものではない。タングステン、タンダス テン合金、モリブデン合金、タンタル、タンタル合金、金、金合金、白金、白金合金、 イリジウム、イリジウム合金、オスミウム、オスミウム合金その他の金属材料カゝらなる金 属粒子を用いることもできる。
[0164] (4)上記実施形態 2〜4にお ヽては、無機繊維として炭素繊維、セラミックス繊維又は ガラス繊維を用いている力 本発明はこれに限定されるものではない。これらの繊維 の代わりに、 SiC繊維、金属繊維等を用いることもできる。
[0165] (5)上記各実施形態にお!、ては、本発明の成形金型の補修方法を、アルミニウム铸 造用のダイカスト成形用の成形金型に適用した場合を示して!/ヽるが、本発明はこれ に限定されるものではない。本発明の成形金型の補修方法は、亜鉛铸造用、マグネ シゥム铸造用その他のダイカスト成形用の成形金型に適用することもできる。また、本 発明の成形金型の補修方法は、低圧铸造成形用の成形金型、重力铸造成形用の 成形金型、ガラス製品成形用の成形金型、ゴム製品成形用の成形金型、榭脂製品 成形用の成形金型その他の製品成形用の成形金型に適用することもできる。
[0166] (6)上記各実施形態にお!ヽては、本発明の耐熱性無機補修材を、成形金型を補修 するために用いたが、本発明はこれに限定されるものではない。本発明の耐熱性無 機補修材を、内燃エンジン、ロケットエンジン、ガスタービン、ロケットの構造体、各種 ボイラー等の過酷な温度環境で使用される製品を補修するために用いることもできる 符号の説明
110···成形金型、 120···移動金型、 130···固定金型、 140, 240, 340, 440, 540 , 640···而ォ熱性無機補修材、 150, 250, 350, 450, 550, 650, 652···無機ノイン ダ、 160, 260, 360, 460, 560, 660, 662···無機粒子、 170, 270, 370, 470, 570, 670···金属粒子、 280, 380, 480···無機繊維、 560···他の金属粒子、 642 …他の耐熱性無機補修材、 Η···クラック、 Ρ, Pa…成形製品

