WO2007137724A1 - Messvorrichtung - Google Patents

Messvorrichtung Download PDF

Info

Publication number
WO2007137724A1
WO2007137724A1 PCT/EP2007/004496 EP2007004496W WO2007137724A1 WO 2007137724 A1 WO2007137724 A1 WO 2007137724A1 EP 2007004496 W EP2007004496 W EP 2007004496W WO 2007137724 A1 WO2007137724 A1 WO 2007137724A1
Authority
WO
WIPO (PCT)
Prior art keywords
cuvette
bearing
measuring device
filling
emptying
Prior art date
Application number
PCT/EP2007/004496
Other languages
English (en)
French (fr)
Inventor
Hanno Wachernig
Achim HÖGG
Original Assignee
Hanno Wachernig
Hoegg Achim
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanno Wachernig, Hoegg Achim filed Critical Hanno Wachernig
Priority to CN2007800197516A priority Critical patent/CN101454661B/zh
Priority to US12/301,834 priority patent/US7884932B2/en
Priority to JP2009512455A priority patent/JP2009539076A/ja
Priority to EP07725403A priority patent/EP2027460A1/de
Publication of WO2007137724A1 publication Critical patent/WO2007137724A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/453Cells therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/11Filling or emptying of cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0367Supports of cells, e.g. pivotable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/052Tubular type; cavity type; multireflective
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples

