WO2007135813A1 - X線管 - Google Patents

X線管 Download PDF

Info

Publication number
WO2007135813A1
WO2007135813A1 PCT/JP2007/057573 JP2007057573W WO2007135813A1 WO 2007135813 A1 WO2007135813 A1 WO 2007135813A1 JP 2007057573 W JP2007057573 W JP 2007057573W WO 2007135813 A1 WO2007135813 A1 WO 2007135813A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray tube
electron source
face plate
extraction electrode
electron
Prior art date
Application number
PCT/JP2007/057573
Other languages
English (en)
French (fr)
Inventor
Tomoyuki Okada
Toru Fujita
Tooru Yamamoto
Tatsuya Nakamura
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2007135813A1 publication Critical patent/WO2007135813A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/062Cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/068Multi-cathode assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/163Vessels shaped for a particular application
    • H01J2235/164Small cross-section, e.g. for entering in a body cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/18Windows, e.g. for X-ray transmission
    • H01J2235/183Multi-layer structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Definitions

  • the present invention relates to an X-ray tube that irradiates X-rays, and particularly relates to an X-ray tube having a structure suitable for irradiating X-rays over a wide range.
  • An X-ray tube is a device that generates X-rays by generating electrons using an electron source in a high-vacuum tube and causing the electrons to enter a target.
  • An example of such an X-ray tube is an X-ray apparatus disclosed in Patent Document 1 below.
  • the electron beam emitted by the planar cathode force collides with the planar anode as a target, and X-rays generated from the planar anode are extracted outside through the extraction window.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-288853
  • an X-ray tube having a structure in which a planar electron source is held in a housing can make a large area in the X-ray irradiation range because the electron source is shielded from a large area. It is.
  • a cold cathode electron source using a carbon-based electron emission material it is a field emission type electron source that draws electrons from the electron source by an electric field formed between the electron source and the extraction electrode.
  • the positional relationship between the electron source and the extraction electrode greatly affects the electron emission characteristics from the electron source.
  • the arrangement of the electron source in the housing is one of the important elements for X-ray irradiation characteristics.
  • the present invention has been made in view of the problem to be solved, and provides an X-ray tube that realizes stable X-ray irradiation even when the X-ray irradiation range is expanded. With the goal.
  • an X-ray tube of the present invention is a true tube including an insulating member at least partially.
  • An air envelope, an electron source in which a carbon-based electron emission material is disposed on the surface of a conductive member provided along the inner surface of the insulating member, and an electron source in the vacuum envelope are provided to face the electron source.
  • the conductive member constituting the electron source is provided along the inner surface of the insulating member of the vacuum envelope having sufficient strength to hold a vacuum.
  • the extraction electrode is fixed in the vacuum envelope.
  • the extraction electrode is disposed on the inner surface of the insulating member in the vacuum envelope. If a powerful extraction electrode is provided, the position of the extraction electrode can be stabilized when the X-ray tube is used, and more stable X-ray irradiation characteristics can be obtained.
  • the conductive member is preferably a mesh member.
  • the electron source can be easily arranged over a wide range on the inner surface of the insulating member.
  • the conductive member is preferably a planar member. With a powerful configuration, electrons are emitted uniformly from the electron source, so that X-ray irradiation can be made uniform even if the size of the apparatus is increased.
  • a groove is formed on the inner surface of the insulating member, the conductive member is provided in the groove, and the extraction electrode is laid along the inner surface sandwiching the groove of the insulating member. Also preferred. In this way, positioning with respect to the extraction electrode is facilitated over the entire conductive member constituting the electron source, and the electron emission of the electron source force is made more uniform.
  • the extraction electrode is preferably divided into a plurality of portions along the longitudinal direction of the conductive member. If a powerful extraction electrode is provided, the amount of electron extraction can be controlled for each divided region along the longitudinal direction of the conductive member, and an arbitrary X-ray can be provided for each divided region along the longitudinal direction of the conductive member. Irradiation characteristics can be obtained. [0012] Furthermore, it is also preferable that the extraction electrode is arranged so that the central axis side perpendicular to the inner surface of the target is lowered. With this configuration, electrons can be efficiently incident on the target.
  • the insulating member is provided with an opening so as to face the target, and the X-ray extraction window is provided so as to cover the opening.
  • X-rays can be radiated over a wide area when using a V, so-called reflective target that extracts X-rays in a direction different from the direction of incidence of electrons.
  • FIG. 1 is a plan view of an X-ray tube according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing a state where an upper face plate of the X-ray tube of FIG. 1 is removed.
  • FIG. 3 is a cross-sectional view of the X-ray tube of FIG. 1 taken along line III-III.
  • FIG. 4 is a cross-sectional view of the X-ray tube of FIG. 1 taken along line IV-IV.
  • FIG. 5 is a plan view of an X-ray tube according to a second embodiment of the present invention.
  • FIG. 6 is a plan view showing a state in which the upper face plate of the X-ray tube of FIG. 5 is removed.
  • FIG. 7 is a cross-sectional view of the X-ray tube of FIG. 5 taken along line VII-VII.
  • FIG. 8 is a cross-sectional view of the X-ray tube of FIG. 5 taken along line VIII-VIII.
  • FIG. 9 is a plan view of an X-ray tube according to a third embodiment of the present invention.
  • FIG. 10 is a plan view showing a state in which the upper face plate of the X-ray tube of FIG. 9 is removed.
  • FIG. 11 is a cross-sectional view taken along line XI-XI of the X-ray tube of FIG.
  • FIG. 12 is a cross-sectional view of the X-ray tube of FIG. 9 taken along line XII-XII.
  • FIG. 13 is a plan view showing a state where an upper face plate of an X-ray tube as a modification of the present invention is removed.
  • FIG. 14 is a cross-sectional view taken along the line XIV-XIV in a state including the upper face plate of the X-ray tube of FIG.
  • FIG. 15 is a cross-sectional view of an X-ray tube which is a modification of the present invention. Explanation of symbols
  • FIG. 1 is a plan view of the X-ray tube 1 according to the first embodiment of the present invention
  • FIG. 2 is a plan view showing a state in which the upper face plate of the X-ray tube 1 of FIG. 1 is removed
  • FIG. Fig. 4 is a cross-sectional view taken along line IV-IV in Fig. 1.
  • the X-ray tube 1 includes an upper face plate 2 and a lower face plate 3 which are insulating members such as flat glass, and a square columnar side wall 4 which is an insulating member force such as glass.
  • the vacuum envelope 5 is composed of The upper face plate 2, the lower face plate 3, and the side wall 4 are made of glass, and the upper face plate 2 and the lower face plate 3 are sealed to the opening end of the side wall 4 by frit glass or the like, so that the vacuum envelope 5 The inside is kept airtight.
  • the surface is coated with a carbon-based electron emission material 6 by a CVD method, a spray method, a printing method, or the like.
  • An electron source 8 composed of a metal mesh material (conductive member) 7 is disposed.
  • the metal mesh material 7 has a rectangular shape as a whole, and is arranged so that the outer edge thereof is parallel to each side of the lower face plate 3 at the center of the inner face 3a, and one surface on the lower face plate 3 side is entirely covered.
  • the lower face plate 3 is laid in contact with the flat inner face 3a.
  • the inner surface 3a is the true value of the lower face plate 3. It shall be the surface facing the sky side and including the joint with the side wall 4.
  • the carbon-based electron emission material 6 is typified by carbon nanotubes, carbon nanowalls, carbon nanofibers, diamond, diamond-like carbon, etc., and is a so-called electric field having a property of emitting electrons to the outside by the action of an electric field. It is an emission type electron emission material.