Claims

請求の範囲
[1] 成形金型の成形面に発生したクラックの内部に、無機バインダ、無機粒子及び前 記成形金型を構成する金属材料の融点よりも低い融点を有する金属材料からなる金 属粒子を含有する耐熱性無機補修材を充填する耐熱性無機補修材充填工程と、 前記耐熱性無機補修材を加熱して前記無機バインダを硬化させる無機バインダ硬 化工程と、
前記耐熱性無機補修材を加熱して前記金属粒子を溶融させる金属粒子溶融工程 とをこの順序で含むことを特徴とする成形金型の補修方法。
[2] 請求項 1に記載の成形金型の補修方法にお!、て、
前記クラックの内部に充填された耐熱性無機補修材のうち表面近傍の耐熱性無機 補修材を加熱することにより前記金属粒子溶融工程を行うことを特徴とする成形金型 の補修方法。
[3] 請求項 1又は 2に記載の成形金型の補修方法にお 、て、
不活性ガス雰囲気下で放電加工を行うことにより耐熱性無機補修材を加熱すること を特徴とする成形金型の補修方法。
[4] 請求項 1〜3の 、ずれかに記載の成形金型の補修方法にお!、て、
前記金属粒子は、アルミニウム又はアルミニウム合金力 なることを特徴とする成形 金型の補修方法。
[5] 請求項 1〜4の 、ずれかに記載の成形金型の補修方法にお!、て、
前記無機粒子は、セラミックス粒子であることを特徴とする成形金型の補修方法。
[6] 請求項 1〜4の 、ずれかに記載の成形金型の補修方法にお!、て、
前記無機粒子は、前記金属粒子を構成する金属材料の融点よりも高!ヽ融点を有す る金属材料からなる他の金属粒子であることを特徴とする成形金型の補修方法。
[7] 請求項 1〜6のいずれかに記載の成形金型の補修方法において、
前記無機バインダは、リン酸塩系又はケィ酸塩系の無機バインダであることを特徴 とする成形用金型の補修方法。
[8] 請求項 1〜7のいずれかに記載の成形金型の補修方法において、
前記耐熱性無機補修材は、無機繊維をさらに含有することを特徴とする成形金型 の補修方法。
[9] 請求項 8に記載の成形金型の補修方法にお 、て、
前記無機繊維は、炭素繊維であることを特徴とする成形金型の補修方法。
[10] 請求項 8に記載の成形金型の補修方法にぉ 、て、
前記無機繊維は、セラミックス繊維であることを特徴とする成形金型の補修方法。
[11] 請求項 8に記載の成形金型の補修方法において、
前記無機繊維は、ガラス繊維であることを特徴とする成形金型の補修方法。
[12] 請求項 1〜: L 1の 、ずれかに記載の成形金型の補修方法にお!、て、
前記耐熱性無機補修材充填工程を実施する前に、前記耐熱性無機補修材に加え て、無機バインダ及び無機粒子を含有し前記耐熱性無機補修材の粘度よりも低 、粘 度を有する他の耐熱性無機補修材を準備しておき、
前記耐熱性無機補修材充填工程にぉ ヽては、前記成形金型の成形面に発生した クラックの内部に、前記他の耐熱性無機補修材及び前記耐熱性無機補修材をこの 順序で充填することを特徴とする成形金型の補修方法。
[13] 請求項 1〜12のいずれかに記載の成形金型の補修方法において、
前記成形金型は、ダイカスト成形用の成形金型であることを特徴とする成形金型の 補修方法。
[14] 無機ノインダ、無機粒子及び金属粒子を含有することを特徴とする耐熱性無機補 修材。
[15] 請求項 14に記載の耐熱性無機補修材にお 、て、
前記金属粒子は、アルミニウム又はアルミニウム合金力 なることを特徴とする耐熱 性無機補修材。
[16] 請求項 14又は 15に記載の耐熱性無機補修材において、
前記無機粒子は、セラミックス粒子であることを特徴とする耐熱性無機補修材。
[17] 請求項 14又は 15に記載の耐熱性無機補修材において、
前記無機粒子は、前記金属粒子を構成する金属材料の融点よりも高! ヽ融点を有す る金属材料カゝらなる他の金属粒子であることを特徴とする耐熱性無機補修材。
[18] 請求項 14〜 17のいずれかに記載の耐熱性無機補修材において、 前記無機バインダは、リン酸塩系又はケィ酸塩系の無機バインダであることを特徴 とする耐熱性無機補修材。
[19] 請求項 14〜18のいずれかに記載の耐熱性無機補修材において、
前記耐熱性無機補修材は、無機繊維をさらに含有することを特徴とする耐熱性無 機補修材。
[20] 請求項 19に記載の耐熱性無機補修材にお!/ヽて、
前記無機繊維は、炭素繊維であることを特徴とする耐熱性無機補修材。
[21] 請求項 19に記載の耐熱性無機補修材にお 、て、
前記無機繊維は、セラミックス繊維であることを特徴とする耐熱性無機補修材。
[22] 請求項 19に記載の耐熱性無機補修材にお!/ヽて、
前記無機繊維は、ガラス繊維であることを特徴とする耐熱性無機補修材。
[23] 請求項 1〜13の ヽずれかに記載の成形金型の補修方法によって補修された成形 金型。
[24] 請求項 23に記載の成形金型を用いて製造された成形製品。
[25] 請求項 14〜22の 、ずれかに記載の耐熱性無機補修材を用いて補修された製品。
PCT/JP2006/311439 2006-06-07 2006-06-07 成形金型の補修方法、耐熱性無機補修材、成形金型、成形製品及び製品 WO2007141854A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008520090A JP4884468B2 (ja) 2006-06-07 2006-06-07 成形金型の補修方法、耐熱性無機補修材及び成形金型
PCT/JP2006/311439 WO2007141854A1 (ja) 2006-06-07 2006-06-07 成形金型の補修方法、耐熱性無機補修材、成形金型、成形製品及び製品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/311439 WO2007141854A1 (ja) 2006-06-07 2006-06-07 成形金型の補修方法、耐熱性無機補修材、成形金型、成形製品及び製品

Publications (1)

Publication Number Publication Date
WO2007141854A1 true WO2007141854A1 (ja) 2007-12-13

Family

ID=38801126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311439 WO2007141854A1 (ja) 2006-06-07 2006-06-07 成形金型の補修方法、耐熱性無機補修材、成形金型、成形製品及び製品

Country Status (2)