Definitions

  • the invention relates to a measuring device according to the preamble of claim 1, in particular a measuring device for measuring in a cuvette moving particles of a sample, e.g. for measuring their velocity and, derived therefrom, their electrophoretic mobility, zeta potential and Brownian particle size, with a filling device for filling and an emptying device for emptying the cuvette, which are mounted at their ends and with means for irradiating and for observing the particles.
  • Colloids, emulsions or solid suspensions and mixtures must be kept stable and homogeneous over as long as possible.
  • the formulas for this are becoming more and more complex as the demands increase.
  • Another issue of interest in this context is targeted destabilization and separation of disperse matter to recover water from the dispersion for circulation.
  • a large part of the measures for the separation of disperse substances also runs over the particle charge, only the charge is brought in this case as possible to zero. In all cases, however, it is necessary to know the charge conditions in order to be able to control them. The zeta potential returns this charge.
  • microelectrophoresis a classical method, microelectrophoresis.
  • electrophoresis electrically charged particles of a suspension or emulsion, which are in an electrophoresis cell in the form of a cuvette, are irradiated by means of a laser and observed by means of a microscope. The images taken with the microscope are evaluated in order to deduce the speed of the particles.
  • the velocity of the particles in the electric field is in fact a measure of the electric charge whose potential can be represented and measured as a zeta potential.
  • a major problem with such measurements is an exact positioning of the measuring arrangement or its parts (laser microscope cuvette) to each other. Furthermore, it is necessary to fill the cuvette easily and also to be able to clean.
  • the invention is based on the object to show a measuring device of the type mentioned so that a simple filling and easy cleaning is possible, while the measurement accuracy should remain very high.
  • the object is achieved by a measuring device of the type mentioned above, in which the cuvette is mounted on its body by means of a cuvette bearing, wherein the filling and emptying means are fixed only to the cuvette so that the position of the cuvette relative to its environment exclusively determined or defined by the cuvette bearing.
  • An essential point of the invention is thus that the usually large and heavy equipment for filling and emptying the cuvette have no effect on the positioning of the cuvette itself.
  • the cuvette is thus used as a supporting element (contrary to its actual purpose).
  • the filling and / or the emptying devices are removably attached to the cuvette, for which purpose a fastening device is used.
  • a fastening device comprises a quick-release fastener, in particular a bayonet lock. It can be worked without tools.
  • electrodes are provided (as in the above example), they may be attached at different locations.
  • the electrodes are attached to the filling and / or the emptying device for contact with the sample, so that the cuvette can be free of all disturbing parts during cleaning.
  • the cuvette bearing comprises two partial bearings, which receive forces that run at an angle-in particular a 90 ° angle-to a longitudinal axis leading through the cuvette.
  • this may be a vertical part store and a horizontal part store.
  • These partial bearings are preferably designed as a point bearing, which allows a particularly precise adjustment.
  • These point bearings are particularly simple and precise to produce by bearing balls or bearing tips.
  • One of the two partial bearings comprises three bearing points defining a plane and supports one surface of the cuvette.
  • the other part store comprises two bearing points defining a straight line, this straight line not running perpendicular to the longitudinal axis of the cuvette. Preferably, the straight line runs parallel to this longitudinal axis.
  • the means for irradiating (the laser), as well as the means for observing (the microscope) are connected together with the cuvette bearing for defining the positions relative to each other directly or indirectly.
  • 3 is an exploded view of the cuvette with filling and emptying device in longitudinal section
  • FIG. 6 is a view along the line VI-VI of Fig. 3 and
  • FIG. 7 shows the arrangement of FIG. 3 in the assembled state in one
  • a cuvette 10 is shown schematically, through the upper cover surface of which an irradiation device 1 sends a laser beam into the interior of the cuvette, while an observation device 2 "looks" into the interior of the cuvette through the front surface perpendicular to the upper surface such that the foci meet at a predetermined point in the cuvette.
  • a cuvette bearing 40 For storage of the cuvette 10, a cuvette bearing 40 is provided, which has holders 47, 48 fastened on a base plate 46, which are here shown in an angle-shaped manner.
  • the front holder 48 in FIG. 1 has two bearing balls 43, 43 'on its vertical surface and a bearing ball 44 on its horizontal surface.
  • the other holder 47, which is at the rear in Fig. 1, has a bearing ball 43 "on its vertical surface and a bearing ball 44 'on its horizontal surface.
  • the arrangement of the bearing balls 43, 44 is also shown in Fig.
  • the position of the cuvette 10 is clearly defined up to their position in their longitudinal axis X.
  • the position in the X-axis in turn plays no role in relation to the irradiation device 1 and the observation device 2, so that here no defined position must remain secured.
  • the conditions in the assembled state are shown again in Fig. 2.
  • the cuvette is preferably pressed by a spring onto the vertical part bearing 41.
  • the cuvette 10 comprises a body 11, which is constructed in a manner known per se from plane-parallel plates. At the ends of the cuvette 10 flanges 12 and 13 are fixedly mounted, preferably sintered in a glass body. On the flanges 12 and 13 or on the line blocks 25, 35 grooves for seals 14, 15 are provided, which may be formed as O-rings. In the flanges 12, 13 are openings 16, 17, so that the cuvette 10 is open on both sides.
  • a filling device 20 can be attached to the right-hand side in FIG. 3, and an emptying device 30 can be attached to the left-hand side in FIG.
  • the flanges 12, 13 formed asymmetrically to its center axis, as is apparent in particular from FIGS. 5 and 6.
  • the filling device 20 and the emptying device 30 have fastening rings 21 and 31, whose openings are formed corresponding to the peripheral shape of the flanges 12, 13.
  • the filling device and the emptying device 30 can be placed on the covers 12, 13 as in the case of a bayonet closure and rotated relative to the cuvette 10, so that the filling device 20 as well as the emptying device 30 are firmly fixed to the covers 12 by compressing the seals 14, 15 , 13 and thus the cuvette 10 are connected.
  • the filling device 20 and the emptying device 30 comprise a first line block 25 and a second line block 35, in each of which cavities 27 and 37 are formed.
  • These cavities 27, 37 are closed to the outside by covers 23 and 33, respectively, which are fastened to the pipe blocks 25, 35 via seals 24 and 34, respectively, by means of connecting devices (not shown here), eg screws.
  • connecting devices not shown here
  • covers 23 and 33 electrodes 22 and 32 are fixed so that in the assembled state in the cavities 27, 37 protrude, wherein the electrodes 22, 32 connected via outgoing lines with a voltage source for generating an electrophoresis-effective field are.
  • the overall arrangement (according to FIG. 7) is removed from the cuvette storage 40. Then, the filling device 20 and the emptying device 30 are removed by turning relative to the cuvette 10. Now the cuvette 10 can be cleaned. Assembling is done in reverse, so just as easy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Bei einer Messvorrichtung zur Messung von in einer Küvette sich bewegenden Teilchen einer Probe, z.B. zur Messung eines Zeta-Potentials oder der Brown'schen Größe der Teilchen, mit einer Fülleinrichtung zum Füllen und einer Entleerungseinrichtung zum Entleeren der Küvette, die an deren Enden angebracht sind und mit Einrichtungen zum Bestrahlen sowie zum Beobachten der Teilchen, ist es problematisch, die Küvette relativ zur Bestrahlungseinrichtung und zur Beobachtungseinrichtung immer korrekt bzw. definiert zu positionieren. Zur Lösung des Problems wird vorgeschlagen, dass die Küvette an ihrem Körper mittels eines Küvettenlagers gelagert ist und die Füll- und die Entleerungseinrichtung ausschließlich an der Küvette so befestigt sind, dass die Position der Küvette relativ zu ihrer Umgebung ausschließlich durch das Küvettenlager bestimmt und definiert ist.