  • the carbon-based electron emission material 6 may be coated on the entire peripheral surface of the metal wire constituting the metal mesh material 7, but in order to efficiently use the current supplied to the electron source 8, it is shown in FIG. Thus, it is preferable to cover only the upper face plate 2 side of the metal wire.
  • the electron source 8 is a pin for setting the voltage of the external force metal mesh material 7, and an external connection pin 9 penetrating to the outside from the vacuum envelope 5 is electrically connected. It is connected to the.
  • a mesh-like extraction electrode 11 is fixed between the electron source 8 and the upper face plate 2 so as to cover the electron source 8 with an upper force.
  • the extraction electrode 11 is composed of three electrically independent rectangular metal mesh materials 11a, ib, and 11c, and the electron source is arranged so that each edge is parallel to each side of the lower face plate 3. 8 are arranged along the longitudinal direction. Further, on the inner surface 3 a of the lower face plate 3, a pair of convex portions 10 parallel to the longitudinal direction of the side wall 4 are integrally formed in a straight line, and a groove portion 18 is formed by the pair of convex portions 10. .
  • the respective metal mesh members 11a, l ib and 11c are provided with both end portions thereof placed on the convex portion 10, thereby maintaining a predetermined distance from the electron source 8.
  • the convex portion 10 is a rail-like protrusion that is positioned on the inner surface 3a so as to sandwich the electron source 8 with an outer force and has a tip surface 10a parallel to the inner surface 3a.
  • the groove 18 is formed in the inner surface 3a of the lower face plate 3 and the region sandwiched between them, and the electron source 8 is disposed in the groove 18.
  • the metal mesh members 11a, ib, and 11c are fixed on the tip surface 10a of the convex portion 10 by bonding both ends thereof to the tip surface 10a with frit glass.
  • the metal mesh members 11a, l ib, and 11c are pins for supplying the voltages of the external force metal mesh members 11a, l ib, and 11c, respectively, from the vacuum envelope 5 to the outside.
  • the external connection pins 12a, 12b, and 12c provided through are electrically connected independently.
  • the upper face plate 2 functions as an X-ray extraction window for extracting X-rays to the outside by forming a substantially rectangular through hole 13 at a position facing the electron source 8 (FIG. 1). These through holes 13 are arranged in two rows along the longitudinal direction of the electron source 8 and three rows along the short direction of the electron source, so that a total of six through holes 13 are formed.
  • a silicon thin film 14 is bonded to the outer surface of the upper face plate 2 by anodic bonding so as to cover all the through holes 13, thereby realizing hermetic sealing inside the vacuum envelope 5.
  • a target material 15 such as tungsten is formed by vapor deposition in a portion exposed from the through hole 13 on the inner surface of the silicon thin film 14 (FIG. 4). This target material 15 has the property of generating X-rays in response to the incidence of electrons from the electron source 8. Power!
  • a conductive member such as tandastain is deposited on the vacuum side of the upper face plate 2 including the inner wall of the through hole 13.
  • the upper face plate 2 Since electrons from the electron source 8 are also incident on the upper face plate 2 which is an insulating member, the upper face plate 2 may be charged and affect the electric field formed in the vacuum envelope 5 in some cases. For this reason, charging is prevented by covering the electron incident side with a conductive member.
  • vapor deposition is performed integrally with the target material 15.
  • the voltage supply to the target material 15 is also performed through a conductive member that comes into contact with the external connection pin 17 provided so as to penetrate from the vacuum envelope 5 to the outside.
  • the metal mesh material 7 constituting the electron source 8 has a groove portion of the inner surface 3a of the lower face plate 3 of the vacuum envelope 5 having sufficient strength to hold a vacuum. Is positioned in the vacuum envelope 5.
  • the extraction electrode 11 is fixed between the electron source 8 and the target material 15 on the tip surface 10a of the convex portion 10 formed integrally with the lower face plate 3. In this way, by arranging the electron source 8 and the extraction electrode directly in the vacuum envelope 5, the distance from the electron source 8 over the entire extraction electrode 11 can be determined with high accuracy when the apparatus is assembled. The amount of electron emission from 8 is made uniform.
  • the electric field strength between the electron source 8 and the extraction electrode 11 is ⁇ ! Emission from carbon-based electron emission material 6 which is about ⁇ m Since the current density is as large as 2 to 50mAZcm2, the effect of stabilizing the amount of electron emission is significant. As a result, even when the electron source 8 has a large area, the positions of the electron source 8 and the extraction electrode 11 can be stably maintained, and the positions of the electron source 8 and the extraction electrode 11 can be maintained even if vibrations occur. The relationship is stabilized and stable X-ray irradiation characteristics can be obtained over a wide range.
  • the metal mesh material 7 is a metal formed in a net shape, V and the electron source 8 are easily spread over a wide range on the inner surface 3a of the lower face plate 3 when the apparatus is assembled. It can be placed.
  • the extraction electrode 11 is fixed on the convex portion 10 formed integrally with the lower face plate 3 on the inner surface 3 a of the lower face plate 3, and in the groove portion 18 on the inner face 3 a sandwiched between the two convex portions 10. Since the electron source 8 is disposed on the metal mesh material 7 constituting the electron source 8, positioning with respect to the extraction electrode 11 is facilitated over the entire metal mesh material 7, and electron emission from the electron source 8 is made more uniform. Is done.
  • the extraction electrode 11 is divided into a plurality along the longitudinal direction of the metal mesh material 7, and external connection pins 12a, 12b, 12c are provided independently of each other.
  • the amount of extracted electrons can be controlled along the longitudinal direction of the ash material 7, and uniform X-ray irradiation characteristics can be obtained along the longitudinal direction of the metal mesh material 7.
  • FIG. 5 is a plan view of the X-ray tube 21 according to the second embodiment of the present invention
  • FIG. 6 is a plan view showing a state in which the upper face plate of the X-ray tube 21 of FIG. 1 is removed
  • FIG. FIG. 8 is a sectional view taken along the line VIII-VIII in FIG. 5.
  • the configurations of the electron source and the extraction electrode provided on the inner surface 3a of the lower face plate 3 are different from those in the first embodiment.
  • the configuration of the upper face plate 2 that functions as the X-ray extraction window of the X-ray tube 21 is the same as that of the first embodiment.
  • the inner surface 3a of the lower face plate 3 is constituted by strip-shaped metal films (conductive members) 27a, 27b, 27c each having a carbon-based electron emission material 26a, 26b, 26c applied thereto.
  • the electron sources 28a, 28b, 28c are arranged (see FIGS. 6 and 8). Each electron source 28a, 28b, 28c ⁇ Exclude both ends of the metal film 27a, 27b, 27c, except that the carbon-based electron-emitting materials 26a, 26b, 26c It is covered.
  • Metal film 27a, 2 7b and 27c are pins for setting the voltages of the metal films 27a, 27b and 27c from the outside, respectively, and are external connection pins 29a and 29b provided penetrating from the vacuum envelope 5 to the outside. , 29c are electrically connected.
  • These electron sources 28a, 28b, 28c are respectively disposed in three linear grooves 36a, 36b, 36c formed by the side wall 4 and the inner surface 3a (FIG. 8). That is, in the side wall 4, three slits that are parallel to each other and penetrate toward the lower face plate 3 are formed.
  • the slits and the inner surface 3a of the lower face plate 3 form groove portions 36a, 36b, 36c along the longitudinal direction of the lower face plate 3, and the metal films 27a, 27b, 27c are formed in the groove portions 36a, 36b, 3
  • the film is formed along the inner surface 3a surrounded by 6c.
  • the extraction electrode which is a strip-shaped metal film in parallel with the electron sources 28a, 28b, 28c
  • the extraction electrode 31 is divided and disposed so as to sandwich the electron sources 28a, 28b, and 28c from both sides, and is further divided into two along the longitudinal direction of the electron sources 28a, 28b, and 28c.
  • the lead electrode 31 is connected to an external connection pin 32 for each set of electrodes provided with the electron sources 28a, 28b, 28c interposed therebetween.
