WO2007133912A2 - Utilisation de polymères fluorés dans le frittage par laser - Google Patents
Utilisation de polymères fluorés dans le frittage par laser Download PDFInfo
- Publication number
- WO2007133912A2 WO2007133912A2 PCT/US2007/067454 US2007067454W WO2007133912A2 WO 2007133912 A2 WO2007133912 A2 WO 2007133912A2 US 2007067454 W US2007067454 W US 2007067454W WO 2007133912 A2 WO2007133912 A2 WO 2007133912A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- fluoropolymer
- polymer
- polyvinylidene fluoride
- copolymers
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2027/00—Use of polyvinylhalogenides or derivatives thereof as moulding material
- B29K2027/12—Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
- B29K2027/18—PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
Definitions
- the invention relates to the use of fluoropolymers, and in particular polyvinylidene fluoride and its copolymers, or polychlorotrifluoroethylene and its copolymers, in a laser sintering process.
- Fluoropolymer powder provides many advantages over polymers currently used in that it intrinsically possesses flame- retardancy, as well as excellent chemical resistance and thermal resistance.
- the technology of sintering polymer powders under a laser beam is used for the manufacture of objects in three dimensions, such as prototypes and models.
- the selective laser sintering process is described in US Patent Number 4,863,568.
- a fine layer of polymer powder is deposited on a horizontal plate held in a chamber heated to a temperature lying between the crystallization temperature Tc and the melting point Tm of the polyamide powder.
- the laser sinters powder particles at various points of the powder layer according to a geometry corresponding to the object, for example using a computer which has the shape of the object in its memory and which reconstructs it in the form of slices.
- the horizontal plate is subsequently lowered by a value corresponding to the thickness of a layer of powder (for example, between 0.05 and 2 mm and generally of the order of 0.1 mm) and then a new layer of powder is deposited and the laser sinters powder particles according to a geometry corresponding to this new slice of the object.
- the procedure is repeated until the complete object has been manufactured.
- a block of powder consisting of polymer powder and melt is obtained within which the object is present.
- the parts that have not been sintered have thus remained in the powder state.
- the combination is gently cooled and the object solidifies as soon as its temperature falls below the crystallization temperature Tc. After cooling is complete, the object is separated from the powder, which can be recycled and used in another sintering operation.
- the powder it is recommended for the powder to have a difference Tm - Tc that is as large as possible in order to avoid deformation (or curling) phenomena during manufacture. This is because, at time to immediately after the action of the laser beam, the temperature of the sample is greater than the crystallization temperature (Tc) of the powder but the introduction of a new colder powder layer causes the temperature of the component to rapidly fall below Tc and results in deformations.
- Tc crystallization temperature
- an enthalpy of fusion which is as high as possible is required in order to obtain good geometrical definition of the components manufactured. This is because, if the enthalpy of fusion is too low, the energy supplied by the laser is sufficient to cake, by thermal conduction, the powder particles close to the walls being constructed, and thus the geometrical precision of the component is no longer satisfactory.
- US 6,245,281 discloses the use of polyamide-12 (PA 12) powders in the technology of the sintering of powders under a laser beam. These powders are such that their Tm is between 185 and 189°C, their Tc is between 138 and 143 0 C and their ⁇ Hf has a value of 112 ⁇ 17 J/g. These powders are manufactured according to the process disclosed in Patent US 4 334 056.
- US-2005-0197446 Describes a polyamide 12 designed specifically for a laser sintering operation.
- US20050003189 describes the use of a blend of a thermoplastic powder
- 3D printing uses an inkjet printer rather than a laser to produce prototype articles.
- fluoropolymers and copolymers can be used in a laser and infra-red (IR) sintering process, providing material properties to the formed article that are much better than those of currently used materials, such as flame retardency, chemical resistance and thermal resistance.
- the invention relates to a process for forming a three-dimensional object comprising the steps of: a) applying a layer of a fluoropolymer or co-polymer powder at a target surface; b) directing energy at selected locations of said polymer powder layer to sinter said powder at those selected points; c) repeating steps a) and b) over multiple layers to form an object; d) removing the unsintered powder from said object.