Description

„Messvotrichtung"
Beschreibung
Die Erfindung betrifft eine Messvorrichtung nach dem Oberbegriff des Patentanspruches 1, insbesondere eine Messvorrichtung zur Messung von in einer Küvette sich bewegenden Teilchen einer Probe, z.B. zur Messung von deren Geschwindigkeit und, davon abgeleitet, deren elektrophoretischer Mobilität, Zeta-Potential und Brown'schen Partikelgröße, mit einer Fülleinrichtung zum Füllen und einer Entleerungseinrichtung zum Entleeren der Küvette, die an deren Enden angebracht sind und mit Einrichtungen zum Bestrahlen sowie zum Beobachten der Teilchen.
Nachfolgend wird ein Anwendungsbeispiel einer derartigen Messvorrichtung beschrieben, wobei ausdrücklich betont sei, dass sich die Erfindung nicht nur auf dieses Anwendungsbeispiel bezieht.
Kolloide, Emulsionen oder Feststoffsuspensionen und Gemische müssen über möglichst lange Zeit stabil und homogen gehalten werden. Die Rezepturen hierfür werden immer komplexer, je höher die Anforderungen steigen. Von den möglichen Methoden zur Stabilisierung von dispersen Stoffen ist eine, die elektrostatische Abstoßung zwischen Partikeln gleicher Sorte zu optimieren, um eine Koagulation dieser Teilchen zu verhindern. Ein anderer Problemkreis, der in diesem Kontext interessiert, befasst sich mit der gezielten Destabilisierung und damit Trennung von dispersen Stoffen, um das Wasser aus der Dispersion für den Kreislauf zurück zu gewinnen. Ein großer Teil der Maßnahmen zur Trennung von dispersen Stoffen läuft ebenfalls über die Partikelladung, nur wird die Ladung in diesem Fall möglichst auf Null gebracht. In allen Fällen aber ist es notwendig, die Ladungsverhältnisse zu kennen, um sie steuern zu können. Das Zeta-Potential gibt diese Ladung wieder. Um dieses zu messen, kann eine klassische Methode, die MikroElektrophorese, angewendet werden. Bei der Elektrophorese werden elektrisch geladene Partikel einer Suspension oder Emulsion, die sich in einer Elektrophoresezelle in Form einer Küvette befinden, mittels eines Lasers bestrahlt und mittels eines Mikroskops beobachtet. Die mit dem Mikroskop aufgenommenen Bilder werden ausgewertet, um die Geschwindigkeit der Teilchen herleiten zu können. Die Geschwindigkeit der Teilchen im elektrischen Feld ist nämlich ein Maß für die elektrische Ladung, deren Potential als Zeta-Potential dargestellt und gemessen werden kann.
Ein wesentliches Problem bei derartigen Messungen liegt in einer exakten Positionierung der Messanordnung bzw. deren Teile (Laser-Mikroskop-Küvette) zueinander. Weiterhin ist es notwendig, die Küvette leicht befüllen und auch reinigen zu können.
Der Erfindung liegt die Aufgabe zu Grunde, eine Messvorrichtung der eingangs genannten Art dahin gehend aufzuzeigen, dass eine einfache Befüllbarkeit und ein leichtes Reinigen ermöglicht wird, wobei gleichzeitig die Messgenauigkeit sehr hoch bleiben soll.
Diese Aufgabe wird durch eine Messvorrichtung nach Anspruch 1 gelöst.
Insbesondere wird die Aufgabe durch eine Messvorrichtung der eingangs genannten Art gelöst, bei der die Küvette an ihrem Körper mittels eines Küvettenlagers gelagert ist, wobei die Füll- und die Entleerungseinrichtungen ausschließlich an der Küvette so befestigt sind, dass die Position der Küvette relativ zu ihrer Umgebung ausschließlich durch das Küvettenlager bestimmt bzw. definiert ist.
Ein wesentlicher Punkt der Erfindung liegt somit darin, dass die meist groß bauenden und auch schweren Einrichtungen zum Befüllen und Entleeren der Küvette keinen Einfluss auf die Positionierung der Küvette selbst haben. Die Küvette wird also sozusagen als tragendes Element (entgegen ihrer eigentlichen Bestimmung) verwendet.