  • the groove 3a, 36b, 36c force S corresponding to the electron sources 28a, 28b, 28c is formed on the inner surface 3a of the vacuum envelope 5, and the metal Membranes 27a, 27b, and 27d are provided along the inner surface 3a of the lower face plate 3 serving as the bottom surfaces of the grooves 36a, 36b, and 36c. Therefore, the positioning of the metal films 27a, 27b, 27c constituting the electron sources 28a, 28b, 28c with respect to the extraction electrode 31 is facilitated, and the electron sources 28a, 28b, 28c Electron emission is made more uniform. In addition, since the extraction electrode is located on the electron path between the electron sources 28a, 28b, 28c and the target material 15, efficient X-ray irradiation is performed with respect to the supply current.
  • FIG. 9 is a plan view of an X-ray tube 41 according to a third embodiment of the present invention
  • FIG. 10 is a plan view showing a state in which the upper face plate of the X-ray tube 41 of FIG. 9 is removed
  • FIG. 9 is a cross-sectional view taken along line XI-XI
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG.
  • the X-ray tube 41 that works in the present embodiment has an electron source force provided on the lower face plate 3 and the lower face plate 3 side according to the emitted electrons. This is a so-called reflection type X-ray tube that irradiates X-rays from the X-ray extraction window provided in.
  • strip-shaped metal films (conductive members) 47a and 47b each having a carbon-based electron emission material 46a and 46b applied to the surface are provided.
  • the electron sources 48a and 48b are arranged parallel to the force side wall 4 (see FIGS. 10 and 12).
  • the carbon-based electron emission materials 46a and 46b are covered over the entire upper surface excluding both ends of the metal films 47a and 47b.
  • the metal films 47a and 47b are formed on the inner surface 3a which is the bottom surface of the grooves 56a and 56b formed along the longitudinal direction of the vacuum envelope 5 (see FIGS. 10 and 12).
  • the groove portions 56a and 56b are formed by two parallel slits that penetrate from the side wall 4 toward the lower face plate 3 and the inner surface 3a, and have a width that is approximately the same as or slightly larger than the width of the metal films 47a and 47b. is doing.
  • the metal films 47a and 47b are accommodated in the grooves 56a and 56b, respectively.
  • external connection pins 49a and 49b provided through the vacuum envelope 5 to the outside are electrically connected to the metal films 47a and 47b, respectively.
  • a plurality of bow I electrode electrodes 51 which are band-like metal films, are arranged in parallel with the electron sources 48a and 48b.
  • the bow I output electrode 51 is divided and disposed so as to sandwich the electron sources 48a and 48b from both sides, and is further divided into two along the longitudinal direction of the electron sources 48a and 48b.
  • the extraction electrode 51 has a height force from the inner surface 3a by changing the height of the inner surface 4a with the groove portions 56a and 56b interposed therebetween, that is, the inner surface of the target material 55, that is, the inner surface of the target material 55.
  • the central axis L1 (vertical through hole 57 described later) perpendicular to is arranged so as to be lower than the outside of the grooves 56a, 56b. Further, an external connection pin 52 is connected to the extraction electrode 51 for each set of electrodes provided with the electron sources 48a and 48b interposed therebetween.
  • the lower face plate 3 is formed with a substantially rectangular through hole (opening) 57 that is divided into two along the longitudinal direction of the electron sources 8a and 8b at the center thereof, thereby It functions as an X-ray extraction window for external extraction (Fig. 10).
  • a silicon thin film 54 is bonded to the outer surface of the lower face plate 3 by anodic bonding so as to cover the through holes 57, thereby realizing hermetic sealing of the inner portion of the vacuum envelope 5.
  • the target material 55 is deposited on the inner surface of the upper face plate 2 facing the through hole 57. (Fig. 12).
  • tungsten is vapor-deposited integrally with the target material 55 over almost the entire vacuum surface of the upper face plate 2 as a conductive member for preventing the upper face plate 2 from being charged.
  • the voltage supply to the target material 55 is performed via a conductive member that comes into contact with the external connection pin 17 provided so as to penetrate from the vacuum envelope 5 to the outside.
  • the target material 55 is provided in the vacuum envelope 5 so as to face the electron sources 48a, 48b and the through hole 57, so that the electron sources 48a, 48b, Electrons emitted from 48b enter the target material 55, and X-rays generated from the target material 55 are transmitted through the silicon thin film 54 and extracted outside.
  • X-rays are generated when electrons emitted from the carbon-based electron emission materials 46a and 46b on the surfaces of the metal films 47a and 47b enter the target material 55.
  • the X-rays are extracted to the outside through a through hole 57 and a silicon thin film 54 provided at a position facing the target material 55 of the lower face plate 3.
  • a stable X-ray irradiation characteristic can be obtained over a wide range by stabilizing the positional relationship between the metal films 47a and 47b and the extraction electrode 51 and the target material 55.
  • the present embodiment is a reflection type X-ray tube, and the X-ray extraction window (silicon thin film 54) and the target material 55 are provided separately, and accordingly, electrons are incident upon the target material 55.
  • the heat generated at this time has little effect on the silicon thin film 54.
  • the X-ray extraction window (silicon thin film 54) and the target material 55 are arranged so as to face each other, so that the space through the vacuum envelope 5 is also improved. In particular, it is difficult to be affected by the large distance.
  • the thickness of the target material 75 can be increased. For this reason, it is particularly preferable when the electron flow rate for obtaining a large amount of X-rays is to be increased.
  • the extraction electrode 51 is formed so that the through hole 57 side is lowered with the groove portions 56a and 56b interposed therebetween, and electrons emitted from the electron sources 48a and 48b are directed toward the center portion of the target material 55. Therefore, electrons can be efficiently incident on the target material 55 in the reflective X-ray tube. As a result, the amount of X-ray irradiation with respect to the supply current is improved.
  • the electron source provided on the inner surface 3a of the lower face plate 3 can be formed in a flat shape other than a mesh-like metal mesh.
  • Various shapes such as formed metal films and metal plates can be employed.
  • a rectangular metal film or metal plate is formed on the inner surface 3a.
  • a certain conductive member 67 may be disposed, and the surface of the conductive member 67 may be uniformly coated with the carbon-based electron emission material 66.
  • the carbon-based electron emitting material is uniformly disposed on the inner surface 3a, so that electrons are emitted uniformly. It can be made uniform.
  • the configuration of the X-ray tube 41 may be applied to a so-called transmission X-ray tube having an X-ray extraction window on the upper face plate 2 side. That is, as in the X-ray tube 81 shown in FIG. 15, the through-hole 93 is formed in the central portion of the upper face plate 2 in the short direction, and the silicon thin film 14 is placed outside the upper face plate 2 so as to cover the through-hole 93. Alternatively, the target material 95 may be formed in a portion exposed from the through hole 93 on the inner surface of the silicon thin film 14.
  • the extraction electrode 51 is located inside the groove portions 56a and 56b, that is, the central axis of the target material 95 perpendicular to the inner surface of the target material 95.
  • the extraction electrode When the extraction electrode is divided and provided, it is possible to obtain a desired electron emission amount in a desired divided region by simply setting an applied voltage so that the electron emission amount in each divided region is uniform. As such, the applied voltage to each divided region of the extraction electrode may be changed.
  • the electron source is arranged along the longitudinal direction of the vacuum envelope 5, it may be arranged along the short direction. In this case, it is preferable to arrange a plurality of electron sources in the longitudinal direction.
  • the vacuum envelope 5 may have the same length in the longitudinal direction and the short side.
  • the members constituting the vacuum envelope 5 are not limited to insulating materials, and for example, a conductive member may be used for the upper face plate 2.
  • the window material covering the through hole 13 is not limited to silicon, but any material with good X-ray transmission such as beryllium may be used.
  • the conductive member deposited on the vacuum side of the upper face plate 2 is integrated with the target material. It is not limited to being formed, but may be a thin film made of a conductive material different from the target material, such as aluminum or ITOdndium Tin Oxide.