- the invention relates to the use of fluoropolymer and copolymers in a laser sintering process or other means of achieving a layer-by-layer construction, such as by IR sintering.
- fluoromonomer or the expression “fluorinated monomer” means a polymerizable alkene which contains at least one fluorine atom, fluoroalkyl group, or fluoroalkoxy group attached to the double bond of the alkene that undergoes polymerization.
- fluoropolymer means a polymer formed by the polymerization of at least one fluoromonomer, and it is inclusive of homopolymers, copolymers, terpolymers and higher polymers which are thermoplastic in their nature, meaning they are capable of being formed into useful pieces by flowing upon the application of heat, such as is done in molding and extrusion processes.
- the thermoplastic polymers typically exhibit a crystalline melting point.
- fluoropolymers for a laser sintering application include polymer and copolymers of polyvinylidene fluoride or polychlorotrifluoroethylene
- PVDF polyvinylidene fluoride
- copolymers and terpolymers include those containing at least 50 mole percent of vinylidene fluoride copolymerized with at least one comonomer selected from the group consisting of tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, hexafluoropropene, vinyl fluoride, pentafluoropropene, perfluoromethyl vinyl ether, perfluoropropyl vinyl ether and any other monomer that would readily copolymerize with vinylidene fluoride.
- copolymers composed of from at least about 70 and up to 99 mole percent vinylidene fluoride, and correspondingly from 1 to 30 percent tetrafluoroethylene; and about 70 to 99 percent vinylidene fluoride and 1 to 30 percent hexafluoropropene (as described in U.S. Patent No. 3,178,399); and about 70 to 99 mole percent vinylidene fluoride and 1 to 30 mole percent trifluoroethylene.
- Terpolymers of vinylidene fluoride, hexafluoropropene and tetrafluoroethylene such as described in U.S. Patent No.
- 2,968,649 and terpolymers of vinylidene fluoride, trifluoroethylene and tetrafluoroethylene are also representatives of the class of vinylidene fluoride copolymers which can be used in the process embodied herein.
- a preferred PVDF copolymer for laser sintering would have a reasonable amount of crystalinity to present a distinct melt point, yet would have a small amount of non-crystallinity to reduce the brittleness of a formed article.
- An example of such a copolymer would be a random copolymer composed of 80-97 weight percent of vinylidene fluoride monomer units and 3-20 parts by weight of hexafluoropropane monomer units.
- the term "polychlorotrifluoroethylene”, as used herein includes both normally solid, high molecular weight homopolymers, copolymers and terpolymers.
- Such copolymers and terpolymers include those containing at least 50 mole percent of chlorotrifluoroethylene copolymerized with at least one comonomer selected from the group consisting of tetrafluoroethylene, trifluoroethylene, vinylidene fluoride, hexafluoropropene, vinyl fluoride, pentafluoropropene, perfluoromethyl vinyl ether, perfluoropropyl vinyl ether and any other monomer that would readily copolymerize with vinylidene fluoride.
- comonomer selected from the group consisting of tetrafluoroethylene, trifluoroethylene, vinylidene fluoride, hexafluoropropene, vinyl fluoride, pentafluoropropene, perfluoromethyl vinyl ether, perfluoropropyl vinyl ether and any other monomer that would readily copolymerize with vinylidene fluoride.
- the fluoropolymers useful for laser sintering could also include a blend of a fluoropolymers or copolymer with an acrylic or methacrylic polymer.
- the fluoropolymer powder may be blended with small amounts up to 10% by weight, based on the amount of polymer, of a reinforcing powder whose melting point is considerably higher than that of the polymer, or a glass powder. This blend forms a polyvinylidene fluoride laser sinterable composition.
- Fluoropolymer powders of the present invention can be directly formed into powders from emulsion or suspension polymerization through the use of spray drying, freeze-drying, and other methods of powder formation.
- the powder average particle size is less than 100 microns, typically in the range of 40 to 80 microns.