Vorzugsweise sind die Füll- und/oder die Entleerungseinrichtungen abnehmbar an der Küvette befestigt, wozu eine Befestigungseinrichtung dient. Dadurch ist ein leichtes Reinigen der Küvette möglich. Dies wird dann besonders einfach, wenn die Befestigungseinrichtung einen Schnellverschluss, insbesondere einen Bajonettverschluss umfasst. Es kann dadurch auch werkzeuglos gearbeitet werden. Wenn Elektroden vorgesehen sind (wie im oben aufgeführten Beispiel), so können diese an verschiedenen Stellen angebracht sein. Vorzugsweise sind die Elektroden an der Füll- und/oder an der Entleerungseinrichtung zum Kontakt mit der Probe angebracht, so dass die Küvette frei von allen beim Reinigen störenden Teilen ausgebildet sein kann.
Das Küvettenlager umfasst bei einer bevorzugten Aus führungs form zwei Teillager, welche Kräfte aufnehmen, die in einem Winkel — insbesondere einem 90°-Winkel — zu einer durch die Küvette führenden Längsachse verlaufen. Insbesondere können dies ein vertikales Teillager und ein horizontales Teillager sein. Diese Teillager sind vorzugsweise als Punktlager ausgebildet, was eine besonders präzise Justierung ermöglicht. Besonders einfach und präzise sind diese Punktlager durch Lagerkugeln oder Lagerspitzen herstellbar.
Eines der beiden Teillager umfasst drei, eine Ebene definierende Lagerpunkte und stützt eine Fläche der Küvette. Das andere Teillager umfasst zwei, eine Gerade definierende Lagerpunkte, wobei diese Gerade nicht senkrecht zur Längsachse der Küvette verläuft. Vorzugsweise verläuft die Gerade parallel zu dieser Längsachse. Mit diesen zwei Lagerpunkten wird die an die vorgenannte erste Fläche der Küvette angrenzende Fläche in definierter Weise gehalten. Das so entstehende 5-Punkte-Lager gewährt eine statisch bestimmte Lagerung senkrecht zur Längsachse der Küvette. Auf diese Weise ist eine einwandfreie und reproduzierbar definierte Lagerung der Küvette relativ zu ihrer Umgebung, also insbesondere zu einer Laser-Quelle und einem Beobachtungsmikroskop gegeben.
Die Einrichtung zum Bestrahlen (der Laser), sowie die Einrichtung zum Beobachten (das Mikroskop) sind zusammen mit dem Küvettenlager zur Definition der Positionen relativ zueinander direkt oder indirekt miteinander verbunden. Dadurch kann auch nach einem Ausbau und Wiedereinbau der Küvette in die Vorrichtung ohne weitere, nachträgliche Justierung immer wieder reproduzierbar gemessen werden.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand von Abbildungen näher erläutert. Hierbei zeigen - Fig. 1 eine schematisierte Explosionsdarstellung einer Küvette mit Lager,
- Fig. 2 einen Schnitt entlang der Ebene II-II aus Fig. 1,
- Fig. 3 eine Explosionsdarstellung der Küvette mit Füll- und Entleerungseinrichtung im Längsschnitt,
- Fig. 4 eine Ansicht entlang der Linie IV-IV aus Fig. 3,
- Fig. 5 einen Schnitt entlang der Linie V-V aus Fig. 3,
- Fig. 6 eine Ansicht entlang der Linie VI-VI aus Fig. 3 und
- Fig. 7 die Anordnung nach Fig. 3 im zusammengebauten Zustand in einer
Schnittdarstellung.
In der nachfolgenden Beschreibung werden für gleiche und gleich wirkende Teile dieselben Bezugsziffern verwendet.
In Fig. 1 ist eine Küvette 10 schematisiert dargestellt, durch deren obere Deckfläche eine Bestrahlungseinrichtung 1 einen Laserstrahl in das Innere der Küvette schickt, während eine Beobachtungseinrichtung 2 durch die zur oberen Fläche senkrechte Vorderfläche in das Innere der Küvette „blickt". Die Fokussierung ist derart, dass sich die Foki in einem vorher bestimmten Punkt in der Küvette treffen.
Zur Lagerung der Küvette 10 ist ein Küvettenlager 40 vorgesehen, das auf einer Sockelplatte 46 befestigte Halter 47, 48 aufweist, die hier winkelförmig dargestellt sind. Der in Fig. 1 vordere Halter 48 weist an seiner vertikalen Fläche zwei Lagerkugeln 43, 43' und an seiner horizontalen Fläche eine Lagerkugel 44 auf. Der andere, in Fig. 1 hintere Halter 47 weist an seiner vertikalen Fläche eine Lagerkugel 43" und an seiner horizontalen Fläche eine Lagerkugel 44' auf. Die Anordnung der Lagerkugeln 43, 44 ist in Fig. 1 auch an der Küvette 10 (mit punktierten Linien) angezeigt. Es wird also durch die Lagerkugeln 43, 43' und 43" ein horizontales Lager 42 gebildet, das die Küvette 10 in der Horizontalrichtung gegenüber der Andruckkraft von Federn 45, 45' hält, welche die Küvette 10 in horizontaler Richtung an die Lagerkugeln 43, 43', 43" drücken.
