WO2007135958A1 - グラム陰性細菌の細胞表層発現システム - Google Patents

グラム陰性細菌の細胞表層発現システム Download PDF

Info

Publication number
WO2007135958A1
WO2007135958A1 PCT/JP2007/060153 JP2007060153W WO2007135958A1 WO 2007135958 A1 WO2007135958 A1 WO 2007135958A1 JP 2007060153 W JP2007060153 W JP 2007060153W WO 2007135958 A1 WO2007135958 A1 WO 2007135958A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
seq
peptide
bacterium
amino acid
Prior art date
Application number
PCT/JP2007/060153
Other languages
English (en)
French (fr)
Inventor
Hideki Nakayama
Kazuya Yoshida
Original Assignee
National University Corporation NARA Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation NARA Institute of Science and Technology filed Critical National University Corporation NARA Institute of Science and Technology
Priority to JP2008516641A priority Critical patent/JPWO2007135958A1/ja
Publication of WO2007135958A1 publication Critical patent/WO2007135958A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria

Definitions

  • the present invention relates to a protein for presenting a desired protein or peptide on the cell surface of a Gram-negative bacterium, a gene encoding the protein, and a recombinant vector containing the gene.
  • the present invention also relates to a method for expressing a desired protein or peptide on the cell surface of a Gram-negative bacterium and a Gram-negative bacterium that displays the desired protein or peptide obtained by the method on the surface.
  • the present invention further relates to peptides and proteins having the ability to bind heavy metals.
  • Patent Document 1 a cell surface display technique that allows a desired useful protein or peptide to be expressed on the cell surface of yeast or bacteria has attracted attention.
  • Patent Document 1 a cell surface display technique that allows a desired useful protein or peptide to be expressed on the cell surface of yeast or bacteria has attracted attention.
  • Patent Document 2 a cell surface display technique that allows a desired useful protein or peptide to be expressed on the cell surface of yeast or bacteria has attracted attention.
  • Patent Document 2 a cell surface display technique that allows a desired useful protein or peptide to be expressed on the cell surface of yeast or bacteria has attracted attention.
  • Patent Document 1 a cell surface display technique that allows a desired useful protein or peptide to be expressed on the cell surface of yeast or bacteria has attracted attention.
  • Patent Document 3 a cell surface display technique that allows a desired useful protein or peptide to be expressed on the cell surface of yeast or bacteria has attracted attention.
  • Patent Document 3 a cell surface display technique that allows a desired useful protein or peptide to be expressed on the cell
  • Non-patent Document 1 Various proteins such as Omp A, OmpS, OmpC, LamB, and PhoE are known as proteins that can display proteins on the surface of bacteria (Non-patent Document 1, Non-patent Document 2).
  • a system that displays a desired protein or peptide on the surface of a bacterium using such a membrane protein is useful for vaccine development, biocatalysis, screening, and the like.
  • microorganisms that can grow even at high salt concentrations include Gram-negative bacteria of the genus Halomonas. Halomonas has acquired resistance to high salt concentrations by accumulating a compatible solute called ectoine in the cell. However, a display technology for displaying proteins on the surface of halophilic bacteria such as Halomonas has not been established yet.
  • the cell wall of Gram-negative bacteria is composed of an inner membrane, a periplasmic space, and an outer membrane in order from the cytoplasm side.
  • E. coli a gram-negative bacterium, has been studied to some extent by the protein transport mechanism to the cell surface, that is, to the outer membrane.
  • bioremediation technology using living organisms has been expected for water-based heavy metal contamination that has become serious due to industrial wastewater, agricultural wastewater, and the like.
  • development research on bioremediation technology using recombinant Escherichia coli is the mainstream, and research to increase the recovery efficiency of heavy metals by presenting various metal-binding peptides on the cell surface has been actively promoted. Yes.
  • Patent Document 1 JP 2005-312426 A
  • Non-patent literature 1 Wernerus H. and Stahl S. REVIEW Biotechnological applications for surface-engineered bacteria. Biotechnol. Appl. Biochem. (2004) 40, 209-228
  • Non-patent literature 2 Tokuda H, Matsuyama S. Sorting of lipoproteins to the outer membra ne in E.coli. Biochim. Biophys. Acta. (2004) 1693: 5-13
  • an object of the present invention is to develop a display system that presents a desired protein or peptide on a bacterial surface that can function even at high salt concentrations.
  • an object of the present invention is to search for a Cu / Cd / Zn binding protein in Halomonas to obtain a metal binding peptide and a metal binding protein containing the same.
  • the present invention also produces a arming halomonas cell that presents a metal binding domain on the cell surface for application to heavy metal purification technology in a high salt concentration and alkaline environment.
  • the purpose is to manufacture.
  • the present inventor has identified a protein that can be used to display a desired protein or peptide on the surface, and has isolated a gene encoding the protein.
  • the gene obtained and the gene encoding the desired protein were fused in-frame and expressed in a gram-negative bacterium, thereby successfully presenting the desired peptide on the bacterial surface.
  • the present invention provides the following protein (a) or (b):
  • the present invention provides a gene encoding the following protein (a) or (b):
  • C-terminal is Gram-negative when expressed in stringent bacteria under conditions of stringency with DNA that is complementary to the base-sequence strength DNA of (c). DNA encoding a protein located in the outer membrane of bacteria.
  • the present invention also provides a recombinant vector comprising a nucleic acid encoding the following protein (a) or (b), wherein the target protein or peptide is copied in frame downstream of the nucleic acid.
  • a recombinant vector for inserting a target protein or peptide on the surface of a gram-negative bacterial outer membrane, which is used by inserting a nucleic acid to be loaded is provided:
  • the present invention further includes a nucleic acid encoding a fusion protein in which the protein of interest or peptide is fused to the C-terminus of the following protein (a) or (b), transformed into a Gram-negative bacterium, Provided is a recombinant vector for causing the target protein or peptide to be displayed on the outer membrane surface of a Gram-negative bacterium, when the fusion protein is expressed, wherein the target protein or peptide is displayed on the outer membrane surface of a Gram-negative bacterium:
  • the present invention provides a gram-negative bacterium that displays a target protein or peptide on the outer membrane surface, which comprises the following protein (a) or (b):
  • the target protein or peptide is not particularly limited, but is, for example, a metal binding protein, a metal binding peptide, an antigen or an enzyme, and particularly preferably a metal binding protein or a metal binding peptide.
  • examples of the target protein or peptide include a plurality of proteins or peptides to be screened. In this case, a pool of gram-negative bacteria presenting multiple proteins or peptides is useful as an expression library because it expresses various proteins or peptides to be screened on its surface.
  • the Gram-negative bacterium is preferably a halophilic bacterium, more preferably a bacterium of the genus Halomonas, particularly preferably Halomonas elongata.
  • the present inventor has the power that it is difficult to apply recombinant E. coli to bioremediation in a high salt concentration and alkaline environment such as seawater and transpiration ponds where contamination is actually serious.
  • a high salt concentration and alkaline environment such as seawater and transpiration ponds where contamination is actually serious.
  • halophilic bacterium Halomonas elongata hereinafter also referred to simply as Halomonas
  • a peptide having metal binding ability was found.
  • the present invention provides a protein having the ability to bind to at least one heavy metal selected from the group force including copper, zinc and cadmium, including at least one sequence of SEQ ID NO: 9:
  • C may be cysteine and X may be any amino acid
  • X in SEQ ID NO: 9 is glutamic acid (E) or aspartic acid (D).
  • the present invention also provides a peptide having binding ability to at least one heavy metal selected from the group consisting of copper, zinc and cadmium power, which also has the alignment power of SEQ ID NO: 9.
  • C may be cysteine and X may be any amino acid
  • X in SEQ ID NO: 9 is glutamic acid (E) or aspartic acid (D).
  • the present invention further provides a copper having the alignment ability of SEQ ID NO: 10, SEQ ID NO: 11 or SEQ ID NO: 12.
  • a group force consisting of zinc, cadmium force and a peptide capable of binding to at least one selected heavy metal is provided.
  • these peptides are derived from Halomonas.
  • the present invention further includes a copper comprising the sequence of SEQ ID NO: 10, SEQ ID NO: 11 or SEQ ID NO: 12.
  • Zinc and cadmium forces provide a protein capable of binding to at least one selected heavy metal.
  • the present invention further provides the following protein (e) or (D:
  • a protein consisting of SEQ. And the cadmium power and the group power is also selected Is also a protein capable of binding to one species.
  • the protein having the amino acid sequence ability of SEQ ID NOs: 13, 14, and 15 includes the sequence of SEQ ID NO: 10, SEQ ID NO: 11 or SEQ ID NO: 12.
  • the present invention further provides a bacterium belonging to the genus Halomonas, which displays a protein or peptide capable of binding to the heavy metal on the cell surface.
  • the present invention provides a display system that displays a desired protein or peptide on a bacterial surface.
  • a display system can be applied to various uses such as environmental purification in a high salt environment, vaccine development, biocatalyst development, and screening system.
  • peptides and proteins having the ability to bind to at least one heavy metal selected as a group force including copper, zinc and cadmium forces. These metal-binding peptides and proteins are useful for bioremediation to purify contamination by heavy metals by presenting themselves and the surface of bacteria such as Halomonas.
  • a self-cloning bacterium for environmental purification can be obtained by presenting a halomonas-derived heavy metal-binding peptide according to the present invention to a neuromonas.
  • FIG. 1 is a graph showing that halomonas exhibits metal resistance in a high salt alkaline environment.
  • FIG. 2 is a graph showing the effect of pH of a metal purifier by E. coli.
  • Fig. 3 is a graph showing the effect of pH of metal purification by halomonas.
  • FIG. 4 is a graph showing that Halomonas accumulates Cd / Cu under high pH conditions.
  • Fig. 5-1 shows the design of plasmid pET-HeLipopORFl-HA.
  • Fig. 5-2 shows the design of plasmid pET-HeLipopORF4-HA.
  • FIG. 5-3 shows the design of plasmid pET-HeLipopORF5-HA.
  • Fig. 5-4 shows the design of plasmid pET-HeLipopORF13-HA.
  • Fig. 5-5 shows the design of plasmid pET-HeLipopORF15-HA.
  • Fig. 5-6 shows the design of plasmid pET-HeLipopORF16-HA.
  • Fig. 5-7 shows the design of plasmid pHS15N-HeLipop5-EC8.
  • Fig. 5-8 shows the design of plasmid pET-FLAG-EC8-EGFP.
  • FIG. 6 shows the expression of HeLipopORF-HA fusion protein in E. coli.
  • FIG. 7 is a diagram showing the results of immunofluorescence staining showing the expression of HeLipopORF-HA fusion protein on the outer membrane surface of E. coli.
  • Figure 8 shows the results of immunofluorescence showing the expression of HeLipopORF (l and 5) -HA fusion protein in E. coli, and the lower panel shows the outer membrane localization pattern of the fusion protein. It is a schematic diagram shown.
  • FIG. 9 is a diagram showing the construction of a pHS15N vector from pHS15.
  • FIG. 10 is a view showing expression of a fusion protein from PHS15N-HeLipopORF-HA in E. coli and Halomonas.
  • FIG. 11 is a diagram showing the results of immunofluorescence showing the expression of a HeLipopORF-HA fusion protein on the surface of Halomonas.
  • FIG. 12 is a diagram showing the expression of HeLipop5-EC8 fusion protein in Halomonas.
  • FIG. 13 is a diagram showing metal accumulation by halomonas presenting EC8 on the outer membrane surface.
  • FIG. 14 shows the structure of a synthetic metal peptide.
  • FIG. 15-1 shows the structure of pET--Helipop5-HA.
  • FIG. 15-2 shows the structure of pET--Helipop5- (EC6) -HA.
  • Fig. 15--3 shows the structure of pET--Helipop5- (DC6) -HA.
  • FIG. 15-4 shows the structure of pET--Helipop5- (GC6) -HA.
  • FIG. 15-5 shows the structure of pET--Helipop5- (HC6) -HA.
  • Fig. 15-6 shows the structure of pET--Helipop5- (HD6) -HA.
  • FIG. 15-7 shows the structure of pET--Helipop5- (HE6) -HA.
  • FIG. 15-8 shows the structure of pET--Helipop5- (HG6) -HA.
  • FIG. 15-9 shows the structure of pET- -Helipop5- (H 12) -HA.
  • Fig. 16-1 Fig. 16-1 shows the Spel-MBP-Nhel fragment.
  • Fig. 16-2 shows the Spel-MBP-Nhel fragment.
  • FIG. 17 shows the amount of accumulated metal in Halomonas presenting synthetic MBP.
  • FIG. 18 shows the results of SDS-PAGE and Western blotting of the expressed protein of Halomonas presenting multiple synthetic MBP.
  • Fig. 19-1 shows the amino acid sequence encoded by Cys-rich Halomonas ORF.
  • Fig. 19-2 shows the amino acid sequence encoded by Cys-rich Halomonas ORF.
  • FIG. 19 3 shows the amino acid sequence encoded by Cys-rich Halomonas ORF.
  • Figure 19-4 shows the amino acid sequence encoded by the Cys-rich Halomonas ORF.
  • FIG. 19 5 shows the amino acid sequence encoded by Cys-rich Halomonas ORF.
  • Figure 20-1 shows the metal accumulation of Halomonas presenting each MBP under 6% NaCl.
  • Fig. 20-2 shows the metal accumulation of Halomonas presenting each MBP under 3% NaCl.
  • FIG. 21 shows the amount of metal accumulation of Halomonas presenting multiple artificial metal binding domains.
  • the protein of the present invention is the following protein (a) or (b):
  • SEQ ID NOS: 1, 2, 3, and 4 group power In the selected amino acid sequence, one or several amino acids have been deleted, substituted, or added.
  • a protein located in the outer membrane of the bacterium when expressed in the gram-negative bacterium when expressed in the gram-negative bacterium
  • Examples of the protein of the present invention also include the following protein (b ').
  • the protein comprising the amino acid sequence selected from (a) SEQ ID NOs: 1, 2, 3 and 4 has a C-terminal when the protein is expressed in a gram-negative bacterium. And are referred to as HeLipop4 (SEQ ID NO: 1), HeLipop 5 (SEQ ID NO: 2), HeLipop 15 (SEQ ID NO: 3) and HeLipopl6 (SEQ ID NO: 4), respectively.
  • the protein of (b) according to the present invention is such that the function of the protein of (a) is said to be "located at the outer membrane of the bacterium when its C-terminus is expressed in a Gram-negative bacterium".
  • Such mutations include artificial mutations in addition to those occurring in nature.
  • Examples of the means for causing artificial mutation include, but are not limited to, site-directed mutagenesis (Nucleic Acids Res. 10, 6487-6500, 198 2).
  • the number of amino acids mutated (deleted, substituted, added) is not limited as long as the function of the protein (a) is not lost, but is preferably within 10 amino acids, more preferably within 5 amino acids. It is.
  • the protein of (b ') is also the extent that the function of the protein of t ⁇ ⁇ (a) is lost, "when its C-terminus is expressed in the outer membrane of the bacterium when expressed in a gram-negative bacterium"
  • This is a protein having homology to the protein (a).
  • the homology is preferably 80% or more, particularly preferably 90% or more.
  • the term "homology” refers to the arrangement between two polypeptides or polynucleotides. This means the degree of similarity between columns, and is determined by comparing two sequences that are aligned to the optimal state (the state with the greatest sequence match) over the region of the amino acid or base sequence being compared. Is done.
  • the homology value (%) determines the number of matching sites by determining the same amino acid or base present in both (amino acid or base) sequences, and then calculating the number of matching sites in the sequence region to be compared. Divide by the total number of amino acids or bases and multiply by 100.
  • Examples of algorithms for obtaining optimal alignment and homology include various algorithms (eg, BLAST algorithm, FASTA algorithm, etc.) that are usually available to those skilled in the art.
  • Amino acid sequence homology is determined using sequence analysis software such as BLASTP and FASTA.
  • the homology of the base sequence is determined using software such as BLASTN and FASTA.
  • polypeptide refers to a polymer of amino acids.
  • protein is relatively long
  • polypeptide is relatively short
  • peptide is relatively short.
  • polypeptide is relatively short.
  • a method for confirming that the function of the protein of the present invention is that "the C-terminus is located in the outer membrane of the bacterium when expressed in a gram-negative bacterium" is, for example, as described in the Examples.
  • the construct is introduced into a gram-negative bacterium such as Escherichia coli. This is done by confirming the presence of the C-terminal label on the cell surface.
  • a protein with an HA tag added to the C terminus is brought into contact with a fluorescently labeled anti-HA antibody on the cell surface, and the C terminus is displayed on the surface depending on whether or not the fluorescence is detected on the surface. No is determined.
  • the gene of the present invention is a gene encoding a protein of the following (a) or (b): (a) a group force consisting of SEQ ID NOS: 1, 2, 3 and 4; (b) SEQ ID NOS: 1, 2, 3 and 4 Power of group power In the selected amino acid sequence, one or several amino acids have been deleted, substituted or added, and there is also an amino acid sequence power.
  • the protein located in the outer membrane of the bacterium and the following gene (c) or (d):
  • C-terminal is Gram-negative when expressed in stringent bacteria under conditions of stringency with DNA that is complementary to the base-sequence strength DNA of (c). DNA encoding a protein located in the outer membrane of bacteria.
  • the gene of the present invention also includes the following gene (d ').
  • the protein having the amino acid sequence ability selected from (a) SEQ ID NOS: 1, 2, 3, and 4 is as described in the section of the protein of the present invention. is there. Similarly, the protein (b) is as described in the section of the protein of the present invention.
  • the DNA consisting of a base sequence selected from the group consisting of SEQ ID NOs: 5, 6, 7 and 8 in (c) is a genomic sequence of Halomonas elongata OUT30018 strain (wild type). Is a gene encoding the protein of (a), namely, HeLipop4 (SEQ ID NO: 1), HeLipop5 (SEQ ID NO: 2), HeLipopl5 (SEQ ID NO: 3) and HeLipopl6 (SEQ ID NO: 4), respectively. .
  • the DNA of SEQ ID NO: 5 codes HeLipop4
  • the DNA of SEQ ID NO: 6 codes HeLipop5
  • the DNA of SEQ ID NO: 7 codes HeLipopl5
  • the DNA of SEQ ID NO: 8 codes HeLipopl6.
  • the gene (d) of the present invention is nobbridized under stringent conditions with a DNA comprising a base sequence complementary to the DNA having the base sequence ability of (c), and is a gram-negative bacterium. It is composed of DNA encoding a protein whose C-terminus is located in the outer membrane of Gram-negative bacteria. That is, the gene in (d) is “if the C-terminus is expressed in a gram-negative bacterium. A protein that retains the function of the protein (a) located in the outer membrane of the bacterium is encoded.
  • the stringent condition refers to a condition in which only specific hybridization occurs and non-specific no hybridization occurs. Such conditions are usually around 0.2xSSC, 0.1% SDS, 65 ° C. It is desirable that the DNA obtained by hybridization should have a high homology of 80% or more with the DNA having the base sequence ability of (c), and preferably 90% or more of homology! /, .
  • the DNA of (d ') is a protein that does not lose the function of the protein of (a), saying that its C-terminus is located in the outer membrane of the bacterium when expressed in a Gram-negative bacterium.
  • the degree of similarity is preferably 80% or more, particularly preferably 90% or more.
  • a method for confirming the function of the protein encoded by the gene of the present invention, whose C-terminal is located in the outer membrane of the bacterium when expressed in a gram-negative bacterium, is described in the section of the protein of the present invention. It is as described in.
  • the gene of the present invention can be obtained from the genome of a Gram-negative bacterium including a genus Halomonas by PCR or hybridization techniques well known to those skilled in the art, or using a DNA synthesizer or the like. You can synthesize it artificially.
  • the sequence can be determined by a conventional method using a sequencer.
  • the present invention is a recombinant vector comprising a nucleic acid encoding the following protein (a) or (b), wherein a nucleic acid encoding the target protein or peptide is inserted in-frame downstream of the nucleic acid.
  • the recombinant vector of the present invention is a recombinant vector comprising a nucleic acid encoding the protein (a) or (b), wherein the protein (a) or (b) is as described above. is there.
  • the recombinant vector has a convenient restriction enzyme site into which a nucleic acid encoding the target protein or peptide can be inserted in frame downstream of the nucleic acid encoding the protein (a) or (b).
  • the recombinant vector functions as a cassette for bacterial surface expression of the target protein or peptide.
  • a nucleic acid encoding the target protein or peptide was obtained by inserting in-frame downstream of the nucleic acid encoding the protein (a) or (b) in the recombinant vector, ie, at the C-terminal side.
  • the construct is introduced into a gram-negative bacterium and expressed, a fusion protein in which the target protein or peptide is fused to the C-terminus of the protein of (a) or (b) is expressed, and as a result, the target protein or peptide is present on the bacterial surface.
  • a plasmid or phage that can replicate autonomously in a host gram-negative bacterium is also suitable for use in gene recombination.
  • the vector preferably contains an origin of replication suitable for the gram-negative bacterium to be introduced, a selectable marker, an expression control sequence such as a promoter, and a terminator.
  • Examples of plasmid vectors include pET vectors and pET15b when expressed in E. coli, and pHS vectors and pHS15 when expressed in Halomonas bacteria, preferably pHS15N.
  • Phage vectors include fly phage vectors.
  • PHS15 vectors are preferred because they are shuttle vectors that can function in both E. coli and Halomonas bacteria.
  • selectable markers include antibiotic resistance genes such as ampicillin resistance gene and streptomycin resistance gene.
  • the expression vector of the present invention preferably contains an expression control sequence.
  • An expression control sequence is a DNA sequence that is expressed in Gram-negative bacteria when properly linked to the DNA sequence.
  • the expression control sequence includes at least a promoter.
  • the promoter may be a constitutive promoter or an inducible promoter.
  • the expression vector preferably contains a transcription termination signal, ie a terminator region.
  • the expression vector of the present invention is provided with (a) or (b) in order to facilitate the construction of a chimeric DNA encoding a fusion protein of the protein (a) or (b) and the target protein or peptide.
  • the present invention also includes a nucleic acid encoding a fusion protein in which the target protein or peptide is fused to the C-terminus of the following protein (a) or (b), transformed into a gram-negative bacterium, and the fusion protein Provided is a recombinant vector for displaying the target protein or peptide on the outer membrane surface of a Gram-negative bacterium, when expressed, the target protein or peptide is displayed on the outer membrane surface of a Gram-negative bacterium:
  • the recombinant vector is obtained by introducing a nucleic acid encoding a target protein or peptide into the above-described recombinant vector (1). That is, a nucleic acid fragment encoding the target protein or peptide was introduced in-frame downstream of the nucleic acid encoding the protein (a) or (b) in the above-mentioned recombinant vector (1).
  • a fusion protein in which the target protein or peptide is fused to the C-terminus of the protein (a) or (b) is expressed, and the target protein or The peptide is presented.
  • the target protein or peptide is not particularly limited, and examples thereof include metal binding proteins, metal binding peptides, enzymes, and antigens.
  • metal-binding proteins or metal-binding peptides include metal chaperones, synthetic phytokeratins, and the like, and environmentally purified bacteria can be obtained by presenting them on the bacterial surface.
  • Cells that present the enzyme function as a neurocatalyst.
  • Cells presenting the antigen can be used as a vaccine.
  • a bacterial surface screening library can be obtained by presenting a pool of a plurality of proteins or peptides at the C-terminus of the protein of (a) or (b).
  • the source of the target protein or peptide may be heterologous to the bacterium used as the host, or may be derived from the bacterium used as the host. In the latter case, self-cloning cells are obtained in which proteins or peptides naturally present in the host bacterium are presented, especially when considering environmental issues.
  • the present invention is a.
  • a conventionally known method can be used as a method for transforming a recombinant vector into a Gram-negative bacterium.
  • a conventionally known method can be used.