Landscapes

  • X-Ray Techniques (AREA)

Description

明 細 書
X線管
技術分野
[0001] 本発明は、 X線を照射させる X線管に関し、特に、幅広い範囲に X線を照射するの に適した構造を有する X線管に関するものである。
背景技術
[0002] X線管は、高真空の管内において電子源を用いて電子を発生させ、その電子をタ 一ゲットに入射させることによって X線を発生する装置である。このような X線管として は、例えば、下記特許文献 1に示された X線装置がある。この X線装置では、平面状 陰極力 放出された電子線がターゲットである平面状陽極に衝突し、平面状陽極か ら発生した X線が取り出し窓を通して外部に取り出される。
特許文献 1:特開 2003 - 288853号公報
発明の開示
発明が解決しょうとする課題
[0003] ところで、上述したように筐体内に平面状の電子源が保持された構造を有する X線 管は、電子源を大面積ィ匕しゃすいため X線照射範囲の大面積ィ匕が可能である。一 方で、炭素系電子放出材料を用いた冷陰極の電子源の場合、電子源と引出電極と の間に形成される電界によって電子源から電子を引き出す電界放出型の電子源で あるために、電子源と引出電極との位置関係が、電子源からの電子放出特性に大き な影響を与える。つまり、筐体内における電子源の配置は、 X線照射特性にとって重 要な要素の一つとなる。し力しながら、従来の X線管では、照射範囲を大面積化する ために電子源をも大型化する場合、筐体内において電子源を精度良く配置させるこ とが困難であった。その結果、 X線照射特性の安定ィ匕を図ることが困難となる。
[0004] そこで、本発明は、カゝかる課題に鑑みて為されたものであり、 X線照射範囲を拡げ た場合であっても安定した X線照射を実現する X線管を提供することを目的とする。 課題を解決するための手段
[0005] 上記課題を解決するため、本発明の X線管は、少なくとも一部に絶縁部材を含む真 空外囲器と、絶縁部材の内面に沿って設けられた導電部材の表面に、炭素系電子 放出材料が配置された電子源と、真空外囲器内において電子源に対向して設けら れ、電子源からの電子の入射に応じて X線を発生するターゲットと、真空外囲器に取 り付けられ、ターゲットから発生した X線を外部に取り出すための X線取出窓と、真空 外囲器内において固定された引出電極と、を備える。
[0006] このような X線管によれば、電子源を構成する導電部材が、真空を保持するために 十分な強度を有する真空外囲器の絶縁部材の内面に沿って設けられることによって 、真空外囲器内において位置決めされるとともに、真空外囲器内に引出電極が固定 される。このような構成において、絶縁部材の表面の炭素系電子放出材料から放出 された電子がターゲットに入射することによって X線が発生し、この X線は X線取出窓 を通じて外部に取り出される。従って、電子源を大面積化した場合でも電子源を精度 よく配置することができ、広範囲に渡って安定した X線照射特性を得ることができる。
[0007] 引出電極は、少なくとも一部が真空外囲器における絶縁部材の内面に配置されて いることが好ましい。力かる引出電極を備えれば、 X線管の使用時において引出電極 の位置をも安定化させることができ、より安定した X線照射特性を得ることができる。
[0008] また、導電部材は、網状部材であることも好ま 、。この場合、電子源を絶縁部材の 内面にお 、て広範囲に渡って容易に配置させることができる。
[0009] また、導電部材は、平面状部材であることも好ま 、。力かる構成とすれば、電子源 にお 、て電子が一様に放出されるので、装置を大型化しても X線照射を均一化させ ることがでさる。
[0010] また、絶縁部材の内面には、溝部が形成されており、導電部材は、溝部内に設けら れ、引出電極は、絶縁部材の溝部を挟んだ内面に沿って布設されていることも好まし い。こうすれば、電子源を構成する導電部材の全体に渡って引出電極に対する位置 決めが容易に為され、電子源力 の電子放出がより均一化される。
[0011] さらに、引出電極は、導電部材の長手方向に沿って複数に分割されていることも好 ましい。力かる引出電極を備えれば、導電部材の長手方向に沿って分割領域毎に電 子の引出量を制御することができ、導電部材の長手方向に沿って分割領域毎に任 意の X線照射特性を得ることができる。 [0012] またさらに、引出電極は、ターゲットの内面に垂直な中心軸線側が低くなるように配 置されていることも好ましい。このような構成により、ターゲットに電子を効率的に入射 させることがでさる。
[0013] またさらに、絶縁部材には、ターゲットと対向するように開口部が設けられ、 X線取 出窓は、開口部を覆うように設けられていることも好ましい。この場合、電子の入射方 向に対して異なる方向に X線を取り出すような、 V、わゆる反射型のターゲットを利用し た場合に、外部の広範囲に X線を照射することができる。
発明の効果
[0014] 本発明による X線管によれば、 X線照射範囲を拡げた場合であっても安定した X線 照射を実現することができる。
図面の簡単な説明
[0015] [図 1]本発明の第 1実施形態である X線管の平面図である。
[図 2]図 1の X線管の上部面板を取り除いた状態を示す平面図である。
[図 3]図 1の X線管の III— III線に沿った断面図である。
[図 4]図 1の X線管の IV— IV線に沿った断面図である。
[図 5]本発明の第 2実施形態である X線管の平面図である。
[図 6]図 5の X線管の上部面板を取り除いた状態を示す平面図である。
[図 7]図 5の X線管の VII— VII線に沿った断面図である。
[図 8]図 5の X線管の VIII— VIII線に沿った断面図である。
[図 9]本発明の第 3実施形態である X線管の平面図である。
[図 10]図 9の X線管の上部面板を取り除いた状態を示す平面図である。
[図 11]図 9の X線管の XI— XI線に沿った断面図である。
[図 12]図 9の X線管の XII— XII線に沿った断面図である。
[図 13]本発明の変形例である X線管の上部面板を取り除いた状態を示す平面図であ る。
[図 14]図 13の X線管の上部面板を含んだ状態における XIV— XIV線に沿った断面図 である。
[図 15]本発明の変形例である X線管の断面図である。 符号の説明
[0016] 1, 21, 41, 61, 81···Χ線管、 3a…内面、 5···真空外囲器、 6, 26a, 26b, 26c, 4 6a, 46b, 66…炭素系電子放出材料、 7…金属メッシュ材 (導電部材)、 27a, 27b, 27c, 47a, 47b…金属膜(導電部材)、 67···導電部材、 8, 28a, 28b, 28c, 48a, 4 8b, 68···電子源、 11, 31, 51···引出電極、 13···貫通孔、 14, 54···シリコン薄膜、 15, 55, 95···ターゲッ卜材、 36a, 36b, 36c, 56a, 56b…溝部、 57···貫通孔(開口 部)。