Das Gewicht, also die vertikalen Kräfte werden durch die ein vertikales Teillager 41 bildenden Kugeln 44, 44' aufgefangen. Damit ist die Position der Küvette 10 bis auf ihre Position in ihrer Längsachse X eindeutig definiert. Die Position in der X-Achse wiederum spielt keine Rolle in Bezug auf die Bestrahlungseinrichtung 1 und die Beobachtungseinrichtung 2, so dass hier keine definierte Lage gesichert bleiben muss. Die Verhältnisse im zusammengebauten Zustand sind nochmals in Fig. 2 dargestellt. Zusätzlich wird die Küvette vorzugsweise durch eine Feder auf das vertikale Teillager 41 gedrückt.
Gemäß Fig. 3 — Fig. 6 umfasst die Küvette 10 einen Körper 11, der in an sich bekannter Weise aus planparallelen Platten aufgebaut ist. An den Enden der Küvette 10 sind Flansche 12 und 13 fest angebracht, bei einem Glaskörper vorzugsweise angesintert. An den Flanschen 12 und 13 oder an den Leitungsblöcken 25, 35 sind Rillen für Dichtungen 14, 15 vorgesehen, die als O-Ringe ausgebildet sein können. In den Flanschen 12, 13 befinden sich Öffnungen 16, 17, so dass die Küvette 10 an beiden Seiten offen ist.
An die in Fig. 3 rechte Seite kann eine Fülleinrichtung 20, und an die in Fig. 3 linke Seite eine Entleerungseinrichtung 30 angesetzt werden. Hierzu sind die Flansche 12, 13 unsymmetrisch zu ihrer Mittenachse ausgebildet, wie dies insbesondere aus den Fig. 5 und 6 hervorgeht. Die Fülleinrichtung 20 und die Entleerungseinrichtung 30 weisen Befestigungsringe 21 bzw. 31 auf, deren Öffnungen korrespondierend zur Umfangsgestalt der Flansche 12, 13 geformt sind. Es können somit die Fülleinrichtung und die Entleerungseinrichtung 30 wie bei einem Bajonettverschluss auf die Deckel 12, 13 aufgesetzt und gegenüber der Küvette 10 verdreht werden, so dass die Fülleinrichtung 20 ebenso wie die Entleerungseinrichtung 30 unter Zusammendrücken der Dichtungen 14, 15 fest mit den Deckeln 12, 13 und somit der Küvette 10 verbunden sind.
Die Fülleinrichtung 20 und die Entleerungseinrichtung 30 umfassen einen ersten Leitungsblock 25 bzw. einen zweiten Leitungsblock 35, in welchem jeweils Hohlräume 27 bzw. 37 ausgebildet sind. Diese Hohlräume 27, 37 werden nach außen durch Deckel 23 bzw. 33 abgeschlossen, die über Dichtungen 24 bzw. 34 mittels (hier nicht gezeigter) Verbindungseinrichtungen, z.B. Schrauben, auf den Leitungsblöcken 25, 35 befestigt sind. An den Deckeln 23, 33 sind Elektroden 22 bzw. 32 so befestigt, dass sie im zusammengebauten Zustand in die Hohlräume 27, 37 ragen, wobei die Elektroden 22, 32 über nach außen führende Leitungen mit einer Spannungsquelle zum Erzeugen eines Elektrophorese-wirksamen Feldes verbunden sind.
In den Hohlraum 27 mündet eine durch ein Ventil 28 absperrbare Zuleitung 26, in den Hohlraum 37 mündet eine Ableitung 36. Durch diese Leitungen ist im zusammengebauten Zustand, wie er in Fig. 7 gezeigt ist, der sich ergebende Hohlraum mit einer Probenflüssigkeit befüllbar.
Zum Reinigen der Küvette wird die Gesamtanordnung (gemäß Fig. 7) aus dem Küvetten- lager 40 genommen. Dann werden die Fülleinrichtung 20 und die Entleerungseinrichtung 30 durch Verdrehen gegenüber der Küvette 10 abgenommen. Nun kann die Küvette 10 gereinigt werden. Das Zusammenbauen erfolgt in umgekehrter Weise, also ebenso einfach.
Bezugszeichenliste
1 Bestrahlungseinrichtung
2 Beobachtungseinrichtung
10 Küvette
11 Körper
12 Flansch
13 Flansch
14 Dichtung
15 Dichtung
16 Öffnung
17 Öffnung
20 Fülleinrichtung
21 Befestigungsring
22 Elektrode
23 Deckel
24 Dichtung 25 1. Leitungsblock
26 Zuleitung
27 Hohlraum
28 Ventil
30 Entleerungseinrichtung
31 Befestigungsring
32 Elektrode
33 Deckel
34 Dichtung
35 2. Leitungsblock
36 Ableitung
37 Hohlraum
40 Küvettenlager
41 vertikales Teillager
42 horizontales Teillager
43, 43', 43" Lagerkugeln
44, 44' Lagerkugeln
45, 45' Andruckfeder
46 Sockelplatte
47 Halter
48 Halter