  • the calcium chloride method the competent method, triparental (triparental) mating) method, elect mouth position method and the like.
  • the method for expressing the fusion protein can be performed based on a conventional method of genetic engineering. Information on vectors used in Gram-negative bacteria and methods for introducing and expressing foreign genes are described in many experimental documents (eg Sambrook, J. et al, Molecular Cloning A Laboratory Manual 3rd Edition, CSHL Press, 2001 ).
  • the host to be used is not particularly limited as long as it is a gram-negative bacterium, and examples thereof include Escherichia coli, Halomonas bacterium, and Pseudomonas bacterium. Preferred are halophilic bacteria, and more preferred are Halomonas bacteria.
  • the Halomonas elongata OUT 30018 strain used in this example has been deposited internationally at the National Institute of Advanced Industrial Science and Technology (IPOD) under the accession number FERM BP-4841 (sample name Halomonas KS3).
  • the culture form of the host bacterium which is a transformant, is usually carried out in a liquid culture in which culture conditions are appropriately selected in consideration of the nutritional physiological properties of the host.
  • the carbon source of the medium include glucose and glycerol
  • examples of the nitrogen source include ammonium sulfate and casamino acid.
  • salts, specific amino acids, specific vitamins and the like can be used as desired.
  • the culture temperature can be appropriately changed as long as the host microorganism grows and presents the target protein or peptide.
  • the culture condition may be 37 ° C, 12 hours, pH 7.2.
  • the culture conditions may be 37 ° C, 24 hours, pH 7.2 or 8.4.
  • Expression of the target protein or peptide may be confirmed using the properties of the protein or peptide.
  • the target protein or peptide is a metal binding protein or a metal binding peptide
  • it can be confirmed by an assessment of the ability to purify metal ions of the transformant.
  • the target protein or peptide is an antigen, it can be confirmed using a specific antibody.
  • the target protein or peptide is an enzyme, it can be confirmed by assessing the conversion of the target enzyme into a substrate force product using the bacterial cells.
  • the present invention also provides a protein of interest on the outer membrane surface comprising the following protein (a) or (b): Provide Gram-negative bacteria displaying quality or peptides:
  • the Gram-negative bacterium presenting the target protein or peptide on the outer membrane surface of the present invention encodes a fusion protein in which the target protein or peptide is fused downstream of the protein (a) or (b) of the present invention. Obtained by introducing a recombinant vector containing the nucleic acid to be introduced into a desired gram-negative bacterium.
  • Preferred hosts, preferred target proteins or peptides are as described above.
  • the Gram-negative bacterium presenting the target protein or peptide of the present invention can be used as an environmental purification bacterium, a neurocatalyst, a vaccine, a library, or the like depending on the type of the target protein or peptide displayed on the surface. I can do it.
  • Metal-binding protein and metal-binding peptide of the present invention are present invention.
  • the protein or the like presenting the desired protein or peptide on the surface of the bacterium of the present invention has been described above.
  • the present invention is not limited to a metal-binding peptide and a metal-binding protein. Also provide
  • the metal binding protein of the present invention comprises:
  • C may be cysteine and X may be any amino acid
  • X may be any amino acid, but it is particularly preferable that X is an acidic amino acid such as glutamic acid or aspartic acid. Also, at least one is particularly limited However, it is preferably 1 to 4.
  • a protein having the ability to bind to at least one selected heavy metal is a group protein consisting of copper, zinc, and cadmium force.
  • a gene that encodes it is introduced according to the method described in the Examples. When expressed on the surface of Halomonas, it is a protein that can accumulate any one of copper, zinc, or cadmium in the microbial cells compared to wild-type Halomonas without a gene introduced.
  • the metal-binding peptide of the present invention comprises:
  • a peptide having a binding ability to at least one selected heavy metal group which is a group force consisting of copper, zinc and cadmium force, which is an arrangement force of SEQ ID NO: 9:
  • C may be cysteine and X may be any amino acid
  • X may be any amino acid, but it is particularly preferred that X is an acidic amino acid with glutamic acid or aspartic acid. In particular, when X is glutamic acid, the binding ability to copper is excellent, and when X is aspartic acid, the binding ability to copper and cadmium is excellent.
  • the present invention also provides:
  • peptides were obtained from the genomic information of halomonas. When they were bound to the C-terminal of the protein presenting the peptide on the surface of halomonas of the present invention and presented on the surface of halomonas, they were self-cloning type heavy metal purified halomonas. Bacteria are obtained.
  • the peptide represented by SEQ ID NO: 10 has excellent binding ability to copper
  • the peptide represented by 11 has excellent binding ability to cadmium
  • the peptide represented by 12 has excellent binding ability to zinc.
  • the present invention relates to a binding force consisting of copper, zinc, and cadmium, comprising at least one type of heavy metal selected, including the sequence of SEQ ID NO: 10, SEQ ID NO: 11 or SEQ ID NO: 12.
  • a binding force consisting of copper, zinc, and cadmium, comprising at least one type of heavy metal selected, including the sequence of SEQ ID NO: 10, SEQ ID NO: 11 or SEQ ID NO: 12.
  • the strong protein includes the sequence of SEQ ID NO: 10, SEQ ID NO: 11 or SEQ ID NO: 12, which has an excellent binding ability to heavy metals, it is naturally considered that the protein has an excellent binding ability to heavy metals.
  • amino acid sequences shown in SEQ ID NOs: 13, 14, and 15 of (e) constitute a halomonas endogenous protein containing the metal-binding peptides shown in SEQ ID NOs: 10, 11, and 12, respectively. From the metal binding ability of the metal binding peptides shown in SEQ ID NOs: 10, 11, and 12, it is considered that these proteins have metal binding ability as well.
  • the protein of (e) has the ability to bind to at least one of the selected heavy metals (the copper, zinc, and cadmium group forces are also selected).
  • This is a protein that has undergone amino acid mutations (deletions, substitutions, additions), and these mutations include not only naturally occurring mutations but also artificial mutations. These include, but are not limited to, site-directed mutagenesis (Nucleic Acids Res. 10, 6487-6500, 1982) Number of amino acids mutated (deleted, substituted, added) As long as the function of the protein (e) is not lost, the number thereof is not limited, but it is preferably within 10 amino acids, more preferably within 5 amino acids.
  • the metal-binding protein or metal-binding peptide of the present invention is displayed on the cell surface of a genus Halomonas bacterium. Presentation on the cell surface is performed by the gene encoding the target metal-binding protein or peptide at the C-terminus of the “protein located at the outer membrane of the bacterium when expressed in a drum-negative bacterium” according to the present invention. Is inserted into the frame and incorporated into an expression vector for halomonas as described in the Examples. It can be achieved more than switching.
  • Halomonas elongata is a gram-negative bacterium that has been identified as a salt-accumulating soil in arid regions of the northeastern Kingdom of Thailand, and deposited with the Patent Organism of the National Institute of Advanced Industrial Science and Technology. Deposited internationally at the Center (IPOD) under the deposit number FERM BP-4841 (sample name Halomonas KS3).
  • halomonas was cultured at 37 ° C in a medium without addition of metal salt (control), medium with 0.5 mM ZuSO, and medium with 6 mM CuSO.
  • the growth was evaluated by measuring the absorbance at 600 nm.
  • the medium used here is a modified MJS medium (15 mM Tris, 50 mM NaCl, 20 mM NH CI, 1 m) containing low phosphate.
  • Halomonas can grow well under high salt concentration and high pH conditions. In addition, it grew well in the medium supplemented with Zn ions, especially under high salt conditions. The medium supplemented with Cu ions showed good growth under high alkaline conditions. In other words, it has been clarified that Halomonas exhibits a characteristic metal stress response in an environment of high salt concentration and alkaline pH.
  • Zn and Cd are pollutants in the aquatic environment at various pH levels in Escherichia coli and Neuromonas
  • the metal purification ability was compared. Transfer 25 mL of each culture solution of Escherichia coli and Halomonas cells pre-cultured in modified M JS medium supplemented with 3% NaCl and adjusted to pH 7.2 to a sterile 50 mL centrifuge tube, and centrifuge the cell pellet It was collected at (8000 rpm, 1 min). The recovered cell pellet was washed with a 600 mM mannitol solution, and then resuspended in a modified MJS medium supplemented with 25 mL of 20 ⁇ C1 and CdCl adjusted to pH. Add 37 more suspended cells.
  • the cell pellet After culturing at ° C for 6 hours, the cell pellet is collected by centrifugation (8000 rpm, 1 min), dried at 100 ° C for 12 hours, and then the metal collected with the cell is extracted with 1M HC1. did.
  • an ICP emission spectrometer was used to quantify the amount of recovered metal in the extraction solution.
  • FIG. 2 Erysia coli
  • FIG. 3 Halomonas
  • E. coli the ability to purify Cd ions and Zn ions was low at any pH.
  • Halomonas the ability of Zn purification was low at any pH.
  • Cd ion purification ability is high. Cd ions can be purified specifically as pH increases. There was found.
  • the cells were transferred to a 50 ml tube, centrifuged (3000 rpm, 10 min), and collected as a pellet.
  • the collected cells are washed with 0.6 M sorbitol under 3% NaCl-modified MJS medium conditions and 1.2 M sorbitol under 6% NaCl-modified MJS medium conditions, and centrifuged again (3000 rpm, 1 0 min) and collected.
  • the collected cells were completely dried at about 100 ° C for about 6 h, and then subjected to an acid decomposition reaction using nitric acid as a pretreatment for analysis.
  • the modified MJS medium supplemented with 3% NaCl equivalent to seawater was used, and the Zn / Cd / Cu purification ability of halomonas was examined under environmental conditions where the extracellular pH was changed.
  • 20 M ZnCl, 20 M CdCl, and 20 M CuCl can be used alone as a target metal for purification, or three kinds of yarns can be used together.
  • the test was performed under conditions close to bioaugmentation (a method in which microorganisms cultured elsewhere were introduced into a medium where purified microorganisms did not live at the contaminated site).
  • Lipoprotein precursors have a signal peptide at the N-terminus, It is known that a common sequence called lipobox exists in the vicinity of the rupeptide cleavage site. Therefore, an ORF with a lipobox-like sequence was selected from the genome sequence of Halomonas. The candidate lipoproteins are listed below.
  • the above candidate protein is produced in Escherichia coli as an HA-tag fusion protein (ie, a protein having a TA tag added to the C-terminus of the candidate protein), and the surface layer of the living cell is immunofluorescently stained using the HA tag.
  • HA-tag fusion protein ie, a protein having a TA tag added to the C-terminus of the candidate protein
  • recombinant vectors encoding a total of six putative lipoproteins, HeLipopl, 4, 5, 13, 15 and 16 in the above table, and HA tag fusion proteins were prepared.
  • PET was used as the vector.
  • the recombinant vector was constructed as follows.
  • Ndel site was introduced into the forward primer to obtain an amplified fragment of Ndel-HeLipopORF-Spel, and A Spel site was introduced on the spot.
  • pET-HeLipopl-HA NcoI-Ndel-HeLipopl-Spel-H Atag-Xhol-Nhel-BamHI
  • E. coli was transformed by the conventional salt-calcium calcium method.
  • the cells were again suspended in PBS buffer and sonicated on force.
  • the obtained solution after ultrasonic disruption was used for SDS-PAGE analysis and Western analysis as a whole protein sample.
  • the collected pellet cells were suspended in 2 mL PBS-BSA buffer (PBS containing 0.1% BSA) and incubated at room temperature for 1 hour to block cell surface protein. After blocking, the cells were collected by centrifugation, suspended in 0.5 mL PBS-BSA, added with a primary antibody (rat anti-HA antibody, 1: 500 dilution), and incubated at room temperature for 1 hour. Cells are collected by centrifugation, washed 3 times with 1 mL PBS-BSA, resuspended in 0.2 mL PBS-BSA, and secondary antibody for fluorescent labeling (Alexa488-conjugated anti-HgG antibody, 1: 200 dilution) And incubated at room temperature for 1 hour. The cells were collected by centrifugation, washed 3 times with 1 mL PBS-BSA, resuspended in 0.05 mL PBS-BSA, and immunofluorescent stained cells were observed under a fluorescence microscope.
  • the results are shown in FIG.
  • pHS15 shuttle vector contains both E. coli and Halomonas replication origins, and can produce foreign proteins in Romonas and Romonas. Characteristically, an endogenous promoter can be used for expression, and it can be expressed by inserting the target gene as a polycistronic gene cassette into the Pst I site on the vector. Points (see Mol Gen Genet. 1995 Feb 20; 246 (4): 411-118 and FEMS Microbiology Letters 201 (2001) 221-2).
  • pHS15 is a gene fragment as a polycistronic gene cassette directly from the pET-based plasmid already constructed for E. coli expression to the PHS15-based plasmid. Since it is unsuitable to transfer, the cloning site in pHS15 was modified. As shown in Fig. 9, Spel, Nsil, Kpnl, Pmll, Sail, SnaBI, and BamHI were introduced into the Pstl site of PHS15 and at the same time the original Pstl site was destroyed. Similarly, as shown in FIG. 9, the original pHS15 fragment containing BamHI, Spel, Xbal and Notl and the fragment containing Sall, XhoI, ApaI / DraII and Xpnl sites were removed.
  • the pET-HeLipopORF-HA vector used above has a ribosome binding site downstream of the Xbal site, it can be cleaved at the Xbal upstream of the target gene (HeLipopORF) and the XhoI / BamHI site downstream.
  • the Xbal-HeLipopORF-HA-XhoI / BamHI fragment was obtained, and the target gene (HeLipopORF-HA) was replaced with the pET system by replacing it with a fragment between the Spel site of PHS15N and the newly introduced Sall / BamHI site.
  • E. coli strains carrying the construction vector and three strains of Escherichia coli strains carrying the transfer gene and a transferable helper plasmid (PRK2013) and the recipient strain, Halomonas were cocultured (2% NaCl, 0.5% yeast (1% tryptone, 1.5% Agar), 37 ° C for 1 culturing, followed by selective medium (240 mg / L) containing antibiotics with high-concentration NaCl that inhibits the growth of E. coli Recombinant halomonas strains were selected by culturing at 37 ° C for 2 hours on streptomycin, 6% NaCl, 0.5% yeast extract, 1% tryptone, 1.5% Agar).
  • the resulting Escherichia coli and Halomonas harboring PHS15N-HeLipopORF-HA were cultured at 37 ° C for 1 hour with shaking.
  • LB medium 1% NaCl, 0.5% yeast ext ract, 1% tryptone
  • 3% NaCl-containing LB medium 3% NaCl, 0.5% yeast is used for Halomonas culture. extract, 1% tryptone was used. Since the promoters in this system are constitutive promoters, it was not necessary to induce them.
  • the recovered pellet cells were suspended in 2 mL PBS-BSA buffer (PBS containing 0.1% BSA) and incubated at room temperature for 1 hour to block the cell surface protein. After blocking, cells are collected by centrifugation, suspended in 0.5 mL PBS-BSA, added with primary antibody (rat anti-HA antibody, 1: 500 dilution), and incubated at room temperature for 1 hour. did.
  • PBS-BSA buffer PBS containing 0.1% BSA
  • Cells are collected by centrifugation, washed 3 times with 1 mL PBS-BSA, resuspended in 0.2 mL PBS-BSA, and secondary antibody for fluorescent labeling (Alexa488-conjugated anti-rab HgG antibody, 1: 200 dilution) ) was added and incubated at room temperature for 1 hour.
  • the cells were collected by centrifugation, washed 3 times with 1 mL PBS-BSA, then resuspended in 0.05 mL PBS-BSA, and immunofluorescently stained cells were observed under a fluorescence microscope.
  • HeLipop4, 5, 15 and 16 have the function of presenting the target protein on the surface of Halomonas bacteria, so that it is actually useful for purification of heavy metals (Cd and Hg).
  • the chimeric gene HeLipop5- (EC) G which was fused using the (EC) nG peptide sequence (phytokeratin analog) that was confirmed using
  • an EC8 fragment was inserted into the Xhol site of pFLAG-EGFP to construct pFLAG-EC8-EGFP (see Fig. 5-8). Then, PHS15N-HeLipop5-EC8 was constructed by excising the Spel-Ndel-EC8-Xhol of pFLAG-EC8-EGFP into EC8 sequence fragment and replacing it with the Spel-HA-Xhol fragment of HeLipop5-HA (Fig. See 5-7.
  • the collected pellet was washed with HPO, 2 mM KH 3 PO 4, and adjusted to pH 7.4 using HC1, and the cells were washed.
  • the suspension was again suspended in PBS buffer and sonicated on ice with force.
  • the obtained solution after sonication is used as a total protein sample for SDS-PAGE analysis and cysteine-containing thiol. Used for protein labeling analysis.
  • the sample was analyzed by SDS-PAGE by a conventional method, and expression of pHS15N-HeLipop5-EC8 was confirmed using CBB staining and mBBr, a reagent for labeling cysteine. Detection was performed using LAS3000 and a GFP filter. The results are shown in FIG. From pHS15N-He Lipop5-EC8, it was confirmed that a fusion lipoprotein containing cysteine was expressed.
  • Modified MJS medium supplemented with 3% NaCl equivalent to seawater (15 mM Tris, 3% NaCl, 20 mM NH CI
  • Acids 0.4% (vol / vol) glycerol, 0.005% (wt / vol) thiamine) was used to investigate the ability of Halomonas to purify Zn / Cd / Cu under environmental conditions with altered extracellular pH. .
  • the addition of 15 mM Tris has shown that MSJ medium has a pH of approximately 8.4 at room temperature, so use 15 mM Tris in the medium! ]did.
  • HC1 was used to adjust the pH of the medium.
  • 20 M ZnCl, 20 M CdCl, and 20 M CuCl can be used alone as a target metal for purification, or three kinds of yarns can be used together.
  • the test was performed under conditions close to bioaugmentation (a method in which microorganisms cultured elsewhere were introduced into a medium where purified microorganisms did not live on the contaminated site).
  • Cultivate Halomonas OUT30018 strain with pHS15N-HeLipop5-EC8 in 400 mL scale in 1 L culture flask with modified MJS medium (pH 7.2 or pH 8.4) without metal addition (37 ° C, OD600 1.4)
  • 30 mL of the culture solution was dispensed into a 50 mL Falcon tube supplemented with a metal solution.
  • Halomonas with pHS15N-HeLipop5-EC8 was found to increase the accumulation of Zn, Cd and Cu.
  • Cd more Cd ions were accumulated when only Cd was added to the medium than when Zn / Cd / Cu was mixed and added.
  • Cu was mixed with Zn / Cd / Cu, more Cu ions were accumulated than when only Cu was added.
  • the metal-binding peptide EC8 was actually expressed on the surface layer of Halomonas cells and could purify metal ions.
  • halomonas is a characteristic metal that is resistant to zinc (Zn) and copper (Cu) under high salt concentration and alkaline environment, and accumulates high amounts of cadmium (Cd) and Cu. It became clear that it showed responsiveness.
  • Zn zinc
  • Cu copper
  • Cd cadmium
  • I decided to explore.
  • the following 8 were constructed to select synthetic metal peptides useful for metal purification in high salt alkaline environments.
  • the following 6 were constructed to try to increase the amount of metal recovery by introducing multiple copies of the above-mentioned 8 strength selected synthetic metal binding peptides useful in high salt alkaline environment.
  • the artificial metal binding domain (the artificial metal binding domain may be referred to as MBP hereinafter) (EC6, DC6, GC6, HC6, HD6, HE6, HG6, H12)
  • MBP artificial metal binding domain
  • a DNA fragment (Spe to MBP-Nhel) having Spel / Nhel sticky ends at both ends was synthesized by an annealing method using synthetic oligo DNA.
  • the above Spe I-MBP-Nhel fragment was inserted into the Spel cleavage site of the previously constructed pET-HeLipop5-HA plasmid to construct pET-HeLipop5-MBP-HA.
  • the force that can connect the Spel cleavage site and the Nhel cleavage site was determined by making use of the fact that the recognition sequence changes after ligation, making it impossible to cleave, and the orientation of the introduced gene was determined.
  • proteins were produced using the expression system of E. coli BL21 (DE3) cells, and protein production was confirmed by Western analysis using HA epitope recognition antibodies.
  • FIG. 14 shows a partial sequence of PHS15N-HeLipop5-MBP-HA used in the triple parental joining method.
  • Fig. 15-1 shows the construction of pET-Helipop5-HA
  • Fig. 15-2 to 15-9 show the construction of pET-HeLipop5-MBP-HA containing each artificial metal binding peptide.
  • FIGS. 16-1 to 16-2 show fragments of Spel-MBP-Nhel encoding each artificial metal binding peptide.
  • Modified MJS medium supplemented with 3% NaCl equivalent to seawater (15 mM Tris, 3% NaCl, 20 mM NH CI
  • Acids 0.4% (vol / vol) glycerol, 0.005% (wt / vol) thiamine) was used to investigate the ability of Halomonas to purify Zn / Cd / Cu.
  • the addition of 15 mM Tris was found to cause the MSJ medium to be approximately PH8.4 at room temperature, so the medium was supplemented with 15 mM Tris.
  • Cys-rich metal binding domains flanked by acidic amino acids were suggested to be particularly effective. Therefore, the selection of the endogenous metal binding domain in the future was performed for the Cys rich domain, and the Cys rich domain adjacent to the acidic amino acid was preferentially selected as a candidate.
  • Proteins with putative metal binding domains were selected using histidine (His) and cystine (Cys), which are amino acids that are thought to act directly on metals. Proteins were separated by 10, 20 and 30 amino acids, and ranked using the number of His or Cys contained therein as an index. For Cys, those with acidic amino acids adjacent to each other were ranked higher.
  • His histidine
  • Cys cystine
  • the ORF of halomonas was narrowed down using Cys having a high thiol group as a metal binding domain and having an imidazole group as a metal binding domain. Since homology analysis such as ordinary BLAST cannot be used to search for short domains, the protein sequence data of the predicted translation product was narrowed down with the bias of narrowing down, and the putative metal binding domain was narrowed down. In particular, when targeting Cu, Zn, Cd, etc. dissolved in environmental water in the form of divalent cations, the affinity of metals is expected to increase due to the negative charge of acidic amino acids (E, D).
  • the sequence of lOObp in the domain partial DNA sequence was cloned by PCR, and for domains below that, An annealing method was used, in which two complementary synthetic oligo DNAs were cloned by annealing (assembled to form double-stranded DNA in a test tube).
  • the construction of the construct for presenting the endogenous peptide was performed in the same manner as the artificial peptide. However, the restriction enzyme site was modified to become Xbd- (endogenous MBP) -SpeI.
  • the DNA encoding the putative metal binding domain was subcloned into a vector that was displayed on the surface of a cell line of Neuromonas, and ICP emission analysis was performed in the same manner as in the artificial metal binding domain experiment. Based on the results, a binding domain specific for the target heavy metal was selected. Table 5 below shows the endogenous peptides of Halomonas used in the experiment.
  • the metal binding ability was evaluated in the same manner as in the case of the artificially estimated metal peptide. That is, in order to select metal-binding domains useful for heavy metal purification and metal resource recovery in high-salt alkaline environments, endogenous metal-binding peptides in high-salt alkaline environments (6% NaC or 3% The metal binding ability in NaCl, pH 8.4, 20 ⁇ Cu / Cd / Zn) was examined.
  • FIG. Figure 20-1 shows the results of ICP analysis in the presence of 6% NaCl
  • Figure 20-2 shows the results of ICP analysis in the presence of 3% NaCl.
  • evaluation of metal-binding activity by presenting 5 types of putative metal-binding domains of endogenous proteins rich in Cys that are adjacent to acidic amino acids with selected genome information ability on the surface of Neuromonas. did.
  • ICP emission analysis was performed as described in the above section 1 2) Evaluation of metal binding properties of artificial metal binding domain. However, after culturing under pH 8.4, 6% NaCl, MJS medium with 3 metals (Zn, Cd, Cu) added at 25 / zM, cells were collected and washed with 1.2M sorbitol solution. And subjected to ICP emission analysis.
  • the amount of binding increased with the increase in the number of copies of the metal binding domain. It was shown that there is a tendency to increase. However, under the current conditions, it was shown that there is a threshold for copper binding capacity under the conditions of 2 copies for EC6 and 3 copies for DC6.
  • the abbreviations used are as follows.
  • the cell surface engineering developed by the present invention makes it possible to increase the efficiency of metal purification while maintaining the metal resistance of halomonas, and the increase in biomass due to metal resistance of halomonas and the metal due to the metal binding peptide presented.
  • a synergistic effect is expected from the increase in the amount of purifier. Therefore, combining properties of halomonas with cell surface engineering makes it possible to develop properties that have never existed before. It was also shown that the specificity of metal binding can be controlled by changing the salt concentration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