発明を実施するための最良の形態
[0017] 以下、図面を参照しつつ本発明に係る X線管の好適な実施形態について詳細に 説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重 複する説明を省略する。また、各図面は説明用のために作成されたものであり、説明 の対象部位を特に強調するように描かれている。そのため、図面における各部材の 寸法比率は、必ずしも実際のものとは一致しない。
[0018] [第 1実施形態]
図 1は、本発明の第 1実施形態である X線管 1の平面図、図 2は、図 1の X線管 1の 上部面板を取り除いた状態を示す平面図、図 3は、図 1の III III線に沿った断面図、 図 4は、図 1の IV— IV線に沿った断面図である。
[0019] これらの図に示すように、 X線管 1は、平板状のガラス等の絶縁部材カ なる上部面 板 2及び下部面板 3と、ガラス等の絶縁部材力 なる四角柱状の側壁 4とから構成さ れる真空外囲器 5を有している。上部面板 2、下部面板 3、及び側壁 4は、ガラスによ つて形成され、上部面板 2及び下部面板 3がフリットガラス等により側壁 4の開口端と 封着されることにより真空外囲器 5の内部が気密に保たれている。
[0020] この真空外囲器 5の一部を構成する下部面板 3の内面 3a上には、表面に炭素系電 子放出材料 6が CVD法、スプレー法、印刷法等で被覆された網目状の金属メッシュ 材 (導電部材) 7によって構成される電子源 8が配置されている。この金属メッシュ材 7 は、全体で矩形状をなし、内面 3aの中央部においてその外縁が下部面板 3の各辺 に平行になるように配置されるとともに、下部面板 3側の一面が全面的に、平坦な内 面 3aに接した状態で下部面板 3に布設される。以下、内面 3aとは、下部面板 3の真 空側を向 、た面であって、側壁 4との接合部分を含む面のことを示すものとする。
[0021] ここで、炭素系電子放出材料 6は、カーボンナノチューブ、カーボンナノウォール、 カーボンナノファイバ、ダイヤモンド、ダイヤモンドライクカーボン等に代表され、電界 の作用によって電子を外部に放出する性質を有するいわゆる電界放出型の電子放 出材料である。炭素系電子放出材料 6は、金属メッシュ材 7を構成する金属線の周面 全体に被覆しても良いが、電子源 8に供給される電流を効率よく利用するためには、 図 4に示すように、金属線の上部面板 2側にのみ被覆することが好適である。
[0022] また、電子源 8には、外部力 金属メッシュ材 7の電圧を設定するためピンであって 、真空外囲器 5から外部に貫通して設けられた外部接続用ピン 9が電気的に接続さ れている。
[0023] このような電子源 8と上部面板 2との間には、電子源 8を上力 覆うように網目状の引 出電極 11が固定されている。この引出電極 11は、電気的に独立した矩形状の 3つ の金属メッシュ材 11a, l ib, 11cから構成され、それぞれの縁部が下部面板 3の各 辺に平行になるように、電子源 8の長手方向に沿って配列されている。また、下部面 板 3の内面 3a上には、側壁 4の長手方向と平行な一対の凸部 10がー直線状に一体 形成されており、一対の凸部 10によって溝部 18が形成されている。そして、それぞ れの金属メッシュ材 11a, l ib, 11cは、その両端部を、凸部 10に載置させて設けら れること〖こよって、電子源 8と所定の距離を保っている。
[0024] 具体的には、凸部 10は、内面 3a上において電子源 8を外側力も挟むように位置し 、内面 3aと平行な先端面 10aを有するように形成されたレール状の突起であり、下部 面板 3の内面 3aとそれらによって挟まれる領域において溝部 18を形成し、溝部 18内 に電子源 8を配置している。また、金属メッシュ材 11a, l ib, 11cは、その両端が先 端面 10aに対してフリットガラスによって接着されることによって、凸部 10の先端面 10 a上に固定される。
[0025] また、金属メッシュ材 11a, l ib, 11cには、それぞれ、外部力 金属メッシュ材 11a , l ib, 11cの電圧を供給するためのピンであって、真空外囲器 5から外部に貫通し て設けられた外部接続用ピン 12a, 12b, 12cが、電気的に独立して接続されている [0026] 上部面板 2は、電子源 8に対向する位置に略矩形状の貫通孔 13が形成されること によって、 X線を外部に取り出すための X線取出窓として機能する(図 1)。これらの貫 通孔 13は、電子源 8の長手方向に沿って 2列、及び電子源の短手方向に沿って 3列 で配列されて合計 6個形成されている。また、上部面板 2の外側表面には、全ての貫 通孔 13を覆うようにシリコン薄膜 14が陽極接合によって接合されており、真空外囲器 5の内部の気密封止が実現される。さらに、シリコン薄膜 14の内面の貫通孔 13から 露出する部位には、タングステン等のターゲット材 15が蒸着により形成されている(図 4)。このターゲット材 15は、電子源 8からの電子の入射に応じて X線を発生させる性 質を有する。力!]えて、貫通孔 13の内壁も含めて、上部面板 2の真空側にもタンダステ ン等の導電性部材が蒸着されている。電子源 8からの電子は、絶縁部材である上部 面板 2にも入射するため、上部面板 2が帯電し、真空外囲器 5内に形成される電界に 影響を与えてしまう場合がある。そのため、導電性部材で電子入射側を覆うことによ つて、帯電を防止している。なお、本実施形態においては、ターゲット材 15と一体に 蒸着形成されている。また、ターゲット材 15への電圧供給も、真空外囲器 5から外部 に貫通して設けられた外部接続用ピン 17と接触する導電性部材を介して行われる。
[0027] このように、ターゲット材 15が真空外囲器 5内で電子源 8に対向して設けられること により、引出電極 11により印加された電界に応じて電子源 8から放出された電子がタ ーゲット材 15に入射し、それに応じてターゲット材 15から発生した X線がシリコン薄膜 14を透過して外部に取り出される。