- Particle size can be adjusted and optimized for the laser sintering process by known means, such as by cryogenic grinding and by sieving and/or classifying.
- the polyvinylidene fluoride polymers and copolymers of the invention show melting and recrystallization characteristics with minimum overlap. They can be used in place of currently used powders in the laser sintering process.
- a homopolymer or copolymer of PVDF can be selected to match the physical properties desired in the laser sintering operation, and in the formed article.
- PVDF powders have intrinsic flame retardant properties, and PVDF show higher chemical and thermal resistance than polyamide. PVDF powders are far more flame retardant than polyamides any other materials currently used in a laser sintering operation.
- Sintered parts made of polyvinylidene fluoride powder can be used in aggressive chemical and thermal environments, and also whenever flame retardant properties are required. Additionally, parts made of VF 2 -VF 3 copolymers (80/20 to 60/40) can show piezoelectric properties.
- a three-dimensional object is formed by a) applying a layer of a fluoropolymer or co-polymer powder at a target surface, then b) directing energy at selected locations of said polymer powder layer to sinter said powder at those selected points, and then repeating steps a) and b) over multiple layers to form an object.
- the unsintered powder form said object.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
La présente invention concerne l'utilisation d'un polymère fluoré et de ses copolymères dans un procédé de frittage par laser. Une poudre à base de polymère fluoré procure plusieurs avantages par rapport aux polymères d'utilisation courante en ce qu'il possède un caractère ignifuge, ainsi qu'une excellente résistance chimique et thermique.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US79938606P | 2006-05-10 | 2006-05-10 | |
US60/799,386 | 2006-05-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007133912A2 true WO2007133912A2 (fr) | 2007-11-22 |
WO2007133912A3 WO2007133912A3 (fr) | 2008-07-17 |
Family
ID=38694592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/067454 WO2007133912A2 (fr) | 2006-05-10 | 2007-04-26 | Utilisation de polymères fluorés dans le frittage par laser |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007133912A2 (fr) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017127569A1 (fr) | 2016-01-21 | 2017-07-27 | 3M Innovative Properties Company | Traitement additif de fluoroélastomères |
WO2018149757A1 (fr) * | 2017-02-16 | 2018-08-23 | Solvay Specialty Polymers Italy S.P.A. | Élastomère thermoplastique perfluoré |
WO2018149758A1 (fr) * | 2017-02-16 | 2018-08-23 | Solvay Specialty Polymers Italy S.P.A. | Procédé de fabrication d'un objet tridimensionnel |
WO2019016739A2 (fr) | 2017-07-19 | 2019-01-24 | 3M Innovative Properties Company | Traitement additif de fluoropolymères |
WO2019016738A3 (fr) * | 2017-07-19 | 2019-03-21 | 3M Innovative Properties Company | Procédé de fabrication d'articles polymères et de composites polymères par fabrication additive et articles polymères et composites |
US20190127500A1 (en) * | 2016-04-01 | 2019-05-02 | Arkema Inc. | 3-d printed fluoropolymer structures |
WO2019138201A1 (fr) | 2018-01-15 | 2019-07-18 | Arkema France | Poudre de polymere fluore adaptee au prototypage rapide par frittage laser |