 配列番号1、2、3および4からなる群から選択されるアミノ酸配列からなるタンパク質、該タンパク質をコードするDNAを含む組換えベクターを提供する。さらに、配列番号9を含む金属結合ペプチドおよびタンパク質を提供する。本発明により、高塩濃度においても機能しうる、細菌表面に所望のタンパク質またはペプチドを提示するディスプレーシステム、および新規な重金属結合ペプチドが提供される。

Description

グラム陰性細菌の細胞表層発現システム
技術分野
[0001] 本発明は、グラム陰性細菌の細胞表層に所望のタンパク質またはペプチドを提示さ せるためのタンパク質、該タンパク質をコードする遺伝子、該遺伝子を含む組換えべ クタ一に関する。本発明はまた、グラム陰性細菌の細胞表層に所望のタンパク質また はペプチドを発現させる方法および該方法により得られる所望のタンパク質またはべ プチドを表層に提示するグラム陰性細菌に関する。
[0002] 本発明はさらに、重金属に対する結合能を有するペプチドおよびタンパク質に関す る。
背景技術
[0003] 近年、酵母や細菌の細胞表層に所望の有用タンパク質またはペプチドを発現させ る、細胞表層ディスプレー技術が注目されている(特許文献 1)。特にここ数年間、細 菌の表面上に所望のタンパク質またはペプチドを提示させる技術が研究の対象とな つてきている。組換え DNA技術を用いた、広範な種類のタンパク質またはペプチドの 細菌表層での提示を可能にする技術の開発が進んできている。
[0004] 細菌の表面にタンパク質をディスプレーすることが出来るタンパク質としては、 Omp A、 OmpS、 OmpC、 LamBおよび PhoE等様々なものが知られており(非特許文献 1、非 特許文献 2)、力かる膜タンパク質を用いて所望のタンパク質またはペプチドを細菌 表面にディスプレーするシステムは、ワクチン開発、生物触媒、スクリーニングなどに 有用である。
[0005] さらなる用途として、例えば、重金属などの有害物質に結合するタンパク質または ペプチドを表面に提示させた細菌を用いた、環境浄ィ匕 (バイオレメディエーシヨン)が 考えられる。
[0006] 重金属などに汚染された土壌には、塩類が同時に蓄積していることが多い。また、 海水汚染物質をバイオレメディエーシヨンによって除くには、高塩濃度においても生 育可能な微生物を用いる必要がある。 [0007] 高塩濃度においても生育可能な微生物として、グラム陰性細菌のハロモナス属の 細菌が挙げられる。ハロモナスはェクトインと呼ばれる適合溶質を細胞内に蓄積する ことにより、高塩濃度に対する耐性を獲得している。しかし、ハロモナス属を初めとす る、好塩性細菌の表面にタンパク質を提示するディスプレー技術は 、まだ確立され ていない。
[0008] グラム陰性細菌の細胞壁は、細胞質側から順に、内膜、ペリブラズム空間そして外 膜から構成されている。グラム陰性細菌である大腸菌については、細胞表面、即ち外 膜へのタンパク質の輸送機構にっ 、てはある程度研究が進んで 、る。
[0009] 一方、工業廃水、農業廃水等が原因で深刻化している水系の重金属汚染に対して 、生物を用いたバイオレメディエーシヨン技術に期待が寄せられている。現状では組 換え大腸菌を用いたバイオレメディエーシヨン技術の開発研究が主流であり、種々の 金属結合性ペプチドを細胞表層に提示することで、重金属の回収効率を高める研究 が勢力的に進められている。しかしながら、実際に汚染が深刻な海水や蒸散池など の高塩濃度かつアルカリ性環境におけるバイオレメディエーシヨンに組換え大腸菌を 適用することは難しい。
特許文献 1 :特開 2005— 312426号公報
非特干文献 1: Wernerus H. and Stahl S. REVIEW Biotechnological applications for s urface- engineered bacteria. Biotechnol. Appl. Biochem. (2004)40, 209-228 非特許文献 2 : Tokuda H, Matsuyama S. Sorting of lipoproteins to the outer membra ne in E.coli. Biochim. Biophys. Acta. (2004)1693:5—13
発明の開示
発明が解決しょうとする課題
[0010] したがって本発明は、高塩濃度においても機能しうる、細菌表面に所望のタンパク 質またはペプチドを提示するディスプレーシステムを開発することを目的とする。
[0011] さらに、本発明は、ハロモナス内の Cu/Cd/Zn結合タンパク質を探索し、金属結合 ペプチドおよびそれを含む金属結合タンパク質を取得することを目的とする。
[0012] 本発明はまた、高塩濃度かつアルカリ性環境下における重金属浄ィ匕技術への応用 を目指した、金属結合ドメインを細胞表層に提示したァーミングハロモナス細胞を作 製することを目的とする。
課題を解決するための手段
[0013] 本発明者は、所望のタンパク質またはペプチドを表面に提示するために利用可能 なタンパク質を同定し、該タンパク質をコードする遺伝子を単離した。その結果得られ た遺伝子と所望のタンパク質をコードする遺伝子をインフレームにて融合させ、実際 にグラム陰性細菌で発現させることにより、細菌表面上に所望のペプチドを提示する ことに成功した。
[0014] 即ち本発明は、以下の (a)または (b)のタンパク質を提供する:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[0015] さらに本発明は、以下の (a)または (b)のタンパク質をコードする遺伝子:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質 および、以下の (c)または (d)の遺伝子を提供する:
(c)配列番号 5、 6、 7および 8からなる群力も選択される塩基配列からなる DNA、
(d) (c)の塩基配列力 なる DNAと相補的な塩基配列力 なる DNAとストリンジ ントな 条件下でノ、イブリダィズし、かつ、グラム陰性細菌で発現させた際に、 C末端がグラム 陰性細菌の外膜に位置するタンパク質をコードする DNA。
[0016] 本発明はまた、以下の (a)または (b)のタンパク質をコードする核酸を含む組換えべク ターであって、該核酸の下流に、インフレームにて目的タンパク質またはペプチドをコ ードする核酸を挿入して用いられる、 目的タンパク質またはペプチドをグラム陰性細 菌外膜表面に提示させるための組換えベクターを提供する:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[0017] さらに本発明は、以下の (a)または (b)のタンパク質の C末端に目的タンパク質または ペプチドを融合させた融合タンパク質をコードする核酸を含み、グラム陰性細菌に形 質転換し、該融合タンパク質を発現させると目的タンパク質またはペプチドがグラム 陰性細菌の外膜表面に提示される、グラム陰性細菌の外膜表面に目的タンパク質ま たはペプチドを提示させるための組換えベクターを提供する:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[0018] さらに本発明は、
以下の (a)または (b)のタンパク質の C末端に目的タンパク質またはペプチドを融合さ せた融合タンパク質をコードする核酸を含む組換えベクターを作成する工程、 該組換えベクターをグラム陰性細菌に形質転換し、該融合タンパク質を発現させる 工程、
を含む、 目的タンパク質またはペプチドをグラム陰性細菌の外膜表面に提示する方 法を提供する:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質; (b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[0019] さらに本発明は、以下の (a)または (b)のタンパク質を含む、外膜表面に目的タンパク 質またはペプチドを提示したグラム陰性細菌を提供する:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[0020] 本発明にお 、て、 目的タンパク質またはペプチドは特に限定されな 、が、例えば、 金属結合タンパク質、金属結合ペプチド、抗原または酵素であり、特に金属結合タン パク質または金属結合ペプチドが好ましい。また、 目的タンパク質またはペプチドとし て、スクリーニングされるべき複数のタンパク質またはペプチドも例示される。この場 合、複数のタンパク質またはペプチドを提示したグラム陰性細菌のプールは、種々の スクリーニングされるべきタンパク質またはペプチドをその表面に発現するため、発現 ライブラリ一として有用である。
[0021] 本発明において、グラム陰性細菌は好ましくは好塩菌であり、さらに好ましくはハロ モナス属の細菌であり、特にハロモナス'エロンガータ(Halomonas elongata)が好まし い。
[0022] 本発明者はさらに、実際に汚染が深刻な海水や蒸散池などの高塩濃度かつアル力 リ性環境におけるバイオレメディエーシヨンに組換え大腸菌を適用することは難しいこ と力 、 0.3〜21% NaClという広い範囲の塩ストレス下で生存可能な好塩性細菌ハロ モナス.ェロンガータ(Halomonas elongata,以下単にハロモナスとも称する)を用いた ノィォレメディエーシヨン技術の開発研究を行うことにより、金属結合能を有するぺプ チドを見いだした。 [0023] 本発明は、配列番号 9の配列を少なくとも 1つ含む、銅、亜鉛およびカドミウム力 な る群力も選択される重金属の少なくとも 1種に対する結合能を有するタンパク質を提 供する:
XCXCXCXCXCXC (配列番号 9)
[式中、 Cはシスティン、 Xはいずれのアミノ酸であってもよい]。
[0024] 好ましくは、上記タンパク質において、配列番号 9における、 Xは、グルタミン酸 (E)ま たはァスパラギン酸 (D)である。
[0025] 好ましくは、上記タンパク質において、「少なくとも 1つ」とは、 1〜4つである。
[0026] 本発明は、また、配列番号 9の配列力もなる、銅、亜鉛およびカドミウム力もなる群 から選択される重金属の少なくとも 1種に対する結合能を有するペプチドを提供する
XCXCXCXCXCXC (配列番号 9)
[式中、 Cはシスティン、 Xはいずれのアミノ酸であってもよい]。
[0027] 好ましくは、上記ペプチドにおいて、配列番号 9における、 Xは、グルタミン酸 (E)ま たはァスパラギン酸 (D)である。
[0028] 本発明はさらに、配列番号 10、配列番号 11または配列番号 12の配列力もなる、銅
、亜鉛およびカドミウム力 なる群力 選択される重金属の少なくとも 1種に対する結 合能を有するペプチドを提供する。好ましくはこれらペプチドはハロモナス由来のも のである。
[0029] 本発明はさらに、配列番号 10、配列番号 11または配列番号 12の配列を含む、銅
、亜鉛およびカドミウム力 なる群力 選択される重金属の少なくとも 1種に対する結 合能を有するタンパク質を提供する。
[0030] 本発明はさらに、以下の (e)または (Dいずれかのタンパク質を提供する:
(e)配列番号 13、 14および 15からなる群力も選択されるアミノ酸配列力もなるタンパク 質;
(1)配列番号 13、 14および 15からなる群力も選択されるアミノ酸配列力もなるタンパク 質において、 1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列 からなり、かつ、銅、亜鉛およびカドミウム力もなる群力も選択される重金属の少なくと も 1種に対する結合能を有するタンパク質。
ここで、配列番号 13、 14および 15のアミノ酸配列力もなるタンパク質は、配列番号 10、配列番号 11または配列番号 12の配列を含む。
[0031] 本発明はさらに、上記重金属に対する結合能を有するタンパク質またはペプチドを 細胞表面に提示する、ハロモナス属細菌を提供する。
発明の効果
[0032] 本発明により、細菌表面に所望のタンパク質またはペプチドを提示するディスプレ 一システムが提供される。かかるディスプレーシステムは、高塩環境下での環境浄ィ匕 をはじめ、ワクチン開発、生物触媒開発、スクリーニングシステム等、種々の用途に応 用が可能である。
[0033] 本発明により、銅、亜鉛およびカドミウム力もなる群力も選択される重金属の少なくと も 1種に対する結合能を有するペプチドおよびタンパク質が提供される。これら金属 結合能を有するペプチドおよびタンパク質はそれ自体、および、ハロモナスなどの細 菌表面に提示させることにより、重金属による汚染を浄ィ匕するバイオレメディエーショ ンに有用である。特に、本発明によるハロモナス由来の重金属結合ペプチドをノヽロモ ナスに提示させることにより、セルフクローニング型の環境浄ィ匕用細菌が得られる。 図面の簡単な説明
[0034] [図 1]図 1は、ハロモナスが高塩アルカリ環境下で金属耐性を示すことを表すグラフで ある。
[図 2]図 2は、大腸菌による金属浄ィ匕の pHによる影響を示すグラフである。
[図 3]図 3は、ハロモナスによる金属浄ィ匕の pHによる影響を示すグラフである。
[図 4]図 4は、ハロモナスが高 pH条件下で Cd/Cuを蓄積することを示すグラフである。
[図 5-1]図 5— 1は、プラスミド pET- HeLipopORFl- HAの設計を示す図である。
[図 5- 2]図 5— 2は、プラスミド pET- HeLipopORF4- HAの設計を示す図である。
[図 5- 3]図 5— 3は、プラスミド pET- HeLipopORF5- HAの設計を示す図である。
[図 5- 4]図 5— 4は、プラスミド pET- HeLipopORF13- HAの設計を示す図である。
[図 5- 5]図 5— 5は、プラスミド pET- HeLipopORF15- HAの設計を示す図である。
[図 5- 6]図 5— 6は、プラスミド pET- HeLipopORF16- HAの設計を示す図である。 [図 5- 7]図 5— 7は、プラスミド pHS15N- HeLipop5- EC8の設計を示す図である。
[図 5- 8]図 5— 8は、プラスミド pET- FLAG- EC8- EGFPの設計を示す図である。
[図 6]図 6は、大腸菌における HeLipopORF-HA融合タンパク質の発現を示す図であ る。
[図 7]図 7は、大腸菌外膜表面における HeLipopORF-HA融合タンパク質の発現を示 す免疫蛍光染色の結果を示す図である。
[図 8]図 8は、上パネルは大腸菌における HeLipopORF(lおよび 5)- HA融合タンパク 質の発現を示す免疫蛍光の結果を示す図であり、下パネルは融合タンパク質の外膜 局在パターンを示す模式図である。
[図 9]図 9は、 pHS15からの pHS15Nベクターの構築を示す図である。
[図 10]図 10は、大腸菌およびハロモナスにおける PHS15N- HeLipopORF- HAからの 融合タンパク質の発現を示す図である。
[図 11]図 11は、ハロモナス表面における HeLipopORF-HA融合タンパク質の発現を 示す免疫蛍光の結果を示す図である。
[図 12]図 12は、ハロモナスにおける HeLipop5-EC8融合タンパク質の発現を示す図 である。
[図 13]図 13は、 EC8を外膜表面に提示するハロモナスによる金属の蓄積を示す図で ある。
[図 14]図 14は、合成金属 プチドの構造を示す。
[図 15- 1]図 15 - - 1は、 pET- - Helipop5- HAの構造を示す。
[図 15-2]図 15- - 2は、 pET- - Helipop5- (EC6)- HAの構造を示す。
[図 15-3]図 15- - 3は、 pET- - Helipop5- (DC6)- HAの構造を示す。
[図 15- 4]図 15- -4は、 pET- - Helipop5- (GC6)- HAの構造を示す。
[図 15-5]図 15- - 5は、 pET- - Helipop5- (HC6)- HAの構造を示す。
[図 15- 6]図 15- -6は、 pET- - Helipop5- (HD6)- HAの構造を示す。
[図 15-7]図 15- - 7は、 pET- - Helipop5- (HE6)- HAの構造を示す。
[図 15-8]図 15- -8は、 pET- - Helipop5- (HG6)- HAの構造を示す。
[図 15- 9]図 15- - 9は、 pET- -Helipop5-(H 12)-HAの構造を示す。 [図 16- 1]図 16— 1は、 Spel- MBP- Nhel断片を示す。
[図 16-2]図 16— 2は、 Spel- MBP- Nhel断片を示す。
[図 17]図 17は、合成 MBPを提示するハロモナスの金属蓄積量を示す。
[図 18]図 18は、多重合成 MBPを提示するハロモナスの発現タンパク質の SDS-PAGE とウェスタンブロッテイングの結果を示す。
[図 19- 1]図 19— 1は、 Cysリッチなハロモナス ORFによりコードされるアミノ酸配列を示 す。
[図 19- 2]図 19 2は、 Cysリッチなハロモナス ORFによりコードされるアミノ酸配列を示 す。
[図 19- 3]図 19 3は、 Cysリッチなハロモナス ORFによりコードされるアミノ酸配列を示 す。
[図 19- 4]図 19— 4は、 Cysリッチなハロモナス ORFによりコードされるアミノ酸配列を示 す。
[図 19- 5]図 19 5は、 Cysリッチなハロモナス ORFによりコードされるアミノ酸配列を示 す。
[図 20-1]図 20— 1は、 6%NaCl下での各 MBPを提示するハロモナスの金属蓄積量を 示す。
[図 20- 2]図 20— 2は、 3%NaCl下での各 MBPを提示するハロモナスの金属蓄積量を 示す。
[図 21]図 21は、多重人工金属結合ドメインを提示するハロモナスの金属蓄積量を示 す。
発明を実施するための最良の形態
本発明のタンパク質
本発明のタンパク質は、以下の (a)または (b)のタンパク質である:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の c末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[0036] 本発明のタンパク質としては、以下の (b')のタンパク質も挙げられる。
(b')配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列に対して、 80% 以上の相同性を有するアミノ酸配列からなり、かつ、その C末端がグラム陰性細菌で 発現させた場合に該細菌の外膜に位置するタンパク質。
[0037] 本発明において、(a)の配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸 配列からなるタンパク質は、グラム陰性細菌において発現させた場合にその C末端が 外膜表層に位置するタンパク質であり、それぞれ、 HeLipop4 (配列番号 1)、 HeLipop 5 (配列番号 2)、 HeLipop 15 (配列番号 3)および HeLipopl6 (配列番号 4)と称する。