[0028] 以上説明した X線管 1においては、電子源 8を構成する金属メッシュ材 7が、真空を 保持するために十分な強度を有する真空外囲器 5の下部面板 3の内面 3aの溝部 18 に沿って布設されることによって、真空外囲器 5内において位置決めされる。それと 同時に、電子源 8とターゲット材 15との間において、下部面板 3と一体成型された凸 部 10の先端面 10a上に引出電極 11が固定される。このように、真空外囲器 5に電子 源 8及び引出電極を直接配置することにより、装置の組立時に引出電極 11の全体に 渡って電子源 8との間隔が精度良く定められるので、電子源 8からの電子のエミッショ ン量が均一化される。特に、 X線管 1においては、電子源 8と引出電極 11との間の電 界強度が π!〜 m程度と大きぐ炭素系電子放出材料 6から放出される 電流密度も 2〜50mAZcm2程度と大きいため電子ェミッション量の安定ィ匕の効果は 大きい。その結果、電子源 8を大面積化した場合でも電子源 8及び引出電極 11の位 置を安定して保つことができるとともに、振動等が発生しても電子源 8と引出電極 11と の位置関係が安定化され、広範囲に渡って安定した X線照射特性を得ることができ る。
[0029] また、金属メッシュ材 7は、網状に形成された金属であるので、装置の組立時にお V、て、電子源 8を下部面板 3の内面 3aにお 、て広範囲に渡って容易に配置させるこ とがでさる。
[0030] また、引出電極 11は、下部面板 3の内面 3a上に下部面板 3と一体成型された凸部 10上に固定され、 2つの凸部 10で挟まれた内面 3a上の溝部 18内に電子源 8が配置 されて ヽるので、電子源 8を構成する金属メッシュ材 7の全体に渡って引出電極 11に 対する位置決めが容易に為され、電子源 8からの電子放出がより均一化される。
[0031] さらに、引出電極 11は、金属メッシュ材 7の長手方向に沿って複数に分割されてお り、それぞれに独立に外部接続用ピン 12a, 12b, 12cが設けられているので、金属メ ッシュ材 7の長手方向に沿って電子の引出量を制御することができ、金属メッシュ材 7 の長手方向に沿って均一な X線照射特性を得ることができる。
[0032] [第 2実施形態]
図 5は、本発明の第 2実施形態である X線管 21の平面図、図 6は、図 1の X線管 21 の上部面板を取り除いた状態を示す平面図、図 7は、図 5の VII— VII線に沿った断面 図、図 8は、図 5の VIII— VIII線に沿った断面図である。本実施形態に力かる X線管 2 1では、下部面板 3の内面 3a上に設けられた電子源及び引出電極の構成が第 1実施 形態のものと異なる。なお、 X線管 21の X線取出窓として機能する上部面板 2の構成 は第 1実施形態と同一である。
[0033] 詳細には、下部面板 3の内面 3a上には、表面に炭素系電子放出材料 26a, 26b, 26cがそれぞれ塗布された帯状の金属膜 (導電部材) 27a, 27b, 27cによって構成 される電子源 28a, 28b, 28cが配置されている(図 6及び図 8参照)。それぞれの電 子源 28a, 28b, 28c【こお!ヽて ίま、金属膜 27a, 27b, 27cの両端咅を除 <上面の全 体に渡って炭素系電子放出材料 26a, 26b, 26cが被覆されている。金属膜 27a, 2 7b, 27cには、それぞれ、外部から金属膜 27a, 27b, 27cの電圧を設定するためピ ンであって、真空外囲器 5から外部に貫通して設けられた外部接続用ピン 29a, 29b , 29cが電気的に接続されている。
[0034] これらの電子源 28a, 28b, 28cは、側壁 4と内面上 3aによって形成される 3つの直 線状の溝部 36a, 36b, 36c内にそれぞれ配置される(図 8)。すなわち、側壁 4にお いては下部面板 3に向けて貫通する互いに平行な 3つのスリットが形成される。そして 、それらのスリットと下部面板 3の内面 3aとで溝部 36a, 36b, 36cが下部面板 3の長 手方向に沿って形成され、金属膜 27a, 27b, 27cは、それぞれ、溝部 36a, 36b, 3 6cで囲まれる内面 3aに沿って成膜されている。
[0035] また、ィ則壁 4【こお ίナる溝咅 36a, 36b, 36cを挟む内面 4a上【こ ίま、電子源 28a, 28b , 28cと並列に帯状の金属膜である引出電極 31が複数布設されている。この引出電 極 31は、各電子源 28a, 28b, 28cを両側から挟むように分割して配置され、電子源 28a, 28b, 28cの長手方向に沿ってさらに 2分割されている。さらに、引出電極 31に は、電子源 28a, 28b, 28cを挟んで設けられた 1組の電極毎に外部接続用ピン 32 が接続されている。
[0036] 以上説明した X線管 21によれば、真空外囲器 5の内面 3aには、電子源 28a, 28b, 28cに対応した溝咅 36a, 36b, 36c力 S形成されており、金属膜 27a, 27b, 27dま、 溝部 36a, 36b, 36cの底面となる下部面板 3の内面 3aに沿って設けられ、引出電極 31は、溝部 36a, 36b, 36cを挟んだ内面 4aに沿って布設されているので、電子源 2 8a, 28b, 28cを構成する金属膜 27a, 27b, 27cの全体に渡って引出電極 31に対 する位置決めが容易に為され、電子源 28a, 28b, 28cからの電子放出がより均一化 される。また、電子源 28a, 28b, 28cとターゲット材 15との間の電子の経路上に引出 電極が位置して 、な 、ので、供給電流に対して効率的な X線照射が行われる。
[0037] [第 3実施形態]
図 9は、本発明の第 3実施形態である X線管 41の平面図、図 10は、図 9の X線管 4 1の上部面板を取り除いた状態を示す平面図、図 11は、図 9の XI— XI線に沿った断 面図、図 12は、図 9の XII— XII線に沿った断面図である。本実施形態に力かる X線管 41は、下部面板 3上に設けられた電子源力 放出された電子に応じて下部面板 3側 に設けられた X線取出窓から X線を照射する、いわゆる反射型の X線管である。
[0038] 具体的には、真空外囲器 5内の下部面板 3上には、表面に炭素系電子放出材料 4 6a, 46bがそれぞれ塗布された帯状の金属膜 (導電部材) 47a, 47bによって構成さ れる電子源 48a, 48b力 側壁 4に平行に配置されている(図 10及び図 12参照)。そ れぞれの電子源 48a, 48bにおいては、金属膜 47a, 47bの両端部を除く上面の全 体に渡って炭素系電子放出材料 46a, 46bが被覆されている。そして、金属膜 47a, 47bは、真空外囲器 5の長手方向に沿って形成された溝部 56a, 56bの底面となる 内面 3a上に成膜されている(図 10及び図 12参照)。この溝部 56a, 56bは、側壁 4か ら下部面板 3に向けて貫通する互いに平行な 2つのスリットと内面 3aによって形成さ れ、金属膜 47a, 47bの幅とほぼ同程度もしくは多少大きな幅を有している。金属膜 4 7a, 47bは、それぞれ、溝部 56a, 56b内に収められる。