Claims

Patentansprüche
1. Messvorrichtung zur Messung von in einer Küvette (10) sich bewegenden Teilchen einer Probe, z.B. zur Messung eines Zeta-Potentials oder der Brown'schen Partikelgröße der Teilchen, mit einer Fülleinrichtung (20) zum Füllen und einer Entleerungseinrichtung (30) zum Entleeren der Küvette (10), die an deren Enden angebracht sind und mit Einrichtungen (1, 2) zum Bestrahlen sowie zum Beobachten der Teilchen, dadurch gekennzeichnet, dass die Küvette (10) an ihrem Körper (11) mittels eines Küvettenlagers (40) gelagert ist und die Füll- und die Entleerungseinrichtung (20, 30) ausschließlich an der Küvette so befestigt sind, dass die Position der Küvette (10) relativ zu Ihrer Umgebung ausschließlich durch das Küvettenlager (40) bestimmt/definiert ist.
2. Messvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Füll- und/oder die Entleerungseinrichtung (20, 30) abnehmbar an der Küvette (10) mittels einer Befestigungseinrichtung (21, 31) befestigt sind.
3. Messvorrichtung nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 2, dadurch gekennzeichnet, dass die Befestigungseinrichtung (21, 31) einen Schnellverschluss, insbesondere einen
Bajonettverschluss umfasst.
4. Messvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an der Füll- oder an der Entleerungseinrichtung (20, 30) Elektroden (22, 32) zum Kontakt mit der Probe angebracht sind.
5. Messvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Küvettenlager (40) zwei zu einer durch die Enden der Küvette (10) führenden Längsachse (X) in einem Winkel, insbesondere in einem 90°-Winkel verlaufende Kräfte aufnehmende Teillager (41, 42), insbesondere ein vertikales Teillager (41) und ein horizontales Teillager (42) umfasst.
6. Messvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Teillager (41, 42) als Punktlager ausgebildet sind.
7. Messvorrichtung nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 6, dadurch gekennzeichnet, dass die Punktlager Lagerkugeln (43, 44) oder Lagerspitzen umfassen.
8. Messvorrichtung nach einem der vorhergehenden Ansprüche, insbesondere nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass eines der Teillager (42) drei, eine Ebene definierende Lagerpunkte und das andere Teillager (41) zwei, eine Gerade definierende Lagerpunkte umfasst, wobei die Gerade nicht senkrecht, sondern vorzugsweise parallel zur Längsachse (X) verläuft.
9. Messvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einrichtungen zum Bestrahlen (1) sowie zum Beobachten (2) mit dem Küvet- tenlager (40) zur Definition ihrer Positionen relativ zueinander direkt oder indirekt miteinander verbunden sind.
PCT/EP2007/004496 2006-05-31 2007-05-21 Messvorrichtung WO2007137724A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800197516A CN101454661B (zh) 2006-05-31 2007-05-21 测量装置
US12/301,834 US7884932B2 (en) 2006-05-31 2007-05-21 Measuring instrument
JP2009512455A JP2009539076A (ja) 2006-05-31 2007-05-21 測定器具
EP07725403A EP2027460A1 (de) 2006-05-31 2007-05-21 Messvorrichtung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102006025392.2 2006-05-31
DE102006025392 2006-05-31
DE102006028516.6 2006-06-21
DE102006028516A DE102006028516B3 (de) 2006-05-31 2006-06-21 Küvette mit Küvettenlager und deren Verwendung