[0038] (a)の配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列からなるタン パク質を得るために、本発明者は、ハロモナス'エロンガータ OUT30018株(野生型) のゲノム配列に含まれる ORFの中から、リポボックス配列を有するものを選択し、実際 にグラム陰性細菌で発現させて、その C末端がグラム陰性細菌の外膜に局在すること を確認したものである。
[0039] 本発明の、 (b)のタンパク質は、「その C末端がグラム陰性細菌で発現させた場合に 該細菌の外膜に位置する」という (a)のタンパク質の機能が失われない程度にアミノ酸 変異 (欠失、置換、付加)が起こっているタンパク質である。このような変異には、自然 界において生じる変異の他に、人為的な変異も含まれる。人為的な変異を生じさせる 手段としては、部位特異的突然変異誘発法(Nucleic Acids Res. 10, 6487-6500, 198 2)が挙げられるがこれに限定されるわけではない。変異 (欠失、置換、付加)したアミノ 酸の数は、上記 (a)のタンパク質の機能が失われない限りその個数は制限されないが 、好ましくは 10アミノ酸以内であり、さらに好ましくは 5アミノ酸以内である。
[0040] (b')のタンパク質も、「その C末端がグラム陰性細菌で発現させた場合に該細菌の外 膜に位置する」 t ヽぅ (a)のタンパク質の機能が失われな 、程度の (a)のタンパク質に対 する相同性を有するタンパク質である。相同性は、 80%以上が好ましぐ 90%以上が 特に好ましい。
[0041] 本発明にお!/、て「相同性」とは、 2つのポリペプチドあるいはポリヌクレオチド間の配 列の類似の程度を意味し、比較対象のアミノ酸配列または塩基配列の領域にわたつ て最適な状態 (配列の一致が最大となる状態)にアラインメントされた 2つの配列を比 較することにより決定される。相同性の数値 (%)は両方の(アミノ酸または塩基)配列 に存在する同一のアミノ酸または塩基を決定して、適合部位の数を決定し、次いでこ の適合部位の数を比較対象の配列領域内のアミノ酸または塩基の総数で割り、得ら れた数値に 100をかけることにより算出される。最適なアラインメントおよび相同性を得 るためのアルゴリズムとしては当業者が通常利用可能な種々のアルゴリズム (例えば 、 BLASTアルゴリズム、 FASTAアルゴリズムなど)が挙げられる。アミノ酸配列の相同 性は、例えば BLASTP、 FASTAなどの配列解析ソフトウェアを用いて決定される。塩 基配列の相同性は、 BLASTN、 FASTAなどのソフトウェアを用いて決定される。
[0042] 本明細書で用いる「ポリペプチド」という用語はアミノ酸の重合体を指し、便宜的に「 タンパク質」なる語を比較的長 、ポリペプチド、「ペプチド」なる語を比較的短 ヽポリべ プチドを示すように用いて 、るが、これらはアミノ酸残基の数を限定するわけではな ヽ 。したがって、「ポリペプチド」、「ペプチド」、および「タンパク質」は、いずれもポリぺプ チドの定義内に含まれる。「タンパク質またはペプチド」はあらゆる長さのポリペプチド を包含する概念である。
[0043] 本発明のタンパク質の機能である、「その C末端がグラム陰性細菌で発現させた場 合に該細菌の外膜に位置する」ことの確認方法は、例えば、実施例に記載のように、 機能を確認すべきタンパク質の C末端に HAタグを付加すること等により、 C末端を標 識したタンパク質を発現するコンストラクトを構築し、該コンストラクトを大腸菌などのグ ラム陰性細菌に導入して発現させ、細胞表面に C末端標識が存在しているかを確認 することにより行う。例えば HAタグを C末端に付加したタンパク質は、蛍光標識した抗 HA抗体を細胞表面と接触させ、表面に蛍光が検出される力否かによって、その C末 端が表面に提示されて 、る力否かが決定される。
[0044] 本発明の遺伝子
本発明の遺伝子は、以下の (a)または (b)のタンパク質をコードする遺伝子: (a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質; (b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質 および、以下の (c)または (d)の遺伝子である:
(c)配列番号 5、 6、 7および 8からなる群力も選択される塩基配列からなる DNA、
(d) (c)の塩基配列力 なる DNAと相補的な塩基配列力 なる DNAとストリンジ ントな 条件下でノ、イブリダィズし、かつ、グラム陰性細菌で発現させた際に、 C末端がグラム 陰性細菌の外膜に位置するタンパク質をコードする DNA。
[0045] さらに本発明の遺伝子としては、以下の (d')の遺伝子も挙げられる。
(d')配列番号 5、 6、 7および 8からなる群力 選択される塩基配列に対して、 80%以 上の相同性を有する塩基配列からなり、かつ、グラム陰性細菌で発現させた場合に C 末端が該細菌の外膜に位置するタンパク質をコードする DNA。
[0046] 本発明の遺伝子の記載において、(a)の配列番号 1、 2、 3および 4力 なる群力 選 択されるアミノ酸配列力もなるタンパク質は、本発明のタンパク質の項について記載 したとおりである。同様に、 (b)のタンパク質も、本発明のタンパク質の項について記 載したとおりである。
[0047] 本発明にお 、て、(c)の配列番号 5、 6、 7および 8からなる群から選択される塩基配 列からなる DNAは、ハロモナス'エロンガータ OUT30018株(野生型)のゲノム配列に 含まれる ORF由来であり、前記 (a)のタンパク質、即ちそれぞれ HeLipop4 (配列番号 1 )、 HeLipop5 (配列番号 2)、 HeLipopl5 (配列番号 3)および HeLipopl6 (配列番号 4) をコードする遺伝子である。即ち配列番号 5の DNAは HeLipop4、配列番号 6の DNA は HeLipop5、配列番号 7の DNAは HeLipopl5、配列番号 8の DNAは HeLipopl6をコ ードする。
[0048] また、本発明の (d)の遺伝子は、(c)の塩基配列力もなる DNAと相補的な塩基配列か らなる DNAとストリンジェントな条件下でノヽイブリダィズし、かつ、グラム陰性細菌で発 現させた際に、 C末端がグラム陰性細菌の外膜に位置するタンパク質をコードする D NAからなる。即ち (d)の遺伝子は、「その C末端がグラム陰性細菌で発現させた場合 に該細菌の外膜に位置する」 t 、う (a)のタンパク質の機能を保持するタンパク質をコ ードする。
[0049] ここで、ストリンジェントな条件とは、特異的なハイブリダィゼーシヨンのみが起こり、 非特異的なノ、イブリダィゼーシヨンが起きないような条件をいう。このような条件は、通 常、 0.2xSSC、 0.1%SDS、 65°C程度である。ハイブリダィゼーシヨンにより得られる DNA は (c)の塩基配列力もなる DNAと 80%以上の高い相同性を有することが望ましぐさらに 90%以上の相同性を有することが好まし!/、。
[0050] (d')の DNAは、「その C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に 位置する」という (a)のタンパク質の機能が失われないようなタンパク質をコードし、 つ、
(c)の遺伝子に対して、 80%以上の相同性を有する塩基配列力 なる DNAである。相 同性の程度は、 80%以上が好ましぐ 90%以上が特に好ましい。
ここで「相同性」については本発明のタンパク質の項に記載したとおりである。
[0051] 本発明の遺伝子によってコードされるタンパク質の「その C末端がグラム陰性細菌 で発現させた場合に該細菌の外膜に位置する」機能の確認方法は、本発明のタンパ ク質の項に記載したとおりである。
[0052] 本発明の遺伝子は、ハロモナス属細菌を含むグラム陰性細菌のゲノムから、当業者 に周知の PCRまたはハイブリダィゼーシヨン技術によって取得することが可能であり、 あるいは DNA合成機などを用いて人工的に合成してもよ 、。配列の決定は常套方法 により配列決定機を用いて行うことが出来る。
[0053] 本発明の組換えベクター
(1)発現カセットとしての組換えベクター
本発明は、以下の (a)または (b)のタンパク質をコードする核酸を含む組換えベクター であって、該核酸の下流に、インフレームにて目的タンパク質またはペプチドをコード する核酸を挿入して用いられる、 目的タンパク質またはペプチドをグラム陰性細菌外 膜表面に提示させるための組換えベクターを提供する:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質; (b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[0054] 本発明の該組換えベクターは、(a)または (b)のタンパク質をコードする核酸を含む組 換えベクターであり、ここで (a)または (b)のタンパク質については上記した通りである。 該組換えベクターは (a)または (b)のタンパク質をコードする核酸の下流に、 目的タンパ ク質またはペプチドをコードする核酸をインフレームにて挿入可能な便宜な制限酵素 部位を有する。該組換えベクターは目的タンパク質またはペプチドの細菌表面発現 用のカセットとして機能する。即ち、 目的タンパク質またはペプチドをコードする核酸 を、該組換えベクター中の (a)または (b)のタンパク質をコードする核酸の下流、即ち C 末端側に、インフレームにて挿入して得られたコンストラクトをグラム陰性細菌に導入 し、発現させると (a)または (b)のタンパク質の C末端に目的タンパク質またはペプチド が融合した融合タンパク質が発現し、その結果、 目的タンパク質またはペプチドは細 菌表面に提示される。
[0055] 上記の核酸が導入される発現ベクターとしては、宿主グラム陰性細菌内で自律的 に複製しうるプラスミドまたはファージカも遺伝子組換え用として構築されたものが適 している。ベクターは、導入されるグラム陰性細菌に適合した複製開始起点、選択可 能なマーカー、プロモーター等の発現制御配列、ターミネータ一を含むのが好ましい 。プラスミドベクターとしては、例えば大腸菌で発現させる場合は、 pET系ベクター、 p ET15bが挙げられ、ハロモナス属細菌で発現させる場合は、 pHS系ベクター、 pHS15 が挙げられ、好ましくは pHS15Nである。ファージベクターとしてはえファージベクター などが挙げられる。特に PHS15系ベクターは大腸菌とハロモナス属細菌の両方で機 能しうるシャトルベクターであるため好ま U、。
[0056] 選択可能なマーカーとしては、アンピシリン耐性遺伝子、ストレプトマイシン耐性遺 伝子などの抗生物質耐性遺伝子が挙げられる。
[0057] 本発明の発現ベクターは、発現制御配列を含むものが好ま 、。発現制御配列と は、 DNA配列に適切に連結した場合、グラム陰性細菌において、その DNA配列を発 現させることが出来る配列を意味する。発現制御配列には少なくともプロモーターが 含まれる。プロモーターは構成的プロモーターであっても誘導可能なプロモーターで あってもよい。さらに該発現べクタ一には転写終結シグナル、即ちターミネーター領 域が好ましくは含まれる。
[0058] 本発明の発現ベクターは、(a)または (b)のタンパク質と目的タンパク質またはべプチ ドとの融合タンパク質をコードするキメラ DNAの構築を容易にするために、(a)または (b )のタンパク質をコードする核酸の末端に、常法により適当な制限酵素認識部位を付 加することにより作成することが出来る。
[0059] (2)本発明のタンパク質と目的タンパク質またはペプチドとの融合タンパク質を発現 する組換えベクター
本発明はまた、以下の (a)または (b)のタンパク質の C末端に目的タンパク質またはべ プチドを融合させた融合タンパク質をコードする核酸を含み、グラム陰性細菌に形質 転換し、該融合タンパク質を発現させると目的タンパク質またはペプチドがグラム陰 性細菌の外膜表面に提示される、グラム陰性細菌の外膜表面に目的タンパク質また はペプチドを提示させるための組換えベクターを提供する:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[0060] 該組換えベクターは上記第(1)の組換えベクターに、 目的タンパク質またはべプチ ドをコードする核酸を導入したものである。即ち、上記第(1)の組換えベクターにおけ る、(a)または (b)のタンパク質をコードする核酸の下流にインフレームにて目的タンパ ク質またはペプチドをコードする核酸の断片を導入したものであって、グラム陰性細 菌に導入して発現させると、(a)または (b)のタンパク質の C末端に目的タンパク質また はペプチドが融合した融合タンパク質が発現し、細菌表面に目的タンパク質または ペプチドが提示される。 [0061] 目的タンパク質またはペプチドは、特に限定されず、金属結合タンパク質、金属結 合ペプチド、酵素、抗原などが挙げられる。例えば、金属結合タンパク質または金属 結合ペプチドとしては、金属シャペロン、合成ファイトケラチンなどが挙げられ、これを 細菌表面に提示することにより、環境浄ィ匕細菌が得られる。酵素を提示した細胞は、 ノィォカタリストとして機能する。抗原を提示した細胞は、ワクチンとして使用できる。 さらに、複数のタンパク質またはペプチドのプールを (a)または (b)のタンパク質の C末 端に提示させることにより、細菌表面スクリーニングライブラリーが得られる。
[0062] 目的タンパク質またはペプチドの起源は宿主として用いる細菌に対して異種のもの であってもよいし、宿主として用いる細菌由来のものであってもよい。後者の場合、宿 主細菌に天然に内在するタンパク質またはペプチドが提示されるセルフクローユング 型の細胞が得られ、特に環境問題を考慮すると好まし 、。
[0063] 本発明の目的タンパク質またはペプチドを表面に提示させる方法
本発明は、
以下の (a)または (b)のタンパク質の C末端に目的タンパク質またはペプチドを融合さ せた融合タンパク質をコードする核酸を含む組換えベクターを作成する工程、 該組換えベクターをグラム陰性細菌に形質転換し、該融合タンパク質を発現させる 工程、
を含む、 目的タンパク質またはペプチドをグラム陰性細菌の外膜表面に提示する方 法を提供する:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[0064] 糸且換えベクターの作成については上記の通りである。
組換えベクターのグラム陰性細菌への形質転換方法としては、従来公知の方法を 用いることが出来、例えば、塩化カルシウム法、コンビテント法、 3親接合 (triparental mating)法、エレクト口ポレーシヨン法などが挙げられる。
[0065] 融合タンパク質を発現させる方法は遺伝子工学の常法に基づ 、て行うことが出来 る。グラム陰性細菌に用いられるベクターの情報や外来遺伝子の導入、発現方法は 多くの実験書に記載されている(例えば、 Sambrook, J.et al, Molecular Cloning A La boratory Manual 3rd Edition, CSHL Press, 2001)。
[0066] 用いる宿主はグラム陰性細菌であれば特に限定されず、大腸菌、ハロモナス属細 菌、シユードモナス属細菌などが挙げられる。好ましくは好塩菌であり、さらに好ましく はハロモナス属細菌である。本実施例にお 、て用いたハロモナス ·ェロンガータ OUT 30018株は、産業技術総合研究所特許生物寄託センター(IPOD)に受託番号 FERM BP- 4841 (試料名 Halomonas KS3)にて国際寄託されている。
[0067] 形質転換体である宿主細菌の培養形態は、宿主の栄養生理学的性質を考慮して 培養条件を適宜選択すればよぐ通常液体培養で行われる。培地の炭素源としては 、グルコース、グリセロールなどが挙げられ、窒素源としては硫酸アンモ-ゥム、カザミ ノ酸などが挙げられる。その他、塩類、特定のアミノ酸、特定のビタミンなどを所望に より使用できる。
[0068] 培養温度は宿主微生物が成育し、 目的タンパク質またはペプチドを提示する範囲 で適宜変更できるが、一般に大腸菌の場合、温度 37°C、 12時間、 pH7.2の培養条件 でよい。また、ハロモナス'エロンガータの場合、 37°C、 24時間、 pH7.2または 8.4の培 養条件でよい。
[0069] 目的タンパク質またはペプチドの発現は、該タンパク質またはペプチドの性質を利 用して確認すればよい。例えば目的タンパク質またはペプチドが金属結合タンパク 質または金属結合ペプチドの場合、形質転換体の金属イオンを浄ィ匕する能力のアツ セィにより確認できる。 目的タンパク質またはペプチドが抗原の場合は、特異的な抗 体を用いて確認することが出来る。 目的タンパク質またはペプチドが酵素の場合は、 菌体を用いて、 目的酵素の基質力 生成物への変換をアツセィすることにより確認す ることが出来る。
[0070] 本発明の目的タンパク質またはペプチドを表面に提示した細菌
本発明はまた、以下の (a)または (b)のタンパク質を含む、外膜表面に目的タンパク 質またはペプチドを提示したグラム陰性細菌を提供する:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[0071] 本発明の外膜表面に目的タンパク質またはペプチドを提示したグラム陰性細菌は、 上記の本発明の (a)または (b)のタンパク質の下流に目的タンパク質またはペプチドが 融合した融合タンパク質をコードする核酸を含む組換えベクターを所望のグラム陰性 細菌に導入することにより得られる。好ましい宿主、好ましい目的タンパク質またはべ プチドについては上記の通りである。
[0072] 本発明の目的タンパク質またはペプチドを提示したグラム陰性細菌は、表面に提示 された目的タンパク質またはペプチドの種類に応じて、環境浄化細菌、ノィォカタリ スト、ワクチン、ライブラリーなどとして利用することが出来る。
[0073] 本発明の金属結合タンパク質および金属結合ペプチド
以上に本発明の細菌表面に所望のタンパク質またはペプチドを提示するタンパク 質等について記載したが、本発明は、上記タンパク質によって提示されるペプチドま たはタンパク質の例として、金属結合ペプチドおよび金属結合タンパク質も提供する
[0074] まず、本発明の金属結合タンパク質は、
配列番号 9の配列を少なくとも 1つ含む、銅、亜鉛およびカドミウム力 なる群力 選 択される重金属の少なくとも 1種に対する結合能を有するタンパク質である:
XCXCXCXCXCXC (配列番号 9)
[式中、 Cはシスティン、 Xはいずれのアミノ酸であってもよい]。
配列番号 9で示される配列は、人工金属結合ペプチドとして有用であることが確認 された。 Xはいずれのアミノ酸であってもよいが、特に Xがグルタミン酸またはァスパラ ギン酸といった酸性アミノ酸であるのが好ましい。また、少なくとも 1つとは特に限定さ れないが、好ましくは 1〜4である。