[0039] また、金属膜 47a, 47bには、それぞれ、真空外囲器 5から外部に貫通して設けら れた外部接続用ピン 49a, 49bが電気的に接続されている。
[0040] また、側壁 4における溝部 56a, 56bを挟む内面 4a上には、電子源 48a, 48bと並 列に帯状の金属膜である弓 I出電極 51が複数布設されて 、る。この弓 I出電極 51は、 各電子源 48a, 48bを両側から挟むように分割して配置され、電子源 48a, 48bの長 手方向に沿ってさらに 2分割されている。ここで、引出電極 51は、内面 4aの高さが溝 部 56a, 56bを挟んで変えられることによって、内面 3aからの高さ力 溝部 56a, 56b で挟んで内側、すなわち、ターゲット材 55の内面に垂直な中心軸線 L1側(後述する 貫通孔 57側)が溝部 56a, 56bの外側よりも低くなるように配置されている。さらに、引 出電極 51には、電子源 48a, 48bを挟んで設けられた 1組の電極毎に外部接続用ピ ン 52が接続されている。
[0041] 下部面板 3は、その中央部において、電子源 8a, 8bの長手方向に沿って 2分割さ れた略矩形状の貫通孔(開口部) 57が形成されることによって、 X線を外部に取り出 すための X線取出窓として機能する(図 10)。また、下部面板 3の外面には、貫通孔 5 7を覆うようにシリコン薄膜 54が陽極接合によって接合されており、真空外囲器 5の内 部の気密封止が実現されて 、る。
[0042] 一方、上部面板 2の内面の貫通孔 57と対向する部位に、ターゲット材 55が蒸着に より形成されている(図 12)。なお、本実施形態においては、上部面板 2の帯電防止 のための導電性部材として、上部面板 2の真空側のほぼ全面にわたってタングステン をターゲット材 55と一体に蒸着形成している。また、ターゲット材 55への電圧供給は 、真空外囲器 5から外部に貫通して設けられた外部接続用ピン 17と接触する導電性 部材を介して行われる。このように、ターゲット材 55が真空外囲器 5内で電子源 48a, 48b及び貫通孔 57に対向して設けられることにより、引出電極 51により印加された電 界に応じて各電子源 48a, 48bから放出された電子がターゲット材 55に入射し、それ に応じてターゲット材 55から発生した X線がシリコン薄膜 54を透過して外部に取り出 される。
[0043] 以上説明した X線管 41においても、金属膜 47a, 47bの表面の炭素系電子放出材 料 46a, 46bから放出された電子がターゲット材 55に入射することによって X線が発 生し、この X線は、下部面板 3のターゲット材 55に対向する位置に設けられた貫通孔 57及びシリコン薄膜 54を通じて外部に取り出される。このとき、金属膜 47a, 47bと引 出電極 51及びターゲット材 55との位置関係が安定ィ匕されることにより広範囲に渡つ て安定した X線照射特性が得られる。また、本実施形態は反射型の X線管であり、 X 線取出窓(シリコン薄膜 54)とターゲット材 55とが別体に設けられているために、ター ゲット材 55への電子入射に伴なつて発生する熱が、シリコン薄膜 54へ及ぼす影響が 少ない。特に、本実施形態においては、 X線取出窓(シリコン薄膜 54)とターゲット材 55とが対面するように配置されているために、真空外囲器 5を介した沿面的にも、ま た空間的にも距離が大きぐ特に影響を受けにくい。さらに、ターゲット材 75を介して X線を取り出す必要がないために、ターゲット材 75の厚みを厚くすることもできる。そ のため、多量の X線を得るベぐ電子流量を大きくするような場合に特に好ましい。
[0044] また、引出電極 51は、溝部 56a, 56bを挟んで貫通孔 57側が低くなるように形成さ れており、電子源 48a, 48bから放出された電子がターゲット材 55の中央部に向けら れるので、反射型 X線管におけるターゲット材 55に効率的に電子を入射させることが できる。その結果、供給電流に対する X線照射量が向上する。
[0045] なお、本発明は、前述した実施形態に限定されるものではな 、。例えば、下部面板 3の内面 3aに設けられる電子源としては網目状の金属メッシュ以外にも、平面状に形 成された金属膜や金属板等の様々な形状のものを採用することができる。
[0046] 具体的には、図 13及び図 14に示す X線管 61のように、第 1実施形態である X線管 1に対して、内面 3a上に矩形状の金属膜又は金属板である導電部材 67を配置して 、この導電部材 67の表面に炭素系電子放出材料 66を均一に被覆してもよい。このよ うに構成すれば、電子源 68においては炭素系電子放出材料が内面 3a上に均一に 配置されることにより電子が一様に放出されるので、装置を大型化しても X線照射を より均一ィ匕させることができる。
[0047] また、 X線管 41の構成を、上部面板 2側に X線取出窓を有する、いわゆる透過型 X 線管に適用してもよい。すなわち、図 15に示す X線管 81のように、上部面板 2の短手 方向の中央部に貫通孔 93を形成し、上部面板 2の外側に貫通孔 93を覆うようにシリ コン薄膜 14を配置し、シリコン薄膜 14の内面の貫通孔 93から露出する部位にターゲ ット材 95を形成してもよい。このような構成においても、引出電極 51が、溝部 56a, 5 6bの底面力もの高さに関して、溝部 56a, 56bを挟んだ内側、すなわち、ターゲット 材 95の内面に垂直なターゲット材 95の中心軸線 L2に近い側が溝部 56a, 56bの外 側よりも低くなるように配置されることで、ターゲット材 95に効率的に電子を入射させ ることができる。また、 1つの X線取出窓に対して複数の電子源力もの電子ビームを入 射可能になるので、 1つの X線取出窓あたりの X線出射量を増やすことができる。
[0048] また、引出電極を分割して設けた場合は、各分割領域毎の電子放出量を均一にす るように印加電圧を設定するのみでなぐ所望の分割領域において所望の電子放出 量になるように、引出電極の各分割領域への印加電圧を変えてもよい。
[0049] また、真空外囲器 5の長手方向に沿って電子源を配置したが、短手方向に沿って 配置してもよい。この場合、長手方向に複数の電子源を並べるように配置するのが好 ましい。
[0050] また、真空外囲器 5は、長手方向と短手方向の辺の長さが等しくてもよい。また、真 空外囲器 5を構成する部材は絶縁材料に限らず、例えば上部面板 2に導電性部材を 用いても良い。また、貫通孔 13を覆う窓材としては、シリコンに限らず、ベリリウム等の X線透過が良好な材料を用いれば良 ヽ。
[0051] また、上部面板 2の真空側に蒸着された導電性部材としては、ターゲット材と一体に 形成される場合に限らず、ターゲット材とは異なる導電性材料を用いたもの、例えば アルミニウムや、 ITOdndium Tin Oxide)等による薄膜でもよい。