Publications (1)

Publication Number Publication Date
WO2007137724A1 true WO2007137724A1 (de) 2007-12-06

Family

ID=38462348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/004496 WO2007137724A1 (de) 2006-05-31 2007-05-21 Messvorrichtung

Country Status (6)

Country Link
US (1) US7884932B2 (de)
EP (1) EP2027460A1 (de)
JP (1) JP2009539076A (de)
CN (1) CN101454661B (de)
DE (1) DE102006028516B3 (de)
WO (1) WO2007137724A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078394A (ja) * 2008-09-25 2010-04-08 Tohoku Univ 簡易ゼータ電位測定装置及びゼータ電位測定法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008007743B3 (de) * 2008-02-05 2009-05-14 Particle Metrix Gmbh Verfahren und Vorrichtung zur Erfassung der Partikelverteilung in Flüssigkeiten
JP2011149793A (ja) * 2010-01-21 2011-08-04 Ihi Corp ゼータ電位測定装置
CN101923055A (zh) * 2010-07-04 2010-12-22 肖才斌 便携式多功能比色仪
DE102012108158B4 (de) * 2012-09-03 2016-03-17 Johann Wolfgang Goethe-Universität Kapillarzelle, Anordnung und Verfahren zur Aufnahme, zur Positionierung und zur Untersuchung einer mikroskopischen Probe
US9545204B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
DE102014007355B3 (de) 2014-05-19 2015-08-20 Particle Metrix Gmbh Verfahren der Partikel Tracking Aalyse mit Hilfe von Streulicht (PTA) und eine Vorrichtung zur Erfassung und Charakterisierung von Partikeln in Flüssigkeiten aller Art in der Größenordnung von Nanometern
EP3259575B1 (de) 2015-02-17 2023-08-02 Xylem IP UK Sarl Technik zur temperaturregelung von polarimeterprobenzellen
CN107782670B (zh) * 2017-09-27 2019-05-28 中国科学院长春光学精密机械与物理研究所 一种比色皿测试固定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH396445A (de) * 1962-02-10 1965-07-31 Zeiss Carl Fa Mikroskop zur Beobachtung von Schwebekörpern
DE2808229A1 (de) * 1978-02-25 1979-08-30 Kurt Manfred Dipl Phys Tischer Elektrophoresesystem
EP0075605A1 (de) * 1981-09-25 1983-04-06 Winfried Dr. med. Stöcker Vorrichtung für photometrische Analysen
DE3828618A1 (de) * 1987-08-24 1989-03-16 Cobe Lab Verfahren und einrichtung zur ueberwachung von blutbestandteilen
DE8907526U1 (de) * 1989-06-20 1989-08-31 Lambda Physik Forschungs- Und Entwicklungs-Gmbh, 3400 Goettingen, De
JP2000162118A (ja) * 1998-11-27 2000-06-16 Horiba Ltd 粒子径分布測定装置のフローセルホルダ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2032150C3 (de) * 1970-06-30 1973-10-31 Siemens Ag, 1000 Berlin U. 8000 Muenchen Vorrichtung für ein Spektral Fotometer
GB2097548B (en) * 1981-04-27 1984-11-14 Accuspec Ltd Flow-through cells for spectroscopy
US4791461A (en) * 1984-11-27 1988-12-13 Syntex (U.S.A.) Inc. Portable analyzer
DE3516529A1 (de) * 1985-05-08 1986-11-27 Gesellschaft für Strahlen- und Umweltforschung mbH, München, 8042 Neuherberg Anlage zur turbidimetrischen messung und regelung von mikroorganismenkulturen
DE3533202A1 (de) * 1985-09-18 1987-03-19 Metallgesellschaft Ag Verfahren zum fuellen und entleeren eines unter staendigem ueberdruck stehenden behaelters
SE9603063D0 (sv) * 1996-08-23 1996-08-23 Astra Ab Device and method for metering a particulate substance and apparatus comprising a plurality of such devices
US6069694A (en) * 1998-05-29 2000-05-30 Foss Nirsystems, Inc. Flow cell
US6717665B2 (en) * 2002-03-13 2004-04-06 Rudolph Research Analytical Polarimeter
US7307717B2 (en) * 2005-09-16 2007-12-11 Lockheed Martin Corporation Optical flow cell capable of use in high temperature and high pressure environment
US7518720B2 (en) * 2007-08-01 2009-04-14 Lockheed Martin Corporation Optical flow cell for use in high temperature and/or high pressure environments