[0075] 「銅、亜鉛およびカドミウム力 なる群力 選択される重金属の少なくとも 1種に対す る結合能を有するタンパク質」とは、実施例に記載の方法にしたがってそれをコード する遺伝子を導入して、ハロモナス表面に発現させた場合に、遺伝子を導入してい ない野生型のハロモナスと比較して、銅、亜鉛またはカドミウムのいずれか 1種をより 多く菌体に蓄積することができるタンパク質をいう。
[0076] 次に本発明の金属結合ペプチドは、
配列番号 9の配列力 なる、銅、亜鉛およびカドミウム力 なる群力 選択される重金 属の少なくとも 1種に対する結合能を有するペプチドである:
XCXCXCXCXCXC (配列番号 9)
[式中、 Cはシスティン、 Xはいずれのアミノ酸であってもよい]。
配列番号 9で示される配列は、人工金属結合ペプチドとして有用であることが確認 された。 Xはいずれのアミノ酸であってもよいが、特に Xがグルタミン酸またはァスパラ ギン酸と 、つた酸性アミノ酸であるのが好ま U、。特に Xがグルタミン酸である場合は 、銅に対する結合能に優れ、 Xがァスパラギン酸である場合は、銅およびカドミウムに 対する結合能に優れる。
[0077] また、本発明は、
配列番号 10、配列番号 11または配列番号 12の配列からなる、銅、亜鉛およびカドミ ゥムからなる群から選択される重金属の少なくとも 1種に対する結合能を有するぺプ チドを提供する。
これらペプチドは、ハロモナスのゲノム情報から得られたものであり、本発明の、ハロ モナス表面にペプチドを提示させるタンパク質の C末端に結合させ、ハロモナス表面 に提示させると、セルフクローニング型の重金属浄化ハロモナス細菌が得られる。 配列番号 10で示されるペプチドは、銅に対する結合能、 11で示されるペプチドは カドミウムに対する結合能、 12で示されるペプチドは亜鉛に対する結合能が優れて いる。
[0078] さらに本発明は、配列番号 10、配列番号 11または配列番号 12の配列を含む、銅 、亜鉛およびカドミウム力 なる群力 選択される重金属の少なくとも 1種に対する結 合能を有するタンパク質を提供する。力かるタンパク質は、重金属に対する結合能が 優れている、配列番号 10、配列番号 11または配列番号 12の配列を含むため、当然 、タンパク質としても重金属に対する結合能が優れていると考えられる。
[0079] かかるタンパク質のなかでも、以下の (e)または (D 、ずれかのタンパク質が好まし ヽ: (e)配列番号 13、 14および 15からなる群力も選択されるアミノ酸配列力もなるタンパク 質;
(1)配列番号 13、 14および 15からなる群力も選択されるアミノ酸配列力もなるタンパク 質において、 1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列 からなり、かつ、銅、亜鉛およびカドミウム力もなる群力も選択される重金属の少なくと も 1種に対する結合能を有するタンパク質。
[0080] (e)の配列番号 13、 14および 15に示されるアミノ酸配列は、それぞれ配列番号 10、 11および 12に示す金属結合ペプチドを含む、ハロモナス内在性タンパク質を構成 する。配列番号 10、 11および 12に示す金属結合ペプチドの金属結合能から、これ らタンパク質も同様に金属結合能を有するものと考えられる。
[0081] 本発明の (Dのタンパク質は、「銅、亜鉛およびカドミウム力もなる群力も選択される重 金属の少なくとも 1種に対する結合能を有する」という (e)のタンパク質の機能が失わ れない程度にアミノ酸変異 (欠失、置換、付加)が起こっているタンパク質である。この ような変異には、自然界において生じる変異の他に、人為的な変異も含まれる。人為 的な変異を生じさせる手段としては、部位特異的突然変異誘発法 (Nucleic Acids Re s. 10, 6487-6500, 1982)が挙げられるがこれに限定されるわけではない。変異(欠失 、置換、付加)したアミノ酸の数は、上記 (e)のタンパク質の機能が失われない限りその 個数は制限されないが、好ましくは 10アミノ酸以内であり、さらに好ましくは 5アミノ酸 以内である。
[0082] 好ましくは、本発明の上記金属結合タンパク質または金属結合ペプチドはハロモナ ス属細菌の細胞表面に提示される。細胞表面への提示は、本発明の、「C末端がダラ ム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質」の C末端に目 的金属結合タンパク質またはペプチドをコードする遺伝子をインフレームに挿入し、 実施例に記載のようなハロモナス用発現ベクターに組み込んで、ハロモナスを形質 転換すること〖こより達成できる。
実施例
[0083] 好塩性細菌ハロモナス.ェロンガータ(Halomonas elongata)の環境因子に対する挙 動
好塩性細菌ハロモナス'エロンガータ(Halomonas elongata) (以下、単にハロモナス と称する)は、タイ王国東北部の乾燥地域の塩類集積土壌力 同定されたグラム陰性 細菌であり、産業技術総合研究所特許生物寄託センター(IPOD)に受託番号 FERM BP- 4841 (試料名 Halomonas KS3)にて国際寄託されている。
[0084] ハロモナスの、塩、 pH、金属などの環境因子に対する挙動を調査した。
以下の 4種類の条件の培地のそれぞれに、金属塩を追加しない培地 (対照)、 0.5m M ZuSOを追加した培地、 6mM CuSOを追加した培地でハロモナスを 37°Cで振盪培
4 4
養し、その生育を 600nmでの吸光度を測定することにより評価した。ここで使用した培 地は、低リン酸含有の改変 MJS培地(15 mM Tris, 50 mM NaCl, 20 mM NH CI, 1 m
4
M KC1, 1 mM MgCl , 0.1 mM CaCl , 0.05 mM MnCl , 0.8% (wt/vol) Casamino Acids
2 2 2
, 0.4% (vol/vol) glycerol, 0.005% (wt/vol) thiamine)であり、本培地は 15mM Trisを追 加することで室温でおよそ PH8.4になることがわかったので、培地には 15mM Trisを追 加した。また、培地の pHの調整には HC1を用いた。
1) ρΗ7.0、 3% NaCl
2) pH7.0、 6% NaCl
3) pH8.4、 3% NaCl
4) pH8.4、 6% NaCl
[0085] 結果を図 1に示す。この図から、ハロモナスは高塩濃度、高 pH条件で良好に生育 可能なことがわかる。さらに、 Znイオンを追加した培地においても良好に生育し、特に 高塩条件での生育が良好であった。また、 Cuイオンを追加した培地では、高アルカリ 条件で良好な生育を示した。即ち、ハロモナスは高塩濃度かつアルカリ性 pHの環境 で特徴的な金属ストレス応答を示すことが明らかとなった。
[0086] 大腸菌およびハロモナスにおける金属レメディエーシヨンの比較
大腸菌およびノヽロモナスの種々の pHにおける水環境圏の汚染金属である Znと Cd を対象とした金属浄化能力を比較した。 3% NaClを添カ卩し、 pHを 7.2に調整した改変 M JS培地で前培養した大腸菌及びハロモナス細胞の各培養液 25 mLを滅菌 50 mL遠 心管に移しとり、菌体ペレットを遠心分離 (8000 rpm, 1 min)にて回収した。回収菌体 ペレットを 600 mMマン-トール溶液で洗浄した後、 pHを調整した 25 mLの 20 μ Μ Ζη C1および CdClを添カ卩した改変 MJS培地に再懸濁した。さらに懸濁細胞を 37
2 2
°Cで 6時間培養後、菌体ペレットを遠心分離(8000 rpm, 1 min)にて回収し、 100°Cで 12時間で乾固した後、菌体とともに回収された金属を 1M HC1で抽出した。ここで、抽 出溶液中の回収金属量の定量には、 ICP発光分析装置を用いた。
[0087] 結果を図 2 (大腸菌)および図 3 (ハロモナス)に示す。大腸菌ではいずれの pHにお いても Cdイオンと Znイオンの浄化能力は低かった。これに対し、ハロモナスでは、い ずれの pHにおいても Znの浄ィ匕能力は低かった力 Cdイオン浄ィ匕能力は高ぐ pHが 高くなるにつれて Cdイオンを特異的に浄ィ匕することができることが判明した。
[0088] ハロモナスの pH環境に応答した金属蓄積量の変化
上記結果から、好塩性細菌ハロモナスが高塩濃度かつアルカリ性 pHの環境で特徴 的な金属ストレス応答を示すことが明らかになった。さらにハロモナスの金属ストレス に対する生理応答の理解を深めるために、 pH環境に応答した金属蓄積量の変化を 誘導結合プラズマ (ICP)発光分析装置により解析した。
[0089] ICP発光分析
プラスミド PHS15Nの薬剤マーカーとなる抗生物質 60 mg/1ストレプトマイシンをカロえ た 5 ml改変 MJS培地 (3または 6% NaCl, 0.005%チアミン HC1, 0.8%カザミノ酸, 20 mM NH CL, 0.4%グリセロール, 0.05 mM MnCl , 0.1 mM CaCl , 1 mM MgCl 6H O, 1 m
4 2 2 2 2
M KC1, 15 mM Tris)で OD =1.0程度まで 37°Cで振盪培養した菌体の前培養液を準
600
備した。つづいて、 100 mL三角フラスコ内の 60 ml金属含有改変 MJS培地 (60 mg/1 ストレプトマイシン,各 20または 25 μ Μの CdCl , ZnCl , CuCl )に前培養液 600 1 (1
2 2 2
%)を添加し、 37°Cで 12— 24時間(OD =1.0— 1.5程度まで)振盪培養した。培養した
600
菌体を 50 mlチューブに移し、遠心分離 (3000 rpm, 10 min)し、ペレットとして集菌し た。回収した菌体を、 3% NaCl改変 MJS培地条件では 0.6 Mソルビトール、 6% NaCl改 変 MJS培地条件では 1.2 Mソルビトールを用いて洗浄し、再度遠心分離 (3000 rpm, 1 0 min)して集菌した。集菌した菌体を、 100°C, 6 h程度で完全に乾燥させた後、分析 のための前処理として硝酸を用いた酸分解反応行った。菌体に 1.25 ml硝酸 (30%) を加え、 65°C, 10 min, 95°C, 40 minの加熱分解を行った。 95°Cの反応終了後に、 30 %過酸化水素を 500 1加え、余熱で反応させた。最後に反応液を 15 mlチューブに回 収し、 12 mほで MilliQ水でメスアップした。 ICP (Inductively Coupled Plasma)発光分 析装置は、 IRIA Intrepid ICAP (Thermo electron社製)を用いて行った。各金属の波 長は、それぞれ、 Cd2144、 Cu3247、 Zn2062を用いた。定量解析は、 ICP分析装置に 付属の TEVA CID Softwareを用いて行った。
[0090] 海水程度の 3% NaClを追加した改変 MJS培地を使用し、細胞外 pHを変化させた環 境条件下でのハロモナスの Zn/Cd/Cu浄ィ匕能にっ 、て調べた。浄化標的の金属とし て、 20 M ZnCl、 20 M CdCl、 20 M CuClを各々単独で、または 3種を糸且みあわ
2 2 2
せて培地に添加した。用いた条件を以下に示す。
[0091] [表 1]
pH 金属イオン 金属イオン
(単独) (組み合わせ)
7. 2 Znのみ Cdのみ Cuのみ Zn/Cd/Cu
8. 4 Znのみ Cdのみ Cuのみ Zn/Cd/Cu
[0092] 試験はバイオオーダメンテーシヨン(Bioaugmentation;汚染現場に浄化微生物が生 息していない培地に、他で培養した微生物を導入して浄ィ匕する方法)に近い条件で 行った。ハロモナス OUT30018株(野生型)を金属無添カ卩の MJS培地(pH7.2または pH 8.4)で 1Lの培養用フラスコ内で 400mLスケールで培養(37°C、 OD600=1.4程度まで) した後、培養菌液 30mLを金属溶液を添カ卩した 50mLのファルコンチューブに分注した 。次いでロータリーシェーカー内で 37°Cで 6時間培養した後、遠心分離によって菌体 ペレットを回収して洗浄した後、 ICP発光分析用の試料とした。
[0093] 結果を図 4に示す。ハロモナスはアルカリ性 pHにおいて Cdおよび Cuの蓄積量が増 大することが明らかになった。
[0094] ノ、ロモナス外膜に C末端が提示されるリポタンパク質の選抜
大腸菌を用いた研究により、細胞外膜に移行するタンパク質はリポタンパク質であ ると予測される。リポタンパク質の前駆体は N末端にシグナルペプチドを有し、シグナ ルペプチド切断部位近傍にリポボックスと呼ばれる共通配列が存在するということが 知られている。したがって、ハロモナスの解読されているゲノム配列からリポボックス様 配列を有する ORFを選択した。以下に候補リポタンパク質を挙げる。
[表 2]
候楠リポタ リポボックス
O R F 推定切断部位 長さ(bp) 相同遺伝子
ンパク質 様配列
Heし ί popl HE1307 ++ VLAG~CA 303 Opr l
HeL i pop2 HE1359 ++ LLSG~CA 41 7
Heし ί pop3 HE1322 ++ ALAG~CG 492
HeL i ρορ4 HE0995 ++ LLAG~CA 624 Lo l B
Heし i pop5 HE3640 ++ LLVG~CT 669 ompA
Heし i pop6 HE1210 ++ ALSG~CA 780 VacJ
Heし ί pop7 HE0383 ++ LLAG~CA 810 Comし
HeL i ρορδ HE1296 ++ LLAG~CA 909
Heし i pop9 HE2862 ++ ALAG~CA 1107
HeL i popl O HE3609 ++ LLAG~CS 1128
Heし i popl 1 HE3421 ++ LLSG~CA 141 6
HeL i pop12 HE1069 ++ LLAG~CG 1758
Heし i pop13 HE3374 + LVSG~CS 420 smpA/om l A
Heし ί popl 4 HE2236 + TLAG~CA 468 S l yB
Heし ί pop15 HE画 + VLTG~CA 561
Heし ί pop16 HE2636 + WLAG~CS 591
Heし i pop17 HE2243 + MLAG~CA 636
HeL i pop18 HE1 650 + GLSG~CA 813
[0095] 上記候補タンパク質について、大腸菌で HA-タグ融合タンパク質 (即ち候補タンパ ク質の C末端に TAタグが付加したタンパク質)として生産させ、生細胞の表層を HAタ グを利用した免疫蛍光染色することにより C末端が細胞外に提示されたリポタンパク 質の選抜を行った。
[0096] 具体的には、上記表中、 HeLipopl、 4、 5、 13、 15および 16の合計 6種類の推定リポ タンパク質と HAタグの融合タンパク質をコードする組換えベクターを作成した。ベクタ 一には pETを用いた。組換えベクターの構築は以下のように行った。
[0097] HeLipoplにつ!/、ては、 pET15bを用い、その NcoI/BamHI部位へ Ncol- Ndel- HeLipo pi- Spel- HAtag- Xhol- Nhel- BamHIの PCR増幅断片を挿入し、 pET- HeLipopl- HAを 構築した(図 5— 1)。この際、 PCRでゲノムを増幅すると同時に制限酵素部位を付カロ するため、フォワードプライマーに Ncol-Ndel部位を導入し、制限酵素部位と HAタグ を付加するために、リバースプライマーには Spel- HAtag- Xhol- Nhel- BamHI部位を導 入した。 [0098] その他の ORF (HeLipop4、 5、 13、 15および 16)につ!/、ては、 Ndel- HeLipopORF- Sp elの増幅断片を得るように、フォワードプライマーに Ndel部位を導入し、リバースプラ イマ一に Spel部位を導入した。 PCR増幅で得られた Ndel- HeLipopORF- Spel断片の、 Ndelおよび Spel部位を利用して、 pET-HeLipopl-HA(NcoI- Ndel- HeLipopl- Spel- H Atag- Xhol- Nhel- BamHI)を Ndelと Spelで切断し、 HeLipoplの代わりに各 HeLipopOR Fを導入し、それぞれ pET- HeLipop4- HAゝ pET- HeLipop5- HAゝ pET- HeLipopl 3- HA 、 pET— HeLipopl 5— HA、 pET— HeLipopl6— HAのコンストラクト(図 5— 2〜図 5— 6)を 得た。
[0099] 得られた 6つの pET- HeLipopORF- HAベクターを次 、で大腸菌(BL21 (DE3))に導 入した。
大腸菌の形質転換は、常套方法の塩ィ匕カルシウム法によって行った。
[0100] その結果得られた pET-HeLipopORF-HAを有する大腸菌を 37°Cで振盪培養し、 0
D=0.6のときに 0.5 mM IPTGを添カ卩して誘導をかけた。
[0101] 3時間の培養後、菌体を回収し、 PBSバッファー(137 mM NaCl, 2.7 mM KC1, 10 m
M Na HPO , 2 mM KH PO , HC1にて pH 7.4に調整)で回収ペレットを洗浄した後、
2 4 2 4
細胞を再度 PBSバッファーに懸濁して力も氷上で超音波破砕した。得られた超音波 破砕後の溶液は、全タンパク質サンプルとして SDS-PAGE解析やウェスタン解析に 使用した。
[0102] サンプルを常套方法により SDS-PAGEで分析し、 CBB染色およびウェスタンブロッ ティングにより発現を確認した。結果を図 6に示す。ウェスタンプロットの図中、星印は 成熟リポタンパク質を示す。いずれのコンストラクトからも、成熟リポタンパク質が発現 していることが確認された。
[0103] っ 、で、大腸菌での発現が確認された成熟リポタンパク質につ!/ヽて、その C末端が 外膜表面に提示されているのかを確認するため、リポタンパク質の C末端に付加した HAタグに特異的な一次抗体と蛍光標識二次抗体を用いて免疫蛍光染色を行った。 実際の操作としては、 pET-HeLipopORF-HAを有する大腸菌を 37°Cで振盪培養し、 OD=0.6のときに 0.5 mM IPTGを添カ卩して誘導をかけ、 3時間培養後、 2 mLの培養菌 体を遠心分離によって回収し、 2 mL PBSバッファーで回収ペレットを洗浄した。続い て回収ペレット細胞を 2 mL PBS- BSAバッファー (0.1% BSA含有 PBS)に懸濁し、室温 にて 1時間インキュベートして細胞表層タンパク質のブロッキングを行った。ブロッキ ング後、細胞を遠心分離によって回収し、 0.5 mL PBS-BSAに懸濁した後、一次抗体 (ラット抗 HA抗体、 1:500希釈)を添加し、室温にて 1時間インキュベートした。細胞を 遠心分離によって回収し、 1 mL PBS-BSAで 3回洗浄した後、 0.2 mL PBS- BSAに再 懸濁し、蛍光標識用の二次抗体 (Alexa488接合抗ラッ HgG抗体、 1:200希釈)を添カロ し、室温にて 1時間インキュベートした。細胞を遠心分離によって回収し、 1 mL PBS- BSAで 3回洗浄した後、 0.05 mL PBS-BSAに再懸濁し、蛍光顕微鏡下で免疫蛍光染 色された細胞を観察した。