WO2019138199A1 (fr) * | 2018-01-15 | 2019-07-18 | Arkema France | Poudre de polymere fluore a fenetre de frittage elargie par traitement thermique et son utilisation dans le frittage laser |
EP3546501A1 (fr) | 2018-03-27 | 2019-10-02 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Procédé de production d'une population de particules de difluorure de polyvinylidène ou de particules d'un copolymère comprenant du difluorure de polyvinylidène |
WO2019208760A1 (fr) | 2018-04-27 | 2019-10-31 | ダイキン工業株式会社 | Poudre de moulage |
EP3744503A4 (fr) * | 2018-01-23 | 2021-09-08 | Daikin Industries, Ltd. | Mise en forme de poudre |
WO2021214664A1 (fr) | 2020-04-21 | 2021-10-28 | 3M Innovative Properties Company | Particules comprenant du polytétrafluoroéthylène et procédé de fabrication d'un article tridimensionnel |
US11248071B2 (en) | 2016-04-01 | 2022-02-15 | Arkema Inc. | 3-D printed fluoropolymer structures |
US11577458B2 (en) | 2018-06-29 | 2023-02-14 | 3M Innovative Properties Company | Additive layer manufacturing method and articles |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050280179A1 (en) * | 2004-06-17 | 2005-12-22 | Ralph Stankowski | Method for the manufacture of a composite filter plate |
-
2007
- 2007-04-26 WO PCT/US2007/067454 patent/WO2007133912A2/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050280179A1 (en) * | 2004-06-17 | 2005-12-22 | Ralph Stankowski | Method for the manufacture of a composite filter plate |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11230053B2 (en) | 2016-01-21 | 2022-01-25 | 3M Innovative Properties Company | Additive processing of fluoropolymers |
WO2017127561A1 (fr) | 2016-01-21 | 2017-07-27 | 3M Innovative Properties Company | Traitement additif de fluoropolymères |
KR102639373B1 (ko) * | 2016-01-21 | 2024-02-23 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 플루오로중합체의 적층 가공 |
WO2017127572A1 (fr) | 2016-01-21 | 2017-07-27 | 3M Innovative Properties Company | Traitement additif de fluoropolymères |
WO2017127569A1 (fr) | 2016-01-21 | 2017-07-27 | 3M Innovative Properties Company | Traitement additif de fluoroélastomères |
CN108495877A (zh) * | 2016-01-21 | 2018-09-04 | 3M创新有限公司 | 含氟聚合物的增材加工 |
KR20180104668A (ko) * | 2016-01-21 | 2018-09-21 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 플루오로중합체의 적층 가공 |
US11179886B2 (en) | 2016-01-21 | 2021-11-23 | 3M Innovative Properties Company | Additive processing of fluoropolymers |
US20190030794A1 (en) * | 2016-01-21 | 2019-01-31 | 3M Innovative Properties Company | Additive processing of fluoroelastomers |
JP2019503907A (ja) * | 2016-01-21 | 2019-02-14 | スリーエム イノベイティブ プロパティズ カンパニー | フルオロエラストマーの積層プロセス |
TWI745339B (zh) * | 2016-01-21 | 2021-11-11 | 美商3M新設資產公司 | 氟聚合物之加成性加工 |
JP2019510094A (ja) * | 2016-01-21 | 2019-04-11 | スリーエム イノベイティブ プロパティズ カンパニー | フルオロポリマーの積層プロセス |
US11148361B2 (en) | 2016-01-21 | 2021-10-19 | 3M Innovative Properties Company | Additive processing of fluoroelastomers |
KR20190060897A (ko) * | 2016-01-21 | 2019-06-03 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 플루오로탄성중합체의 적층 가공 |
CN108495877B (zh) * | 2016-01-21 | 2021-06-08 | 3M创新有限公司 | 含氟聚合物的增材加工 |
KR102243695B1 (ko) * | 2016-01-21 | 2021-04-26 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 플루오로탄성중합체의 적층 가공 |
US11248071B2 (en) | 2016-04-01 | 2022-02-15 | Arkema Inc. | 3-D printed fluoropolymer structures |