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH396445A (de) * 1962-02-10 1965-07-31 Zeiss Carl Fa Mikroskop zur Beobachtung von Schwebekörpern
DE2808229A1 (de) * 1978-02-25 1979-08-30 Kurt Manfred Dipl Phys Tischer Elektrophoresesystem
EP0075605A1 (de) * 1981-09-25 1983-04-06 Winfried Dr. med. Stöcker Vorrichtung für photometrische Analysen
DE3828618A1 (de) * 1987-08-24 1989-03-16 Cobe Lab Verfahren und einrichtung zur ueberwachung von blutbestandteilen
DE8907526U1 (de) * 1989-06-20 1989-08-31 Lambda Physik Forschungs- Und Entwicklungs-Gmbh, 3400 Goettingen, De
JP2000162118A (ja) * 1998-11-27 2000-06-16 Horiba Ltd 粒子径分布測定装置のフローセルホルダ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078394A (ja) * 2008-09-25 2010-04-08 Tohoku Univ 簡易ゼータ電位測定装置及びゼータ電位測定法

Also Published As

Publication number Publication date
JP2009539076A (ja) 2009-11-12
CN101454661B (zh) 2012-07-04
US20100128266A1 (en) 2010-05-27
DE102006028516B3 (de) 2007-10-04
US7884932B2 (en) 2011-02-08
EP2027460A1 (de) 2009-02-25
CN101454661A (zh) 2009-06-10

Similar Documents

Publication Publication Date Title
WO2007137724A1 (de) Messvorrichtung
DE3513652A1 (de) Vorrichtung fuer die vertikale gel-elektrophorese
EP3475675A1 (de) Verfahren zur mechanischen prüfung einer einteilig ausgebildeten struktur anhand von über ein 3d-druckverfahren erzeugten prüfkörpern
DE102011013762B4 (de) Härteprüfgerät
DE3838191C2 (de) Gerät zum Abscheiden von Bestandteilen aus einem flüssigen Medium mittels Filter
AT392601B (de) Vorrichtung zum regeln der auftragsstaerke beim beschichten laufender materialbahnen
EP3001177A1 (de) Vorrichtung zum Erfassen von Partikeln in einer Flüssigkeit
DE4306184A1 (de) Vorrichtung zum kontinuierlichen Erfassen physikalischer und/oder chemischer Parameter von Flüssigkeiten
DE602005003816T2 (de) Verriegelbare Elektrode für ein Gelelektrophoresegerät
EP2372353B1 (de) Messvorrichtung umfassend einen Resonator für akustische und elektrochemische Messungen
DE3839948C2 (de)
EP1957970B1 (de) Vorrichtung für die strömungspotentialmessung von fasern und partikeln in suspensionen
DE102008029213B4 (de) Vorrichtung zur Durchführung von Messungen eines Analysenfluids
DE19537506C1 (de) Durchflußmeßzelle für Biosensoren
AT391215B (de) Messgeraet zur erfassung chemischer parameter einer waessrigen probe
DE3100781A1 (de) "anpressvorrichtung fuer die gestapelten filterelemente eines fluessigkeitsfilters"
DE102017218989B3 (de) Vorrichtung und Verfahren zur Erfassung einer Beweglichkeit von Lithium-Ionen in einem Elektrolyten
EP4127651A1 (de) Elektrophoresevorrichtung zur verwendung bei einem electroclearing-verfahren
DE19536668C1 (de) Elektrodialysevorrichtung und -verfahren
DD214452A5 (de) Zelleinheit zur elektrophorese-beobachtung
EP3037803A1 (de) Vorrichtung zur durchstrahlenden Untersuchung einer Flüssigkeit
DE3426781A1 (de) Auswechselbare membranhalterung fuer dialysezellen, insbesondere elektrodialysezellen
DE7708622U (de) Kasten für Mikrotom-Messer
DE202005019336U1 (de) Vorrichtung für die Strömungspotentialmessung von Fasern und Partikeln in Suspensionen
DE202016102056U1 (de) Test-Brennstoffzellen-Polplattenpaar

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019751.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07725403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12301834

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009512455

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007725403

Country of ref document: EP