[0104] 結果を図 7に示す。 HeLipop4、 5、 15および 16の 4種類のリポタンパク質の C末端に 付加した HAタグが免疫蛍光によって染色され、該タンパク質が細胞表層ディスプレ 一システムの基盤タンパク質として利用可能であることが示された (HeLipoplおよび 1 3の C末端はペリプラズム側に配向していると考えられる。この点について、図 8を参 照)。
[0105] 改変型ハロモナス Z大腸菌シャトルベクター PHS15を利用した組換えタンパク質産 生
細胞表層ディスプレーシステムの基盤タンパク質をノヽロモナスを宿主として評価す るために、ハロモナス/大腸菌シャトルベクター pHS15 (Mol Gen Genet. 1995 Feb 20 ;246(4):411-418にて発表した開発者の Nieto, J.J.教授より入手)の制限酵素部位を 改変し、シャトルベクター PHS15Nを構築した。
[0106] 利用した pHS15シャトルベクターは大腸菌とハロモナスの両方の複製起点を含み、 ノ、ロモナスで外来タンパク質を産生することができることが報告されて 、る。特徴とし ては、発現には内在性のプロモーターが利用可能であること、また、ベクター上の Pst I部位に目的遺伝子をポリシストロン性の遺伝子のカセットとして挿入することで発現 可能であることの 2点が挙げられる(Mol Gen Genet. 1995 Feb 20;246(4):411-118お よび FEMS Microbiology Letters 201(2001)221- 22ァを参照)。
[0107] しかし pHS15における Pstl部位のみでは既に大腸菌発現用に構築した pET系プラス ミドから直接 PHS15系プラスミドへポリシストロン性の遺伝子カセットとして遺伝子断片 を移し換えるのは不適であるため、 pHS15内のクローユングサイトを改変した。図 9に 示すように PHS15の Pstl部位に Spel、 Nsil、 Kpnl、 Pmll、 Sail, SnaBI、 BamHIを導入す ると同時に元の Pstl部位を破壊した。また、同じく図 9に示すように、元の pHS15の Ba mHI、 Spel、 Xbal、 Notlを含む断片および Sall、 XhoI、 ApaI/DraII、 Xpnl部位を含む断 片を除去した。
[0108] 先に用いた pET- HeLipopORF- HAベクターでは、 Xbal部位の下流にリボゾーム結 合部位があるため、目的遺伝子(HeLipopORF)の上流の Xbalと下流の XhoI/BamHI 部位で切断することにより、 Xbal-HeLipopORF-HA- XhoI/BamHI断片が得られ、そ れを PHS15Nの Spel部位と新たに導入した Sall/BamHI部位の間の断片と置換すること により、目的遺伝子(HeLipopORF- HA)を pET系から pHS15Nシャトルベクターに移し 換えることが可能である。即ち、シャトルベクター PHS15Nの構築の結果、同一のベタ ターを導入した大腸菌およびハロモナスにおける組換えタンパク質の産生が可能と なった。
[0109] 上記のごとく改変したシャトルベクター pHS15Nの Spel部位と Sall/BamHI部位の間に HeLipopORF- HAを含む 6種の組換えベクター(pHS15N- HeLipopl- HA、 pHS15N- H eLipop4- HA、 pHS15N- HeLipop5- HA、 pHS15N- HeLipopl 3- HA、 pHS15N- HeLipop 15- HA、 pHS15N- HeLipop 16- HA)を大腸菌およびハロモナスにそれぞれ導入した。 大腸菌の形質転換は塩ィ匕カルシウム法を使用した。また、ハロモナスの形質転換は 、 3親接合法によって次のように行った。構築ベクターを保持した大腸菌株と伝達遺 伝子を持つ可動性のへルパープラスミド (PRK2013)を保持した大腸菌株および受容 菌であるハロモナスの 3種類の菌株を共存培養培地(2% NaCl, 0.5% yeast extract, 1 % tryptone, 1.5% Agar)上にて 37°Cで 1晚培養した後、大腸菌の生育を阻害する高濃 度の NaClを添加した抗生物質を含有する選抜培地 (240 mg/Lストレプトマイシン、 6% NaCl, 0.5% yeast extract, 1% tryptone, 1.5% Agar)上で 37°Cにて 2晚培養し、組換え ハロモナス菌株を選択した。
[0110] その結果得られた PHS15N- HeLipopORF- HAを有する大腸菌およびハロモナスを 3 7°Cで 1晚振盪培養した。ここで、大腸菌の培養には LB培地(1% NaCl, 0.5% yeast ext ract, 1% tryptone)、ハロモナスの培養には 3% NaCl含有 LB培地(3% NaCl, 0.5% yeast extract, 1% tryptone)を使用した。この系のプロモーターは構成的プロモーターであ るため誘導をかける必要はな力つた。
[0111] ー晚培養後、菌体を回収し、 PBSバッファー(137 mM NaCl, 2.7 mM KC1, 10 mM N a HPO , 2 mM KH PO , HC1にて pH 7.4に調整)で回収ペレットを洗浄した後、細胞
2 4 2 4
を再度 PBSバッファーに懸濁して力も氷上で超音波破砕した。得られた超音波破砕 後の溶液は、全タンパク質サンプルとして SDS-PAGE解析やウェスタン解析に使用し た。
[0112] サンプルを常套方法により SDS-PAGEで分析し、 CBB染色およびウェスタンブロッ ティングにより発現を確認した。結果を図 10に示す。 PHS15N- HeLipopl- HA、 pHS15 N- HeLipop5- HA、 pHS15N- HeLipopl 5- HA、 pHS15N- HeLipopl6- HAから、大腸菌 およびハロモナスの両方で成熟リポタンパク質が発現していることが確認された。
[0113] つ!、で、ハロモナスでの発現が確認された成熟リポタンパク質につ 、て、その C末 端が外膜表面に提示されているのかを確認するため、リポタンパク質の C末端に付カロ した HAタグに特異的な一次抗体と蛍光標識二次抗体を用いて免疫蛍光染色を行つ た。実際の操作としては、 pET-HeLipopORF-HAを有する大腸菌またはハロモナスを 37°Cで一晩振盪培養した後、 2 mLの培養菌体を遠心分離によって回収し、 2 mL P BSバッファーで回収ペレットを洗浄した。続いて回収ペレット細胞を 2 mL PBS- BSAバ ッファー (0.1% BSA含有 PBS)に懸濁し、室温にて 1時間インキュベートして細胞表層タ ンパク質のブロッキングを行った。ブロッキング後、細胞を遠心分離によって回収し、 0 .5 mL PBS- BSAに懸濁した後、一次抗体 (ラット抗 HA抗体、 1:500希釈)を添カ卩し、室 温にて 1時間インキュベートした。細胞を遠心分離によって回収し、 1 mL PBS-BSAで 3回洗浄した後、 0.2 mL PBS-BSAに再懸濁し、蛍光標識用の二次抗体 (Alexa488接 合抗ラッ HgG抗体、 1:200希釈)を添加し、室温にて 1時間インキュベートした。細胞を 遠心分離によって回収し、 1 mL PBS-BSAで 3回洗浄した後、 0.05 mL PBS- BSAに再 懸濁し、蛍光顕微鏡下で免疫蛍光染色された細胞を観察した。
[0114] 結果を図 11に示す。大腸菌と同様に、 HeLipop5、 15および 16の 3種類のリポタンパ ク質の C末端に付加した HAタグが免疫蛍光によって染色され、該タンパク質が細胞 表層ディスプレーシステムの基盤タンパク質として利用可能であることが示された。 H eLipoplでは蛍光を放つ細胞は観察されな力つた (HeLipop4につ 、ては実験せず)。
[0115] ハロモナス細菌表面における HeLipopと金属結合タンパク質の融合タンパク質の発 現
以上の結果から、 HeLipop4、 5、 15および 16がハロモナス細菌表面に目的タンパク 質を提示させる機能を有することが示唆されたので、実際に重金属 (Cdおよび Hg)浄 化に有用であることが大腸菌を用いて確認されている (EC)nGペプチド配列(ファイト ケラチンアナログ)を HeLipop5に付カ卩して融合したキメラ遺伝子 HeLipop5-(EC) Gを
8 構築した(Bae W, et al, Biotechnol Bioeng 70:518-524(2000))。
[0116] pHS15N- HeLipop5-HAの HA部分をグルタミン酸とシスティンの交互の繰り返し配 列である EC8配列(即ち ECECECECECECECEC)と置換して、 HeLipop5の C末端に E C8配列を融合させたコンストラクト PHS15N- HeLipop5-EC8を構築した(図 5— 7参照) 。実際の構築手順としては、まず、 pET15bに PCRにより FLAGタグおよび制限酵素サ イトを付力卩した EGFP断片(Ncol- FLAG- Spel-Ndel-Xhol- EGFP-SnaBI-PmU- Sail- Ba mHI)を挿入して pFLAG- EGFPを構築した。ついで、 EC8断片として、人工の Sail- EC 8- Xhol配列をコードした 1組の相補鎖オリゴ DNA (EC8- U, TCGACGAATGCGAATG
GC )のアニーリング産物を得た後、 pFLAG- EGFPの Xholサイトに EC8断片を挿入し て pFLAG- EC8- EGFPを構築した(図 5— 8参照)。そして、 pFLAG- EC8- EGFPの Spel - Ndel- EC8- Xholを切り出して EC8配列断片とし、 HeLipop5- HAの Spel- HA- Xhol断 片と置換することで、 PHS15N- HeLipop5- EC8を構築した(図 5— 7参照)。
[0117] 得られた PHS15N- HeLipop5- EC8を 3親接合法により、ハロモナスに導入した。
[0118] その結果得られた pHS15N- HeLipop5- EC8を有するハロモナスを 37°Cにて 3% NaCl 含有 LB培地を用 ヽて 1晚振盪培養した。
[0119] 1晚培養後、菌体を回収し、 PBSバッファー(137 mM NaCl, 2.7 mM KC1, 10 mM Na
HPO , 2 mM KH PO , HC1にて pH 7.4に調整)で回収ペレットを洗浄した後、細胞を
2 4 2 4
再度 PBSバッファーに懸濁して力ゝら氷上で超音波破砕した。得られた超音波破砕後 の溶液は、全タンパク質サンプルとして SDS-PAGE解析やシスティン含有のチオール タンパク質の標識解析に使用した。
[0120] サンプルを常套方法により SDS-PAGEで分析し、 CBB染色および、システィンを標 識する試薬である mBBrを用いて、 pHS15N- HeLipop5-EC8の発現を確認した。検出 は LAS3000および GFPフィルターを用いて行った。結果を図 12に示す。 pHS15N-He Lipop5-EC8から、システィンを含有した融合リポタンパク質が発現して 、ることが確 f*i¾ れ 。
[0121] さらに PHS15N- HeLipop5- EC8を有するハロモナスによる金属浄化能を ICP発光分 析により評価した。
[0122] 海水程度の 3% NaClを追加した改変 MJS培地(15 mM Tris, 3% NaCl, 20 mM NH CI
4
, 1 mM KC1, 1 mM MgCl , 0.1 mM CaCl , 0.05 mM MnCl , 0.8% (wt/vol) Casamino
2 2 2
Acids, 0.4% (vol/vol) glycerol, 0.005% (wt/vol) thiamine)を使用して、細胞外 pHを変 化させた環境条件下でのハロモナスの Zn/Cd/Cu浄化能について調べた。 15mM Tri sを追加することで MSJ培地は室温でおよそ pH8.4になることがわかったので、培地に は 15mM Trisを追力!]した。培地の pHの調整には HC1を用いた。浄化標的の金属とし て、 20 M ZnCl、 20 M CdCl、 20 M CuClを各々単独で、または 3種を糸且みあわ
2 2 2
せて培地に添加した。用いた条件を以下に示す。
[表 3]
pH 金属イオン 金属イオン
(単独) (組み合わせ)
7. 2 Znのみ C dのみ Cuのみ Zn/Cd/Cu
8. 4 Znのみ C dのみ Cuのみ Zn/Cd/Cu
[0123] 試験はバイオオーダメンテーシヨン (Bioaugmentation;汚染現場に浄化微生物が生 息していない培地に、他で培養した微生物を導入して浄ィ匕する方法)に近い条件で 行った。 pHS15N- HeLipop5- EC8を有するハロモナス OUT30018株を金属無添カロの 改変 MJS培地(pH7.2または pH8.4)で 1Lの培養用フラスコ内で 400mLスケールで培 養(37°C、 OD600=1.4程度まで)した後、培養菌液 30mLを金属溶液を添カ卩した 50mL のファルコンチューブに分注した。次いでロータリーシェーカー内で 37°C6時間培 養した後、遠心分離によって菌体ペレットを回収して洗浄した後、 ICP発光分析用の 試料とした。 [0124] 結果を図 13に示す。 pHS15N- HeLipop5- EC8を有するハロモナスは Zn、 Cdおよび Cuの蓄積量が増大することが明らかになった。 Cdについては培地に Cdのみを添カロ した場合の方が Zn/Cd/Cuを混合して添加した場合よりもより多くの Cdイオンを蓄積し た。一方 Cuにつ ヽては Zn/Cd/Cuを混合して添カ卩した場合に Cuのみを添カ卩した場合 よりも多くの Cuイオンを蓄積した。これらの結果力も金属結合ペプチド EC8が実際に ハロモナス細胞表層に発現し、金属イオンを浄化することが出来ることが確認された
[0125] 上記の結果から、ハロモナスは、高塩濃度かつアルカリ性環境下で亜鉛 (Zn)、銅( Cu)に対して耐性を示し、カドミウム (Cd)、 Cuを高蓄積するという特徴的な金属応答 性を示すことが明ら力となった。そこで以後、ハロモナスの特徴的な金属応答の分子 機構に関与することが予想される金属結合タンパク質に着目し、既に解読が完了し たハロモナスゲノム情報を用いて、推定金属結合タンパク質を網羅的に探索すること にした。さらに、選抜した推定金属結合タンパク質の金属結合ドメインを細胞表層に 提示したァーミングハロモナス細胞を作製し、重金属浄化への応用を試みた。
[0126] 推定余通結合ド インの余通結合特件の評価
上記のように、既知の金属結合ドメインである合成ファイトケラチンペプチド (EC8)を 細胞表層に提示した組換えハロモナスを用いて、単一金属存在環境下での、 Cu, Cd , Znに対する結合能を ICP発光分析で確認した。その結果、それぞれの金属に対す る結合能が確認された力 Cu, Cd, Znの混合金属環境下では、 Zn, Cdへの結合能 はみられず、 Cuに特異的な結合能が高 、ことが示唆された。
[0127] そこで、ハロモナスの内在性金属結合ドメインを探索するにあたり、どのような配列 のペプチドが金属結合能に優れて 、るのかを調べるため、合成ペプチドを用いた実 験を行った。アミノ酸ヒスチジン (His)およびシスティン (Cys)は金属と直接作用して ヽ ると考えられている。
[0128] そこで、本研究では、 Cysや Hisの近傍のアミノ酸配列によって、金属の結合特性が 変化するかどうかを調べるため、 His/Cys-richの 8種類の人工金属結合ペプチド(EC 6, DC6, GC6, HC6, HD6, HE6, HG6, H12)を作成し、それらを細胞表層に提示した 組換えハロモナスを作製し、混合金属環境下で細胞表層にトラップされた金属を ICP 発光分析により定量ィ匕した。
[0129] 1 1)人工金属結合ドメイン発現用コンストラクトの作成
この実験では、上記実験において用いた HeLipop5-EC8の場合と異なり、生産され たタンパク質量を比較できるように、 HeLipop5と HAェピトープタグの間に人工金属結 合ペプチドを挿入したコンストラクトを作成した。
[0130] 実際に、ハロモナスに導入したプラスミドは以下の通りである。
以下、 3つは先の実験において作成したものを使用した。
•pHS15N-HeLiopop5-EC8
•pHS15N vector control
•pHSl 5N-HeLiopop5-HA
以下、 8つは高塩アルカリ環境での金属浄化に有用な合成金属ペプチドを選択す るために構築した。
•PHS15N- - HeLiopop5- - (EC6)- HA
•PHS15N- - HeLiopop5- - (DC6)- HA
•PHS15N- - HeLiopop5- - (GC6)- HA
•PHS15N- - HeLiopop5- - (HC6)- HA
•PHS15N- - HeLiopop5- - (HD6)- HA
•PHS15N- - HeLiopop5- - (HE6)- HA
•PHS15N- - HeLiopop5- - (HG6)- HA
•PHS15N- - HeLiopop5- -(HI 2)- HA
以下、 6つは、上記の 8つ力 選択された高塩アルカリ環境で有用な合成金属結合 ペプチドを多重コピー導入し、金属回収量の増加を試みるために構築した。
• pHS 15N-HeLipop5-(EC6) -HA
2
• pHS 15N-HeLipop5-(EC6) -HA
3
• pHS 15N-HeLipop5-(EC6) -HA
4
•pHS15N- HeLipop5- (DC6) -HA
2
•pHS15N- HeLipop5- (DC6) -HA
3
•pHS15N- HeLipop5- (DC6) -HA [0131] 上記のプラスミドを構築するために、人工金属結合ドメイン (人工金属結合ドメイン を以下 MBPと称することもある)(EC6, DC6, GC6, HC6, HD6, HE6, HG6, H12)をコ ードする DNAを設計し、合成オリゴ DNAを用いたアニーリング法によって両端に Spel/ Nhel粘着末端を保持した DNA断片(Speト MBP- Nhel)を合成した。
[0132] 続!、て、以前に構築した pET-HeLipop5-HAプラスミドの Spel切断部位に上記の Spe I- MBP- Nhel断片を挿入し、 pET- HeLipop5- MBP- HAを構築した。ここで、 Spel切断 部位と Nhel切断部位とは連結可能である力 連結後は認識配列が変化するために 切断不可能になることを利用し、導入した遺伝子の向きを判定した。さらに、再切断 可能な Spel切断部位に Spel-MBP-Nhel断片を再挿入することで、 MBPを多重コピー 導入できるようにし、提示したタンパク質 1分子あたりの金属結合量の増加が期待でき る pET- HeLipop5- (MBP) - HAの構築を行った。