US20190127500A1 (en) * | 2016-04-01 | 2019-05-02 | Arkema Inc. | 3-d printed fluoropolymer structures |
US10633468B2 (en) * | 2016-04-01 | 2020-04-28 | Arkema Inc. | 3-D printed fluoropolymer structures |
CN110300768A (zh) * | 2017-02-16 | 2019-10-01 | 索尔维特殊聚合物意大利有限公司 | 用于制造三维物体的方法 |
CN110312746B (zh) * | 2017-02-16 | 2023-01-20 | 索尔维特殊聚合物意大利有限公司 | 全氟化热塑性弹性体 |
CN110312746A (zh) * | 2017-02-16 | 2019-10-08 | 索尔维特殊聚合物意大利有限公司 | 全氟化热塑性弹性体 |
US11279788B2 (en) | 2017-02-16 | 2022-03-22 | Solvay Specialty Polymers Italy S.P.A. | Perfluorinated thermoplastic elastomer |
WO2018149758A1 (fr) * | 2017-02-16 | 2018-08-23 | Solvay Specialty Polymers Italy S.P.A. | Procédé de fabrication d'un objet tridimensionnel |
WO2018149757A1 (fr) * | 2017-02-16 | 2018-08-23 | Solvay Specialty Polymers Italy S.P.A. | Élastomère thermoplastique perfluoré |
WO2019016738A3 (fr) * | 2017-07-19 | 2019-03-21 | 3M Innovative Properties Company | Procédé de fabrication d'articles polymères et de composites polymères par fabrication additive et articles polymères et composites |
US11760008B2 (en) | 2017-07-19 | 2023-09-19 | 3M Innovative Properties Company | Additive processing of fluoropolymers |
WO2019016739A2 (fr) | 2017-07-19 | 2019-01-24 | 3M Innovative Properties Company | Traitement additif de fluoropolymères |
FR3076832A1 (fr) * | 2018-01-15 | 2019-07-19 | Arkema France | Poudre de polymere fluore a fenetre de frittage elargie par traitement thermique et son utilisation dans le frittage laser |
WO2019138199A1 (fr) * | 2018-01-15 | 2019-07-18 | Arkema France | Poudre de polymere fluore a fenetre de frittage elargie par traitement thermique et son utilisation dans le frittage laser |
FR3076833A1 (fr) * | 2018-01-15 | 2019-07-19 | Arkema France | Poudre de polymere fluore adaptee au prototypage rapide par frittage laser |
WO2019138201A1 (fr) | 2018-01-15 | 2019-07-18 | Arkema France | Poudre de polymere fluore adaptee au prototypage rapide par frittage laser |
CN111511808A (zh) * | 2018-01-15 | 2020-08-07 | 阿科玛法国公司 | 适用于通过激光烧结的快速原型制作的含氟聚合物粉末 |
CN111511808B (zh) * | 2018-01-15 | 2024-04-23 | 阿科玛法国公司 | 适用于通过激光烧结的快速原型制作的含氟聚合物粉末 |
US11845847B2 (en) | 2018-01-23 | 2023-12-19 | Daikin Industries, Ltd. | Shaping powder |
EP3744503A4 (fr) * | 2018-01-23 | 2021-09-08 | Daikin Industries, Ltd. | Mise en forme de poudre |
EP4223485A1 (fr) * | 2018-01-23 | 2023-08-09 | Daikin Industries, Ltd. | Objet façonné en fluoro-résine |
WO2019185583A1 (fr) | 2018-03-27 | 2019-10-03 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Procédé de production d'une population de particules de difluorure de polyvinylidène ou de particules d'un copolymère comprenant du difluorure de polyvinylidène |
US11945919B2 (en) | 2018-03-27 | 2024-04-02 | Evonik Operations Gmbh | Method for producing a population of particles of polyvinylidene difluoride or of particles of a copolymer comprising polyvinylidene difluoride |
CN112119113A (zh) * | 2018-03-27 | 2020-12-22 | 埃朗根-纽伦堡 弗里德里希-亚历山大大学 | 生产聚偏二氟乙烯颗粒或包含聚偏二氟乙烯的共聚物颗粒的方法 |
EP3546501A1 (fr) | 2018-03-27 | 2019-10-02 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Procédé de production d'une population de particules de difluorure de polyvinylidène ou de particules d'un copolymère comprenant du difluorure de polyvinylidène |
CN112119113B (zh) * | 2018-03-27 | 2023-11-17 | 赢创运营有限公司 | 生产聚偏二氟乙烯颗粒群或包含聚偏二氟乙烯的共聚物颗粒群的方法 |