Claims

請求の範囲
[1] 少なくとも一部に絶縁部材を含む真空外囲器と、
前記絶縁部材の内面に沿って設けられた導電部材の表面に、炭素系電子放出材 料が配置された電子源と、
前記真空外囲器内において前記電子源に対向して設けられ、前記電子源からの 電子の入射に応じて X線を発生するターゲットと、
前記真空外囲器に取り付けられ、前記ターゲットから発生した X線を外部に取り出 すための X線取出窓と、
前記真空外囲器内において固定された引出電極と、
を備えることを特徴とする X線管。
[2] 前記引出電極は、少なくとも一部が前記真空外囲器における前記絶縁部材の内面 に配置されている、
ことを特徴とする請求項 1記載の X線管。
[3] 前記導電部材は、網状部材である、
ことを特徴とする請求項 1又は 2に記載の X線管。
[4] 前記導電部材は、平面状部材である、
ことを特徴とする請求項 1〜2のいずれか一項に記載の X線管。
[5] 前記絶縁部材の内面には、溝部が形成されており、
前記導電部材は、前記溝部内に設けられ、
前記引出電極は、前記絶縁部材の前記溝部を挟んだ内面に沿って布設されてい る、
ことを特徴とする請求項 1〜4のいずれか一項に記載の X線管。
[6] 前記引出電極は、前記導電部材の長手方向に沿って複数に分割されている、 ことを特徴とする請求項 1〜5のいずれか一項に記載の X線管。
[7] 前記引出電極は、前記ターゲットの内面に垂直な中心軸側が低くなるように配置さ れている、
ことを特徴とする請求項 1〜6のいずれか一項に記載の X線管。
[8] 前記絶縁部材には、前記ターゲットと対向するように開口部が設けられ、 前記 X線取出窓は、前記開口部を覆うように設けられている、 ことを特徴とする請求項 1〜7のいずれか一項に記載の X線管。
PCT/JP2007/057573 2006-05-18 2007-04-04 X線管 WO2007135813A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-139124 2006-05-18
JP2006139124A JP2007311186A (ja) 2006-05-18 2006-05-18 X線管

Publications (1)

Publication Number Publication Date
WO2007135813A1 true WO2007135813A1 (ja) 2007-11-29

Family

ID=38723125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057573 WO2007135813A1 (ja) 2006-05-18 2007-04-04 X線管

Country Status (3)

Country Link
JP (1) JP2007311186A (ja)
TW (1) TW200746215A (ja)
WO (1) WO2007135813A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012167822A1 (en) * 2011-06-08 2012-12-13 Comet Holding Ag X-ray emitter
US11289300B2 (en) * 2017-07-26 2022-03-29 Shenzhen Xpectvision Technology Co., Ltd. Integrated X-ray source

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502014A (ja) * 2011-04-04 2014-01-23 ヴァキューム・サイエンス・アンド・インストゥルメント・カンパニー・リミテッド 電界放出源を用いた高効率平面型フォトバーおよびその製造方法
JP5763032B2 (ja) 2012-10-02 2015-08-12 双葉電子工業株式会社 X線管
JP5721681B2 (ja) * 2012-10-02 2015-05-20 双葉電子工業株式会社 X線管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288853A (ja) * 2002-03-27 2003-10-10 Toshiba Corp X線装置
JP2005237779A (ja) * 2004-02-27 2005-09-08 Shimadzu Corp X線ct装置
JP2005346933A (ja) * 2004-05-31 2005-12-15 Hamamatsu Photonics Kk 冷陰極電子源及びそれを用いた電子管
JP2006086001A (ja) * 2004-09-15 2006-03-30 Shimadzu Corp X線管装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288853A (ja) * 2002-03-27 2003-10-10 Toshiba Corp X線装置
JP2005237779A (ja) * 2004-02-27 2005-09-08 Shimadzu Corp X線ct装置
JP2005346933A (ja) * 2004-05-31 2005-12-15 Hamamatsu Photonics Kk 冷陰極電子源及びそれを用いた電子管
JP2006086001A (ja) * 2004-09-15 2006-03-30 Shimadzu Corp X線管装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012167822A1 (en) * 2011-06-08 2012-12-13 Comet Holding Ag X-ray emitter
US11289300B2 (en) * 2017-07-26 2022-03-29 Shenzhen Xpectvision Technology Co., Ltd. Integrated X-ray source

Also Published As

Publication number Publication date
TW200746215A (en) 2007-12-16
JP2007311186A (ja) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4912743B2 (ja) X線管及びそれを用いたx線照射装置
WO2007135812A1 (ja) X線管
KR100911434B1 (ko) Cnt를 이용한 삼극형 구조의 초소형 x 선관
US5729583A (en) Miniature x-ray source
JP2740741B2 (ja) ガス放電管
WO2007135813A1 (ja) X線管
JPH07326324A (ja) ガス放電管
KR102092368B1 (ko) 엑스레이 튜브 및 이의 제조방법
WO2012063379A1 (ja) 電界放射装置及び携帯型非破壊検査装置
JP6976122B2 (ja) 電子管
US6400069B1 (en) E-M wave generation using cold electron emission
US10734180B2 (en) Field emission cathode structure for a field emission arrangement
JP2014146496A (ja) X線照射源
JP6941525B2 (ja) 電子管の製造方法
EP1780751A1 (en) Spacer and electron emission display including the spacer
US11450443B1 (en) Structured plasma cell energy converter for a nuclear reactor
US10535487B1 (en) Manufacturing method of electron tube
CN111739772B (zh) 电子管的制造方法
JP2013235656A (ja) 電界放射装置及び携帯型非破壊検査装置
US10515775B1 (en) Electron tube
KR20070078899A (ko) 스페이서 및 이를 구비한 전자 방출 표시 디바이스
RU97563U1 (ru) Многолучевой катодный узел
KR20230164253A (ko) 엑스레이 튜브 및 그 제조 방법
CN111696845A (zh) 电子管
WO1994006147A1 (en) Laser electron beam tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741009

Country of ref document: EP

Kind code of ref document: A1