[0133] 下記の pET系プラスミドについては、大腸菌 BL21(DE3)細胞の発現系を用いてタン ノ ク質を生産させ、 HAェピトープ認識抗体を用いたウェスタン解析によってタンパク 質の生産を確認した。
• pET-HeLiopop5-(EC6)-HA
• pET-HeLiopop5-(DC6)-HA
• pET-HeLiopop5-(GC6)-HA
• pET-HeLiopop5-(HC6)-HA
• pET-HeLiopop5-(HD6)-HA
• pET- HeLiopop5- (HE6)- HA
• pET-HeLiopop5-(HG6)-HA
• pET- HeLiopop5- (H 12)- HA
MBP多重コピー導入プラスミド
•pET- HeLipop5- (EC6) -HA
2
•pET- HeLipop5- (EC6) -HA
3
•pET- HeLipop5- (EC6) -HA
4
•pET- HeLipop5- (DC6) -HA
2
•pET- HeLipop5- (DC6) -HA •pET- HeLipop5- (DC6) -HA
4
•pET- HeLipop5- (GC6) -HA
2
•pET- HeLipop5- (GC6) -HA
3
•pET- HeLipop5- (GC6) -HA
4
[0134] 最終的なハロモナス用発現ベクターの構築は、上記と同様に、 PET-HeLipop5-MB P- HAの Xbal/Xholを切断して生じる Xbal- HeLipop5- MBP- HA- Xhol断片を pHS 15N の Spel/Sall切断部位に連結して行った。その結果得られた、 pHS15N- HeLipop5-MB P-HAを上記のように三親接合法によりハロモナスに導入し、ァーミングハロモナスを 作製した。
[0135] なお、図 14に、三親接合法に用いた PHS15N- HeLipop5-MBP-HAの部分配列を 示す。また、図 15— 1に、 pET- Helipop5-HA、図 15— 2〜15— 9に各人工金属結合 ペプチドを含む pET- HeLipop5- MBP- HAの構築を示す。さらに、図 16— 1〜 16— 2 に各人工金属結合ペプチドをコードする、 Spel-MBP-Nhelの断片を示す。
[0136] 1 2)人工金属結合ドメインの金属結合特性の評価
合成ファイトケランチン (EC8)以外の人工金属結合ペプチドにつ!/、て、ハロモナス 細胞表層に提示した場合の重金属捕捉能について検討した。 3% NaClかつ pH8.4で
Figure imgf000035_0001
、、混合金属条件下での特異的な金属の浄 ィ匕に有用なペプチドの選択を試みた。具体的には以下のようにして、 PHS15N-HeLip op5-MBP-HAを有するハロモナスによる金属浄ィ匕能を ICP発光分析により評価した。
[0137] 海水程度の 3% NaClを追加した改変 MJS培地(15 mM Tris, 3% NaCl, 20 mM NH CI
4
, 1 mM KC1, 1 mM MgCl , 0.1 mM CaCl , 0.05 mM MnCl , 0.8% (wt/vol) Casamino
2 2 2
Acids, 0.4% (vol/vol) glycerol, 0.005% (wt/vol) thiamine)を使用して、ハロモナスの Z n/Cd/Cu浄化能について調べた。 15mM Trisを追加することで MSJ培地は室温でお よそ PH8.4になることがわかったので、培地には 15mM Trisを追カロした。浄化標的の 金属として、 20 μ Μ ZnCl、 20 M CdCl、 20 M CuClを組みあわせて培地に添カロ
2 2 2
した。
[0138] 試験はバイオオーダメンテーシヨン(Bioaugmentation;汚染現場に浄化微生物が生 息していない培地に、他で培養した微生物を導入して浄ィ匕する方法)に近い条件で 行った。 pHS15N- HeLipop5- MBP- HAを有するハロモナス OUT30018株を金属無添 加の改変 MJS培地(pH8.4)で 1Lの培養用フラスコ内で 400mLスケールで培養(37°C、 OD600=1.4程度まで)した後、培養菌液 30mLを金属溶液を添カ卩した 50mLのフアルコ ンチューブに分注した。、 、でロータリーシェーカー内で 37°Cで 6時間培養した後、 遠心分離によって菌体ペレットを回収して洗浄した後、 ICP発光分析用の試料とした
[0139] 本実験では、 EC8と同等な意味合いで EC6-HAを構築した力 HAが末端について いるために、以前に構築した EC8と直接に比較することができない。そのため、ベクタ 一のみに加え、 HAのみを発現したものをネガティブコントロールとした。また、 EC8は 、ポジティブコントローノレとして使用した。
[0140] 結果を図 17に示す。 Cys-richドメインを表層に提示したとき、金属蓄積量が増加す ることが示された。特に、 EC6, DC6は、それぞれ Cu, Cdの選択的結合が見られた。ま た、高塩アルカリ環境では、 Hisリッチな配列は金属結合能が低ぐ Cysリッチな配列( EC6, DC6, GC6, HC6)の方が金属結合能が高ぐ金属浄ィ匕や金属資源回収に 有用であることが判明した。また、 Cysリッチな配列の中でも、酸性アミノ酸である E/D が隣接したドメイン (EC6、 DC6)が有用であることが示唆された。さらに、 Cuの浄ィ匕 および資源回収を想定した場合は ECモチーフの方が、 Cdの浄ィ匕および資源回収を 想定した場合は DCモチーフの方力 より適切であることが示唆された。結果的に EC6 について、 EC8と比べても十分金属蓄積の向上が観察されているので、金属結合能 の評価には 6回繰り返しで十分であることも分力つた。
[0141] 1 3)多重人工金属結合ドメインの発現
EC6および DC6を多コピー導入したハロモナスについてウェスタン解析を行った。 結果を図 18に示す。この結果より、 EC6または DC6ドメインを四回繰り返した場合の 発現量は、 1回繰り返しに比べて 4分の 1以下になっていないことがわかる。即ち、発 現量が 4分の 1以下ならば、多コピー発現しても金属結合能力の増加は期待されな いが、本実験により、細胞表層に提示されたシスティンの数は確実に増えていること が証明された。したがって、多重人工金属結合ドメインの導入により、さらに金属結合 能が増強したハロモナスが得られると期待される。 [0142] 2— 1)ハロモナス内在性推定金属結合ドメインの金属結合特性の評価 人工金属結合ドメインの研究により、 Cysまたは Hisリッチなドメインの有効性を検証 した結果、これまでに大腸菌等で弱酸性または中性環境で有用とされて!/ヽた Hisリツ チなドメインは、高塩アルカリ環境では効果が無いことが示された。この結果により、こ れまでに環境条件が異なる条件での実験により金属結合能が評価された情報は、現 実には他の環境条件では無意味であり、 目的の環境において実験的に検討すること が重要であることが判明した。その一方で、 Cysリッチなドメインは、高塩アルカリ環境 でも非常に効果的であることが判明した。さらに、酸性アミノ酸が隣接した Cysリッチの 金属結合ドメインが特に有効であることが示唆された。そこで、今後の内在性金属結 合ドメインの選抜は、 Cysリッチドメインについて行い、さらに酸性アミノ酸が隣接した C ysリッチドメインを優先的に候補とした。
[0143] そこで、ハロモナスのゲノム上力も網羅的に選抜した Hisまたは Cysリッチな推定金 属結合ドメインのうち、 Cysリッチでかつ酸性アミノ酸が隣接した推定金属結合ドメイン について、高塩アルカリ環境下での金属結合能を評価することにした。
[0144] 2- 2)ゲノム情報を用いた推定金属結合タンパク質の探索
金属と直接作用すると考えられるアミノ酸であるヒスチジン (His)、システィン (Cys) を指標として、推定金属結合ドメインを持つタンパク質を選抜した。タンパク質を 10, 2 0, 30アミノ酸で区切り、その中に含まれる Hisまたは Cysの個数を指標にして順位付 けをした。 Cysについては、さらに酸性アミノ酸が隣接するものを上位とした。
[0145] 具体的には、金属結合性が高!、金属結合ドメインとして、イミダゾール基をもつ His ゃチオール基をもつ Cysを指標にハロモナスの ORFに絞込みをかけた。短いドメイン の探索のためには、通常の BLASTなどの相同性解析は使用できないため、独自に 絞込みのバイアスをかけて推定翻訳産物のタンパク質配列データ力 推定金属結合 ドメインの絞込みを行った。特に、 2価の陽イオンの状態で環境水中に溶存する Cu, Z n, Cdなどを標的にした場合は、酸性アミノ酸 (E, D)のネガティブチャージによって金 属の親和性が高まることが予想されるので、候補配列の多い Cysリッチなドメインの場 合は、さらに酸性アミノ酸が隣接している Cysを多く含むものをさらに絞り込んでランキ ングを作成した。実際には、分子生物学研究用に開発された無償のオープンソフト ノ ッケージの EMBOSS (http://emboss.sourceforge.net/)に導入されて 、る Oddcomp programを用いて、予想アミノ酸配列データ力 の重金属結合タンパク質の選抜を試 みた。しかしながら、 Oddcompによって生成されるデータが ORF名の羅列であつたた め、その後さらなる対象 0RFの絞込み作業には適さないという問題が生じた。この問 題を回避するために、 Oddcompの生成データに対して、すべての 0RF名に対して総 当り一致比較を行 、、一致する場合は値「 1」を一致しな 、場合は値「0」として結果を Matrixとして生成させる Perl programを独自に作成した。これにより、 Oddcompの生 成データから、全 0RFを網羅した Matrixデータを作成することができた。さらに、 Matri Xデータを Excelに読み込んで表データとすることで、全 0RFに対して絞込み検索が できるようにした。その結果、最終的には表 4のような、ランキング表を作成した。
上位に選抜された His/Cys-richタンパク質の遺伝子の全長 0RFと推定金属結合ド メインの遺伝子配列について、上位のもの力も順次クローニングを行った。以下の表 4に、上位にランキングされた 0RFを示す。また、そのアミノ酸配列については図 19 — 1〜19— 5に示す。
[表 4]
Final „■
Eaekiag Old n雄《 ' Α Χ SOAJ. ad>- 30AJi alC- 3§Ά liCl- 30滅 aAeidie-C- pol -Cf-OOOl OS 4.3 ll SI2SfS 3 4 3 3 1 $ M pol^-Cf 00020Sf 3 4 % 4 1 I a 1 S 34 poly-C#0003 ORFm3?d 631S HE101.3 3 3 2 I 1 1 s 33
; poly-Cf 0004 SF 43 148 麵' 7S7 2 4 ■2 1 1 1 s polj-C#000S ORF 4.3 3S HS171? 2 ■3 1 I a I s .23 poly-C#0006 Olf 43 €4 1S2121 2 2 2 1 1 5 .22 poly-€#000t Olf 43 5 1 27if 3 5 •Ϊ :1 ■0 0 4 35 poiy~C#000e O.RP__3? 18 HB205S 3 5 0 1 ϋ 1 4 33 p ly-Cf 0009 OE _43 3 HB2 65 3 2 1 1 1 1 4 13 poly-C#O010 OE.f_43 14 113013 2 4 1 2 1 0 4 ■24 pOl -CfSOll OIF 43 SS M1067S 2 3 1 1 I I 4 23 poly- Cf.0013 OEF 3 ?9 .3267 mm 2 3 1 1 'i 0 4 23
■■paiy^C*'0W3 ΟΆΨ_ぬ _ 2 ■3 1 1 β 4 23 po.ly-C#001401 _43__lia 顧 觸 3 2 1 1 t 1 4 22
,poly»C#0015 OIP 379 43802腿 3 2 2 1 1 0 4 22 poly-Cf'001€ OEP 43 2Q 1B¾63S 2 2 1 I 0 4 22 poly-Cf 0017 Olf 3 ?9 M11001 2 2 3 1 1 4 2.2 pol -CiOOlS OEt 3^44 111126 2 2 a 2 0 y 4 22
: p l »C#001:901?_ 1_1"7§ 纖雄 S 2 2 i i 1 1 4 22 p lj~Cf 2Q ORB 43 1S2 E1 0S-0 2 2 0 2 1 1 4 22 poly- #002.1 OIP 43 40 丽 1 2 2 1 1 0 2 4 22 poly-C#0022 OR 43 4S E124S4 2 2 i 'ά' I 0 4 22 p3ly~C#0021 ORf 41 ?5 HS2S4S 2 2 1 1, :i 1 4 22 po¾^C#00 OIP 41 M 應 S23 2 :2 1 0 1 4 22
[0147] しかし、先の ICP発光分析の結果から、これ以降は、選抜した推定金属結合タンパ ク質のうち、 Cys-rich推定金属結合ドメインの遺伝子について、優先的に金属結合特 性の評価実験を行うこととした。そこで、推定金属ドメインの遺伝子領域を PCR法又は アニーリング法で合成した。内在性の推定金属結合ドメインをコードする ORFの部分 領域 (遺伝子領域)をサブクローユングするために、ドメイン部分 DNA配列で lOObp以 上の配列は PCR法でクローン化し、それ以下のドメインについては、 2本の相補的な 合成オリゴ DNAをァニール (試験管内で 2本鎖 DNAとなるように会合)させることでクロ ーン化するアニーリング法を用いた。内在性ペプチドを提示させるためのコンストラタ トの構築は、人工ペプチドと同様に行った。ただし、制限酵素部位を改変し、 Xbd- ( 内在性 MBP)-SpeIとなるようにした。
[0148] 推定金属結合ドメインをコードする DNAをノヽロモナスの細胞表層に提示するべクタ 一へサブクロー-ングし、人工金属結合ドメインの実験と同様に ICP発光分析を行つ た。その結果から、標的重金属に特異的な結合ドメインを選定した。実験に使用した ハロモナスの内在性ペプチドを以下の表 5に示す。
[表 5]
Figure imgf000040_0001
[0149] なお、人工推定金属結合ペプチドおよび内在性推定金属結合ペプチドのコンスト ラクト構築に用いたプライマーを以下の表 6に示す。 0 i
^ ¾墚辫 (a¾J)26
使用したプライマ一一覧
Figure imgf000042_0001
[0150] 金属結合能の評価は、先の人工推定金属ペプチドの場合と同様にして行った。即 ち、高塩アルカリ環境中の重金属浄ィ匕および金属資源回収に有用な金属結合ドメイ ンを選抜するために、内在性金属結合ペプチドの高塩アルカリ環境中(6%NaCほた は 3%NaCl、 pH8.4、 20 μ Μ Cu/Cd/Zn)での金属結合能を調べた。
[0151] 結果を図 20に示す。図 20— 1は 6%NaCl存在下、図 20— 2は 3%NaCl存在下での ICP分析の結果を示す。即ち、ゲノム情報力も選抜した酸性アミノ酸が隣接している C ysがリッチな内在性タンパク質の推定金属結合ドメインにつ 、て、 5種類をノヽロモナス の表層に提示することで、金属結合活性を評価した。
[0152] 内在性の配列は、人工ドメインと比べ、 Cysの繰り返し度合 、が少な 、ため NaC13% では差を検出しにくなつているが(図 20— 2)、6%の厳しい条件にすると差が顕著に 現れた(図 20—1)。人工金属結合ドメインでは、 3%NaCl, pH 8.4では EC6, DC6が 有用であり、特に Cuに対して有効であった(図 17)。し力し、 Cdに対しては、 EC6よりも DC6の方が有用であることが示唆された(図 17)。さらに厳しい条件である海水の 2倍 程度の 6%NaCl, pH 8.4では、酸性アミノ酸の存在に関わらず、 EC6, DC6, GC6とも 同様に Cuに対して特に有用であることが示され(図 20— 1)、さらに、内在性のドメイ ンとしては、 C2-1は Cdおよび Znに対して有用であり、 C5は Znに対して特に有用であ ることが示された。また、 C1-1は Cuに対して特に有用であることが示された(図 20— 1
) o
[0153] 3 - 1)多重人工金属結合ドメインを提示するハロモナスの金属蓄積量
図 20— 1において、人工の金属結合ペプチドである EC6および DC6は、海水の 2倍 程度の高塩濃度下で、銅に特異的な結合能を有することが示された。そこで 1分子 当たりの金属結合ドメインのコピー数の増加により、金属結合ドメインを提示する細胞 の金属結合能が増加するかどうかを調べた。
[0154] 上記 1 2)の人工金属結合ドメインの金属結合特性の評価の項で記載したように して、 ICP発光分析を行った。ただし、 pH8.4、 6%NaCl、 MJS培地に Zn、 Cd、 Cuの 3種 の金属を 25 /z Mずつ添カ卩した条件で培養後、細胞を回収し、 1.2Mソルビトール溶液 で洗浄後、 ICP発光分析に供した。
[0155] その結果、図 21に示すように、結合量は金属結合ドメインのコピー数の増加ととも に増加する傾向があることが示された。しかしながら、今回のアツセィ条件では、 EC6 では 2コピー数、 DC6では、 3コピー数程度の条件で銅の結合能に閾値があることが 示された。図 21において、用いた略記は以下の通りである。
Vec: pHS15N
HA: pHS15N-HeLipop5-HA
(EC6)1— HA: pHS15N— HeLipop5— (EC6)1— HA
(EC6)2-HA: pHS15N- HeLipop5- (EC6)2- HA
(EC6)3— HA: pHS15N— HeLipop5— (EC6)3— HA
(EC6)4-HA: pHS15N- HeLipop5- (EC6)4- HA
(DC6)1— HA: pHS15N— HeLipop5— (DC6)1— HA
(DC6)2-HA: pHS15N-HeLipop5-(DC6)2-HA
(DC6)3— HA: pHS15N— HeLipop5— (DC6)3— HA
(DC6)4-HA: pHS15N-HeLipop5-(DC6)4-HA
産業上の利用可能性
[0156] 今回、人工金属結合ドメインのみならず、セルフクローニング型組換え技術に有用 なハロモナスゲノム配列上に存在する内在性金属結合ドメインを取得することに成功 した。また、表層工学技術は、有用な金属結合ドメインの選抜にも有用な技術である と同時に、選抜された有用金属結合ドメインを提示した細胞そのものが環境浄化や 金属回収技術に応用可能であると期待される。
[0157] 本発明によって開発した細胞表層工学により、ハロモナスの金属耐性を保持したま ま金属浄ィ匕効率を高めることが可能になり、ハロモナスの金属耐性によるバイオマス 増加と提示した金属結合ペプチドによる金属浄ィヒ量の増加による相乗的な効果が期 待される。よって、ハロモナスの性質と細胞表層工学は一緒になることでこれまでにな い性質が開発可能となる。また、塩濃度を変化させることにより、金属結合の特異性 を制御できることが示された。