US20210115199A1 (en) * | 2018-03-27 | 2021-04-22 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Method for producing a population of particles of polyvinylidene difluoride or of particles of a copolymer comprising polyvinylidene difluoride |
JP2021519369A (ja) * | 2018-03-27 | 2021-08-10 | フリードリヒ−アレクサンダー−ウニベルジテート・エアランゲン−ニュルンベルク | ポリ二フッ化ビニリデンの粒子の、またはポリ二フッ化ビニリデンを含むコポリマーの粒子の集団を生産するための方法。 |
US11555098B2 (en) | 2018-04-27 | 2023-01-17 | Daikin Industries. Ltd. | Molding powder |
KR20200087873A (ko) | 2018-04-27 | 2020-07-21 | 다이킨 고교 가부시키가이샤 | 조형용 분말 |
WO2019208760A1 (fr) | 2018-04-27 | 2019-10-31 | ダイキン工業株式会社 | Poudre de moulage |
US11866570B2 (en) | 2018-04-27 | 2024-01-09 | Daikin Industries, Ltd. | Molding powder |
US11577458B2 (en) | 2018-06-29 | 2023-02-14 | 3M Innovative Properties Company | Additive layer manufacturing method and articles |
WO2021214664A1 (fr) | 2020-04-21 | 2021-10-28 | 3M Innovative Properties Company | Particules comprenant du polytétrafluoroéthylène et procédé de fabrication d'un article tridimensionnel |
Also Published As
Publication number | Publication date |
---|---|
WO2007133912A3 (fr) | 2008-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007133912A2 (fr) | Utilisation de polymères fluorés dans le frittage par laser | |
EP3436524B1 (fr) | Structures de polymère fluoré imprimées en 3-d | |
US5648450A (en) | Sinterable semi-crystalline powder and near-fully dense article formed therein | |
US12005610B2 (en) | Polymer powder and article made from the same | |
Bai et al. | The effect of processing conditions on the mechanical properties of polyethylene produced by selective laser sintering | |
US5990268A (en) | Sinterable semi-crystalline powder and near-fully dense article formed therewith | |
US11179886B2 (en) | Additive processing of fluoropolymers | |
US5527877A (en) | Sinterable semi-crystalline powder and near-fully dense article formed therewith | |
US10457833B2 (en) | Materials containing fluoropolymers for additive manufacturing applications | |
US8158260B2 (en) | Molding method and molded article of fluoropolymer with multilayered particulate structure | |
JP6161230B2 (ja) | 難燃性材料を加工する方法及びシステム | |
KR102031506B1 (ko) | 마크로 텍스쳐 표면을 갖는 비대칭 폴리테트라플루오로에틸렌 복합체 및 이의 제조 방법 | |
JP2010132712A (ja) | 多孔体及びフィルター | |
El Magri et al. | Printing temperature effects on the structural and mechanical performances of 3D printed Poly-(phenylene sulfide) material | |
CN105473655A (zh) | 氟聚合物共混物 | |
Bai et al. | Carbon nanotube reinforced Polyamide 12 nanocomposites for laser sintering | |
JP2021510747A (ja) | レーザー焼結による迅速なプロトタイピングに適合したフルオロポリマー粉末 | |
JP2021526088A (ja) | 3dプリンティング用の非中実コアフィラメント | |
US20230167269A1 (en) | Molding powder | |
TW201922883A (zh) | 氟系樹脂多孔膜及其製造方法 | |
Lv et al. | Polyetherimide powders as material alternatives for selective laser-sintering components for aerospace applications | |
JP2023502120A (ja) | 3d印刷されたフルオロポリマー製品のためのアクリルサポート構造 | |
CN116806164A (zh) | 空气过滤器滤材、空气过滤器滤材的制造方法、口罩用滤材及褶裥状口罩用滤材 | |
US20240017462A1 (en) | Method and extruder for preparing a high quality block of immobilized active media | |
RU2771391C1 (ru) | Способ получения трехмерного ауксетика с сотовой структурой (варианты) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07761312 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07761312 Country of ref document: EP Kind code of ref document: A2 |