Country Link
JP (1) JP4884468B2 (ja)
WO (1) WO2007141854A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728989A (zh) * 2012-06-02 2012-10-17 安徽国通高新管业股份有限公司 成型模具上凹坑的修复工艺
CN106826092A (zh) * 2017-02-10 2017-06-13 合肥福莱妮信息科技有限公司 一种磨辊磨损及衬板、夹板裂纹修复工艺
CN114905222A (zh) * 2022-04-11 2022-08-16 中国第一汽车股份有限公司 一种铝合金压铸模具分型面压堆磨损焊接修复方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728992B (zh) * 2012-07-12 2014-08-20 莱芜钢铁集团有限公司 一种用于转炉耳轴的修复方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596235A (en) * 1979-01-17 1980-07-22 Mazda Motor Corp Filler for repair of casting of aluminum alloy
JPH03433A (ja) * 1989-05-30 1991-01-07 Honda Motor Co Ltd 金型の補修方法
JPH10244588A (ja) * 1997-03-06 1998-09-14 Toyota Motor Corp シボ加工用金型
JPH1133832A (ja) * 1997-07-23 1999-02-09 Ishikawajima Harima Heavy Ind Co Ltd アルミニウム合金部品の補修方法
JP2003103343A (ja) * 2001-09-28 2003-04-08 Asahi Tec Corp 鋳造用金型又は中子造型用金型の無機材料シートを用いた応急修理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596235A (en) * 1979-01-17 1980-07-22 Mazda Motor Corp Filler for repair of casting of aluminum alloy
JPH03433A (ja) * 1989-05-30 1991-01-07 Honda Motor Co Ltd 金型の補修方法
JPH10244588A (ja) * 1997-03-06 1998-09-14 Toyota Motor Corp シボ加工用金型
JPH1133832A (ja) * 1997-07-23 1999-02-09 Ishikawajima Harima Heavy Ind Co Ltd アルミニウム合金部品の補修方法
JP2003103343A (ja) * 2001-09-28 2003-04-08 Asahi Tec Corp 鋳造用金型又は中子造型用金型の無機材料シートを用いた応急修理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728989A (zh) * 2012-06-02 2012-10-17 安徽国通高新管业股份有限公司 成型模具上凹坑的修复工艺
CN106826092A (zh) * 2017-02-10 2017-06-13 合肥福莱妮信息科技有限公司 一种磨辊磨损及衬板、夹板裂纹修复工艺
CN114905222A (zh) * 2022-04-11 2022-08-16 中国第一汽车股份有限公司 一种铝合金压铸模具分型面压堆磨损焊接修复方法
CN114905222B (zh) * 2022-04-11 2024-03-15 中国第一汽车股份有限公司 一种铝合金压铸模具分型面压堆磨损焊接修复方法

Also Published As

Publication number Publication date
JPWO2007141854A1 (ja) 2009-10-15
JP4884468B2 (ja) 2012-02-29

Similar Documents

Publication Publication Date Title
CN104493081B (zh) 用于空心涡轮叶片熔模铸造的注蜡模具及其快速制造方法
CN105142852B (zh) 再生增材制造组件
JP3869255B2 (ja) 金属成形体製造方法およびこれにより製造される金属成形体
CN104475682A (zh) 一种基于组合式蜡模的耐热铸钢薄壁涡轮壳熔模精铸方法
US9127550B2 (en) Turbine superalloy component defect repair with low-temperature curing resin
WO2007141854A1 (ja) 成形金型の補修方法、耐熱性無機補修材、成形金型、成形製品及び製品
JP2016088079A (ja) 金属‐樹脂複合体の製造方法
CN101391283A (zh) 一种耐热钢细长盲管的铸造方法及其模型
CN108018548A (zh) 一种修复钨基粉末合金压铸模具涂层合金及其制备方法
CN110352103B (zh) 获取具有自愈合特性的零件的方法、具有自愈合特性的零件和修复零件的裂纹的方法
CN105499541A (zh) 一种防爆裂双金属制动鼓及防爆裂双金属制动鼓制造工艺
WO2006062208A1 (ja) 成型金型の補修方法、耐熱性無機接着剤、成型金型及び成型製品
JP4779025B2 (ja) 非鉄金属鋳造用離型層
JP4726803B2 (ja) 成型金型の補修方法、成型金型及び成型製品
KR101442662B1 (ko) 브레이크 마스터 실린더 바디
JP6436796B2 (ja) アルミニウム‐樹脂複合体の製造方法
US20140238632A1 (en) Methods for repairing ceramic cores
JP4701035B2 (ja) 鋳造方法
JP5244481B2 (ja) Ni基合金と鋼材の接合方法
CN1262372C (zh) 砂型内双材质金属复合方法
CN106475520B (zh) 制造用于车辆排气系统的精密铸造零件的方法
JP2008221295A (ja) パイプの鋳包み方法
JP2005246570A (ja) 耐摩耗部の補修方法
JP2002346719A (ja) ダイカストマシン用射出スリーブ
CN105821316A (zh) 一种镍硼硅合金表面改性复合阀体的铸造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06766465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520090

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06766465

Country of ref document: EP

Kind code of ref document: A1