Claims

請求の範囲
[1] 以下の (a)または (b)のタンパク質:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[2] 以下の (a)または (b)のタンパク質をコードする遺伝子:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[3] 以下の (c)または(d)の遺伝子:
(c)配列番号 5、 6、 7および 8からなる群力も選択される塩基配列からなる DNA、
(d) (c)の塩基配列力 なる DNAと相補的な塩基配列力 なる DNAとストリンジ ントな 条件下でノ、イブリダィズし、かつ、グラム陰性細菌で発現させた際に、 C末端がグラム 陰性細菌の外膜に位置するタンパク質をコードする DNA。
[4] 以下の (a)または (b)のタンパク質をコードする核酸を含む組換えベクターであって、 該核酸の下流に、インフレームにて目的タンパク質またはペプチドをコードする核酸 を挿入して用いられる、 目的タンパク質またはペプチドをグラム陰性細菌外膜表面に 提示させるための組換えベクター:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[5] 以下の (a)または (b)のタンパク質の C末端に目的タンパク質またはペプチドを融合さ せた融合タンパク質をコードする核酸を含み、グラム陰性細菌に形質転換し、該融合 タンパク質を発現させると目的タンパク質またはペプチドがグラム陰性細菌の外膜表 面に提示される、グラム陰性細菌の外膜表面に目的タンパク質またはペプチドを提 示させるための組換えベクター:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[6] グラム陰性細菌が好塩菌である請求項 4または 5記載の組換えベクター。
[7] 好塩菌がハロモナス属細菌である請求項 6記載の組換えベクター。
[8] 目的タンパク質またはペプチドが、金属結合タンパク質、金属結合ペプチド、抗原 または酵素である請求項 4〜7いずれか記載の組換えベクター。
[9] 目的タンパク質またはペプチド力 金属結合タンパク質または金属結合ペプチドで ある請求項 8記載の組換えベクター。
[10] 目的タンパク質またはペプチド力 スクリーニングされるべき複数のタンパク質また はペプチドである請求項 4〜7いずれか記載の組換えベクター。
[11] 以下の (a)または (b)のタンパク質の C末端に目的タンパク質またはペプチドを融合さ せた融合タンパク質をコードする核酸を含む組換えベクターを作成する工程、 該組換えベクターをグラム陰性細菌に形質転換し、該融合タンパク質を発現させる 工程、
を含む、 目的タンパク質またはペプチドをグラム陰性細菌の外膜表面に提示する方 法:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[12] グラム陰性細菌が好塩菌である請求項 11記載の方法。
[13] 好塩菌がハロモナス属細菌である請求項 12記載の方法。
[14] 以下の (a)または (b)のタンパク質を含む、外膜表面に目的タンパク質またはペプチド を提示したグラム陰性細菌:
(a)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列力 なるタンパク 質;
(b)配列番号 1、 2、 3および 4力 なる群力 選択されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ、そ の C末端がグラム陰性細菌で発現させた場合に該細菌の外膜に位置するタンパク質
[15] グラム陰性細菌が好塩菌である請求項 14記載の細菌。
[16] 好塩菌がハロモナス属細菌である請求項 15記載の細菌。
[17] 目的タンパク質またはペプチドが、金属結合タンパク質、金属結合ペプチド、抗原 または酵素である請求項 14〜16いずれか記載の細菌。
[18] 目的タンパク質またはペプチド力 金属結合タンパク質または金属結合ペプチドで ある請求項 17記載の細菌。
[19] 目的タンパク質またはペプチド力 スクリーニングされるべき複数のタンパク質また はペプチドである請求項 14〜16いずれか記載の細菌。
[20] 配列番号 9の配列を少なくとも 1つ含む、銅、亜鉛およびカドミウム力もなる群力 選 択される重金属の少なくとも 1種に対する結合能を有するタンパク質:
XCXCXCXCXCXC (配列番号 9)
[式中、 Cはシスティン、 Xはいずれのアミノ酸であってもよい]。
[21] Xがグルタミン酸 (E)またはァスパラギン酸 (D)である、請求項 20記載のタンパク質。
[22] 配列番号 9の配列を 1〜4つ含む、請求項 20または 21のいずれか記載のタンパク 質。
[23] 配列番号 9の配列力もなる、銅、亜鉛およびカドミウム力もなる群力 選択される重 金属の少なくとも 1種に対する結合能を有するペプチド:
XCXCXCXCXCXC (配列番号 9)
[式中、 Cはシスティン、 Xはいずれのアミノ酸であってもよい]。
[24] Xがグルタミン酸 (E)またはァスパラギン酸 (D)である、請求項 23記載のペプチド。
[25] 配列番号 10、配列番号 11または配列番号 12の配列力もなる、銅、亜鉛およびカド ミゥムからなる群から選択される重金属の少なくとも 1種に対する結合能を有するぺプ チド。
[26] 配列番号 10、配列番号 11または配列番号 12の配列を含む、銅、亜鉛およびカドミ ゥム力 なる群力 選択される重金属の少なくとも 1種に対する結合能を有するタンパ ク質。
[27] 以下の (e)または (!)いずれかのタンパク質:
(e)配列番号 13、 14および 15からなる群力も選択されるアミノ酸配列力もなるタンパク 質;
(1)配列番号 13、 14および 15からなる群力も選択されるアミノ酸配列力もなるタンパク 質において、 1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列 からなり、かつ、銅、亜鉛およびカドミウム力もなる群力も選択される重金属の少なくと も 1種に対する結合能を有するタンパク質。
[28] 請求項 20〜22および 26〜27の!、ずれかのタンパク質または請求項 23〜25の!ヽ ずれかのペプチドを細胞表面に提示する、ハロモナス属細菌。
PCT/JP2007/060153 2006-05-18 2007-05-17 グラム陰性細菌の細胞表層発現システム WO2007135958A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008516641A JPWO2007135958A1 (ja) 2006-05-18 2007-05-17 グラム陰性細菌の細胞表層発現システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-138794 2006-05-18
JP2006138794 2006-05-18
JP2007028382 2007-02-07
JP2007-028382 2007-02-07

Publications (1)

Publication Number Publication Date
WO2007135958A1 true WO2007135958A1 (ja) 2007-11-29

Family

ID=38723270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060153 WO2007135958A1 (ja) 2006-05-18 2007-05-17 グラム陰性細菌の細胞表層発現システム

Country Status (2)

Country Link
JP (1) JPWO2007135958A1 (ja)
WO (1) WO2007135958A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200245A (ja) * 2011-03-28 2012-10-22 Toshiba Corp 細胞外に金属化合物結合能を提示するレポーターベクター
WO2012161250A1 (ja) * 2011-05-24 2012-11-29 日本食品化工株式会社 α-グルコシダーゼ、その製造方法およびその用途、並びにジンゲロール配糖体、その製造方法およびその用途
JP2013005793A (ja) * 2011-05-24 2013-01-10 Nippon Shokuhin Kako Co Ltd 新規なα−グルコシダーゼとその製造法並びに用途
JP2015100764A (ja) * 2013-11-26 2015-06-04 株式会社東芝 汚泥処理装置、及び汚泥処理方法
JP2016168564A (ja) * 2015-03-13 2016-09-23 株式会社東芝 汚泥処理システム
CN107574184A (zh) * 2017-09-18 2018-01-12 浙江海洋大学 一种利用海洋盐单胞菌属菌株制备重金属吸附剂的方法
JP2018007681A (ja) * 2010-05-24 2018-01-18 ザイレコ,インコーポレイテッド バイオマス処理
CN108033998A (zh) * 2017-11-22 2018-05-15 河南大学 一个靶向镉离子的金属结合肽z3及其应用
CN108059653A (zh) * 2017-11-22 2018-05-22 河南大学 一个靶向镉离子的金属结合肽z4及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060838A1 (en) * 1998-05-28 1999-12-02 The Ohio State University Research Foundation Organism and method for metal recovery, remediation and separation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060838A1 (en) * 1998-05-28 1999-12-02 The Ohio State University Research Foundation Organism and method for metal recovery, remediation and separation

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
ARAHAL D.R. ET AL.: "Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongate DSM 3043 and ATCC 33174", INT. J. SYST. EVOL. MICROBIOL., vol. 51, 2001, pages 1457 - 1462, XP003019447 *
DATABASE UNIPROT [online] XP003019436, Database accession no. (Q89XZ8) *
DATABASE UNIPROT [online] XP003019437, Database accession no. (Q5F5Q7) *
DATABASE UNIPROT [online] XP003019438, Database accession no. (Q1QZX6) *
DATABASE UNIPROT [online] XP003019439, Database accession no. (Q1QTC7) *
DATABASE UNIPROT [online] XP003019440, Database accession no. (Q1QXC9) *
DATABASE UNIPROT [online] XP003019441, Database accession no. (Q1QSA5) *
DATABASE UNIPROT [online] XP003019442, Database accession no. (Q1QVF4) *
DATABASE UNIPROT [online] XP003019443, Database accession no. (Q1QV27) *
DATABASE UNIPROT [online] XP003019446, Database accession no. (Q1QWD8) *
NAKAYAMA H. ET AL.: "Cell-surface engineering of the moderate halophilic bacteria, Halomonas elongata OUT30018, for metal-bioremediation in high salinity environments", DAI 58 KAI THE SOCIETY FOR BIOTECHNOLOGY, JAPAN TAIKAI KOEN YOSHISHU, 3 August 2006 (2006-08-03), pages 156 + ABSTR. NO. 1115-1, XP003019448 *
NAKAYAMA H.: "Kankyo Metal Bio no Kagi to naru Kinzoku Ketsugo Tanpakushitsu no Tansaku to Genome Joho no Katsuyo", ECO INDUSTRY, vol. 11, no. 5, 25 April 2006 (2006-04-25), pages 50 - 57, XP003019444 *
YOSHIDA K. ET AL.: "Genome analysis of a moderately haliphilic bacterium, Halomonas elongata", 28TH ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN KOEN YOSHISHU, 25 November 2005 (2005-11-25), pages 153 + ABSTR. NO. 1P-0124, XP003019445 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007681A (ja) * 2010-05-24 2018-01-18 ザイレコ,インコーポレイテッド バイオマス処理
JP2012200245A (ja) * 2011-03-28 2012-10-22 Toshiba Corp 細胞外に金属化合物結合能を提示するレポーターベクター
US9442104B2 (en) 2011-03-28 2016-09-13 Kabushiki Kaisha Toshiba Reporter vector presenting extracellular binding capacity to metallic compounds
WO2012161250A1 (ja) * 2011-05-24 2012-11-29 日本食品化工株式会社 α-グルコシダーゼ、その製造方法およびその用途、並びにジンゲロール配糖体、その製造方法およびその用途
JP2013005793A (ja) * 2011-05-24 2013-01-10 Nippon Shokuhin Kako Co Ltd 新規なα−グルコシダーゼとその製造法並びに用途
JP2015100764A (ja) * 2013-11-26 2015-06-04 株式会社東芝 汚泥処理装置、及び汚泥処理方法
JP2016168564A (ja) * 2015-03-13 2016-09-23 株式会社東芝 汚泥処理システム
CN107574184A (zh) * 2017-09-18 2018-01-12 浙江海洋大学 一种利用海洋盐单胞菌属菌株制备重金属吸附剂的方法
CN108033998A (zh) * 2017-11-22 2018-05-15 河南大学 一个靶向镉离子的金属结合肽z3及其应用
CN108059653A (zh) * 2017-11-22 2018-05-22 河南大学 一个靶向镉离子的金属结合肽z4及其应用
CN108033998B (zh) * 2017-11-22 2020-12-08 河南大学 一个靶向镉离子的金属结合肽z3及其应用

Also Published As

Publication number Publication date
JPWO2007135958A1 (ja) 2009-10-01

Similar Documents

Publication Publication Date Title
WO2007135958A1 (ja) グラム陰性細菌の細胞表層発現システム
KR20190082318A (ko) Crispr/cpf1 시스템 및 방법
EP1183346B1 (en) Method for generating split, non-transferable genes that are able to express an active protein product
KR101261870B1 (ko) 폴리믹신 b 또는 e 생합성 효소 및 이를 코딩하는 유전자 군
CA2747462C (en) Systems and methods for the secretion of recombinant proteins in gram negative bacteria
RU2702087C2 (ru) Новые способы дисплея циклических пептидов на частицах бактериофага
WO2021183867A1 (en) Methods for enzymatic and microbial degradation of polyethylene
US6858775B1 (en) Method for generating split, non-transferable genes that are able to express an active protein product
US20230279059A1 (en) Novel bacterial protein fibers
US11578317B2 (en) Self-assembling protein scaffolds and methods
WO2003087370A1 (en) Method and materials for producing deletion derivatives of polypeptides
JP2018516568A (ja) バイオセーフティーのためのリガンド依存性必須遺伝子をもつ合成栄養要求体
JP7016552B2 (ja) 組換えタンパク質の分泌を増加させる方法
US11136613B2 (en) Antibacterial polypeptide libraries and methods for screening the same
WO2012033653A1 (en) A composition, method and kit for obtaining purified recombinant proteins
US11149280B2 (en) Engineering organisms resistant to viruses and horizontally transferred genetic elements
US20100099169A1 (en) Genetic selection system for improving recombinant protein expression
US11124555B2 (en) Fusion polypeptides comprising one or more inclusion body tags, methods and uses
KR101874236B1 (ko) 망간 및 코발트 결합 펩티드의 표면 발현 벡터 및 이에 의해 형질전환된 미생물
KR101858044B1 (ko) 토양 메타게놈 유래의 트리클로산 저항성 신규 유전자 FabG-h 및 이의 용도
Nyerges et al. Swapped genetic code blocks viral infections and gene transfer
WO2024079161A1 (en) Metal-binding bacterial protein fibers
US20230119241A1 (en) Method for soluble expression and purification of hydrophobin
KR102014901B1 (ko) 단백질에 대한 나노운반체로서의 순도 및 안정성이 증진된 바이러스 유사 입자의 제조방법
WO2021086487A1 (en) Engineering organisms resistant to viruses and horizontally transferred genetic elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008516641

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743588

Country of ref document: EP

Kind code of ref document: A1